1
|
Baker ML, Cantley LG. Adding insult to injury: the spectrum of tubulointerstitial responses in acute kidney injury. J Clin Invest 2025; 135:e188358. [PMID: 40091836 PMCID: PMC11910233 DOI: 10.1172/jci188358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
Acute kidney injury (AKI) encompasses pathophysiology ranging from glomerular hypofiltration to tubular cell injury and outflow obstruction. This Review will focus on the tubulointerstitial processes that underlie most cases of AKI. Tubular epithelial cell (TEC) injury can occur via distinct insults, including ischemia, nephrotoxins, sepsis, and primary immune-mediated processes. Following these initial insults, tubular cells can activate survival and repair responses or they can develop mitochondrial dysfunction and metabolic reprogramming, cell-cycle arrest, and programmed cell death. Developing evidence suggests that the fate of individual tubular cells to survive and proliferate or undergo cell death or senescence is frequently determined by a biphasic immune response with initial proinflammatory macrophage, neutrophil, and lymphocyte infiltration exacerbating injury and activating programmed cell death, while alternatively activated macrophages and specific lymphocyte subsets subsequently modulate inflammation and promote repair. Functional recovery requires that this reparative phase supports proteolytic degradation of tubular casts, proliferation of surviving TECs, and restoration of TEC differentiation. Incomplete resolution or persistence of inflammation can lead to failed tubular repair, fibrosis, and chronic kidney disease. Despite extensive research in animal models, translating preclinical findings to therapies remains challenging, emphasizing the need for integrated multiomic approaches to advance AKI understanding and treatment.
Collapse
|
2
|
Ouyang H, Ma R, Yang X, Chen C, Xu X, Tian J, Liu J, Zha Y, Liu H, Yang T, Hou FF. Urinary Cytokeratin 20 as a Biomarker for AKI-CKD Transition among Patients with Acute Decompensated Heart Failure and Acute Kidney Injury. J Am Soc Nephrol 2025; 36:451-462. [PMID: 39466275 PMCID: PMC11888961 DOI: 10.1681/asn.0000000518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024] Open
Abstract
Key Points In patients with acute decompensated heart failure and AKI, higher urinary cytokeratin 20 (CK20) associated with higher risk of AKI-to-CKD progression. Urinary CK20, particularly combined with clinical variables, improved the ability of predicting AKI-CKD transition with an accuracy of 90%. Urinary CK20 might be used as a novel tool for early identifying patients at high risk of kidney function loss after AKI. Background Predicting the risk of AKI-CKD transition remains a major challenge in the management of acute decompensated heart failure (ADHF) and AKI. This study investigated the clinical utility of urinary cytokeratin 20 (CK20), a novel biomarker reflecting the severity of histological acute tubular injury, for identifying patients at risk of AKI-to-CKD progression. Methods This prospective cohort study included a test set comprising 279 consecutive hospitalized patients with ADHF and AKI in five centers and a validation set enrolling 206 similar patients at an external center. Urinary CK20 and seven reported renal tubular injury biomarkers at the time of AKI diagnosis were measured. The primary outcome was a composite of AKI-CKD transition 90 days after AKI or all-cause death within 90 days. The secondary outcome was AKI-to-CKD progression 90 days after AKI. Results In the test set, 115 patients (41%) reached the primary end point. Concentrations of urinary CK20 peaked on the day of AKI diagnosis and remained elevated 14 days after AKI. After multivariable adjustment, the highest tertile of urinary CK20 was associated with 21-fold higher risk of the primary outcome and 29-fold higher risk of the secondary outcome. For predicting the primary and secondary outcomes, urinary CK20 at the time of AKI diagnosis had an area under the receiver operating characteristic curve of 0.82 (95% confidence interval [CI], 0.77 to 0.87) and 0.81 (95% CI, 0.75 to 0.87), respectively, and outperformed other reported biomarkers reflecting acute tubular injury and risk of CKD. Adding urinary CK20 to the clinical variables improved the ability for predicting the primary outcome with an area under the receiver operating characteristic curve of 0.90 (95% CI, 0.85 to 0.94) and largely improved risk reclassification. The ability of urinary CK20 in predicting AKI-CKD transition was further confirmed in the validation set. Conclusions Urinary CK20 improved prediction of the risk of transition from AKI to CKD in patients with ADHF and AKI.
Collapse
Affiliation(s)
- Han Ouyang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Province Institute of Nephrology, Guangdong Province Key Laboratory of Renal Failure Research, Guangzhou, China
| | - Rui Ma
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Province Institute of Nephrology, Guangdong Province Key Laboratory of Renal Failure Research, Guangzhou, China
| | - Xiaobing Yang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Province Institute of Nephrology, Guangdong Province Key Laboratory of Renal Failure Research, Guangzhou, China
| | - Chunbo Chen
- Division of Critical Care Medicine, Maoming People's Hospital, Maoming, China
| | - Xin Xu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Province Institute of Nephrology, Guangdong Province Key Laboratory of Renal Failure Research, Guangzhou, China
| | - Jianwei Tian
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Province Institute of Nephrology, Guangdong Province Key Laboratory of Renal Failure Research, Guangzhou, China
| | - Jun Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Province Institute of Nephrology, Guangdong Province Key Laboratory of Renal Failure Research, Guangzhou, China
| | - Yan Zha
- Department of Nephrology, Guizhou Provincial People's Hospital, Guizhou University, Guiyang, China
| | - Huafeng Liu
- Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tiecheng Yang
- Division of Nephrology, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Fan Fan Hou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Province Institute of Nephrology, Guangdong Province Key Laboratory of Renal Failure Research, Guangzhou, China
| |
Collapse
|
3
|
Endre ZH. Kidney biopsy in acute kidney injury: increase insight or preserve the status quo? Kidney Int 2025; 107:397-400. [PMID: 39984253 DOI: 10.1016/j.kint.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 02/23/2025]
Affiliation(s)
- Zoltán H Endre
- Department of Nephrology, Prince of Wales Hospital, Randwick, Sydney, Australia; School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia.
| |
Collapse
|
4
|
Zhang L, Ye J, Qiu C. Twist2 knockdown alleviates renal ischemia-reperfusion injury by maintaining mitochondrial function and enhancing mitophagy through Bnip3. Hum Cell 2025; 38:50. [PMID: 39918659 DOI: 10.1007/s13577-025-01177-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/20/2025] [Indexed: 02/09/2025]
Abstract
Renal ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury (AKI). Twist-related protein 2 (Twist2) is a basic helix/loop/helix transcription factor. However, the underlying effects of Twist2 in IRI remain to be elucidated. Herein, we found that the expression of Twist2 was significantly upregulated in renal tissues of mice induced by ischemia/reperfusion (I/R) and in human renal tubular epithelial cell HK-2 exposed to hypoxia-reoxygenation. We silenced Twist2 with RNAi technology. Twist2 knockdown alleviated renal pathological damage in mice. Twist2 depletion ameliorated IRI-induced mitochondrial dysfunction, such as increasing ATP content and mitochondrial DNA copy number and restoring mitochondrial membrane potential in the kidneys of mice, and similar results were observed in in vitro experiments. Twist2 interference increased the expression of LC3B and decreased the expression of p62 and mitochondrial membrane proteins TIMM23 and TOMM20 both in vivo and in vitro. Electron microscope and the co-localization of LC3B and mitotracker DsRed suggested the induction of autophagy and mitophagy after Twist2 knockdown in kidneys or cells. Mechanism studies revealed that Twist2 exerted a direct inhibitory effect on BCL2 interacting protein 3 (Bnip3) transcriptional activity by targeting the Bnip3 promoter. In hypoxia/reoxygenation-induced renal tubular epithelial cells, the interference of Bnip3 reversed the effect of Twist2 depletion on mitochondrial function and mitophagy. In conclusion, our findings suggest that the depletion of Twist2 exerts renoprotective effect in I/R-induced AKI. Twist2 regulates mitochondrial function and mitophagy in part by targeting and downregulating Bnip3. Our study provides new insights into the pathological mechanisms of I/R-induced AKI.
Collapse
Affiliation(s)
- Lexi Zhang
- Department of Kidney Transplantation, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Jianfeng Ye
- Department of Kidney Transplantation, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Cheng Qiu
- Department of Kidney Transplantation, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
5
|
Huang Y, Zhou J, Deng Y, Li G, He S, Li H, Liu L. MiR-363: A potential biomarker of kidney diseases. Clin Chim Acta 2025; 567:120049. [PMID: 39631492 DOI: 10.1016/j.cca.2024.120049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
MicroRNAs (miRNAs), a class of endogenous small RNAs with lengths of approximately 19-24 nucleotides, play important regulatory roles in cells. In recent years, miR-363 has emerged as a prominent member of the miR-92a family, participating in various biological functions, including cellular proliferation, cycle, migration, and apoptosis. In particular, miR-363 plays a critical role in acute kidney injury, renal fibrosis, and diabetic nephropathy and can serve as a biomarker for the diagnosis of renal cell carcinoma. Ongoing research is exploring its potential as a biomarker of other kidney diseases. This review focuses on the role of miR-363 in kidney diseases, elucidating its regulatory mechanisms and exploring its possible value as a biomarker of kidney diseases.
Collapse
Affiliation(s)
- Yiqi Huang
- Institute of Toxicology, Guangdong Provincial Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510310, China; School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Jiazhen Zhou
- Institute of Toxicology, Guangdong Provincial Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510310, China
| | - Yaotang Deng
- Institute of Toxicology, Guangdong Provincial Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510310, China
| | - Guoliang Li
- Institute of Toxicology, Guangdong Provincial Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510310, China
| | - Shuirong He
- Institute of Toxicology, Guangdong Provincial Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510310, China; School of Public Health, Sun Yat-sen University, Guangzhou 510275, China
| | - Hecheng Li
- Institute of Toxicology, Guangdong Provincial Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510310, China; School of Public Health, Southern Medical University, Guangzhou 510145, China
| | - Lili Liu
- Institute of Toxicology, Guangdong Provincial Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510310, China.
| |
Collapse
|
6
|
Rangel ÉB. Delving into the complexities of the interplay between acute kidney injury and diabetic kidney disease: A focus on glycemic control and outcomes. J Bras Nefrol 2025; 47:e20240074. [PMID: 39679824 DOI: 10.1590/2175-8239-jbn-2024-0074en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/11/2024] [Indexed: 12/17/2024] Open
Abstract
Patients with diabetic kidney disease (DKD) face an elevated risk of experiencing acute kidney injury (AKI), exacerbating the progression of DKD. This article offers a comprehensive review of the literature and knowledge of the primary pathophysiologic mechanisms underlying kidney damage, as well as the biological implications of maladaptive kidney repair in the context of DKD complicated by AKI. Additionally, we examine in detail the findings of clinical trials evaluating the efficacy and safety of intensive insulin treatment for hyperglycemic patients in intensive care units, alongside the potential risks of hypoglycemia and mortality. Furthermore, through critical analysis of clinical trial results, opportunities for personalized safety-based approaches to mitigate side effects are identified. It is imperative to conduct randomized-controlled studies to assess the impact of intensive insulin treatment on diabetic patients with DKD, and to validate AKI biomarkers in this patient population. Such studies will help to tailor treatment strategies to improve patient outcomes and preserve kidney function.
Collapse
Affiliation(s)
- Érika Bevilaqua Rangel
- Hospital Israelita Albert Einstein, Instituto Israelita de Ensino e Pesquisa, São Paulo, SP, Brazil
- Universidade Federal de São Paulo, Departamento de Medicina, Divisão de Nefrologia, São Paulo, SP, Brazil
| |
Collapse
|
7
|
Penninger P, Brezovec H, Tsymala I, Teufl M, Phan-Canh T, Bitencourt T, Brinkmann M, Glaser W, Ellmeier W, Bonelli M, Kuchler K. HDAC1 fine-tunes Th17 polarization in vivo to restrain tissue damage in fungal infections. Cell Rep 2024; 43:114993. [PMID: 39580799 DOI: 10.1016/j.celrep.2024.114993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/13/2024] [Accepted: 11/04/2024] [Indexed: 11/26/2024] Open
Abstract
Histone deacetylases (HDACs) contribute to shaping many aspects of T cell lineage functions in anti-infective surveillance; however, their role in fungus-specific immune responses remains poorly understood. Using a T cell-specific deletion of HDAC1, we uncover its critical role in limiting polarization toward Th17 by restricting expression of the cytokine receptors gp130 and transforming growth factor β receptor 2 (TGF-βRII) in a fungus-specific manner, thus limiting Stat3 and Smad2/3 signaling. Controlled release of interleukin-17A (IL-17A) and granulocyte-macrophage colony-stimulating factor (GM-CSF) is vital to minimize apoptotic processes in renal tubular epithelial cells in vitro and in vivo. Consequently, animals harboring excess Th17-polarized HDCA1-deficient CD4+ T cells develop increased kidney pathology upon invasive Candida albicans infection. Importantly, pharmacological inhibition of class I HDACs similarly increased IL-17A release by both mouse and human CD4+ T cells. Collectively, this work shows that HDAC1 controls T cell polarization, thus playing a critical role in the antifungal immune defense and infection outcomes.
Collapse
Affiliation(s)
- Philipp Penninger
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Helena Brezovec
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Irina Tsymala
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Magdalena Teufl
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Trinh Phan-Canh
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Tamires Bitencourt
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; CCRI - St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Marie Brinkmann
- Medical University of Vienna, Division of Rheumatology, Department of Internal Medicine III, 1090 Vienna, Austria
| | - Walter Glaser
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Wilfried Ellmeier
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, 1090 Vienna, Austria
| | - Michael Bonelli
- Medical University of Vienna, Division of Rheumatology, Department of Internal Medicine III, 1090 Vienna, Austria
| | - Karl Kuchler
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria.
| |
Collapse
|
8
|
Pourafshar N, Daneshmand A, Karimi A, Wilcox CS. Methods for the Assessment of Volume Overload and Congestion in Heart Failure. KIDNEY360 2024; 5:1584-1593. [PMID: 39480670 PMCID: PMC11556945 DOI: 10.34067/kid.0000000000000553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Acute decompensated heart failure entails a dysregulation of renal and cardiac function, with fluid volume excess or congestion being a key component. We provide an overview of methods for its assessment in clinical practice. Evaluation of congestion can be achieved using different methods including plasma biomarkers, measurement of blood volume from the volume of distribution of [131I]-human serum albumin, sonographic modalities, implantable devices, invasive measurements of volume status including right heart catheterization, and impedance methods. Integration into clinical practice of accessible, cost-effective, and evidence-based modalities for volume assessment will be pivotal in the management of acute decompensated heart failure.
Collapse
Affiliation(s)
- Negiin Pourafshar
- Division of Nephrology, Department of Medicine, Center for Hypertension Research, Georgetown University, Washington, DC
| | | | | | - Christopher Stuart Wilcox
- Division of Nephrology, Department of Medicine, Center for Hypertension Research, Georgetown University, Washington, DC
| |
Collapse
|
9
|
Hinze C, Lovric S, Halloran PF, Barasch J, Schmidt-Ott KM. Epithelial cell states associated with kidney and allograft injury. Nat Rev Nephrol 2024; 20:447-459. [PMID: 38632381 PMCID: PMC11660082 DOI: 10.1038/s41581-024-00834-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Abstract
The kidney epithelium, with its intricate arrangement of highly specialized cell types, constitutes the functional core of the organ. Loss of kidney epithelium is linked to the loss of functional nephrons and a subsequent decline in kidney function. In kidney transplantation, epithelial injury signatures observed during post-transplantation surveillance are strong predictors of adverse kidney allograft outcomes. However, epithelial injury is currently neither monitored clinically nor addressed therapeutically after kidney transplantation. Several factors can contribute to allograft epithelial injury, including allograft rejection, drug toxicity, recurrent infections and postrenal obstruction. The injury mechanisms that underlie allograft injury overlap partially with those associated with acute kidney injury (AKI) and chronic kidney disease (CKD) in the native kidney. Studies using advanced transcriptomic analyses of single cells from kidney or urine have identified a role for kidney injury-induced epithelial cell states in exacerbating and sustaining damage in AKI and CKD. These epithelial cell states and their associated expression signatures are also observed in transplanted kidney allografts, suggesting that the identification and characterization of transcriptomic epithelial cell states in kidney allografts may have potential clinical implications for diagnosis and therapy.
Collapse
Affiliation(s)
- Christian Hinze
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Svjetlana Lovric
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Philip F Halloran
- Alberta Transplant Applied Genomics Centre, Edmonton, Alberta, Canada
- Department of Medicine, Division of Nephrology and Transplant Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Jonathan Barasch
- Division of Nephrology, Columbia University, New York City, NY, USA
| | - Kai M Schmidt-Ott
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
10
|
Zappalà S, Alfieri F, Ancona A, Taccone FS, Maviglia R, Cauda V, Finazzi S, Dell'Anna AM. Development and external validation of a machine learning model for the prediction of persistent acute kidney injury stage 3 in multi-centric, multi-national intensive care cohorts. Crit Care 2024; 28:189. [PMID: 38834995 PMCID: PMC11149298 DOI: 10.1186/s13054-024-04954-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/14/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND The aim of this retrospective cohort study was to develop and validate on multiple international datasets a real-time machine learning model able to accurately predict persistent acute kidney injury (AKI) in the intensive care unit (ICU). METHODS We selected adult patients admitted to ICU classified as AKI stage 2 or 3 as defined by the "Kidney Disease: Improving Global Outcomes" criteria. The primary endpoint was the ability to predict AKI stage 3 lasting for at least 72 h while in the ICU. An explainable tree regressor was trained and calibrated on two tertiary, urban, academic, single-center databases and externally validated on two multi-centers databases. RESULTS A total of 7759 ICU patients were enrolled for analysis. The incidence of persistent stage 3 AKI varied from 11 to 6% in the development and internal validation cohorts, respectively and 19% in external validation cohorts. The model achieved area under the receiver operating characteristic curve of 0.94 (95% CI 0.92-0.95) in the US external validation cohort and 0.85 (95% CI 0.83-0.88) in the Italian external validation cohort. CONCLUSIONS A machine learning approach fed with the proper data pipeline can accurately predict onset of Persistent AKI Stage 3 during ICU patient stay in retrospective, multi-centric and international datasets. This model has the potential to improve management of AKI episodes in ICU if implemented in clinical practice.
Collapse
Affiliation(s)
- Simone Zappalà
- U-Care Medical srl, Corso Castelfidardo 30A, 10129, Turin, Italy
| | | | - Andrea Ancona
- U-Care Medical srl, Corso Castelfidardo 30A, 10129, Turin, Italy
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Brussels, Belgium
| | - Riccardo Maviglia
- Department of Anesthesia, Intensive Care and Emergency Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy
| | - Valentina Cauda
- U-Care Medical srl, Corso Castelfidardo 30A, 10129, Turin, Italy
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Turin, Italy
| | - Stefano Finazzi
- Clinical Data Science Laboratory, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Stezzano 87, 24126, Bergamo, BG, Italy
| | - Antonio Maria Dell'Anna
- Department of Anesthesia, Intensive Care and Emergency Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy.
| |
Collapse
|
11
|
Ma R, Ouyang H, Meng S, Liu J, Tian J, Jia N, Liu Y, Xu X, Yang X, Hou FF. Urinary cytokeratin 20 as a predictor for chronic kidney disease following acute kidney injury. JCI Insight 2024; 9:e180326. [PMID: 38805402 PMCID: PMC11383368 DOI: 10.1172/jci.insight.180326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUNDIdentifying patients with acute kidney injury (AKI) at high risk of chronic kidney disease (CKD) progression remains a challenge.METHODSKidney transcriptome sequencing was applied to identify the top upregulated genes in mice with AKI. The product of the top-ranking gene was identified in tubular cells and urine in mouse and human AKI. Two cohorts of patients with prehospitalization estimated glomerular filtration rate (eGFR) ≥ 45 mL/min/1.73 m2 who survived over 90 days after AKI were used to derive and validate the predictive models. AKI-CKD progression was defined as eGFR < 60 mL/min/1.73 m2 and with minimum 25% reduction from baseline 90 days after AKI in patients with prehospitalization eGFR ≥ 60 mL/min/1.73 m2. AKI-advanced CKD was defined as eGFR < 30 mL/min/1.73 m2 90 days after AKI in those with prehospitalization eGFR 45-59 mL/min/1.73 m2.RESULTSKidney cytokeratin 20 (CK20) was upregulated in injured proximal tubular cells and detectable in urine within 7 days after AKI. High concentrations of urinary CK20 (uCK20) were independently associated with the severity of histological AKI and the risk of AKI-CKD progression. In the Test set, the AUC of uCK20 for predicting AKI-CKD was 0.80, outperforming reported biomarkers for predicting AKI. Adding uCK20 to clinical variables improved the ability to predict AKI-CKD progression, with an AUC of 0.90, and improved the risk reclassification.CONCLUSIONThese findings highlight uCK20 as a useful predictor for AKI-CKD progression and may provide a tool to identify patients at high risk of CKD following AKI.FUNDINGNational Natural Science Foundation of China, National Key R&D Program of China, 111 Plan, Guangdong Key R&D Program.
Collapse
|
12
|
Yeh TH, Tu KC, Wang HY, Chen JY. From Acute to Chronic: Unraveling the Pathophysiological Mechanisms of the Progression from Acute Kidney Injury to Acute Kidney Disease to Chronic Kidney Disease. Int J Mol Sci 2024; 25:1755. [PMID: 38339031 PMCID: PMC10855633 DOI: 10.3390/ijms25031755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
This article provides a thorough overview of the biomarkers, pathophysiology, and molecular pathways involved in the transition from acute kidney injury (AKI) and acute kidney disease (AKD) to chronic kidney disease (CKD). It categorizes the biomarkers of AKI into stress, damage, and functional markers, highlighting their importance in early detection, prognosis, and clinical applications. This review also highlights the links between renal injury and the pathophysiological mechanisms underlying AKI and AKD, including renal hypoperfusion, sepsis, nephrotoxicity, and immune responses. In addition, various molecules play pivotal roles in inflammation and hypoxia, triggering maladaptive repair, mitochondrial dysfunction, immune system reactions, and the cellular senescence of renal cells. Key signaling pathways, such as Wnt/β-catenin, TGF-β/SMAD, and Hippo/YAP/TAZ, promote fibrosis and impact renal function. The renin-angiotensin-aldosterone system (RAAS) triggers a cascade leading to renal fibrosis, with aldosterone exacerbating the oxidative stress and cellular changes that promote fibrosis. The clinical evidence suggests that RAS inhibitors may protect against CKD progression, especially post-AKI, though more extensive trials are needed to confirm their full impact.
Collapse
Affiliation(s)
- Tzu-Hsuan Yeh
- Division of Nephrology, Department of Internal Medicine, Chi Mei Medical Center, Tainan 71004, Taiwan; (T.-H.Y.); (H.-Y.W.)
| | - Kuan-Chieh Tu
- Division of Cardiology, Department of Internal Medicine, Chi Mei Medical Center, Tainan 71004, Taiwan;
| | - Hsien-Yi Wang
- Division of Nephrology, Department of Internal Medicine, Chi Mei Medical Center, Tainan 71004, Taiwan; (T.-H.Y.); (H.-Y.W.)
- Department of Sport Management, College of Leisure and Recreation Management, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Jui-Yi Chen
- Division of Nephrology, Department of Internal Medicine, Chi Mei Medical Center, Tainan 71004, Taiwan; (T.-H.Y.); (H.-Y.W.)
- Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| |
Collapse
|
13
|
Kang MJ, Ioannou S, Lougheide Q, Dittmar M, Hsu Y, Pastor-Soler NM. The study of intercalated cells using ex vivo techniques: primary cell culture, cell lines, kidney slices, and organoids. Am J Physiol Cell Physiol 2024; 326:C229-C251. [PMID: 37899748 DOI: 10.1152/ajpcell.00479.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 10/31/2023]
Abstract
This review summarizes methods to study kidney intercalated cell (IC) function ex vivo. While important for acid-base homeostasis, IC dysfunction is often not recognized clinically until it becomes severe. The advantage of using ex vivo techniques is that they allow for the differential evaluation of IC function in controlled environments. Although in vitro kidney tubular perfusion is a classical ex vivo technique to study IC, here we concentrate on primary cell cultures, immortalized cell lines, and ex vivo kidney slices. Ex vivo techniques are useful in evaluating IC signaling pathways that allow rapid responses to extracellular changes in pH, CO2, and bicarbonate (HCO3-). However, these methods for IC work can also be challenging, as cell lines that recapitulate IC do not proliferate easily in culture. Moreover, a "pure" IC population in culture does not necessarily replicate its collecting duct (CD) environment, where ICs are surrounded by the more abundant principal cells (PCs). It is reassuring that many findings obtained in ex vivo IC systems signaling have been largely confirmed in vivo. Some of these newly identified signaling pathways reveal that ICs are important for regulating NaCl reabsorption, thus suggesting new frontiers to target antihypertensive treatments. Moreover, recent single-cell characterization studies of kidney epithelial cells revealed a dual developmental origin of IC, as well as the presence of novel CD cell types with certain IC characteristics. These exciting findings present new opportunities for the study of IC ex vivo and will likely rediscover the importance of available tools in this field.NEW & NOTEWORTHY The study of kidney intercalated cells has been limited by current cell culture and kidney tissue isolation techniques. This review is to be used as a reference to select ex vivo techniques to study intercalated cells. We focused on the use of cell lines and kidney slices as potential useful models to study membrane transport proteins. We also review how novel collecting duct organoids may help better elucidate the role of these intriguing cells.
Collapse
Affiliation(s)
- Min Ju Kang
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Silvia Ioannou
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Quinn Lougheide
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Michael Dittmar
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Young Hsu
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Nuria M Pastor-Soler
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of USC, Los Angeles, California, United States
| |
Collapse
|
14
|
Ahuja HK, Azim S, Maluf D, Mas VR. Immune landscape of the kidney allograft in response to rejection. Clin Sci (Lond) 2023; 137:1823-1838. [PMID: 38126208 DOI: 10.1042/cs20230493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Preventing kidney graft dysfunction and rejection is a critical step in addressing the nationwide organ shortage and improving patient outcomes. While kidney transplants (KT) are performed more frequently, the overall number of patients on the waitlist consistently exceeds organ availability. Despite improved short-term outcomes in KT, comparable progress in long-term allograft survival has not been achieved. Major cause of graft loss at 5 years post-KT is chronic allograft dysfunction (CAD) characterized by interstitial fibrosis and tubular atrophy (IFTA). Accordingly, proactive prevention of CAD requires a comprehensive understanding of the immune mechanisms associated with either further dysfunction or impaired repair. Allograft rejection is primed by innate immune cells and carried out by adaptive immune cells. The rejection process is primarily facilitated by antibody-mediated rejection (ABMR) and T cell-mediated rejection (TCMR). It is essential to better elucidate the actions of individual immune cell subclasses (e.g. B memory, Tregs, Macrophage type 1 and 2) throughout the rejection process, rather than limiting our understanding to broad classes of immune cells. Embracing multi-omic approaches may be the solution in acknowledging these intricacies and decoding these enigmatic pathways. A transition alongside advancing technology will better allow organ biology to find its place in this era of precision and personalized medicine.
Collapse
Affiliation(s)
- Harsimar Kaur Ahuja
- Surgical Sciences Division, Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, U.S.A
| | - Shafquat Azim
- Surgical Sciences Division, Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, U.S.A
| | - Daniel Maluf
- Program of Transplantation, School of Medicine, 29S Greene St, University of Maryland, Baltimore, MD 21201, U.S.A
| | - Valeria R Mas
- Surgical Sciences Division, Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, U.S.A
| |
Collapse
|
15
|
Liu X, Hu J, Liao G, Liu D, Zhou S, Zhang J, Liao J, Guo Z, Li Y, Yang S, Li S, Chen H, Guo Y, Li M, Fan L, Li L, Zhao M, Liu Y. The role of regulatory T cells in the pathogenesis of acute kidney injury. J Cell Mol Med 2023; 27:3202-3212. [PMID: 37667551 PMCID: PMC10568672 DOI: 10.1111/jcmm.17771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 09/06/2023] Open
Abstract
The incidence of acute kidney injury (AKI) is on the rise and is associated with high mortality; however, there are currently few effective treatments. Moreover, the relationship between Tregs and other components of the immune microenvironment (IME) in the pathogenesis of AKI remains unclear. We downloaded four publicly accessible AKI datasets, GSE61739, GSE67401, GSE19130, GSE81741, GSE19288 and GSE106993 from the gene expression omnibus (GEO) database. Additionally, we gathered two kidney single-cell sequencing (scRNA-seq) samples from the Department of Organ Transplantation at Zhujiang Hospital of Southern Medical University to investigate chronic kidney transplant rejection (CKTR). Moreover, we also collected three samples of normal kidney tissue from GSE131685. By analysing the differences in immune cells between the AKI and Non-AKI groups, we discovered that the Non-AKI group contained a significantly greater number of Tregs than the AKI group. Additionally, the activation of signalling pathways, such as inflammatory molecules secretion, immune response, glycolytic metabolism, NOTCH, FGF, NF-κB and TLR4, was significantly greater in the AKI group than in the Non-AKI group. Additionally, analysis of single-cell sequencing data revealed that Tregs in patients with chronic kidney rejection and in normal kidney tissue have distinct biology, including immune activation, cytokine production, and activation fractions of signalling pathways such as NOTCH and TLR4. In this study, we found significant differences in the IME between AKI and Non-AKI, including differences in Tregs cells and activation levels of biologically significant signalling pathways. Tregs were associated with lower activity of signalling pathways such as inflammatory response, inflammatory molecule secretion, immune activation, glycolysis.
Collapse
Affiliation(s)
- Xiaoyou Liu
- Department of Organ transplantationThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Jianmin Hu
- Department of Organ transplantationZhujiang Hospital of the Southern Medical UniversityGuangzhouChina
| | - Guorong Liao
- Department of Organ transplantationZhujiang Hospital of the Southern Medical UniversityGuangzhouChina
| | - Ding Liu
- Department of Organ transplantationZhujiang Hospital of the Southern Medical UniversityGuangzhouChina
| | - Song Zhou
- Department of Organ transplantationZhujiang Hospital of the Southern Medical UniversityGuangzhouChina
| | - Jie Zhang
- Department of Organ transplantationThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Jun Liao
- Department of Organ transplantationZhujiang Hospital of the Southern Medical UniversityGuangzhouChina
| | - Zefeng Guo
- Department of Organ transplantationZhujiang Hospital of the Southern Medical UniversityGuangzhouChina
| | - Yuzhu Li
- Department of Organ transplantationZhujiang Hospital of the Southern Medical UniversityGuangzhouChina
| | - Siqiang Yang
- Department of Organ transplantationZhujiang Hospital of the Southern Medical UniversityGuangzhouChina
| | - Shichao Li
- Department of Organ transplantationZhujiang Hospital of the Southern Medical UniversityGuangzhouChina
| | - Hua Chen
- Department of Organ transplantationZhujiang Hospital of the Southern Medical UniversityGuangzhouChina
| | - Ying Guo
- Department of Organ transplantationZhujiang Hospital of the Southern Medical UniversityGuangzhouChina
| | - Min Li
- Department of Organ transplantationZhujiang Hospital of the Southern Medical UniversityGuangzhouChina
| | - Lipei Fan
- Department of Organ transplantationZhujiang Hospital of the Southern Medical UniversityGuangzhouChina
| | - Liuyang Li
- Department of Organ transplantationZhujiang Hospital of the Southern Medical UniversityGuangzhouChina
| | - Ming Zhao
- Department of Organ transplantationZhujiang Hospital of the Southern Medical UniversityGuangzhouChina
| | - Yongguang Liu
- Department of Organ transplantationZhujiang Hospital of the Southern Medical UniversityGuangzhouChina
| |
Collapse
|
16
|
Wang X, Chen G, Du Y, Yang J, Wang W. Transcription Factor Sox9 Exacerbates Kidney Injury through Inhibition of MicroRNA-96-5p and Activation of the Trib3/IL-6 Axis. Kidney Blood Press Res 2023; 48:611-627. [PMID: 37717559 PMCID: PMC10614512 DOI: 10.1159/000533544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/08/2023] [Indexed: 09/19/2023] Open
Abstract
INTRODUCTION Our study investigated the possible mechanisms of the role of the transcription factor Sox9 in the development and progression of kidney injury through regulation of the miR-96-5p/Trib3/IL-6 axis. METHODS Bioinformatics analysis was performed to identify differentially expressed genes in kidney injury and normal tissues. An in vivo animal model of kidney injury and an in vitro cellular model of kidney injury were constructed using LPS induction in 8-week-old female C57BL/6 mice and human normal renal tubular epithelial cells HK-2 for studying the possible roles of Sox9, miR-96-5p, Trib3, and IL-6 in kidney injury. RESULTS Sox9 was highly expressed in both mouse and cellular models of kidney injury. Sox9 was significantly enriched in the promoter region of miR-96-5p and repressed miR-96-5p expression. Trib3 was highly expressed in both mouse and cellular models of kidney injury and promoted inflammatory responses and kidney injury. In addition, Trib3 promoted IL-6 expression, which was highly expressed in kidney injury, and promoted the inflammatory response and extent of injury in kidney tissue. In vivo and in vitro experiments confirmed that the knockdown of Sox9 improved the inflammatory response and fibrosis of mouse kidney tissues and HK-2 cells, while the ameliorative effect of silencing Sox9 was inhibited by overexpression of IL-6. CONCLUSION Collectively, Sox9 up-regulates miR-96-5p-mediated Trib3 and activates the IL-6 signaling pathway to exacerbate the inflammatory response, ultimately promoting the development and progression of kidney injury.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Urology, Fuyang People’s Hospital, Anhui Medical University, Fuyang, China
| | - Guang Chen
- Department of Urology, Fuyang People’s Hospital, Anhui Medical University, Fuyang, China
| | - Yongqiang Du
- Department of Urology, Fuyang People’s Hospital, Anhui Medical University, Fuyang, China
| | - Jiajia Yang
- Department of Urology, Fuyang People’s Hospital, Anhui Medical University, Fuyang, China
| | - Wei Wang
- Department of Urology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
17
|
Bhatraju PK, Prince DK, Mansour S, Ikizler TA, Siew ED, Chinchilli VM, Garg AX, Go AS, Kaufman JS, Kimmel PL, Coca SG, Parikh CR, Wurfel MM, Himmelfarb J. Integrated Analysis of Blood and Urine Biomarkers to Identify Acute Kidney Injury Subphenotypes and Associations With Long-term Outcomes. Am J Kidney Dis 2023; 82:311-321.e1. [PMID: 37178093 PMCID: PMC10523857 DOI: 10.1053/j.ajkd.2023.01.449] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/15/2023] [Indexed: 05/15/2023]
Abstract
RATIONALE & OBJECTIVE Acute kidney injury (AKI) is a heterogeneous clinical syndrome with varying causes, pathophysiology, and outcomes. We incorporated plasma and urine biomarker measurements to identify AKI subgroups (subphenotypes) more tightly linked to underlying pathophysiology and long-term clinical outcomes. STUDY DESIGN Multicenter cohort study. SETTING & PARTICIPANTS 769 hospitalized adults with AKI matched with 769 without AKI, enrolled from December 2009 to February 2015 in the ASSESS-AKI Study. PREDICTORS 29 clinical, plasma, and urinary biomarker parameters used to identify AKI subphenotypes. OUTCOME Composite of major adverse kidney events (MAKE) with a median follow-up period of 4.7 years. ANALYTICAL APPROACH Latent class analysis (LCA) and k-means clustering were applied to 29 clinical, plasma, and urinary biomarker parameters. Associations between AKI subphenotypes and MAKE were analyzed using Kaplan-Meier curves and Cox proportional hazard models. RESULTS Among 769 AKI patients both LCA and k-means identified 2 distinct AKI subphenotypes (classes 1 and 2). The long-term risk for MAKE was higher with class 2 (adjusted HR, 1.41 [95% CI, 1.08-1.84]; P=0.01) compared with class 1, adjusting for demographics, hospital level factors, and KDIGO stage of AKI. The higher risk of MAKE among class 2 was explained by a higher risk of long-term chronic kidney disease progression and dialysis. The top variables that were different between classes 1 and 2 included plasma and urinary biomarkers of inflammation and epithelial cell injury; serum creatinine ranked 20th out of the 29 variables for differentiating classes. LIMITATIONS A replication cohort with simultaneously collected blood and urine sampling in hospitalized adults with AKI and long-term outcomes was unavailable. CONCLUSIONS We identify 2 molecularly distinct AKI subphenotypes with differing risk of long-term outcomes, independent of the current criteria to risk stratify AKI. Future identification of AKI subphenotypes may facilitate linking therapies to underlying pathophysiology to prevent long-term sequalae after AKI. PLAIN-LANGUAGE SUMMARY Acute kidney injury (AKI) occurs commonly in hospitalized patients and is associated with high morbidity and mortality. The AKI definition lumps many different types of AKI together, but subgroups of AKI may be more tightly linked to the underlying biology and clinical outcomes. We used 29 different clinical, blood, and urinary biomarkers and applied 2 different statistical algorithms to identify AKI subtypes and their association with long-term outcomes. Both clustering algorithms identified 2 AKI subtypes with different risk of chronic kidney disease, independent of the serum creatinine concentrations (the current gold standard to determine severity of AKI). Identification of AKI subtypes may facilitate linking therapies to underlying biology to prevent long-term consequences after AKI.
Collapse
Affiliation(s)
- Pavan K Bhatraju
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington; Kidney Research Institute, Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington.
| | - David K Prince
- Kidney Research Institute, Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
| | - Sherry Mansour
- Division of Nephrology, Yale University, New Haven, Connecticut
| | - T Alp Ikizler
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Edward D Siew
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Vernon M Chinchilli
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | - Amit X Garg
- Division of Nephrology, Department of Medicine, Western University, London, Ontario, Canada
| | - Alan S Go
- Division of Nephrology, Department of Medicine, University of California, San Francisco, California; Department of Epidemiology and Biostatistics, University of California, San Francisco, California; Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - James S Kaufman
- Division of Nephrology, School of Medicine, New York University, New York, New York; Division of Nephrology, VA New York Harbor Healthcare System, New York, New York
| | - Paul L Kimmel
- National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Steve G Coca
- Section of Nephrology, Department of Internal Medicine, Mount Sinai School of Medicine, New York, New York
| | - Chirag R Parikh
- Division of Nephrology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Mark M Wurfel
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington; Kidney Research Institute, Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
| | - Jonathan Himmelfarb
- Kidney Research Institute, Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
18
|
Okamura K, Lu S, He Z, Altmann C, Montford JR, Li AS, Lucia MS, Orlicky DJ, Weiser-Evans M, Faubel S. IL-6 mediates the hepatic acute phase response after prerenal azotemia in a clinically defined murine model. Am J Physiol Renal Physiol 2023; 325:F328-F344. [PMID: 37471421 PMCID: PMC10511171 DOI: 10.1152/ajprenal.00267.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 06/09/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023] Open
Abstract
Prerenal azotemia (PRA) is a major cause of acute kidney injury and uncommonly studied in preclinical models. We sought to develop and characterize a novel model of PRA that meets the clinical definition: acute loss of glomerular filtration rate (GFR) that returns to baseline with resuscitation. Adult male C57BL/6J wild-type (WT) and IL-6-/- mice were studied. Intraperitoneal furosemide (4 mg) or vehicle was administered at time = 0 and 3 h to induce PRA from volume loss. Resuscitation began at 6 h with 1 mL intraperitoneal saline for four times for 36 h. Six hours after furosemide administration, measured glomerular filtration rate was 25% of baseline and returned to baseline after saline resuscitation at 48 h. After 6 h of PRA, plasma interleukin (IL)-6 was significantly increased, kidney and liver histology were normal, kidney and liver lactate were normal, and kidney injury molecule-1 immunofluorescence was negative. There were 327 differentially regulated genes upregulated in the liver, and the acute phase response was the most significantly upregulated pathway; 84 of the upregulated genes (25%) were suppressed in IL-6-/- mice, and the acute phase response was the most significantly suppressed pathway. Significantly upregulated genes and their proteins were also investigated and included serum amyloid A2, serum amyloid A1, lipocalin 2, chemokine (C-X-C motif) ligand 1, and haptoglobin; hepatic gene expression and plasma protein levels were all increased in wild-type PRA and were all reduced in IL-6-/- PRA. This work demonstrates previously unknown systemic effects of PRA that includes IL-6-mediated upregulation of the hepatic acute phase response.NEW & NOTEWORTHY Prerenal azotemia (PRA) accounts for a third of acute kidney injury (AKI) cases yet is rarely studied in preclinical models. We developed a clinically defined murine model of prerenal azotemia characterized by a 75% decrease in measured glomerular filtration rate (GFR), return of measured glomerular filtration rate to baseline with resuscitation, and absent tubular injury. Numerous systemic effects were observed, such as increased plasma interleukin-6 (IL-6) and upregulation of the hepatic acute phase response.
Collapse
Affiliation(s)
- Kayo Okamura
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Sizhao Lu
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Zhibin He
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Chris Altmann
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - John R Montford
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Renal Section, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado, United States
| | - Amy S Li
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - M Scott Lucia
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - David J Orlicky
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Mary Weiser-Evans
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Sarah Faubel
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
19
|
Stanski NL, Rodrigues CE, Strader M, Murray PT, Endre ZH, Bagshaw SM. Precision management of acute kidney injury in the intensive care unit: current state of the art. Intensive Care Med 2023; 49:1049-1061. [PMID: 37552332 DOI: 10.1007/s00134-023-07171-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/12/2023] [Indexed: 08/09/2023]
Abstract
Acute kidney injury (AKI) is a prototypical example of a common syndrome in critical illness defined by consensus. The consensus definition for AKI, traditionally defined using only serum creatinine and urine output, was needed to standardize the description for epidemiology and to harmonize eligibility for clinical trials. However, AKI is not a simple disease, but rather a complex and multi-factorial syndrome characterized by a wide spectrum of pathobiology. AKI is now recognized to be comprised of numerous sub-phenotypes that can be discriminated through shared features such as etiology, prognosis, or common pathobiological mechanisms of injury and damage. The characterization of sub-phenotypes can serve to enable prognostic enrichment (i.e., identify subsets of patients more likely to share an outcome of interest) and predictive enrichment (identify subsets of patients more likely to respond favorably to a given therapy). Existing and emerging biomarkers will aid in discriminating sub-phenotypes of AKI, facilitate expansion of diagnostic criteria, and be leveraged to realize personalized approaches to management, particularly for recognizing treatment-responsive mechanisms (i.e., endotypes) and targets for intervention (i.e., treatable traits). Specific biomarkers (e.g., serum renin; olfactomedin 4 (OLFM4); interleukin (IL)-9) may further enable identification of pathobiological mechanisms to serve as treatment targets. However, even non-specific biomarkers of kidney injury (e.g., neutrophil gelatinase-associated lipocalin, NGAL; [tissue inhibitor of metalloproteinases 2, TIMP2]·[insulin like growth factor binding protein 7, IGFBP7]; kidney injury molecule 1, KIM-1) can direct greater precision management for specific sub-phenotypes of AKI. This review will summarize these evolving concepts and recent innovations in precision medicine approaches to the syndrome of AKI in critical illness, along with providing examples of how they can be leveraged to guide patient care.
Collapse
Affiliation(s)
- Natalja L Stanski
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Camila E Rodrigues
- Department of Nephrology, Prince of Wales Clinical School, UNSW Medicine, Sydney, NSW, Australia
- Nephrology Department, Hospital das Clínicas, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Michael Strader
- Department of Medicine, School of Medicine, University College Dublin, Dublin, Ireland
| | - Patrick T Murray
- Department of Medicine, School of Medicine, University College Dublin, Dublin, Ireland
| | - Zoltan H Endre
- Department of Nephrology, Prince of Wales Clinical School, UNSW Medicine, Sydney, NSW, Australia
| | - Sean M Bagshaw
- Department of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta and Alberta Health Services, 2-124 Clinical Sciences Building, 8440-112 ST NW, Edmonton, AB, T6G 2B7, Canada.
| |
Collapse
|
20
|
Wang Y, Shen B, Cao X, Lu Z, Zhang Y, Zhu B, Zhang W, Shi Y, Wang J, Fang Y, Song N, Li Y, Xu X, Jia P, Ding X, Zhao S. Serum Insulin-Like Growth Factor-Binding Protein 7 Deriving from Spleen and Lung Could Be Used for Early Recognition of Cardiac Surgery-Associated Acute Kidney Injury. Cardiorenal Med 2023; 13:221-231. [PMID: 37311433 PMCID: PMC10664329 DOI: 10.1159/000531489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/24/2023] [Indexed: 06/15/2023] Open
Abstract
INTRODUCTION The utility of arithmetic product of urinary tissue metalloproteinase inhibitor 2 (TIMP2) and insulin-like growth factor-binding protein 7 (IGFBP7) concentrations has been widely accepted on early diagnosis of acute kidney injury (AKI). However, which organ is the main source of those two factors and how the concentration of IGFBP7 and TIMP2 changed in serum during AKI still remain to be defined. METHODS In mice, gene transcription and protein levels of IGFBP7/TIMP2 in the heart, liver, spleen, lung, and kidney were measured in both ischemia-reperfusion injury (IRI)- and cisplatin-induced AKI models. Serum IGFBP7 and TIMP2 levels were measured and compared in patients before cardiac surgery and at inclusion (0 h), 2 h, 6 h, and 12 h after intensive care unit (ICU) admission, and compared with serum creatinine (SCr), blood urea nitrogen (BUN), estimated glomerular filtration rate (eGFR), and serum uric acid (UA). RESULTS In mouse IRI-AKI model, compared with the sham group, the expression levels of IGFBP7 and TIMP2 did not change in the kidney, but significantly upregulated in the spleen and lung. Compared with patients who did not develop AKI, the concentration of serum IGFBP7 at as early as 2 h after ICU admission (sIGFBP7-2 h) was significantly higher in patients who developed AKI. The relationships between sIGFBP7-2 h in AKI patients and log2 (SCr), log2 (BUN), log2 (eGFR), and log2 (UA) were statistically significant. The diagnostic performance of sIGFBP7-2 h measured by the macro-averaged area under the receiver operating characteristic curve was 0.948 (95% CI, 0.853-1.000; p < 0.001). CONCLUSION The spleen and lung might be the main source of serum IGFBP7 and TIMP2 during AKI. The serum IGFBP7 value demonstrated good predictive accuracy for AKI following cardiac surgery within 2 h after ICU admission.
Collapse
Affiliation(s)
- Yimei Wang
- Division of Nephrology, Zhongshan Hospital Fudan University, Shanghai, China
- Shanghai Key Laboratory for Kidney and Blood Purification, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Bo Shen
- Division of Nephrology, Zhongshan Hospital Fudan University, Shanghai, China
- Shanghai Key Laboratory for Kidney and Blood Purification, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Xuesen Cao
- Division of Nephrology, Zhongshan Hospital Fudan University, Shanghai, China
- Shanghai Key Laboratory for Kidney and Blood Purification, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Zhihui Lu
- Division of Nephrology, Zhongshan Hospital Fudan University, Shanghai, China
- Shanghai Key Laboratory for Kidney and Blood Purification, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Yang Zhang
- Division of Nephrology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Bowen Zhu
- Division of Nephrology, Zhongshan Hospital Fudan University, Shanghai, China
- Shanghai Key Laboratory for Kidney and Blood Purification, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Weidong Zhang
- Division of Nephrology, Zhongshan Hospital Fudan University, Shanghai, China
- Shanghai Key Laboratory for Kidney and Blood Purification, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Yiqin Shi
- Division of Nephrology, Zhongshan Hospital Fudan University, Shanghai, China
- Shanghai Key Laboratory for Kidney and Blood Purification, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Jialin Wang
- Division of Nephrology, Zhongshan Hospital Fudan University, Shanghai, China
- Shanghai Key Laboratory for Kidney and Blood Purification, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Yi Fang
- Division of Nephrology, Zhongshan Hospital Fudan University, Shanghai, China
- Shanghai Key Laboratory for Kidney and Blood Purification, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Nana Song
- Division of Nephrology, Zhongshan Hospital Fudan University, Shanghai, China
- Shanghai Key Laboratory for Kidney and Blood Purification, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Yang Li
- Division of Nephrology, Zhongshan Hospital Fudan University, Shanghai, China
- Shanghai Key Laboratory for Kidney and Blood Purification, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Xialian Xu
- Division of Nephrology, Zhongshan Hospital Fudan University, Shanghai, China
- Shanghai Key Laboratory for Kidney and Blood Purification, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Ping Jia
- Division of Nephrology, Zhongshan Hospital Fudan University, Shanghai, China
- Shanghai Key Laboratory for Kidney and Blood Purification, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Xiaoqiang Ding
- Division of Nephrology, Zhongshan Hospital Fudan University, Shanghai, China
- Shanghai Key Laboratory for Kidney and Blood Purification, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Shuan Zhao
- Division of Nephrology, Zhongshan Hospital Fudan University, Shanghai, China
- Shanghai Key Laboratory for Kidney and Blood Purification, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
| |
Collapse
|
21
|
Urbani A, Pensotti F, Provera A, Galassi A, Guazzi M, Castini D. Extracorporeal veno-venous ultrafiltration in congestive heart failure: What's the state of the art? A mini-review. World J Cardiol 2023; 15:205-216. [PMID: 37274372 PMCID: PMC10237006 DOI: 10.4330/wjc.v15.i5.205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/19/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023] Open
Abstract
Hospitalizations for heart failure exceed 1 million per year in both the United States and Europe and more than 90% are due to symptoms and signs of fluid overload. Rates of rehospitalizations or emergency department visit at 60 days are remarkable regardless of whether loop diuretics were administered at low vs high doses or by bolus injection vs continuous infusion. Ultrafiltration (UF) has been considered a promising alternative to stepped diuretic therapy and it consists in the mechanical, adjustable removal of iso-tonic plasma water across a semipermeable membrane with the application of hydrostatic pressure gradient generated by a pump. Fluid removal with ultrafiltration presents several advantages such as elimination of higher amount of sodium with less neurohormonal activation. However, the conflicting results from UF studies highlight that patient selection and fluid removal targets are not completely understood. The best way to assess fluid status and therefore establish the fluid removal target is also still a matter of debate. Herein, we provide an up-to-date systematic review about the role of ultrafiltration among patients with fluid overload and its gaps in daily practice.
Collapse
Affiliation(s)
- Andrea Urbani
- Cardiology Unit, Department of Health Sciences, San Paolo Hospital, University of Milan, Milan 20142, Italy.
| | - Filippo Pensotti
- Cardiology Unit, Department of Health Sciences, San Paolo Hospital, University of Milan, Milan 20142, Italy
| | - Andrea Provera
- Cardiology Unit, Department of Health Sciences, San Paolo Hospital, University of Milan, Milan 20142, Italy
| | - Andrea Galassi
- Nephrology Unit, Department of Health Sciences, San Paolo Hospital, University of Milan, Milan 20142, Italy
| | - Marco Guazzi
- Cardiology Unit, Department of Health Sciences, San Paolo Hospital, University of Milan, Milan 20142, Italy
| | - Diego Castini
- Cardiology Unit, Department of Health Sciences, San Paolo Hospital, University of Milan, Milan 20142, Italy
| |
Collapse
|
22
|
Sepsis-associated acute kidney injury: consensus report of the 28th Acute Disease Quality Initiative workgroup. Nat Rev Nephrol 2023; 19:401-417. [PMID: 36823168 DOI: 10.1038/s41581-023-00683-3] [Citation(s) in RCA: 235] [Impact Index Per Article: 117.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2023] [Indexed: 02/25/2023]
Abstract
Sepsis-associated acute kidney injury (SA-AKI) is common in critically ill patients and is strongly associated with adverse outcomes, including an increased risk of chronic kidney disease, cardiovascular events and death. The pathophysiology of SA-AKI remains elusive, although microcirculatory dysfunction, cellular metabolic reprogramming and dysregulated inflammatory responses have been implicated in preclinical studies. SA-AKI is best defined as the occurrence of AKI within 7 days of sepsis onset (diagnosed according to Kidney Disease Improving Global Outcome criteria and Sepsis 3 criteria, respectively). Improving outcomes in SA-AKI is challenging, as patients can present with either clinical or subclinical AKI. Early identification of patients at risk of AKI, or at risk of progressing to severe and/or persistent AKI, is crucial to the timely initiation of adequate supportive measures, including limiting further insults to the kidney. Accordingly, the discovery of biomarkers associated with AKI that can aid in early diagnosis is an area of intensive investigation. Additionally, high-quality evidence on best-practice care of patients with AKI, sepsis and SA-AKI has continued to accrue. Although specific therapeutic options are limited, several clinical trials have evaluated the use of care bundles and extracorporeal techniques as potential therapeutic approaches. Here we provide graded recommendations for managing SA-AKI and highlight priorities for future research.
Collapse
|
23
|
Rodrigues CE, Endre ZH. Definitions, phenotypes, and subphenotypes in acute kidney injury-Moving towards precision medicine. Nephrology (Carlton) 2023; 28:83-96. [PMID: 36370326 PMCID: PMC10100386 DOI: 10.1111/nep.14132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/23/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022]
Abstract
The current definition of acute kidney injury (AKI) is generic and, based only on markers of function, is unsuitable for guiding individualized treatment. AKI is a complex syndrome with multiple presentations and causes. Targeted AKI management will only be possible if different phenotypes and subphenotypes of AKI are recognised, based on causation and related pathophysiology. Molecular signatures to identify subphenotypes are being recognised, as specific biomarkers reveal activated pathways. Assessment of individual clinical risk needs wider dissemination to allow identification of patients at high risk of AKI. New and more timely markers for glomerular filtration rate (GFR) are available. However, AKI diagnosis and classification should not be limited to GFR, but include tubular function and damage. Combining damage and stress biomarkers with functional markers enhances risk prediction, and identifies a population enriched for clinical trials targeting AKI. We review novel developments and aim to encourage implementation of these new techniques into clinical practice as a strategy for individualizing AKI treatment akin to a precision medicine-based approach.
Collapse
Affiliation(s)
- Camila Eleuterio Rodrigues
- Nephrology DepartmentPrince of Wales Clinical School – UNSW MedicineSydneyNew South WalesAustralia
- Nephrology DepartmentHospital das Clínicas – University of São Paulo School of MedicineSão PauloBrazil
| | - Zoltán H. Endre
- Nephrology DepartmentPrince of Wales Clinical School – UNSW MedicineSydneyNew South WalesAustralia
| |
Collapse
|
24
|
Hinze C, Kocks C, Leiz J, Karaiskos N, Boltengagen A, Cao S, Skopnik CM, Klocke J, Hardenberg JH, Stockmann H, Gotthardt I, Obermayer B, Haghverdi L, Wyler E, Landthaler M, Bachmann S, Hocke AC, Corman V, Busch J, Schneider W, Himmerkus N, Bleich M, Eckardt KU, Enghard P, Rajewsky N, Schmidt-Ott KM. Single-cell transcriptomics reveals common epithelial response patterns in human acute kidney injury. Genome Med 2022; 14:103. [PMID: 36085050 PMCID: PMC9462075 DOI: 10.1186/s13073-022-01108-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 08/12/2022] [Indexed: 01/07/2023] Open
Abstract
Background Acute kidney injury (AKI) occurs frequently in critically ill patients and is associated with adverse outcomes. Cellular mechanisms underlying AKI and kidney cell responses to injury remain incompletely understood. Methods We performed single-nuclei transcriptomics, bulk transcriptomics, molecular imaging studies, and conventional histology on kidney tissues from 8 individuals with severe AKI (stage 2 or 3 according to Kidney Disease: Improving Global Outcomes (KDIGO) criteria). Specimens were obtained within 1–2 h after individuals had succumbed to critical illness associated with respiratory infections, with 4 of 8 individuals diagnosed with COVID-19. Control kidney tissues were obtained post-mortem or after nephrectomy from individuals without AKI. Results High-depth single cell-resolved gene expression data of human kidneys affected by AKI revealed enrichment of novel injury-associated cell states within the major cell types of the tubular epithelium, in particular in proximal tubules, thick ascending limbs, and distal convoluted tubules. Four distinct, hierarchically interconnected injured cell states were distinguishable and characterized by transcriptome patterns associated with oxidative stress, hypoxia, interferon response, and epithelial-to-mesenchymal transition, respectively. Transcriptome differences between individuals with AKI were driven primarily by the cell type-specific abundance of these four injury subtypes rather than by private molecular responses. AKI-associated changes in gene expression between individuals with and without COVID-19 were similar. Conclusions The study provides an extensive resource of the cell type-specific transcriptomic responses associated with critical illness-associated AKI in humans, highlighting recurrent disease-associated signatures and inter-individual heterogeneity. Personalized molecular disease assessment in human AKI may foster the development of tailored therapies.
Supplementary Information The online version contains supplementary material available at 10.1186/s13073-022-01108-9.
Collapse
Affiliation(s)
- Christian Hinze
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany.,Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.,Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Christine Kocks
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center in the Helmholtz Association, Berlin, Germany
| | - Janna Leiz
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.,Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Nikos Karaiskos
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center in the Helmholtz Association, Berlin, Germany
| | - Anastasiya Boltengagen
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center in the Helmholtz Association, Berlin, Germany
| | - Shuang Cao
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany.,Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.,Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Christopher Mark Skopnik
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.,Deutsches Rheumaforschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Jan Klocke
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.,Deutsches Rheumaforschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Jan-Hendrik Hardenberg
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Helena Stockmann
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Inka Gotthardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | | | - Laleh Haghverdi
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center in the Helmholtz Association, Berlin, Germany
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center in the Helmholtz Association, Berlin, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center in the Helmholtz Association, Berlin, Germany
| | - Sebastian Bachmann
- Institute for Functional Anatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Andreas C Hocke
- Berlin Institute of Health, Berlin, Germany.,Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Victor Corman
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Jonas Busch
- Department of Urology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Wolfgang Schneider
- Department of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Nina Himmerkus
- Institute of Physiology, Christian-Albrechts-Universität, Kiel, Germany
| | - Markus Bleich
- Institute of Physiology, Christian-Albrechts-Universität, Kiel, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Philipp Enghard
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.,Deutsches Rheumaforschungszentrum, an Institute of the Leibniz Foundation, Berlin, Germany
| | - Nikolaus Rajewsky
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center in the Helmholtz Association, Berlin, Germany
| | - Kai M Schmidt-Ott
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany. .,Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany. .,Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
| |
Collapse
|
25
|
Balzer MS, Doke T, Yang YW, Aldridge DL, Hu H, Mai H, Mukhi D, Ma Z, Shrestha R, Palmer MB, Hunter CA, Susztak K. Single-cell analysis highlights differences in druggable pathways underlying adaptive or fibrotic kidney regeneration. Nat Commun 2022; 13:4018. [PMID: 35821371 PMCID: PMC9276703 DOI: 10.1038/s41467-022-31772-9] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 07/01/2022] [Indexed: 01/14/2023] Open
Abstract
The kidney has tremendous capacity to repair after acute injury, however, pathways guiding adaptive and fibrotic repair are poorly understood. We developed a model of adaptive and fibrotic kidney regeneration by titrating ischemic injury dose. We performed detailed biochemical and histological analysis and profiled transcriptomic changes at bulk and single-cell level (> 110,000 cells) over time. Our analysis highlights kidney proximal tubule cells as key susceptible cells to injury. Adaptive proximal tubule repair correlated with fatty acid oxidation and oxidative phosphorylation. We identify a specific maladaptive/profibrotic proximal tubule cluster after long ischemia, which expresses proinflammatory and profibrotic cytokines and myeloid cell chemotactic factors. Druggability analysis highlights pyroptosis/ferroptosis as vulnerable pathways in these profibrotic cells. Pharmacological targeting of pyroptosis/ferroptosis in vivo pushed cells towards adaptive repair and ameliorates fibrosis. In summary, our single-cell analysis defines key differences in adaptive and fibrotic repair and identifies druggable pathways for pharmacological intervention to prevent kidney fibrosis.
Collapse
Affiliation(s)
- Michael S Balzer
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Tomohito Doke
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ya-Wen Yang
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Daniel L Aldridge
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hailong Hu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hung Mai
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dhanunjay Mukhi
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ziyuan Ma
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rojesh Shrestha
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Matthew B Palmer
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
26
|
Abstract
Sepsis-associated AKI is a life-threatening complication that is associated with high morbidity and mortality in patients who are critically ill. Although it is clear early supportive interventions in sepsis reduce mortality, it is less clear that they prevent or ameliorate sepsis-associated AKI. This is likely because specific mechanisms underlying AKI attributable to sepsis are not fully understood. Understanding these mechanisms will form the foundation for the development of strategies for early diagnosis and treatment of sepsis-associated AKI. Here, we summarize recent laboratory and clinical studies, focusing on critical factors in the pathophysiology of sepsis-associated AKI: microcirculatory dysfunction, inflammation, NOD-like receptor protein 3 inflammasome, microRNAs, extracellular vesicles, autophagy and efferocytosis, inflammatory reflex pathway, vitamin D, and metabolic reprogramming. Lastly, identifying these molecular targets and defining clinical subphenotypes will permit precision approaches in the prevention and treatment of sepsis-associated AKI.
Collapse
Affiliation(s)
- Shuhei Kuwabara
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Eibhlin Goggins
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Mark D Okusa
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
27
|
Nakamura M, Nangaku M. Snapshots of nascent RNA can validate different nephron segment responses in acute kidney injury: A step toward clinically useful biomarkers? Kidney Int 2022; 102:678-680. [PMID: 35738435 DOI: 10.1016/j.kint.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/06/2022] [Indexed: 11/26/2022]
|
28
|
Schmitz J, Brauns N, Hüsing AM, Flechsig M, Glomb T, Bräsen JH, Haller H, von Vietinghoff S. Renal medullary osmolytes NaCl and urea differentially modulate human tubular cell cytokine expression and monocyte recruitment. Eur J Immunol 2022; 52:1258-1272. [DOI: 10.1002/eji.202149723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/20/2022] [Accepted: 05/06/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Jessica Schmitz
- Nephropathology Unit Institute for Pathology University Clinic and Rheinische Friedrich‐Wilhelms Universität Bonn Bonn Germany
| | - Nicolas Brauns
- Department of Internal Medicine Division of Nephrology and Hypertension University Clinic and Rheinische Friedrich‐Wilhelms Universität Bonn Bonn Germany
| | - Anne M. Hüsing
- Department of Internal Medicine Division of Nephrology and Hypertension University Clinic and Rheinische Friedrich‐Wilhelms Universität Bonn Bonn Germany
| | - Martina Flechsig
- Department of Internal Medicine Division of Nephrology and Hypertension University Clinic and Rheinische Friedrich‐Wilhelms Universität Bonn Bonn Germany
| | - Thorsten Glomb
- Core Facility Transcriptomics Hannover Medical School Hannover Germany
| | - Jan Hinrich Bräsen
- Nephropathology Unit Institute for Pathology University Clinic and Rheinische Friedrich‐Wilhelms Universität Bonn Bonn Germany
| | - Hermann Haller
- Department of Internal Medicine Division of Nephrology and Hypertension University Clinic and Rheinische Friedrich‐Wilhelms Universität Bonn Bonn Germany
| | - Sibylle von Vietinghoff
- Department of Internal Medicine Division of Nephrology and Hypertension University Clinic and Rheinische Friedrich‐Wilhelms Universität Bonn Bonn Germany
- Nephrology Section First Medical Clinic University Clinic and Rheinische Friedrich‐Wilhelms Universität Bonn Bonn Germany
| |
Collapse
|
29
|
Abstract
Acute kidney injury (AKI) is a highly prevalent, heterogeneous syndrome, associated with increased short- and long-term mortality. A multitude of different factors cause AKI including ischemia, sepsis, nephrotoxic drugs, and urinary tract obstruction. Upon injury, the kidney initiates an intrinsic repair program that can result in adaptive repair with regeneration of damaged nephrons and functional recovery of epithelial activity, or maladaptive repair and persistence of damaged epithelial cells with a characteristic proinflammatory, profibrotic molecular signature. Maladaptive repair is linked to disease progression from AKI to chronic kidney disease. Despite extensive efforts, no therapeutic strategies provide consistent benefit to AKI patients. Since kidney biopsies are rarely performed in the acute injury phase in humans, most of our understanding of AKI pathophysiology is derived from preclinical AKI models. This raises the question of how well experimental models of AKI reflect the molecular and cellular mechanisms underlying human AKI? Here, we provide a brief overview of available AKI models, discuss their strengths and limitations, and consider important aspects of the AKI response in mice and humans, with a particular focus on the role of proximal tubule cells in adaptive and maladaptive repair.
Collapse
Affiliation(s)
- Louisa M S Gerhardt
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA.
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
30
|
|
31
|
Shen TH, Stauber J, Xu K, Jacunski A, Paragas N, Callahan M, Banlengchit R, Levitman AD, Desanti De Oliveira B, Beenken A, Grau MS, Mathieu E, Zhang Q, Li Y, Gopal T, Askanase N, Arumugam S, Mohan S, Good PI, Stevens JS, Lin F, Sia SK, Lin CS, D’Agati V, Kiryluk K, Tatonetti NP, Barasch J. Snapshots of nascent RNA reveal cell- and stimulus-specific responses to acute kidney injury. JCI Insight 2022; 7:e146374. [PMID: 35230973 PMCID: PMC8986083 DOI: 10.1172/jci.insight.146374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The current strategy to detect acute injury of kidney tubular cells relies on changes in serum levels of creatinine. Yet serum creatinine (sCr) is a marker of both functional and pathological processes and does not adequately assay tubular injury. In addition, sCr may require days to reach diagnostic thresholds, yet tubular cells respond with programs of damage and repair within minutes or hours. To detect acute responses to clinically relevant stimuli, we created mice expressing Rosa26-floxed-stop uracil phosphoribosyltransferase (Uprt) and inoculated 4-thiouracil (4-TU) to tag nascent RNA at selected time points. Cre-driven 4-TU-tagged RNA was isolated from intact kidneys and demonstrated that volume depletion and ischemia induced different genetic programs in collecting ducts and intercalated cells. Even lineage-related cell types expressed different genes in response to the 2 stressors. TU tagging also demonstrated the transient nature of the responses. Because we placed Uprt in the ubiquitously active Rosa26 locus, nascent RNAs from many cell types can be tagged in vivo and their roles interrogated under various conditions. In short, 4-TU labeling identifies stimulus-specific, cell-specific, and time-dependent acute responses that are otherwise difficult to detect with other technologies and are entirely obscured when sCr is the sole metric of kidney damage.
Collapse
Affiliation(s)
| | | | | | - Alexandra Jacunski
- Department of Biomedical Informatics, Columbia University, New York, New York, USA
| | - Neal Paragas
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | - Sumit Mohan
- Department of Medicine, and
- Department of Epidemiology
| | | | | | | | | | - Chyuan-Sheng Lin
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Vivette D’Agati
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | | | | | | |
Collapse
|
32
|
Mansour SG, Khoury N, Kodali R, Virmani S, Reese PP, Hall IE, Jia Y, Yamamoto Y, Thiessen-Philbrook HR, Obeid W, Doshi MD, Akalin E, Bromberg JS, Harhay MN, Mohan S, Muthukumar T, Singh P, Weng FL, Moledina DG, Greenberg JH, Wilson FP, Parikh CR. Clinically adjudicated deceased donor acute kidney injury and graft outcomes. PLoS One 2022; 17:e0264329. [PMID: 35239694 PMCID: PMC8893682 DOI: 10.1371/journal.pone.0264329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 02/08/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Acute kidney injury (AKI) in deceased donors is not associated with graft failure (GF). We hypothesize that hemodynamic AKI (hAKI) comprises the majority of donor AKI and may explain this lack of association. METHODS In this ancillary analysis of the Deceased Donor Study, 428 donors with available charts were selected to identify those with and without AKI. AKI cases were classified as hAKI, intrinsic (iAKI), or mixed (mAKI) based on majority adjudication by three nephrologists. We evaluated the associations between AKI phenotypes and delayed graft function (DGF), 1-year eGFR and GF. We also evaluated differences in urine biomarkers among AKI phenotypes. RESULTS Of the 291 (68%) donors with AKI, 106 (36%) were adjudicated as hAKI, 84 (29%) as iAKI and 101 (35%) as mAKI. Of the 856 potential kidneys, 669 were transplanted with 32% developing DGF and 5% experiencing GF. Median 1-year eGFR was 53 (IQR: 41-70) ml/min/1.73m2. Compared to non-AKI, donors with iAKI had higher odds DGF [aOR (95%CI); 4.83 (2.29, 10.22)] and had lower 1-year eGFR [adjusted B coefficient (95% CI): -11 (-19, -3) mL/min/1.73 m2]. hAKI and mAKI were not associated with DGF or 1-year eGFR. Rates of GF were not different among AKI phenotypes and non-AKI. Urine biomarkers such as NGAL, LFABP, MCP-1, YKL-40, cystatin-C and albumin were higher in iAKI. CONCLUSION iAKI was associated with higher DGF and lower 1-year eGFR but not with GF. Clinically phenotyped donor AKI is biologically different based on biomarkers and may help inform decisions regarding organ utilization.
Collapse
Affiliation(s)
- Sherry G. Mansour
- Clinical and Translational Research Accelerator, Yale University School of Medicine, New Haven, CT, United States of America
- Department of Internal Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, CT, United States of America
| | - Nadeen Khoury
- Division of Nephrology, Henry Ford Health System, Detroit, MI, United States of America
| | - Ravi Kodali
- Department of Internal Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, CT, United States of America
| | - Sarthak Virmani
- Department of Internal Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, CT, United States of America
| | - Peter P. Reese
- Department of Medicine, Renal-Electrolyte and Hypertension Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States of America
- Department of Biostatistics, Epidemiology & Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States of America
- Department of Medical Ethics and Health Policy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States of America
| | - Isaac E. Hall
- Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States of America
| | - Yaqi Jia
- Division of Nephrology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| | - Yu Yamamoto
- Clinical and Translational Research Accelerator, Yale University School of Medicine, New Haven, CT, United States of America
| | | | - Wassim Obeid
- Division of Nephrology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| | - Mona D. Doshi
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Enver Akalin
- Montefiore-Einstein Kidney Transplant program, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Jonathan S. Bromberg
- Division of Transplantation, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Meera N. Harhay
- Department of Internal Medicine, Drexel University College of Medicine, Philadelphia, PA, United States of America
- Department of Epidemiology and Biostatistics, Drexel University Dornsife School of Public Health, Philadelphia, PA, United States of America
- Tower Health Transplant Institute, Tower Health System, West Reading, PA, United States of America
| | - Sumit Mohan
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, United States of America
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, United States of America
| | - Thangamani Muthukumar
- Division of Nephrology and Hypertension, Department of Medicine, New York Presbyterian Hospital-Weill Cornell Medical Center, New York, NY, United States of America
- Department of Transplantation Medicine, New York Presbyterian Hospital-Weill Cornell Medical Center, New York, NY, United States of America
| | - Pooja Singh
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA, United States of America
| | - Francis L. Weng
- Saint Barnabas Medical Center, RWJBarnabas Health, Livingston, NJ, United States of America
| | - Dennis G. Moledina
- Clinical and Translational Research Accelerator, Yale University School of Medicine, New Haven, CT, United States of America
- Department of Internal Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, CT, United States of America
| | - Jason H. Greenberg
- Clinical and Translational Research Accelerator, Yale University School of Medicine, New Haven, CT, United States of America
- Department of Internal Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, CT, United States of America
| | - Francis P. Wilson
- Clinical and Translational Research Accelerator, Yale University School of Medicine, New Haven, CT, United States of America
- Department of Internal Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, CT, United States of America
| | - Chirag R. Parikh
- Division of Nephrology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| |
Collapse
|
33
|
Little MH, Humphreys BD. Regrow or Repair: An Update on Potential Regenerative Therapies for the Kidney. J Am Soc Nephrol 2022; 33:15-32. [PMID: 34789545 PMCID: PMC8763179 DOI: 10.1681/asn.2021081073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Fifteen years ago, this journal published a review outlining future options for regenerating the kidney. At that time, stem cell populations were being identified in multiple tissues, the concept of stem cell recruitment to a site of injury was of great interest, and the possibility of postnatal renal stem cells was growing in momentum. Since that time, we have seen the advent of human induced pluripotent stem cells, substantial advances in our capacity to both sequence and edit the genome, global and spatial transcriptional analysis down to the single-cell level, and a pandemic that has challenged our delivery of health care to all. This article will look back over this period of time to see how our view of kidney development, disease, repair, and regeneration has changed and envision a future for kidney regeneration and repair over the next 15 years.
Collapse
Affiliation(s)
- Melissa H. Little
- Murdoch Children’s Research Institute, Parkville, Melbourne, Victoria, Australia,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Melbourne, Victoria, Australia,Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Melbourne, Victoria, Australia
| | - Benjamin D. Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, Missouri,Department of Developmental Biology, Washington University in St. Louis School of Medicine, Missouri
| |
Collapse
|
34
|
Gerhardt LMS, McMahon AP. Multi-omic approaches to acute kidney injury and repair. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 20:100344. [PMID: 35005326 PMCID: PMC8740908 DOI: 10.1016/j.cobme.2021.100344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The kidney has a remarkable regenerative capacity. In response to ischemic or toxic injury, proximal tubule cells can proliferate to rebuild damaged tubules and restore kidney function. However, severe acute kidney injury (AKI) or recurrent AKI events can lead to maladaptive repair and disease progression from AKI to chronic kidney disease (CKD). The application of single cell technologies has identified injured proximal tubule cell states weeks after AKI, distinguished by a pro-inflammatory senescent molecular signature. Epigenetic studies highlighted dynamic changes in the chromatin landscape of the kidney following AKI and described key transcription factors linked to the AKI response. The integration of multi-omic technologies opens new possibilities to improve our understanding of AKI and the driving forces behind the AKI-to-CKD transition, with the ultimate goal of designing tailored diagnostic and therapeutic strategies to improve AKI outcomes and prevent kidney disease progression.
Collapse
Affiliation(s)
- Louisa M. S. Gerhardt
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Andrew P. McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
35
|
Xu K, Shang N, Levitman A, Corker A, Kudose S, Yaeh A, Neupane U, Stevens J, Sampogna R, Mills AM, D’Agati V, Mohan S, Kiryluk K, Barasch J. Elevated Neutrophil Gelatinase-Associated Lipocalin Is Associated With the Severity of Kidney Injury and Poor Prognosis of Patients With COVID-19. Kidney Int Rep 2021; 6:2979-2992. [PMID: 34642645 PMCID: PMC8497954 DOI: 10.1016/j.ekir.2021.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION Loss of kidney function is a common feature of COVID-19 infection, but serum creatinine (SCr) is not a sensitive or specific marker of kidney injury. We tested whether molecular biomarkers of tubular injury measured at hospital admission were associated with acute kidney injury (AKI) in those with COVID-19 infection. METHODS This is a prospective cohort observational study consisting of 444 consecutive patients with SARS-CoV-2 enrolled in the Columbia University emergency department (ED) at the peak of the pandemic in New York (March 2020-April 2020). Urine and blood were collected simultaneously at hospital admission (median time: day 0, interquartile range: 0-2 days), and urine biomarkers were analyzed by enzyme-linked immunosorbent assay (ELISA) and a novel dipstick. Kidney biopsies were probed for biomarker RNA and for histopathologic acute tubular injury (ATI) scores. RESULTS Admission urinary neutrophil gelatinase-associated lipocalin (uNGAL) level was associated with AKI diagnosis (267 ± 301 vs. 96 ± 139 ng/ml, P < 0.0001) and staging; uNGAL levels >150 ng/ml had 80% specificity and 75% sensitivity to diagnose AKI stages 2 to 3. Admission uNGAL level quantitatively associated with prolonged AKI, dialysis, shock, prolonged hospitalization, and in-hospital death, even when admission SCr level was not elevated. The risk of dialysis increased almost 4-fold per SD of uNGAL independently of baseline SCr, comorbidities, and proteinuria (odds ratio [OR] [95% CI]: 3.59 [1.83-7.45], P < 0.001). In the kidneys of those with COVID-19, NGAL mRNA expression broadened in parallel with severe histopathologic injury (ATI). Conversely, low uNGAL levels at admission ruled out stages 2 to 3 AKI (negative predictive value: 0.95, 95% CI: 0.92-0.97) and the need for dialysis (negative predictive value: 0.98, 95% CI: 0.96-0.99). Although proteinuria and urinary (u)KIM-1 were implicated in tubular injury, neither was diagnostic of AKI stages. CONCLUSION In the patients with COVID-19, uNGAL level was quantitatively associated with histopathologic injury (ATI), loss of kidney function (AKI), and severity of patient outcomes.
Collapse
Affiliation(s)
- Katherine Xu
- Department of Medicine, Columbia University, New York, New York, USA
| | - Ning Shang
- Department of Medicine, Columbia University, New York, New York, USA
| | - Abraham Levitman
- Department of Medicine, Columbia University, New York, New York, USA
| | - Alexa Corker
- Department of Medicine, Columbia University, New York, New York, USA
| | - Satoru Kudose
- Department of Pathology, Columbia University, New York, New York, USA
| | - Andrew Yaeh
- Department of Medicine, Columbia University, New York, New York, USA
| | - Uddhav Neupane
- Department of Medicine, Columbia University, New York, New York, USA
| | - Jacob Stevens
- Department of Medicine, Columbia University, New York, New York, USA
| | - Rosemary Sampogna
- Department of Medicine, Columbia University, New York, New York, USA
| | - Angela M. Mills
- Department of Emergency Medicine, Columbia University, New York, New York, USA
| | - Vivette D’Agati
- Department of Pathology, Columbia University, New York, New York, USA
| | - Sumit Mohan
- Department of Medicine, Columbia University, New York, New York, USA
- Department of Epidemiology, Columbia University, New York, New York, USA
| | - Krzysztof Kiryluk
- Department of Medicine, Columbia University, New York, New York, USA
| | - Jonathan Barasch
- Department of Medicine, Columbia University, New York, New York, USA
- Department of Pathology, Columbia University, New York, New York, USA
| |
Collapse
|
36
|
Gupta K, Pandey S, Bagang N, Mehra K, Singh G. Trimetazidine an emerging paradigm in renal therapeutics: Preclinical and clinical insights. Eur J Pharmacol 2021; 913:174624. [PMID: 34774496 DOI: 10.1016/j.ejphar.2021.174624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
Trimetazidine (TMZ) is a well-known anti-ischemic agent used for the treatment of angina pectoris. In the past decades, the efficacy of this drug has been tested in a wide range of kidney injuries, including drug-induced nephrotoxicity (DIN), radio-contrast agent-induced nephropathy, and surgically induced renal ischemic injury. TMZhas renoprotective effects by attenuating oxidative stress, inflammatory cytokine release, maintaining oxygen and energy balance. Moreover, TMZ administration prevented kidney graft rejection in the porcine model by suppressing the infiltration of mononuclear cells, preserving mitochondrial functions, and maintaining Ca+ homeostasis. In DIN and diabetic kidney diseases,TMZ treatment prevents renal injury by inactivating immune cells, attenuating renal fibrosis, inflammation, apoptosis, and histological abnormalities. Interestingly, the clinical therapeutic efficacy of TMZ has also been documented in pre-existing kidney disease patients undergoing contrast exposure for diagnostic intervention. However, the mechanistic insights into the TMZ mediated renoprotective effects in other forms of renal injuries, including type-2 diabetes, drug-induced nephrotoxicity, and hypertension-induced chronic kidney diseases, remain uninvestigated and incomplete. Moreover, the clinical utility of TMZ as a renoprotective agent in radio-contrast-induced nephrotoxicity needs to be tested in a large patient population. Nevertheless, the available pieces of evidence suggest that TMZ is a promising and emerging renal therapy for the treatment and management of kidney diseases of variable etiologies. This review discusses the various pre-clinical and clinical findings and provides mechanistic insights into the TMZ mediated beneficial effects in various kidney diseases.
Collapse
Affiliation(s)
- Kirti Gupta
- Department of Pharmacy, Maharishi Markandeshwar Deemed to be University, Mullana, Ambala (Haryana), India
| | - Sneha Pandey
- Department of Pharmacology, Indo-Soviet Friendship College of Pharmacy, Moga, Punjab, India
| | - Newly Bagang
- Department of Pharmacology, Indo-Soviet Friendship College of Pharmacy, Moga, Punjab, India
| | - Kamalpreet Mehra
- Department of Pharmacy, Maharishi Markandeshwar Deemed to be University, Mullana, Ambala (Haryana), India
| | | |
Collapse
|
37
|
Rademaker MT, Pilbrow AP, Ellmers LJ, Palmer SC, Davidson T, Mbikou P, Scott NJA, Permina E, Charles CJ, Endre ZH, Richards AM. Acute Decompensated Heart Failure and the Kidney: Physiological, Histological and Transcriptomic Responses to Development and Recovery. J Am Heart Assoc 2021; 10:e021312. [PMID: 34533033 PMCID: PMC8649508 DOI: 10.1161/jaha.121.021312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Acute decompensated heart failure (ADHF) is associated with deterioration in renal function-an important risk factor for poor outcomes. Whether ADHF results in permanent kidney damage/dysfunction is unknown. METHODS AND RESULTS We investigated for the first time the renal responses to the development of, and recovery from, ADHF using an ovine model. ADHF development induced pronounced hemodynamic changes, neurohormonal activation, and decline in renal function, including decreased urine, sodium and urea excretion, and creatinine clearance. Following ADHF recovery (25 days), creatinine clearance reductions persisted. Kidney biopsies taken during ADHF and following recovery showed widespread mesangial cell prominence, early mild acute tubular injury, and medullary/interstitial fibrosis. Renal transcriptomes identified altered expression of 270 genes following ADHF development and 631 genes following recovery. A total of 47 genes remained altered post-recovery. Pathway analysis suggested gene expression changes, driven by a network of inflammatory cytokines centered on IL-1β (interleukin 1β), lead to repression of reno-protective eNOS (endothelial nitric oxide synthase) signaling during ADHF development, and following recovery, activation of glomerulosclerosis and reno-protective pathways and repression of proinflammatory/fibrotic pathways. A total of 31 dysregulated genes encoding proteins detectable in urine, serum, and plasma identified potential candidate markers for kidney repair (including CNGA3 [cyclic nucleotide gated channel subunit alpha 3] and OIT3 [oncoprotein induced transcript 3]) or long-term renal impairment in ADHF (including ACTG2 [actin gamma 2, smooth muscle] and ANGPTL4 [angiopoietin like 4]). CONCLUSIONS In an ovine model, we provide the first direct evidence that an episode of ADHF leads to an immediate decline in kidney function that failed to fully resolve after ≈4 weeks and is associated with persistent functional/structural kidney injury. We identified molecular pathways underlying kidney injury and repair in ADHF and highlighted 31 novel candidate biomarkers for acute kidney injury in this setting.
Collapse
Affiliation(s)
- Miriam T Rademaker
- Department of Medicine University of OtagoChristchurch Christchurch New Zealand
| | - Anna P Pilbrow
- Department of Medicine University of OtagoChristchurch Christchurch New Zealand
| | - Leigh J Ellmers
- Department of Medicine University of OtagoChristchurch Christchurch New Zealand
| | - Suetonia C Palmer
- Department of Medicine University of OtagoChristchurch Christchurch New Zealand
| | - Trent Davidson
- Department of Anatomical Pathology Prince of Wales Hospital Sydney New South Wales Australia
| | - Prisca Mbikou
- Department of Medicine University of OtagoChristchurch Christchurch New Zealand
| | - Nicola J A Scott
- Department of Medicine University of OtagoChristchurch Christchurch New Zealand
| | - Elizabeth Permina
- Otago Genomics Facility Division of Health Sciences University of Otago Dunedin New Zealand
| | | | - Zoltán H Endre
- Department of Medicine University of OtagoChristchurch Christchurch New Zealand.,Department of Nephrology Prince of Wales Hospital Sydney New South Wales Australia
| | - A Mark Richards
- Department of Medicine University of OtagoChristchurch Christchurch New Zealand.,Cardiovascular Research Institute National University of Singapore Singapore
| |
Collapse
|
38
|
Zhao S, Wang X, Zheng X, Liang X, Wang Z, Zhang J, Zhao X, Zhuang S, Pan Q, Sun F, Shang W, Barasch J, Qiu A. Iron deficiency exacerbates cisplatin- or rhabdomyolysis-induced acute kidney injury through promoting iron-catalyzed oxidative damage. Free Radic Biol Med 2021; 173:81-96. [PMID: 34298093 PMCID: PMC9482792 DOI: 10.1016/j.freeradbiomed.2021.07.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 02/05/2023]
Abstract
Iron deficiency is the most common micronutrient deficiency worldwide. While iron deficiency is known to suppress embryonic organogenesis, its effect on the adult organ in the context of clinically relevant damage has not been considered. Here we report that iron deficiency is a risk factor for nephrotoxic intrinsic acute kidney injury of the nephron (iAKI). Iron deficiency exacerbated cisplatin-induced iAKI by markedly increasing non-heme catalytic iron and Nox4 protein which together catalyze production of hydroxyl radicals followed by protein and DNA oxidation, apoptosis and ferroptosis. Crosstalk between non-heme catalytic iron/Nox4 and downstream oxidative damage generated a mutual amplification cycle that facilitated rapid progression of cisplatin-induced iAKI. Iron deficiency also exacerbated a second model of iAKI, rhabdomyolysis, via increasing catalytic heme-iron. Heme-iron induced lipid peroxidation and DNA oxidation by interacting with Nox4-independent mechanisms, promoting p53/p21 activity and cellular senescence. Our data suggests that correcting iron deficiency and/or targeting specific catalytic iron species are strategies to mitigate iAKI in a wide range of patients with diverse forms of kidney injury.
Collapse
Affiliation(s)
- Shifeng Zhao
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xueqiao Wang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiaoqing Zheng
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiu Liang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhigang Wang
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Juanlian Zhang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xudong Zhao
- Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shougang Zhuang
- Division of Nephrology, Department of Medicine, Brown University, Providence, USA
| | - Qiuhui Pan
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Fenyong Sun
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Wenjun Shang
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Jonathan Barasch
- Division of Nephrology, Department of Medicine, Columbia University, New York, USA.
| | - Andong Qiu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
39
|
Batte A, Berrens Z, Murphy K, Mufumba I, Sarangam ML, Hawkes MT, Conroy AL. Malaria-Associated Acute Kidney Injury in African Children: Prevalence, Pathophysiology, Impact, and Management Challenges. Int J Nephrol Renovasc Dis 2021; 14:235-253. [PMID: 34267538 PMCID: PMC8276826 DOI: 10.2147/ijnrd.s239157] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/26/2021] [Indexed: 01/02/2023] Open
Abstract
Acute kidney injury (AKI) is emerging as a complication of increasing clinical importance associated with substantial morbidity and mortality in African children with severe malaria. Using the Kidney Disease: Improving Global Outcomes (KDIGO) criteria to define AKI, an estimated 24–59% of African children with severe malaria have AKI with most AKI community-acquired. AKI is a risk factor for mortality in pediatric severe malaria with a stepwise increase in mortality across AKI stages. AKI is also a risk factor for post-discharge mortality and is associated with increased long-term risk of neurocognitive impairment and behavioral problems in survivors. Following injury, the kidney undergoes a process of recovery and repair. AKI is an established risk factor for chronic kidney disease and hypertension in survivors and is associated with an increased risk of chronic kidney disease in severe malaria survivors. The magnitude of the risk and contribution of malaria-associated AKI to chronic kidney disease in malaria-endemic areas remains undetermined. Pathways associated with AKI pathogenesis in the context of pediatric severe malaria are not well understood, but there is emerging evidence that immune activation, endothelial dysfunction, and hemolysis-mediated oxidative stress all directly contribute to kidney injury. In this review, we outline the KDIGO bundle of care and highlight how this could be applied in the context of severe malaria to improve kidney perfusion, reduce AKI progression, and improve survival. With increased recognition that AKI in severe malaria is associated with substantial post-discharge morbidity and long-term risk of chronic kidney disease, there is a need to increase AKI recognition through enhanced access to creatinine-based and next-generation biomarker diagnostics. Long-term studies to assess severe malaria-associated AKI’s impact on long-term health in malaria-endemic areas are urgently needed.
Collapse
Affiliation(s)
- Anthony Batte
- Child Health and Development Centre, Makerere University College of Health Sciences, Kampala, Uganda
| | - Zachary Berrens
- Department of Pediatrics, Pediatric Critical Care Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kristin Murphy
- Department of Pediatrics, Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ivan Mufumba
- CHILD Research Laboratory, Global Health Uganda, Kampala, Uganda
| | | | - Michael T Hawkes
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Andrea L Conroy
- Department of Pediatrics, Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
40
|
Acute kidney injury in the critically ill: an updated review on pathophysiology and management. Intensive Care Med 2021; 47:835-850. [PMID: 34213593 PMCID: PMC8249842 DOI: 10.1007/s00134-021-06454-7] [Citation(s) in RCA: 250] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/04/2021] [Indexed: 01/10/2023]
Abstract
Acute kidney injury (AKI) is now recognized as a heterogeneous syndrome that not only affects acute morbidity and mortality, but also a patient’s long-term prognosis. In this narrative review, an update on various aspects of AKI in critically ill patients will be provided. Focus will be on prediction and early detection of AKI (e.g., the role of biomarkers to identify high-risk patients and the use of machine learning to predict AKI), aspects of pathophysiology and progress in the recognition of different phenotypes of AKI, as well as an update on nephrotoxicity and organ cross-talk. In addition, prevention of AKI (focusing on fluid management, kidney perfusion pressure, and the choice of vasopressor) and supportive treatment of AKI is discussed. Finally, post-AKI risk of long-term sequelae including incident or progression of chronic kidney disease, cardiovascular events and mortality, will be addressed.
Collapse
|
41
|
Systematic Scoring of Tubular Injury Patterns Reveals Interplay between Distinct Tubular and Glomerular Lesions in ANCA-Associated Glomerulonephritis. J Clin Med 2021; 10:jcm10122682. [PMID: 34207078 PMCID: PMC8235178 DOI: 10.3390/jcm10122682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 12/25/2022] Open
Abstract
Background: Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a small vessel vasculitis, most frequently presenting as microscopic polyangiitis (MPA) or granulomatosis with polyangiitis (GPA). Acute tubular injury with the presence of tubulitis was previously reported to be of prognostic value in ANCA glomerulonephritis (GN). In particular, distinct tubular injury lesions were associated with the deterioration of kidney function at AAV disease onset, as well as renal resistance to treatment, and higher risk of progression to composite outcome in patients with AAV. To expand our knowledge regarding distinct tubular lesions in AAV, we aimed to describe acute tubular injury patterns in association with glomerular lesions in ANCA GN by systematic histological scoring. Methods: A total number of 48 renal biopsies with confirmed renal involvement of AAV admitted to the University Medical Center Göttingen from 2015 to 2020 were retrospectively examined. By systematic scoring of tubular injury lesions, the association between clinical parameters, laboratory markers, and histopathological findings was explored. Results: We have shown that cellular casts in renal biopsies were frequently observed in the majority of cases with ANCA GN. Furthermore, we showed that tubular epithelial simplification with dilatation correlated with MPA and MPO subtypes, C3c hypocomplementemia, severe renal involvement, and uACR. Red blood cell (RBC) casts were associated with increased levels of C-reactive protein (CRP), leukocyturia, and hematuria. Finally, we found that hyaline casts were associated with an increased fraction of glomeruli with global glomerular sclerosis. Conclusions: Acute tubular injury patterns were correlated with active ANCA GN, whereas tubular injury lesions reflecting the later stages of kidney disease correlated with chronic glomerular lesions. These results suggest an interplay between different renal compartments.
Collapse
|
42
|
Bhatraju PK, Chai XY, Sathe NA, Ruzinski J, Siew ED, Himmelfarb J, Hoofnagle AN, Wurfel MM, Kestenbaum BR. Assessment of kidney proximal tubular secretion in critical illness. JCI Insight 2021; 6:145514. [PMID: 33886506 PMCID: PMC8262320 DOI: 10.1172/jci.insight.145514] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUNDSerum creatinine concentrations (SCrs) are used to determine the presence and severity of acute kidney injury (AKI). SCr is primarily eliminated by glomerular filtration; however, most mechanisms of AKI in critical illness involve kidney proximal tubules, where tubular secretion occurs. Proximal tubular secretory clearance is not currently estimated in the intensive care unit (ICU). Our objective was to estimate the kidney clearance of secretory solutes in critically ill adults.METHODSWe collected matched blood and spot urine samples from 170 ICU patients and from a comparison group of 70 adults with normal kidney function. We measured 7 endogenously produced secretory solutes using liquid chromatography-tandem mass spectrometry. We computed a composite secretion score incorporating all 7 solutes and evaluated associations with 28-day major adverse kidney events (MAKE28), defined as doubling of SCr, dialysis dependence, or death.RESULTSThe urine-to-plasma ratios of 6 of 7 secretory solutes were lower in critically ill patients compared with healthy individuals after adjustment for SCr. The composite secretion score was moderately correlated with SCr and cystatin C (r = -0.51 and r = -0.53, respectively). Each SD higher composite secretion score was associated with a 25% lower risk of MAKE28 (95% CI 9% to 38% lower) independent of severity of illness, SCr, and tubular injury markers. Higher urine-to-plasma ratios of individual secretory solutes isovalerylglycine and tiglylglycine were associated with MAKE28 after accounting for multiple testing.CONCLUSIONAmong critically ill adults, tubular secretory clearance is associated with adverse outcomes, and its measurement could improve assessment of kidney function and dosing of essential ICU medications.FUNDINGGrants from the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK/NIH) K23DK116967, the University of Washington Diabetes Research Center P30DK017047, an unrestricted gift to the Kidney Research Institute from the Northwest Kidney Centers, and the Vanderbilt O'Brien Kidney Center (NIDDK 5P30 DK114809-03). The funding sources had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; and preparation, review, or approval of the manuscript.
Collapse
Affiliation(s)
- Pavan K Bhatraju
- Division of Pulmonary, Critical Care and Sleep Medicine and.,Kidney Research Institute, Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Xin-Ya Chai
- Division of Pulmonary, Critical Care and Sleep Medicine and
| | - Neha A Sathe
- Division of Pulmonary, Critical Care and Sleep Medicine and
| | - John Ruzinski
- Kidney Research Institute, Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Edward D Siew
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Vanderbilt Integrated Program for AKI, Nashville, Tennessee, USA.,Tennessee Valley Health Services, Nashville VA Medical Center, Nashville, Tennessee, USA
| | - Jonathan Himmelfarb
- Kidney Research Institute, Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Andrew N Hoofnagle
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Mark M Wurfel
- Division of Pulmonary, Critical Care and Sleep Medicine and
| | - Bryan R Kestenbaum
- Kidney Research Institute, Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
43
|
Kidney physiology and susceptibility to acute kidney injury: implications for renoprotection. Nat Rev Nephrol 2021; 17:335-349. [PMID: 33547418 DOI: 10.1038/s41581-021-00394-7] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2021] [Indexed: 01/30/2023]
Abstract
Kidney damage varies according to the primary insult. Different aetiologies of acute kidney injury (AKI), including kidney ischaemia, exposure to nephrotoxins, dehydration or sepsis, are associated with characteristic patterns of damage and changes in gene expression, which can provide insight into the mechanisms that lead to persistent structural and functional damage. Early morphological alterations are driven by a delicate balance between energy demand and oxygen supply, which varies considerably in different regions of the kidney. The functional heterogeneity of the various nephron segments is reflected in their use of different metabolic pathways. AKI is often linked to defects in kidney oxygen supply, and some nephron segments might not be able to shift to anaerobic metabolism under low oxygen conditions or might have remarkably low basal oxygen levels, which enhances their vulnerability to damage. Here, we discuss why specific kidney regions are at particular risk of injury and how this information might help to delineate novel routes for mitigating injury and avoiding permanent damage. We suggest that the physiological heterogeneity of the kidney should be taken into account when exploring novel renoprotective strategies, such as improvement of kidney tissue oxygenation, stimulation of hypoxia signalling pathways and modulation of cellular energy metabolism.
Collapse
|
44
|
Puthumana J, Thiessen-Philbrook H, Xu L, Coca SG, Garg AX, Himmelfarb J, Bhatraju PK, Ikizler TA, Siew ED, Ware LB, Liu KD, Go AS, Kaufman JS, Kimmel PL, Chinchilli VM, Cantley LG, Parikh CR. Biomarkers of inflammation and repair in kidney disease progression. J Clin Invest 2021; 131:139927. [PMID: 33290282 PMCID: PMC7843225 DOI: 10.1172/jci139927] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 12/01/2020] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTIONAcute kidney injury and chronic kidney disease (CKD) are common in hospitalized patients. To inform clinical decision making, more accurate information regarding risk of long-term progression to kidney failure is required.METHODSWe enrolled 1538 hospitalized patients in a multicenter, prospective cohort study. Monocyte chemoattractant protein 1 (MCP-1/CCL2), uromodulin (UMOD), and YKL-40 (CHI3L1) were measured in urine samples collected during outpatient follow-up at 3 months. We followed patients for a median of 4.3 years and assessed the relationship between biomarker levels and changes in estimated glomerular filtration rate (eGFR) over time and the development of a composite kidney outcome (CKD incidence, CKD progression, or end-stage renal disease). We paired these clinical studies with investigations in mouse models of renal atrophy and renal repair to further understand the molecular basis of these markers in kidney disease progression.RESULTSHigher MCP-1 and YKL-40 levels were associated with greater eGFR decline and increased incidence of the composite renal outcome, whereas higher UMOD levels were associated with smaller eGFR declines and decreased incidence of the composite kidney outcome. A multimarker score increased prognostic accuracy and reclassification compared with traditional clinical variables alone. The mouse model of renal atrophy showed greater Ccl2 and Chi3l1 mRNA expression in infiltrating macrophages and neutrophils, respectively, and evidence of progressive renal fibrosis compared with the repair model. The repair model showed greater Umod expression in the loop of Henle and correspondingly less fibrosis.CONCLUSIONSBiomarker levels at 3 months after hospitalization identify patients at risk for kidney disease progression.FUNDINGNIH.
Collapse
Affiliation(s)
- Jeremy Puthumana
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Leyuan Xu
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Steven G. Coca
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Amit X. Garg
- Division of Nephrology, Department of Medicine, Western University, London, Ontario, Canada
| | | | - Pavan K. Bhatraju
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - T. Alp Ikizler
- Division of Nephrology & Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Edward D. Siew
- Division of Nephrology & Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Tennessee Valley Health Services, Nashville Veterans Affairs Hospital, Nashville, Tennessee, USA
| | - Lorraine B. Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kathleen D. Liu
- Division of Nephrology, UCSF School of Medicine, San Francisco, California, USA
| | - Alan S. Go
- Division of Nephrology, UCSF School of Medicine, San Francisco, California, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - James S. Kaufman
- Division of Nephrology, Veterans Affairs New York Harbor Health Care System, New York University School of Medicine, New York, New York, USA
| | - Paul L. Kimmel
- Division of Kidney, Urologic, and Hematologic Diseases, National Institute of Diabetes, Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Vernon M. Chinchilli
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Lloyd G. Cantley
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Chirag R. Parikh
- Division of Nephrology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
45
|
Thau MR, Bhatraju PK. Sub-Phenotypes of Acute Kidney Injury: Do We Have Progress for Personalizing Care? Nephron Clin Pract 2020; 144:677-679. [PMID: 33091901 PMCID: PMC7708595 DOI: 10.1159/000511321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/02/2020] [Indexed: 11/19/2022] Open
Abstract
Acute kidney injury (AKI) is the most common form of organ dysfunction occurring in patients admitted to the intensive care unit and contributes significantly to poor long-term outcomes. Despite this public health impact, no effective pharmacotherapy exists for AKI. One reason may be that heterogeneity is present within AKI as currently defined, thereby concealing unique pathophysiologic processes specific to certain AKI populations. Supporting this notion, we and others have shown that diversity within the AKI clinical syndrome exists, and the "one-size-fits-all" approach by current diagnostic guidelines may not be ideal. A "precision medicine" approach that exploits an individual's genetic, biologic, and clinical characteristics to identify AKI sub-phenotypes may overcome such limitations. Identification of AKI sub-phenotypes may address a critical unmet clinical need in AKI by (1) improving risk prognostication, (2) identifying novel pathophysiology, and (3) informing a patient's likelihood of responding to current therapeutics or establishing new therapeutic targets to prevent and treat AKI. This review discusses the current state of phenotyping AKI and future directions.
Collapse
Affiliation(s)
- Matthew R Thau
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Pavan K Bhatraju
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA,
- Division of Nephrology, Department of Medicine, Kidney Research Institute, University of Washington, Seattle, Washington, USA,
| |
Collapse
|
46
|
Abstract
Physical trauma can affect any individual and is globally accountable for more than one in every ten deaths. Although direct severe kidney trauma is relatively infrequent, extrarenal tissue trauma frequently results in the development of acute kidney injury (AKI). Various causes, including haemorrhagic shock, rhabdomyolysis, use of nephrotoxic drugs and infectious complications, can trigger and exacerbate trauma-related AKI (TRAKI), particularly in the presence of pre-existing or trauma-specific risk factors. Injured, hypoxic and ischaemic tissues expose the organism to damage-associated and pathogen-associated molecular patterns, and oxidative stress, all of which initiate a complex immunopathophysiological response that results in macrocirculatory and microcirculatory disturbances in the kidney, and functional impairment. The simultaneous activation of components of innate immunity, including leukocytes, coagulation factors and complement proteins, drives kidney inflammation, glomerular and tubular damage, and breakdown of the blood-urine barrier. This immune response is also an integral part of the intense post-trauma crosstalk between the kidneys, the nervous system and other organs, which aggravates multi-organ dysfunction. Necessary lifesaving procedures used in trauma management might have ambivalent effects as they stabilize injured tissue and organs while simultaneously exacerbating kidney injury. Consequently, only a small number of pathophysiological and immunomodulatory therapeutic targets for TRAKI prevention have been proposed and evaluated.
Collapse
|
47
|
Stevens JS, Xu K, Corker A, Gopal TS, Sayan OR, Geraghty EP, Yaeh AM, Kosuri YD, Burton JR, Lincoln SV, Callahan MP, Breheney RK, Beenken AS, Gamino JN, Felman AE, Gehani A, Giordano HA, Gozali A, Guerrero Herrera EF, Hatcher BA, Kheir LA, Li Y, Mitsui EK, Nha JI, Sayan AT, Spaiser SJ, Arumugam S, Sia SK, King KL, Mohan S, Barasch J. Rule Out Acute Kidney Injury in the Emergency Department With a Urinary Dipstick. Kidney Int Rep 2020; 5:1982-1992. [PMID: 33163719 PMCID: PMC7609964 DOI: 10.1016/j.ekir.2020.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/24/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022] Open
Abstract
Introduction The identification of acute injury of the kidney relies on serum creatinine (SCr), a functional marker with poor temporal resolution as well as limited sensitivity and specificity for cellular injury. In contrast, urinary biomarkers of kidney injury have the potential to detect cellular stress and damage in real time. Methods To detect the response of the kidney to injury, we have tested a lateral flow dipstick that measures a urinary protein called neutrophil gelatinase-associated lipocalin (NGAL). Analysis of urine was performed in a prospective cohort of 479 patients (final cohort N = 426) entering an emergency department in New York City and subsequently admitted for inpatient care. Results Colorimetric development had high interrater reliability (88% concordance rate) and correlated with traditional enzyme-linked immunosorbent assay (ELISA) measurements (ρ = 0.732, P < .0001). Of the 14% of the cohort who met Acute Kidney Injury Network (AKIN) SCr criteria for acute kidney injury (AKI), 67% demonstrated transient (<2 days) and 33% demonstrated sustained (>2 days) elevation of SCr. Comparing the outcomes of patients with sustained versus transient or undetectable changes in SCr revealed that the urinary NGAL (uNGAL) dipstick had high specificity and negative predictive value (NPV) (high- vs. low-intermediate readings, sensitivity = 0.55, specificity = 0.91, positive predictive value = 0.24, NPV = 0.97, χ2 = 20.39, P < 0.001). Conclusion We show that the introduction of a bedside uNGAL dipstick permits accurate triage by identifying individuals who do not have tubular injury. In an era of shortening length of stay and rapid decisions based on isolated SCr measurements, real-time exclusion of kidney injury by a dipstick will be particularly useful to overcome the retrospective, insensitive, and nonspecific attributes of SCr.
Collapse
Affiliation(s)
- Jacob S Stevens
- Division of Nephrology, Columbia University Irving Medical Center, New York, New York, USA
| | - Katherine Xu
- Division of Nephrology, Columbia University Irving Medical Center, New York, New York, USA
| | - Alexa Corker
- Division of Nephrology, Columbia University Irving Medical Center, New York, New York, USA
| | - Tejashree S Gopal
- Division of Nephrology, Columbia University Irving Medical Center, New York, New York, USA
| | - Osman R Sayan
- Emergency Department, Columbia University Irving Medical Center, New York, New York, USA
| | - Erin P Geraghty
- Internal Medicine Residency, Columbia University Irving Medical Center, New York, New York, USA
| | - Andrew M Yaeh
- Internal Medicine Residency, Columbia University Irving Medical Center, New York, New York, USA
| | - Yaagnik D Kosuri
- Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - John R Burton
- Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Saul V Lincoln
- Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Miriam P Callahan
- Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Rebecca K Breheney
- Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Andrew S Beenken
- Division of Nephrology, Columbia University Irving Medical Center, New York, New York, USA
| | - Juliana N Gamino
- Emergency Department, Columbia University Irving Medical Center, New York, New York, USA
| | - Ariel E Felman
- Division of Nephrology, Columbia University Irving Medical Center, New York, New York, USA
| | - Anjali Gehani
- Division of Nephrology, Columbia University Irving Medical Center, New York, New York, USA
| | - Hayley A Giordano
- Emergency Department, Columbia University Irving Medical Center, New York, New York, USA
| | - Aileen Gozali
- Emergency Department, Columbia University Irving Medical Center, New York, New York, USA
| | | | - Britney A Hatcher
- Emergency Department, Columbia University Irving Medical Center, New York, New York, USA
| | - Lena A Kheir
- Emergency Department, Columbia University Irving Medical Center, New York, New York, USA
| | - Yuanji Li
- Division of Nephrology, Columbia University Irving Medical Center, New York, New York, USA
| | - Erika K Mitsui
- Emergency Department, Columbia University Irving Medical Center, New York, New York, USA
| | - Jae I Nha
- Division of Nephrology, Columbia University Irving Medical Center, New York, New York, USA
| | - Alexander T Sayan
- Division of Nephrology, Columbia University Irving Medical Center, New York, New York, USA
| | - Samuel J Spaiser
- Emergency Department, Columbia University Irving Medical Center, New York, New York, USA
| | - Siddarth Arumugam
- Biomedical Engineering, Columbia University, New York, New York, USA
| | - Samuel K Sia
- Biomedical Engineering, Columbia University, New York, New York, USA
| | - Kristen L King
- Division of Nephrology, Columbia University Irving Medical Center, New York, New York, USA
| | - Sumit Mohan
- Division of Nephrology, Columbia University Irving Medical Center, New York, New York, USA.,Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Jonathan Barasch
- Division of Nephrology, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
48
|
Liu C, Mor MK, Palevsky PM, Kaufman JS, Thiessen Philbrook H, Weisbord SD, Parikh CR. Postangiography Increases in Serum Creatinine and Biomarkers of Injury and Repair. Clin J Am Soc Nephrol 2020; 15:1240-1250. [PMID: 32839195 PMCID: PMC7480551 DOI: 10.2215/cjn.15931219] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 07/02/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND OBJECTIVES It is unknown whether iodinated contrast causes kidney parenchymal damage. Biomarkers that are more specific to nephron injury than serum creatinine may provide insight into whether contrast-associated AKI reflects tubular damage. We assessed the association between biomarker changes after contrast angiography with contrast-associated AKI and 90-day major adverse kidney events and death. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We conducted a longitudinal analysis of participants from the biomarker substudy of the Prevention of Serious Adverse Events following Angiography trial. We measured injury (kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, IL-18) and repair (monocyte chemoattractant protein-1, uromodulin, YKL-40) proteins from plasma and urine samples at baseline and 2-4 hours postangiography. We assessed the associations between absolute changes and relative ratios of biomarkers with contrast-associated AKI and 90-day major adverse kidney events and death. RESULTS Participants (n=922) were predominately men (97%) with diabetes (82%). Mean age was 70±8 years, and eGFR was 48±13 ml/min per 1.73 m2; 73 (8%) and 60 (7%) participants experienced contrast-associated AKI and 90-day major adverse kidney events and death, respectively. No postangiography urine biomarkers were associated with contrast-associated AKI. Postangiography plasma kidney injury molecule-1 and IL-18 were significantly higher in participants with contrast-associated AKI compared with those who did not develop contrast-associated AKI: 428 (248, 745) versus 306 (179, 567) mg/dl; P=0.04 and 325 (247, 422) versus 280 (212, 366) mg/dl; P=0.009, respectively. The majority of patients did not experience an increase in urine or plasma biomarkers. Absolute changes in plasma IL-18 were comparable in participants with contrast-associated AKI (-30 [-71, -9] mg/dl) and those without contrast-associated AKI (-27 [-53, -10] mg/dl; P=0.62). Relative ratios of plasma IL-18 were also comparable in participants with contrast-associated AKI (0.91; 0.86, 0.97) and those without contrast-associated AKI (0.91; 0.85, 0.96; P=0.54). CONCLUSIONS The lack of significant differences in the absolute changes and relative ratios of injury and repair biomarkers by contrast-associated AKI status suggests that the majority of mild contrast-associated AKI cases may be driven by hemodynamic changes at the kidney.
Collapse
Affiliation(s)
- Caroline Liu
- Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Maria K Mor
- Center for Health Equity Research and Promotion, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania .,Department of Biostatistics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
| | - Paul M Palevsky
- Renal Section, Medical Service, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania.,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - James S Kaufman
- Division of Nephrology, Veterans Affairs New York Harbor Healthcare System and New York University School of Medicine, New York, New York
| | | | - Steven D Weisbord
- Renal Section, Medical Service, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania.,Renal Section, Medical Service and Center for Health Equity Research and Promotion, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | - Chirag R Parikh
- Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
49
|
Kirita Y, Wu H, Uchimura K, Wilson PC, Humphreys BD. Cell profiling of mouse acute kidney injury reveals conserved cellular responses to injury. Proc Natl Acad Sci U S A 2020; 117:15874-15883. [PMID: 32571916 PMCID: PMC7355049 DOI: 10.1073/pnas.2005477117] [Citation(s) in RCA: 364] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
After acute kidney injury (AKI), patients either recover or alternatively develop fibrosis and chronic kidney disease. Interactions between injured epithelia, stroma, and inflammatory cells determine whether kidneys repair or undergo fibrosis, but the molecular events that drive these processes are poorly understood. Here, we use single nucleus RNA sequencing of a mouse model of AKI to characterize cell states during repair from acute injury. We identify a distinct proinflammatory and profibrotic proximal tubule cell state that fails to repair. Deconvolution of bulk RNA-seq datasets indicates that this failed-repair proximal tubule cell (FR-PTC) state can be detected in other models of kidney injury, increasing during aging in rat kidney and over time in human kidney allografts. We also describe dynamic intercellular communication networks and discern transcriptional pathways driving successful vs. failed repair. Our study provides a detailed description of cellular responses after injury and suggests that the FR-PTC state may represent a therapeutic target to improve repair.
Collapse
Affiliation(s)
- Yuhei Kirita
- Division of Nephrology, Department of Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110
- Department of Nephrology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Haojia Wu
- Division of Nephrology, Department of Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110
| | - Kohei Uchimura
- Division of Nephrology, Department of Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110
| | - Parker C Wilson
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110;
- Department of Developmental Biology, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110
| |
Collapse
|
50
|
Battistone MA, Mendelsohn AC, Spallanzani RG, Allegretti AS, Liberman RN, Sesma J, Kalim S, Wall SM, Bonventre JV, Lazarowski ER, Brown D, Breton S. Proinflammatory P2Y14 receptor inhibition protects against ischemic acute kidney injury in mice. J Clin Invest 2020; 130:3734-3749. [PMID: 32287042 PMCID: PMC7324186 DOI: 10.1172/jci134791] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/08/2020] [Indexed: 12/24/2022] Open
Abstract
Ischemic acute kidney injury (AKI), a complication that frequently occurs in hospital settings, is often associated with hemodynamic compromise, sepsis, cardiac surgery, or exposure to nephrotoxins. Here, using a murine renal ischemia/reperfusion injury (IRI) model, we show that intercalated cells (ICs) rapidly adopted a proinflammatory phenotype after IRI. Wwe demonstrate that during the early phase of AKI either blockade of the proinflammatory P2Y14 receptor located on the apical membrane of ICs or ablation of the gene encoding the P2Y14 receptor in ICs (a) inhibited IRI-induced increase of chemokine expression in ICs, (b) reduced neutrophil and monocyte renal infiltration, (c) reduced the extent of kidney dysfunction, and (d) attenuated proximal tubule damage. These observations indicate that the P2Y14 receptor participates in the very first inflammatory steps associated with ischemic AKI. In addition, we show that the concentration of the P2Y14 receptor ligand UDP-glucose (UDP-Glc) was higher in urine samples from intensive care unit patients who developed AKI compared with patients without AKI. In particular, we observed a strong correlation between UDP-Glc concentration and the development of AKI in cardiac surgery patients. Our study identifies the UDP-Glc/P2Y14 receptor axis as a potential target for the prevention and/or attenuation of ischemic AKI.
Collapse
Affiliation(s)
- Maria Agustina Battistone
- Program in Membrane Biology, Division of Nephrology, Department of Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alexandra C. Mendelsohn
- Program in Membrane Biology, Division of Nephrology, Department of Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Raul German Spallanzani
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Andrew S. Allegretti
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Rachel N. Liberman
- Program in Membrane Biology, Division of Nephrology, Department of Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Juliana Sesma
- Marsico Lung Institute, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sahir Kalim
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Susan M. Wall
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Eduardo R. Lazarowski
- Marsico Lung Institute, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Dennis Brown
- Program in Membrane Biology, Division of Nephrology, Department of Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sylvie Breton
- Program in Membrane Biology, Division of Nephrology, Department of Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|