1
|
Quemerais C, Jean C, Brunel A, Decaup E, Labrousse G, Audureau H, Raffenne J, Belhabib I, Cros J, Perraud A, Dusetti N, Nicolle R, Mathonnet M, Pyronnet S, Martineau Y, Fanjul M, Bousquet C. Unveiling FKBP7 as an early endoplasmic reticulum sentinel in pancreatic stellate cell activation, collagen remodeling and tumor progression. Cancer Lett 2025; 614:217538. [PMID: 39924075 DOI: 10.1016/j.canlet.2025.217538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/21/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
In pancreatic ductal adenocarcinoma (PDAC), fibroblast activation leads to excessive secretion of extracellular matrix (ECM) and soluble factors that regulate tumor progression, prompting investigation into endoplasmic reticulum (ER)-resident proteins that may support this activation. We identified FKBP7, a peptidyl-prolyl isomerase in the ER, as overexpressed in PDAC stroma compared to cancer cells, and in patients with favorable prognosis. Analysis of single-cell RNA sequencing databases revealed FKBP7 expression in pancreatic stellate cells (PSCs) and cancer-associated fibroblasts (CAFs). When analyzed by immunohistochemistry on PDAC patient tissues, FKBP7 emerged as an early activation marker in the preneoplastic stroma, preceding αSMA expression, and responding to FAK- and TGFβ-induced stiffening and pro-fibrotic programs in PSCs. Functional analyses revealed that FKBP7 knockdown in PSCs enhanced contractility, Rho/FAK signaling, and secretion of pro-inflammatory cytokines as well as remodeling of type I collagen, promoting an activated phenotype and accelerating tumor growth in vivo. Conversely, FKBP7 expression supported a tumor-restraining (i.e. encapsulating) ECM characterized by type IV collagen. Mechanistically, FKBP7 interacts with BiP, and blocking this interaction instead leads to increased PSC secretion of type I collagen. Thus, FKBP7 serves as a novel PSC marker and ER regulator in a complex with BiP of the secretion of specific collagen subtypes, highlighting its potential to mediate ECM normalization and constrain PDAC tumorigenesis.
Collapse
Affiliation(s)
- Christophe Quemerais
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Christine Jean
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Alexia Brunel
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Emilie Decaup
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Guillaume Labrousse
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Hippolyte Audureau
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Jérôme Raffenne
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Ismahane Belhabib
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Jérôme Cros
- Department of Pathology, Beaujon-Bichat University Hospital - Paris Diderot University, Clichy, France
| | - Aurélie Perraud
- EA 3842 Laboratory, Medicine and Pharmacy Faculties, University of Limoges, France
| | - Nelson Dusetti
- Cancer Research Center of Marseille (CRCM), INSERM UMR-1068, CNRS UMR-7258, Marseille, France
| | - Remy Nicolle
- Center of Research on Inflammation (CRI), INSERM U1149, Paris, France
| | - Muriel Mathonnet
- EA 3842 Laboratory, Medicine and Pharmacy Faculties, University of Limoges, France
| | - Stéphane Pyronnet
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Yvan Martineau
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Marjorie Fanjul
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France
| | - Corinne Bousquet
- Cancer Research Center of Toulouse (CRCT), INSERM UMR-1037, CNRS UMR-5071, Team « Labellisée Ligue Contre le Cancer EL2021», University of Toulouse, France.
| |
Collapse
|
2
|
Xiao Z, Puré E. The fibroinflammatory response in cancer. Nat Rev Cancer 2025:10.1038/s41568-025-00798-8. [PMID: 40097577 DOI: 10.1038/s41568-025-00798-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/06/2025] [Indexed: 03/19/2025]
Abstract
Fibroinflammation refers to the highly integrated fibrogenic and inflammatory responses mediated by the concerted function of fibroblasts and innate immune cells in response to tissue perturbation. This process underlies the desmoplastic remodelling of the tumour microenvironment and thus plays an important role in tumour initiation, growth and metastasis. More specifically, fibroinflammation alters the biochemical and biomechanical signalling in malignant cells to promote their proliferation and survival and further supports an immunosuppressive microenvironment by polarizing the immune status of tumours. Additionally, the presence of fibroinflammation is often associated with therapeutic resistance. As such, there is increasing interest in targeting this process to normalize the tumour microenvironment and thus enhance the treatment of solid tumours. Herein, we review advances made in unravelling the complexity of cancer-associated fibroinflammation that can inform the rational design of therapies targeting this.
Collapse
Affiliation(s)
- Zebin Xiao
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Ellen Puré
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Liu X, Shao Y, Li Y, Chen Z, Shi T, Tong Q, Zou X, Ju L, Pan J, Zhuang R, Pan X. Extensive Review of Nanomedicine Strategies Targeting the Tumor Microenvironment in PDAC. Int J Nanomedicine 2025; 20:3379-3406. [PMID: 40125427 PMCID: PMC11927507 DOI: 10.2147/ijn.s504503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/17/2025] [Indexed: 03/25/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers in the world, mainly because of its powerful pro-connective tissue proliferation matrix and immunosuppressive tumor microenvironment (TME), which promote tumor progression and metastasis. In addition, the extracellular matrix leads to vascular collapse, increased interstitial fluid pressure, and obstruction of lymphatic return, thereby hindering effective drug delivery, deep penetration, and immune cell infiltration. Therefore, reshaping the TME to enhance tumor perfusion, increase deep drug penetration, and reverse immune suppression has become a key therapeutic strategy. Traditional therapies for PDAC, including surgery, radiation, and chemotherapy, face significant limitations. Surgery is challenging due to tumor location and growth, while chemotherapy and radiation are hindered by the dense extracellular matrix and immunosuppressive TME. In recent years, the advancement of nanotechnology has provided new opportunities to improve drug efficacy. Nanoscale drug delivery systems (NDDSs) provide several advantages, including improved drug stability in vivo, enhanced tumor penetration, and reduced systemic toxicity. However, the clinical translation of nanotechnology in PDAC therapy faces several challenges. These include the need for precise targeting and control over drug release, potential immune responses to the nanocarriers, and the scalability and cost-effectiveness of production. This article provides an overview of the latest nanobased methods for achieving better therapeutic outcomes and overcoming drug resistance. We pay special attention to TME-targeted therapy in the context of PDAC, discuss the advantages and limitations of current strategies, and emphasize promising new developments. By emphasizing the enormous potential of NDDSs in improving the treatment outcomes of patients with PDAC, while critically discussing the limitations of traditional therapies and the challenges faced by nanotechnology in achieving clinical breakthroughs, our review paves the way for future research in this rapidly developing field.
Collapse
Affiliation(s)
- Xing Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311400, People’s Republic of China
| | - Yidan Shao
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| | - Yunjiang Li
- Radiology Department, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| | - Zuhua Chen
- Radiology Department, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| | - Tingting Shi
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| | - Qiao Tong
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| | - Xi Zou
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| | - Liping Ju
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| | - Jinming Pan
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| | - Rangxiao Zhuang
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| | - Xuwang Pan
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310023, People’s Republic of China
| |
Collapse
|
4
|
Nair ST, Abhi C, Kamalasanan K, Pavithran K, Unni AR, Sithara MS, Sarma M, Mangalanandan TS. Pathophysiology-Driven Approaches for Overcoming Nanomedicine Resistance in Pancreatic Cancer. Mol Pharm 2024; 21:5960-5988. [PMID: 39561094 DOI: 10.1021/acs.molpharmaceut.4c00801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Tumor heterogeneity poses a significant challenge in cancer therapy. To address this, we analyze pharmacotherapeutic challenges by categorizing them into static and dynamic barriers, reframing these challenges to improve drug delivery, efficacy, and the development of controlled-release nanomedicines (CRNMs). This pathophysiology-driven approach facilitates the design of novel therapeutics tailored to overcome obstacles in pancreatic ductal adenocarcinoma (PDAC) using nanotechnology. Advanced biomaterials in nanodrug delivery systems offer innovative solutions by combining controlled release, stimuli sensitivity, and smart design strategies. CRNMs are engineered to modulate spatiotemporal signaling and control drug release in PDAC, where resistance to conventional therapies is particularly high. This review explores pharmacokinetic considerations for nanomedicine design, RNA interference (RNAi) for stromal modulation, and the development of targeted nanomedicine strategies. Additionally, we highlight the limitations of current animal models in capturing the complexities of PDAC and discuss notable clinical failures, such as PEGylated hyaluronidase (Phase III HALO 109-301 trial) and evofosfamide (TH-302) with gemcitabine (MAESTRO trial), underscoring the need for improved models and treatment strategies. By targeting pathways like Notch and Hedgehog and incorporating stimuli-sensitive and pathway-modulating agents, CRNMs offer a promising avenue to enhance drug penetration and efficacy, reshaping the paradigm of pancreatic cancer treatment.
Collapse
Affiliation(s)
- Sreejith Thrivikraman Nair
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - C Abhi
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Kaladhar Kamalasanan
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - K Pavithran
- Department of Medical Oncology and Hematology, School of Medicine, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Ashok R Unni
- Department of Veterinary Medicine, Central Animal Facility, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - M S Sithara
- Department of Veterinary Medicine, Central Animal Facility, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Manjit Sarma
- Department of Nuclear Medicine, Amrita School of Medicine, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - T S Mangalanandan
- Department of Endocrinology, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| |
Collapse
|
5
|
Walker M, Morton JP. Hydrogel models of pancreatic adenocarcinoma to study cell mechanosensing. Biophys Rev 2024; 16:851-870. [PMID: 39830124 PMCID: PMC11735828 DOI: 10.1007/s12551-024-01265-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025] Open
Abstract
Pancreatic adenocarcinoma (PDAC) is the predominant form of pancreatic cancer and one of the leading causes of cancer-related death worldwide, with an extremely poor prognosis after diagnosis. High mortality from PDAC arises partly due to late diagnosis resulting from a lack of early-stage biomarkers and due to chemotherapeutic drug resistance, which arises from a highly fibrotic stromal response known as desmoplasia. Desmoplasia alters tissue mechanics, which triggers changes in cell mechanosensing and leads to dysregulated transcriptional activity and disease phenotypes. Hydrogels are effective in vitro models to mimic mechanical changes in tissue mechanics during PDAC progression and to study the influence of these changes on mechanosensitive cell responses. Despite the complex biophysical changes that occur within the PDAC microenvironment, carefully designed hydrogels can very closely recapitulate these properties during PDAC progression. Hydrogels are relatively inexpensive, highly reproducible and can be designed in a humanised manner to increase their relevance for human PDAC studies. In vivo models have some limitations, including species-species differences, high variability, expense and legal/ethical considerations, which make hydrogel models a promising alternative. Here, we comprehensively review recent advancements in hydrogel bioengineering for developing our fundamental understanding of mechanobiology in PDAC, which is critical for informing advanced therapeutics.
Collapse
Affiliation(s)
- M Walker
- Centre for the Cellular Microenvironment, Advanced Research Centre, 11 Chapel Lane, James Watt School of Engineering, University of Glasgow, Glasgow, G11 6EW UK
| | - JP Morton
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Rd, Glasgow, G61 1BD UK
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Rd, Glasgow, G61 1QH UK
| |
Collapse
|
6
|
LeSavage BL, Zhang D, Huerta-López C, Gilchrist AE, Krajina BA, Karlsson K, Smith AR, Karagyozova K, Klett KC, Huang MS, Long C, Kaber G, Madl CM, Bollyky PL, Curtis C, Kuo CJ, Heilshorn SC. Engineered matrices reveal stiffness-mediated chemoresistance in patient-derived pancreatic cancer organoids. NATURE MATERIALS 2024; 23:1138-1149. [PMID: 38965405 DOI: 10.1038/s41563-024-01908-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 04/30/2024] [Indexed: 07/06/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by its fibrotic and stiff extracellular matrix. However, how the altered cell/extracellular-matrix signalling contributes to the PDAC tumour phenotype has been difficult to dissect. Here we design and engineer matrices that recapitulate the key hallmarks of the PDAC tumour extracellular matrix to address this knowledge gap. We show that patient-derived PDAC organoids from three patients develop resistance to several clinically relevant chemotherapies when cultured within high-stiffness matrices mechanically matched to in vivo tumours. Using genetic barcoding, we find that while matrix-specific clonal selection occurs, cellular heterogeneity is not the main driver of chemoresistance. Instead, matrix-induced chemoresistance occurs within a stiff environment due to the increased expression of drug efflux transporters mediated by CD44 receptor interactions with hyaluronan. Moreover, PDAC chemoresistance is reversible following transfer from high- to low-stiffness matrices, suggesting that targeting the fibrotic extracellular matrix may sensitize chemoresistant tumours. Overall, our findings support the potential of engineered matrices and patient-derived organoids for elucidating extracellular matrix contributions to human disease pathophysiology.
Collapse
Affiliation(s)
- Bauer L LeSavage
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Daiyao Zhang
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Carla Huerta-López
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Aidan E Gilchrist
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Brad A Krajina
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Kasper Karlsson
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Amber R Smith
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kremena Karagyozova
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Katarina C Klett
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Michelle S Huang
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Christopher Long
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Gernot Kaber
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Christopher M Madl
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Christina Curtis
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
7
|
Aloss K, Hamar P. Augmentation of the EPR effect by mild hyperthermia to improve nanoparticle delivery to the tumor. Biochim Biophys Acta Rev Cancer 2024; 1879:189109. [PMID: 38750699 DOI: 10.1016/j.bbcan.2024.189109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024]
Abstract
The clinical translation of the nanoparticle (NP)-based anticancer therapies is still unsatisfactory due to the heterogeneity of the enhanced permeability and retention (EPR) effect. Despite the promising preclinical outcome of the pharmacological EPR enhancers, their systemic toxicity can limit their clinical application. Hyperthermia (HT) presents an efficient tool to augment the EPR by improving tumor blood flow (TBF) and vascular permeability, lowering interstitial fluid pressure (IFP), and disrupting the structure of the extracellular matrix (ECM). Furthermore, the HT-triggered intravascular release approach can overcome the EPR effect. In contrast to pharmacological approaches, HT is safe and can be focused to cancer tissues. Moreover, HT conveys direct anti-cancer effects, which improve the efficacy of the anti-cancer agents encapsulated in NPs. However, the clinical application of HT is challenging due to the heterogeneous distribution of temperature within the tumor, the length of the treatment and the complexity of monitoring.
Collapse
Affiliation(s)
- Kenan Aloss
- Institute of Translational Medicine - Semmelweis University - 1094, Tűzoltó utca, 37-49, Budapest, Hungary
| | - Péter Hamar
- Institute of Translational Medicine - Semmelweis University - 1094, Tűzoltó utca, 37-49, Budapest, Hungary.
| |
Collapse
|
8
|
Chakkera M, Foote JB, Farran B, Nagaraju GP. Breaking the stromal barrier in pancreatic cancer: Advances and challenges. Biochim Biophys Acta Rev Cancer 2024; 1879:189065. [PMID: 38160899 DOI: 10.1016/j.bbcan.2023.189065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/15/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Pancreatic cancer (PC) remains a leading cause of mortality worldwide due to the absence of early detection methods and the low success rates of traditional therapeutic strategies. Drug resistance in PC is driven by its desmoplastic stroma, which creates a barrier that shields cancer niches and prevents the penetration of drugs. The PC stroma comprises heterogeneous cellular populations and non-cellular components involved in aberrant ECM deposition, immunosuppression, and drug resistance. These components can influence PC development through intricate and complex crosstalk with the PC cells. Understanding how stromal components and cells interact with and influence the invasiveness and refractoriness of PC cells is thus a prerequisite for developing successful stroma-modulating strategies capable of remodeling the PC stroma to alleviate drug resistance and enhance therapeutic outcomes. In this review, we explore how non-cellular and cellular stromal components, including cancer-associated fibroblasts and tumor-associated macrophages, contribute to the immunosuppressive and tumor-promoting effects of the stroma. We also examine the signaling pathways underlying their activation, tumorigenic effects, and interactions with PC cells. Finally, we discuss recent pre-clinical and clinical work aimed at developing and testing novel stroma-modulating agents to alleviate drug resistance and improve therapeutic outcomes in PC.
Collapse
Affiliation(s)
- Mohana Chakkera
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA
| | - Jeremy B Foote
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Batoul Farran
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA.
| |
Collapse
|
9
|
Greenberg LJ, Fass D. Shearing of surface mucin saps tumor cell strength. Trends Pharmacol Sci 2023; 44:755-757. [PMID: 37679271 DOI: 10.1016/j.tips.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023]
Abstract
Aberrant expression of transmembrane mucins promotes tumor progression and interferes with immunological and medicinal elimination of cancer cells. In a recent article, Pedram et al. directed an attenuated bacterial mucin-specific protease to HER2-positive tumor cells and observed decreased tumor growth rates and extended survival of mice bearing HER2-positive tumors.
Collapse
Affiliation(s)
| | - Deborah Fass
- Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
10
|
Roos-Mattila M, Kaprio T, Mustonen H, Hagström J, Saharinen P, Haglund C, Seppänen H. The possible dual role of Ang-2 in the prognosis of pancreatic cancer. Sci Rep 2023; 13:18725. [PMID: 37907568 PMCID: PMC10618172 DOI: 10.1038/s41598-023-45194-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/17/2023] [Indexed: 11/02/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) features a dense desmoplastic stroma, which raises the intratumoral interstitial pressure leading to vascular collapse and hypoxia, inducing angiogenesis. Vascular growth factors, such as vascular endothelial growth factor (VEGF) and angiopoietin-2 (Ang-2), increase in PDAC. A high VEGF and a high circulating Ang-2 associate with shorter survival in PDAC. In addition to the circulatory Ang-2, PDAC endothelial and epithelial cells express Ang-2. No correlation between tumor epithelial nor endothelial cell Ang-2 expression and survival has been published. We aimed to examine Ang-2 expression and survival. This study comprised PDAC surgical patients at Helsinki University Hospital in 2000-2013. Ang-2 immunohistochemistry staining was completed on 168 PDAC patient samples. Circulating Ang-2 levels were measured using ELISA in the sera of 196 patients. Ang-2 levels were assessed against clinical data and patient outcomes. A low tumor epithelial Ang-2 expression predicted shorter disease-specific survival (DSS) compared with a high expression (p = 0.003). A high serum Ang-2 associated with shorter DSS compared with a low circulating Ang-2 (p = 0.016). Ang-2 seemingly plays a dual role in PDAC survival. Further studies are needed to determine the mechanisms causing tumor cell Ang-2 expression and its positive association with survival.
Collapse
Affiliation(s)
- Matilda Roos-Mattila
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN, Digital Cancer Precision Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tuomas Kaprio
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland.
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- iCAN, Digital Cancer Precision Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Department of Pathology, Haartmaninkatu 3 (PB 21), University of Helsinki, 00014, Helsinki, Finland.
| | - Harri Mustonen
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN, Digital Cancer Precision Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jaana Hagström
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN, Digital Cancer Precision Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Oral Pathology and Radiology, University of Turku, Turku, Finland
| | - Pipsa Saharinen
- Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN, Digital Cancer Precision Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Caj Haglund
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN, Digital Cancer Precision Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Hanna Seppänen
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN, Digital Cancer Precision Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
11
|
Spiers L, Gray M, Lyon P, Sivakumar S, Bekkali N, Scott S, Collins L, Carlisle R, Wu F, Middleton M, Coussios C. Clinical trial protocol for PanDox: a phase I study of targeted chemotherapy delivery to non-resectable primary pancreatic tumours using thermosensitive liposomal doxorubicin (ThermoDox®) and focused ultrasound. BMC Cancer 2023; 23:896. [PMID: 37741968 PMCID: PMC10517508 DOI: 10.1186/s12885-023-11228-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 07/24/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND The dense stroma of pancreatic ductal adenocarcinomas is a major barrier to drug delivery. To increase the local drug diffusion gradient, high doses of chemotherapeutic agent doxorubicin can be released from thermally-sensitive liposomes (ThermoDox®) using ultrasound-mediated hyperthermia at the tumour target. PanDox is designed as a Phase 1 single centre study to investigate enhancing drug delivery to adult patients with non-operable pancreatic ductal adenocarcinomas. The study compares a single cycle of either conventional doxorubicin alone or ThermoDox® with focused ultrasound-induced hyperthermia for targeted drug release. METHODS Adults with non-resectable pancreatic ductal adenocarcinoma are allocated to receive a single cycle of either doxorubicin alone (Arm A) or ThermoDox® with focused ultrasound-induced hyperthermia (Arm B), based on patient- and tumour-specific safety conditions. Participants in Arm B will undergo a general anaesthetic and pre-heating of the tumour by extra-corporal focused ultrasound (FUS). Rather than employing invasive thermometry, ultrasound parameters are derived from a patient-specific treatment planning model to reach the 41 °C target temperature for drug release. ThermoDox® is then concurrently infused with further ultrasound exposure. Tumour biopsies at the targeted site from all patients are analysed post-treatment using high performance liquid chromatography to quantify doxorubicin delivered to the tumour. The primary endpoint is defined as a statistically significant enhancement in concentration of total intra-tumoural doxorubicin, comparing samples from patients receiving liposomal drug with FUS to free drug alone. Participants are followed for 21 days post-treatment to assess secondary endpoints, including radiological assessment to measure changes in tumour activity by Positron Emission Tomography Response Criteria in Solid Tumours (PERCIST) criteria, adverse events and patient-reported symptoms. DISCUSSION This early phase study builds on previous work targeting tumours in the liver to investigate whether enhancement of chemotherapy delivery using ultrasound-mediated hyperthermia can be translated to the stroma-dense environment of pancreatic ductal adenocarcinoma. If successful, it could herald a new approach towards managing these difficult-to-treat tumours. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04852367 . Registered 21st April 2022. EudraCT number: 2019-003950-10 (Registered 2019) Iras Project ID: 272253 (Registered 2019) Ethics Number: 20/EE/0284.
Collapse
Affiliation(s)
- Laura Spiers
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7LE, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Michael Gray
- NIHR Oxford Biomedical Research Centre, Oxford, UK
- Institute of Biomedical Engineering, University of Oxford, Marcella Wing, Botnar Research Centre, Old Rd, Headington, Oxford, OX3 7LD, UK
| | - Paul Lyon
- Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7LE, UK
| | - Shivan Sivakumar
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7LE, UK
| | - Noor Bekkali
- Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7LE, UK
| | - Shaun Scott
- Nuffield Department of Anaesthetics, John Radcliffe Hospital, Oxford, OX3 7LE, UK
| | - Linda Collins
- Department of Oncology, Oncology Clinical Trials Office (OCTO), University of Oxford, Oxford, UK
| | - Robert Carlisle
- Institute of Biomedical Engineering, University of Oxford, Marcella Wing, Botnar Research Centre, Old Rd, Headington, Oxford, OX3 7LD, UK
| | - Feng Wu
- Nuffield Department of Surgery, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Mark Middleton
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Constantin Coussios
- Institute of Biomedical Engineering, University of Oxford, Marcella Wing, Botnar Research Centre, Old Rd, Headington, Oxford, OX3 7LD, UK.
| |
Collapse
|
12
|
Yuzhalin AE, Yu D. Critical functions of extracellular matrix in brain metastasis seeding. Cell Mol Life Sci 2023; 80:297. [PMID: 37728789 PMCID: PMC10511571 DOI: 10.1007/s00018-023-04944-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/16/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023]
Abstract
Human brain is characterized by extremely sparse extracellular matrix (ECM). Despite its low abundance, the significance of brain ECM in both physiological and pathological conditions should not be underestimated. Brain metastasis is a serious complication of cancer, and recent findings highlighted the contribution of ECM in brain metastasis development. In this review, we provide a comprehensive outlook on how ECM proteins promote brain metastasis seeding. In particular, we discuss (1) disruption of the blood-brain barrier in brain metastasis; (2) role of ECM in modulating brain metastasis dormancy; (3) regulation of brain metastasis seeding by ECM-activated integrin signaling; (4) functions of brain-specific ECM protein reelin in brain metastasis. Lastly, we consider the possibility of targeting ECM for brain metastasis management.
Collapse
Affiliation(s)
- Arseniy E Yuzhalin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Unit 108, Houston, TX, 77030, USA
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Unit 108, Houston, TX, 77030, USA.
| |
Collapse
|
13
|
Urbanova M, Cihova M, Buocikova V, Slopovsky J, Dubovan P, Pindak D, Tomas M, García-Bermejo L, Rodríguez-Garrote M, Earl J, Kohl Y, Kataki A, Dusinska M, Sainz B, Smolkova B, Gabelova A. Nanomedicine and epigenetics: New alliances to increase the odds in pancreatic cancer survival. Biomed Pharmacother 2023; 165:115179. [PMID: 37481927 DOI: 10.1016/j.biopha.2023.115179] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the deadliest cancers worldwide, primarily due to its robust desmoplastic stroma and immunosuppressive tumor microenvironment (TME), which facilitate tumor progression and metastasis. In addition, fibrous tissue leads to sparse vasculature, high interstitial fluid pressure, and hypoxia, thereby hindering effective systemic drug delivery and immune cell infiltration. Thus, remodeling the TME to enhance tumor perfusion, increase drug retention, and reverse immunosuppression has become a key therapeutic strategy. In recent years, targeting epigenetic pathways has emerged as a promising approach to overcome tumor immunosuppression and cancer progression. Moreover, the progress in nanotechnology has provided new opportunities for enhancing the efficacy of conventional and epigenetic drugs. Nano-based drug delivery systems (NDDSs) offer several advantages, including improved drug pharmacokinetics, enhanced tumor penetration, and reduced systemic toxicity. Smart NDDSs enable precise targeting of stromal components and augment the effectiveness of immunotherapy through multiple drug delivery options. This review offers an overview of the latest nano-based approaches developed to achieve superior therapeutic efficacy and overcome drug resistance. We specifically focus on the TME and epigenetic-targeted therapies in the context of PDAC, discussing the advantages and limitations of current strategies while highlighting promising new developments. By emphasizing the immense potential of NDDSs in improving therapeutic outcomes in PDAC, our review paves the way for future research in this rapidly evolving field.
Collapse
Affiliation(s)
- Maria Urbanova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Marina Cihova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Verona Buocikova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Jan Slopovsky
- 2nd Department of Oncology, National Cancer Institute, Klenova 1, 833 10 Bratislava, Slovakia; Faculty of Medicine, Comenius University, Spitalska 24, 813 72 Bratislava, Slovakia
| | - Peter Dubovan
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; Department of Surgical Oncology, National CancerInstitute in Bratislava, Klenova 1, 833 10 Bratislava, Slovakia; Faculty of Medicine, Slovak Medical University in Bratislava, Limbová12, 833 03 Bratislava
| | - Daniel Pindak
- Department of Surgical Oncology, National CancerInstitute in Bratislava, Klenova 1, 833 10 Bratislava, Slovakia; Faculty of Medicine, Slovak Medical University in Bratislava, Limbová12, 833 03 Bratislava
| | - Miroslav Tomas
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; Department of Surgical Oncology, National CancerInstitute in Bratislava, Klenova 1, 833 10 Bratislava, Slovakia; Faculty of Medicine, Slovak Medical University in Bratislava, Limbová12, 833 03 Bratislava
| | - Laura García-Bermejo
- Biomarkers and Therapeutic Targets Group, Area4, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain
| | - Mercedes Rodríguez-Garrote
- Molecular Epidemiology and Predictive Tumor Markers Group, Area 3, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain; CIBERONC, Madrid, Spain
| | - Julie Earl
- Molecular Epidemiology and Predictive Tumor Markers Group, Area 3, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain; CIBERONC, Madrid, Spain
| | - Yvonne Kohl
- Department Bioprocessing & Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, 66280 Sulzbach, Germany
| | - Agapi Kataki
- 1st Department of Propaedeutic Surgery, National and Kapodistrian University of Athens, Vasilissis Sofias 114, 11527 Athens, Greece
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Instituttveien 18, 2002 Kjeller, Norway
| | - Bruno Sainz
- CIBERONC, Madrid, Spain; Instituto de Investigaciones Biomédicas"Alberto Sols" (IIBM), CSIC-UAM, 28029 Madrid, Spain; Biomarkers and Personalized Approach to Cancer (BIOPAC) Group, Area 3, Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain
| | - Bozena Smolkova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Alena Gabelova
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 84505 Bratislava, Slovakia..
| |
Collapse
|
14
|
Capacio BA, Shankara Narayanan JS, Vicente DA, Liu Y, LaPorte JP, Cox BF, Jaroch DB, Katz SC, White RR. Pressure-Enabled Drug Delivery (PEDD) of a class C TLR9 agonist in combination with checkpoint inhibitor therapy in a murine pancreatic cancer model. Surgery 2023; 174:666-673. [PMID: 37391328 DOI: 10.1016/j.surg.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/23/2023] [Accepted: 05/24/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND Systemic immunotherapy has had limited clinical benefit in pancreatic ductal adenocarcinoma. This is thought to be due to its desmoplastic immunosuppressive tumor microenvironment in addition to high intratumoral pressures that limit drug delivery. Recent preclinical cancer models and early-phase clinical trials have demonstrated the potential of toll-like receptor 9 agonists, including the synthetic CpG oligonucleotide SD-101, to stimulate a wide range of immune cells and eliminate suppressive myeloid cells. We hypothesized that Pressure-Enabled Drug Delivery via Pancreatic Retrograde Venous Infusion of toll-like receptor 9 agonist would improve responsiveness to systemic anti-programmed death receptor-1 checkpoint inhibitor therapy in a murine orthotopic pancreatic ductal adenocarcinoma model. METHODS Murine pancreatic ductal adenocarcinoma (KPC4580P) tumors were implanted into the pancreatic tails of C57BL/6J mice and treated 8 days after implantation. Mice were assigned to one of the following treatment groups: Pancreatic Retrograde Venous Infusion delivery of saline, Pancreatic Retrograde Venous Infusion delivery of toll-like receptor 9 agonist, systemic anti-programmed death receptor-1, systemic toll-like receptor 9 agonist, or the combination of Pancreatic Retrograde Venous Infusion delivery of toll-like receptor 9 agonist and systemic anti-programmed death receptor-1 (Combo). Fluorescently labeled toll-like receptor 9 agonist (radiant efficiency) was used to measure uptake of the drug on day 1. Changes in tumor burden were evaluated by necropsy at 2 different time points, 7 and 10 days after toll-like receptor 9 agonist treatment. Blood and tumors were collected at necropsy 10 days after toll-like receptor 9 agonist treatment for flow cytometric analysis of tumor-infiltrating leukocytes and plasma cytokines. RESULTS All mice analyzed survived to necropsy. Site of tumor fluorescence measurements revealed 3-fold higher intensity fluorescence in Pancreatic Retrograde Venous Infusion delivery of toll-like receptor 9 agonist compared to systemic toll-like receptor 9 agonist mice. Tumor weights were significantly lower in the Combo group compared to Pancreatic Retrograde Venous Infusion delivery of saline. Flow cytometry of the Combo group demonstrated significantly increased overall T-cell number, specifically CD4+ T-cells, and a trend toward increased CD8+ T-cells. Cytokine analysis showed significantly decreased IL-6 and CXCL1. CONCLUSION Pressure-Enabled Drug Delivery of toll-like receptor 9 agonist by Pancreatic Retrograde Venous Infusion with systemic anti-programmed death receptor-1 demonstrated improved pancreatic ductal adenocarcinoma tumor control in a murine pancreatic ductal adenocarcinoma model. These results support study of this combination therapy in pancreatic ductal adenocarcinoma patients and expansion of ongoing Pressure-Enabled Drug Delivery clinical trials.
Collapse
Affiliation(s)
| | | | - Diego A Vicente
- Uniformed Services University of Health Sciences, Bethsda, MD
| | - Yujia Liu
- TriSalus Life Sciences, Westminster, CO
| | | | | | | | - Steven C Katz
- TriSalus Life Sciences, Westminster, CO; Department of Surgery, Brown University Warren Alpert Medical School, Providence, RI
| | - Rebekah R White
- Department of Surgery, Moores Cancer Center, University of California San Diego, CA.
| |
Collapse
|
15
|
Su MC, Nethi SK, Dhanyamraju PK, Prabha S. Nanomedicine Strategies for Targeting Tumor Stroma. Cancers (Basel) 2023; 15:4145. [PMID: 37627173 PMCID: PMC10452920 DOI: 10.3390/cancers15164145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
The tumor stroma, or the microenvironment surrounding solid tumors, can significantly impact the effectiveness of cancer therapies. The tumor microenvironment is characterized by high interstitial pressure, a consequence of leaky vasculature, and dense stroma created by excessive deposition of various macromolecules such as collagen, fibronectin, and hyaluronic acid (HA). In addition, non-cancerous cells such as cancer-associated fibroblasts (CAFs) and the extracellular matrix (ECM) itself can promote tumor growth. In recent years, there has been increased interest in combining standard cancer treatments with stromal-targeting strategies or stromal modulators to improve therapeutic outcomes. Furthermore, the use of nanomedicine, which can improve the delivery and retention of drugs in the tumor, has been proposed to target the stroma. This review focuses on how different stromal components contribute to tumor progression and impede chemotherapeutic delivery. Additionally, this review highlights recent advancements in nanomedicine-based stromal modulation and discusses potential future directions for developing more effective stroma-targeted cancer therapies.
Collapse
Affiliation(s)
- Mei-Chi Su
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Susheel Kumar Nethi
- Nanovaccine Institute, Department of Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA;
| | - Pavan Kumar Dhanyamraju
- Fels Cancer Institute of Personalized Medicine, Lewis-Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Swayam Prabha
- Fels Cancer Institute of Personalized Medicine, Lewis-Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Temple University, Philadelphia, PA 19111, USA
| |
Collapse
|
16
|
Shafqat A, Omer MH, Ahmed EN, Mushtaq A, Ijaz E, Ahmed Z, Alkattan K, Yaqinuddin A. Reprogramming the immunosuppressive tumor microenvironment: exploiting angiogenesis and thrombosis to enhance immunotherapy. Front Immunol 2023; 14:1200941. [PMID: 37520562 PMCID: PMC10374407 DOI: 10.3389/fimmu.2023.1200941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/15/2023] [Indexed: 08/01/2023] Open
Abstract
This review focuses on the immunosuppressive effects of tumor angiogenesis and coagulation on the tumor microenvironment (TME). We summarize previous research efforts leveraging these observations and targeting these processes to enhance immunotherapy outcomes. Clinical trials have documented improved outcomes when combining anti-angiogenic agents and immunotherapy. However, their overall survival benefit over conventional therapy remains limited and certain tumors exhibit poor response to anti-angiogenic therapy. Additionally, whilst preclinical studies have shown several components of the tumor coagulome to curb effective anti-tumor immune responses, the clinical studies reporting combinations of anticoagulants with immunotherapies have demonstrated variable treatment outcomes. By reviewing the current state of the literature on this topic, we address the key questions and future directions in the field, the answers of which are crucial for developing effective strategies to reprogram the TME in order to further the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Mohamed H. Omer
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | - Ali Mushtaq
- Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Eman Ijaz
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Zara Ahmed
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | |
Collapse
|
17
|
Schepis T, De Lucia SS, Pellegrino A, del Gaudio A, Maresca R, Coppola G, Chiappetta MF, Gasbarrini A, Franceschi F, Candelli M, Nista EC. State-of-the-Art and Upcoming Innovations in Pancreatic Cancer Care: A Step Forward to Precision Medicine. Cancers (Basel) 2023; 15:3423. [PMID: 37444534 PMCID: PMC10341055 DOI: 10.3390/cancers15133423] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Pancreatic cancer remains a social and medical burden despite the tremendous advances that medicine has made in the last two decades. The incidence of pancreatic cancer is increasing, and it continues to be associated with high mortality and morbidity rates. The difficulty of early diagnosis (the lack of specific symptoms and biomarkers at early stages), the aggressiveness of the disease, and its resistance to systemic therapies are the main factors for the poor prognosis of pancreatic cancer. The only curative treatment for pancreatic cancer is surgery, but the vast majority of patients with pancreatic cancer have advanced disease at the time of diagnosis. Pancreatic surgery is among the most challenging surgical procedures, but recent improvements in surgical techniques, careful patient selection, and the availability of minimally invasive techniques (e.g., robotic surgery) have dramatically reduced the morbidity and mortality associated with pancreatic surgery. Patients who are not candidates for surgery may benefit from locoregional and systemic therapy. In some cases (e.g., patients for whom marginal resection is feasible), systemic therapy may be considered a bridge to surgery to allow downstaging of the cancer; in other cases (e.g., metastatic disease), systemic therapy is considered the standard approach with the goal of prolonging patient survival. The complexity of patients with pancreatic cancer requires a personalized and multidisciplinary approach to choose the best treatment for each clinical situation. The aim of this article is to provide a literature review of the available treatments for the different stages of pancreatic cancer.
Collapse
Affiliation(s)
- Tommaso Schepis
- Center for Diagnosis and Treatment of Digestive Diseases, CEMAD, Gastroenterology Department, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (T.S.); (S.S.D.L.); (A.P.); (A.d.G.); (R.M.); (G.C.); (A.G.)
- Department of Translational Medicine and Surgery, School of Medicine, Catholic University of the Sacred Heart of Rome, 00168 Rome, Italy
| | - Sara Sofia De Lucia
- Center for Diagnosis and Treatment of Digestive Diseases, CEMAD, Gastroenterology Department, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (T.S.); (S.S.D.L.); (A.P.); (A.d.G.); (R.M.); (G.C.); (A.G.)
- Department of Translational Medicine and Surgery, School of Medicine, Catholic University of the Sacred Heart of Rome, 00168 Rome, Italy
| | - Antonio Pellegrino
- Center for Diagnosis and Treatment of Digestive Diseases, CEMAD, Gastroenterology Department, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (T.S.); (S.S.D.L.); (A.P.); (A.d.G.); (R.M.); (G.C.); (A.G.)
- Department of Translational Medicine and Surgery, School of Medicine, Catholic University of the Sacred Heart of Rome, 00168 Rome, Italy
| | - Angelo del Gaudio
- Center for Diagnosis and Treatment of Digestive Diseases, CEMAD, Gastroenterology Department, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (T.S.); (S.S.D.L.); (A.P.); (A.d.G.); (R.M.); (G.C.); (A.G.)
- Department of Translational Medicine and Surgery, School of Medicine, Catholic University of the Sacred Heart of Rome, 00168 Rome, Italy
| | - Rossella Maresca
- Center for Diagnosis and Treatment of Digestive Diseases, CEMAD, Gastroenterology Department, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (T.S.); (S.S.D.L.); (A.P.); (A.d.G.); (R.M.); (G.C.); (A.G.)
- Department of Translational Medicine and Surgery, School of Medicine, Catholic University of the Sacred Heart of Rome, 00168 Rome, Italy
| | - Gaetano Coppola
- Center for Diagnosis and Treatment of Digestive Diseases, CEMAD, Gastroenterology Department, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (T.S.); (S.S.D.L.); (A.P.); (A.d.G.); (R.M.); (G.C.); (A.G.)
- Department of Translational Medicine and Surgery, School of Medicine, Catholic University of the Sacred Heart of Rome, 00168 Rome, Italy
| | - Michele Francesco Chiappetta
- Section of Gastroenterology and Hepatology, Promise, Policlinico Universitario Paolo Giaccone, 90127 Palermo, Italy;
- IBD-Unit, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Antonio Gasbarrini
- Center for Diagnosis and Treatment of Digestive Diseases, CEMAD, Gastroenterology Department, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (T.S.); (S.S.D.L.); (A.P.); (A.d.G.); (R.M.); (G.C.); (A.G.)
- Department of Translational Medicine and Surgery, School of Medicine, Catholic University of the Sacred Heart of Rome, 00168 Rome, Italy
| | - Francesco Franceschi
- Department of Emergency Anesthesiological and Reanimation Sciences, Fondazione Universitaria Policlinico Agostino Gemelli di Roma, Catholic University of the Sacred Heart of Rome, 00168 Rome, Italy; (F.F.); (M.C.)
| | - Marcello Candelli
- Department of Emergency Anesthesiological and Reanimation Sciences, Fondazione Universitaria Policlinico Agostino Gemelli di Roma, Catholic University of the Sacred Heart of Rome, 00168 Rome, Italy; (F.F.); (M.C.)
| | - Enrico Celestino Nista
- Center for Diagnosis and Treatment of Digestive Diseases, CEMAD, Gastroenterology Department, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (T.S.); (S.S.D.L.); (A.P.); (A.d.G.); (R.M.); (G.C.); (A.G.)
- Department of Translational Medicine and Surgery, School of Medicine, Catholic University of the Sacred Heart of Rome, 00168 Rome, Italy
| |
Collapse
|
18
|
Rebelo R, Xavier CPR, Giovannetti E, Vasconcelos MH. Fibroblasts in pancreatic cancer: molecular and clinical perspectives. Trends Mol Med 2023; 29:439-453. [PMID: 37100646 DOI: 10.1016/j.molmed.2023.03.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 04/28/2023]
Abstract
Pancreatic stellate cells (PSCs) and cancer-associated fibroblasts (CAFs) are highly abundant cells in the pancreatic tumor microenvironment (TME) that modulate desmoplasia. The formation of a dense stroma leads to immunosuppression and therapy resistance that are major causes of treatment failure in pancreatic ductal adenocarcinoma (PDAC). Recent evidence suggests that several subpopulations of CAFs in the TME can interconvert, explaining the dual roles (antitumorigenic and protumorigenic) of CAFs in PDAC and the contradictory results of CAF-targeted therapies in clinical trials. This highlights the need to clarify CAF heterogeneity and their interactions with PDAC cells. This review focuses on the communication between activated PSCs/CAFs and PDAC cells, as well as on the mechanisms underlying this crosstalk. CAF-focused therapies and emerging biomarkers are also outlined.
Collapse
Affiliation(s)
- Rita Rebelo
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-135 Porto, Portugal; Department of Biological Sciences, Faculty of Pharmacy of the University of Porto (FFUP), Porto, Portugal
| | - Cristina P R Xavier
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-135 Porto, Portugal
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Fondazione Pisana per La Scienza, Pisa, Italy
| | - M Helena Vasconcelos
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-135 Porto, Portugal; Department of Biological Sciences, Faculty of Pharmacy of the University of Porto (FFUP), Porto, Portugal.
| |
Collapse
|
19
|
Wiedmann L, De Angelis Rigotti F, Vaquero-Siguero N, Donato E, Espinet E, Moll I, Alsina-Sanchis E, Bohnenberger H, Fernandez-Florido E, Mülfarth R, Vacca M, Gerwing J, Conradi LC, Ströbel P, Trumpp A, Mogler C, Fischer A, Rodriguez-Vita J. HAPLN1 potentiates peritoneal metastasis in pancreatic cancer. Nat Commun 2023; 14:2353. [PMID: 37095087 PMCID: PMC10126109 DOI: 10.1038/s41467-023-38064-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 04/12/2023] [Indexed: 04/26/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) frequently metastasizes into the peritoneum, which contributes to poor prognosis. Metastatic spreading is promoted by cancer cell plasticity, yet its regulation by the microenvironment is incompletely understood. Here, we show that the presence of hyaluronan and proteoglycan link protein-1 (HAPLN1) in the extracellular matrix enhances tumor cell plasticity and PDAC metastasis. Bioinformatic analysis showed that HAPLN1 expression is enriched in the basal PDAC subtype and associated with worse overall patient survival. In a mouse model for peritoneal carcinomatosis, HAPLN1-induced immunomodulation favors a more permissive microenvironment, which accelerates the peritoneal spread of tumor cells. Mechanistically, HAPLN1, via upregulation of tumor necrosis factor receptor 2 (TNFR2), promotes TNF-mediated upregulation of Hyaluronan (HA) production, facilitating EMT, stemness, invasion and immunomodulation. Extracellular HAPLN1 modifies cancer cells and fibroblasts, rendering them more immunomodulatory. As such, we identify HAPLN1 as a prognostic marker and as a driver for peritoneal metastasis in PDAC.
Collapse
Affiliation(s)
- Lena Wiedmann
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, 69120, Heidelberg, Germany
| | - Francesca De Angelis Rigotti
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Tumor-Stroma Communication Laboratory, Centro de Investigación Príncipe Felipe, 46012, Valencia, Spain
| | - Nuria Vaquero-Siguero
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Elisa Donato
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- HI-STEM - Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, 69120, Heidelberg, Germany
| | - Elisa Espinet
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- HI-STEM - Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, 69120, Heidelberg, Germany
- Department of Pathology and Experimental Therapy, School of Medicine, University of Barcelona (UB), L'Hospitalet de Llobregat, Barcelona, Spain
- Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, 08908, Spain
| | - Iris Moll
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Elisenda Alsina-Sanchis
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Institute for Clinical Chemistry, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Hanibal Bohnenberger
- Institute of Pathology, University Medical Center Göttingen, Georg-August-University, 37075, Göttingen, Germany
| | - Elena Fernandez-Florido
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Ronja Mülfarth
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, 69120, Heidelberg, Germany
| | - Margherita Vacca
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Jennifer Gerwing
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Lena-Christin Conradi
- Clinic of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075, Göttingen, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, Georg-August-University, 37075, Göttingen, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- HI-STEM - Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, 69120, Heidelberg, Germany
| | - Carolin Mogler
- Institute of Pathology, Technical University of Munich, 81675, Munich, Germany
| | - Andreas Fischer
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- Institute for Clinical Chemistry, University Medical Center Göttingen, 37075, Göttingen, Germany.
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany.
| | - Juan Rodriguez-Vita
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- Tumor-Stroma Communication Laboratory, Centro de Investigación Príncipe Felipe, 46012, Valencia, Spain.
| |
Collapse
|
20
|
Fudalej M, Kwaśniewska D, Nurzyński P, Badowska-Kozakiewicz A, Mękal D, Czerw A, Sygit K, Deptała A. New Treatment Options in Metastatic Pancreatic Cancer. Cancers (Basel) 2023; 15:cancers15082327. [PMID: 37190255 DOI: 10.3390/cancers15082327] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 05/17/2023] Open
Abstract
Pancreatic cancer (PC) is the seventh leading cause of cancer death across the world. Poor prognosis of PC is associated with several factors, such as diagnosis at an advanced stage, early distant metastases, and remarkable resistance to most conventional treatment options. The pathogenesis of PC seems to be significantly more complicated than originally assumed, and findings in other solid tumours cannot be extrapolated to this malignancy. To develop effective treatment schemes prolonging patient survival, a multidirectional approach encompassing different aspects of the cancer is needed. Particular directions have been established; however, further studies bringing them all together and connecting the strengths of each therapy are needed. This review summarises the current literature and provides an overview of new or emerging therapeutic strategies for the more effective management of metastatic PC.
Collapse
Affiliation(s)
- Marta Fudalej
- Department of Oncology Propaedeutics, Medical University of Warsaw, 01-445 Warsaw, Poland
- Department of Oncology, Central Clinical Hospital of the Ministry of Interior and Administration, 02-507 Warsaw, Poland
| | - Daria Kwaśniewska
- Department of Oncology, Central Clinical Hospital of the Ministry of Interior and Administration, 02-507 Warsaw, Poland
| | - Paweł Nurzyński
- Department of Oncology, Central Clinical Hospital of the Ministry of Interior and Administration, 02-507 Warsaw, Poland
| | | | - Dominika Mękal
- Department of Oncology Propaedeutics, Medical University of Warsaw, 01-445 Warsaw, Poland
| | - Aleksandra Czerw
- Department of Health Economics and Medical Law, Medical University of Warsaw, 01-445 Warsaw, Poland
- Department of Economic and System Analyses, National Institute of Public Health NIH-National Research Institute, 00-791 Warsaw, Poland
| | - Katarzyna Sygit
- Faculty of Health Sciences, Calisia University, 62-800 Kalisz, Poland
| | - Andrzej Deptała
- Department of Oncology Propaedeutics, Medical University of Warsaw, 01-445 Warsaw, Poland
- Department of Oncology, Central Clinical Hospital of the Ministry of Interior and Administration, 02-507 Warsaw, Poland
| |
Collapse
|
21
|
Tanaka HY, Nakazawa T, Enomoto A, Masamune A, Kano MR. Therapeutic Strategies to Overcome Fibrotic Barriers to Nanomedicine in the Pancreatic Tumor Microenvironment. Cancers (Basel) 2023; 15:cancers15030724. [PMID: 36765684 PMCID: PMC9913712 DOI: 10.3390/cancers15030724] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Pancreatic cancer is notorious for its dismal prognosis. The enhanced permeability and retention (EPR) effect theory posits that nanomedicines (therapeutics in the size range of approximately 10-200 nm) selectively accumulate in tumors. Nanomedicine has thus been suggested to be the "magic bullet"-both effective and safe-to treat pancreatic cancer. However, the densely fibrotic tumor microenvironment of pancreatic cancer impedes nanomedicine delivery. The EPR effect is thus insufficient to achieve a significant therapeutic effect. Intratumoral fibrosis is chiefly driven by aberrantly activated fibroblasts and the extracellular matrix (ECM) components secreted. Fibroblast and ECM abnormalities offer various potential targets for therapeutic intervention. In this review, we detail the diverse strategies being tested to overcome the fibrotic barriers to nanomedicine in pancreatic cancer. Strategies that target the fibrotic tissue/process are discussed first, which are followed by strategies to optimize nanomedicine design. We provide an overview of how a deeper understanding, increasingly at single-cell resolution, of fibroblast biology is revealing the complex role of the fibrotic stroma in pancreatic cancer pathogenesis and consider the therapeutic implications. Finally, we discuss critical gaps in our understanding and how we might better formulate strategies to successfully overcome the fibrotic barriers in pancreatic cancer.
Collapse
Affiliation(s)
- Hiroyoshi Y. Tanaka
- Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
| | - Takuya Nakazawa
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
| | - Atsushi Enomoto
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya-shi 466-8550, Aichi, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai-shi 980-8574, Miyagi, Japan
| | - Mitsunobu R. Kano
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
- Correspondence:
| |
Collapse
|
22
|
Setting the stage for universal pharmacological targeting of the glycocalyx. CURRENT TOPICS IN MEMBRANES 2023; 91:61-88. [PMID: 37080681 DOI: 10.1016/bs.ctm.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
All cells in the human body are covered by a complex meshwork of sugars as well as proteins and lipids to which these sugars are attached, collectively termed the glycocalyx. Over the past few decades, the glycocalyx has been implicated in a range of vital cellular processes in health and disease. Therefore, it has attracted considerable interest as a therapeutic target. Considering its omnipresence and its relevance for various areas of cell biology, the glycocalyx should be a versatile platform for therapeutic intervention, however, the full potential of the glycocalyx as therapeutic target is yet to unfold. This might be attributable to the fact that glycocalyx alterations are currently discussed mainly in the context of specific diseases. In this perspective review, we shift the attention away from a disease-centered view of the glycocalyx, focusing on changes in glycocalyx state. Furthermore, we survey important glycocalyx-targeted drugs currently available and finally discuss future steps. We hope that this approach will inspire a unified, holistic view of the glycocalyx in disease, helping to stimulate novel glycocalyx-targeted therapy strategies.
Collapse
|
23
|
Yamada T, Tateishi R, Iwai M, Tanaka M, Ijichi H, Sano M, Koike K, Todo T. Overcoming resistance of stroma-rich pancreatic cancer with focal adhesion kinase inhibitor combined with G47Δ and immune checkpoint inhibitors. Mol Ther Oncolytics 2022; 28:31-43. [PMID: 36619294 PMCID: PMC9801088 DOI: 10.1016/j.omto.2022.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease known for its dense tumor stroma. Focal adhesion kinase inhibitor (FAKi), a non-receptor type tyrosine kinase inhibitor, reduces the tumor stroma. G47Δ, a third-generation oncolytic herpes simplex virus type 1, destroys tumor cells selectively and induces antitumor immune responses. This study evaluates the efficacy of FAKi and G47Δ in PDAC models in combination with or without immune checkpoint inhibitors. G47Δ was effective in human PDAC cell lines in vitro and in subcutaneous as well as orthotopic tumor models. Transgenic mouse-derived #146 cells were used to generate subcutaneous PDAC tumors with rich stroma in immunocompetent mice. In this #146 tumor model, the efficacy of FAKi was synergistically augmented when combined with G47Δ, which reflected not only a decreased stromal content but also a significant shifting of the tumor microenvironment toward immune stimulation. In transgenic autochthonous PKF mice, a rare model that develops stroma-rich PDAC with a 100% penetrance and resembles human PDAC in various aspects, the prolongation of survival compared with FAKi alone was achieved only when FAKi was combined with G47Δ and immune checkpoint inhibitors. The FAKi combination therapy may be useful to overcome the treatment resistance of stroma-rich PDAC.
Collapse
Affiliation(s)
- Tomoharu Yamada
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, and Department of Surgical Neuro-Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan,Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Ryosuke Tateishi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Miwako Iwai
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, and Department of Surgical Neuro-Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Minoru Tanaka
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, and Department of Surgical Neuro-Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hideaki Ijichi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Makoto Sano
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tomoki Todo
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, and Department of Surgical Neuro-Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan,Corresponding author Tomoki Todo, M.D., Ph.D., Division of Innovative Cancer Therapy, Advanced Clinical Research Center, and Department of Surgical Neuro-Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.
| |
Collapse
|
24
|
Han ZY, Chen QW, Fu ZJ, Cheng SX, Zhang XZ. Probiotic Spore-Based Oral Drug Delivery System for Enhancing Pancreatic Cancer Chemotherapy by Gut-Pancreas-Axis-Guided Delivery. NANO LETTERS 2022; 22:8608-8617. [PMID: 36259687 DOI: 10.1021/acs.nanolett.2c03131] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The chemotherapeutic effectiveness of pancreatic ductal adenocarcinoma (PDAC) is severely hampered by insufficient intratumoral delivery of antitumor drugs. Here, we demonstrate that enhanced pancreatic cancer chemotherapy can be achieved by probiotic spore-based oral drug delivery system via gut-pancreas axis translocation. Clostridium butyricum spores resistant to harsh external stress are extracted as drug carriers, which are further covalently conjugated with gemcitabine-loaded mesoporous silicon nanoparticles (MGEM). The spore-based oral drug delivery system (SPORE-MGEM) migrates upstream into pancreatic tumors from the gut, which increases intratumoral drug accumulation by ∼3-fold compared with MGEM. In two orthotopic PDAC mice models, tumor growth is markedly suppressed by SPORE-MGEM without obvious side effects. Leveraging the biological contact of the gut-pancreas axis, this probiotic spore-based oral drug delivery system reveals a new avenue for enhancing PDAC chemotherapy.
Collapse
Affiliation(s)
- Zi-Yi Han
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Qi-Wen Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Zhuang-Jiong Fu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
- Wuhan Research Centre for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, People's Republic of China
| |
Collapse
|
25
|
Rimal R, Desai P, Daware R, Hosseinnejad A, Prakash J, Lammers T, Singh S. Cancer-associated fibroblasts: Origin, function, imaging, and therapeutic targeting. Adv Drug Deliv Rev 2022; 189:114504. [PMID: 35998825 DOI: 10.1016/j.addr.2022.114504] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/10/2022] [Accepted: 08/17/2022] [Indexed: 02/06/2023]
Abstract
The tumor microenvironment (TME) is emerging as one of the primary barriers in cancer therapy. Cancer-associated fibroblasts (CAF) are a common inhabitant of the TME in several tumor types and play a critical role in tumor progression and drug resistance via different mechanisms such as desmoplasia, angiogenesis, immune modulation, and cancer metabolism. Due to their abundance and significance in pro-tumorigenic mechanisms, CAF are gaining attention as a diagnostic target as well as to improve the efficacy of cancer therapy by their modulation. In this review, we highlight existing imaging techniques that are used for the visualization of CAF and CAF-induced fibrosis and provide an overview of compounds that are known to modulate CAF activity. Subsequently, we also discuss CAF-targeted and CAF-modulating nanocarriers. Finally, our review addresses ongoing challenges and provides a glimpse into the prospects that can spearhead the transition of CAF-targeted therapies from opportunity to reality.
Collapse
Affiliation(s)
- Rahul Rimal
- Max Planck Institute for Medical Research (MPImF), Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Prachi Desai
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forkenbeckstrasse 50, 52074 Aachen, Germany
| | - Rasika Daware
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Aisa Hosseinnejad
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forkenbeckstrasse 50, 52074 Aachen, Germany
| | - Jai Prakash
- Department of Advanced Organ Bioengineering and Therapeutics, Section: Engineered Therapeutics, Technical Medical Centre, University of Twente, 7500AE Enschede, the Netherlands.
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | - Smriti Singh
- Max Planck Institute for Medical Research (MPImF), Jahnstrasse 29, 69120 Heidelberg, Germany.
| |
Collapse
|
26
|
Hopkins K, Buno K, Romick N, Freitas dos Santos AC, Tinsley S, Wakelin E, Kennedy J, Ladisch M, Allen-Petersen BL, Solorio L. Sustained degradation of hyaluronic acid using an in situ forming implant. PNAS NEXUS 2022; 1:pgac193. [PMID: 36714867 PMCID: PMC9802073 DOI: 10.1093/pnasnexus/pgac193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/15/2022] [Indexed: 02/01/2023]
Abstract
In pancreatic cancer, excessive hyaluronic acid (HA) in the tumor microenvironment creates a viscous stroma, which reduces systemic drug transport into the tumor and correlates with poor patient prognosis. HA can be degraded through both enzymatic and nonenzymatic methods to improve mass transport properties. Here, we use an in situ forming implant to provide sustained degradation of HA directly at a local, targeted site. We formulated and characterized an implant capable of sustained release of hyaluronidase (HAase) using 15 kDa poly(lactic-co-glycolic) acid and bovine testicular HAase. The implant releases bioactive HAase to degrade the HA through enzymatic hydrolysis at early timepoints. In the first 24 h, 17.9% of the HAase is released, which can reduce the viscosity of a 10 mg/mL HA solution by 94.1% and deplete the HA content within primary human pancreatic tumor samples and ex vivo murine tumors. At later timepoints, as lower quantities of HAase are released (51.4% released in total over 21 d), the degradation of HA is supplemented by the acidic by-products that accumulate as a result of implant degradation. Acidic conditions degrade HA through nonenzymatic methods. This formulation has potential as an intratumoral injection to allow sustained degradation of HA at the pancreatic tumor site.
Collapse
Affiliation(s)
- Kelsey Hopkins
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Kevin Buno
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Natalie Romick
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Antonio Carlos Freitas dos Santos
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA,Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Samantha Tinsley
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Elizabeth Wakelin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Jacqueline Kennedy
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Michael Ladisch
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA,Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
27
|
Turpin A, Neuzillet C, Colle E, Dusetti N, Nicolle R, Cros J, de Mestier L, Bachet JB, Hammel P. Therapeutic advances in metastatic pancreatic cancer: a focus on targeted therapies. Ther Adv Med Oncol 2022; 14:17588359221118019. [PMID: 36090800 PMCID: PMC9459481 DOI: 10.1177/17588359221118019] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/18/2022] [Indexed: 12/12/2022] Open
Abstract
Mortality from pancreatic ductal adenocarcinoma (PDAC) is increasing worldwide and effective new treatments are urgently needed. The current treatment of metastatic PDAC in fit patients is based on two chemotherapy combinations (FOLFIRINOX and gemcitabine plus nab-paclitaxel) which were validated more than 8 years ago. Although almost all treatments targeting specific molecular alterations have failed so far when administered to unselected patients, encouraging results were observed in the small subpopulations of patients with germline BRCA 1/2 mutations, and somatic gene fusions (neurotrophic tyrosine receptor kinase, Neuregulin 1, which are enriched in KRAS wild-type PDAC), KRAS G12C mutations, or microsatellite instability. While targeted tumor metabolism therapies and immunotherapy have been disappointing, they are still under investigation in combination with other drugs. Optimizing pharmacokinetics and adapting available chemotherapies based on molecular signatures are other promising avenues of research. This review evaluates the current expectations and limits of available treatments and analyses the existing trials. A permanent search for actionable vulnerabilities in PDAC tumor cells and microenvironments will probably result in a more personalized therapeutic approach, keeping in mind that supportive care must also play a major role if real clinical efficacy is to be achieved in these patients.
Collapse
Affiliation(s)
- Anthony Turpin
- Department of Medical Oncology, CNRS UMR9020,
Inserm UMR-S 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to
Therapies, University Lille, CHU Lille, Lille, France
| | - Cindy Neuzillet
- Department of Medical Oncology, Curie
Institute, Versailles Saint-Quentin University, Paris-Saclay University,
Saint-Cloud, France
| | - Elise Colle
- Department of Digestive and Medical Oncology,
Hospital Paul Brousse (AP-HP), Villejuif, University of Paris Saclay,
France
| | - Nelson Dusetti
- Cancer Research Center of Marseille, CRCM,
Inserm, CNRS, Paoli-Calmettes Institut, Aix-Marseille University, Marseille,
France
| | - Rémy Nicolle
- Centre de Recherche sur l’Inflammation, INSERM,
U1149, CNRS, ERL 8252, Université de Paris Cité, Paris, France
| | - Jérôme Cros
- Department of Pathology, University of Paris
Cité, Hospital Beaujon (AP-HP), Clichy, France
| | - Louis de Mestier
- Department of Gastroenterology and
Pancreatology, University of Paris Cité, Hospital Beaujon (AP-HP), Clichy,
France
| | - Jean-Baptiste Bachet
- Department of Gastroenterology and Digestive
Oncology, Pitié-Salpêtrière Hospital, Sorbonne University, UPMC University,
Paris, France
| | - Pascal Hammel
- Department of Digestive and Medical Oncology,
Hôpital Paul Brousse (AP-HP), 12 Avenue Paul Vaillant-Couturier, Villejuif
94800, University of Paris Saclay, France
| |
Collapse
|
28
|
Rudloff U. Emerging kinase inhibitors for the treatment of pancreatic ductal adenocarcinoma. Expert Opin Emerg Drugs 2022; 27:345-368. [PMID: 36250721 PMCID: PMC9793333 DOI: 10.1080/14728214.2022.2134346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/22/2022] [Accepted: 10/06/2022] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Pancreatic cancer is one of the deadliest solid organ cancers. In the absence of specific warning symptoms pancreatic cancer is diagnosed notoriously late. Current systemic chemotherapy regimens extend survival by a mere few months. With the advances in genetic, proteomic, and immunological profiling there is strong rationale to test kinase inhibitors to improve outcome. AREAS COVERED This review article provides a comprehensive summary of approved treatments and past, present, and future developments of kinase inhibitors in pancreatic cancer. Emerging roles of protein kinase inhibitors are discussed in the context of the unique stroma, the lack of high-prevalence therapeutic targets and rapid emergence of acquired resistance, novel immuno-oncology kinase targets, and recent medicinal chemistry advances. EXPERT OPINION Due to the to-date frequent failure of protein kinase inhibitors indiscriminately administered to unselected pancreatic cancer patients, there is a shift toward the development of these agents in molecularly defined subgroups which are more likely to respond. The development of accurate biomarkers to select patients who are the best candidates based on a detailed understanding of mechanism of action, pro-survival roles, and mediation of resistance of targeted kinases will be critical for the future development of protein kinase inhibitors in this disease.
Collapse
Affiliation(s)
- Udo Rudloff
- Rare Tumor Initiative, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
29
|
Seki T, Saida Y, Kishimoto S, Lee J, Otowa Y, Yamamoto K, Chandramouli GV, Devasahayam N, Mitchell JB, Krishna MC, Brender JR. PEGPH20, a PEGylated human hyaluronidase, induces radiosensitization by reoxygenation in pancreatic cancer xenografts. A molecular imaging study. Neoplasia 2022; 30:100793. [PMID: 35523073 PMCID: PMC9079680 DOI: 10.1016/j.neo.2022.100793] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/14/2022]
Abstract
PURPOSE PEGylated human hyaluronidase (PEGPH20) enzymatically depletes hyaluronan, an important component of the extracellular matrix, increasing the delivery of therapeutic molecules. Combinations of chemotherapy and PEGPH20, however, have been unsuccessful in Phase III clinical trials. We hypothesize that by increasing tumor oxygenation by improving vascular patency and perfusion, PEGPH20 will also act as a radiosensitization agent. EXPERIMENTAL DESIGN The effect of PEGPH20 on radiation treatment was analyzed with respect to tumor growth, survival time, p02, local blood volume, and the perfusion/permeability of blood vessels in a human pancreatic adenocarcinoma BxPC3 mouse model overexpressing hyaluronan synthase 3 (HAS3). RESULTS Mice overexpressing HAS3 developed fast growing, radiation resistant tumors that became rapidly more hypoxic as time progressed. Treatment with PEGPH20 increased survival times when used in combination with radiation therapy, significantly more than either radiation therapy or PEGPH20 alone. In mice that overexpressed HAS3, EPR imaging showed an increase in local pO2 that could be linked to increases in perfusion/permeability and local blood volume immediately after PEGPH20 treatment. Hyperpolarized [1-13C] pyruvate suggested PEGPH20 caused a metabolic shift towards decreased glycolytic flux. These effects were confined to the mice overexpressing HAS3 - no effect of PEGPH20 on survival, radiation treatment, or pO2 was seen in wild type BxPC3 tumors. CONCLUSIONS PEGPH20 may be useful for radiosensitization of pancreatic cancer but only in the subset of tumors with substantial hyaluronan accumulation. The response of the treatment may potentially be monitored by non-invasive imaging of the hemodynamic and metabolic changes in the tumor microenvironment.
Collapse
Affiliation(s)
- Tomohiro Seki
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, United States; Josai University, Faculty of Pharmaceutical Sciences, Sakado, Japan
| | - Yu Saida
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, United States; Department of Respiratory Medicine and Infectious Diseases, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Shun Kishimoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, United States
| | - Jisook Lee
- Halozyme Therapeutics, San Diego, California, United States
| | - Yasunori Otowa
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, United States
| | - Kazutoshi Yamamoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, United States
| | - Gadisetti Vr Chandramouli
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, United States
| | - Nallathamby Devasahayam
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, United States
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, United States
| | - Murali C Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, United States
| | - Jeffery R Brender
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, United States.
| |
Collapse
|
30
|
Boyd LNC, Andini KD, Peters GJ, Kazemier G, Giovannetti E. Heterogeneity and plasticity of cancer-associated fibroblasts in the pancreatic tumor microenvironment. Semin Cancer Biol 2022; 82:184-196. [PMID: 33737108 DOI: 10.1016/j.semcancer.2021.03.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/17/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a notably poor prognosis, in urgent need of improved treatment strategies. The desmoplastic PDAC tumor microenvironment (TME), marked by a high concentration of cancer-associated-fibroblasts (CAFs), is a dynamic part of PDAC pathophysiology which occasions a variety of effects throughout the course of pancreatic tumorigenesis and disease evolution. A better understanding of the desmoplastic TME and CAF biology in particular, should provide new opportunities for improving therapeutics. That CAFs have a tumor-supportive role in oncogenesis is well known, yet research evidence has shown that CAFs also have tumor-repressive functions. In this review, we seek to clarify the intriguing heterogeneity and plasticity of CAFs and their ambivalent role in PDAC tumorigenesis and progression. Additionally, we provide recommendations to advance the implementation of CAF-directed PDAC care. An improved understanding of CAFs' origins, spatial location, functional diversity, and marker determination, as well as CAF behavior during the course of PDAC progression and metastasis will provide essential knowledge for the future improvement of therapeutic strategies for patients suffering from PDAC.
Collapse
Affiliation(s)
- Lenka N C Boyd
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, VU University, De Boelelaan 1118, 1081 HZ, Postbus 7057, 1007 MB, Amsterdam, the Netherlands; Department of Medical Oncology, Lab of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, De Boelelaan 1118, 1081 HZ, Postbus 7057, 1007 MB, Amsterdam, the Netherlands.
| | - Katarina D Andini
- Department of Medical Oncology, Lab of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, De Boelelaan 1118, 1081 HZ, Postbus 7057, 1007 MB, Amsterdam, the Netherlands.
| | - Godefridus J Peters
- Department of Medical Oncology, Lab of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, De Boelelaan 1118, 1081 HZ, Postbus 7057, 1007 MB, Amsterdam, the Netherlands; Department of Biochemistry, Medical University of Gdansk, Marii Skłodowskiej-Curie 3a, 80-210, Gdańsk, Poland.
| | - Geert Kazemier
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, VU University, De Boelelaan 1118, 1081 HZ, Postbus 7057, 1007 MB, Amsterdam, the Netherlands.
| | - Elisa Giovannetti
- Department of Medical Oncology, Lab of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, De Boelelaan 1118, 1081 HZ, Postbus 7057, 1007 MB, Amsterdam, the Netherlands; Cancer Pharmacology Lab, AIRC Start-Up Unit, Fondazione Pisana per la Scienza, Via Ferruccio Giovannini, 13, 56017, San Giuliano Terme PI, Pisa, Italy.
| |
Collapse
|
31
|
Garcia Garcia CJ, Huang Y, Fuentes NR, Turner MC, Monberg ME, Lin D, Nguyen ND, Fujimoto TN, Zhao J, Lee JJ, Bernard V, Yu M, Delahoussaye AM, Jimenez Sacarello I, Caggiano EG, Phan JL, Deorukhkar A, Molkentine JM, Saur D, Maitra A, Taniguchi CM. Stromal HIF2 Regulates Immune Suppression in the Pancreatic Cancer Microenvironment. Gastroenterology 2022; 162:2018-2031. [PMID: 35216965 PMCID: PMC9278556 DOI: 10.1053/j.gastro.2022.02.024] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 01/11/2022] [Accepted: 02/11/2022] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinoma (PDAC) has a hypoxic, immunosuppressive stroma that contributes to its resistance to immune checkpoint blockade therapies. The hypoxia-inducible factors (HIFs) mediate the cellular response to hypoxia, but their role within the PDAC tumor microenvironment remains unknown. METHODS We used a dual recombinase mouse model to delete Hif1α or Hif2α in α-smooth muscle actin-expressing cancer-associated fibroblasts (CAFs) arising within spontaneous pancreatic tumors. The effects of CAF HIF2α expression on tumor progression and composition of the tumor microenvironment were evaluated by Kaplan-Meier analysis, reverse transcription quantitative real-time polymerase chain reaction, histology, immunostaining, and by both bulk and single-cell RNA sequencing. CAF-macrophage crosstalk was modeled ex vivo using conditioned media from CAFs after treatment with hypoxia and PT2399, an HIF2 inhibitor currently in clinical trials. Syngeneic flank and orthotopic PDAC models were used to assess whether HIF2 inhibition improves response to immune checkpoint blockade. RESULTS CAF-specific deletion of Hif2α, but not Hif1α, suppressed PDAC tumor progression and growth, and improved survival of mice by 50% (n = 21-23 mice/group, Log-rank P = .0009). Deletion of CAF-HIF2 modestly reduced tumor fibrosis and significantly decreased the intratumoral recruitment of immunosuppressive M2 macrophages and regulatory T cells. Treatment with the clinical HIF2 inhibitor PT2399 significantly reduced in vitro macrophage chemotaxis and M2 polarization, and improved tumor responses to immunotherapy in both syngeneic PDAC mouse models. CONCLUSIONS Together, these data suggest that stromal HIF2 is an essential component of PDAC pathobiology and is a druggable therapeutic target that could relieve tumor microenvironment immunosuppression and enhance immune responses in this disease.
Collapse
Affiliation(s)
- Carolina J Garcia Garcia
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center Houston, Texas; School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Yanqing Huang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Natividad R Fuentes
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Madeleine C Turner
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Maria E Monberg
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniel Lin
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nicholas D Nguyen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tara N Fujimoto
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jun Zhao
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jaewon J Lee
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vincent Bernard
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center Houston, Texas; Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Meifang Yu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Abagail M Delahoussaye
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Emily G Caggiano
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center Houston, Texas
| | - Jae L Phan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amit Deorukhkar
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jessica M Molkentine
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dieter Saur
- Division of Translational Cancer Research, German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany
| | - Anirban Maitra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cullen M Taniguchi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
32
|
Xiao W, Pahlavanneshan M, Eun CY, Zhang X, DeKalb C, Mahgoub B, Knaneh-Monem H, Shah S, Sohrabi A, Seidlits SK, Hill R. Matrix stiffness mediates pancreatic cancer chemoresistance through induction of exosome hypersecretion in a cancer associated fibroblasts-tumor organoid biomimetic model. Matrix Biol Plus 2022; 14:100111. [PMID: 35619988 PMCID: PMC9126837 DOI: 10.1016/j.mbplus.2022.100111] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 12/26/2022] Open
Abstract
Pancreatic cancer organoid-stromal fibroblasts co-culture displayed significant chemoresistance in 3D culture system. Cancer associated fibroblasts in the physiologically relevant matrix system tended to be more phenotypically activated. Increased extracellular matrix stiffness induces hypersecretion of chemoresistance-promoting exosomes in a cancer associated fibroblasts-tumor organoid biomimetic model system.
In pancreatic ductal adenocarcinoma (PDAC), the abundant stromal cells which comprise the tumor microenvironment constitute more than 90% of the primary tumor bulk. Moreover, this desmoplastic environment has been found to be three times stiffer than normal pancreas tissue. Despite the importance of studying the desmoplastic environment of PDAC, there is still a lack of models designed to adequately recapitulate this complex stiff microenvironment, a critical hallmark of the disease that has been shown to induce chemoresistance. Here, we present a bio-mimetic, 3-dimensional co-culture system that integrates tumor organoids and host-matching stromal cancer associated-fibroblasts (CAFs) that recapitulates the complex, fibrotic matrix of PDAC using advanced biomaterials. With this model, we show that matrix-activated CAFs are able to “re-engineer” the fibrotic environment into a significantly stiffer environment through lysyl-oxidase dependent crosslinking. Moreover, we show that culture of CAFs in this model leads to an increase of exosomes; extracellular vesicles known to promote chemoresistance. Finally, using previously identified exosome inhibitors, climbazole and imipramine, we demonstrate how abrogation of exosome hypersecretion can reduce matrix stiffness-induced chemoresistance. These data highlight the importance of the development of new models that recapitulate not only the cellular composition found in PDAC tumors, but also the biophysical stresses, like stiffness, that the cells are exposed to in order to identify therapies that can overcome this critical feature which can contribute to the chemoresistance observed in patients. We believe that the 3D bio-mimetic model we have developed will be a valuable tool for the development, testing, and optimization of “mechano-medicines” designed to target the biophysical forces that lead to tumor growth and chemoresistance.
Collapse
Affiliation(s)
- Weikun Xiao
- Lawrence J. Ellison Institute for Transformative Medicine of USC, Los Angeles, CA 90064, United States
| | - Mahsa Pahlavanneshan
- Lawrence J. Ellison Institute for Transformative Medicine of USC, Los Angeles, CA 90064, United States
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90007, United States
| | - Chae-Young Eun
- Lawrence J. Ellison Institute for Transformative Medicine of USC, Los Angeles, CA 90064, United States
| | - Xinyu Zhang
- Lawrence J. Ellison Institute for Transformative Medicine of USC, Los Angeles, CA 90064, United States
| | - Charlene DeKalb
- Lawrence J. Ellison Institute for Transformative Medicine of USC, Los Angeles, CA 90064, United States
| | - Bayan Mahgoub
- Lawrence J. Ellison Institute for Transformative Medicine of USC, Los Angeles, CA 90064, United States
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Hanaa Knaneh-Monem
- Lawrence J. Ellison Institute for Transformative Medicine of USC, Los Angeles, CA 90064, United States
| | - Sana Shah
- Lawrence J. Ellison Institute for Transformative Medicine of USC, Los Angeles, CA 90064, United States
- Health Promotion and Disease Prevention Studies, University of Southern California, Los Angeles, CA 90033, United States
| | - Alireza Sohrabi
- Department of Bioengineering, University of California, Los Angeles, CA 90095, United States
| | - Stephanie K. Seidlits
- Department of Bioengineering, University of California, Los Angeles, CA 90095, United States
| | - Reginald Hill
- Lawrence J. Ellison Institute for Transformative Medicine of USC, Los Angeles, CA 90064, United States
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
- Corresponding author at: Lawrence J. Ellison Institute for Transformative Medicine of USC, Los Angeles, CA 90064, United States.
| |
Collapse
|
33
|
Russell J, Fanchon L, Alwaseem H, Molina H, O’Donoghue I, Bahr A, de Stanchina E, Pillarsetty N, Humm JL. Analysis of capecitabine metabolites in conjunction with digital autoradiography in a murine model of pancreatic cancer suggests extensive drug penetration through the tumor. Pharmacol Res Perspect 2022; 10:e00898. [PMID: 35257504 PMCID: PMC8902142 DOI: 10.1002/prp2.898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 12/01/2022] Open
Abstract
Previously published digital autoradiography of 3 H-labeled capecitabine reveals a near-uniform distribution of activity throughout a murine pancreatic model. This is in contrast both to 14 C-labeled gemcitabine, and established expectations, as the dense stroma of pancreatic cancer is understood to inhibit drug penetration. Capecitabine is a pro-drug for 5 FU. The positioning of the radiolabel on capecitabine leaves open the possibility that much of the autoradiographic signal is generated by nontoxic compounds. Studies were performed on tumors derived via organoid culture from a murine KPC tumor. As before, we performed autoradiography comparing 3 H capecitabine to the gemcitabine analog 18 F-FAC. The metabolism of capecitabine in this model was studied through LC-MS of tumor tissue. The autoradiographs confirmed that the 3 H label from capecitabine was much more uniformly distributed through the tumor than the 18 F from the gemcitabine analog. LC-MS revealed that approximately 75% of the molar mass of capecitabine had been converted into 5 FU or pre-5 FU compounds. The remainder had been converted into nontoxic species. Therapeutically relevant capecitabine metabolites achieve a relatively even distribution in this pancreatic cancer model, in contrast to the gemcitabine analog 18 F-FAC. In a human xenograft model, (BxPC3), the 3 H label from capecitabine was also uniformly spread across the tumor autoradiographs. However, at 2 h post-administration the metabolism of capecitabine had proceeded further and the bulk of the agent was in the form of nontoxic species.
Collapse
Affiliation(s)
- James Russell
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Louise Fanchon
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Hanan Alwaseem
- The Proteomics Resource CenterThe Rockefeller UniversityNew YorkNew YorkUSA
| | - Henrik Molina
- The Proteomics Resource CenterThe Rockefeller UniversityNew YorkNew YorkUSA
| | - Isabella O’Donoghue
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Amber Bahr
- Anti‐Tumor Assessment Core FacilityMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Elisa de Stanchina
- Anti‐Tumor Assessment Core FacilityMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | | | - John L. Humm
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| |
Collapse
|
34
|
Synergistic Analysis of Circulating Tumor Cells Reveals Prognostic Signatures in Pilot Study of Treatment-Naïve Metastatic Pancreatic Cancer Patients. Biomedicines 2022; 10:biomedicines10010146. [PMID: 35052825 PMCID: PMC8773204 DOI: 10.3390/biomedicines10010146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Pancreatic cancer is one of the most deadly cancer types because it usually is not diagnosed until the cancer has spread throughout the body. In this study, we isolate cancer cells found in the blood of pancreatic cancer patients called circulating tumor cells (CTCs) to study their mutation and gene expression profiles. Comparing patients with better and worse survival duration revealed signatures found in these cancer cells. Characterizing these signatures may help improve patient care by using alternative treatment options. Abstract Pancreatic ductal adenocarcinoma is typically diagnosed at late stages and has one of the lowest five-year survival rates of all malignancies. In this pilot study, we identify signatures related to survival and treatment response found in circulating tumor cells (CTCs). Patients with poor survival had increased mutant KRAS expression and deregulation of connected pathways such as PI3K-AKT and MAPK signaling. Further, in a subset of these patients, expression patterns of gemcitabine resistance mechanisms were observed, even prior to initiating treatment. This work highlights the need for identifying patients with these resistance profiles and designing treatment regimens to circumvent these mechanisms.
Collapse
|
35
|
Kawahara K, Takano S, Furukawa K, Takayashiki T, Kuboki S, Ohtsuka M. The effect of the low stromal ratio induced by neoadjuvant chemotherapy on recurrence patterns in borderline resectable pancreatic ductal adenocarcinoma. Clin Exp Metastasis 2022; 39:311-322. [PMID: 35000025 PMCID: PMC8971157 DOI: 10.1007/s10585-021-10142-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/11/2021] [Indexed: 12/16/2022]
Abstract
The optimal regimens of neoadjuvant chemotherapy (NAC) and its biological and physiological modification of the tumor microenvironment (TME) in patients with borderline resectable pancreatic ductal adenocarcinoma (BR PDAC) remain unknown. A deeper understanding of the complex stromal biology of the TME will identify new avenues to establish treatment strategies for PDAC patients. Herein, we sought to clarify whether stromal remodeling by NAC affects recurrence patterns and prognosis in BR PDAC patients. We retrospectively analyzed data from 104 BR PDAC patients who underwent pancreatectomy with or without NAC (upfront surgery [UpS], n = 44; gemcitabine + nab-paclitaxel [GnP], n = 28; and gemcitabine + S-1 [GS], n = 32) to assess the correlations of treatment with early recurrence, the stromal ratio, and Ki-67 levels. Eighty-six patients experienced recurrence, and those with liver metastasis had significantly shorter recurrence-free survival than those with other recurrence patterns. The frequency of liver metastasis was significantly higher in patients with a low stromal ratio than in those with a high stromal ratio in the NAC group but not in the UpS group. Patients in the GnP group had significantly higher Ki-67 than those in the GS and UpS groups. A low stromal ratio was positively correlated with high Ki-67 in the NAC group but not in the UpS group. The low stromal ratio induced by NAC promoted early liver metastasis in patients with BR PDAC. Our findings provide new insights into the complexity of stromal biology, leading to consideration of the optimal NAC regimen.
Collapse
Affiliation(s)
- Kenji Kawahara
- Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba City, 260-8677, Japan
| | - Shigetsugu Takano
- Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba City, 260-8677, Japan.
| | - Katsunori Furukawa
- Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba City, 260-8677, Japan
| | - Tsukasa Takayashiki
- Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba City, 260-8677, Japan
| | - Satoshi Kuboki
- Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba City, 260-8677, Japan
| | - Masayuki Ohtsuka
- Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba City, 260-8677, Japan
| |
Collapse
|
36
|
Anderson EM, Thomassian S, Gong J, Hendifar A, Osipov A. Advances in Pancreatic Ductal Adenocarcinoma Treatment. Cancers (Basel) 2021; 13:5510. [PMID: 34771675 PMCID: PMC8583016 DOI: 10.3390/cancers13215510] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is one of the deadliest malignancies among all cancers. Despite curative intent, surgery and the use of standard cytotoxic chemotherapy and radiation therapy, PDAC remains treatment-resistant. In recent years, more contemporary treatment modalities such as immunotherapy via checkpoint inhibition have shown some promise in many other malignancies, yet PDAC still eludes an effective curative treatment. In investigating these phenomena, research has suggested that the significant desmoplastic and adaptive tumor microenvironment (TME) of PDAC promote the proliferation of immunosuppressive cells and act as major obstacles to treatment efficacy. In this review, we explore challenges associated with the treatment of PDAC, including its unique immunosuppressive TME. This review examines the role of surgery in PDAC, recent advances in surgical approaches and surgical optimization. We further focus on advances in immunotherapeutic approaches, including checkpoint inhibition, CD40 agonists, and discuss promising immune-based future strategies, such as therapeutic neoantigen cancer vaccines as means of overcoming the resistance mechanisms which underly the dense stroma and immune milieu of PDAC. We also explore unique signaling, TME and stromal targeting via novel small molecule inhibitors, which target KRAS, FAK, CCR2/CCR5, CXCR4, PARP and cancer-associated fibroblasts. This review also explores the most promising strategy for advancement in treatment of pancreatic cancer by reviewing contemporary combinatorial approaches in efforts to overcome the treatment refractory nature of PDAC.
Collapse
Affiliation(s)
- Eric M. Anderson
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Shant Thomassian
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; (S.T.); (J.G.); (A.H.)
| | - Jun Gong
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; (S.T.); (J.G.); (A.H.)
| | - Andrew Hendifar
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; (S.T.); (J.G.); (A.H.)
| | - Arsen Osipov
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; (S.T.); (J.G.); (A.H.)
| |
Collapse
|
37
|
Vitale DL, Icardi A, Rosales P, Spinelli FM, Sevic I, Alaniz LD. Targeting the Tumor Extracellular Matrix by the Natural Molecule 4-Methylumbelliferone: A Complementary and Alternative Cancer Therapeutic Strategy. Front Oncol 2021; 11:710061. [PMID: 34676159 PMCID: PMC8524446 DOI: 10.3389/fonc.2021.710061] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/10/2021] [Indexed: 12/22/2022] Open
Abstract
In antineoplastic therapy, one of the challenges is to adjust the treatment to the needs of each patient and reduce the toxicity caused by conventional antitumor strategies. It has been demonstrated that natural products with antitumoral properties are less toxic than chemotherapy and radiotherapy. Also, using already developed drugs allows developing substantially less costly methods for the discovery of new treatments than traditional drug development. Candidate molecules proposed for drug repositioning include 4-methylumbelliferone (4-MU), an orally available dietetic product, derivative of coumarin and mainly found in the plant family Umbelliferae or Apiaceae. 4-MU specifically inhibits the synthesis of glycosaminoglycan hyaluronan (HA), which is its main mechanism of action. This agent reduces the availability of HA substrates and inhibits the activity of different HA synthases. However, an effect independent of HA synthesis has also been observed. 4-MU acts as an inhibitor of tumor growth in different types of cancer. Particularly, 4-MU acts on the proliferation, migration and invasion abilities of tumor cells and inhibits the progression of cancer stem cells and the development of drug resistance. In addition, the effect of 4-MU impacts not only on tumor cells, but also on other components of the tumor microenvironment. Specifically, 4-MU can potentially act on immune, fibroblast and endothelial cells, and pro-tumor processes such as angiogenesis. Most of these effects are consistent with the altered functions of HA during tumor progression and can be interrupted by the action of 4-MU. While the potential advantage of 4-MU as an adjunct in cancer therapy could improve therapeutic efficacy and reduce toxicities of other antitumoral agents, the greatest challenge is the lack of scientific evidence to support its approval. Therefore, crucial human clinical studies have yet to be done to respond to this need. Here, we discuss and review the possible applications of 4-MU as an adjunct in conventional antineoplastic therapies, to achieve greater therapeutic success. We also describe the main proposed mechanisms of action that promote an increase in the efficacy of conventional antineoplastic strategies in different types of cancer and prospects that promote 4-MU repositioning and application in cancer therapy.
Collapse
Affiliation(s)
- Daiana L Vitale
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junin, Argentina.,Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Universidad Nacional de San Antonio de Areco (UNSAdA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pergamino, Argentina
| | - Antonella Icardi
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junin, Argentina.,Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Universidad Nacional de San Antonio de Areco (UNSAdA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pergamino, Argentina
| | - Paolo Rosales
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junin, Argentina.,Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Universidad Nacional de San Antonio de Areco (UNSAdA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pergamino, Argentina
| | - Fiorella M Spinelli
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junin, Argentina.,Centre de Recherche en Cancérologie et Immunologie Nantes Angers (CRCINA), Inserm, Centre National de la Recherche Scientifique (CNRS), Université de Nantes, Nantes, France
| | - Ina Sevic
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junin, Argentina.,Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Universidad Nacional de San Antonio de Areco (UNSAdA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pergamino, Argentina
| | - Laura D Alaniz
- Laboratorio de Microambiente Tumoral, Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junin, Argentina.,Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Universidad Nacional de San Antonio de Areco (UNSAdA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pergamino, Argentina
| |
Collapse
|
38
|
Li D, Schaub N, Guerin TM, Bapiro TE, Richards FM, Chen V, Talsania K, Kumar P, Gilbert DJ, Schlomer JJ, Kim SJ, Sorber R, Teper Y, Bautista W, Palena C, Ock CY, Jodrell DI, Pate N, Mehta M, Zhao Y, Kozlov S, Rudloff U. T Cell-Mediated Antitumor Immunity Cooperatively Induced By TGFβR1 Antagonism and Gemcitabine Counteracts Reformation of the Stromal Barrier in Pancreatic Cancer. Mol Cancer Ther 2021; 20:1926-1940. [PMID: 34376576 PMCID: PMC8492543 DOI: 10.1158/1535-7163.mct-20-0620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 05/27/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022]
Abstract
The desmoplastic stroma of pancreatic cancers forms a physical barrier that impedes intratumoral drug delivery. Attempts to modulate the desmoplastic stroma to increase delivery of administered chemotherapy have not shown positive clinical results thus far, and preclinical reports in which chemotherapeutic drugs were coadministered with antistromal therapies did not universally demonstrate increased genotoxicity despite increased intratumoral drug levels. In this study, we tested whether TGFβ antagonism can break the stromal barrier, enhance perfusion and tumoral drug delivery, and interrogated cellular and molecular mechanisms by which the tumor prevents synergism with coadministered gemcitabine. TGFβ inhibition in genetically engineered murine models (GEMM) of pancreas cancer enhanced tumoral perfusion and increased intratumoral gemcitabine levels. However, tumors rapidly adapted to TGFβ-dependent stromal modulation, and intratumoral perfusion returned to pre-treatment levels upon extended TGFβ inhibition. Perfusion was governed by the phenotypic identity and distribution of cancer-associated fibroblasts (CAF) with the myelofibroblastic phenotype (myCAFs), and myCAFs which harbored unique genomic signatures rapidly escaped the restricting effects of TGFβ inhibition. Despite the reformation of the stromal barrier and reversal of initially increased intratumoral exposure levels, TGFβ inhibition in cooperation with gemcitabine effectively suppressed tumor growth via cooperative reprogramming of T regulatory cells and stimulation of CD8 T cell-mediated antitumor activity. The antitumor activity was further improved by the addition of anti-PD-L1 immune checkpoint blockade to offset adaptive PD-L1 upregulation induced by TGFβ inhibition. These findings support the development of combined antistroma anticancer therapies capable of impacting the tumor beyond the disruption of the desmoplastic stroma as a physical barrier to improve drug delivery.
Collapse
Affiliation(s)
- Dandan Li
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
- Thoracic & GI Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Nicholas Schaub
- Surgery Branch, Center for Cancer Research, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
- Leonard Lawson Cancer Center, Pikeville Medical Center, Pikeville, Kentucky
| | - Theresa M Guerin
- Center for Advanced Preclinical Research, Frederick National Laboratories for Cancer Research, NCI, Frederick, Maryland
| | - Tashinga E Bapiro
- Department of Oncology, University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom
- DMPK, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Frances M Richards
- Department of Oncology, University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Vicky Chen
- CCR-SF Bioinformatics Group, Advanced Biomedical and Computational Sciences, Biomedical Informatics and Data Science, Advanced Technology Research Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Keyur Talsania
- CCR-SF Bioinformatics Group, Advanced Biomedical and Computational Sciences, Biomedical Informatics and Data Science, Advanced Technology Research Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Parimal Kumar
- Sequencing Facility & Single Cell Analysis Facility, Advanced Technology Research Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Debra J Gilbert
- Center for Advanced Preclinical Research, Frederick National Laboratories for Cancer Research, NCI, Frederick, Maryland
| | - Jerome J Schlomer
- Center for Advanced Preclinical Research, Frederick National Laboratories for Cancer Research, NCI, Frederick, Maryland
| | | | - Rebecca Sorber
- Thoracic & GI Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
- Department of Surgery, The Johns Hopkins Hospital, Johns Hopkins University, Baltimore, Maryland
| | - Yaroslav Teper
- Thoracic & GI Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Wendy Bautista
- Center for Advanced Preclinical Research, Frederick National Laboratories for Cancer Research, NCI, Frederick, Maryland
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Chan-Young Ock
- Department of Hematology & Oncology, Seoul National University Hospital, Seoul, Korea
| | - Duncan I Jodrell
- Department of Oncology, University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Nathan Pate
- Center for Advanced Preclinical Research, Frederick National Laboratories for Cancer Research, NCI, Frederick, Maryland
| | - Monika Mehta
- Sequencing Facility & Single Cell Analysis Facility, Advanced Technology Research Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Yongmei Zhao
- CCR-SF Bioinformatics Group, Advanced Biomedical and Computational Sciences, Biomedical Informatics and Data Science, Advanced Technology Research Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Serguei Kozlov
- Center for Advanced Preclinical Research, Frederick National Laboratories for Cancer Research, NCI, Frederick, Maryland.
| | - Udo Rudloff
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland.
- Thoracic & GI Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
- Surgery Branch, Center for Cancer Research, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
39
|
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer. However, it should be kept in mind that there are other pancreatic cancers that are classified by their cellular lineage: acinar cell carcinomas (acinar differentiation), neuroendocrine neoplasms (arising from the islets), solid-pseudopapillary neoplasms (showing no discernible cell lineage), and pancreatoblastomas (characterized by multiphenotypic differentiation, including acinar endocrine and ductal). This article focuses on the molecular and pathology alterations in PDAC.
Collapse
Affiliation(s)
- Joseph F Kearney
- Surgery, University of North Carolina at Chapel Hill, 101 Manning Drive, 1150 Physicians Office Building, 21-245 Lineberger CB# 7213, Chapel Hill, NC 27599-7213, USA
| | - Volkan Adsay
- Department of Pathology, Koc University School of Medicine and KUTTAM Research Center, Koc University Hospital, Davutpasa Caddesi, Topkapi, Istanbul 34010, Turkey
| | - Jen Jen Yeh
- Surgery and Pharmacology, University of North Carolina at Chapel Hill, 101 Manning Drive, 1150 Physicians Office Building, 21-245 Lineberger CB# 7213, Chapel Hill, NC 27599-7213, USA.
| |
Collapse
|
40
|
Henry KE, Mack KN, Nagle VL, Cornejo M, Michel AO, Fox IL, Davydova M, Dilling TR, Pillarsetty N, Lewis JS. ERK Inhibition Improves Anti-PD-L1 Immune Checkpoint Blockade in Preclinical Pancreatic Ductal Adenocarcinoma. Mol Cancer Ther 2021; 20:2026-2034. [PMID: 34349003 PMCID: PMC8492510 DOI: 10.1158/1535-7163.mct-20-1112] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/01/2021] [Accepted: 06/14/2021] [Indexed: 11/16/2022]
Abstract
Patients with pancreatic ductal adenocarcinoma (PDAC) do not benefit from immune checkpoint blockade (ICB) along the PD-1/PD-L1 axis. Variable PD-L1 expression in PDAC indicates a potential access issue of PD-L1-targeted therapy. To monitor target engagement of PD-L1-targeted therapy, we generated a PD-L1-targeted PET tracer labeled with zirconium-89 (89Zr). As the MAPK signaling pathway (MEK and ERK) is known to modulate PD-L1 expression in other tumor types, we used [89Zr]Zr-DFO-anti-PD-L1 as a tool to noninvasively assess whether manipulation of the MAPK signaling cascade could be leveraged to modulate PD-L1 expression and thereby immunotherapeutic outcomes in PDAC. In this study, we observed that the inhibition of MEK or ERK is sufficient to increase PD-L1 expression, which we hypothesized could be leveraged for anti-PD-L1 immune checkpoint therapy. We found that the combination of ERK inhibition and anti-PD-L1 therapy corresponded with a significant improvement of overall survival in a syngeneic mouse model of PDAC. Furthermore, IHC analysis indicates that the survival benefit may be CD8+ T-cell mediated. The therapeutic and molecular imaging tool kit developed could be exploited to better structure clinical trials and address the therapeutic gaps in challenging malignancies such as PDAC.
Collapse
Affiliation(s)
- Kelly E Henry
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Kyeara N Mack
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Veronica L Nagle
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mike Cornejo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Adam O Michel
- Laboratory for Comparative Pathology, Memorial Sloan Kettering, Weill Cornell Medicine & The Rockefeller University, New York, New York
| | - Ian L Fox
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Maria Davydova
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Thomas R Dilling
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Departments of Pharmacology and Radiology, Weill Cornell Medical College, New York, New York
- Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
41
|
Pook H, Pauklin S. Mechanisms of Cancer Cell Death: Therapeutic Implications for Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2021; 13:4834. [PMID: 34638318 PMCID: PMC8508208 DOI: 10.3390/cancers13194834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/20/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a type of cancer that is strongly associated with poor prognosis and short median survival times. In stark contrast to the progress seen in other cancer types in recent decades, discoveries of new treatments in PDAC have been few and far between and there has been little improvement in overall survival (OS). The difficulty in treating this disease is multifactorial, contributed to by late presentation, difficult access to primary tumour sites, an 'immunologically cold' phenotype, and a strong tendency of recurrence likely driven by cancer stem cell (CSC) populations. Furthermore, apparently contrasting roles of tumour components (such as fibrotic stroma) and intracellular pathways (such as autophagy and TGFβ) have made it difficult to distinguish beneficial from detrimental drug targets. Despite this, progress has been made in the field, including the determination of mFOLFIRINOX as the standard-of-care adjuvant therapy and the discovery of KRASG12C mutant inhibitors. Moreover, new research, as outlined in this review, has highlighted promising new approaches including the targeting of the tumour microenvironment, enhancement of immunotherapies, epigenetic modulation, and destruction of CSCs.
Collapse
Affiliation(s)
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford OX3 7LD, UK;
| |
Collapse
|
42
|
Garantziotis S. Modulation of hyaluronan signaling as a therapeutic target in human disease. Pharmacol Ther 2021; 232:107993. [PMID: 34587477 DOI: 10.1016/j.pharmthera.2021.107993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022]
Abstract
The extracellular matrix is an active participant, modulator and mediator of the cell, tissue, organ and organismal response to injury. Recent research has highlighted the role of hyaluronan, an abundant glycosaminoglycan constituent of the extracellular matrix, in many fundamental biological processes underpinning homeostasis and disease development. From this basis, emerging studies have demonstrated the therapeutic potential of strategies which target hyaluronan synthesis, biology and signaling, with significant promise as therapeutics for a variety of inflammatory and immune diseases. This review summarizes the state of the art in this field and discusses challenges and opportunities in what could emerge as a new class of therapeutic agents, that we term "matrix biologics".
Collapse
Affiliation(s)
- Stavros Garantziotis
- Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA.
| |
Collapse
|
43
|
Morosi L, Meroni M, Ubezio P, Fuso Nerini I, Minoli L, Porcu L, Panini N, Colombo M, Blouw B, Kang DW, Davoli E, Zucchetti M, D'Incalci M, Frapolli R. PEGylated recombinant human hyaluronidase (PEGPH20) pre-treatment improves intra-tumour distribution and efficacy of paclitaxel in preclinical models. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:286. [PMID: 34507591 PMCID: PMC8434701 DOI: 10.1186/s13046-021-02070-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/10/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Scarce drug penetration in solid tumours is one of the possible causes of the limited efficacy of chemotherapy and is related to the altered tumour microenvironment. The abnormal tumour extracellular matrix (ECM) together with abnormal blood and lymphatic vessels, reactive stroma and inflammation all affect the uptake, distribution and efficacy of anticancer drugs. METHODS We investigated the effect of PEGylated recombinant human hyaluronidase PH20 (PEGPH20) pre-treatment in degrading hyaluronan (hyaluronic acid; HA), one of the main components of the ECM, to improve the delivery of antitumor drugs and increase their therapeutic efficacy. The antitumor activity of paclitaxel (PTX) in HA synthase 3-overexpressing and wild-type SKOV3 ovarian cancer model and in the BxPC3 pancreas xenograft tumour model, was evaluated by monitoring tumour growth with or without PEGPH20 pre-treatment. Pharmacokinetics and tumour penetration of PTX were assessed by HPLC and mass spectrometry imaging analysis in the same tumour models. Tumour tissue architecture and HA deposition were analysed by histochemistry. RESULTS Pre-treatment with PEGPH20 modified tumour tissue architecture and improved the antitumor activity of paclitaxel in the SKOV3/HAS3 tumour model, favouring its accumulation and more homogeneous intra-tumour distribution, as assessed by quantitative and qualitative analysis. PEGPH20 also reduced HA content influencing, though less markedly, PTX distribution and antitumor activity in the BxPC3 tumour model. CONCLUSION Remodelling the stroma of HA-rich tumours by depletion of HA with PEGPH20 pre-treatment, is a potentially successful strategy to improve the intra-tumour distribution of anticancer drugs, increasing their therapeutic efficacy, without increasing toxicity.
Collapse
Affiliation(s)
- Lavinia Morosi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, via M. Negri 2, 20156, Milan, Italy.,Present address: IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Marina Meroni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, via M. Negri 2, 20156, Milan, Italy
| | - Paolo Ubezio
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, via M. Negri 2, 20156, Milan, Italy
| | - Ilaria Fuso Nerini
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, via M. Negri 2, 20156, Milan, Italy.,Present address: IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Lucia Minoli
- Department of Veterinary Medicine, University of Milan, Lodi, Italy.,Mouse and Animal Pathology Laboratory (MAPLab), Fondazione UniMi, Milan, Italy
| | - Luca Porcu
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, via M. Negri 2, 20156, Milan, Italy
| | - Nicolò Panini
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, via M. Negri 2, 20156, Milan, Italy
| | - Marika Colombo
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, via M. Negri 2, 20156, Milan, Italy
| | | | - David W Kang
- Halozyme Therapeutics, San Diego, California, USA
| | - Enrico Davoli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Laboratory of Mass Spectrometry, Milan, Italy
| | - Massimo Zucchetti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, via M. Negri 2, 20156, Milan, Italy
| | - Maurizio D'Incalci
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, via M. Negri 2, 20156, Milan, Italy.,Present address: IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy.,Present address: Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy
| | - Roberta Frapolli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, via M. Negri 2, 20156, Milan, Italy.
| |
Collapse
|
44
|
Principe DR, Underwood PW, Korc M, Trevino JG, Munshi HG, Rana A. The Current Treatment Paradigm for Pancreatic Ductal Adenocarcinoma and Barriers to Therapeutic Efficacy. Front Oncol 2021; 11:688377. [PMID: 34336673 PMCID: PMC8319847 DOI: 10.3389/fonc.2021.688377] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis, with a median survival time of 10-12 months. Clinically, these poor outcomes are attributed to several factors, including late stage at the time of diagnosis impeding resectability, as well as multi-drug resistance. Despite the high prevalence of drug-resistant phenotypes, nearly all patients are offered chemotherapy leading to modest improvements in postoperative survival. However, chemotherapy is all too often associated with toxicity, and many patients elect for palliative care. In cases of inoperable disease, cytotoxic therapies are less efficacious but still carry the same risk of serious adverse effects, and clinical outcomes remain particularly poor. Here we discuss the current state of pancreatic cancer therapy, both surgical and medical, and emerging factors limiting the efficacy of both. Combined, this review highlights an unmet clinical need to improve our understanding of the mechanisms underlying the poor therapeutic responses seen in patients with PDAC, in hopes of increasing drug efficacy, extending patient survival, and improving quality of life.
Collapse
Affiliation(s)
- Daniel R. Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, IL, United States
- Department of Surgery, University of Illinois at Chicago, Chicago, IL, United States
| | | | - Murray Korc
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States
| | - Jose G. Trevino
- Department of Surgery, Division of Surgical Oncology, Virginia Commonwealth University, Richmond, VA, United States
| | - Hidayatullah G. Munshi
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Jesse Brown VA Medical Center, Chicago, IL, United States
| | - Ajay Rana
- Department of Surgery, University of Illinois at Chicago, Chicago, IL, United States
- Jesse Brown VA Medical Center, Chicago, IL, United States
| |
Collapse
|
45
|
Edwards P, Kang BW, Chau I. Targeting the Stroma in the Management of Pancreatic Cancer. Front Oncol 2021; 11:691185. [PMID: 34336679 PMCID: PMC8316993 DOI: 10.3389/fonc.2021.691185] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PC) presents extremely aggressive tumours and is associated with poor survival. This is attributed to the unique features of the tumour microenvironment (TME), which is known to create a dense stromal formation and poorly immunogenic condition. In particular, the TME of PC, including the stromal cells and extracellular matrix, plays an essential role in the progression and chemoresistance of PC. Consequently, several promising agents that target key components of the stroma have already been developed and are currently in multiple stages of clinical trials. Therefore, the authors review the latest available evidence on novel stroma-targeting approaches, highlighting the potential impact of the stroma as a key component of the TME in PC.
Collapse
Affiliation(s)
- Penelope Edwards
- Department of Medicine, Royal Marsden Hospital, London, United Kingdom
| | - Byung Woog Kang
- Department of Oncology/Hematology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Ian Chau
- Department of Medicine, Royal Marsden Hospital, London, United Kingdom
| |
Collapse
|
46
|
Belhabib I, Zaghdoudi S, Lac C, Bousquet C, Jean C. Extracellular Matrices and Cancer-Associated Fibroblasts: Targets for Cancer Diagnosis and Therapy? Cancers (Basel) 2021; 13:3466. [PMID: 34298680 PMCID: PMC8303391 DOI: 10.3390/cancers13143466] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Solid cancer progression is dictated by neoplastic cell features and pro-tumoral crosstalks with their microenvironment. Stroma modifications, such as fibroblast activation into cancer-associated fibroblasts (CAFs) and extracellular matrix (ECM) remodeling, are now recognized as critical events for cancer progression and as potential therapeutic or diagnostic targets. The recent appreciation of the key, complex and multiple roles of the ECM in cancer and of the CAF diversity, has revolutionized the field and raised innovative but challenging questions. Here, we rapidly present CAF heterogeneity in link with their specific ECM remodeling features observed in cancer, before developing each of the impacts of such ECM modifications on tumor progression (survival, angiogenesis, pre-metastatic niche, chemoresistance, etc.), and on patient prognosis. Finally, based on preclinical studies and recent results obtained from clinical trials, we highlight key mechanisms or proteins that are, or may be, used as potential therapeutic or diagnostic targets, and we report and discuss benefits, disappointments, or even failures, of recently reported stroma-targeting strategies.
Collapse
Affiliation(s)
| | | | | | | | - Christine Jean
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM U1037, Université Toulouse III Paul Sabatier, ERL5294 CNRS, 31037 Toulouse, France; (I.B.); (S.Z.); (C.L.); (C.B.)
| |
Collapse
|
47
|
Pfeifer E, Burchell JM, Dazzi F, Sarker D, Beatson R. Apoptosis in the Pancreatic Cancer Tumor Microenvironment-The Double-Edged Sword of Cancer-Associated Fibroblasts. Cells 2021; 10:cells10071653. [PMID: 34359823 PMCID: PMC8305815 DOI: 10.3390/cells10071653] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with poor prognosis. This is attributed to the disease already being advanced at presentation and having a particularly aggressive tumor biology. The PDAC tumor microenvironment (TME) is characterized by a dense desmoplastic stroma, dominated by cancer-associated fibroblasts (CAF), extracellular matrix (ECM) and immune cells displaying immunosuppressive phenotypes. Due to the advanced stage at diagnosis, the depletion of immune effector cells and lack of actionable genomic targets, the standard treatment is still apoptosis-inducing regimens such as chemotherapy. Paradoxically, it has emerged that the direct induction of apoptosis of cancer cells may fuel oncogenic processes in the TME, including education of CAF and immune cells towards pro-tumorigenic phenotypes. The direct effect of cytotoxic therapies on CAF may also enhance tumorigenesis. With the awareness that CAF are the predominant cell type in PDAC driving tumorigenesis with various tumor supportive functions, efforts have been made to try to target them. However, efforts to target CAF have, to date, shown disappointing results in clinical trials. With the help of sophisticated single cell analyses it is now appreciated that CAF in PDAC are a heterogenous population with both tumor supportive and tumor suppressive functions. Hence, there remains a debate whether targeting CAF in PDAC is a valid therapeutic strategy. In this review we discuss how cytotoxic therapies and the induction of apoptosis in PDAC fuels oncogenesis by the education of surrounding stromal cells, with a particular focus on the potential pro-tumorigenic outcomes arising from targeting CAF. In addition, we explore therapeutic avenues to potentially avoid the oncogenic effects of apoptosis in PDAC CAF.
Collapse
|
48
|
Pradhan RN, Krishnamurty AT, Fletcher AL, Turley SJ, Müller S. A bird's eye view of fibroblast heterogeneity: A pan-disease, pan-cancer perspective. Immunol Rev 2021; 302:299-320. [PMID: 34164824 DOI: 10.1111/imr.12990] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023]
Abstract
Fibroblasts, custodians of tissue architecture and function, are no longer considered a monolithic entity across tissues and disease indications. Recent advances in single-cell technologies provide an unrestricted, high-resolution view of fibroblast heterogeneity that exists within and across tissues. In this review, we summarize a compendium of single-cell transcriptomic studies and provide a comprehensive accounting of fibroblast subsets, many of which have been described to occupy specific niches in tissues at homeostatic and pathologic states. Understanding this heterogeneity is particularly important in the context of cancer, as the diverse cancer-associated fibroblast (CAF) phenotypes in the tumor microenvironment (TME) are directly impacted by the expression phenotypes of their predecessors. Relationships between these heterogeneous populations often accompany and influence response to therapy in cancer and fibrosis. We further highlight the importance of integrating single-cell studies to deduce common fibroblast phenotypes across disease states, which will facilitate the identification of common signaling pathways, gene regulatory programs, and cell surface markers that are going to advance drug discovery and targeting.
Collapse
|
49
|
Martin JD, Miyazaki T, Cabral H. Remodeling tumor microenvironment with nanomedicines. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1730. [PMID: 34124849 DOI: 10.1002/wnan.1730] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/17/2022]
Abstract
The tumor microenvironment (TME) has been recognized as a major contributor to cancer malignancy and therapeutic resistance. Thus, strategies directed to re-engineer the TME are emerging as promising approaches for improving the efficacy of antitumor therapies by enhancing tumor perfusion and drug delivery, as well as alleviating the immunosuppressive TME. In this regard, nanomedicine has shown great potential for developing effective treatments capable of re-modeling the TME by controlling drug action in a spatiotemporal manner and allowing long-lasting modulatory effects on the TME. Herein, we review recent progress on TME re-engineering by using nanomedicine, particularly focusing on formulations controlling TME characteristics through targeted interaction with cellular components of the TME. Importantly, the TME should be re-engineering to a quiescent phenotype rather than be destroyed. Finally, immediate challenges and future perspectives of TME-re-engineering nanomedicines are discussed, anticipating further innovation in this growing field. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
| | - Takuya Miyazaki
- Kanagawa Institute of Industrial Science and Technology, Ebina, Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
50
|
Alzhrani R, Alsaab HO, Vanamal K, Bhise K, Tatiparti K, Barari A, Sau S, Iyer AK. Overcoming the Tumor Microenvironmental Barriers of Pancreatic Ductal Adenocarcinomas for Achieving Better Treatment Outcomes. ADVANCED THERAPEUTICS 2021; 4:2000262. [PMID: 34212073 PMCID: PMC8240487 DOI: 10.1002/adtp.202000262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease with the lowest survival rate among all solid tumors. The lethality of PDAC arises from late detection and propensity of the tumor to metastasize and develop resistance against chemo and radiation therapy. A highly complex tumor microenvironment composed of dense stroma, immune cells, fibroblast, and disorganized blood vessels, is the main obstacle to current PDAC therapy. Despite the tremendous success of immune checkpoint inhibitors (ICIs) in cancers, PDAC remains one of the poorest responders of ICIs therapy. The immunologically "cold" phenotype of PDAC is attributed to the low mutational burden, high infiltration of myeloid-derived suppressor cells and T-regs, contributing to a significant immunotherapy resistance mechanism. Thus, the development of innovative strategies for turning immunologically "cold" tumor into "hot" ones is an unmet need to improve the outcome of PDAC ICIs therapies. Other smart strategies, such as nanomedicines, sonic Hedgehog inhibitor, or smoothened inhibitor, are discussed to enhance chemotherapeutic agents' efficiency by disrupting the PDAC stroma. This review highlights the current challenges and various preclinical and clinical strategies to overcome current PDAC therapy difficulties, thus significantly advancing PDAC research knowledge.
Collapse
Affiliation(s)
- Rami Alzhrani
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Kushal Vanamal
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Ketki Bhise
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Katyayani Tatiparti
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Ayatakshi Barari
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Samaresh Sau
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Arun K. Iyer
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI, United States
| |
Collapse
|