1
|
Aldrich G, Evans JE, Davis R, Jurin L, Oberlin S, Niedospial D, Nkiliza A, Mullan M, Kenney K, Werner JK, Edwards K, Gill JM, Lindsey HM, Dennis EL, Walker WC, Wilde E, Crawford F, Abdullah L. APOE4 and age affect the brain entorhinal cortex structure and blood arachidonic acid and docosahexaenoic acid levels after mild TBI. Sci Rep 2024; 14:29150. [PMID: 39587176 PMCID: PMC11589616 DOI: 10.1038/s41598-024-80153-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024] Open
Abstract
A reduction in the thickness and volume of the brain entorhinal cortex (EC), together with changes in blood arachidonic acid (AA) and docosahexaenoic acid (DHA), are associated with Alzheimer's disease (AD) among apolipoprotein E ε4 carriers. Magnetic Resonance Imaging (n = 631) and plasma lipidomics (n = 181) were performed using the LIMBIC/CENC cohort to examine the influence of ε4 on AA- and DHA-lipids and EC thickness and volume in relation to mild traumatic brain injury (mTBI). Results showed that left EC thickness was higher among ε4 carriers with mTBI. Repeated mTBI (r-mTBI) was associated with reduced right EC thickness after controlling for ε4, age and sex. Age, plus mTBI chronicity were linked to increased EC White Matter Volume (WMV). After controlling for age and sex, the advancing age of ε4 carriers with blast mTBI was associated with reduced right EC Grey Matter Volume (GMV) and thickness. Among ε4 carriers, plasma tau and Aβ40 were associated with mTBI and blast mTBI, respectively. Chronic mTBI, ε4 and AA to DHA ratios in phosphatidylcholine, ethanolamides, and phosphatidylethanolamine were associated with decreased left EC GMV and WMV. Further research is needed to explore these as biomarkers for detecting AD pathology following mTBI.
Collapse
Grants
- I01 RX002172 RRD VA
- I01 RX002174 RRD VA
- I01 CX002097, I01 CX002096, I01 HX003155, I01 RX003444, I01 RX003443, I01 RX003442, I01 CX001135, I01 CX001246, I01 RX001774, I01 RX 001135, I01 RX 002076, I01 RX 001880, I01 RX 002172, I01 RX 002173, I01 RX 002171, I01 RX 002174, and I01 RX 002170, I01 CX001820 U.S. Department of Veterans Affairs
- I01 CX001135 CSRD VA
- UL1 TR002538 NCATS NIH HHS
- I01 RX003443 RRD VA
- I01 RX001880 RRD VA
- I01 RX002171 RRD VA
- I01 HX003155 HSRD VA
- I01 RX002076 RRD VA
- I01 CX001246 CSRD VA
- I01 RX002170 RRD VA
- UL1 TR000105 NCATS NIH HHS
- I01 RX002173 RRD VA
- AZ160065 Congressionally Directed Medical Research Programs
- UL1 TR001067 NCATS NIH HHS
- W81XWH-18-PH/TBIRP-LIMBIC under Awards No. W81XWH1920067 and W81XWH-13-2-0095 U.S. Department of Defense
- I01 RX003444 RRD VA
- UL1 RR025764 NCRR NIH HHS
- I01 RX003442 RRD VA
- I01 RX001774 RRD VA
- I01 CX002097 CSRD VA
- I01 CX002096 CSRD VA
- I01 CX001820 CSRD VA
- I01 RX002767 RRD VA
- I01 RX001135 RRD VA
Collapse
Affiliation(s)
- Gregory Aldrich
- The Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
- James A. Haley Veterans' Administration Hospital, Tampa, FL, USA
| | - James E Evans
- The Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | - Roderick Davis
- The Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | - Lucia Jurin
- The Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | - Sarah Oberlin
- The Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | | | - Aurore Nkiliza
- The Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | - Michael Mullan
- The Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
| | - Kimbra Kenney
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - J Kent Werner
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | | | - Hannah M Lindsey
- Department of Neurology, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Emily L Dennis
- Department of Neurology, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - William C Walker
- Department of Physical Medicine & Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| | - Elisabeth Wilde
- Department of Neurology, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Fiona Crawford
- The Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA
- James A. Haley Veterans' Administration Hospital, Tampa, FL, USA
| | - Laila Abdullah
- The Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA.
- James A. Haley Veterans' Administration Hospital, Tampa, FL, USA.
| |
Collapse
|
2
|
den Hoedt S, Crivelli SM, Dorst-Lagerwerf KY, Leijten FPJ, Losen M, de Vries HE, Sijbrands EJG, Verhoeven AJM, Martinez-Martinez P, Mulder MT. The effects of APOE4 and familial Alzheimer's disease mutations on free fatty acid profiles in mouse brain are age- and sex-dependent. J Neurochem 2024; 168:3063-3075. [PMID: 39001667 DOI: 10.1111/jnc.16176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 10/04/2024]
Abstract
APOE4 encoding apolipoprotein (Apo)E4 is the strongest genetic risk factor for Alzheimer's disease (AD). ApoE is key in intercellular lipid trafficking. Fatty acids are essential for brain integrity and cognitive performance and are implicated in neurodegeneration. We determined the sex- and age-dependent effect of AD and APOE4 on brain free fatty acid (FFA) profiles. FFA profiles were determined by LC-MS/MS in hippocampus, cortex, and cerebellum of female and male, young (≤3 months) and older (>5 months), transgenic APOE3 and APOE4 mice with and without five familial AD (FAD) mutations (16 groups; n = 7-10 each). In the different brain regions, females had higher levels than males of either saturated or polyunsaturated FFAs or both. In the hippocampus of young males, but not of older males, APOE4 and FAD each induced 1.3-fold higher levels of almost all FFAs. In young and older females, FAD and to a less extent APOE4-induced shifts among saturated, monounsaturated, and polyunsaturated FFAs without affecting total FFA levels. In cortex and cerebellum, APOE4 and FAD had only minor effects on individual FFAs. The effects of APOE4 and FAD on FFA levels and FFA profiles in the three brain regions were strongly dependent of sex and age, particularly in the hippocampus. Here, most FFAs that are affected by FAD are similarly affected by APOE4. Since APOE4 and FAD affected hippocampal FFA profiles already at young age, these APOE4-induced alterations may modulate the pathogenesis of AD.
Collapse
Affiliation(s)
- Sandra den Hoedt
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Simone M Crivelli
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | | | - Frank P J Leijten
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Mario Losen
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Helga E de Vries
- Amsterdam UMC, Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, VU Medical Center, Amsterdam, the Netherlands
| | - Eric J G Sijbrands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Adrie J M Verhoeven
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Pilar Martinez-Martinez
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Monique T Mulder
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
3
|
Li Y, Wang Z, Kong M, Yong Y, Yang X, Liu C. The role of GZMA as a target of cysteine and biomarker in Alzheimer's disease, pelvic organ prolapse, and tumor progression. Front Pharmacol 2024; 15:1447605. [PMID: 39228516 PMCID: PMC11368878 DOI: 10.3389/fphar.2024.1447605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024] Open
Abstract
Objective: This study aims to investigate how changes in peripheral blood metabolites in Alzheimer's Disease (AD) patients affect the development of Pelvic Organ Prolapse (POP) using a multi-omics approach. We specifically explore the interactions of signaling pathways, gene expression, and protein-metabolite interactions, with a focus on GZMA and cysteine in age-related diseases. Methods: This study utilized multi-omics analysis, including metabolomics and transcriptomics, to evaluate the perturbations in peripheral blood metabolites and their effect on POP in AD patients. Additionally, a comprehensive pan-cancer and immune infiltration analysis was performed on the core targets of AD combined with POP, exploring their potential roles in tumor progression and elucidating their pharmacological relevance to solid tumors. Results: We identified 47 differential metabolites linked to 9 significant signaling pathways, such as unsaturated fatty acid biosynthesis and amino acid metabolism. A thorough gene expression analysis revealed numerous differentially expressed genes (DEGs), with Gene Set Enrichment Analysis (GSEA) showing significant changes in gene profiles of AD and POP. Network topology analysis highlighted central nodes in the AD-POP co-expressed genes network. Functional analyses indicated involvement in critical biological processes and pathways. Molecular docking studies showed strong interactions between cysteine and proteins PTGS2 and GZMA, and molecular dynamics simulations confirmed the stability of these complexes. In vitro validation demonstrated that cysteine reduced ROS levels and protected cell viability. GZMA was widely expressed in various cancers, associated with immune cells, and correlated with patient survival prognosis. Conclusion: Multi-omics analysis revealed the role of peripheral blood metabolites in the molecular dynamics of AD and their interactions with POP. This study identified potential biomarkers and therapeutic targets, emphasizing the effectiveness of integrative approaches in treating AD and POP concurrently. The findings highlight the need for in-depth research on novel targets and biomarkers to advance therapeutic strategies.
Collapse
Affiliation(s)
- Yan Li
- Department of Gynecology and Obstetrics, Affiliated Beijing Chaoyang Hospital of Capital Medical University, Beijing, China
- Department of Gynecology and Obstetrics, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Zhuo Wang
- Department of Gynecology and Obstetrics, Ningxia Medical University, Yinchuan, China
| | - Min Kong
- Department of Gynecology and Obstetrics, Ningxia Medical University, Yinchuan, China
| | - Yuanyuan Yong
- Department of Gynecology and Obstetrics, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xin Yang
- Department of Gynecology and Obstetrics, Ningxia Medical University, Yinchuan, China
| | - Chongdong Liu
- Department of Gynecology and Obstetrics, Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Ferré-González L, Balaguer Á, Roca M, Ftara A, Lloret A, Cháfer-Pericás C. Plasma lipidomics in early APP/PS1 female mouse model and its relationship with brain: Is it affected by the estrous cycle? Alzheimers Res Ther 2024; 16:183. [PMID: 39143583 PMCID: PMC11323474 DOI: 10.1186/s13195-024-01549-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most prevalent dementia, showing higher incidence in women. Besides, lipids play an essential role in brain, and they could be dysregulated in neurodegeneration. Specifically, impaired plasma lipid levels could predict early AD diagnosis. This work aims to identify the main plasma lipids altered in early AD female mouse model and evaluate their relationship with brain lipidome. Also, the possible involvement of the estrous cycle in lipid metabolism has been evaluated. METHODS Plasma samples of wild-type (n = 10) and APP/PS1 (n = 10) female mice of 5 months of age were collected, processed, and analysed using a lipidomic mass spectrometry-based method. A statistical analysis involving univariate and multivariate approaches was performed to identify significant lipid differences related to AD between groups. Also, cytology tests were conducted to confirm estrous cycle phases. RESULTS Three hundred thirty lipids were detected in plasma, 18 of them showed significant differences between groups; specifically, some triacylglycerols, cholesteryl esters, lysophosphatidylcholines, phosphatidylcholines, and ether-linked phosphatidylcholines, increased in early AD; while other phosphatidylcholines, phosphatidylethanolamines, ceramides, and ether-linked phosphatidylethanolamines decreased in early AD. A multivariate approach was developed from some lipid variables, showing high diagnostic indexes (70% sensitivity, 90% specificity, 80% accuracy). From brain and plasma lipidome, some significant correlations were observed, mainly in the glycerophospholipid family. Also, some differences were found in both plasma and brain lipids, according to the estrous cycle phase. CONCLUSIONS Therefore, lipid alterations can be identified in plasma at early AD stages in mice females, with a relationship with brain lipid metabolism for most of the lipid subfamilies, suggesting some lipids as potential AD biomarkers. In addition, the estrous cycle monitoring could be relevant in female studies.
Collapse
Affiliation(s)
- Laura Ferré-González
- Alzheimer's Disease Research Group, Instituto de Investigación Sanitaria La Fe, Avda de Fernando Abril Martorell, 106; 46026, Valencia, Spain
| | - Ángel Balaguer
- Faculty of Mathematics, University of Valencia, Valencia, Spain
| | - Marta Roca
- Analytical Unit, Health Research Institute La Fe, Valencia, Spain
| | - Artemis Ftara
- Department of Physiology, Faculty of Medicine, University of Valencia, Health Research Institute INCLIVA, Valencia, Spain
| | - Ana Lloret
- Department of Physiology, Faculty of Medicine, University of Valencia, Health Research Institute INCLIVA, Valencia, Spain
| | - Consuelo Cháfer-Pericás
- Alzheimer's Disease Research Group, Instituto de Investigación Sanitaria La Fe, Avda de Fernando Abril Martorell, 106; 46026, Valencia, Spain.
| |
Collapse
|
5
|
Ciesielski TH, Tosto G, Durodoye RO, Rajabali F, Akinyemi RO, Byrd GS, Bush WS, Kunkle BW, Reitz C, Vance JM, Pericak-Vance MA, Haines JL, Williams SM. Country Level Incidence of Alzheimer Disease and Related Dementias is Associated with Increased Omega6 PUFA Consumption. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.07.24311637. [PMID: 39148832 PMCID: PMC11326357 DOI: 10.1101/2024.08.07.24311637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
INTRODUCTION Clinical and genetic studies have implicated lipid dysfunction in Alzheimer Disease (AD) pathogenesis. However, lipid consumption at the individual-level does not vary greatly within most cohorts, and multiple lipids are rarely measured in any one study. METHODS Mean country-level lipid intakes were compared to Age-Standardized Alzheimer-Disease-Incidence-Rates(ASAIR) in 183 countries across all inhabited continents. Penalized spline regression and multivariable-adjusted linear regression, including a lag between intake and incidence, were used to assess the relationships between five lipid intakes and ASAIR. Validation was conducted using longitudinal within-country changes between 1990 and 2019. RESULTS Omega6 Polyunsaturated-Fatty-Acid(PUFA) intake exhibited a positive linear relationship with ASAIR(multivariable-adjusted model: β=2.44; 95%CI: 1.70, 3.19; p=1.38×10-9). ASAIR also increased with saturated-fat, trans-fat, and dietary-cholesterol up to a threshold. The association between Omega6-PUFA and ASAIR was confirmed using longitudinal intake changes. DISCUSSION Decreasing Omega6-PUFA consumption on the country-level may have substantial benefits in reducing the country-level burden of AD.
Collapse
Affiliation(s)
- Timothy H Ciesielski
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave. Cleveland, OH 44106
| | - Giuseppe Tosto
- Taub Institute for Research on Alzheimer Disease and the Aging Brain, Department of Neurology, Columbia University College of Physicians and Surgeons, 630 West 168th Street New York, NY 10032
| | - Razaq O Durodoye
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave. Cleveland, OH 44106
| | - Farid Rajabali
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine 1501 NW 10th Ave. Biomedical Research Building, Miami, FL 33136
| | - Rufus O Akinyemi
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, P.M.B 5017 G.P.O Ibadan,Oyo State, Nigeria
| | - Goldie S Byrd
- Maya Angelou Center for Health Equity, Wake Forest University School of Medicine, 525 Vine Street Suite #150, 1st Floor, Winston-Salem, NC 27101
| | - William S Bush
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave. Cleveland, OH 44106
- Cleveland Institute for Computational Biology, Case Western Reserve University, 2-530 Wolstein Research Building, 2103 Cornell Road, Cleveland, OH
| | - Brian W Kunkle
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine 1501 NW 10th Ave. Biomedical Research Building, Miami, FL 33136
| | - Christiane Reitz
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave. Cleveland, OH 44106
- Taub Institute for Research on Alzheimer Disease and the Aging Brain, Department of Neurology, Columbia University College of Physicians and Surgeons, 630 West 168th Street New York, NY 10032
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine 1501 NW 10th Ave. Biomedical Research Building, Miami, FL 33136
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, P.M.B 5017 G.P.O Ibadan,Oyo State, Nigeria
- Maya Angelou Center for Health Equity, Wake Forest University School of Medicine, 525 Vine Street Suite #150, 1st Floor, Winston-Salem, NC 27101
- Cleveland Institute for Computational Biology, Case Western Reserve University, 2-530 Wolstein Research Building, 2103 Cornell Road, Cleveland, OH
| | - Jeffery M Vance
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine 1501 NW 10th Ave. Biomedical Research Building, Miami, FL 33136
| | - Margaret A Pericak-Vance
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, P.M.B 5017 G.P.O Ibadan,Oyo State, Nigeria
| | - Jonathan L Haines
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave. Cleveland, OH 44106
- Cleveland Institute for Computational Biology, Case Western Reserve University, 2-530 Wolstein Research Building, 2103 Cornell Road, Cleveland, OH
| | - Scott M Williams
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave. Cleveland, OH 44106
- Cleveland Institute for Computational Biology, Case Western Reserve University, 2-530 Wolstein Research Building, 2103 Cornell Road, Cleveland, OH
| |
Collapse
|
6
|
Lin D, Gold A, Kaye S, Atkinson JR, Tol M, Sas A, Segal B, Tontonoz P, Zhu J, Gao J. Arachidonic Acid Mobilization and Peroxidation Promote Microglial Dysfunction in Aβ Pathology. J Neurosci 2024; 44:e0202242024. [PMID: 38866484 PMCID: PMC11293449 DOI: 10.1523/jneurosci.0202-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/07/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
Aberrant increase of arachidonic acid (ARA) has long been implicated in the pathology of Alzheimer's disease (AD), while the underlying causal mechanism remains unclear. In this study, we revealed a link between ARA mobilization and microglial dysfunction in Aβ pathology. Lipidomic analysis of primary microglia from AppNL-GF mice showed a marked increase in free ARA and lysophospholipids (LPLs) along with a decrease in ARA-containing phospholipids, suggesting increased ARA release from phospholipids (PLs). To manipulate ARA-containing PLs in microglia, we genetically deleted lysophosphatidylcholine acyltransferase 3 (Lpcat3), the main enzyme catalyzing the incorporation of ARA into PLs. Loss of microglial Lpcat3 reduced the levels of ARA-containing PLs, free ARA and LPLs, leading to a compensatory increase in monounsaturated fatty acid (MUFA)-containing PLs in both male and female App NL-GF mice. Notably, the reduction of ARA in microglia significantly ameliorated oxidative stress and inflammatory responses while enhancing the phagocytosis of Aβ plaques and promoting the compaction of Aβ deposits. Mechanistically, scRNA seq suggested that LPCAT3 deficiency facilitates phagocytosis by facilitating de novo lipid synthesis while protecting microglia from oxidative damage. Collectively, our study reveals a novel mechanistic link between ARA mobilization and microglial dysfunction in AD. Lowering brain ARA levels through pharmacological or dietary interventions may be a potential therapeutic strategy to slow down AD progression.
Collapse
Affiliation(s)
- Da Lin
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210
| | - Andrew Gold
- Department of Human Sciences, The Ohio State University, Columbus, Ohio 43210
| | - Sarah Kaye
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210
| | - Jeffrey R Atkinson
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210
| | - Marcus Tol
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Andrew Sas
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210
| | - Benjamin Segal
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Jiangjiang Zhu
- Department of Human Sciences, The Ohio State University, Columbus, Ohio 43210
| | - Jie Gao
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210
| |
Collapse
|
7
|
Chang CW, Hsu JY, Lo YT, Liu YH, Mee-inta O, Lee HT, Kuo YM, Liao PC. Characterization of Hair Metabolome in 5xFAD Mice and Patients with Alzheimer's Disease Using Mass Spectrometry-Based Metabolomics. ACS Chem Neurosci 2024; 15:527-538. [PMID: 38269400 PMCID: PMC10853927 DOI: 10.1021/acschemneuro.3c00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/26/2024] Open
Abstract
Hair emerged as a biospecimen for long-term investigation of endogenous metabolic perturbations, reflecting the chemical composition circulating in the blood over the past months. Despite its potential, the use of human hair for metabolomics in Alzheimer's disease (AD) research remains limited. Here, we performed both untargeted and targeted metabolomic approaches to profile the key metabolic pathways in the hair of 5xFAD mice, a widely used AD mouse model. Furthermore, we applied the discovered metabolites to human subjects. Hair samples were collected from 6-month-old 5xFAD mice, a stage marked by widespread accumulation of amyloid plaques in the brain, followed by sample preparation and high-resolution mass spectrometry analysis. Forty-five discriminatory metabolites were discovered in the hair of 6-month-old 5xFAD mice compared to wild-type control mice. Enrichment analysis revealed three key metabolic pathways: arachidonic acid metabolism, sphingolipid metabolism, and alanine, aspartate, and glutamate metabolism. Among these pathways, six metabolites demonstrated significant differences in the hair of 2-month-old 5xFAD mice, a stage prior to the onset of amyloid plaque deposition. These findings suggest their potential involvement in the early stages of AD pathogenesis. When evaluating 45 discriminatory metabolites for distinguishing patients with AD from nondemented controls, a combination of l-valine and arachidonic acid significantly differentiated these two groups, achieving a 0.88 area under the curve. Taken together, these findings highlight the potential of hair metabolomics in identifying disease-specific metabolic alterations and developing biomarkers for improving disease detection and monitoring.
Collapse
Affiliation(s)
- Chih-Wei Chang
- Department
of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Jen-Yi Hsu
- Department
of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Yu-Tai Lo
- Department
of Geriatrics and Gerontology, National Cheng Kung University Hospital,
College of Medicine, National Cheng Kung
University, Tainan 704, Taiwan
- Department
of Public Health, College of Medicine, National
Cheng Kung University, Tainan 704, Taiwan
| | - Yu-Hsuan Liu
- Department
of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Onanong Mee-inta
- Institute
of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Hsueh-Te Lee
- Institute
of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yu-Min Kuo
- Institute
of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Department
of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Pao-Chi Liao
- Department
of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Department
of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
8
|
Belaidi AA, Masaldan S, Southon A, Kalinowski P, Acevedo K, Appukuttan AT, Portbury S, Lei P, Agarwal P, Leurgans SE, Schneider J, Conrad M, Bush AI, Ayton S. Apolipoprotein E potently inhibits ferroptosis by blocking ferritinophagy. Mol Psychiatry 2024; 29:211-220. [PMID: 35484240 PMCID: PMC9757994 DOI: 10.1038/s41380-022-01568-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/27/2022] [Accepted: 04/06/2022] [Indexed: 02/08/2023]
Abstract
Allelic variation to the APOE gene confers the greatest genetic risk for sporadic Alzheimer's disease (AD). Independent of genotype, low abundance of apolipoprotein E (apoE), is characteristic of AD CSF, and predicts cognitive decline. The mechanisms underlying the genotype and apoE level risks are uncertain. Recent fluid and imaging biomarker studies have revealed an unexpected link between apoE and brain iron, which also forecasts disease progression, possibly through ferroptosis, an iron-dependent regulated cell death pathway. Here, we report that apoE is a potent inhibitor of ferroptosis (EC50 ≈ 10 nM; N27 neurons). We demonstrate that apoE signals to activate the PI3K/AKT pathway that then inhibits the autophagic degradation of ferritin (ferritinophagy), thus averting iron-dependent lipid peroxidation. Using postmortem inferior temporal brain cortex tissue from deceased subjects from the Rush Memory and Aging Project (MAP) (N = 608), we found that the association of iron with pathologically confirmed clinical Alzheimer's disease was stronger among those with the adverse APOE-ε4 allele. While protection against ferroptosis did not differ between apoE isoforms in vitro, other features of ε4 carriers, such as low abundance of apoE protein and higher levels of polyunsaturated fatty acids (which fuel ferroptosis) could mediate the ε4 allele's heighted risk of AD. These data support ferroptosis as a putative pathway to explain the major genetic risk associated with late onset AD.
Collapse
Affiliation(s)
- Abdel Ali Belaidi
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Shashank Masaldan
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Adam Southon
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Pawel Kalinowski
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Karla Acevedo
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Ambili T Appukuttan
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Stuart Portbury
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Puja Agarwal
- Rush Alzheimer Disease Center, Rush University Medical Center, Chicago, United States
| | - Sue E Leurgans
- Rush Alzheimer Disease Center, Rush University Medical Center, Chicago, United States
| | - Julie Schneider
- Rush Alzheimer Disease Center, Rush University Medical Center, Chicago, United States
| | - Marcus Conrad
- Helmholtz Zentrum München, Institute of Metabolism and Cell Death, 85764, Neuherberg, Germany
- Pirogov Russian National Research Medical University, Laboratory of Experimental Oncology, Moscow, 117997, Russia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia.
| | - Scott Ayton
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
9
|
Valencia-Olvera AC, Balu D, Moore A, Shah M, Ainis R, Xiang B, Saleh Y, Cai D, LaDu MJ, Tai LM. APOE2 Heterozygosity Reduces Hippocampal Soluble Amyloid-β42 Levels in Non-Hyperlipidemic Mice. J Alzheimers Dis 2024; 97:1629-1639. [PMID: 38306049 DOI: 10.3233/jad-231210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
APOE2 lowers Alzheimer's disease (AD) risk; unfortunately, the mechanism remains poorly understood and the use of mice models is problematic as APOE2 homozygosity is associated with hyperlipidemia. In this study, we developed mice that are heterozygous for APOE2 and APOE3 or APOE4 and overexpress amyloid-β peptide (Aβ) (EFAD) to evaluate the effect of APOE2 dosage on Aβ pathology. We found that heterozygous mice do not exhibit hyperlipidemia. Hippocampal but not cortical levels of soluble Aβ42 followed the order E2/2FAD > E2/3FAD≤E3/3FAD and E2/2FAD > E2/4FAD < E4/4FAD without an effect on insoluble Aβ42. These findings offer initial insights on the impact of APOE2 on Aβ pathology.
Collapse
Affiliation(s)
- Ana C Valencia-Olvera
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Deebika Balu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Maitri Shah
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Rebecca Ainis
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Yaseen Saleh
- University of Miami/Jackson Healthcare System, Miami, FL, USA
| | - Dongming Cai
- Alzheimer Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Research and Development Service, James J. Peters VA Medical Center, Bronx, NY, USA
- Department of Neurology, N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN, USA
- Geriatric Research Education and Clinical Center (GRECC), Minneapolis VA Health Care System, Minneapolis, MN, USA
| | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Leon M Tai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
10
|
Nkiliza A, Huguenard CJ, Aldrich GJ, Ferguson S, Cseresznye A, Darcey T, Evans JE, Dretsch M, Mullan M, Crawford F, Abdullah L. Levels of Arachidonic Acid-Derived Oxylipins and Anandamide Are Elevated Among Military APOE ɛ4 Carriers With a History of Mild Traumatic Brain Injury and Post-Traumatic Stress Disorder Symptoms. Neurotrauma Rep 2023; 4:643-654. [PMID: 37786567 PMCID: PMC10541938 DOI: 10.1089/neur.2023.0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023] Open
Abstract
Currently approved blood biomarkers detect intracranial lesions in adult patients with mild to moderate traumatic brain injury (TBI) acutely post-injury. However, blood biomarkers are still needed to help with a differential diagnosis of mild TBI (mTBI) and post-traumatic stress disorder (PTSD) at chronic post-injury time points. Owing to the association between phospholipid (PL) dysfunction and chronic consequences of TBI, we hypothesized that examining bioactive PL metabolites (oxylipins and ethanolamides) would help identify long-term lipid changes associated with mTBI and PTSD. Lipid extracts of plasma from active-duty soldiers deployed to the Iraq/Afghanistan wars (control = 52, mTBI = 21, PTSD = 34, and TBI + PTSD = 13) were subjected to liquid chromatography/mass spectrometry analysis to examine oxylipins and ethanolamides. Linear regression analyses followed by post hoc comparisons were performed to assess the association of these lipids with diagnostic classifications. Significant differences were found in oxylipins derived from arachidonic acid (AA) between controls and mTBI, PTSD, and mTBI + PTSD groups. Levels of AA-derived oxylipins through the cytochrome P450 pathways and anandamide were significantly elevated among mTBI + PTSD patients who were carriers of the apolipoprotein E E4 allele. These studies demonstrate that AA-derived oxylipins and anandamide may be unique blood biomarkers of PTSD and mTBI + PTSD. Further, these AA metabolites may be indicative of an underlying inflammatory process that warrants further investigation. Future validation studies in larger cohorts are required to determine a potential application of this approach in providing a differential diagnosis of mTBI and PTSD in a clinical setting.
Collapse
Affiliation(s)
- Aurore Nkiliza
- Roskamp Institute, Sarasota, Florida, USA
- James A. Haley VA Hospital, Tampa, Florida, USA
| | - Claire J.C. Huguenard
- Roskamp Institute, Sarasota, Florida, USA
- Open University, Milton Keynes, United Kingdom
| | | | - Scott Ferguson
- Roskamp Institute, Sarasota, Florida, USA
- Open University, Milton Keynes, United Kingdom
| | | | | | | | - Michael Dretsch
- U.S. Army Medical Research Directorate-West, Walter Reed Army Institute of Research, Joint Base Lewis-McChord, Washington, USA
- U.S. Army Aeromedical Research Laboratory, Fort Novosel, Alabama, USA
| | - Michael Mullan
- Roskamp Institute, Sarasota, Florida, USA
- James A. Haley VA Hospital, Tampa, Florida, USA
| | - Fiona Crawford
- Roskamp Institute, Sarasota, Florida, USA
- Open University, Milton Keynes, United Kingdom
- James A. Haley VA Hospital, Tampa, Florida, USA
| | - Laila Abdullah
- Roskamp Institute, Sarasota, Florida, USA
- Open University, Milton Keynes, United Kingdom
- James A. Haley VA Hospital, Tampa, Florida, USA
| |
Collapse
|
11
|
Martinsen A, Saleh RNM, Chouinard-Watkins R, Bazinet R, Harden G, Dick J, Tejera N, Pontifex MG, Vauzour D, Minihane AM. The Influence of APOE Genotype, DHA, and Flavanol Intervention on Brain DHA and Lipidomics Profile in Aged Transgenic Mice. Nutrients 2023; 15:2032. [PMID: 37432149 DOI: 10.3390/nu15092032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 07/12/2023] Open
Abstract
The apolipoprotein E4 (APOE4) genotype is predictive of Alzheimer's disease (AD). The brain is highly enriched with the omega-3 polyunsaturated fatty acid (n3-PUFA), docosahexaenoic acid (DHA). DHA's metabolism is defective in APOE4 carriers. Flavanol intake can play a role in modulating DHA levels. However, the impact of flavanol co-supplementation with fish oil on brain DHA uptake, status and partitioning, and according to APOE genotype is currently unknown. Here, using a humanised APOE3 and APOE4 targeted replacement transgenic mouse model, the interactive influence of cocoa flavanols (FLAV) and APOE genotype on the blood and subcortical brain PUFA status following the supplementation of a high fat (HF) enriched with DHA from fish oil (FO) was investigated. DHA levels increased in the blood (p < 0.001) and brain (p = 0.001) following supplementation. Compared to APOE3, a higher red blood cell (RBC) DHA (p < 0.001) was evident in APOE4 mice following FO and FLAV supplementation. Although FO did not increase the percentage of brain DHA in APOE4, a 17.1% (p < 0.05) and 20.0% (p < 0.001) higher DHA level in the phosphatidylcholine (PC) fraction in the HF FO and HF FO FLAV groups, and a 14.5% (p < 0.05) higher DHA level in the phosphatidylethanolamine (PE) fraction in the HF FO FLAV group was evident in these animals relative to the HF controls. The addition of FLAV (+/- FO) did not significantly increase the percentage of brain DHA in the group as a whole. However, a higher brain: RBC DHA ratio was evident in APOE3 only (p < 0.05) for HF FLAV versus HF. In conclusion, our data shows only modest effects of FLAV on the brain DHA status, which is limited to APOE3.
Collapse
Affiliation(s)
| | - Rasha N M Saleh
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
- Clinical Pathology Department, Faculty of Medicine, Alexandria University, Alexandria 21526, Egypt
| | - Raphael Chouinard-Watkins
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Richard Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Glenn Harden
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| | - James Dick
- Nutrition Analytical Service, Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK
| | - Noemi Tejera
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| | | | - David Vauzour
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| | | |
Collapse
|
12
|
Ferré-González L, Lloret A, Cháfer-Pericás C. Systematic review of brain and blood lipidomics in Alzheimer's disease mouse models. Prog Lipid Res 2023; 90:101223. [PMID: 36871907 DOI: 10.1016/j.plipres.2023.101223] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
Alzheimer's disease (AD) diagnosis is based on invasive and expensive biomarkers. Regarding AD pathophysiological mechanisms, there is evidence of a link between AD and aberrant lipid homeostasis. Alterations in lipid composition have been observed in blood and brain samples, and transgenic mouse models represent a promising approach. Nevertheless, there is great variability among studies in mice for the determination of different types of lipids in targeted and untargeted methods. It could be explained by the different variables (model, age, sex, analytical technique), and experimental conditions used. The aim of this work is to review the studies on lipid alteration in brain tissue and blood samples from AD mouse models, focusing on different experimental parameters. As result, great disparity has been observed among the reviewed studies. Brain studies showed an increase in gangliosides, sphingomyelins, lysophospholipids and monounsaturated fatty acids and a decrease in sulfatides. In contrast, blood studies showed an increase in phosphoglycerides, sterols, diacylglycerols, triacylglycerols and polyunsaturated fatty acids, and a decrease in phospholipids, lysophospholipids and monounsaturated fatty acids. Thus, lipids are closely related to AD, and a consensus on lipidomics studies could be used as a diagnostic tool and providing insight into the mechanisms involved in AD.
Collapse
Affiliation(s)
- Laura Ferré-González
- Alzheimer's Disease Research Group, Health Research Institute La Fe, Valencia, Spain
| | - Ana Lloret
- Department of Physiology, Faculty of Medicine, University of Valencia, Health Research Institute INCLIVA, Valencia, Spain.
| | | |
Collapse
|
13
|
Yassine HN, Self W, Kerman BE, Santoni G, Navalpur Shanmugam N, Abdullah L, Golden LR, Fonteh AN, Harrington MG, Gräff J, Gibson GE, Kalaria R, Luchsinger JA, Feldman HH, Swerdlow RH, Johnson LA, Albensi BC, Zlokovic BV, Tanzi R, Cunnane S, Samieri C, Scarmeas N, Bowman GL. Nutritional metabolism and cerebral bioenergetics in Alzheimer's disease and related dementias. Alzheimers Dement 2023; 19:1041-1066. [PMID: 36479795 PMCID: PMC10576546 DOI: 10.1002/alz.12845] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/12/2022] [Accepted: 10/05/2022] [Indexed: 12/13/2022]
Abstract
Disturbances in the brain's capacity to meet its energy demand increase the risk of synaptic loss, neurodegeneration, and cognitive decline. Nutritional and metabolic interventions that target metabolic pathways combined with diagnostics to identify deficits in cerebral bioenergetics may therefore offer novel therapeutic potential for Alzheimer's disease (AD) prevention and management. Many diet-derived natural bioactive components can govern cellular energy metabolism but their effects on brain aging are not clear. This review examines how nutritional metabolism can regulate brain bioenergetics and mitigate AD risk. We focus on leading mechanisms of cerebral bioenergetic breakdown in the aging brain at the cellular level, as well as the putative causes and consequences of disturbed bioenergetics, particularly at the blood-brain barrier with implications for nutrient brain delivery and nutritional interventions. Novel therapeutic nutrition approaches including diet patterns are provided, integrating studies of the gut microbiome, neuroimaging, and other biomarkers to guide future personalized nutritional interventions.
Collapse
Affiliation(s)
- Hussein N Yassine
- Department of Medicine, Keck School of Medicine, University of Southern, California, Los Angeles, California, USA
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Wade Self
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bilal E Kerman
- Department of Medicine, Keck School of Medicine, University of Southern, California, Los Angeles, California, USA
| | - Giulia Santoni
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale Lausanne (EPFL), Lausanne, Switzerland
| | - NandaKumar Navalpur Shanmugam
- Department of Neurology, Genetics and Aging Research Unit, McCance Center for Brain Health, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Lesley R Golden
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Alfred N Fonteh
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Huntington Medical Research Institutes, Pasadena, California, USA
| | - Michael G Harrington
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Johannes Gräff
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale Lausanne (EPFL), Lausanne, Switzerland
| | - Gary E Gibson
- Brain and Mind Research Institute, Weill Cornell Medicine, Burke Neurological Institute, White Plains, New York, USA
| | - Raj Kalaria
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Jose A Luchsinger
- Department of Medicine and Epidemiology, Columbia University Irving Medical Center, New York City, New York, USA
| | - Howard H Feldman
- Department of Neurosciences, University of California, San Diego, California, USA
| | - Russell H Swerdlow
- Department of Neurology, University of Kansas School of Medicine, Kansas City, Kansas, USA
| | - Lance A Johnson
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Benedict C Albensi
- Nova Southeastern Univ. College of Pharmacy, Davie, Florida, USA
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Rudolph Tanzi
- Department of Neurology, Genetics and Aging Research Unit, McCance Center for Brain Health, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Stephen Cunnane
- Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Cécilia Samieri
- Univ. Bordeaux, INSERM, BPH, U1219, F-33000, Bordeaux, France
| | - Nikolaos Scarmeas
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Department of Neurology, Columbia University, New York City, New York, USA
| | - Gene L Bowman
- Department of Neurology, Genetics and Aging Research Unit, McCance Center for Brain Health, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Helfgott Research Institute, National University of Natural Medicine, Portland, Oregon, USA
| |
Collapse
|
14
|
Van Valkenburgh J, Duro MVV, Burnham E, Chen Q, Wang S, Tran J, Kerman BE, Hwang SH, Liu X, Sta Maria NS, Zanderigo F, Croteau E, Rapoport SI, Cunnane SC, Jacobs RE, Yassine HN, Chen K. Radiosynthesis of 20-[ 18F]fluoroarachidonic acid for PET-MR imaging: Biological evaluation in ApoE4-TR mice. Prostaglandins Leukot Essent Fatty Acids 2022; 186:102510. [PMID: 36341886 PMCID: PMC9888757 DOI: 10.1016/j.plefa.2022.102510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 02/02/2023]
Abstract
Dysreglulated brain arachidonic acid (AA) metabolism is involved in chronic inflammation and is influenced by apolipoprotein E4 (APOE4) genotype, the strongest genetic risk factor of late-onset Alzheimer's disease (AD). Visualization of AA uptake and distribution in the brain can offer insight into neuroinflammation and AD pathogenesis. Here we present a novel synthesis and radiosynthesis of 20-[18F]fluoroarachidonic acid ([18F]-FAA) for PET imaging using a convergent route and a one-pot, single-purification radiolabeling procedure, and demonstrate its brain uptake in human ApoE4 targeted replacement (ApoE4-TR) mice. By examining p38 phosphorylation in astrocytes, we found that fluorination of AA at the ω-position did not significantly alter its biochemical role in cells. The brain incorporation coefficient (K*) of [18F]-FAA was estimated via multiple methods by using an image-derived input function from the right ventricle of the heart as a proxy of the arterial input function and brain tracer concentrations assessed by dynamic PET-MR imaging. This new synthetic approach should facilitate the practical [18F]-FAA production and allow its translation into clinical use, making investigations of dysregulation of lipid metabolism more feasible in the study of neurodegenerative diseases.
Collapse
Affiliation(s)
- Juno Van Valkenburgh
- Department of Radiology, Keck School of Medicine University of Southern California, Los Angeles, CA 90033, United States of America
| | - Marlon Vincent V Duro
- Department of Radiology, Keck School of Medicine University of Southern California, Los Angeles, CA 90033, United States of America
| | - Erica Burnham
- Department of Medicine, Keck School of Medicine University of Southern California, Los Angeles 90033, CA, United States of America
| | - Quan Chen
- Department of Radiology, Keck School of Medicine University of Southern California, Los Angeles, CA 90033, United States of America
| | - Shaowei Wang
- Department of Medicine, Keck School of Medicine University of Southern California, Los Angeles 90033, CA, United States of America
| | - Jenny Tran
- Department of Medicine, Keck School of Medicine University of Southern California, Los Angeles 90033, CA, United States of America
| | - Bilal E Kerman
- Department of Medicine, Keck School of Medicine University of Southern California, Los Angeles 90033, CA, United States of America
| | - Sung Hee Hwang
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, United States of America
| | - Xiaodan Liu
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States of America
| | - Naomi S Sta Maria
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States of America
| | - Francesca Zanderigo
- Department of Psychiatry, Columbia University, New York, NY 10032, United States of America; Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, NY 10032, United States of America
| | - Etienne Croteau
- Research Center on Aging, Department of Medicine, University of Sherbrooke, Sherbrooke, QC J1H 4C4, Canada
| | - Stanley I Rapoport
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, United States of America
| | - Stephen C Cunnane
- Research Center on Aging, Department of Medicine, University of Sherbrooke, Sherbrooke, QC J1H 4C4, Canada
| | - Russell E Jacobs
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States of America
| | - Hussein N Yassine
- Department of Medicine, Keck School of Medicine University of Southern California, Los Angeles 90033, CA, United States of America.
| | - Kai Chen
- Department of Radiology, Keck School of Medicine University of Southern California, Los Angeles, CA 90033, United States of America.
| |
Collapse
|
15
|
Ferreira I, Rauter AP, Bandarra NM. Marine Sources of DHA-Rich Phospholipids with Anti-Alzheimer Effect. Mar Drugs 2022; 20:662. [PMID: 36354985 PMCID: PMC9695993 DOI: 10.3390/md20110662] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 07/29/2023] Open
Abstract
Alzheimer's disease (AD) is a complex and progressive disease, which affects millions of people around the world. Despite the many efforts over the years to find efficient therapeutics, there is no cure yet. Nonetheless, many compounds have been proven to decrease Alzheimer's symptoms. After a short overview of the hypotheses considered in AD drug development and the drugs approved for AD treatment, which lead to symptom release, we focus on the valorization of natural marine sources that decrease AD symptoms, particularly on docosahexaenoic acid (DHA), an important component in membrane phospholipids and the most abundant n-3 polyunsaturated fatty acids (PUFA) found in gray matter of the brain and in retina and on the DHA-containing phospholipids (DHA-PLs) present in marine sources, namely fish, krill, mollusks and in fisheries and aquaculture by-products. DHA-PLs' bioactivities are presented, namely their properties in anti-neurodegeneration, neuroinflammation, as anticancer agents, as well as their benefits to obesity and visual problems. Fisheries and aquaculture by-products are also highlighted as they have a high content of DHA and DHA-rich phospholipids, can be extracted by green methodologies and should be considered in a circular economy for a healthy sustainable future.
Collapse
Affiliation(s)
- Inês Ferreira
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Division of Aquaculture, Upgrading and Bioprospecting, Portuguese Institute of the Sea and Atmosphere, 1495-165 Lisboa, Portugal
| | - Amélia P. Rauter
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Narcisa M. Bandarra
- Division of Aquaculture, Upgrading and Bioprospecting, Portuguese Institute of the Sea and Atmosphere, 1495-165 Lisboa, Portugal
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4050-123 Porto, Portugal
| |
Collapse
|
16
|
Zhang X, Hu W, Wang Y, Wang W, Liao H, Zhang X, Kiburg KV, Shang X, Bulloch G, Huang Y, Zhang X, Tang S, Hu Y, Yu H, Yang X, He M, Zhu Z. Plasma metabolomic profiles of dementia: a prospective study of 110,655 participants in the UK Biobank. BMC Med 2022; 20:252. [PMID: 35965319 PMCID: PMC9377110 DOI: 10.1186/s12916-022-02449-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasma metabolomic profile is disturbed in dementia patients, but previous studies have discordant conclusions. METHODS Circulating metabolomic data of 110,655 people in the UK Biobank study were measured with nuclear magnetic resonance technique, and incident dementia records were obtained from national health registers. The associations between plasma metabolites and dementia were estimated using Cox proportional hazard models. The 10-fold cross-validation elastic net regression models selected metabolites that predicted incident dementia, and a 10-year prediction model for dementia was constructed by multivariable logistic regression. The predictive values of the conventional risk model, the metabolites model, and the combined model were discriminated by comparison of area under the receiver operating characteristic curves (AUCs). Net reclassification improvement (NRI) was used to estimate the change of reclassification ability when adding metabolites into the conventional prediction model. RESULTS Amongst 110,655 participants, the mean (standard deviation) age was 56.5 (8.1) years, and 51 186 (46.3%) were male. A total of 1439 (13.0%) developed dementia during a median follow-up of 12.2 years (interquartile range: 11.5-12.9 years). A total of 38 metabolites, including lipids and lipoproteins, ketone bodies, glycolysis-related metabolites, and amino acids, were found to be significantly associated with incident dementia. Adding selected metabolites (n=24) to the conventional dementia risk prediction model significantly improved the prediction for incident dementia (AUC: 0.824 versus 0.817, p =0.042) and reclassification ability (NRI = 4.97%, P = 0.009) for identifying high risk groups. CONCLUSIONS Our analysis identified various metabolomic biomarkers which were significantly associated with incident dementia. Metabolomic profiles also provided opportunities for dementia risk reclassification. These findings may help explain the biological mechanisms underlying dementia and improve dementia prediction.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai, China
| | - Wenyi Hu
- Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Yueye Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Huan Liao
- Neural Regeneration Group, Institute of Reconstructive Neurobiology, University of Bonn, Bonn, Germany
| | - Xiayin Zhang
- Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Katerina V Kiburg
- Centre for Eye Research, University of Melbourne, East Melbourne, Victoria, Australia
| | - Xianwen Shang
- Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Gabriella Bulloch
- Centre for Eye Research, University of Melbourne, East Melbourne, Victoria, Australia
| | - Yu Huang
- Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Xueli Zhang
- Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Shulin Tang
- Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Yijun Hu
- Aier Institute of Refractive Surgery, Refractive Surgery Center, Guangzhou Aier Eye Hospital, Guangzhou, China
- Aier School of Ophthalmology, Central South University, Changsha, China
| | - Honghua Yu
- Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Xiaohong Yang
- Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Mingguang He
- Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
- Centre for Eye Research, University of Melbourne, East Melbourne, Victoria, Australia
| | - Zhuoting Zhu
- Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China.
- Centre for Eye Research, University of Melbourne, East Melbourne, Victoria, Australia.
| |
Collapse
|
17
|
Explore the Therapeutic Composition and Mechanism of Schisandra chinensis-Acorus tatarinowii Schott on Alzheimer’s Disease by Using an Integrated Approach on Chemical Profile, Network Pharmacology, and UPLC-QTOF/MS-Based Metabolomics Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6362617. [PMID: 35860432 PMCID: PMC9293517 DOI: 10.1155/2022/6362617] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022]
Abstract
Background. Alzheimer’s disease places a heavy economic burden to healthcare systems around the world. However, the effective treatments are still lacking. Traditional Chinese medicines (TCM) of Schisandra chinensis and Acorus tatarinowii Schott have the pharmacological effects of sedation and neuroprotection and have been clinically proven to be effective in the treatment of AD. However, their main anti-Alzheimer’s compounds and functional mechanisms remain unclear. Purpose. To elucidate the main therapeutic components and possible mechanisms of Sc-At in AD using a comprehensive strategy combining metabolomics and network pharmacology. Methods. First, the UPLC-QTOF/MS method was used to identify the main chemical constituents of Schisandra chinensis and Acorus tatarinowii Schott alcohol extracts in vitro and in vivo. Secondly, the theoretical active ingredients, targets, and pathways of Sc-At for AD treatment were predicted by network pharmacology methods. Finally, plasma metabolomics were detected by UPLC-QTOF/MS to analyze the differential metabolites and metabolic pathways related to Sc-At. Based on the analyses above, the anti-AD mechanism of Sc-At was explored. Results. A total of 95 chemical components were identified in Sc-At extracts in vitro, and 34 prototype drug components were detected in rat plasma; network pharmacology screening identified 14 drug components in line with the principle of Lipinski, of which 10 were present for in vitro drug composition analysis. For these 10 components, 58 AD disease targets were predicted, and 85 AD-related KEGG signaling pathways were enriched. Six core biomarkers of Sc-At (cis-8,11,14,17-eicosatetraenoic acid, prostaglandin H2, sphingosine 1-phosphate, enol-phenylpyruvate, 3-methoxytyrosine, and pristanoyl-CoA) were regulated to a normal state during the treatment of AD. Conclusion. The mechanism of Sc-At for the treatment of AD can be achieved by the effect of the 10 compounds of Sc-At on TNF, MAPK8, MAPK14, PTGS1, and other targets, thereby affecting arachidonic acid metabolism, neurotransmitters, and sphingolipid metabolism.
Collapse
|
18
|
Casas-Fernández E, Peña-Bautista C, Baquero M, Cháfer-Pericás C. Lipids as Early and Minimally Invasive Biomarkers for Alzheimer's Disease. Curr Neuropharmacol 2022; 20:1613-1631. [PMID: 34727857 PMCID: PMC9881089 DOI: 10.2174/1570159x19666211102150955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/09/2021] [Accepted: 10/19/2021] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder worldwide. Specifically, typical late-onset AD is a sporadic form with a complex etiology that affects over 90% of patients. The current gold standard for AD diagnosis is based on the determination of amyloid status by analyzing cerebrospinal fluid samples or brain positron emission tomography. These procedures can be used widely as they have several disadvantages (expensive, invasive). As an alternative, blood metabolites have recently emerged as promising AD biomarkers. Small molecules that cross the compromised AD blood-brain barrier could be determined in plasma to improve clinical AD diagnosis at early stages through minimally invasive techniques. Specifically, lipids could play an important role in AD since the brain has a high lipid content, and they are present ubiquitously inside amyloid plaques. Therefore, a systematic review was performed with the aim of identifying blood lipid metabolites as potential early AD biomarkers. In conclusion, some lipid families (fatty acids, glycerolipids, glycerophospholipids, sphingolipids, lipid peroxidation compounds) have shown impaired levels at early AD stages. Ceramide levels were significantly higher in AD subjects, and polyunsaturated fatty acids levels were significantly lower in AD. Also, high arachidonic acid levels were found in AD patients in contrast to low sphingomyelin levels. Consequently, these lipid biomarkers could be used for minimally invasive and early AD clinical diagnosis.
Collapse
Affiliation(s)
| | | | - Miguel Baquero
- Division of Neurology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Consuelo Cháfer-Pericás
- Health Research Institute La Fe, Valencia, Spain;,Address correspondence to this author at the Health Research Institute La Fe, Avenida Fernando Abril Martorell 106, Valencia E46026, Spain;, Tel: +34-96 1246721; E-mail:
| |
Collapse
|
19
|
Wang S, Li B, Solomon V, Fonteh A, Rapoport SI, Bennett DA, Arvanitakis Z, Chui HC, Sullivan PM, Yassine HN. Calcium-dependent cytosolic phospholipase A 2 activation is implicated in neuroinflammation and oxidative stress associated with ApoE4. Mol Neurodegener 2022; 17:42. [PMID: 35705959 PMCID: PMC9202185 DOI: 10.1186/s13024-022-00549-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Apolipoprotein E4 (APOE4) is associated with a greater response to neuroinflammation and the risk of developing late-onset Alzheimer's disease (AD), but the mechanisms for this association are not clear. The activation of calcium-dependent cytosolic phospholipase A2 (cPLA2) is involved in inflammatory signaling and is elevated within the plaques of AD brains. The relation between APOE4 genotype and cPLA2 activity is not known. METHODS Mouse primary astrocytes, mouse and human brain samples differing by APOE genotypes were collected for measuring cPLA2 expression, phosphorylation, and activity in relation to measures of inflammation and oxidative stress. RESULTS Greater cPLA2 phosphorylation, cPLA2 activity and leukotriene B4 (LTB4) levels were identified in ApoE4 compared to ApoE3 in primary astrocytes, brains of ApoE-targeted replacement (ApoE-TR) mice, and in human brain homogenates from the inferior frontal cortex of persons with AD dementia carrying APOE3/4 compared to APOE3/3. Higher phosphorylated p38 MAPK but not ERK1/2 was found in ApoE4 primary astrocytes and mouse brains than that in ApoE3. Greater cPLA2 translocation to cytosol was observed in human postmortem frontal cortical synaptosomes with recombinant ApoE4 than ApoE3 ex vivo. In ApoE4 astrocytes, the greater levels of LTB4, reactive oxygen species (ROS), and inducible nitric oxide synthase (iNOS) were reduced after cPLA2 inhibition. CONCLUSIONS Our findings implicate greater activation of cPLA2 signaling system with APOE4, which could represent a potential drug target for mitigating the increased neuroinflammation with APOE4 and AD.
Collapse
Affiliation(s)
- Shaowei Wang
- Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Boyang Li
- Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Victoria Solomon
- Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Alfred Fonteh
- Huntington Medical Research Institutes, Pasadena, CA USA
| | | | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL USA
| | - Zoe Arvanitakis
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL USA
| | - Helena C. Chui
- Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Patrick M. Sullivan
- Department of Medicine, Duke University Medical Center, Durham Veterans Health Administration Medical Center’s Geriatric Research, Education and Clinical Center, Durham, NC USA
| | - Hussein N. Yassine
- Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| |
Collapse
|
20
|
Pontifex MG, Martinsen A, Saleh RNM, Harden G, Fox C, Muller M, Vauzour D, Minihane AM. DHA-Enriched Fish Oil Ameliorates Deficits in Cognition Associated with Menopause and the APOE4 Genotype in Rodents. Nutrients 2022; 14:nu14091698. [PMID: 35565665 PMCID: PMC9103304 DOI: 10.3390/nu14091698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/07/2022] [Accepted: 04/17/2022] [Indexed: 11/16/2022] Open
Abstract
Female APOE4 carriers have a greater predisposition to developing Alzheimer’s disease (AD) compared to their male counterparts, which may partly be attributed to menopause. We previously reported that a combination of menopause and APOE4 led to an exacerbation of cognitive and neurological deficits, which were associated with reduced brain DHA and DHA:AA ratio. Here, we explored whether DHA-enriched fish oil (FO) supplementation mitigated the detrimental impact of these risk factors. Whilst DHA-enriched fish oil improved recognition memory (NOR) in APOE4 VCD (4-vinylcyclohexene diepoxide)-treated mice (p < 0.05), no change in spatial working memory (Y-maze) was observed. FO supplementation increased brain DHA and nervonic acid and the DHA:AA ratio. The response of key bioenergetic and blood−brain barrier related genes and proteins provided mechanistic insights into these behavioural findings, with increased BDNF protein concentration as well as mitigation of aberrant Erβ, Cldn1 and Glut-5 expression in APOE4 mice receiving fish oil supplementation (p < 0.05). In conclusion, supplementation with a physiologically relevant dose of DHA-enriched fish oil appears to offer protection against the detrimental effects of menopause, particularly in “at-risk” APOE4 female carriers.
Collapse
Affiliation(s)
- Matthew G. Pontifex
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (A.M.); (R.N.M.S.); (G.H.); (C.F.); (M.M.); (D.V.); (A.-M.M.)
- Correspondence:
| | - Anneloes Martinsen
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (A.M.); (R.N.M.S.); (G.H.); (C.F.); (M.M.); (D.V.); (A.-M.M.)
| | - Rasha N. M. Saleh
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (A.M.); (R.N.M.S.); (G.H.); (C.F.); (M.M.); (D.V.); (A.-M.M.)
- Clinical Pathology Department, Faculty of Medicine, Alexandria University, Alexandria 21526, Egypt
| | - Glenn Harden
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (A.M.); (R.N.M.S.); (G.H.); (C.F.); (M.M.); (D.V.); (A.-M.M.)
| | - Chris Fox
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (A.M.); (R.N.M.S.); (G.H.); (C.F.); (M.M.); (D.V.); (A.-M.M.)
- Exeter Medical School, University of Exeter, Exeter EX4 4PY, UK
| | - Michael Muller
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (A.M.); (R.N.M.S.); (G.H.); (C.F.); (M.M.); (D.V.); (A.-M.M.)
| | - David Vauzour
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (A.M.); (R.N.M.S.); (G.H.); (C.F.); (M.M.); (D.V.); (A.-M.M.)
| | - Anne-Marie Minihane
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK; (A.M.); (R.N.M.S.); (G.H.); (C.F.); (M.M.); (D.V.); (A.-M.M.)
| |
Collapse
|
21
|
Oberlin S, Nkiliza A, Parks M, Evans JE, Klimas N, Keegan AP, Sullivan K, Krengel MH, Mullan M, Crawford F, Abdullah L. Sex-specific differences in plasma lipid profiles are associated with Gulf War Illness. J Transl Med 2022; 20:73. [PMID: 35123492 PMCID: PMC8817550 DOI: 10.1186/s12967-022-03272-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/23/2022] [Indexed: 11/20/2022] Open
Abstract
Background Nearly 250,000 veterans from the 1990–1991 Gulf War have Gulf War Illness (GWI), a condition with heterogeneous pathobiology that remains difficult to diagnose. As such, availability of blood biomarkers that reflect the underlying biology of GWI would help clinicians provide appropriate care to ill veterans. In this study, we measured blood lipids to examine the influence of sex on the association between blood lipids and GWI diagnosis. Methods Plasma lipid extracts from GWI (n = 100) and control (n = 45) participants were subjected to reversed-phase nano-flow liquid chromatography-mass spectrometry analysis. Results An influence of sex and GWI case status on plasma neutral lipid and phospholipid species was observed. Among male participants, triglycerides, diglycerides, and phosphatidylcholines were increased while cholesterol esters were decreased in GWI cases compared to controls. In female participants, ceramides were increased in GWI cases compared to controls. Among male participants, unsaturated triglycerides, phosphatidylcholine and diglycerides were increased while unsaturated cholesterol esters were lower in GWI cases compared to controls. The ratio of arachidonic acid- to docosahexaenoic acid-containing triglyceride species was increased in female and male GWI cases as compared to their sex-matched controls. Conclusion Differential modulation of neutral lipids and ratios of arachidonic acid to docosahexaenoic acid in male veterans with GWI suggest metabolic dysfunction and inflammation. Increases in ceramides among female veterans with GWI also suggest activation of inflammatory pathways. Future research should characterize how these lipids and their associated pathways relate to GWI pathology to identify biomarkers of the disorder. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03272-3.
Collapse
|
22
|
Nkiliza A, Parks M, Cseresznye A, Oberlin S, Evans JE, Darcey T, Aenlle K, Niedospial D, Mullan M, Crawford F, Klimas N, Abdullah L. Sex-specific plasma lipid profiles of ME/CFS patients and their association with pain, fatigue, and cognitive symptoms. J Transl Med 2021; 19:370. [PMID: 34454515 PMCID: PMC8401202 DOI: 10.1186/s12967-021-03035-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/09/2021] [Indexed: 12/19/2022] Open
Abstract
Background Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex illness which disproportionally affects females. This illness is associated with immune and metabolic perturbations that may be influenced by lipid metabolism. We therefore hypothesized that plasma lipids from ME/CFS patients will provide a unique biomarker signature of disturbances in immune, inflammation and metabolic processes associated with ME/CFS. Methods Lipidomic analyses were performed on plasma from a cohort of 50 ME/CFS patients and 50 controls (50% males and similar age and ethnicity per group). Analyses were conducted with nano-flow liquid chromatography (nLC) and high-performance liquid chromatography (HPLC) systems coupled with a high mass accuracy ORBITRAP mass spectrometer, allowing detection of plasma lipid concentration ranges over three orders of magnitude. We examined plasma phospholipids (PL), neutral lipids (NL) and bioactive lipids in ME/CFS patients and controls and examined the influence of sex on the relationship between lipids and ME/CFS diagnosis. Results Among females, levels of total phosphatidylethanolamine (PE), omega-6 arachidonic acid-containing PE, and total hexosylceramides (HexCer) were significantly decreased in ME/CFS compared to controls. In males, levels of total HexCer, monounsaturated PE, phosphatidylinositol (PI), and saturated triglycerides (TG) were increased in ME/CFS patients compared to controls. Additionally, omega-6 linoleic acid-derived oxylipins were significantly increased in male ME/CFS patients versus male controls. Principal component analysis (PCA) identified three major components containing mostly PC and a few PE, PI and SM species—all of which were negatively associated with headache and fatigue severity, irrespective of sex. Correlations of oxylipins, ethanolamides and ME/CFS symptom severity showed that lower concentrations of these lipids corresponded with an increase in the severity of headaches, fatigue and cognitive difficulties and that this association was influenced by sex. Conclusion The observed sex-specific pattern of dysregulated PL, NL, HexCer and oxylipins in ME/CFS patients suggests a possible role of these lipids in promoting immune dysfunction and inflammation which may be among the underlying factors driving the clinical presentation of fatigue, chronic pain, and cognitive difficulties in ill patients. Further evaluation of lipid metabolism pathways is warranted to better understand ME/CFS pathogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03035-6.
Collapse
Affiliation(s)
- Aurore Nkiliza
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA. .,James A. Haley Veterans' Hospital, 2040 Whitfield Ave, Tampa, FL, USA.
| | - Megan Parks
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA.,James A. Haley Veterans' Hospital, 2040 Whitfield Ave, Tampa, FL, USA
| | - Adam Cseresznye
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA.,James A. Haley Veterans' Hospital, 2040 Whitfield Ave, Tampa, FL, USA
| | - Sarah Oberlin
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA.,James A. Haley Veterans' Hospital, 2040 Whitfield Ave, Tampa, FL, USA
| | - James E Evans
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA.,James A. Haley Veterans' Hospital, 2040 Whitfield Ave, Tampa, FL, USA
| | - Teresa Darcey
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA.,James A. Haley Veterans' Hospital, 2040 Whitfield Ave, Tampa, FL, USA
| | - Kristina Aenlle
- Institute for NeuroImmune Medicine, VAMC, GRECC, Nova Southeastern University, Miami, USA
| | - Daniel Niedospial
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA.,James A. Haley Veterans' Hospital, 2040 Whitfield Ave, Tampa, FL, USA
| | - Michael Mullan
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA.,James A. Haley Veterans' Hospital, 2040 Whitfield Ave, Tampa, FL, USA
| | - Fiona Crawford
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA.,James A. Haley Veterans' Hospital, 2040 Whitfield Ave, Tampa, FL, USA
| | - Nancy Klimas
- Institute for NeuroImmune Medicine, VAMC, GRECC, Nova Southeastern University, Miami, USA
| | - Laila Abdullah
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA.,James A. Haley Veterans' Hospital, 2040 Whitfield Ave, Tampa, FL, USA
| |
Collapse
|
23
|
Luo Y, Tan L, Therriault J, Zhang H, Gao Y. The Role of Apolipoprotein E ε4 in Early and Late Mild Cognitive Impairment. Eur Neurol 2021; 84:472-480. [PMID: 34340229 DOI: 10.1159/000516774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/17/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Apolipoprotein E (APOE) ε4 is highly associated with mild cognitive impairment (MCI). However, the specific influence of APOE ε4 status on tau pathology and cognitive decline in early MCI (EMCI) and late MCI (LMCI) is poorly understood. Our goal was to evaluate the association of APOE ε4 with cerebrospinal fluid (CSF) tau levels and cognition in EMCI and LMCI patients in the Alzheimer's Disease Neuroimaging Initiative database, and whether this association was mediated by amyloid-β (Aβ). METHODS Participants were 269 cognitively normal (CN), 262 EMCI, and 344 LMCI patients. They underwent CSF Aβ42 and tau detection, APOE ε4 genotyping, Mini-Mental State Examination, (MMSE), and Alzheimer's disease assessment scale (ADAS)-cog assessments. Linear regressions were used to examine the relation of APOE ε4 and CSF tau levels and cognitive scores in persons with and without Aβ deposition (Aβ+ and Aβ-). RESULTS The prevalence of APOE ε4 is higher in EMCI and LMCI than in CN (p < 0.001 for both), and in LMCI than in EMCI (p = 0.001). APOE ε4 allele was significantly higher in Aβ+ subjects than in Aβ- subjects (p < 0.001). Subjects who had a lower CSF Aβ42 level and were APOE ε4-positive experienced higher levels of CSF tau and cognitive scores in EMCI and/or LMCI. CONCLUSIONS An APOE ε4 allele is associated with increased CSF tau and worse cognition in both EMCI and LMCI, and this association may be mediated by Aβ. We conclude that APOE ε4 may be an important mediator of tau pathology and cognition in the early stages of AD.
Collapse
Affiliation(s)
- Yulin Luo
- Chongqing Three Gorges Medical College, Chongqing, China
| | - Li Tan
- General Medical Wards, The Affiliated Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Joseph Therriault
- The McGill University Research Centre for Studies in Aging, McGill University, Montreal, Québec, Canada
| | - Hua Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Gao
- General Medical Wards, The Affiliated Children's Hospital of Chongqing Medical University, Chongqing, China
| | | |
Collapse
|
24
|
Scheinman SB, Sugasini D, Zayed M, Yalagala PCR, Marottoli FM, Subbaiah PV, Tai LM. LPC-DHA/EPA-Enriched Diets Increase Brain DHA and Modulate Behavior in Mice That Express Human APOE4. Front Neurosci 2021; 15:690410. [PMID: 34276296 PMCID: PMC8282213 DOI: 10.3389/fnins.2021.690410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/31/2021] [Indexed: 12/22/2022] Open
Abstract
Compared with APOE3, APOE4 is associated with greater age-related cognitive decline and higher risk of neurodegenerative disorders. Therefore, development of supplements that target APOE genotype-modulated processes could provide a great benefit for the aging population. Evidence suggests a link between APOE genotype and docosahexaenoic acid (DHA); however, clinical studies with current DHA supplements have produced negative results in dementia. The lack of beneficial effects with current DHA supplements may be related to limited bioavailability, as the optimal form of DHA for brain uptake is lysophosphatidylcholine (LPC)-DHA. We previously developed a method to enrich the LPC-DHA content of krill oil through lipase treatment (LT-krill oil), which resulted in fivefold higher enrichment in brain DHA levels in wild-type mice compared with untreated krill oil. Here, we evaluated the effect of a control diet, diet containing krill oil, or a diet containing LT-krill oil in APOE3- and APOE4-targeted replacement mice (APOE-TR mice; treated from 4 to 12 months of age). We found that DHA levels in the plasma and hippocampus are lower in APOE4-TR mice and that LT-krill oil increased DHA levels in the plasma and hippocampus of both APOE3- and APOE4-TR mice. In APOE4-TR mice, LT-krill oil treatment resulted in higher levels of the synaptic vesicle protein SV2A and improved performance on the novel object recognition test. In conclusion, our data demonstrate that LPC-DHA/EPA-enriched krill oil can increase brain DHA and improve memory-relevant behavior in mice that express APOE4. Therefore, long-term use of LT-krill oil supplements may on some level protect against age-related neurodegeneration.
Collapse
Affiliation(s)
- Sarah B Scheinman
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Dhavamani Sugasini
- Division of Endocrinology and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Monay Zayed
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Poorna C R Yalagala
- Division of Endocrinology and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Felecia M Marottoli
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Papasani V Subbaiah
- Division of Endocrinology and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States.,Jesse Brown VA Medical Center, Chicago, IL, United States
| | - Leon M Tai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
25
|
Sugasini D, Yang P, Ng D, Khetarpal SA, Vitali C, Rader DJ, Subbaiah PV. Potential role of hepatic lipase in the accretion of docosahexaenoic acid (DHA) by the brain. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159002. [PMID: 34197964 DOI: 10.1016/j.bbalip.2021.159002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 10/21/2022]
Abstract
DHA (docosahexaenoic acid) is an essential fatty acid that is required for the normal development and function of the brain. Because of its inability to synthesize adequate amounts of DHA from the precursors, the brain has to acquire DHA from plasma through the blood brain barrier (BBB). Recent studies demonstrated the presence of a transporter at the BBB that specifically transports DHA into the brain in the form of lysophosphatidylcholine (LPC-DHA). However, the mechanism by which LPC-DHA is generated in the plasma is not known. Our previous studies showed that there are at least three different enzymes - lecithin cholesterol acyltransferase (LCAT), endothelial lipase (EL), and hepatic lipase (HL), which can generate LPC-DHA from sn-2 DHA phosphatidylcholine. Here we determined the relative contributions of these enzymes in the delivery of DHA to the brain by measuring the brain DHA levels in the mice deficient in each of these enzymes. The results show that the brain DHA levels of LCAT-deficient mice or EL-deficient mice were not significantly lower than those of their littermates. However, brain DHA was significantly decreased in HL deficient mice (13.5% of total fatty acids) compared to their littermates (17.1%) (p < 0.002), and further decreased to 8.3% of total fatty acids in mice deficient in both HL and EL. These results suggest that HL activity may be the major source for the generation of LPC-DHA in the plasma necessary for transport into the brain, and EL might contribute to this process in the absence of HL.
Collapse
Affiliation(s)
| | - Peng Yang
- Department of Medicine, University of Illinois, Chicago, IL 60612, USA
| | - Dominic Ng
- Department of Medicine, St. Michael's Hospital, University of Toronto, Ontario, Canada
| | - Sumeet A Khetarpal
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cecilia Vitali
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel J Rader
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Papasani V Subbaiah
- Department of Medicine, University of Illinois, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
26
|
Wang S, Li B, Solomon V, Fonteh A, Rapoport SI, Bennett DA, Arvanitakis Z, Chui HC, Miller C, Sullivan PM, Wang HY, Yassine HN. Calcium-dependent cytosolic phospholipase A 2 activation is implicated in neuroinflammation and oxidative stress associated with ApoE4. Mol Neurodegener 2021; 16:26. [PMID: 33863362 PMCID: PMC8052701 DOI: 10.1186/s13024-021-00438-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 03/03/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Apolipoprotein E4 (APOE4) is associated with a greater response to neuroinflammation and the risk of developing late-onset Alzheimer's disease (AD), but the mechanisms for this association are not clear. The activation of calcium-dependent cytosolic phospholipase A2 (cPLA2) is involved in inflammatory signaling and is elevated within the plaques of AD brains. The relation between APOE4 genotype and cPLA2 activity is not known. METHODS Mouse primary astrocytes, mouse and human brain samples differing by APOE genotypes were collected for measuring cPLA2 expression, phosphorylation, and activity in relation to measures of inflammation and oxidative stress. RESULTS Greater cPLA2 phosphorylation, cPLA2 activity and leukotriene B4 (LTB4) levels were identified in ApoE4 compared to ApoE3 in primary astrocytes, brains of ApoE-targeted replacement (ApoE-TR) mice, and in human brain homogenates from the inferior frontal cortex of patients with AD carrying APOE3/E4 compared to APOE3/E3. Greater cPLA2 phosphorylation was also observed in human postmortem frontal cortical synaptosomes and primary astrocytes after treatment with recombinant ApoE4 ex vivo. In ApoE4 astrocytes, the greater levels of LTB4, reactive oxygen species (ROS), and inducible nitric oxide synthase (iNOS) were reduced after cPLA2 inhibition. CONCLUSIONS Our findings implicate greater activation of cPLA2 signaling system with APOE4, which could represent a potential drug target for mitigating the increased neuroinflammation with APOE4 and AD.
Collapse
Affiliation(s)
- Shaowei Wang
- Departments of Medicine and Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Boyang Li
- Departments of Medicine and Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Victoria Solomon
- Departments of Medicine and Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Alfred Fonteh
- Huntington Medical Research Institutes, Pasadena, CA USA
| | | | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL USA
| | - Zoe Arvanitakis
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL USA
| | - Helena C. Chui
- Departments of Medicine and Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Carol Miller
- Departments of Medicine and Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Patrick M. Sullivan
- Department of Medicine, Duke University Medical Center, Durham Veterans Health Administration Medical Center’s Geriatric Research, Education and Clinical Center, Durham, NC USA
| | - Hoau-Yan Wang
- The City University of New York School of Medicine, New York, NY USA
- Graduate School of The City University of New York, New York, USA
| | - Hussein N. Yassine
- Departments of Medicine and Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| |
Collapse
|
27
|
Li T, Yang H, Li X, Hou Y, Zhao Y, Wu W, Zhao L, Wang F, Zhao Z. Open-flow microperfusion combined with mass spectrometry for in vivo liver lipidomic analysis. Analyst 2021; 146:1915-1923. [PMID: 33481970 DOI: 10.1039/d0an02189j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
At present, conventional microdialysis (MD) techniques cannot efficiently sample lipids in vivo, possibly due to the high mass transfer resistance and/or the serious adsorption of lipids onto the semi-permeable membrane of a MD probe. The in vivo monitoring of lipids could be of great significance for the study of disease development and mechanisms. In this work, an open-flow microperfusion (OFM) probe was fabricated, and the conditions for sampling lipids via OFM were optimized. Using OFM, the recovery of lipid standards was improved to more than 34.7%. OFM is used for the in vivo sampling of lipids in mouse liver tissue with fibrosis, and it is then combined with mass spectrometry (MS) to perform lipidomic analysis. 156 kinds of lipids were identified in the dialysate collected via OFM, and it was found that the phospholipid levels, including PC, PE, and SM, were significantly higher in a liver suffering from fibrosis. For the first time, OFM combined with MS to sample and analyze lipids has provided a promising platform for in vivo lipidomic studies.
Collapse
Affiliation(s)
- Tuo Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
- Graduate School, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Hui Yang
- Center for Clinic Stem Cell Research, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Xing Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
- Graduate School, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yinzhu Hou
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
- Graduate School, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
| | - Wenjing Wu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
- Graduate School, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Lingyu Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
- Graduate School, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
- Graduate School, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Zhenwen Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
- Graduate School, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
28
|
An G, Zhang Y, Fan L, Chen J, Wei M, Li C, Chen X, Zhang L, Yang D, Wang J. Integrative Analysis of Vaginal Microorganisms and Serum Metabolomics in Rats With Estrous Cycle Disorder Induced by Long-Term Heat Exposure Based on 16S rDNA Gene Sequencing and LC/MS-Based Metabolomics. Front Cell Infect Microbiol 2021; 11:595716. [PMID: 33738264 PMCID: PMC7962411 DOI: 10.3389/fcimb.2021.595716] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/11/2021] [Indexed: 12/26/2022] Open
Abstract
Long term heat exposure (HE) leads to estrous cycle disorder (ECD) in female rats and damages reproductive function. However, the regulation mechanism of vaginal microorganisms and serum metabolomics remains unclear. This study aimed to explore the effects of microbes on the vaginal secretions of rats with ECD and describe the serum metabolomics characteristics and their relationship with vaginal microorganisms. The alterations in the serum levels of neurotransmitters were used to verify the possible regulatory pathways. The relative abundance, composition, and colony interaction network of microorganisms in the vaginal secretions of rats with ECD changed significantly. The metabolomics analysis identified 22 potential biomarkers in the serum including lipid metabolism, amino acid metabolism, and mammalian target of rapamycin and gonadotropin-releasing hormone (GnRH) signaling pathways. Further, 52 pairs of vaginal microbiota–serum metabolites correlations (21 positive and 31 negative) were determined. The abundance of Gardnerella correlated positively with the metabolite L-arginine concentration and negatively with the oleic acid concentration. Further, a negative correlation was found between the abundance of Pseudomonas and the L-arginine concentration and between the metabolite benzoic acid concentration and the abundance of Adlercreutzia. These four bacteria–metabolite pairs had a direct or indirect relationship with the estrous cycle and reproduction. The glutamine, glutamate, and dopamine levels were significantly uncontrolled. The former two were closely related to GnRH signaling pathways involved in the development and regulation of HE-induced ECD in rats. Serum neurotransmitters partly reflected the regulatory effect of vaginal microorganisms on the host of HE-induced ECD, and glutamatergic neurotransmitters might be closely related to the alteration in vaginal microorganisms. These findings might help comprehend the mechanism of HE-induced ECD and propose a new intervention based on vaginal microorganisms.
Collapse
Affiliation(s)
- GaiHong An
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Yu Zhang
- Department of Endocrinology, Tianjin Central Hospital of Gynecology and Obstetrics, Tianjin, China
| | - LiJun Fan
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - JiaJun Chen
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - MengFan Wei
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Chao Li
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - XueWei Chen
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Li Zhang
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - DanFeng Yang
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Jing Wang
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| |
Collapse
|
29
|
Cohn W, Melnik M, Huang C, Teter B, Chandra S, Zhu C, McIntire LB, John V, Gylys KH, Bilousova T. Multi-Omics Analysis of Microglial Extracellular Vesicles From Human Alzheimer's Disease Brain Tissue Reveals Disease-Associated Signatures. Front Pharmacol 2021; 12:766082. [PMID: 34925024 PMCID: PMC8675946 DOI: 10.3389/fphar.2021.766082] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/19/2021] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, yet there is no cure or diagnostics available prior to the onset of clinical symptoms. Extracellular vesicles (EVs) are lipid bilayer-delimited particles that are released from almost all types of cell. Genome-wide association studies have linked multiple AD genetic risk factors to microglia-specific pathways. It is plausible that microglia-derived EVs may play a role in the progression of AD by contributing to the dissemination of insoluble pathogenic proteins, such as tau and Aβ. Despite the potential utility of EVs as a diagnostic tool, our knowledge of human brain EV subpopulations is limited. Here we present a method for isolating microglial CD11b-positive small EVs from cryopreserved human brain tissue, as well as an integrated multiomics analysis of microglial EVs enriched from the parietal cortex of four late-stage AD (Braak V-VI) and three age-matched normal/low pathology (NL) cases. This integrated analysis revealed 1,000 proteins, 594 lipids, and 105 miRNAs using shotgun proteomics, targeted lipidomics, and NanoString nCounter technology, respectively. The results showed a significant reduction in the abundance of homeostatic microglia markers P2RY12 and TMEM119, and increased levels of disease-associated microglia markers FTH1 and TREM2, in CD11b-positive EVs from AD brain compared to NL cases. Tau abundance was significantly higher in AD brain-derived microglial EVs. These changes were accompanied by the upregulation of synaptic and neuron-specific proteins in the AD group. Levels of free cholesterol were elevated in microglial EVs from the AD brain. Lipidomic analysis also revealed a proinflammatory lipid profile, endolysosomal dysfunction, and a significant AD-associated decrease in levels of docosahexaenoic acid (DHA)-containing polyunsaturated lipids, suggesting a potential defect in acyl-chain remodeling. Additionally, four miRNAs associated with immune and cellular senescence signaling pathways were significantly upregulated in the AD group. Our data suggest that loss of the homeostatic microglia signature in late AD stages may be accompanied by endolysosomal impairment and the release of undigested neuronal and myelin debris, including tau, through extracellular vesicles. We suggest that the analysis of microglia-derived EVs has merit for identifying novel EV-associated biomarkers and providing a framework for future larger-scale multiomics studies on patient-derived cell-type-specific EVs.
Collapse
Affiliation(s)
- Whitaker Cohn
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Mikhail Melnik
- School of Nursing, University of California, Los Angeles, Los Angeles, CA, United States
| | - Calvin Huang
- School of Nursing, University of California, Los Angeles, Los Angeles, CA, United States
| | - Bruce Teter
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sujyoti Chandra
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Chunni Zhu
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Laura Beth McIntire
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, United States
| | - Varghese John
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Karen H Gylys
- School of Nursing, University of California, Los Angeles, Los Angeles, CA, United States
| | - Tina Bilousova
- Drug Discovery Lab, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States.,School of Nursing, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
30
|
Dias IHK, Milic I, Heiss C, Ademowo OS, Polidori MC, Devitt A, Griffiths HR. Inflammation, Lipid (Per)oxidation, and Redox Regulation. Antioxid Redox Signal 2020; 33:166-190. [PMID: 31989835 DOI: 10.1089/ars.2020.8022] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Inflammation increases during the aging process. It is linked to mitochondrial dysfunction and increased reactive oxygen species (ROS) production. Mitochondrial macromolecules are critical targets of oxidative damage; they contribute to respiratory uncoupling with increased ROS production, redox stress, and a cycle of senescence, cytokine production, and impaired oxidative phosphorylation. Targeting the formation or accumulation of oxidized biomolecules, particularly oxidized lipids, in immune cells and mitochondria could be beneficial for age-related inflammation and comorbidities. Recent Advances: Inflammation is central to age-related decline in health and exhibits a complex relationship with mitochondrial redox state and metabolic function. Improvements in mass spectrometric methods have led to the identification of families of oxidized phospholipids (OxPLs), cholesterols, and fatty acids that increase during inflammation and which modulate nuclear factor erythroid 2-related factor 2 (Nrf2), peroxisome proliferator-activated receptor gamma (PPARγ), activator protein 1 (AP1), and NF-κB redox-sensitive transcription factor activity. Critical Issues: The kinetic and spatial resolution of the modified lipidome has profound and sometimes opposing effects on inflammation, promoting initiation at high concentration and resolution at low concentration of OxPLs. Future Directions: There is an emerging opportunity to prevent or delay age-related inflammation and vascular comorbidity through a resolving (oxy)lipidome that is dependent on improving mitochondrial quality control and restoring redox homeostasis.
Collapse
Affiliation(s)
- Irundika H K Dias
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, United Kingdom
| | - Ivana Milic
- Aston Research Center for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Christian Heiss
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Opeyemi S Ademowo
- Aston Research Center for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Maria Cristina Polidori
- Ageing Clinical Research, Department II of Internal Medicine and Cologne Center for Molecular Medicine Cologne, and CECAD, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Andrew Devitt
- Aston Research Center for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Helen R Griffiths
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, United Kingdom.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
31
|
Vardarajan B, Kalia V, Manly J, Brickman A, Reyes‐Dumeyer D, Lantigua R, Ionita‐Laza I, Jones DP, Miller GW, Mayeux R. Differences in plasma metabolites related to Alzheimer's disease, APOE ε4 status, and ethnicity. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2020; 6:e12025. [PMID: 32377558 PMCID: PMC7201178 DOI: 10.1002/trc2.12025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/31/2020] [Indexed: 11/24/2022]
Abstract
INTRODUCTION We investigated metabolites in plasma to capture systemic biochemical changes associated with Alzheimer's disease (AD). METHODS Metabolites in plasma were measured in 59 AD cases and 60 healthy participants of African American (AA), Caribbean Hispanic (CH), and non-Hispanic white (NHW) ancestry using untargeted liquid-chromatography-based ultra-high-resolution mass spectrometry. Metabolite differences between AD and healthy, ethnic groups and apolipoprotein E gene (APOE) ε4 status were analyzed. Untargeted network analysis identified pathways enriched in AD-associated metabolites. RESULTS A total of 5929 annotated metabolites were measured. Partial least squares discriminant analysis (PLS-DA) inferred that AD clustered separately from healthy controls (area under the curve [AUC] = 0.9816); discriminating pathways included glycerophospholipid, sphingolipid, and non-essential amino acid (alanine, aspartate, glutamate) metabolism. Metabolic features in AA clustered differently from CH and NHW (AUC = 0.9275), and differed between APOE ε4 carriers and non-carriers (AUC = 0.9972). DISCUSSION Metabolites, specifically lipids, were associated with AD, APOE ε4, and ethnic group. Metabolite profiling can identify perturbed AD pathways, but genetic and ancestral background need to be considered.
Collapse
Affiliation(s)
- Badri Vardarajan
- College of Physicians and SurgeonsTaub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia UniversityNew YorkNew York
- The Gertrude H. Sergievsky CenterCollege of Physicians and SurgeonsColumbia UniversityNew YorkNew York
- Department of NeurologyCollege of Physicians and SurgeonsColumbia University and the New York Presbyterian HospitalNew YorkNew York
| | - Vrinda Kalia
- Department of Environmental Health SciencesMailman School of Public HealthColumbia UniversityNew YorkNew York
| | - Jennifer Manly
- College of Physicians and SurgeonsTaub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia UniversityNew YorkNew York
| | - Adam Brickman
- College of Physicians and SurgeonsTaub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia UniversityNew YorkNew York
- The Gertrude H. Sergievsky CenterCollege of Physicians and SurgeonsColumbia UniversityNew YorkNew York
- Department of NeurologyCollege of Physicians and SurgeonsColumbia University and the New York Presbyterian HospitalNew YorkNew York
| | - Dolly Reyes‐Dumeyer
- College of Physicians and SurgeonsTaub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia UniversityNew YorkNew York
- The Gertrude H. Sergievsky CenterCollege of Physicians and SurgeonsColumbia UniversityNew YorkNew York
| | - Rafael Lantigua
- Department of NeurologyCollege of Physicians and SurgeonsColumbia University and the New York Presbyterian HospitalNew YorkNew York
| | - Iuliana Ionita‐Laza
- Department of BiostatisticsMailman School of Public HealthColumbia UniversityNew YorkNew York
| | - Dean P. Jones
- Clinical Biomarkers LaboratoryDepartment of MedicineEmory UniversityAtlantaGeorgia
- Department of Pathology and Cell BiologyCollege of Physicians and SurgeonsColumbia UniversityNew YorkNew York
| | - Gary W. Miller
- Department of Environmental Health SciencesMailman School of Public HealthColumbia UniversityNew YorkNew York
| | - Richard Mayeux
- College of Physicians and SurgeonsTaub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia UniversityNew YorkNew York
- The Gertrude H. Sergievsky CenterCollege of Physicians and SurgeonsColumbia UniversityNew YorkNew York
- Department of NeurologyCollege of Physicians and SurgeonsColumbia University and the New York Presbyterian HospitalNew YorkNew York
- Department of EpidemiologyMailman School of Public HealthColumbia UniversityNew YorkNew York
- Department of PsychiatryCollege of Physicians and SurgeonsColumbia UniversityNew YorkNew York
| |
Collapse
|
32
|
Kao YC, Ho PC, Tu YK, Jou IM, Tsai KJ. Lipids and Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21041505. [PMID: 32098382 PMCID: PMC7073164 DOI: 10.3390/ijms21041505] [Citation(s) in RCA: 287] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 12/14/2022] Open
Abstract
Lipids, as the basic component of cell membranes, play an important role in human health as well as brain function. The brain is highly enriched in lipids, and disruption of lipid homeostasis is related to neurologic disorders as well as neurodegenerative diseases such as Alzheimer’s disease (AD). Aging is associated with changes in lipid composition. Alterations of fatty acids at the level of lipid rafts and cerebral lipid peroxidation were found in the early stage of AD. Genetic and environmental factors such as apolipoprotein and lipid transporter carrying status and dietary lipid content are associated with AD. Insight into the connection between lipids and AD is crucial to unraveling the metabolic aspects of this puzzling disease. Recent advances in lipid analytical methodology have led us to gain an in-depth understanding on lipids. As a result, lipidomics have becoming a hot topic of investigation in AD, in order to find biomarkers for disease prediction, diagnosis, and prevention, with the ultimate goal of discovering novel therapeutics.
Collapse
Affiliation(s)
- Yu-Chia Kao
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-C.K.); (P.-C.H.)
- Department of Pediatrics, E-DA Hospital, Kaohsiung 824, Taiwan
| | - Pei-Chuan Ho
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-C.K.); (P.-C.H.)
| | - Yuan-Kun Tu
- Department of Orthopedics, E-DA Hospital, Kaohsiung 824, Taiwan; (Y.-K.T.); (I.-M.J.)
| | - I-Ming Jou
- Department of Orthopedics, E-DA Hospital, Kaohsiung 824, Taiwan; (Y.-K.T.); (I.-M.J.)
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-C.K.); (P.-C.H.)
- Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Correspondence: ; Tel.: +886-6-235-3535-4254; Fax: +886-6-275-8781
| |
Collapse
|
33
|
Tomaszewski N, He X, Solomon V, Lee M, Mack WJ, Quinn JF, Braskie MN, Yassine HN. Effect of APOE Genotype on Plasma Docosahexaenoic Acid (DHA), Eicosapentaenoic Acid, Arachidonic Acid, and Hippocampal Volume in the Alzheimer's Disease Cooperative Study-Sponsored DHA Clinical Trial. J Alzheimers Dis 2020; 74:975-990. [PMID: 32116250 PMCID: PMC7156328 DOI: 10.3233/jad-191017] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and arachidonic acid (AA) play key roles in several metabolic processes relevant to Alzheimer's disease (AD) pathogenesis and neuroinflammation. Carrying the APOEɛ4 allele (APOE4) accelerates omega-3 polyunsaturated fatty acid (PUFA) oxidation. In a pre-planned subgroup analysis of the Alzheimer's Disease Cooperative Study-sponsored DHA clinical trial, APOE4 carriers with mild probable AD had no improvements in cognitive outcomes compared to placebo, while APOE 4 non-carriers showed a benefit from DHA supplementation. OBJECTIVE We sought to clarify the effect of APOEɛ4/ɛ4 on both the ratio of plasma DHA and EPA to AA, and on hippocampal volumes after DHA supplementation. METHODS Plasma fatty acids and APOE genotype were obtained in 275 participants randomized to 18 months of DHA supplementation or placebo. A subset of these participants completed brain MRI imaging (n = 86) and lumbar punctures (n = 53). RESULTS After the intervention, DHA-treated APOEɛ3/ɛ3 and APOEɛ2/ɛ3 carriers demonstrated significantly greater increase in plasma DHA/AA compared to ɛ4/ɛ4 carriers. APOEɛ2/ɛ3 had a greater increase in plasma EPA/AA and less decline in left and right hippocampal volumes compared to compared to ɛ4/ɛ4 carriers. The change in plasma and cerebrospinal fluid DHA/AA was strongly correlated. Greater baseline and increase in plasma EPA/AA was associated with a lower decrease in the right hippocampal volume, but only in APOE 4 non-carriers. CONCLUSION The lower increase in plasma DHA/AA and EPA/AA in APOEɛ4/ɛ4 carriers after DHA supplementation reduces brain delivery and affects the efficacy of DHA supplementation.
Collapse
Affiliation(s)
- Natalie Tomaszewski
- Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xulei He
- Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Victoria Solomon
- Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mitchell Lee
- Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Wendy J. Mack
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joseph F. Quinn
- Department of Neurology, Oregon Health and Science University, Portland VA Medical Center
| | - Meredith N. Braskie
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hussein N. Yassine
- Department of Medicine, University of Southern California, Los Angeles, CA, USA
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
34
|
Effects of Docosahexaenoic Acid and Its Peroxidation Product on Amyloid-β Peptide-Stimulated Microglia. Mol Neurobiol 2019; 57:1085-1098. [PMID: 31677009 DOI: 10.1007/s12035-019-01805-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/26/2019] [Indexed: 12/13/2022]
Abstract
Growing evidence suggests that docosahexaenoic acid (DHA) exerts neuroprotective effects, although the mechanism(s) underlying these beneficial effects are not fully understood. Here we demonstrate that DHA, but not arachidonic acid (ARA), suppressed oligomeric amyloid-β peptide (oAβ)-induced reactive oxygen species (ROS) production in primary mouse microglia and immortalized mouse microglia (BV2). Similarly, DHA but not ARA suppressed oAβ-induced increases in phosphorylated cytosolic phospholipase A2 (p-cPLA2), inducible nitric oxide synthase (iNOS), and tumor necrosis factor-α (TNF-α) in BV2 cells. LC-MS/MS assay indicated the ability for DHA to cause an increase in 4-hydroxyhexenal (4-HHE) and suppress oAβ-induced increase in 4-hydroxynonenal (4-HNE). Although oAβ did not alter the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, exogenous DHA, ARA as well as low concentrations of 4-HHE and 4-HNE upregulated this pathway and increased production of heme oxygenase-1 (HO-1) in microglial cells. These results suggest that DHA modulates ARA metabolism in oAβ-stimulated microglia through suppressing oxidative and inflammatory pathways and upregulating the antioxidative stress pathway involving Nrf2/HO-1. Understanding the mechanism(s) underlying the beneficial effects of DHA on microglia should shed light into nutraceutical therapy for the prevention and treatment of Alzheimer's disease (AD).
Collapse
|
35
|
Balu D, Karstens AJ, Loukenas E, Maldonado Weng J, York JM, Valencia-Olvera AC, LaDu MJ. The role of APOE in transgenic mouse models of AD. Neurosci Lett 2019; 707:134285. [PMID: 31150730 PMCID: PMC6717006 DOI: 10.1016/j.neulet.2019.134285] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 12/17/2022]
Abstract
Identified in 1993, APOE4 is the greatest genetic risk factor for Alzheimer's disease (AD), increasing risk up to 15-fold compared to the common variant APOE3. Since the mid 1990's, transgenic (Tg) mice have been developed to model AD pathology and progression, primarily via expression of the familial AD (FAD) mutations in the presence of mouse-APOE (m-APOE). APOE4, associated with enhanced amyloid-β (Aβ) accumulation, has rarely been the focus in designing FAD-Tg mouse models. Initially, FAD-Tg mice were crossed with human (h)-APOE driven by heterologous promoters to identify an APOE genotype-specific AD phenotype. These models were later supplemented with FAD-Tg mice crossed with APOE-knockouts (APOE-/- or APOE-KO) and h-APOE-targeted replacement (h-APOE-TR) mice, originally generated to study the role of APOE genotype in peripheral lipid metabolism and atherosclerotic lesion development. Herein, we compare the m- and h-APOE multi-gene clusters, and then critically review the relevant history and approaches to developing a Tg mouse model to characterize APOE-dependent AD pathology, in combination with genetic (sex, age) and modifiable (e.g., inflammation, obesity) risk factors. Finally, we present recent data from the EFAD mice, which express 5xFAD mutations with the expression of the human apoE isoforms (E2FAD, E3FAD and E4FAD). This includes a study of 6- and 18-month-old male and female E3FAD and E4FAD, a comparison that enables examination of the interaction among the main AD risk factors: age, APOE genotype and sex. While no single transgenic mouse can capture the effects of all modifiable and genetic risk factors, going forward, a conscious effort needs to be made to include the factors that most significantly modulate AD pathology.
Collapse
Affiliation(s)
- Deebika Balu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Aimee James Karstens
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Psychology, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Efstathia Loukenas
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Juan Maldonado Weng
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Jason M York
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
36
|
Martinsen A, Tejera N, Vauzour D, Harden G, Dick J, Shinde S, Barden A, Mori TA, Minihane AM. Altered SPMs and age-associated decrease in brain DHA in APOE4 female mice. FASEB J 2019; 33:10315-10326. [PMID: 31251078 DOI: 10.1096/fj.201900423r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An apolipoprotein E (APOE) 4 genotype is the most important, common genetic determinant for Alzheimer disease (AD), and female APOE4 carriers present with an increased risk compared with males. The study quantified cortical and hippocampal fatty acid and phospholipid profiles along with select eicosapentaenoic acid (EPA)- and docosahexaenoic acid (DHA)-derived specialized proresolving mediators (SPMs) in 2-, 9-, and 18-mo-old APOE3 and APOE4 male and female mice. A 10% lower cortical DHA was evident in APOE4 females at 18 mo compared with 2 mo, with no significant decrease in APOE3 or APOE4 males. This decrease was associated with a reduction in DHA-phosphatidylethanolamine. Older APOE4 females had a 15% higher oleic acid content compared with young mice. Although no sex*APOE genotype interactions were observed for SPMs expressed as a ratio of their parent compound, higher cortical 18R/S-hydroxy-5Z,8Z,11Z,14Z,16E-EPA, resolvin D3, protectin D1, 10S,17S-dihydroxy-4Z,7Z,11E,13E,15Z,19Z-DHA (10S,17S-diHDHA), maresin 1, 17S-hydroxy-4Z,7Z,10Z,13Z,15E,19Z-DHA, and 14S-hydroxy-4Z,7Z,10Z,12E,16Z,19Z-DHA were evident in females, and lower cortical 17R-resolvin D1, 10S,17S-diHDHA, and 18-HEPE in APOE4. Our findings show a strong association between age, female sex, and an APOE4 genotype, with decreased cortical DHA and a number of SPMs, which together may contribute to the development of cognitive decline and AD pathology.-Martinsen, A., Tejera, N., Vauzour, D., Harden, G., Dick, J., Shinde, S., Barden, A., Mori, T. A., Minihane, A. M. Altered SPMs and age-associated decrease in brain DHA in APOE4 female mice.
Collapse
Affiliation(s)
- Anneloes Martinsen
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Noemi Tejera
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - David Vauzour
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Glenn Harden
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - James Dick
- Nutrition Analytical Service, Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Sujata Shinde
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| | - Anne Barden
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| | - Trevor A Mori
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| | - Anne Marie Minihane
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
37
|
Edwards III GA, Gamez N, Escobedo Jr. G, Calderon O, Moreno-Gonzalez I. Modifiable Risk Factors for Alzheimer's Disease. Front Aging Neurosci 2019; 11:146. [PMID: 31293412 PMCID: PMC6601685 DOI: 10.3389/fnagi.2019.00146] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 05/31/2019] [Indexed: 01/03/2023] Open
Abstract
Since first described in the early 1900s, Alzheimer's disease (AD) has risen exponentially in prevalence and concern. Research still drives to understand the etiology and pathogenesis of this disease and what risk factors can attribute to AD. With a majority of AD cases being of sporadic origin, the increasing exponential growth of an aged population and a lack of treatment, it is imperative to discover an easy accessible preventative method for AD. Some risk factors can increase the propensity of AD such as aging, sex, and genetics. Moreover, there are also modifiable risk factors-in terms of treatable medical conditions and lifestyle choices-that play a role in developing AD. These risk factors have their own biological mechanisms that may contribute to AD etiology and pathological consequences. In this review article, we will discuss modifiable risk factors and discuss the current literature of how each of these factors interplay into AD development and progression and if strategically analyzed and treated, could aid in protection against this neurodegenerative disease.
Collapse
Affiliation(s)
- George A. Edwards III
- The Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, The University of Texas Houston Health Science Center at Houston, Houston, TX, United States
| | - Nazaret Gamez
- The Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, The University of Texas Houston Health Science Center at Houston, Houston, TX, United States
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Department of Cell Biology, Facultad Ciencias, Universidad de Malaga, Malaga, Spain
| | - Gabriel Escobedo Jr.
- The Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, The University of Texas Houston Health Science Center at Houston, Houston, TX, United States
| | - Olivia Calderon
- The Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, The University of Texas Houston Health Science Center at Houston, Houston, TX, United States
| | - Ines Moreno-Gonzalez
- The Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, The University of Texas Houston Health Science Center at Houston, Houston, TX, United States
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Department of Cell Biology, Facultad Ciencias, Universidad de Malaga, Malaga, Spain
| |
Collapse
|
38
|
Sharman MJ, Verdile G, Kirubakaran S, Parenti C, Singh A, Watt G, Karl T, Chang D, Li CG, Münch G. Targeting Inflammatory Pathways in Alzheimer's Disease: A Focus on Natural Products and Phytomedicines. CNS Drugs 2019; 33:457-480. [PMID: 30900203 DOI: 10.1007/s40263-019-00619-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Studies of the brains of Alzheimer's disease (AD) patients have revealed key neuropathological features, such as the deposition of aggregates of insoluble amyloid-β (Aβ) peptides and neurofibrillary tangles (NFTs). These pathological protein deposits, including Aβ peptides (which form senile plaques) and hyperphosphorylated tau (which aggregates into NFTs), have been assumed to be 'the cause of AD'. Aβ has been extensively targeted to develop an effective disease-modifying therapy, but with limited clinical success. Emerging therapies are also now targeting further pathological processes in AD, including neuroinflammation. This review focuses on the inflammatory and oxidative stress-related changes that occur in AD, and discusses some emerging anti-inflammatory natural products and phytomedicines. Many of the promising compounds are cytokine-suppressive anti-inflammatory drugs (CSAIDs), which target the proinflammatory AP1 and nuclear factor-κB signalling pathways and inhibit the expression of many proinflammatory cytokines, such as interleukin (IL)-1, IL-6, tumour necrosis factor-α, or nitric oxide produced by inducible nitric oxide synthase. However, many of these phytomedicines have not been tested in rigorous clinical trials in AD patients. It is not yet clear if the active compounds reach an effective concentration in the brain (due to limited bioavailability) or if they can slow down AD progression in long-term trials. The authors suggest that it is crucial for both the pharmacological and complementary medicine industries to conduct and fund those studies to significantly advance the field.
Collapse
Affiliation(s)
- Matthew J Sharman
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Locked Bag 1322, Launceston, TAS, 7250, Australia
| | - Giuseppe Verdile
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, 6102, Australia
| | - Shanmugam Kirubakaran
- Department of Pharmacology, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Cristina Parenti
- Department of Pharmacology, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Ahilya Singh
- Department of Pharmacology, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Georgina Watt
- Department of Behavioural Neuroscience, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Tim Karl
- Department of Behavioural Neuroscience, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Campbelltown, NSW, 2560, Australia.,School of Science and Health, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Gerald Münch
- Department of Pharmacology, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia. .,NICM Health Research Institute, Western Sydney University, Campbelltown, NSW, 2560, Australia. .,Pharmacology Unit, School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| |
Collapse
|
39
|
Relation of Serum Plasmalogens and APOE Genotype to Cognition and Dementia in Older Persons in a Cross-Sectional Study. Brain Sci 2019; 9:brainsci9040092. [PMID: 31022959 PMCID: PMC6523320 DOI: 10.3390/brainsci9040092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/19/2019] [Accepted: 04/21/2019] [Indexed: 01/18/2023] Open
Abstract
Using a community sample of 1205 elderly persons, we investigated the associations and potential interactions between Apolipoprotein E (APOE) genotype and serum phosphatidylethanolamine (PlsEtn) on cognition and dementia. For each person, APOE genotype, PlsEtn Biosynthesis value (PBV, the combination of three key PlsEtn species), cognition (the combination of five specific cognitive domains), and diagnosis of dementia was determined. APOE genotype and PBV were observed to be non-interacting (p > 0.05) and independently associated with cognition: APOE (relative to ε3ε3:ε2ε3 (Coef = 0.14, p = 4.2 × 10−2); ε3ε4/ε4ε4 (Coef = −0.22, p = 6.2 × 10−5); PBV (Coef = 0.12, p = 1.7 × 10−7) and dementia: APOE (relative to ε3ε3:ε2ε3 (Odds Ratio OR = 0.44, p = 3.0 × 10−2); ε3ε4/ε4ε4 (OR = 2.1, p = 2.2 × 10−4)); PBV (OR = 0.61, p = 3.3 × 10−6). Associations are expressed per standard deviation (SD) and adjusted for serum lipids and demographics. Due to the independent and non-interacting nature of the APOE and PBV associations, the prevalence of dementia in APOE ε3ε4/ε4ε4 persons with high PBV values (>1 SD from mean) was observed to be the same as APOE ε3ε3 persons (14.3% versus 14.0%). Similarly, the prevalence of dementia in APOE ε3ε3 persons with high PBV values was only 5.7% versus 6.7% for APOE ε2ε3 persons. The results of these analyses indicate that the net effect of APOE genotype on cognition and the prevalence of dementia is dependent upon the plasmalogen status of the person.
Collapse
|
40
|
Jiang Y, Zhu Z, Shi J, An Y, Zhang K, Wang Y, Li S, Jin L, Ye W, Cui M, Chen X. Metabolomics in the Development and Progression of Dementia: A Systematic Review. Front Neurosci 2019; 13:343. [PMID: 31031585 PMCID: PMC6474157 DOI: 10.3389/fnins.2019.00343] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/25/2019] [Indexed: 12/12/2022] Open
Abstract
Dementia has become a major global public health challenge with a heavy economic burden. It is urgently necessary to understand dementia pathogenesis and to identify biomarkers predicting risk of dementia in the preclinical stage for prevention, monitoring, and treatment. Metabolomics provides a novel approach for the identification of biomarkers of dementia. This systematic review aimed to examine and summarize recent retrospective cohort human studies assessing circulating metabolite markers, detected using high-throughput metabolomics, in the context of disease progression to dementia, including incident mild cognitive impairment, all-cause dementia, and cognitive decline. We systematically searched the PubMed, Embase, and Cochrane databases for retrospective cohort human studies assessing associations between blood (plasma or serum) metabolomics profile and cognitive decline and risk of dementia from inception through October 15, 2018. We identified 16 studies reporting circulating metabolites and risk of dementia, and six regarding cognitive performance change. Concentrations of several blood metabolites, including lipids (higher phosphatidylcholines, sphingomyelins, and lysophophatidylcholine, and lower docosahexaenoic acid and high-density lipoprotein subfractions), amino acids (lower branched-chain amino acids, creatinine, and taurine, and higher glutamate, glutamine, and anthranilic acid), and steroids were associated with cognitive decline and the incidence or progression of dementia. Circulating metabolites appear to be associated with the risk of dementia. Metabolomics could be a promising tool in dementia biomarker discovery. However, standardization and consensus guidelines for study design and analytical techniques require future development.
Collapse
Affiliation(s)
- Yanfeng Jiang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Zhen Zhu
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,Key Laboratory of Public Health Safety of Ministry of Education, Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Jie Shi
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanpeng An
- State Key Laboratory of Genetic Engineering, Metabonomics and Systems Biology Laboratory, School of Life Sciences, Fudan University, Shanghai, China
| | - Kexun Zhang
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,Key Laboratory of Public Health Safety of Ministry of Education, Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Yingzhe Wang
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuyuan Li
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Weimin Ye
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mei Cui
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,Human Phenome Institute, Fudan University, Shanghai, China
| |
Collapse
|
41
|
Ojo JO, Algamal M, Leary P, Abdullah L, Mouzon B, Evans JE, Mullan M, Crawford F. Converging and Differential Brain Phospholipid Dysregulation in the Pathogenesis of Repetitive Mild Traumatic Brain Injury and Alzheimer's Disease. Front Neurosci 2019; 13:103. [PMID: 30837829 PMCID: PMC6390207 DOI: 10.3389/fnins.2019.00103] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/29/2019] [Indexed: 12/14/2022] Open
Abstract
Repetitive mild traumatic brain injury (rmTBI) is a major epigenetic risk factor for Alzheimer’s disease (AD). The precise nature of how rmTBI leads to or precipitates AD pathology is currently unknown. Numerous neurological conditions have shown an important role for dysfunctional phospholipid metabolism as a driving factor for the pathogenesis of neurodegenerative diseases. However, the precise role in rmTBI and AD remains elusive. We hypothesized that a detailed phospholipid characterization would reveal profiles of response to injury in TBI that overlap with age-dependent changes in AD and thus provide insights into the TBI-AD relationship. We employed a lipidomic approach examining brain phospholipid profiles from mouse models of rmTBI and AD. Cortex and hippocampal tissue were collected at 24 h, 3, 6, 9, and 12 months post-rmTBI, and at ages representing ‘pre’, ‘peri’ and ‘post’ onset of amyloid pathology (i.e., 3, 9, 15 months-old). Total levels of phosphatidylcholine (PC), phosphatidylethanolamine (PE), LysoPE, and phosphatidylinositol (PI), including their monounsaturated, polyunsaturated and saturated fatty acid (FA) containing species were significantly increased at acute and/or chronic time points post-injury in both brain regions. However, levels of most phospholipid species in PS1/APP mice were nominal in the hippocampus, while in the cortex, levels were significantly decreased at ages post-onset of amyloid pathology. Sphingomyelin and LysoPC levels showed coincidental trends in our rmTBI and AD models within the hippocampus, an increase at acute and/or chronic time points examined. The ratio of arachidonic acid (omega-6 FA) to docosahexaenoic acid (omega-3 FA)-containing PE species was increased at early time points in the hippocampus of injured versus sham mice, and in PS1/APP mice there was a coincidental increase compared to wild type littermates at all time points. This study demonstrates some overlapping and diverse phospholipid profiles in rmTBI and AD models. Future studies are required to corroborate our findings in human post-mortem tissue. Investigation of secondary mechanisms triggered by aberrant downstream alterations in bioactive metabolites of these phospholipids, and their modulation at the appropriate time-windows of opportunity could help facilitate development of novel therapeutic strategies to ameliorate the neurodegenerative consequences of rmTBI or the potential triggering of AD pathogenesis by rmTBI.
Collapse
Affiliation(s)
- Joseph O Ojo
- Roskamp Institute, Sarasota, FL, United States.,James A. Haley Veterans' Hospital, Tampa, FL, United States.,The School of Life, Health and Chemical Sciences, Open University, Milton Keynes, United Kingdom
| | - Moustafa Algamal
- Roskamp Institute, Sarasota, FL, United States.,The School of Life, Health and Chemical Sciences, Open University, Milton Keynes, United Kingdom
| | - Paige Leary
- Roskamp Institute, Sarasota, FL, United States
| | - Laila Abdullah
- Roskamp Institute, Sarasota, FL, United States.,James A. Haley Veterans' Hospital, Tampa, FL, United States.,The School of Life, Health and Chemical Sciences, Open University, Milton Keynes, United Kingdom
| | - Benoit Mouzon
- Roskamp Institute, Sarasota, FL, United States.,James A. Haley Veterans' Hospital, Tampa, FL, United States.,The School of Life, Health and Chemical Sciences, Open University, Milton Keynes, United Kingdom
| | | | - Michael Mullan
- Roskamp Institute, Sarasota, FL, United States.,The School of Life, Health and Chemical Sciences, Open University, Milton Keynes, United Kingdom
| | - Fiona Crawford
- Roskamp Institute, Sarasota, FL, United States.,James A. Haley Veterans' Hospital, Tampa, FL, United States.,The School of Life, Health and Chemical Sciences, Open University, Milton Keynes, United Kingdom
| |
Collapse
|
42
|
Hu T, Zhang JL. Mass-spectrometry-based lipidomics. J Sep Sci 2017; 41:351-372. [PMID: 28859259 DOI: 10.1002/jssc.201700709] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 01/09/2023]
Abstract
Lipids, which have a core function in energy storage, signalling and biofilm structures, play important roles in a variety of cellular processes because of the great diversity of their structural and physiochemical properties. Lipidomics is the large-scale profiling and quantification of biogenic lipid molecules, the comprehensive study of their pathways and the interpretation of their physiological significance based on analytical chemistry and statistical analysis. Lipidomics will not only provide insight into the physiological functions of lipid molecules but will also provide an approach to discovering important biomarkers for diagnosis or treatment of human diseases. Mass-spectrometry-based analytical techniques are currently the most widely used and most effective tools for lipid profiling and quantification. In this review, the field of mass-spectrometry-based lipidomics was discussed. Recent progress in all essential steps in lipidomics was carefully discussed in this review, including lipid extraction strategies, separation techniques and mass-spectrometry-based analytical and quantitative methods in lipidomics. We also focused on novel resolution strategies for difficult problems in determining C=C bond positions in lipidomics. Finally, new technologies that were developed in recent years including single-cell lipidomics, flux-based lipidomics and multiomics technologies were also reviewed.
Collapse
Affiliation(s)
- Ting Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, PR China
| | - Jin-Lan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, PR China
| |
Collapse
|
43
|
Tai LM, Balu D, Avila-Munoz E, Abdullah L, Thomas R, Collins N, Valencia-Olvera AC, LaDu MJ. EFAD transgenic mice as a human APOE relevant preclinical model of Alzheimer's disease. J Lipid Res 2017; 58:1733-1755. [PMID: 28389477 PMCID: PMC5580905 DOI: 10.1194/jlr.r076315] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/06/2017] [Indexed: 01/12/2023] Open
Abstract
Identified in 1993, APOE4 is the greatest genetic risk factor for sporadic Alzheimer's disease (AD), increasing risk up to 15-fold compared with APOE3, with APOE2 decreasing AD risk. However, the functional effects of APOE4 on AD pathology remain unclear and, in some cases, controversial. In vivo progress to understand how the human (h)-APOE genotypes affect AD pathology has been limited by the lack of a tractable familial AD-transgenic (FAD-Tg) mouse model expressing h-APOE rather than mouse (m)-APOE. The disparity between m- and h-apoE is relevant for virtually every AD-relevant pathway, including amyloid-β (Aβ) deposition and clearance, neuroinflammation, tau pathology, neural plasticity and cerebrovascular deficits. EFAD mice were designed as a temporally useful preclinical FAD-Tg-mouse model expressing the h-APOE genotypes for identifying mechanisms underlying APOE-modulated symptoms of AD pathology. From their first description in 2012, EFAD mice have enabled critical basic and therapeutic research. Here we review insights gleaned from the EFAD mice and summarize future directions.
Collapse
Affiliation(s)
- Leon M Tai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612
| | - Deebika Balu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612
| | - Evangelina Avila-Munoz
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612
| | | | - Riya Thomas
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612
| | - Nicole Collins
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612
| | | | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612.
| |
Collapse
|