1
|
Kamianowska M, Rybi-Szumińska A, Kamianowska A, Maciejczyk M, Sołomianko K, Koput A, Wasilewska A. The Urinary Concentration of Trefoil Factor 3 (TFF3) in the Term and Preterm Neonates. J Clin Med 2023; 12:4936. [PMID: 37568337 PMCID: PMC10419516 DOI: 10.3390/jcm12154936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Distinguishing between a pathologic state and renal development is important in neonatology. Because the assessment of serum creatinine in neonates is not reliable, better biomarkers are needed. Trefoil factor 3 (TFF3) is proposed as a biomarker of kidney injury. The study aimed to assess its urinary concentration in healthy term and stable preterm neonates. MATERIAL AND METHODS The study included 80 term and 20 preterm neonates born in the Department of Perinatology of the University Clinical Hospital in Bialystok. Urine was obtained from the term neonates on the 1st day of life and from the preterm neonates on the 1st, 8th, 15th and 22nd day of life. The urinary concentration of TFF3 was determined using a commercially available immunoassay and was normalized for the urinary creatinine concentration (cr.). RESULTS The values of TFF3/cr. were higher in the preterm than in the term neonates (p < 0.05) (median (Q1-Q3): 1486.85 (614.92-3559.18) and 317.29 (68.07-671.40) ng/mg cr.). They did not differ in the subsequent days of the preterm neonates' lives. The ROC curve for TFF3/cr. in the preterm and term neonates showed AUC = 0.751 (cut-off value = 1684.25 ng/mg cr.). CONCLUSIONS Prematurity is associated with higher urinary excretion of TFF3. Male gender is associated with an increased urinary TFF3 excretion in term neonates.
Collapse
Affiliation(s)
- Monika Kamianowska
- Department of Neonatology and Neonatal Intensive Care, Medical University of Bialystok, M. C. Sklodowskiej 24a Street, 15-276 Białystok, Poland;
| | - Agnieszka Rybi-Szumińska
- Department of Pediatrics and Nephrology, Medical University of Bialystok, 15-269 Bialystok, Poland (A.K.)
| | - Aleksandra Kamianowska
- Department of Pediatrics and Nephrology, Medical University of Bialystok, 15-269 Bialystok, Poland (A.K.)
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomic, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Katarzyna Sołomianko
- Department of Neonatology and Neonatal Intensive Care, Medical University of Bialystok, M. C. Sklodowskiej 24a Street, 15-276 Białystok, Poland;
| | - Alicja Koput
- Department of Pediatric Laboratory Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Anna Wasilewska
- Department of Pediatrics and Nephrology, Medical University of Bialystok, 15-269 Bialystok, Poland (A.K.)
| |
Collapse
|
2
|
Agarwood Oil Nanoemulsion Attenuates Cigarette Smoke-Induced Inflammation and Oxidative Stress Markers in BCi-NS1.1 Airway Epithelial Cells. Nutrients 2023; 15:nu15041019. [PMID: 36839377 PMCID: PMC9959783 DOI: 10.3390/nu15041019] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is an irreversible inflammatory respiratory disease characterized by frequent exacerbations and symptoms such as cough and wheezing that lead to irreversible airway damage and hyperresponsiveness. The primary risk factor for COPD is chronic cigarette smoke exposure, which promotes oxidative stress and a general pro-inflammatory condition by stimulating pro-oxidant and pro-inflammatory pathways and, simultaneously, inactivating anti-inflammatory and antioxidant detoxification pathways. These events cause progressive damage resulting in impaired cell function and disease progression. Treatments available for COPD are generally aimed at reducing the symptoms of exacerbation. Failure to regulate oxidative stress and inflammation results in lung damage. In the quest for innovative treatment strategies, phytochemicals, and complex plant extracts such as agarwood essential oil are promising sources of molecules with antioxidant and anti-inflammatory activity. However, their clinical use is limited by issues such as low solubility and poor pharmacokinetic properties. These can be overcome by encapsulating the therapeutic molecules using advanced drug delivery systems such as polymeric nanosystems and nanoemulsions. In this study, agarwood oil nanoemulsion (agarwood-NE) was formulated and tested for its antioxidant and anti-inflammatory potential in cigarette smoke extract (CSE)-treated BCi-NS1.1 airway basal epithelial cells. The findings suggest successful counteractivity of agarwood-NE against CSE-mediated pro-inflammatory effects by reducing the expression of the pro-inflammatory cytokines IL-1α, IL-1β, IL-8, and GDF-15. In addition, agarwood-NE induced the expression of the anti-inflammatory mediators IL-10, IL-18BP, TFF3, GH, VDBP, relaxin-2, IFN-γ, and PDGF. Furthermore, agarwood-NE also induced the expression of antioxidant genes such as GCLC and GSTP1, simultaneously activating the PI3K pro-survival signalling pathway. This study provides proof of the dual anti-inflammatory and antioxidant activity of agarwood-NE, highlighting its enormous potential for COPD treatment.
Collapse
|
3
|
Lin Z, Wan X, Zhang T, Huo H, Zhang X, Li K, Bei W, Guo J, Yang Y. Trefoil factor 3: New highlights in chronic kidney disease research. Cell Signal 2022; 100:110470. [PMID: 36122885 DOI: 10.1016/j.cellsig.2022.110470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022]
Abstract
Trefoil factor 3 (TFF3, also known as intestinal trefoil factor) is a small-molecule peptide containing a typical trefoil structure. TFF3 has several biological effects, such as wound healing, immune regulation, neuroprotection, and cell migration and proliferation promotion. Although TFF3 binding sites were identified in rat kidneys more than a decade ago, the specific effects of this small-molecule peptide on kidneys remain unclear. Until recently, much of the research on TFF3 in the kidney field has focused exclusively on its role as a biomarker. Notably, a large prospective randomized study of patients with 29 common clinical diseases revealed that chronic kidney disease (CKD) was associated with the highest serum TFF3 levels, which were 3-fold higher than in acute gastroenteritis, which had the second-highest levels. Examination of each stage of CKD revealed that urine and serum TFF3 levels significantly increased with the progression of CKD. These results suggest that the role of TFF3 in CKD needs further research. The present review summarizes the renal physiological expression, biological functions, and downstream signaling of TFF3, as well as the upstream events that lead to high expression of TFF3 in CKD.
Collapse
Affiliation(s)
- Ziyang Lin
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Xiaofen Wan
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Tao Zhang
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Hongyan Huo
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Xiaoyu Zhang
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Kunping Li
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Weijian Bei
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Jiao Guo
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Yiqi Yang
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China.
| |
Collapse
|
4
|
Shi Y, Wang C, Wu D, Zhu Y, Wang ZE, Peng X. Mechanistic study of PDIA1-catalyzed TFF3 dimerization during sepsis. Life Sci 2020; 255:117841. [PMID: 32454156 DOI: 10.1016/j.lfs.2020.117841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 01/01/2023]
Abstract
AIMS Trefoil factor 3 (TFF3) is a gut mucosal protective molecule that is secreted by intestinal goblet cells. The dimeric structure of TFF3 enables it to function in intestinal mucosal repair and to maintain its own stability. Protein disulfide isomerase a1 (PDIA1) can directly catalyze the formation, isomerization and reduction of disulfide bonds in proteins and may play an important role in the formation of TFF3 dimer. In this study, we focused on the specific molecular mechanism of TFF3 dimerization by PDIA1 and the changes during sepsis. METHODS We examined the changes of PDIA1 and TFF3 in sepsis rats and cell models and used a variety of experimental techniques to investigate the specific molecular mechanism of PDIA1-catalyzed TFF3 dimerization. KEY FINDINGS We found that PDIA1 can directly catalyze the dimerization of TFF3. Our MD model proposed that two TFF3 monomers form hydrogen bonds with the region b' of PDIA1 through two stepwise reactions. Furthermore, we propose that the Cys24-Cys27 active site at the region a' of PDIA1 mediates disulfide bond formation between the Cys79 residues of each of the two TFF3 monomers via deprotonation and nucleophilic attack. During sepsis, PDIA1 is downregulated and the excessive release of nitric oxide (NO) promoted PDIA1 nitrosylation. This modification reduced PDIA1 activity, which resulted in the corresponding decrease of TFF3 dimerization and compromised TFF3 dimer function. SIGNIFICANCE Our study revealed a novel mechanism for the inhibition of intestinal mucosal repair during sepsis and revealed novel targets for the prevention and treatment of sepsis.
Collapse
Affiliation(s)
- Yan Shi
- Clinical Medical Research Center, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Army Medical University, Chongqing 400038, China; Institute of Trauma Orthopedic Surgery, The 920 Hospital of Joint Logistic Support Force of Chinese PLA, Kunming, Yunnan 650032, China
| | - Chao Wang
- Clinical Medical Research Center, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Dan Wu
- Clinical Medical Research Center, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Yuanjiao Zhu
- Clinical Medical Research Center, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Zi-En Wang
- Clinical Medical Research Center, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Army Medical University, Chongqing 400038, China; Department of Burns, Union Hospital, Fujian Medical University, Fuzhou 350001, China
| | - Xi Peng
- Clinical Medical Research Center, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Army Medical University, Chongqing 400038, China; Department of Burns, Union Hospital, Fujian Medical University, Fuzhou 350001, China; Shriners Burns Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States of America.
| |
Collapse
|
5
|
Kozina N, Mihaljević Z, Lončar MB, Mihalj M, Mišir M, Radmilović MD, Justić H, Gajović S, Šešelja K, Bazina I, Horvatić A, Matić A, Bijelić N, Rođak E, Jukić I, Drenjančević I. Impact of High Salt Diet on Cerebral Vascular Function and Stroke in Tff3-/-/C57BL/6N Knockout and WT (C57BL/6N) Control Mice. Int J Mol Sci 2019; 20:ijms20205188. [PMID: 31635131 PMCID: PMC6829871 DOI: 10.3390/ijms20205188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/20/2019] [Accepted: 10/05/2019] [Indexed: 11/29/2022] Open
Abstract
High salt (HS) dietary intake leads to impaired vascular endothelium-dependent responses to various physiological stimuli, some of which are mediated by arachidonic acid (AA) metabolites. Transgenic Tff3−/− gene knockout mice (Tff3−/−/C57BL/6N) have changes in lipid metabolism which may affect vascular function and outcomes of stroke. We aimed to study the effects of one week of HS diet (4% NaCl) on vascular function and stroke induced by transient occlusion of middle cerebral artery in Tff3−/− and wild type (WT/C57BL/6N) mice. Flow-induced dilation (FID) of carotid artery was reduced in WT-HS mice, but not affected in Tff3−/−-HS mice. Nitric oxide (NO) mediated FID. NO production was decreased with HS diet. On the contrary, acetylcholine-induced dilation was significantly decreased in Tff3−/− mice on both diets and WT-HS mice. HS intake and Tff3 gene depletion affected the structural components of the vessels. Proteomic analysis revealed a significant effect of Tff3 gene deficiency on HS diet-induced changes in neuronal structural proteins and acute innate immune response proteins’ expression and Tff3 depletion, but HS diet did not increase the stroke volume, which is related to proteome modification and upregulation of genes involved mainly in cellular antioxidative defense. In conclusion, Tff3 depletion seems to partially impair vascular function and worsen the outcomes of stroke, which is moderately affected by HS diet.
Collapse
Affiliation(s)
- Nataša Kozina
- Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Institute and Dept of Physiology and Immunology, J. Huttlera 4, HR-31000 Osijek, Croatia.
| | - Zrinka Mihaljević
- Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Institute and Dept of Physiology and Immunology, J. Huttlera 4, HR-31000 Osijek, Croatia.
| | - Mirela Baus Lončar
- Ruđer Bošković Institute, Department of Molecular Medicine; Bijenička 54, HR-10000 Zagreb, Croatia.
| | - Martina Mihalj
- Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Institute and Dept of Physiology and Immunology, J. Huttlera 4, HR-31000 Osijek, Croatia.
- Clinical Hospital Center Osijek, Dept of Dermatology and Venerology, J. Huttlera 4, HR-31000 Osijek, Croatia.
| | - Mihael Mišir
- Clinical Hospital Center Osijek, Neurology Clinic, J. Huttlera 4, HR-31000 Osijek, Croatia.
| | - Marina Dobrivojević Radmilović
- University of Zagreb, School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia, Šalata 12, HR-10000 Zagreb, Croatia.
| | - Helena Justić
- University of Zagreb, School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia, Šalata 12, HR-10000 Zagreb, Croatia.
| | - Srećko Gajović
- University of Zagreb, School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia, Šalata 12, HR-10000 Zagreb, Croatia.
| | - Kate Šešelja
- Ruđer Bošković Institute, Department of Molecular Medicine; Bijenička 54, HR-10000 Zagreb, Croatia.
| | - Iva Bazina
- Ruđer Bošković Institute, Department of Molecular Medicine; Bijenička 54, HR-10000 Zagreb, Croatia.
| | - Anita Horvatić
- Proteomics laboratory, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55 HR-10000 Zagreb, Croatia.
| | - Anita Matić
- Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Institute and Dept of Physiology and Immunology, J. Huttlera 4, HR-31000 Osijek, Croatia.
| | - Nikola Bijelić
- Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Institute and Dept of Histology and Embriology, J. Huttlera 4, HR-31000 Osijek, Croatia.
| | - Edi Rođak
- Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Institute and Dept of Histology and Embriology, J. Huttlera 4, HR-31000 Osijek, Croatia.
| | - Ivana Jukić
- Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Institute and Dept of Physiology and Immunology, J. Huttlera 4, HR-31000 Osijek, Croatia.
| | - Ines Drenjančević
- Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Institute and Dept of Physiology and Immunology, J. Huttlera 4, HR-31000 Osijek, Croatia.
| |
Collapse
|
6
|
Tolušić Levak M, Mihalj M, Koprivčić I, Lovrić I, Novak S, Bijelić N, Baus-Lončar M, Belovari T, Kralik K, Pauzar B. Differential Expression of TFF Genes and Proteins in Breast Tumors. Acta Clin Croat 2018; 57:264-277. [PMID: 30431719 PMCID: PMC6532012 DOI: 10.20471/acc.2018.57.02.06] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
SUMMARY – The objective of this study was to determine differential expression of TFF1, TFF2 and TFF3 genes and proteins in breast tumor subtypes. In addition, we investigated the correlation between TFF genes within tumor subgroups, and TFF genes with clinical and pathologic characteristics of the tumor. Study group included 122 patients with surgically removed breast tumors. Samples were investigated using qRT-PCR and immunohistochemistry. TFF1 and TFF3 genes and proteins were expressed in breast tumors, while the levels of TFF2 gene and protein expression were very low or undetectable. TFF1 was significantly more expressed in benign tumors, while TFF3 was more expressed in malignant tumors. Gene and protein expression of both TFF1 and TFF3 was greater in lymph node-negative tumors, hormone positive tumors, tumors with moderate levels of Ki67 expression, and in grade II tumors. A strong positive correlation was found between TFF1 and TFF3 genes, and the expression of both negatively correlated with Ki67 and the level of tumor histologic differentiation. Our results suggest that TFF1 and TFF3, but not TFF2, may have a role in breast tumor pathogenesis and could be used in the assessment of tumor differentiation and malignancy.
Collapse
Affiliation(s)
| | - Martina Mihalj
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Ivan Koprivčić
- Department of Anatomy and Neuroscience, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Department of Surgery, Osijek University Hospital Centre, Osijek, Croatia
| | - Ivana Lovrić
- Department of Histology and Embryology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Department of Anatomy, Histology and Embryology, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Sanja Novak
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Nikola Bijelić
- Department of Histology and Embryology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Mirela Baus-Lončar
- Department of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Tatjana Belovari
- Department of Histology and Embryology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Kristina Kralik
- Department of Medical Statistics and Informatics, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Biljana Pauzar
- Department of Histology and Embryology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Department of Clinical Cytology, Osijek University Hospital Centre, Osijek, Croatia
| |
Collapse
|