1
|
Pan Q, Guo F, Chen J, Huang H, Huang Y, Liao S, Xiao Z, Wang X, You L, Yang L, Huang X, Xiao H, Liu HF, Pan Q. Exploring the role of gut microbiota modulation in the long-term therapeutic benefits of early MSC transplantation in MRL/lpr mice. Cell Mol Biol Lett 2025; 30:49. [PMID: 40251524 PMCID: PMC12007202 DOI: 10.1186/s11658-025-00716-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/07/2025] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE), influenced by gut microbiota dysbiosis, is characterized by autoimmune and inflammatory responses. Human umbilical cord-derived mesenchymal stem cell (hUC-MSC) transplantation is an effective and safe treatment for refractory or severe SLE; however, the long-term efficacy and mechanisms of early hUC-MSC therapeutic benefits in SLE need further investigation. METHODS Here, lupus-prone MRL/MpJ-Faslpr (MRL/lpr) mice were divided into three groups: the control (Ctrl) group received saline injections, while the MSC and MSC-fecal microbiota transplantation (FMT) groups received early hUC-MSC transplants at weeks 6, 8, and 10. The MSC-FMT group also underwent FMT from the Ctrl group between weeks 9 and 13. RESULTS Our results showed that early MSC treatment extended therapeutic effects up to 12 weeks, reducing autoantibodies, proinflammatory cytokines, B cells, and improving lupus nephritis. It also modulated the gut microbiota, increasing the abundance of beneficial bacteria, such as Lactobacillus johnsonii and Romboutsia ilealis, which led to higher levels of plasma tryptophan and butyrate metabolites. These metabolites activate the aryl hydrocarbon receptor (AHR), upregulate the Cyp1a1 and Cyp1b1 gene, enhance the zonula occludens 1 (ZO-1) protein, promote intestinal repair, and mitigate SLE progression. Notably, FMT from lupus mice significantly reversed hUC-MSC benefits, suggesting that the modulation of the gut microbiota plays a crucial role in the therapeutic response observed in MRL/lpr mice. CONCLUSIONS This research innovatively explores the early therapeutic window for MSCs in SLE, highlighting the partial mechanisms through which hUC-MSCs modulate the gut microbiota-tryptophan-AHR axis, thereby ameliorating SLE symptoms.
Collapse
Affiliation(s)
- Quanren Pan
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Noncommunicable Diseases, Department of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Fengbiao Guo
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Noncommunicable Diseases, Department of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiaxuan Chen
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Noncommunicable Diseases, Department of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Haimin Huang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Noncommunicable Diseases, Department of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yanyan Huang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Noncommunicable Diseases, Department of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shuzhen Liao
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Noncommunicable Diseases, Department of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zengzhi Xiao
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Noncommunicable Diseases, Department of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xi Wang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Noncommunicable Diseases, Department of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Liuyong You
- Department of Clinical Laboratory, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lawei Yang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Noncommunicable Diseases, Department of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xuemei Huang
- Department of Anesthesiology, First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Haiyan Xiao
- Department of Cellular Biology and Anatomy, James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Hua-Feng Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Noncommunicable Diseases, Department of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Qingjun Pan
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Noncommunicable Diseases, Department of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
- Department of Clinical Laboratory, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
2
|
Qi F, Yan Y, Lv Q, Liu M, Liu M, Li F, Deng R, Liang X, Li S, Mou G, Bao L. IL-37 possesses both anti-inflammatory and antiviral effects against Middle East respiratory syndrome coronavirus infection. Animal Model Exp Med 2025; 8:483-492. [PMID: 38803038 PMCID: PMC11904105 DOI: 10.1002/ame2.12435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/05/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND The aim was to elucidate the function of IL-37 in middle east respiratory syndrome coronavirus (MERS-CoV) infection, thereby providing a novel therapeutic strategy for managing the clinical treatment of inflammatory response caused by respiratory virus infection. METHODS We investigated the development of MERS by infecting hDPP4 mice with hCoV-EMC (107 TCID50 [50% tissue culture infectious dose]) intranasally. We infected A549 cells with MERS-CoV, which concurrently interfered with IL-37, detecting the viral titer, viral load, and cytokine expression at certain points postinfection. Meanwhile, we administered IL-37 (12.5 μg/kg) intravenously to hDPP4 mice 2 h after MERS-CoV-2 infection and collected the serum and lungs 5 days after infection to investigate the efficacy of IL-37 in MERS-CoV infection. RESULTS The viral titer of MERS-CoV-infected A549 cells interfering with IL-37 was significantly reduced by 4.7-fold, and the viral load of MERS-CoV-infected hDPP4 mice was decreased by 59-fold in lung tissue. Furthermore, the administration of IL-37 suppressed inflammatory cytokine and chemokine (monocyte chemoattractant protein 1, interferon-γ, and IL-17A) expression and ameliorated the infiltration of inflammatory cells in hDPP4 mice. CONCLUSION IL-37 exhibits protective properties in severe pneumonia induced by MERS-CoV infection. This effect is achieved through attenuation of lung viral load, suppression of inflammatory cytokine secretion, reduction in inflammatory cell infiltration, and mitigation of pulmonary injury.
Collapse
Affiliation(s)
- Feifei Qi
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, NHC Key Laboratory of Comparative MedicineInstitute of Laboratory Animal Science, CAMS & PUMCBeijingChina
- National Center of Technology Innovation for Animal ModelBeijingChina
| | - Yiwei Yan
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, NHC Key Laboratory of Comparative MedicineInstitute of Laboratory Animal Science, CAMS & PUMCBeijingChina
| | - Qi Lv
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, NHC Key Laboratory of Comparative MedicineInstitute of Laboratory Animal Science, CAMS & PUMCBeijingChina
- National Center of Technology Innovation for Animal ModelBeijingChina
| | - Mingya Liu
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, NHC Key Laboratory of Comparative MedicineInstitute of Laboratory Animal Science, CAMS & PUMCBeijingChina
| | - Ming Liu
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, NHC Key Laboratory of Comparative MedicineInstitute of Laboratory Animal Science, CAMS & PUMCBeijingChina
| | - Fengdi Li
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, NHC Key Laboratory of Comparative MedicineInstitute of Laboratory Animal Science, CAMS & PUMCBeijingChina
- National Center of Technology Innovation for Animal ModelBeijingChina
| | - Ran Deng
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, NHC Key Laboratory of Comparative MedicineInstitute of Laboratory Animal Science, CAMS & PUMCBeijingChina
- National Center of Technology Innovation for Animal ModelBeijingChina
| | - Xujian Liang
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, NHC Key Laboratory of Comparative MedicineInstitute of Laboratory Animal Science, CAMS & PUMCBeijingChina
- National Center of Technology Innovation for Animal ModelBeijingChina
| | - Shuyue Li
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, NHC Key Laboratory of Comparative MedicineInstitute of Laboratory Animal Science, CAMS & PUMCBeijingChina
| | - Guocui Mou
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, NHC Key Laboratory of Comparative MedicineInstitute of Laboratory Animal Science, CAMS & PUMCBeijingChina
| | - Linlin Bao
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, NHC Key Laboratory of Comparative MedicineInstitute of Laboratory Animal Science, CAMS & PUMCBeijingChina
- National Center of Technology Innovation for Animal ModelBeijingChina
- State Key Laboratory of Respiratory Health and MultimorbidityBeijingChina
| |
Collapse
|
3
|
Song J, Li M, Tao Y, Li Y, Mai C, Zhang J, Yao L, Shi S, Xu J. Enhanced myofibroblast differentiation of eMSCs in intrauterine adhesions. Stem Cell Res Ther 2025; 16:35. [PMID: 39901307 PMCID: PMC11792338 DOI: 10.1186/s13287-025-04183-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Intrauterine adhesions (IUA) is one of the most common gynecological diseases and main causes of uterine infertility. Among proposed hypotheses on IUA development, the reduced endometrial regeneration resulting from loss of functional stem cells has been proposed as the key factor affecting the IUA prognosis. However, the underlying mechanisms mostly remain unclear. Because the eMSCs (endometrial mesenchymal stem/stromal cells) play a critical role in both supporting the gland development and also preparing the environment for embryo implantation through decidualization, the characteristics and functions were compared between the eMSCs derived from IUA and non-IUA patients, to uncover the important roles of eMSCs in IUA and also the underlying mechanisms. METHODS Endometrium biopsies were collected from IUA patients and controls. The fibrosis features and eMSC distributions were investigated with IHC (immunohistochemistry). Then the eMSCs were isolated and their functions and characteristics were analyzed in vitro. RESULTS Our results indicate that the scar tissues in IUA are characterized with hyper-activation of pro-fibrotic fibroblast and myo-differentiation, along with reduced number of eMSCs. The isolated eMSCs from IUA and controls show similar functions from the perspectives of cell morphology, proliferation, colony formation, exosome secretion, positive ratio of eMSC markers and conventional MSC markers, tri-differentiation efficiency, the ability of suppressing lymphocyte proliferation, cell aging, and promoting vascular tube formation. However, the eMSCs from IUA have reduced levels of decidualization and higher levels of cell migration, invasion, and also myofibroblast differentiation. Further investigations indicate that the TGF-β pathway, which is the major inducer of myofibroblast differentiation, is up-regulated and responsible for the enhanced myofibroblast differentiation potential of eMSCs from IUA. CONCLUSIONS In conclusion, we have demonstrated here that the scar tissues in IUA biopsy are characterized with enhanced differentiation of pro-fibrotic fibroblast and myofibroblast. The number of eMSCs is reduced in IUA tissues, and their myofibroblast differentiation capability is increased.
Collapse
Affiliation(s)
- Jun Song
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150000, People's Republic of China
| | - Meiqi Li
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150000, People's Republic of China
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518000, People's Republic of China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China
| | - Yuan Tao
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150000, People's Republic of China
| | - Yumeng Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518000, People's Republic of China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China
| | - Canrong Mai
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518000, People's Republic of China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China
| | - Jingting Zhang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518000, People's Republic of China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China
| | - Lan Yao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518000, People's Republic of China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China
| | - Shaoquan Shi
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518000, People's Republic of China.
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China.
| | - Jianyong Xu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518000, People's Republic of China.
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China.
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Fuqiang Avenue 1001, Shenzhen, 518060, Guangdong, People's Republic of China.
| |
Collapse
|
4
|
Mohamed Thaha UAB, Wan Mohamad WM, Nik Husain NR, Yusop N, Mohamud R, Wan Ghazali WS. Potential and limitations of IL-37, a cytokine targeted for therapy of systemic lupus erythematosus: A Systematic Review. Int Immunopharmacol 2025; 144:113597. [PMID: 39566387 DOI: 10.1016/j.intimp.2024.113597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/24/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by dysregulated immune responses and inflammation. Interleukin-37 (IL-37) is a recently discovered immunomodulatory cytokine with potential anti-inflammatory properties. This systematic review explores the relationship between IL and 37 and SLE disease activity, and evaluates its potential as a therapeutic agent. METHODS Electronic databases were searched for studies investigating IL-37 and SLE. Data on IL-37 levels, SLE Disease Activity Index (SLEDAI) score, genetic polymorphisms, and its therapeutic effects from pre-clinical studies were extracted. RESULTS Previous studies presented conflicting findings on IL-37 levels in SLE patients. Some reported positive correlations with disease activity, while others observed associations between lower IL-37 and increased activity. Genetic variations in the IL-37 gene linked to SLE susceptibility have been reported. Pre-clinical studies using engineered mesenchymal stem cells or direct IL-37 treatment showed promise in reducing disease severity in mouse models and cell cultures of SLE. The analysis of multiple studies reveals that IL-37 expression varies significantly across different SLE subtypes. CONCLUSIONS While a potential link exists between IL and 37 and disease activity, genetic predisposition, and therapeutic benefit, further research is needed. Future studies with standardized designs, larger and more diverse populations, and mechanistic investigations are crucial to determine the therapeutic potential of IL-37 for SLE. This review highlights the need for well-designed clinical trials to evaluate the safety and efficacy of IL-37 therapy in patients with SLE.
Collapse
Affiliation(s)
- Ummul Aqeela Balqees Mohamed Thaha
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia; Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Wan Majdiah Wan Mohamad
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia; Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| | | | - Norhayati Yusop
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia; Hospital Universiti Sains Malaysia, USM Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | | |
Collapse
|
5
|
Yang J, Fu L, Yang Y, Lin L. In vivo study on IL-37 inhibition of malignant melanoma metastasis. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:1885-1890. [PMID: 40195660 PMCID: PMC11975520 DOI: 10.11817/j.issn.1672-7347.2024.230570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Indexed: 04/09/2025]
Abstract
OBJECTIVES Malignant melanoma is highly aggressive, prone to early metastasis, and associated with extremely poor prognosis, posing a serious threat to human health. Identifying molecular mechanisms that inhibit metastasis is of great significance for improving treatment and prognosis. Interleukin-37 (IL-37), an anti-inflammatory cytokine, has not only been linked to various inflammatory diseases but also exhibits anti-tumor properties. This study aims to explore the effect of IL-37 on melanoma metastasis in vivo by establishing a murine model of pulmonary metastasis. METHODS Mouse melanoma B16F1 cells were transfected with either IL-37 overexpression plasmid (IL-37 oe) or empty vector. Three groups were set: An IL-37 oe group (transfection reagent+IL-37 oe plasmid), a Vector group (transfection reagent+vector plasmid), and a Blank group (transfection reagent only). C57 mice were randomly divided into 3 groups (n=3 per group) and injected intravenously with logarithmic-phase B16F1 cells under sterile conditions. Mice were weighed every 3 days. After 1 month, mice were euthanized by cervical dislocation, and organs including lungs, heart, liver, spleen, and kidneys were harvested. Lung metastases were photographed and counted. Organs were fixed in 4% paraformaldehyde, embedded in paraffin, and stained with hematoxylin and eosin (HE). RESULTS Western blotting confirmed successful plasmid transfection. There were no significant differences in body weight among the 3 groups over the 28-day period (P>0.05). Lung tumors were observed upon dissection, indicating successful metastasis modeling. HE staining showed no morphological differences in the heart, liver, spleen, and kidneys between groups. The numbers of lung metastases in the Blank, Vector, and IL-37 oe groups were (24.00±2.08), (24.67±0.88), and (5.33±1.45), respectively. The IL-37 oe group had significantly fewer lung metastases than the other 2 groups (P<0.05), while no difference was observed between the Blank and Vector groups. CONCLUSIONS IL-37 significantly inhibits lung metastasis of malignant melanoma cells in mice without affecting body weight or major organs. It may serve as a potential molecular target for gene therapy or immunotherapy of malignant melanoma.
Collapse
Affiliation(s)
- Jiantang Yang
- Department of Oral Mucosal Diseases, School of Stomatology/Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi Guizhou 563000.
| | - Lili Fu
- Department of Stomatology, School of Stomatology/Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi Guizhou 563000
| | - Yanmiao Yang
- Department of Thoracic Surgery, Second Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou 563000
| | - Lin Lin
- Department of Oral Mucosal Diseases, Affiliated Stomatological Hospital of Nanjing University School of Medicine, Nanjing Jiangsu 210008, China
| |
Collapse
|
6
|
Lu Y, Shi R, He W, An Q, Zhao J, Gao X, Zhang B, Zhang L, Xu K, Ma D. Cell therapy in Sjögren's syndrome: opportunities and challenges. Expert Rev Mol Med 2024; 26:e28. [PMID: 39438246 PMCID: PMC11505611 DOI: 10.1017/erm.2024.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 10/25/2024]
Abstract
Sjögren's syndrome (SS) is a chronic autoimmune disease caused by immune system disorders. The main clinical manifestations of SS are dry mouth and eyes caused by the destruction of exocrine glands, such as the salivary and lacrimal glands, and systemic manifestations, such as interstitial pneumonia, interstitial nephritis and vasculitis. The pathogenesis of this condition is complex. However, this has not been fully elucidated. Treatment mainly consists of glucocorticoids, disease-modifying antirheumatic drugs and biological agents, which can only control inflammation but not repair the tissue. Therefore, identifying methods to regulate immune disorders and repair damaged tissues is imperative. Cell therapy involves the transplantation of autologous or allogeneic normal or bioengineered cells into the body of a patient to replace damaged cells or achieve a stronger immunomodulatory capacity to cure diseases, mainly including stem cell therapy and immune cell therapy. Cell therapy can reduce inflammation, relieve symptoms and promote tissue repair and regeneration of exocrine glands such as the salivary glands. It has broad application prospects and may become a new treatment strategy for patients with SS. However, there are various challenges in cell preparation, culture, storage and transportation. This article reviews the research status and prospects of cell therapies for SS.
Collapse
Affiliation(s)
- Yangyang Lu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Rongjing Shi
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Wenqin He
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Qi An
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Jingwen Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Xinnan Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Baiyan Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Ke Xu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Dan Ma
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| |
Collapse
|
7
|
Dao LTM, Vu TT, Nguyen QT, Hoang VT, Nguyen TL. Current cell therapies for systemic lupus erythematosus. Stem Cells Transl Med 2024; 13:859-872. [PMID: 38920310 PMCID: PMC11386214 DOI: 10.1093/stcltm/szae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/11/2024] [Indexed: 06/27/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease in which multiple organs are damaged by the immune system. Although standard treatment options such as hydroxychloroquine (HCQ), glucocorticoids (GCs), and other immunosuppressive or immune-modulating agents can help to manage symptoms, they do not offer a cure. Hence, there is an urgent need for the development of novel drugs and therapies. In recent decades, cell therapies have been used for the treatment of SLE with encouraging results. Hematopoietic stem cell transplantation, mesenchymal stem cells, regulatory T (Treg) cell, natural killer cells, and chimeric antigen receptor T (CAR T) cells are advanced cell therapies which have been developed and evaluated in clinical trials in humans. In clinical application, each of these approaches has shown advantages and disadvantages. In addition, further studies are necessary to conclusively establish the safety and efficacy of these therapies. This review provides a summary of recent clinical trials investigating cell therapies for SLE treatment, along with a discussion on the potential of other cell-based therapies. The factors influencing the selection of common cell therapies for individual patients are also highlighted.
Collapse
Affiliation(s)
- Lan T M Dao
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi 100000, Vietnam
| | - Thu Thuy Vu
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi 100000, Vietnam
| | - Quyen Thi Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi 100000, Vietnam
| | - Van T Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi 100000, Vietnam
| | - Thanh Liem Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi 100000, Vietnam
- Vinmec International Hospital, Center of Regenerative Medicine and Cell Therapy, Vinmec Healthcare System, Hanoi 100000, Vietnam
- Vin University, College of Health Sciences, Hanoi 100000, Vietnam
| |
Collapse
|
8
|
Zare Moghaddam M, Mousavi MJ, Ghotloo S. Stem cell-based therapy for systemic lupus erythematous. J Transl Autoimmun 2024; 8:100241. [PMID: 38737817 PMCID: PMC11087996 DOI: 10.1016/j.jtauto.2024.100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 05/14/2024] Open
Abstract
Systemic lupus erythematosus (SLE), an autoimmune disease, is among the most prevalent rheumatic autoimmune disorders. It affects autologous connective tissues caused by the breakdown of self-tolerance mechanisms. During the last two decades, stem cell therapy has been increasingly considered as a therapeutic option in various diseases, including parkinson's disease, alzheimer, stroke, spinal cord injury, multiple sclerosis, inflammatory bowel disease, liver disease, diabete, heart disease, bone disease, renal disease, respiratory diseases, and hematological abnormalities such as anemia. This is due to the unique properties of stem cells that divide and differentiate to the specialized cells in the damaged tissues. Moreover, they impose immunomodulatory properties affecting the diseases caused by immunological abnormalities such as rheumatic autoimmune disorders. In the present manuscript, efficacy of stem cell therapy with two main types of stem cells, including mesenchymal stem cell (MSC), and hematopoietic stem cells (HSC) in animal models or human patients of SLE, has been reviewed. Taken together, MSC and HSC therapies improved the disease activity, and severity in kidney, lung, liver, and bone (improvement in the clinical manifestation). In addition, a change in the immunological parameters occurred (improvement in immunological parameters). The level of autoantibodies, including antinuclear antibody (ANA), and anti-double-stranded deoxyribonucleic acid antibodies (dsDNA Abs) reduced. A conversion of Th1/Th2 ratio (in favor of Th2), and Th17/Treg (in favor of Treg) was also detected. In spite of many advantages of MSC and HSC transplantations, including efficacy, safety, and increased survival rate of SLE patients, some complications, including recurrence of the disease, occurrence of infections, and secondary autoimmune diseases (SAD) were observed after transplantation that should be addressed in the next studies.
Collapse
Affiliation(s)
- Maryam Zare Moghaddam
- Department of Immunology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Javad Mousavi
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Somayeh Ghotloo
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
9
|
Chen S, Liang B, Xu J. Unveiling heterogeneity in MSCs: exploring marker-based strategies for defining MSC subpopulations. J Transl Med 2024; 22:459. [PMID: 38750573 PMCID: PMC11094970 DOI: 10.1186/s12967-024-05294-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/11/2024] [Indexed: 05/19/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) represent a heterogeneous cell population distributed throughout various tissues, demonstrating remarkable adaptability to microenvironmental cues and holding immense promise for disease treatment. However, the inherent diversity within MSCs often leads to variability in therapeutic outcomes, posing challenges for clinical applications. To address this heterogeneity, purification of MSC subpopulations through marker-based isolation has emerged as a promising approach to ensure consistent therapeutic efficacy. In this review, we discussed the reported markers of MSCs, encompassing those developed through candidate marker strategies and high-throughput approaches, with the aim of explore viable strategies for addressing the heterogeneity of MSCs and illuminate prospective research directions in this field.
Collapse
Affiliation(s)
- Si Chen
- Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, People's Republic of China
| | - Bowei Liang
- Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, People's Republic of China
| | - Jianyong Xu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Fuqiang Avenue 1001, Shenzhen, 518060, Guangdong, People's Republic of China.
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China.
| |
Collapse
|
10
|
Qin Y, Shao B, Ren SH, Ye K, Qin H, Wang HD, Sun C, Zhu Y, Wang Z, Zhang J, Li X, Wang H. Interleukin-37 contributes to endometrial regenerative cell-mediated immunotherapeutic effect on chronic allograft vasculopathy. Cytotherapy 2024; 26:299-310. [PMID: 38159090 DOI: 10.1016/j.jcyt.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/26/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND AIMS Chronic allograft vasculopathy (CAV) remains a predominant contributor to late allograft failure after organ transplantation. Several factors have already been shown to facilitate the progression of CAV, and there is still an urgent need for effective and specific therapeutic approaches to inhibit CAV. Human mesenchymal-like endometrial regenerative cells (ERCs) are free from the deficiencies of traditional invasive acquisition methods and possess many advantages. Nevertheless, the exact immunomodulation mechanism of ERCs remains to be elucidated. METHODS C57BL/6 (B6) mouse recipients receiving BALB/c mouse donor abdominal aorta transplantation were treated with ERCs, negative control (NC)-ERCs and interleukin (IL)-37-/-ERCs (ERCs with IL-37 ablation), respectively. Pathologic lesions and inflammatory cell infiltration in the grafts, splenic immune cell populations, circulating donor-specific antibody levels and cytokine profiles were analyzed on postoperative day (POD) 40. The proliferative capacities of Th1, Th17 and Treg subpopulations were assessed in vitro. RESULTS Allografts from untreated recipients developed typical pathology features of CAV, namely endothelial thickening, on POD 40. Compared with untreated and IL-37-/-ERC-treated groups, IL-37-secreting ERCs (ERCs and NC-ERCs) significantly reduced vascular stenosis, the intimal hyperplasia and collagen deposition. IL-37-secreting ERCs significantly inhibited the proliferation of CD4+T cells, reduced the proportions of Th1 and Th17 cells, but increased the proportion of Tregs in vitro. Furthermore, in vitro results also showed that IL-37-secreting ERCs significantly inhibited Th1 and Th17 cell responses, abolished B-cell activation, diminished donor-specific antibody production and increased Treg proportions. Notably, IL-37-secreting ERCs remarkably downregulated the levels of pro-inflammatory cytokines (interferon-γ, tumor necrosis factor-α, IL-1β, IL-6 and IL-17A) and increased IL-10 levels in transplant recipients. CONCLUSIONS The knockdown of IL-37 dramatically abrogates the therapeutic ability of ERCs for CAV. Thus, this study highlights that IL-37 is indispensable for ERC-mediated immunomodulation for CAV and improves the long-term allograft acceptance.
Collapse
Affiliation(s)
- Yafei Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Department of Vascular Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, PR China.
| | - Bo Shao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Shao-Hua Ren
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Kui Ye
- Department of Vascular Surgery, Tianjin Fourth Central Hospital, The Fourth Central Clinical College, Tianjin Medical University, Tianjin, PR China.
| | - Hong Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Hong-da Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Chenglu Sun
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Yanglin Zhu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Zhaobo Wang
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, PR China.
| | - Jingyi Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Xiang Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, PR China.
| |
Collapse
|
11
|
Song J, Ma Q, Li Y, Wang X, Chen S, Liang B, Lin X, Chen J, Xu S, Shi S, Zhang J, Diao L, Zeng Y, Xu J. CD317 + MSCs expanded with chemically defined media have enhanced immunological anti-inflammatory activities. Stem Cell Res Ther 2024; 15:2. [PMID: 38169422 PMCID: PMC10763464 DOI: 10.1186/s13287-023-03618-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Although both preclinical and clinical studies have shown the great application potential of MSCs (mesenchymal stem/stromal cells) in treating many kinds of diseases, therapeutic inconsistency resulting from cell heterogeneity is the major stumbling block to their clinical applications. Cell population diversity and batch variation in the cell expansion medium are two major inducers of MSC heterogeneity. METHODS Cell population diversity was investigated through single-cell RNA sequencing analysis of human MSCs derived from the umbilical cord and expanded with fully chemically defined medium in the current study. Then, the MSC subpopulation with enhanced anti-inflammatory effects was studied in vitro and in vivo. RESULTS Our data showed that MSCs contain different populations with different functions, including subpopulations with enhanced functions of exosome secretion, extracellular matrix modification and responses to stimuli (regeneration and immune response). Among them, CD317+ MSCs have improved differentiation capabilities and enhanced immune suppression activities. Underlying mechanism studies showed that higher levels of TSG6 confer enhanced anti-inflammatory functions of CD317+ MSCs. CONCLUSIONS Thus, CD317+ MSCs might be a promising candidate for treating immunological disorder-related diseases.
Collapse
Affiliation(s)
- Jun Song
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150000, People's Republic of China
| | - Qi Ma
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150000, People's Republic of China
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518000, People's Republic of China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China
| | - Yumeng Li
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150000, People's Republic of China
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518000, People's Republic of China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China
| | - Xianqi Wang
- Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, People's Republic of China
| | - Si Chen
- Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, People's Republic of China
| | - Bowei Liang
- Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, People's Republic of China
| | - Xiaoqi Lin
- Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, People's Republic of China
| | - Jieting Chen
- Department of Obstetrics, People's Hospital of Baoan, Shenzhen, 518000, People's Republic of China
| | - Shiru Xu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518000, People's Republic of China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China
| | - Shaoquan Shi
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518000, People's Republic of China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China
| | - Jingting Zhang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518000, People's Republic of China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518000, People's Republic of China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China
| | - Yong Zeng
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518000, People's Republic of China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China
| | - Jianyong Xu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, 518000, People's Republic of China.
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China.
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Fuqiang Avenue 1001, Shenzhen, 518060, Guangdong, People's Republic of China.
| |
Collapse
|
12
|
Zhang X, Zhang X, Chen L, Zhao J, Raj A, Wang Y, Li S, Zhang C, Yang J, Sun D. Adipose Mesenchymal Stem Cell-derived Exosomes Enhanced Glycolysis through the SIX1/HBO1 Pathway against Oxygen and Glucose Deprivation Injury in Human Umbilical Vein Endothelial Cells. Curr Stem Cell Res Ther 2024; 19:1153-1163. [PMID: 37779410 DOI: 10.2174/011574888x265623230921045240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/13/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Angiogenesis and energy metabolism mediated by adipose mesenchymal stem cell-derived exosomes (AMSC-exos) are promising therapeutics for vascular diseases. OBJECTIVES The current study aimed to explore whether AMSC-exos have therapeutic effects on oxygen and glucose deprivation (OGD) human umbilical vein endothelial cells (HUVECs) injury by modulating the SIX1/HBO1 signaling pathway to upregulate endothelial cells (E.C.s) glycolysis and angiogenesis. METHODS AMSC-exos were isolated and characterized following standard protocols. AMSC-exos cytoprotective effects were evaluated in the HUVECs-OGD model. The proliferation, migration, and tube formation abilities of HUVECs were assessed. The glycolysis level was evaluated by detecting lactate production and ATP synthesis. The expressions of HK2, PKM2, VEGF, HIF-1α, SIX1, and HBO1 were determined by western blotting, and finally, the SIX1 overexpression vector or small interfering RNA (siRNA) was transfected into HUVECs to assess the change in HBO1 expression. RESULTS Our study revealed that AMSC-exos promotes E.C.s survival after OGD, reducing E.C.s apoptosis while strengthening E.C.'s angiogenic ability. AMSC-exos enhanced glycolysis and reduced OGD-induced ECs injury by modulation of the SIX1/HBO1 signaling pathway, which is a novel anti-endothelial cell injury role of AMSC-exos that regulates glycolysis via activating the SIX1/HBO1 signaling pathway. CONCLUSION The current study findings demonstrate a useful angiogenic therapeutic strategy for AMSC-exos treatment in vascular injury, thus providing new therapeutic ideas for treating ischaemic diseases.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Nephrology, Ningbo First Hospital, Ningbo, China
| | - Xin Zhang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lu Chen
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Rheumatology, Ningbo Medical Center Li Huili Hospital, Ningbo, China
| | - Jiaqi Zhao
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ashok Raj
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yanping Wang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shulin Li
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chi Zhang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Nephrology, The Affiliated Suqian Hospital of Xuzhou Medical University, Jiangsu, China
| | - Jing Yang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Dong Sun
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
13
|
Mesjasz A, Trzeciak M, Gleń J, Jaskulak M. Potential Role of IL-37 in Atopic Dermatitis. Cells 2023; 12:2766. [PMID: 38067193 PMCID: PMC10706414 DOI: 10.3390/cells12232766] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Interleukin 37 (IL-37) is a recently discovered member of the IL-1 cytokine family that appears to have anti-inflammatory and immunosuppressive effects in various diseases. IL-37 acts as a dual-function cytokine, exerting its effect extracellularly by forming a complex with the receptors IL-18 α (IL-18Rα) and IL-1R8 and transmitting anti-inflammatory signals, as well as intracellularly by interacting with Smad3, entering the nucleus, and inhibiting the transcription of pro-inflammatory genes. Consequently, IL-37 is linked to IL-18, which plays a role in the pathogenesis of atopic dermatitis (AD), consistent with our studies. Some isoforms of IL-37 are expressed by keratinocytes, monocytes, and other skin immune cells. IL-37 has been found to modulate the skewed T helper 2 (Th2) inflammation that is fundamental to the pathogenesis of AD. This review provides an up-to-date summary of the function of IL-37 in modulating the immune system and analyses its potential role in the pathogenesis of AD. Moreover, it speculates on IL-37's hypothetical value as a therapeutic target in the treatment of AD.
Collapse
Affiliation(s)
- Alicja Mesjasz
- Dermatological Students Scientific Association, Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdansk, Poland;
| | - Magdalena Trzeciak
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdansk, Poland;
| | - Jolanta Gleń
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdansk, Poland;
| | - Marta Jaskulak
- Department of Immunobiology and Environmental Microbiology, Faculty of Health Sciences, Medical University of Gdansk, 80-214 Gdansk, Poland;
| |
Collapse
|
14
|
Ejma-Multański A, Wajda A, Paradowska-Gorycka A. Cell Cultures as a Versatile Tool in the Research and Treatment of Autoimmune Connective Tissue Diseases. Cells 2023; 12:2489. [PMID: 37887333 PMCID: PMC10605903 DOI: 10.3390/cells12202489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Cell cultures are an important part of the research and treatment of autoimmune connective tissue diseases. By culturing the various cell types involved in ACTDs, researchers are able to broaden the knowledge about these diseases that, in the near future, may lead to finding cures. Fibroblast cultures and chondrocyte cultures allow scientists to study the behavior, physiology and intracellular interactions of these cells. This helps in understanding the underlying mechanisms of ACTDs, including inflammation, immune dysregulation and tissue damage. Through the analysis of gene expression patterns, surface proteins and cytokine profiles in peripheral blood mononuclear cell cultures and endothelial cell cultures researchers can identify potential biomarkers that can help in diagnosing, monitoring disease activity and predicting patient's response to treatment. Moreover, cell culturing of mesenchymal stem cells and skin modelling in ACTD research and treatment help to evaluate the effects of potential drugs or therapeutics on specific cell types relevant to the disease. Culturing cells in 3D allows us to assess safety, efficacy and the mechanisms of action, thereby aiding in the screening of potential drug candidates and the development of novel therapies. Nowadays, personalized medicine is increasingly mentioned as a future way of dealing with complex diseases such as ACTD. By culturing cells from individual patients and studying patient-specific cells, researchers can gain insights into the unique characteristics of the patient's disease, identify personalized treatment targets, and develop tailored therapeutic strategies for better outcomes. Cell culturing can help in the evaluation of the effects of these therapies on patient-specific cell populations, as well as in predicting overall treatment response. By analyzing changes in response or behavior of patient-derived cells to a treatment, researchers can assess the response effectiveness to specific therapies, thus enabling more informed treatment decisions. This literature review was created as a form of guidance for researchers and clinicians, and it was written with the use of the NCBI database.
Collapse
Affiliation(s)
- Adam Ejma-Multański
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (A.W.); (A.P.-G.)
| | | | | |
Collapse
|
15
|
Su Z, Lu J, Ling Z, Li W, Yang X, Cheng B, Tao X. Upregulation of IL-37 in epithelial cells: A potential new mechanism of T cell inhibition induced by tacrolimus. Biochem Pharmacol 2023; 216:115796. [PMID: 37690572 DOI: 10.1016/j.bcp.2023.115796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Oral lichen planus (OLP) is a chronic T cell-mediated mucocutaneous disease characterized by T cell infiltration at the connective tissue-epithelium interface. Traditionally, topical corticosteroids are used as the first-line drugs to treat OLP. However, long-term use of corticosteroids may lead to drug tolerance, secondary candidiasis, and autoimmune adrenal insufficiency. Although topical tacrolimus has often been recommended for short-term use in corticosteroid-refractory OLP, the precise role of tacrolimus in epithelial cells remains elusive. This study showed that tacrolimus could directly upregulate the expression of IL-37 in human gingival epithelial cells by promoting the TGF-βRI/Smad3 pathway independently of calcineurin inhibition and MAPKs. In contrast, dexamethasone, one of the corticosteroids, did not have the same effect. Moreover, IL-37 could inhibit the proliferation of activated T cells and the secretion of effector cytokines and alleviate epithelial cell apoptosis and death caused by activated T cells ina co-culturesystem. Furthermore, compared with healthy controls, IL-37 and p-Smad3 levels significantly increased in the oral mucosa affected by OLP, especially in the epithelium. IL-37 might have mediated a negative feedback mechanism to curb excessive inflammation in OLP. However, the expression of IL-37 was not associated with the infiltration of CD8+ T cells and Tregs in OLP, implying that IL-37 might mostly affect T cell activation rather than T cell differentiation and migration. Overall, this study discovered a potential novel mechanism by which tacrolimus might indirectly inhibit T cell-mediated immune damage by upregulating IL-37 in human gingival epithelial cells.
Collapse
Affiliation(s)
- Zhangci Su
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, Guangdong, China
| | - Jingyi Lu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, Guangdong, China
| | - Zihang Ling
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, Guangdong, China
| | - Wei Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, Guangdong, China
| | - Xi Yang
- Department of Periodontology, Stomatological Hospital, Southern Medical University, Guangzhou 510280, Guangdong, China.
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, Guangdong, China.
| | - Xiaoan Tao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, Guangdong, China.
| |
Collapse
|
16
|
Liang J, Hu F, Mao L, Qiu Y, Jiang F, Wang Q, Abulikemu K, Hong Y, Ge X, Kang X. Interleukin-37 inhibits desmoglein-3 endocytosis and keratinocyte dissociation via upregulation of Caveolin-1 and inhibition of the STAT3 pathway. J Eur Acad Dermatol Venereol 2023; 37:1920-1927. [PMID: 37262304 DOI: 10.1111/jdv.19239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/05/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Pemphigus vulgaris (PV) is a potentially fatal autoimmune bullous disease primarily caused by acantholysis of keratinocytes attributed to pathogenic desmoglein-3 (Dsg3) autoantibodies. Interleukin-37 (IL-37) reportedly plays important roles in a variety of autoimmune diseases, but its role in PV is not clear. OBJECTIVES To investigate whether IL-37 plays a role in the occurrence and progression of PV. METHODS HaCaT keratinocytes were stimulated with anti-Dsg3 antibody to establish an in vitro PV model, which was defined as anti-Dsg3 group. Cells incubated with medium without anti-Dsg3 treatment were used as control. IL-37 was cultured with these cells infected with or without lentiviral vector shRNA-Caveolin-1 (sh-Cav-1-LV). Cell dissociation assay and immunocytofluorescence were performed to assess keratinocyte dissociation, keratin retraction and Dsg3 endocytosis. Real-time PCR was used to detect the mRNA level of Cav-1, and western blot was used to determine the protein expression of Cav-1, Dsg3, STAT3 and phosphorylated-STAT3 (p-STAT3). RESULTS The anti-Dsg3 group showed more cell debris, increased keratin retraction, increased Dsg3 endocytosis, reduced Cav-1 expression and co-localization than the control group, while IL-37 treatment neutralized all of these changes. Interestingly, Cav-1 knockdown supressed the inhibitory effect of IL-37 on keratinocyte dissociation and Dsg3 internalization. The protein expression of p-STAT3 was increased in keratinocytes of the PV model but decreased by IL-37. Re-activation of the STAT3 pathway by colivelin supressed the inhibitory effect of IL-37 on keratinocyte dissociation and Dsg3 internalization, along with upregulation of Cav-1 and Dsg3. CONCLUSIONS IL-37 inhibited keratinocyte dissociation and Dsg3 endocytosis in an in vitro PV model through the upregulating Cav-1 and inhibiting STAT3 pathway.
Collapse
Affiliation(s)
- Junqin Liang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Fengxia Hu
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Lidan Mao
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Yun Qiu
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Fanhe Jiang
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
| | - Qian Wang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Kailibinuer Abulikemu
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Yongzhen Hong
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Xinyu Ge
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| | - Xiaojing Kang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, China
- Xinjiang Key Laboratory of Dermatology Research (XJYS1707), Urumqi, China
| |
Collapse
|
17
|
Guo F, Pan Q, Chen T, Liao S, Li S, Li A, Chen S, Chen J, Xiao Z, Su H, Yang L, Yang C, Liu HF, Pan Q. hUC-MSC transplantation therapy effects on lupus-prone MRL/lpr mice at early disease stages. Stem Cell Res Ther 2023; 14:211. [PMID: 37605271 PMCID: PMC10441722 DOI: 10.1186/s13287-023-03432-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/26/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND The efficacy of human umbilical cord mesenchymal stem cell (hUC-MSC) transplantation in treating systemic lupus erythematosus (SLE) has been confirmed by small-scale clinical trials. However, these trials focused on severe or refractory SLE, while few studies focused on mild SLE. Therefore, this study focused on the therapeutic effects of hUC-MSC transplantation in early-stage or mild MRL/lpr lupus model mice. METHODS Commercially available hUC-MSCs were transplanted into 8-week-old MRL/lpr mice by tail vein injection. Flow cytometry was used to analyze B cells and their subsets in the peripheral blood. Further, plasma inflammatory factors, autoantibodies, and plasma biochemical indices were detected using protein chip technology and ELISA kits. In addition, pathological staining and immunofluorescence were performed to detect kidney injury in mice. RESULTS hUC-MSC transplantation did not affect the mice's body weight, and both middle and high dose hUC-MSC transplantation (MD and HD group) actually reduced spleen weight. hUC-MSC transplantation significantly decreased the proportion of plasmablasts (PB), IgG1- PB, IgG1+ PB, IgG1+ memory B (MB) cells, IgG1+ DN MB, and IgG1+ SP MB cells. The hUC-MSC transplantation had significantly reduced plasma levels of inflammatory factors, such as TNF-α, IFN-γ, IL-6, and IL-13. Pathological staining showed that the infiltration of glomerular inflammatory cells was significantly reduced and that the level of glomerular fibrosis was significantly alleviated in hUC-MSC-transplanted mice. Immunofluorescence assays showed that the deposition of IgG and IgM antibodies in the kidneys of hUC-MSC-transplanted mice was significantly lower than in the control. CONCLUSION hUC-MSC transplantation could inhibit the proliferation and differentiation of peripheral blood B cells in the early-stage of MRL/lpr mice, thereby alleviating the plasma inflammatory environment in mice, leading to kidney injury remission. The study provides a new and feasible strategy for SLE treatment.
Collapse
Affiliation(s)
- Fengbiao Guo
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Quanren Pan
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Shuzhen Liao
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Shangmei Li
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Aifen Li
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Shuxian Chen
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Jiaxuan Chen
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Zengzhi Xiao
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Hongyong Su
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Lawei Yang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Chen Yang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Hua-Feng Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China.
| | - Qingjun Pan
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China.
| |
Collapse
|
18
|
Peshkova M, Korneev A, Suleimanov S, Vlasova II, Svistunov A, Kosheleva N, Timashev P. MSCs' conditioned media cytokine and growth factor profiles and their impact on macrophage polarization. Stem Cell Res Ther 2023; 14:142. [PMID: 37231519 DOI: 10.1186/s13287-023-03381-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 05/18/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND There is a growing body of evidence that multipotent mesenchymal stromal cells' (MSCs') remarkable therapeutic potential is attributed not only to their differentiation and regenerative capacity, but also to the paracrine effect, underlying their immunomodulatory properties. MSCs' secretome (i.e., cytokines, growth factors, and extracellular vesicles) is therefore increasingly discussed in the context of their ability to modulate inflammatory response and promote regeneration. There is evidence that 2D or 3D culturing conditions have an impact on the cells' secretome, and here we aimed to compare the secretion of cytokines and growth factors in human MSCs from different sources cultured in 2D and 3D conditions and assess their effect on human macrophages polarization in vitro. METHODS MSCs were derived from human adipose tissue, bone marrow, gingiva, placenta, and umbilical cord, cultured as monolayers or as cell spheroids. Their cytokine profiles were analyzed, and data standardization was carried out using a z-score. Human peripheral blood mononuclear cells-derived macrophages were then treated with umbilical cord-derived MSCs' conditioned media and their effect on macrophages polarization was assessed. RESULTS Our findings suggest that umbilical cord-derived MSCs' conditioned media demonstrated the highest cytokine and growth factor levels and despite mostly pro-inflammatory cytokine profile were able to promote anti-inflammatory macrophage polarization. CONCLUSIONS Umbilical cord-derived MSCs' conditioned media hold great potential for therapeutic use, demonstrating significant anti-inflammatory effect on human macrophages.
Collapse
Affiliation(s)
- Maria Peshkova
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia, 119991
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia, 119991
- Laboratory of Clinical Smart Nanotechnologies, Sechenov University, Moscow, Russia, 119991
| | - Alexander Korneev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia, 119991
- Laboratory of Clinical Smart Nanotechnologies, Sechenov University, Moscow, Russia, 119991
- Laboratory of the Polymers Synthesis for Medical Applications, Sechenov University, Moscow, Russia, 119991
| | - Shakir Suleimanov
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia, 119991
- Laboratory of Clinical Smart Nanotechnologies, Sechenov University, Moscow, Russia, 119991
| | - Irina I Vlasova
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia, 119991
| | - Andrey Svistunov
- Sechenov First Moscow State Medical University, Moscow, Russia, 119991
| | - Nastasia Kosheleva
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia, 119991
- Laboratory of Clinical Smart Nanotechnologies, Sechenov University, Moscow, Russia, 119991
- FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russia, 125315
| | - Peter Timashev
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia, 119991.
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia, 119991.
- Laboratory of Clinical Smart Nanotechnologies, Sechenov University, Moscow, Russia, 119991.
| |
Collapse
|
19
|
Zhu X, Ma D, Yang B, An Q, Zhao J, Gao X, Zhang L. Research progress of engineered mesenchymal stem cells and their derived exosomes and their application in autoimmune/inflammatory diseases. Stem Cell Res Ther 2023; 14:71. [PMID: 37038221 PMCID: PMC10088151 DOI: 10.1186/s13287-023-03295-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/22/2023] [Indexed: 04/12/2023] Open
Abstract
Autoimmune/inflammatory diseases affect many people and are an important cause of global incidence and mortality. Mesenchymal stem cells (MSCs) have low immunogenicity, immune regulation, multidifferentiation and other biological characteristics, play an important role in tissue repair and immune regulation and are widely used in the research and treatment of autoimmune/inflammatory diseases. In addition, MSCs can secrete extracellular vesicles with lipid bilayer structures under resting or activated conditions, including exosomes, microparticles and apoptotic bodies. Among them, exosomes, as the most important component of extracellular vesicles, can function as parent MSCs. Although MSCs and their exosomes have the characteristics of immune regulation and homing, engineering these cells or vesicles through various technical means, such as genetic engineering, surface modification and tissue engineering, can further improve their homing and other congenital characteristics, make them specifically target specific tissues or organs, and improve their therapeutic effect. This article reviews the advanced technology of engineering MSCs or MSC-derived exosomes and its application in some autoimmune/inflammatory diseases by searching the literature published in recent years at home and abroad.
Collapse
Affiliation(s)
- Xueqing Zhu
- School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Dan Ma
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Baoqi Yang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Qi An
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Jingwen Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xinnan Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
| |
Collapse
|
20
|
Dysregulated balance in Th17/Treg axis of Pristane-induced lupus mouse model, are mesenchymal stem cells therapeutic? Int Immunopharmacol 2023; 117:109699. [PMID: 36867923 DOI: 10.1016/j.intimp.2023.109699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 03/05/2023]
Abstract
BACKGROUND Despite advances in general and targeted immunosuppressive therapies, limiting all mainstay treatment options in refractory systemic lupus erythematosus (SLE) cases has necessitated the development of new therapeutic strategies. Mesenchymal stem cells (MSCs) have recently emerged with unique properties, including a solid propensity to reduce inflammation, exert immunomodulatory effects, and repair injured tissues. METHODS An animal model of acquired SLE mice was induced via intraperitoneal immunization with Pristane and affirmed by measuring specific biomarkers. Bone marrow (BM) MSCs were isolated from healthy BALB/c mice and cultured in vitro, then were identified and confirmed by flow cytometry and cytodifferentiation. Systemic MSCs transplantation was performed and then several parameters were analyzed and compared, including specific cytokines (IL-17, IL-4, IFN-ɣ, TGF-β) at the serum level, the percentage of Th cell subsets (Treg/Th17, Th1/Th2) in splenocytes, and also the relief of lupus nephritis, respectively by enzyme-linked immunosorbent assay (ELISA), flow cytometry analysis and by hematoxylin & eosin staining and also immunofluorescence assessment. Experiments were carried out with different initiation treatment time points (early and late stages of disease). Analysis of variance (ANOVA) followed by post hoc Tukey's test was used for multiple comparisons. RESULTS The rate of proteinuria, anti-double-stranded deoxyribonucleic acid (anti-dsDNA) antibodies, and serum creatinine levels decreased with BM-MSCs transplantation. These results were associated with attenuated lupus renal pathology in terms of reducing IgG and C3 deposition and lymphocyte infiltration. Our findings suggested that TGF-β (associated with lupus microenvironment) can contribute to MSC-based immunotherapy by modulating the population of TCD4+ cell subsets. Obtained results indicated that MSCs-based cytotherapy could negatively affect the progression of induced SLE by recovering the function of Treg cells, suppressing Th1, Th2, and Th17 lymphocyte function, and downregulating their pro-inflammatory cytokines. CONCLUSION MSC-based immunotherapy showed a delayed effect on the progression of acquired SLE in a lupus microenvironment-dependent manner. Allogenic MSCs transplantation revealed the ability to re-establish the balance of Th17/Treg, Th1/Th2 and restore the plasma cytokines network in a pattern dependent on disease conditions. The conflicting results of early versus advanced therapy suggest that MSCs may produce different effects depending on when they are administered and their activation status.
Collapse
|
21
|
Liu YJ, Miao HB, Lin S, Chen Z. Current Progress in Treating Systemic Lupus Erythematosus Using Exosomes/MicroRNAs. Cell Transplant 2023; 32:9636897221148775. [PMID: 36661068 PMCID: PMC9903023 DOI: 10.1177/09636897221148775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease associated with impaired organ functions that can seriously affect the daily life of patients. Recent SLE therapies frequently elicit adverse reactions and side effects in patients, and clinical heterogeneity is considerable. Mesenchymal stromal cells (MSCs) have anti-inflammatory, tissue repair, and immunomodulatory properties. Their ability to treat autoimmune diseases largely depends on secreted extracellular vesicles, especially exosomes. The effects of exosomes and microRNAs (miRNAs) on SLE have recently attracted interest. This review summarizes the applications of MSCs derived from bone marrow, adipocyte tissue, umbilical cord, synovial membrane, and gingival tissue, as well as exosomes to treating SLE and the key roles of miRNAs. The efficacy of MSCs infusion in SLE patients with impaired autologous MSCs are reviewed, and the potential of exosomes and their contents as drug delivery vectors for treating SLE and other autoimmune diseases in the future are briefly described.
Collapse
Affiliation(s)
- Yi-jing Liu
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Hai-bing Miao
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China,Group of Neuroendocrinology, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Zhen Chen
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China,Zhen Chen, Department of Rheumatology and Immunology, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshan Road, Quanzhou 362000, Fujian, P.R. China.
| |
Collapse
|
22
|
Tu J, Zheng N, Mao C, Liu S, Zhang H, Sun L. UC-BSCs Exosomes Regulate Th17/Treg Balance in Patients with Systemic Lupus Erythematosus via miR-19b/KLF13. Cells 2022; 11:cells11244123. [PMID: 36552891 PMCID: PMC9777319 DOI: 10.3390/cells11244123] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/03/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Umbilical cord blood mesenchymal stem cells (UC-BSCs) are cells with low immunogenicity and differentiation potential, and the transfer of exosomes carried by UC-BSCs can regulate innate and adaptive immunity and affect immune homeostasis. This is an area of focus for autoimmune illnesses such as systemic lupus erythematosus (SLE). The target of this research was to investigate the immunomodulatory effect of exosomes produced from mesenchymal stem cells on SLE and its mechanism. After isolation of peripheral blood mononuclear cells (PBMC) from the SLE group and healthy group and treatment of SLE-derived PBMCs with UC-BSC-derived exosomes, the mRNA levels of corresponding factors in cells under different treatments were determined by RT-PCR, Th17/Treg content was analyzed by FCM (flow cytometry), and the targeted binding of microRNA-19b (miR-19b) to KLF13 was identified by in vitro experiments and bioinformatics analysis. The findings demonstrated that PBMC cells from SLE patients had higher proportions of Th17 subsets than the control group, whereas Treg subgroups with lower percentages were discovered. miR-19b's expression level was markedly reduced, which was inversely associated to the concentration of KLF13. In vitro experiments show that UC-BSC-derived exosome treatment can target KLF13 expression by increasing the miR-19b level, thereby regulating Th17/Treg balance and inhibiting the expression of inflammatory factors. According to the study's findings, SLE patients have dysregulated expression of the genes miR-19b and KLF13, and UC-BSC exosomes could regulate Th17/Treg cell balance and inflammatory factor expression in SLE patients through miR-19b/KLF13.
Collapse
Affiliation(s)
- Jianxin Tu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Nan Zheng
- School of Pharmacy, Wenzhou Medical University, Wenzhou 325000, China
| | - Chentong Mao
- School of Pharmacy, Wenzhou Medical University, Wenzhou 325000, China
| | - Shan Liu
- School of Pharmacy, Wenzhou Medical University, Wenzhou 325000, China
| | - Hongxing Zhang
- School of Pharmacy, Wenzhou Medical University, Wenzhou 325000, China
| | - Li Sun
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Correspondence:
| |
Collapse
|
23
|
Wu Z, Luo C, Zheng B. Progress of Research into the Interleukin-1 Family in Cardiovascular Disease. J Inflamm Res 2022; 15:6683-6694. [PMID: 36536642 PMCID: PMC9759010 DOI: 10.2147/jir.s390915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/30/2022] [Indexed: 09/01/2023] Open
Abstract
Inflammatory factors, such as the IL-1 family, are generally acknowledged to be involved in systemic diseases and IL-1α and IL-1β, in particular, have been linked to cardiovascular disease with IL-18, IL-33, IL-36, IL-37 and IL-38 yet to be explored. The current review aims to summarize mechanisms of IL-18, IL-33, IL-36, IL-37 and IL-38 in myocardial infarction, hypertension, arrhythmia, valvular disease and aneurysm and to explore the potential for cardiovascular disease treatment strategies and discuss future directions for prevention and treatment.
Collapse
Affiliation(s)
- Zimin Wu
- Department of Cardiovascular Surgery Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| | - Cheng Luo
- Department of Cardiovascular Surgery Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| | - Baoshi Zheng
- Department of Cardiovascular Surgery Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| |
Collapse
|
24
|
Nold-Petry CA, Nold MF. Rationale for IL-37 as a novel therapeutic agent in inflammation. Expert Rev Clin Immunol 2022; 18:1203-1206. [PMID: 35916240 DOI: 10.1080/1744666x.2022.2108792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Claudia A Nold-Petry
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia.,Department of Paediatrics, School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Marcel F Nold
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia.,Department of Paediatrics, School of Clinical Sciences, Monash University, Melbourne, Australia.,Monash Newborn, Monash Children's Hospital, Melbourne, Australia
| |
Collapse
|
25
|
Abstract
Abstract
The pathogenesis of connective tissue diseases (CTDs), represented by systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), systemic sclerosis (SSc), primary Sjögren’s syndrome (pSS), and idiopathic inflammatory myopathies (IIM), includes various immune cells involved in both innate and adaptive immunity. The mesenchymal stem cells (MSCs) are unique due to their regulatory effect on immunity. This makes them a promising therapeutic approach for patients with immune-mediated disorders such as CTD. The safety and clinical efficacy of MSC treatment in CTD have been tested in a growing number of preclinical and clinical studies. Administration of MSCs has consistently shown benefits with both symptomatic and histologic improvement in CTD animal models. MSC therapies in severe and drug-resistant CTD patients have shown promise in a number of the pilot studies, cohort studies, and randomized controlled trials in SLE, RA, and SSc, but some problems still need to be resolved in the transition from the bench to the bedside. The relevant studies in pSS and IIM are still in their infancy, but have displayed encouraging outcomes. Considerable efficacy variations have been observed in terms of the route of delivery, time of MSC injection, origin of the MSCs and dosage. Furthermore, the optimization of conventional drugs combined with MSC therapies and the applications of novel cell engineering approaches requires additional research. In this review, we summarize the current evidence about the immunoregulatory mechanism of MSCs, as well as the preclinical and clinical studies of MSC-based therapy for the treatment of CTDs.
Collapse
|
26
|
McCurdy S, Yap J, Irei J, Lozano J, Boisvert WA. IL-37-a putative therapeutic agent in cardiovascular diseases. QJM 2022; 115:719-725. [PMID: 33486516 DOI: 10.1093/qjmed/hcab011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
Although it is a member of the Interleukin (IL)-1 family, IL-37 is unique in that it has wide-ranging anti-inflammatory characteristics. It was originally thought to prevent IL-18-mediated inflammation by binding to the IL-18-binding protein. However, upon discovery that it binds to the orphan receptor, IL-1R8, further studies have revealed an expanded role of IL-37 to include several intracellular and extracellular pathways that affect various aspects of inflammation. Its potential role specifically in cardiovascular diseases (CVD) stemmed initially from the discovery of elevated plasma IL-37 levels in human patients with acute coronary syndrome and atrial fibrillation. Other studies using mouse models of ischemia/reperfusion injury, vascular calcification and myocardial infarction have revealed that IL-37 can have a beneficial role in these conditions. This review will explore recent research on the effects of IL-37 on the pathogenesis of CVD.
Collapse
Affiliation(s)
- S McCurdy
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - J Yap
- Department of Medicine, Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - J Irei
- Department of Medicine, Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - J Lozano
- Department of Medicine, Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - W A Boisvert
- Department of Medicine, Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Str., Kazan, 420008, Russia
| |
Collapse
|
27
|
Peshkova M, Kosheleva N, Shpichka A, Radenska-Lopovok S, Telyshev D, Lychagin A, Li F, Timashev P, Liang XJ. Targeting Inflammation and Regeneration: Scaffolds, Extracellular Vesicles, and Nanotechnologies as Cell-Free Dual-Target Therapeutic Strategies. Int J Mol Sci 2022; 23:13796. [PMID: 36430272 PMCID: PMC9694395 DOI: 10.3390/ijms232213796] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/25/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
Osteoarthritis (OA) affects over 250 million people worldwide and despite various existing treatment strategies still has no cure. It is a multifactorial disease characterized by cartilage loss and low-grade synovial inflammation. Focusing on these two targets together could be the key to developing currently missing disease-modifying OA drugs (DMOADs). This review aims to discuss the latest cell-free techniques applied in cartilage tissue regeneration, since they can provide a more controllable approach to inflammation management than the cell-based ones. Scaffolds, extracellular vesicles, and nanocarriers can be used to suppress inflammation, but they can also act as immunomodulatory agents. This is consistent with the latest tissue engineering paradigm, postulating a moderate, controllable inflammatory reaction to be beneficial for tissue remodeling and successful regeneration.
Collapse
Affiliation(s)
- Maria Peshkova
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, 119991 Moscow, Russia
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | - Nastasia Kosheleva
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
- FSBSI Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
| | - Anastasia Shpichka
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, 119991 Moscow, Russia
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Stefka Radenska-Lopovok
- Institute for Clinical Morphology and Digital Pathology, Sechenov University, 119991 Moscow, Russia
| | - Dmitry Telyshev
- Institute of Biomedical Systems, National Research University of Electronic Technology, 124498 Moscow, Russia
- Institute of Bionic Technologies and Engineering, Sechenov University, 119991 Moscow, Russia
| | - Alexey Lychagin
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
- Department of Traumatology, Orthopedics and Disaster Surgery, Sechenov University, 119991 Moscow, Russia
| | - Fangzhou Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Peter Timashev
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, 119991 Moscow, Russia
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Xing-Jie Liang
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
28
|
Li L, Yang L, Chen X, Chen X, Diao L, Zeng Y, Xu J. TNFAIP6 defines the MSC subpopulation with enhanced immune suppression activities. STEM CELL RESEARCH & THERAPY 2022; 13:479. [PMID: 36153571 PMCID: PMC9509641 DOI: 10.1186/s13287-022-03176-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/11/2022] [Indexed: 11/30/2022]
Abstract
Background Mesenchymal stromal/stem cells (MSCs) have been intensively investigated in both pre-clinical and clinical studies. However, the therapeutic efficacy varies resulting from the heterogenicity of MSCs. Therefore, purifying the specific MSC subpopulation with specialized function is necessary for their therapeutic applications. Methods The large-scale RNA sequencing analysis was performed to identify potential cell markers for the mouse MSCs. Then, the immune suppression activities of the purified MSC subpopulation were assessed in vitro and in vivo.
Results The TNFAIP6 (tumor necrosis factor alpha-induced protein 6) has been identified as a potential cell marker for mouse MSCs, irrespective of tissue origin and laboratory origin. The TNFAIP6+ mouse MSCs showed enhanced immune suppression activities and improved therapeutic effects on the mouse model of acute inflammation, resulting from faster response to immune stimulation. Conclusions Therefore, we have demonstrated that the TNFAIP6+ MSC subpopulation has enhanced immune suppression capabilities. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03176-5.
Collapse
|
29
|
Xiong DK, Shi X, Han MM, Zhang XM, Wu NN, Sheng XY, Wang JN. The regulatory mechanism and potential application of IL-23 in autoimmune diseases. Front Pharmacol 2022; 13:982238. [PMID: 36176425 PMCID: PMC9514453 DOI: 10.3389/fphar.2022.982238] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
IL-23 is a heterodimeric pro-inflammatory cytokine secreted by dendritic cells and macrophages that belongs to the IL-12 family. It has pro-inflammatory effects and is a key cytokine and upstream regulatory cytokine involved in protective immune responses, stimulating the differentiation and proliferation of downstream effectors such as Th17 cells. It is expressed in various autoimmune diseases such as psoriasis, systemic lupus erythematosus (SLE), rheumatoid arthritis (RA). The IL-23/TH17 axis formed by IL-23 and TH17 has been confirmed to participate in autoimmune diseases pathogenesis. IL-23R is the receptor for IL-23 and plays an activating role. Targeting IL-23 is currently the main strategy for the treatment of various autoimmune diseases. In this review we summarized the mechanism of action and clinical application potential of IL-23 in autoimmune diseases by summarizing the latest research results and reviewing the literature, which would help to further understand IL-23 and provide a theoretical basis for future clinical targeting and drug development.
Collapse
Affiliation(s)
- De-Kai Xiong
- School of Health Management, Anhui Medical University, Hefei, China
| | - Xiang Shi
- School of Health Management, Anhui Medical University, Hefei, China
| | - Miao-Miao Han
- School of Health Management, Anhui Medical University, Hefei, China
| | - Xing-Min Zhang
- School of Health Management, Anhui Medical University, Hefei, China
| | - Na-Na Wu
- School of Health Management, Anhui Medical University, Hefei, China
| | - Xiu-Yue Sheng
- School of Health Management, Anhui Medical University, Hefei, China
| | - Ji-Nian Wang
- School of Health Management, Anhui Medical University, Hefei, China
- Department of Education, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Ji-Nian Wang,
| |
Collapse
|
30
|
Zhou C, Bai XY. Strategies for the induction of anti-inflammatory mesenchymal stem cells and their application in the treatment of immune-related nephropathy. Front Med (Lausanne) 2022; 9:891065. [PMID: 36059816 PMCID: PMC9437354 DOI: 10.3389/fmed.2022.891065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have potent immunomodulatory functions. Animal studies and clinical trials have demonstrated that MSCs can inhibit immune/inflammatory response in tissues and have good therapeutic effects on a variety of immune-related diseases. However, MSCs currently used for treatment are a mixed, undefined, and heterogeneous cell population, resulting in inconsistent clinical treatment effects. MSCs have dual pro-inflammatory/anti-inflammatory regulatory functions in different environments. In different microenvironments, the immunomodulatory function of MSCs has plasticity; therefore, MSCs can transform into pro-inflammatory MSC1 or anti-inflammatory MSC2 phenotypes. There is an urgent need to elucidate the molecular mechanism that induces the phenotypic transition of MSCs to pro-inflammatory or anti-inflammatory MSCs and to develop technical strategies that can induce the transformation of MSCs to the anti-inflammatory MSC2 phenotype to provide a theoretical basis for the future clinical use of MSCs in the treatment of immune-related nephropathy. In this paper, we summarize the relevant strategies and mechanisms for inducing the transformation of MSCs into the anti-inflammatory MSC2 phenotype and enhancing the immunosuppressive function of MSCs.
Collapse
|
31
|
Qin YF, Ren SH, Shao B, Qin H, Wang HD, Li GM, Zhu YL, Sun CL, Li C, Zhang JY, Wang H. The intellectual base and research fronts of IL-37: A bibliometric review of the literature from WoSCC. Front Immunol 2022; 13:931783. [PMID: 35935954 PMCID: PMC9354626 DOI: 10.3389/fimmu.2022.931783] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/28/2022] [Indexed: 01/09/2023] Open
Abstract
Background IL-37 is a recently identified cytokine with potent immunosuppressive functions. The research fronts of IL-37 are worth investigating, and there is no bibliometric analysis in this field. The purpose of this study is to construct the intellectual base and predict research hotspots of IL-37 research both quantitatively and qualitatively according to bibliometric analysis. Methods The articles were downloaded from the Web of Science Core Collection (WoSCC) database from the inception of the database to 1 April 2022. CiteSpace 5.8.R3 (64-bit, Drexel University, Philadelphia, PA, USA) and Online Analysis Platform of Literature Metrology (https://bibliometric.com/) were used to perform bibliometric and knowledge-map analyses. Results A total of 534 papers were included in 200 academic journals by 2,783 authors in 279 institutions from 50 countries/regions. The journal Cytokine published the most papers on IL-37, while Nature Immunology was the most co-cited journal. The publications belonged mainly to two categories of Immunology and Cell Biology. USA and China were the most productive countries. Meanwhile, the University of Colorado Denver in USA produced the highest number of publications followed by Radboud University Nijmegen in the Netherlands and Monash University in Australia. Charles A. Dinarello published the most papers, while Marcel F. Nold had the most co-citations. Top 10 co-citations on reviews, mechanisms, and diseases were regarded as the knowledge base. The keyword co-occurrence and co-citations of references revealed that the mechanisms and immune-related disorders were the main aspects of IL-37 research. Notably, the involvement of IL-37 in various disorders and the additional immunomodulatory mechanisms were two emerging hotspots in IL-37 research. Conclusions The research on IL-37 was thoroughly reviewed using bibliometrics and knowledge-map analyses. The present study is a benefit for academics to master the dynamic evolution of IL-37 and point out the direction for future research.
Collapse
Affiliation(s)
- Ya-fei Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Shao-hua Ren
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Bo Shao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hong Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hong-da Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Guang-ming Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang-lin Zhu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Cheng-lu Sun
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Chuan Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing-yi Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Hao Wang, ;
| |
Collapse
|
32
|
Qin H, Sun C, Zhu Y, Qin Y, Ren S, Wang Z, Li C, Li X, Zhang B, Hao J, Li G, Wang H, Shao B, Zhang J, Wang H. IL-37 overexpression promotes endometrial regenerative cell-mediated inhibition of cardiac allograft rejection. Stem Cell Res Ther 2022; 13:302. [PMID: 35841010 PMCID: PMC9284885 DOI: 10.1186/s13287-022-02982-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Endometrial regenerative cells (ERCs) play an important role in attenuation of acute allograft rejection, while their effects are limited. IL-37, a newly discovered immunoregulatory cytokine of the IL-1 family, can regulate both innate and adaptive immunity. Whether IL-37 overexpression can enhance the therapeutic effects of ERCs in inhibition of acute cardiac allograft rejection remains unknown and will be explored in this study. METHODS C57BL/6 mice recipients receiving BALB/c mouse heterotopic heart allografts were randomly divided into the phosphate-buffered saline (untreated), ERC treated, negative lentiviral control ERC (NC-ERC) treated, and IL-37 overexpressing ERC (IL-37-ERC) treated groups. Graft pathological changes were assessed by H&E staining. The intra-graft cell infiltration and splenic immune cell populations were analyzed by immunohistochemistry and flow cytometry, respectively. The stimulatory property of recipient DCs was tested by an MLR assay. Furthermore, serum cytokine profiles of recipients were measured by ELISA assay. RESULTS Mice treated with IL-37-ERCs achieved significantly prolonged allograft survival compared with the ERC-treated group. Compared with all the other control groups, IL-37-ERC-treated group showed mitigated inflammatory response, a significant increase in tolerogenic dendritic cells (Tol-DCs), regulatory T cells (Tregs) in the grafts and spleens, while a reduction of Th1 and Th17 cell population. Additionally, there was a significant upregulation of immunoregulatory IL-10, while a reduction of IFN-γ, IL-17A, IL-12 was detected in the sera of IL-37-ERC-treated recipients. CONCLUSION IL-37 overexpression can promote the therapeutic effects of ERCs to inhibit acute allograft rejection and further prolong graft survival. This study suggests that gene-modified ERCs overexpressing IL-37 may pave the way for novel therapeutic options in the field of transplantation.
Collapse
Affiliation(s)
- Hong Qin
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Chenglu Sun
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Yanglin Zhu
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Yafei Qin
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Shaohua Ren
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Zhaobo Wang
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Chuan Li
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Xiang Li
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Baoren Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Jingpeng Hao
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China.,Department of Anorectal Surgery, Tianjin Medical University Second Hospital, Tianjin, China
| | - Guangming Li
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Hongda Wang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Bo Shao
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Jingyi Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China. .,Tianjin General Surgery Institute, Tianjin, China.
| |
Collapse
|
33
|
Xu WD, Huang Q, Yang C, Li R, Huang AF. GDF-15: A Potential Biomarker and Therapeutic Target in Systemic Lupus Erythematosus. Front Immunol 2022; 13:926373. [PMID: 35911685 PMCID: PMC9332889 DOI: 10.3389/fimmu.2022.926373] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a rheumatic disease. Growth differentiation factor 15 (GDF-15) is a member of transforming growth factor-β superfamily. To date, association of GDF-15 with SLE pathogenesis is not clarified. This study discussed GDF-15 serum levels and gene polymorphisms in SLE patients and lupus mouse model further demonstrated the role of GDF-15 in lupus development. We conducted two independent case-control studies for SLE patients. One is to evaluate serum levels of GDF-15 in 54 SLE patients and 90 healthy controls, and the other one is to analyze gene polymorphisms of GDF-15 in 289 SLE patients and 525 healthy controls. Serum levels of GDF-15 were detected by ELISA. GDF-15 gene polymorphisms (rs1055150, rs1058587, rs1059519, rs1059369, rs1227731, rs4808793, and rs16982345) were genotyped by the Kompetitive Allele-Specific PCR (KASP) method. Addition of recombinant GDF-15 into pristane-induced lupus mice evaluated histological and serological changes. Results showed that serum levels of GDF-15 were overexpressed in SLE patients and associated with disease activity. Polymorphisms rs1055150, rs1059369, rs1059519, and rs4808793 of GDF-15 gene were related to SLE risk. Lupus mice showed splenomegaly, severe histological scores, and high levels of autoantibodies [antinuclear antibodies (ANA) and total immunoglobulin G (IgG)], whereas administration of GDF-15 into lupus mice reduced the histological changes. Percentages of CD8+, CD11b+, CD19+, CD11C+ cells, TH2 cells, and pro-inflammatory cytokines (IL-1β, IL-2, IL-4, IL-21, and IL-22) were reduced after GDF-15 treatment in lupus mice. In conclusion, GDF-15 was related to lupus pathogenesis and inhibited lupus development.
Collapse
Affiliation(s)
- Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, China
| | - Qi Huang
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, China
| | - Chan Yang
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, China
| | - Rong Li
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: An-Fang Huang,
| |
Collapse
|
34
|
Tang TT, Wang B, Lv LL, Dong Z, Liu BC. Extracellular vesicles for renal therapeutics: State of the art and future perspective. J Control Release 2022; 349:32-50. [PMID: 35779658 DOI: 10.1016/j.jconrel.2022.06.049] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 12/21/2022]
Abstract
With the ever-increasing burden of kidney disease, the need for developing new therapeutics to manage this disease has never been greater. Extracellular vesicles (EVs) are natural membranous nanoparticles present in virtually all organisms. Given their excellent delivery capacity in the body, EVs have emerged as a frontier technology for drug delivery and have the potential to usher in a new era of nanomedicine for kidney disease. This review is focused on why EVs are such compelling drug carriers and how to release their fullest potentiality in renal therapeutics. We discuss the unique features of EVs compared to artificial nanoparticles and outline the engineering technologies and steps in developing EV-based therapeutics, with an emphasis on the emerging approaches to target renal cells and prolong kidney retention. We also explore the applications of EVs as natural therapeutics or as drug carriers in the treatment of renal disorders and present our views on the critical challenges in manufacturing EVs as next-generation renal therapeutics.
Collapse
Affiliation(s)
- Tao-Tao Tang
- Institute of Nephrology, Zhong Da Hospital, Nanjing, China; Department of Pathology and Pathophysiology, Southeast University School of Medicine, Nanjing, China
| | - Bin Wang
- Institute of Nephrology, Zhong Da Hospital, Nanjing, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhong Da Hospital, Nanjing, China.
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Nanjing, China.
| |
Collapse
|
35
|
Zhou HS, Cui Z, Wang H, Gao TT, Wang L, Wu J, Xiong ZY, Hao J, Zhao MH. The therapeutic effects of human embryonic stem cells-derived immunity-and-matrix regulatory cells on membranous nephropathy. Stem Cell Res Ther 2022; 13:240. [PMID: 35672767 PMCID: PMC9172125 DOI: 10.1186/s13287-022-02917-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
Background Primary membranous nephropathy (MN) is a kidney-specific autoimmune disease. Human embryonic stem cells-derived immunity-and-matrix regulatory cells (hESC-IMRCs) have immunoregulatory functions. We hypothesized that hESC-IMRCs might have therapeutic effects on MN and be a potential treatment in clinical practice. Methods Rats of Heymann nephritis were injected with sheep anti-rat Fx1A serum. hESC-IMRCs were intravenously administrated upon the detection of proteinuria, with 6 × 106 cells (high-dose) or 3 × 106 cells (low-dose) in 1 ml every other day. Splenocytes and IMRCs were co-cultured at different times and ratios. Cell types and cytokines were detected by flow cytometry and enzyme-linked immunosorbent assay. Results The urinary protein of rats with Heymann nephritis was reduced remarkably to a level comparable to negative controls, in both low-dose (45.6 vs. 282.3 mg/d, P < 0.001) and high-dose (35.2 vs. 282.3 mg/d, P < 0.001) hESC-IMRC treatment groups. IgG and C3 deposit, glomerular basement membrane thickness and foot process effacement were alleviated and the reduced podocin was recovered in the kidneys. The proportions of CD4 + CD25 + T cells in circulation and spleen were increased, and the circulating level of IL-10 was increased, after IMRC interventions. IL-17 and TNF-α were reduced after IMRCs treatments. IL-10 increased remarkably in the co-culture supernatant of lymphocytes and IMRCs at 48 h with ratio 10:1. Conclusions The intravenously delivered hESC-IMRCs alleviated proteinuria and kidney injuries of Heymann nephritis, by their immunosuppressive functions through regulatory T cells and IL-10. These pre-clinical results indicate that IMRCs worth careful consideration for human trials in the treatment of MN. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02917-w.
Collapse
Affiliation(s)
- Hui-Song Zhou
- Renal Division, Peking University First Hospital; Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, 100034, China.,Renal Division, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Zhao Cui
- Renal Division, Peking University First Hospital; Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, 100034, China
| | - Hui Wang
- Department of Electron Microscopy, Peking University First Hospital, Beijing, 100034, China
| | - Ting-Ting Gao
- National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Liu Wang
- National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun Wu
- National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Zu-Ying Xiong
- Renal Division, Peking University Shenzhen Hospital, Shenzhen, 518000, China.
| | - Jie Hao
- National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ming-Hui Zhao
- Renal Division, Peking University First Hospital; Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, 100034, China.,Peking-Tsinghua Center for Life Sciences, Beijing, 100080, China
| |
Collapse
|
36
|
Jiang Z, Fu M, Zhu D, Wang X, Li N, Ren L, He J, Yang G. Genetically modified immunomodulatory cell-based biomaterials in tissue regeneration and engineering. Cytokine Growth Factor Rev 2022; 66:53-73. [PMID: 35690567 DOI: 10.1016/j.cytogfr.2022.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022]
Abstract
To date, the wide application of cell-based biomaterials in tissue engineering and regeneration is remarkably hampered by immune rejection. Reducing the immunogenicity of cell-based biomaterials has become the latest direction in biomaterial research. Recently, genetically modified cell-based biomaterials with immunomodulatory genes have become a feasible solution to the immunogenicity problem. In this review, recent advances and future challenges of genetically modified immunomodulatory cell-based biomaterials are elaborated, including fabrication approaches, mechanisms of common immunomodulatory genes, application and, more importantly, current preclinical and clinical advances. The fabrication approaches can be categorized into commonly used (e.g., virus transfection) and newly developed approaches. The immunomodulatory mechanisms of representative genes involve complicated cell signaling pathways and metabolic activities. Wide application in curing multiple end-term diseases and replacing lifelong immunosuppressive therapy in multiple cell and organ transplantation models is demonstrated. Most significantly, practices of genetically modified organ transplantation have been conducted on brain-dead human decedent and even on living patients after a series of experiments on nonhuman primates. Nevertheless, uncertain biosecurity, nonspecific effects and overlooked personalization of current genetically modified immunomodulatory cell-based biomaterials are shortcomings that remain to be overcome.
Collapse
Affiliation(s)
- Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Mengdie Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Danji Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Xueting Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Na Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Lingfei Ren
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Jin He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
37
|
Lee JY, Kang MH, Jang JE, Lee JE, Yang Y, Choi JY, Kang HS, Lee U, Choung JW, Jung H, Yoon YC, Jung KH, Hong SS, Yi EC, Park SG. Comparative analysis of mesenchymal stem cells cultivated in serum free media. Sci Rep 2022; 12:8620. [PMID: 35597800 PMCID: PMC9124186 DOI: 10.1038/s41598-022-12467-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/09/2022] [Indexed: 11/09/2022] Open
Abstract
Stem cells are attractive candidates for the regeneration of tissue and organ. Mesenchymal stem cells (MSCs) have been extensively investigated for their potential applications in regenerative medicine and cell therapy. For developing effective stem cell therapy, the mass production of consistent quality cells is required. The cell culture medium is the most critical aspect of the mass production of qualified stem cells. Classically, fetal bovine serum (FBS) has been used as a culture supplement for MSCs. Due to the undefined and heterologous composition of animal origin components in FBS, efforts to replace animal-derived components with non-animal-derived substances led to safe serum free media (SFM). Adipose derived mesenchymal stem cells (ADSCs) cultivated in SFM provided a more stable population doubling time (PDT) to later passage and more cells in a shorter time compared to FBS containing media. ADSCs cultivated in SFM had lower cellular senescence, lower immunogenicity, and higher genetic stability than ADSCs cultivated in FBS containing media. Differential expression analysis of mRNAs and proteins showed that the expression of genes related with apoptosis, immune response, and inflammatory response were significantly up-regulated in ADSCs cultivated in FBS containing media. ADSCs cultivated in SFM showed similar therapeutic efficacy in an acute pancreatitis mouse model to ADSCs cultivated in FBS containing media. Consideration of clinical trials, not only pre-clinical trial, suggests that cultivation of MSCs using SFM might offer more safe cell therapeutics as well as repeated administration due to low immunogenicity.
Collapse
Affiliation(s)
- Joo Youn Lee
- Xcell Therapeutics, Dongwon Bldg. 6F, 333, Yeongdong-daero, Gangnam-gu, Seoul, 06188, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine Or College of Pharmacy, Seoul National University, Seoul, 03080, Korea
| | - Min Hee Kang
- Xcell Therapeutics, Dongwon Bldg. 6F, 333, Yeongdong-daero, Gangnam-gu, Seoul, 06188, Korea
| | - Ji Eun Jang
- Xcell Therapeutics, Dongwon Bldg. 6F, 333, Yeongdong-daero, Gangnam-gu, Seoul, 06188, Korea
| | - Jeong Eon Lee
- Xcell Therapeutics, Dongwon Bldg. 6F, 333, Yeongdong-daero, Gangnam-gu, Seoul, 06188, Korea
| | - Yuyeong Yang
- Xcell Therapeutics, Dongwon Bldg. 6F, 333, Yeongdong-daero, Gangnam-gu, Seoul, 06188, Korea
| | - Ji Yong Choi
- Xcell Therapeutics, Dongwon Bldg. 6F, 333, Yeongdong-daero, Gangnam-gu, Seoul, 06188, Korea
| | - Hong Seok Kang
- Xcell Therapeutics, Dongwon Bldg. 6F, 333, Yeongdong-daero, Gangnam-gu, Seoul, 06188, Korea
| | - Uiil Lee
- Xcell Therapeutics, Dongwon Bldg. 6F, 333, Yeongdong-daero, Gangnam-gu, Seoul, 06188, Korea
| | - Ji Woong Choung
- Dacapo Oral & Maxillofacial Surgery Clinic, Jeongin Building, 559 Gangnamdae-ro, Seocho-gu, Seoul, 06531, Korea
| | - Hyeryeon Jung
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine Or College of Pharmacy, Seoul National University, Seoul, 03080, Korea
| | - Young-Chan Yoon
- Department of Medicine, College of Medicine, Inha University, 27 Inhang-ro, Jung-gu, Incheon, 22332, Korea
| | - Kyung Hee Jung
- Department of Medicine, College of Medicine, Inha University, 27 Inhang-ro, Jung-gu, Incheon, 22332, Korea
| | - Soon-Sun Hong
- Department of Medicine, College of Medicine, Inha University, 27 Inhang-ro, Jung-gu, Incheon, 22332, Korea
| | - Eugene C Yi
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine Or College of Pharmacy, Seoul National University, Seoul, 03080, Korea
| | - Sang Gyu Park
- Department of Pharmacy, College of Pharmacy, Ajou University, Worldcup-ro, 206, Yeongtong-gu, Suwon, 16499, Korea.
| |
Collapse
|
38
|
Zhang J, Lu L, Tian X, Wang K, Xie G, Li H, Wen C, Hu C. Lipidomics Revealed Aberrant Lipid Metabolism Caused by Inflammation in Cardiac Tissue in the Early Stage of Systemic Lupus Erythematosus in a Murine Model. Metabolites 2022; 12:metabo12050415. [PMID: 35629919 PMCID: PMC9146605 DOI: 10.3390/metabo12050415] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
Cardiac involvement, displayed as premature cardiovascular disease (CVD), is one of common clinical symptoms of patients with systemic lupus erythematosus (SLE), contributing to mortality of the disease. The precise underlying pathological mechanism(s) for the cardiac involvement in lupus remains poorly understood. Lipids and their metabolites are directly involved in atherosclerosis development, oxidative stress, and inflammation, which are closely related to the development of CVD. In the study, shotgun lipidomics was exploited to quantitatively analyze cellular lipidomes in the cardiac tissue of MRL/lpr mice at two different time points (i.e., pre-lupus and lupus state) with/without treatment with glucocorticoids (GCs). Urine protein, spleen index, and renal histopathological evaluation of the mice were also performed for assessment of SLE onset and/or outcome. Lipidomics analysis revealed that the deposition of cholesterol and the aberrant metabolism of lipids caused by the increased energy metabolism and the enhanced activation of phospholipases, both of which were originally induced by inflammation, were already present in cardiac tissues from lupus-prone mice even at pre-lupus state. These lipid alterations could further induce inflammation and autoimmune responses, accelerating the process of CVD. In addition, the present study also demonstrated that GCs therapy could not only delay the progression of SLE, but also partially corrected these alterations of lipid species in cardiac tissue due to their anti-inflammatory effect. Thus, the medications with better anti-inflammatory effect might be a useful therapeutic method for premature CVD of SLE.
Collapse
Affiliation(s)
- Jida Zhang
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, 548 Bingwen Road, Hangzhou 310053, China; (J.Z.); (X.T.); (K.W.); (G.X.); (H.L.)
| | - Lu Lu
- Third Clinical Medical College, Zhejiang Chinese Medical University, 548 Bingwen Road, Hangzhou 310053, China;
| | - Xiaoyu Tian
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, 548 Bingwen Road, Hangzhou 310053, China; (J.Z.); (X.T.); (K.W.); (G.X.); (H.L.)
| | - Kaili Wang
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, 548 Bingwen Road, Hangzhou 310053, China; (J.Z.); (X.T.); (K.W.); (G.X.); (H.L.)
| | - Guanqun Xie
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, 548 Bingwen Road, Hangzhou 310053, China; (J.Z.); (X.T.); (K.W.); (G.X.); (H.L.)
| | - Haichang Li
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, 548 Bingwen Road, Hangzhou 310053, China; (J.Z.); (X.T.); (K.W.); (G.X.); (H.L.)
| | - Chengping Wen
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, 548 Bingwen Road, Hangzhou 310053, China; (J.Z.); (X.T.); (K.W.); (G.X.); (H.L.)
- Correspondence: (C.W.); (C.H.)
| | - Changfeng Hu
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, 548 Bingwen Road, Hangzhou 310053, China; (J.Z.); (X.T.); (K.W.); (G.X.); (H.L.)
- Correspondence: (C.W.); (C.H.)
| |
Collapse
|
39
|
Li J, Luo M, Li B, Lou Y, Zhu Y, Bai X, Sun B, Lu X, Luo P. Immunomodulatory Activity of Mesenchymal Stem Cells in Lupus Nephritis: Advances and Applications. Front Immunol 2022; 13:843192. [PMID: 35359961 PMCID: PMC8960601 DOI: 10.3389/fimmu.2022.843192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/17/2022] [Indexed: 12/29/2022] Open
Abstract
Lupus nephritis (LN) is a significant cause of various acute and chronic renal diseases, which can eventually lead to end-stage renal disease. The pathogenic mechanisms of LN are characterized by abnormal activation of the immune responses, increased cytokine production, and dysregulation of inflammatory signaling pathways. LN treatment is an important issue in the prevention and treatment of systemic lupus erythematosus. Mesenchymal stem cells (MSCs) have the advantages of immunomodulation, anti-inflammation, and anti-proliferation. These unique properties make MSCs a strong candidate for cell therapy of autoimmune diseases. MSCs can suppress the proliferation of innate and adaptive immune cells, such as natural killer cells (NKs), dendritic cells (DCs), T cells, and B cells. Furthermore, MSCs suppress the functions of various immune cells, such as the cytotoxicity of T cells and NKs, maturation and antibody secretion of B cells, maturation and antigen presentation of DCs, and inhibition of cytokine secretion, such as interleukins (ILs), tumor necrosis factor (TNF), and interferons (IFNs) by a variety of immune cells. MSCs can exert immunomodulatory effects in LN through these immune functions to suppress autoimmunity, improve renal pathology, and restore kidney function in lupus mice and LN patients. Herein, we review the role of immune cells and cytokines in the pathogenesis of LN and the mechanisms involved, as well as the progress of research on the immunomodulatory role of MSCs in LN.
Collapse
Affiliation(s)
- Jicui Li
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Manyu Luo
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Bing Li
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Yan Lou
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Yuexin Zhu
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Xue Bai
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Baichao Sun
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Xuehong Lu
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Ping Luo
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
40
|
Zhang Q, Xu Y, Xu J. Editorial: Targeting Heterogeneity of Mesenchymal Stem Cells. Front Cell Dev Biol 2022; 10:894008. [PMID: 35465318 PMCID: PMC9019297 DOI: 10.3389/fcell.2022.894008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Qi Zhang
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Xu
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianyong Xu
- Department of Immunology, School of Medicine, Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
41
|
Kebria MM, Milan PB, Peyravian N, Kiani J, Khatibi S, Mozafari M. Stem cell therapy for COVID-19 pneumonia. MOLECULAR BIOMEDICINE 2022; 3:6. [PMID: 35174448 PMCID: PMC8850486 DOI: 10.1186/s43556-021-00067-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus is a highly contagious microorganism, and despite substantial investigation, no progress has been achieved in treating post-COVID complications. However, the virus has made various mutations and has spread around the world. Researchers have tried different treatments to reduce the side effects of the COVID-19 symptoms. One of the most common and effective treatments now used is steroid therapy to reduce the complications of this disease. Long-term steroid therapy for chronic inflammation following COVID-19 is harmful and increases the risk of secondary infection, and effective treatment remains challenging owing to fibrosis and severe inflammation and infection. Sometimes our immune system can severely damage ourselves in disease. In the past, many researchers have conducted various studies on the immunomodulatory properties of stem cells. This property of stem cells led them to modulate the immune system of autoimmune diseases like diabetes, multiple sclerosis, and Parkinson's. Because of their immunomodulatory properties, stem cell-based therapy employing mesenchymal or hematopoietic stem cells may be a viable alternative treatment option in some patients. By priming the immune system and providing cytokines, chemokines, and growth factors, stem cells can be employed to build a long-term regenerative and protective response. This review addresses the latest trends and rapid progress in stem cell treatment for Acute Respiratory Distress Syndrome (ARDS) following COVID-19.
Collapse
Affiliation(s)
- Maziar Malekzadeh Kebria
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Noshad Peyravian
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Jafar Kiani
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Present Address: Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soheil Khatibi
- Babol University of Medical Sciences, Infection Diseases Centre, Mazandaran, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Li A, Guo F, Pan Q, Chen S, Chen J, Liu HF, Pan Q. Mesenchymal Stem Cell Therapy: Hope for Patients With Systemic Lupus Erythematosus. Front Immunol 2021; 12:728190. [PMID: 34659214 PMCID: PMC8516390 DOI: 10.3389/fimmu.2021.728190] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/14/2021] [Indexed: 12/26/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease. Although previous studies have demonstrated that SLE is related to the imbalance of cells in the immune system, including B cells, T cells, and dendritic cells, etc., the mechanisms underlying SLE pathogenesis remain unclear. Therefore, effective and low side-effect therapies for SLE are lacking. Recently, mesenchymal stem cell (MSC) therapy for autoimmune diseases, particularly SLE, has gained increasing attention. This therapy can improve the signs and symptoms of refractory SLE by promoting the proliferation of Th2 and Treg cells and inhibiting the activity of Th1, Th17, and B cells, etc. However, MSC therapy is also reported ineffective in some patients with SLE, which may be related to MSC- or patient-derived factors. Therefore, the therapeutic effects of MSCs should be further confirmed. This review summarizes the status of MSC therapy in refractory SLE treatment and potential reasons for the ineffectiveness of MSC therapy from three perspectives. We propose various MSC modification methods that may be beneficial in enhancing the immunosuppression of MSCs in SLE. However, their safety and protective effects in patients with SLE still need to be confirmed by further experimental and clinical evidence.
Collapse
Affiliation(s)
- Aifen Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Fengbiao Guo
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Quanren Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shuxian Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiaxuan Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hua-Feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qingjun Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
43
|
Han MM, Yuan XR, Shi X, Zhu XY, Su Y, Xiong DK, Zhang XM, Zhou H, Wang JN. The Pathological Mechanism and Potential Application of IL-38 in Autoimmune Diseases. Front Pharmacol 2021; 12:732790. [PMID: 34539413 PMCID: PMC8443783 DOI: 10.3389/fphar.2021.732790] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/17/2021] [Indexed: 12/19/2022] Open
Abstract
Interleukin-38 (IL-38), a new cytokine of interleukin-1 family (IL-1F), is expressed in the human heart, kidney, skin, etc. Recently, new evidence indicated that IL-38 is involved in the process of different autoimmune diseases. Autoimmune diseases are a cluster of diseases accompanied with tissue damage caused by autoimmune reactions, including rheumatoid arthritis (RA), psoriasis, etc. This review summarized the links between IL-38 and autoimmune diseases, as well as the latest knowledge about the function and regulatory mechanism of IL-38 in autoimmune diseases. Especially, this review focused on the differentiation of immune cells and explore future prospects, such as the application of IL-38 in new technologies. Understanding the function of IL-38 is helpful to shed light on the progress of autoimmune diseases.
Collapse
Affiliation(s)
- Miao-Miao Han
- School of Health Management, Anhui Medical University, Hefei, China
| | - Xin-Rong Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Shi
- School of Health Management, Anhui Medical University, Hefei, China
| | - Xing-Yu Zhu
- School of Pharmacy, Bengbu Medical College, Bengbu, China.,National Drug Clinical Trial Institution, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yue Su
- National Drug Clinical Trial Institution, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China.,Public Basic College, Bengbu Medical College, Bengbu, China
| | - De-Kai Xiong
- School of Health Management, Anhui Medical University, Hefei, China
| | - Xing-Min Zhang
- School of Health Management, Anhui Medical University, Hefei, China
| | - Huan Zhou
- School of Pharmacy, Bengbu Medical College, Bengbu, China.,National Drug Clinical Trial Institution, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Ji-Nian Wang
- Department of Education, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
44
|
Dou R, Zhang X, Xu X, Wang P, Yan B. Mesenchymal stem cell exosomal tsRNA-21109 alleviate systemic lupus erythematosus by inhibiting macrophage M1 polarization. Mol Immunol 2021; 139:106-114. [PMID: 34464838 DOI: 10.1016/j.molimm.2021.08.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/09/2021] [Accepted: 08/22/2021] [Indexed: 12/12/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with M1-type macrophage activation. Mesenchymal stem cells (MSCs) therapies have shown promise in models of pathologies relevant to SLE, while the function and mechanism of MSC-derived exosomes (MSC-exo) were still unclear. We aimed to interrogate the effect of MSC-exo on M1-type polarization of macrophage and investigate mechanisms underlying MSC-exo. Exosomes were isolated from MSC and the effect of MSC-exo on macrophage polarization was evaluated. The key tRNA-derived fragments (tRFs) carried by exosomes were identified by small RNA sequencing and verified in clinical samples. The effect of exosomal-tRFs on macrophage polarization was examined. In this study, MSC-exo dramatically suppressed expression of M1 markers, and reduced the levels of TNF-α and IL-1β, while increased M2 markers in macrophages. A total of 243 differently expressed tRFs (DEtRFs) were identified between MSC-exo treated and untreated macrophage, among which 103 DEtRFs were up-regulated in response to MSC-exo treatment, including tsRNA-21109. The target genes of tsRNA-21109 were mainly enriched in DNA transcription-related GO function, and mainly involved in inflammatory-related pathways, including Rap1, Ras, Hippo, Wnt, MAPK, TGF-beta signaling pathway. The tsRNA-21109 was lowly expressed in clinical samples and was associated with the patient data in SLE. Compared to the normal MSC-exo, the tsRNA-21109-privative MSC-exo up-regulated M1 marker (CD80, NOS2, MCP1) and down-regulated M2 marker (CD206, ARG1, MRC2), also increased the levels of TNF-α and IL-1β in macrophages. Western blot and immunofluorescence confirmed that the proportion of CD80/ARG-1 was increased in macrophages treated with tsRNA-21109-privatived MSC-exo compared to that with control MSC-exo. In conclusion, MSC-exo inhibited the M1-type polarization of macrophages, possibly through transferring tsRNA-21109, which may develop as a novel therapeutic target for SLE.
Collapse
Affiliation(s)
- Rui Dou
- Department of Blood Transfusion, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan Province, China.
| | - Xiulei Zhang
- Department of Microbiome Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan Province, China.
| | - Xiangdong Xu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| | - Pei Wang
- Department of Rheumatology and Immunology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan Province, China.
| | - Beizhan Yan
- Department of Blood Transfusion, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan Province, China.
| |
Collapse
|
45
|
Abdelgawad M, Bakry NS, Farghali AA, Abdel-Latif A, Lotfy A. Mesenchymal stem cell-based therapy and exosomes in COVID-19: current trends and prospects. Stem Cell Res Ther 2021; 12:469. [PMID: 34419143 PMCID: PMC8379570 DOI: 10.1186/s13287-021-02542-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/03/2021] [Indexed: 02/08/2023] Open
Abstract
Novel coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus-2. The virus causes an exaggerated immune response, resulting in a cytokine storm and acute respiratory distress syndrome, the leading cause of COVID-19-related mortality and morbidity. So far, no therapies have succeeded in circumventing the exacerbated immune response or cytokine storm associated with COVID-19. Mesenchymal stem cells (MSCs), through their immunomodulatory and regenerative activities, mostly mediated by their paracrine effect and extracellular vesicle production, have therapeutic potential in many autoimmune, inflammatory, and degenerative diseases. In this paper, we review clinical studies on the use of MSCs for COVID-19 treatment, including the salutary effects of MSCs on the pathophysiology of COVID-19 and the immunomodulation of the cytokine storm. Ongoing clinical trial designs, cell sources, dose and administration, and populations are summarized, and the paracrine mode of benefit is discussed. We also offer suggestions for optimizing MSC-based therapies, including genetic engineering, strategies for cell surface modification, nanotechnology applications, and combination therapies.
Collapse
Affiliation(s)
- Mai Abdelgawad
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni Suef, 62511, Egypt
| | - Nourhan Saied Bakry
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni Suef, 62511, Egypt
| | - Ahmed A Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni Suef, 62511, Egypt
| | - Ahmed Abdel-Latif
- Gill Heart Institute and Division of Cardiovascular Medicine, University of Kentucky and the Lexington VA Medical Center, Lexington, KY, USA. .,College of Medicine, University of Kentucky, Lexington, KY, 40506-0046, USA.
| | - Ahmed Lotfy
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni Suef, 62511, Egypt.
| |
Collapse
|
46
|
Li G, Kong D, Qin Y, Wang H, Hu Y, Zhao Y, Hao J, Qin H, Yu D, Zhu Y, Sun C, Wang H. IL-37 overexpression enhances the therapeutic effect of endometrial regenerative cells in concanavalin A-induced hepatitis. Cytotherapy 2021; 23:617-626. [PMID: 33593687 DOI: 10.1016/j.jcyt.2020.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/06/2020] [Accepted: 12/21/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells and immunosuppressive factor IL-37 can both suppress concanavalin A (Con A)-induced hepatitis in mice. Endometrial regenerative cells (ERCs), novel types of mesenchymal-like stromal cells, possess powerful immunomodulatory effects and are effective in treating various diseases. The aim of this study was to explore the effects of ERCs in suppressing Con A-induced hepatitis and determine whether IL-37 overexpression could enhance the therapeutic effect of ERCs in this process. METHODS ERCs were extracted from the menstrual blood of healthy female volunteer donors. The IL-37 gene was transferred into ERCs, and the expression of IL-37 in cells was detected by western blot and enzyme-linked immunosorbent assay. Hepatitis was induced by Con A in C57BL/6 mice that were randomly divided into groups treated with phosphate-buffered saline, ERCs, IL-37 or ERCs transfected with the IL-37 gene (IL-37-ERCs). Cell tracking, liver function, histopathological and immunohistological changes, immune cell proportions and levels of cytokines were measured 24 h after Con A administration. RESULTS Compared with ERC or IL-37 treatment, IL-37-ERCs further reduced levels of liver enzymes (alanine aminotransferase and aspartate aminotransferase) and improved histopathological changes in the liver. In addition, IL-37-ERC treatment further reduced the proportions of M1 macrophages and CD4+ T cells and increased the proportion of regulatory T cells. Moreover, IL-37-ERC treatment resulted in lower levels of IL-12 and interferon gamma, and higher level of transforming growth factor beta. CONCLUSIONS The results of this study suggest that ERCs can effectively alleviate Con A-induced hepatitis. Furthermore, IL-37 overexpression can significantly enhance the therapeutic efficacy of ERCs by augmenting the immunomodulatory and anti-inflammatory properties of ERCs. This study may provide a promising strategy for treatment of T-cell-dependent hepatitis.
Collapse
Affiliation(s)
- Guangming Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin, China
| | - Dejun Kong
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin, China
| | - Yafei Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin, China
| | - Hongda Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin, China
| | - Yonghao Hu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin, China
| | - Yiming Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin, China
| | - Jingpeng Hao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin, China
| | - Hong Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin, China
| | - Dingding Yu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin, China
| | - Yanglin Zhu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin, China
| | - Chenglu Sun
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin, China
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin, China.
| |
Collapse
|
47
|
Su Z, Tao X. Current Understanding of IL-37 in Human Health and Disease. Front Immunol 2021; 12:696605. [PMID: 34248996 PMCID: PMC8267878 DOI: 10.3389/fimmu.2021.696605] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022] Open
Abstract
IL-37 is a recently discovered cytokine in the IL-1 family exerting broad protective effects on inflammatory diseases, autoimmune diseases, and cancer. Immune and non-immune cells produce the IL-37 precursor upon pro-inflammatory stimuli. Intracellularly, caspase-1 cleaves and activates IL-37, and its mature form binds to Smad3; this complex translocates into the nucleus where it suppresses cytokine production, consequently reducing inflammation. Extracellularly, IL-37 forms a complex with IL-18Rα and IL-1R8 (formerly TIR8 or SIGIRR) that transduces anti-inflammatory signals by the suppression of NF-κB and MAPK and the activation of Mer-PTEN-DOK pathways. During inflammation, IL-37 suppresses the expression of several pro-inflammatory cytokine in favor to the expression of the anti-inflammatory ones by the regulation of macrophage polarization, lipid metabolism, inflammasome function, TSLP synthesis and miRNAs function. Moreover, IL-37 not only regulates the innate and acquired immunity, but also improves aging-associated immunosenescence. Furthermore, IL-37 exerts an inhibitory effect on tumor angiogenesis and metastasis, and progression. Finally, IL-37 may have a potential ability to reduce excessive inflammation since it is aberrantly expressed in patients with inflammatory diseases, autoimmune diseases, and cancer, thus, it may be used as a marker for different types of diseases. Therefore, this review provides an updated view of the role of IL-37 in human health and disease, and discusses the potential of IL-37 as a therapeutic target and biomarker in inflammatory diseases, autoimmune diseases, and cancer.
Collapse
Affiliation(s)
- Zhangci Su
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xiaoan Tao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
48
|
He Y, Xiong T, Guo F, Du Z, Fan Y, Sun H, Feng Z, Zhang G. Interleukin-37b inhibits the growth of murine endometriosis-like lesions by regulating proliferation, invasion, angiogenesis and inflammation. Mol Hum Reprod 2021; 26:240-255. [PMID: 32119739 DOI: 10.1093/molehr/gaaa014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/28/2020] [Accepted: 02/06/2020] [Indexed: 12/17/2022] Open
Abstract
Endometriosis is a gynecological disease with abnormal expression of interleukin (IL)-37 which can suppress inflammation and the immune system. Here we investigated the role of the IL-37b splice variant in endometriosis in vivo and in vitro. In a murine model of endometriosis, in vivo administration of IL-37b significantly inhibited the development of lesions judged by the number (P = 0.0213), size (P = 0.0130) and weight (P = 0.0152) of lesions. IL-37b had no effect on the early stage of lesion formation, however administration in the growth stage of lesions decreased the number (P = 0.0158), size (P = 0.0158) and weight (P = 0.0258) of lesions compared with PBS control, an effect that was not reversed by macrophage depletion. Expressions of inflammatory factors, matrix metalloproteinases and vascular endothelial growth factor-A mRNA/protein were significantly inhibited in ectopic lesions following IL-37b administration, and in uterine segments treated in vitro. In vitro treatment of uterine segments with IL-37b inhibited phosphorylation of Akt and Erk1/2 in uterine segments. Isolated mouse endometrial stromal treated with IL-37b and transfected with pIL-37b plasmid got suppressed cell proliferation, invasion, angiogenesis and the expression of inflammatory factors. In addition, transfection with pIL-37b significantly decreased the phosphorylation of Akt and Erk1/2. IL-37b also inhibited proliferation and the expression of inflammatory and angiogenesis factors in epithelial cell line RL95-2. These findings suggest that IL-37b may inhibit the growth of lesions by regulating proliferation, invasion, angiogenesis and inflammation through Akt and Erk1/2 signaling pathway.
Collapse
Affiliation(s)
- Yongpei He
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, The people's Republic of China
| | - Ting Xiong
- Department of Gynaecology and Obstetrics, Reproductive Medical center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, The People's Republic of China
| | - Fang Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, The people's Republic of China
| | - Zhenzhen Du
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, The people's Republic of China
| | - Yixian Fan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, The people's Republic of China
| | - Huanhuan Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, The people's Republic of China
| | - Zuohua Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, The people's Republic of China
| | - Guimei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, The people's Republic of China
| |
Collapse
|
49
|
Strategies to Potentiate Paracrine Therapeutic Efficacy of Mesenchymal Stem Cells in Inflammatory Diseases. Int J Mol Sci 2021; 22:ijms22073397. [PMID: 33806241 PMCID: PMC8037333 DOI: 10.3390/ijms22073397] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been developed as cell therapeutics for various immune disorders using their immunoregulatory properties mainly exerted by their paracrine functions. However, variation among cells from different donors, as well as rapid clearance after transplantation have impaired the uniform efficacy of MSCs and limited their application. Recently, several strategies to overcome this limitation have been suggested and proven in pre-clinical settings. Therefore, in this review article, we will update the knowledge on bioengineering strategies to improve the immunomodulatory functions of MSCs, including genetic modification and physical engineering.
Collapse
|
50
|
El-Jawhari JJ, El-Sherbiny Y, McGonagle D, Jones E. Multipotent Mesenchymal Stromal Cells in Rheumatoid Arthritis and Systemic Lupus Erythematosus; From a Leading Role in Pathogenesis to Potential Therapeutic Saviors? Front Immunol 2021; 12:643170. [PMID: 33732263 PMCID: PMC7959804 DOI: 10.3389/fimmu.2021.643170] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/29/2021] [Indexed: 12/15/2022] Open
Abstract
The pathogenesis of the autoimmune rheumatological diseases including rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) is complex with the involvement of several immune cell populations spanning both innate and adaptive immunity including different T-lymphocyte subsets and monocyte/macrophage lineage cells. Despite therapeutic advances in RA and SLE, some patients have persistent and stubbornly refractory disease. Herein, we discuss stromal cells' dual role, including multipotent mesenchymal stromal cells (MSCs) also used to be known as mesenchymal stem cells as potential protagonists in RA and SLE pathology and as potential therapeutic vehicles. Joint MSCs from different niches may exhibit prominent pro-inflammatory effects in experimental RA models directly contributing to cartilage damage. These stromal cells may also be key regulators of the immune system in SLE. Despite these pro-inflammatory roles, MSCs may be immunomodulatory and have potential therapeutic value to modulate immune responses favorably in these autoimmune conditions. In this review, the complex role and interactions between MSCs and the haematopoietically derived immune cells in RA and SLE are discussed. The harnessing of MSC immunomodulatory effects by contact-dependent and independent mechanisms, including MSC secretome and extracellular vesicles, is discussed in relation to RA and SLE considering the stromal immune microenvironment in the diseased joints. Data from translational studies employing MSC infusion therapy against inflammation in other settings are contextualized relative to the rheumatological setting. Although safety and proof of concept studies exist in RA and SLE supporting experimental and laboratory data, robust phase 3 clinical trial data in therapy-resistant RA and SLE is still lacking.
Collapse
Affiliation(s)
- Jehan J El-Jawhari
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.,Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Yasser El-Sherbiny
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.,Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Dennis McGonagle
- Faculty of Medicine and Health, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.,The National Institute for Health Research Leeds Biomedical Research Centre, Chapel Allerton Hospital, Leeds, United Kingdom
| | - Elena Jones
- Faculty of Medicine and Health, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.,The National Institute for Health Research Leeds Biomedical Research Centre, Chapel Allerton Hospital, Leeds, United Kingdom
| |
Collapse
|