1
|
Liu L, Wuyun T, Sun X, Zhang Y, Cha G, Zhao L. Therapeutic efficacy of TMTP1-modified EVs in overcoming bone metastasis and immune resistance in PIK3CA mutant NSCLC. Cell Death Dis 2025; 16:367. [PMID: 40328748 PMCID: PMC12055990 DOI: 10.1038/s41419-025-07685-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 04/08/2025] [Accepted: 04/17/2025] [Indexed: 05/08/2025]
Abstract
Non-small cell lung cancer (NSCLC) with PIK3CA mutations demonstrates significant challenges in treatment due to enhanced bone metastasis and immune checkpoint resistance. This study investigates the efficacy of tumor-targeting peptide 1-modified cancer stem cell-derived extracellular vesicles (TMTP1-TSRP-EVs) in reshaping the tumor microenvironment and reversing immune checkpoint resistance in NSCLC. By integrating TMTP1-TSRP into EVs, we aim to specifically deliver therapeutic agents to NSCLC cells, focusing on inhibiting the PI3K/Akt/mTOR pathway, a crucial driver of oncogenic activity and immune evasion in PIK3CA-mutated cells. Our comprehensive in vitro and in vivo analyses show that TMTP1-TSRP-EVs significantly inhibit tumor growth, reduce PD-L1 expression, and enhance CD8+ T cell infiltration, effectively reversing the immune-suppressive microenvironment. Moreover, the in vivo models confirm that our approach not only suppresses bone metastases but also overcomes primary resistance to immune checkpoint inhibitors by modulating the expression of key immunological markers. These findings suggest that targeted delivery of TMTP1-TSRP-EVs could provide a novel therapeutic strategy for treating PIK3CA-mutant NSCLC, offering significant improvements over traditional therapies by directly targeting the molecular pathogenesis of tumor resistance and metastasis. Molecular Mechanisms Reshaping the TME to Halt PI3K-Mutant Bone Metastasis of NSCLC and Overcoming Primary ICI Resistance. (Created by BioRender).
Collapse
Affiliation(s)
- Liwen Liu
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tanghesi Wuyun
- The Second Department of Respiratory, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xin Sun
- The Second Department of Respiratory, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yu Zhang
- The Second Department of Respiratory, Harbin Medical University Cancer Hospital, Harbin, China
| | - Geqi Cha
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ling Zhao
- The Second Department of Respiratory, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
2
|
Qian L, Wu L, Miao X, Xu J, Zhou Y. The role of TIGIT-CD226-PVR axis in mediating T cell exhaustion and apoptosis in NSCLC. Apoptosis 2025; 30:784-804. [PMID: 39725799 DOI: 10.1007/s10495-024-02052-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2024] [Indexed: 12/28/2024]
Abstract
The treatment of non-small cell lung cancer (NSCLC) remains a critical challenge in oncology, primarily due to the dysfunction and exhaustion of T cells within the tumor microenvironment, which greatly limits the effectiveness of immunotherapy. This study investigates the regulatory role of the T cell immunoglobulin and ITIM domain (TIGIT)-CD226-PVR signaling axis in the exhaustion and apoptosis of cluster of differentiation (CD)27+/CD127+T cells in NSCLC. Utilizing single-cell sequencing technology, we conducted a comprehensive gene expression analysis of T cells in a mouse model of NSCLC. Bioinformatics analysis revealed that the TIGIT-CD226-PVR signaling axis is highly active in the CD27+/CD127+T cell subset and is closely associated with their functional decline and exhaustion. In vitro experiments further demonstrated that inhibiting the TIGIT-PVR pathway while activating the CD226-PVR pathway significantly restored T cell proliferation and effector function. Importantly, in vivo studies showed that targeting this axis can significantly alleviate T cell exhaustion, enhance their cytotoxicity against NSCLC cells, and promote apoptosis, thereby improving the efficacy of immunotherapy.
Collapse
MESH Headings
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Apoptosis/genetics
- Animals
- Lung Neoplasms/immunology
- Lung Neoplasms/pathology
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- T Lineage-Specific Activation Antigen 1
- Humans
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Antigens, Differentiation, T-Lymphocyte/genetics
- Mice
- Receptors, Virus/metabolism
- Receptors, Virus/genetics
- Signal Transduction
- Cell Line, Tumor
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tumor Microenvironment/immunology
- Cell Proliferation
- T-Cell Exhaustion
Collapse
Affiliation(s)
- Liang Qian
- Department of Respiratory and Critical Care Medicine, WuJin Hospital Afliated With Jiangsu University, WuJin Clinical College of Xuzhou Medical University, No.2, Yongning North Road, Changzhou, 213017, Jiangsu, China
| | - Ling Wu
- Department of Respiratory and Critical Care Medicine, WuJin Hospital Afliated With Jiangsu University, WuJin Clinical College of Xuzhou Medical University, No.2, Yongning North Road, Changzhou, 213017, Jiangsu, China
| | - Xiaohui Miao
- Department of Respiratory and Critical Care Medicine, WuJin Hospital Afliated With Jiangsu University, WuJin Clinical College of Xuzhou Medical University, No.2, Yongning North Road, Changzhou, 213017, Jiangsu, China
| | - Jiao Xu
- Department of Respiratory and Critical Care Medicine, WuJin Hospital Afliated With Jiangsu University, WuJin Clinical College of Xuzhou Medical University, No.2, Yongning North Road, Changzhou, 213017, Jiangsu, China
| | - Yao Zhou
- Department of Respiratory and Critical Care Medicine, WuJin Hospital Afliated With Jiangsu University, WuJin Clinical College of Xuzhou Medical University, No.2, Yongning North Road, Changzhou, 213017, Jiangsu, China.
| |
Collapse
|
3
|
Cao Q, Sun D, Tu C, Wang J, Fu R, Gong R, Xiao Y, Liu Q, Li X. Defining gastric cancer ecology: the crucial roles of TREM2 + macrophages and fibroblasts in tumor microenvironments. Commun Biol 2025; 8:514. [PMID: 40155473 PMCID: PMC11953254 DOI: 10.1038/s42003-025-07512-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 01/10/2025] [Indexed: 04/01/2025] Open
Abstract
Gastric cancer (GC) remains a major global health challenge, characterized by a complex tumor microenvironment (TME) that significantly influences disease progression and therapeutic outcomes. This study focuses on TREM2+ lipid-associated macrophages (LAM) and cancer-associated fibroblasts (CAFs) in modulating the GC microenvironment. Utilizing advanced single-cell RNA sequencing and bulk RNA analyses, we elucidated the interactive mechanisms through which CAFs enhance the immunosuppressive capabilities of TREM2+ LAMs via the CXCL12-CXCR4 signaling axis. Our findings reveal that this interaction facilitates tumor proliferation and inhibits apoptotic processes in GC cells. In vitro experiments confirmed the modulation of this pathway significantly affects tumor cell viability and invasiveness, underscoring the critical roles of these cellular interactions in promoting GC progression. These insights present TREM2+ LAMs and CAFs as potential therapeutic targets, offering new avenues for improving outcomes in GC treatment.
Collapse
Affiliation(s)
- Qianqian Cao
- Cancer Center, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Dianshui Sun
- Cancer Center, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Can Tu
- Vascular Intervention Department, The First Affiliated Hospital of Ningbo University, Ningbo, PR China
| | - Jihua Wang
- Cancer Center, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Runjia Fu
- Cancer Center, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Rumei Gong
- Cancer Center, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Yueying Xiao
- Department of Spine Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Qin Liu
- Cancer Center, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xiaomei Li
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China.
| |
Collapse
|
4
|
Hu W, Zhao Z, Du J, Jiang J, Yang M, Tian M, Zhao P. Interferon signaling and ferroptosis in tumor immunology and therapy. NPJ Precis Oncol 2024; 8:177. [PMID: 39127858 PMCID: PMC11316745 DOI: 10.1038/s41698-024-00668-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
This study sought to elucidate the mechanisms underlying the impact of the interferon signaling pathway on Ferroptosis in tumor cells and its correlation with CD8 + T cell exhaustion. Using mouse models and single-cell sequencing, the researchers studied the interaction between CD8 + T cells and the interferon signaling pathway. Differential gene analysis revealed key genes involved in CD8 + T cell exhaustion, and their downstream factors were explored using bioinformatics tools. The expression levels of interferon-related genes associated with Ferroptosis were analyzed using data from the TCGA database, and their relevance to tumor tissue Ferroptosis and patients' prognosis was determined. In vitro experiments were conducted to measure the levels of IFN-γ, MDA, and LPO, as well as tumor cell viability and apoptosis. In vivo validation using a mouse tumor model confirmed the results obtained from the in vitro experiments, highlighting the potential of silencing HSPA6 or DNAJB1 in enhancing the efficacy of PD-1 therapy and inhibiting tumor growth and migration.
Collapse
Grants
- This study was supported by National Natural Science Foundation of China (81972002,12304241), Natural Science Foundation of Shandong Province (ZR2023QC168,ZR2021MC165,ZR2021MC083,ZR2023MC136), and Taishan Young Scholar Foundation of Shandong Province (tsqnz20231257). Xinjiang Uygur Autonomous Region Training Program of Innovation and Entrepreneurship for College Students (S202310760060).
- This study was supported by National Natural Science Foundation of China (81972002, 12304241), and Natural Science Foundation of Shandong Province (ZR2019MH099, ZR2021MC165, ZR2021MC083, ZR2023QC168). Xinjiang Uygur Autonomous Region Training Program of Innovation and Entrepreneurship for College Students(S202310760060).
Collapse
Affiliation(s)
- Wei Hu
- Department of Breast Surgery, Zibo Central Hospital Affiliated to Binzhou Medical University, Zibo, PR China
| | - Ziqian Zhao
- The Second Medical College, Xinjiang Medical University, Urumqii, PR China
| | - Jianxin Du
- Center of Translational Medicine, Zibo Central Hospital Affiliated to Binzhou Medical University, Zibo, PR China
| | - Jie Jiang
- Department of Clinical Laboratory, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, PR China
| | - Minghao Yang
- Department of Clinical Laboratory, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, PR China
| | - Maojin Tian
- Center of Translational Medicine, Zibo Central Hospital Affiliated to Binzhou Medical University, Zibo, PR China.
| | - Peiqing Zhao
- Center of Translational Medicine, Zibo Central Hospital Affiliated to Binzhou Medical University, Zibo, PR China.
| |
Collapse
|
5
|
Wang G, Shen X, Jin W, Song C, Dong M, Zhou Z, Wang X. Elucidating the role of S100A10 in CD8 + T cell exhaustion and HCC immune escape via the cPLA2 and 5-LOX axis. Cell Death Dis 2024; 15:573. [PMID: 39117605 PMCID: PMC11310305 DOI: 10.1038/s41419-024-06895-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024]
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor with a complex immune evasion mechanism posing a challenge to treatment. The role of the S100A10 gene in various cancers has garnered significant attention. This study aims to elucidate the impact of S100A10 on CD8+ T cell exhaustion via the cPLA2 and 5-LOX axis, thereby elucidating its role in immune evasion in HCC. By analyzing the HCC-related data from the GEO and TCGA databases, we identified differentially expressed genes associated with lipid metabolism and developed a prognostic risk model. Subsequently, through RNA-seq and PPI analyses, we determined vital lipid metabolism genes and downstream factors S100A10, ACOT7, and SMS, which were significantly correlated with CD8+ T cell infiltration. Given the most significant expression differences, we selected S100A10 for further investigation. Both in vitro and in vivo experiments were conducted, including co-culture experiments of CD8+ T cells with MHCC97-L cells, Co-IP experiments, and validation in an HCC mouse model. S100A10 was significantly overexpressed in HCC tissues and potentially regulates CD8+ T cell exhaustion and lipid metabolism reprogramming through the cPLA2 and 5-LOX axis. Silencing S100A10 could inhibit CD8+ T cell exhaustion, further suppressing immune evasion in HCC. S100A10 may activate the cPLA2 and 5-LOX axis, initiating lipid metabolism reprogramming and upregulating LTB4 levels, thus promoting CD8+ T cell exhaustion in HCC tissues, facilitating immune evasion by HCC cells, ultimately impacting the growth and migration of HCC cells. This research highlights the critical role of S100A10 via the cPLA2 and 5-LOX axis in immune evasion in HCC, providing new theoretical foundations and potential targets for diagnosing and treating HCC.
Collapse
Affiliation(s)
- Ganggang Wang
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Xiaowei Shen
- Department of General Surgery, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, QingPu District Central Hospital Shanghai, No. 1158, Gong Yuan Dong Road, Shanghai, 201700, China
| | - Wenzhi Jin
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Chao Song
- Department of General Surgery, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, QingPu District Central Hospital Shanghai, No. 1158, Gong Yuan Dong Road, Shanghai, 201700, China
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Meiyuan Dong
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People's Republic of China
| | - Zhijie Zhou
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Xiaoliang Wang
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China.
| |
Collapse
|
6
|
Zhan T, Zou Y, Han Z, Tian X, Chen M, Liu J, Yang X, Zhu Q, Liu M, Chen W, Chen M, Huang X, Tan J, Liu W, Tian X. Single-cell sequencing combined with spatial transcriptomics reveals that the IRF7 gene in M1 macrophages inhibits the occurrence of pancreatic cancer by regulating lipid metabolism-related mechanisms. Clin Transl Med 2024; 14:e1799. [PMID: 39118300 PMCID: PMC11310283 DOI: 10.1002/ctm2.1799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
AIM The main focus of this study is to explore the molecular mechanism of IRF7 regulation on RPS18 transcription in M1-type macrophages in pancreatic adenocarcinoma (PAAD) tissue, as well as the transfer of RPS18 by IRF7 via exosomes to PAAD cells and the regulation of ILF3 expression. METHODS By utilising single-cell RNA sequencing (scRNA-seq) data and spatial transcriptomics (ST) data from the Gene Expression Omnibus database, we identified distinct cell types with significant expression differences in PAAD tissue. Among these cell types, we identified those closely associated with lipid metabolism. The differentially expressed genes within these cell types were analysed, and target genes relevant to prognosis were identified. Flow cytometry was employed to assess the expression levels of target genes in M1 and M2 macrophages. Cell lines with target gene knockout were constructed using CRISPR/Cas9 editing technology, and cell lines with target gene knockdown and overexpression were established using lentiviral vectors. Additionally, a co-culture model of exosomes derived from M1 macrophages with PAAD cells was developed. The impact of M1 macrophage-derived exosomes on the lipid metabolism of PAAD cells in the model was evaluated through metabolomics analysis. The effects of M1 macrophage-derived exosomes on the viability, proliferation, division, migration and apoptosis of PAAD cells were assessed using MTT assay, flow cytometry, EdU assay, wound healing assay, Transwell assay and TUNEL staining. Furthermore, a mouse PAAD orthotopic implantation model was established, and bioluminescence imaging was utilised to assess the influence of M1 macrophage-derived exosomes on the intratumoural formation capacity of PAAD cells, as well as measuring tumour weight and volume. The expression of proliferation-associated proteins in tumour tissues was examined using immunohistochemistry. RESULTS Through combined analysis of scRNA-seq and ST technologies, we discovered a close association between M1 macrophages in PAAD samples and lipid metabolism signals, as well as a negative correlation between M1 macrophages and cancer cells. The construction of a prognostic risk score model identified RPS18 and IRF7 as two prognostically relevant genes in M1 macrophages, exhibiting negative and positive correlations, respectively. Mechanistically, it was found that IRF7 in M1 macrophages can inhibit the transcription of RPS18, reducing the transfer of RPS18 to PAAD cells via exosomes, consequently affecting the expression of ILF3 in PAAD cells. IRF7/RPS18 in M1 macrophages can also suppress lipid metabolism, cell viability, proliferation, migration, invasion and intratumoural formation capacity of PAAD cells, while promoting cell apoptosis. CONCLUSION Overexpression of IRF7 in M1 macrophages may inhibit RPS18 transcription, reduce the transfer of RPS18 from M1 macrophage-derived exosomes to PAAD cells, thereby suppressing ILF3 expression in PAAD cells, inhibiting the lipid metabolism pathway, and curtailing the viability, proliferation, migration, invasion of PAAD cells, as well as enhancing cell apoptosis, ultimately inhibiting tumour formation in PAAD cells in vivo. Targeting IRF7/RPS18 in M1 macrophages could represent a promising immunotherapeutic approach for PAAD in the future.
Collapse
Affiliation(s)
- Ting Zhan
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| | - Yanli Zou
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| | - Zheng Han
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| | - XiaoRong Tian
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Mengge Chen
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Jiaxi Liu
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Xiulin Yang
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Qingxi Zhu
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| | - Meng Liu
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| | - Wei Chen
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| | - Mingtao Chen
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| | - Xiaodong Huang
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Jie Tan
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| | - Weijie Liu
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| | - Xia Tian
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| |
Collapse
|
7
|
He W, Xu C, Huang Y, Zhang Q, Chen W, Zhao C, Chen Y, Zheng D, XinyueLin, Luo Q, Chen X, Zhang Z, Wu X, Huang J, Lin C, Huang Y, Zhang S. Therapeutic potential of ADSC-EV-derived lncRNA DLEU2: A novel molecular pathway in alleviating sepsis-induced lung injury via the miR-106a-5p/LXN axis. Int Immunopharmacol 2024; 130:111519. [PMID: 38442573 DOI: 10.1016/j.intimp.2024.111519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 03/07/2024]
Abstract
This study investigates the molecular mechanisms by which extracellular vesicles (EVs) derived from adipose-derived mesenchymal stem cells (ADSCs) promote M2 polarization of macrophages and thus reduce lung injury caused by sepsis. High-throughput sequencing was used to identify differentially expressed genes related to long non-coding RNA (lncRNA) in ADSC-derived EVs (ADSC-EVs) in sepsis lung tissue. Weighted gene co-expression network analysis (WGCNA) was employed to predict the downstream target genes of the lncRNA DLEU2. The RNAInter database predicted miRNAs that interact with DLEU2 and LXN. Functional and pathway enrichment analyses were performed using GO and KEGG analysis. A mouse model of sepsis was established, and treatment with a placebo or ADSC-EVs was administered, followed by RT-qPCR analysis. ADSC-EVs were isolated and identified. In vitro cell experiments were conducted using the mouse lung epithelial cell line MLE-12, mouse macrophage cell line RAW264.7, and mouse lung epithelial cell line (LEPC). ADSC-EVs were co-cultured with RAW264.7 and MLE-12/LEPC cells to study the regulatory mechanism of the lncRNA DLEU2. Cell viability, proliferation, and apoptosis of lung injury cells were assessed using CCK-8, EdU, and flow cytometry. ELISA was used to measure the levels of inflammatory cytokines in the sepsis mouse model, flow cytometry was performed to determine the number of M1 and M2 macrophages, lung tissue pathology was evaluated by H&E staining, and immunohistochemistry was conducted to examine the expression of proliferation- and apoptosis-related proteins. High-throughput sequencing and bioinformatics analysis revealed enrichment of the lncRNA DLEU2 in ADSC-EVs in sepsis lung tissue. Animal and in vitro cell experiments showed increased expression of the lncRNA DLEU2 in sepsis lung tissue after treatment with ADSC-EVs. Furthermore, ADSC-EVs were found to transfer the lncRNA DLEU2 to macrophages, promoting M2 polarization, reducing inflammation response in lung injury cells, and enhancing their viability, proliferation, and apoptosis inhibition. Further functional experiments indicated that lncRNA DLEU2 promotes M2 polarization of macrophages by regulating miR-106a-5p/LXN, thereby enhancing the viability and proliferation of lung injury cells and inhibiting apoptosis. Overexpression of miR-106a-5p could reverse the biological effects of ADSC-EVs-DLEU2 on MLE-12 and LEPC in vitro cell models. Lastly, in vivo animal experiments confirmed that ADSC-EVs-DLEU2 promotes high expression of LXN by inhibiting the expression of miR-106a-5p, further facilitating M2 macrophage polarization and reducing lung edema, thus alleviating sepsis-induced lung injury. lncRNA DLEU2 in ADSC-EVs may promote M2 polarization of macrophages and enhance the viability and proliferation of lung injury cells while inhibiting inflammation and apoptosis reactions, thus ameliorating sepsis-induced lung injury in a mechanism involving the regulation of the miR-106a-5p/LXN axis.
Collapse
Affiliation(s)
- Wei He
- Department of Pharmacy, Guangzhou Red Cross Hospital, (Guangzhou Red Cross Hospital of Jinan University), Guangzhou 510220, PR China
| | - Chengcheng Xu
- Department of Pharmacy, Guangzhou Red Cross Hospital, (Guangzhou Red Cross Hospital of Jinan University), Guangzhou 510220, PR China
| | - Yuying Huang
- School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 550025, PR China
| | - Qiuzhen Zhang
- Department of Pharmacy, Jiangmen central Hospital, Jiangmen 529030, PR China
| | - Wang Chen
- Department of Pharmacy, Guangzhou Red Cross Hospital, (Guangzhou Red Cross Hospital of Jinan University), Guangzhou 510220, PR China
| | - Chengkuan Zhao
- Department of Pharmacy, Guangzhou Red Cross Hospital, (Guangzhou Red Cross Hospital of Jinan University), Guangzhou 510220, PR China
| | - Yun Chen
- Department of Pharmacy, Guangzhou Red Cross Hospital, (Guangzhou Red Cross Hospital of Jinan University), Guangzhou 510220, PR China
| | - Danling Zheng
- Department of Pharmacy, Guangzhou Red Cross Hospital, (Guangzhou Red Cross Hospital of Jinan University), Guangzhou 510220, PR China; Department of Pharmacology, Shantou University Medical College, Shantou 515041, PR China
| | - XinyueLin
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, PR China
| | - Qianhua Luo
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, PR China
| | - Xiaoshan Chen
- Department of Pharmacy, Guangzhou Red Cross Hospital, (Guangzhou Red Cross Hospital of Jinan University), Guangzhou 510220, PR China
| | - Zhihan Zhang
- School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 550025, PR China
| | - Xiaolong Wu
- College of Pharmacy, Jinan University, Guangzhou 510220, PR China
| | - Jianxiang Huang
- College of Pharmacy, Jinan University, Guangzhou 510220, PR China
| | - Chaoxian Lin
- Shantou Chaonan Minsheng Hospital, Shantou 515041, PR China.
| | - Yihui Huang
- Department of Pediatrics, Guangzhou Red Cross Hospital, (Guangzhou Red Cross Hospital of Jinan University), Guangzhou 510220, PR China.
| | - Shuyao Zhang
- Department of Pharmacy, Guangzhou Red Cross Hospital, (Guangzhou Red Cross Hospital of Jinan University), Guangzhou 510220, PR China.
| |
Collapse
|
8
|
Okuda Y, Kato T, Fujita K, Fushimi H, Miyamoto H, Netto GJ, Nonomura N. Association of Androgen Receptor and PD-L1 Expression in Upper Urinary Tract Urothelial Carcinoma. Cancer Genomics Proteomics 2024; 21:137-143. [PMID: 38423597 PMCID: PMC10905274 DOI: 10.21873/cgp.20435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND/AIM The response to immune checkpoint inhibitors (ICIs) or enfortumab vedotin is limited in patients with upper urinary tract urothelial carcinoma (UTUC), and the development of new targeted therapy for UTUC is eagerly needed. Several biomarkers, including programmed cell death-ligand 1 (PD-L1), have already been reported as predictors of response to ICIs therapy for UTUC. Recently, several studies have shown that steroid hormone receptors, including the androgen receptor (AR), are associated with progression of urothelial carcinoma. MATERIALS AND METHODS We prepared tissue microarrays (TMA) from paraffin blocks of UTUC specimens in 99 non-metastatic UTUC patients who underwent radical nephroureterectomy. With these TMA sections, we performed immunohistochemical staining for PD-L1 and AR and examined PD-L1 and AR expression levels in tumor cells. In addition, we analyzed the correlation between these markers and clinical prognosis in UTUC cases. RESULTS PD-L1 was positive in 24 (24%) of the 99 samples, whereas AR was positive in 20 (20%) patients. AR-negative samples had significantly higher PD-L1 expression level than that the AR-positive samples (mean value 4.70% versus 2.55%, p=0.0324). Among AR-positive cases, patients with absence of PD-L1 expression had significantly lower cancer-specific survival (CSS) than that in PD-L1 expression-positive cases (p=0.049), although PD-L1 expression had no significant impact on CSS in AR-negative cases (p=0.920). CONCLUSION Our findings suggest that AR is the promising target for UTUC treatment, especially in PD-L1-negative cases.
Collapse
Affiliation(s)
- Yohei Okuda
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Taigo Kato
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan;
| | - Kazutoshi Fujita
- Department of Urology, Kindai University Faculty of Medicine, Sayama, Japan
| | - Hiroaki Fushimi
- Department of Pathology, Osaka General Medical Center, Osaka, Japan
| | - Hiroshi Miyamoto
- Departments of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, U.S.A
- Urology, University of Rochester Medical Center, Rochester, NY, U.S.A
| | - George J Netto
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, U.S.A
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
9
|
Hao L, Li S, Deng J, Li N, Yu F, Jiang Z, Zhang J, Shi X, Hu X. The current status and future of PD-L1 in liver cancer. Front Immunol 2023; 14:1323581. [PMID: 38155974 PMCID: PMC10754529 DOI: 10.3389/fimmu.2023.1323581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
The application of immunotherapy in tumor, especially immune checkpoint inhibitors (ICIs), has played an important role in the treatment of advanced unresectable liver cancer. However, the efficacy of ICIs varies greatly among different patients, which has aroused people's attention to the regulatory mechanism of programmed death ligand-1 (PD-L1) in the immune escape of liver cancer. PD-L1 is regulated by multiple levels and signaling pathways in hepatocellular carcinoma (HCC), including gene variation, epigenetic inheritance, transcriptional regulation, post-transcriptional regulation, and post-translational modification. More studies have also found that the high expression of PD-L1 may be the main factor affecting the immunotherapy of liver cancer. However, what is the difference of PD-L1 expressed by different types of cells in the microenvironment of HCC, and which type of cells expressed PD-L1 determines the effect of tumor immunotherapy remains unclear. Therefore, clarifying the regulatory mechanism of PD-L1 in liver cancer can provide more basis for liver cancer immunotherapy and combined immune treatment strategy. In addition to its well-known role in immune regulation, PD-L1 also plays a role in regulating cancer cell proliferation and promoting drug resistance of tumor cells, which will be reviewed in this paper. In addition, we also summarized the natural products and drugs that regulated the expression of PD-L1 in HCC.
Collapse
Affiliation(s)
- Liyuan Hao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shenghao Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Clinical Research Center, Shijiazhuang Fifth Hospital, Shijiazhuang, Hebei, China
| | - Jiali Deng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Na Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fei Yu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhi Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Junli Zhang
- Department of Infectious Diseases, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xinli Shi
- Center of Experimental Management, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Rodriguez-Lara V, Soca-Chafre G, Avila-Costa MR, Whaley JJJV, Rodriguez-Cid JR, Ordoñez-Librado JL, Rodriguez-Maldonado E, Heredia-Jara NA. Role of sex and sex hormones in PD-L1 expression in NSCLC: clinical and therapeutic implications. Front Oncol 2023; 13:1210297. [PMID: 37941543 PMCID: PMC10628781 DOI: 10.3389/fonc.2023.1210297] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/28/2023] [Indexed: 11/10/2023] Open
Abstract
Currently, immunotherapy based on PD-1/PD-L1 pathway blockade has improved survival of non-small cell lung cancer (NSCLC) patients. However, differential responses have been observed by sex, where men appear to respond better than women. Additionally, adverse effects of immunotherapy are mainly observed in women. Studies in some types of hormone-dependent cancer have revealed a role of sex hormones in anti-tumor response, tumor microenvironment and immune evasion. Estrogens mainly promote immune tolerance regulating T-cell function and modifying tumor microenvironment, while androgens attenuate anti-tumor immune responses. The precise mechanism by which sex and sex hormones may modulate immune response to tumor, modify PD-L1 expression in cancer cells and promote immune escape in NSCLC is still unclear, but current data show how sexual differences affect immune therapy response and prognosis. This review provides update information regarding anti-PD-1/PD-L immunotherapeutic efficacy in NSCLC by sex, analyzing potential roles for sex hormones on PD-L1 expression, and discussing a plausible of sex and sex hormones as predictive response factors to immunotherapy.
Collapse
Affiliation(s)
- Vianey Rodriguez-Lara
- Department of Cell and Tissue Biology, Faculty of Medicine, UNAM, Mexico City, Mexico
| | - Giovanny Soca-Chafre
- Oncological Diseases Research Unit (UIEO), Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Maria Rosa Avila-Costa
- Neuromorphology Laboratory, Facultad de Estudios Superiores Iztacala, UNAM, Mexico City, Mexico
| | | | | | | | - Emma Rodriguez-Maldonado
- Traslational Medicine Laboratory, Research Unit UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | | |
Collapse
|
11
|
Pungsrinont T, Schneider MA, Baniahmad A. Androgen receptor agonist and antagonist reduce response of cytokine-induced killer cells on prostate cancer cells. J Cell Mol Med 2023; 27:2970-2982. [PMID: 37639523 PMCID: PMC10538273 DOI: 10.1111/jcmm.17923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/31/2023] [Accepted: 08/12/2023] [Indexed: 08/31/2023] Open
Abstract
Despite many advances, prostate cancer (PCa) is still the second most frequently diagnosed cancer and fifth leading cause of cancer death in men worldwide. So far, the promising field of onco-immunology has not yet provided a satisfactory treatment option for PCa. Here we show that the ex vivo expansion and activation of cytokine-induced killer (CIK) cells isolated from primary peripheral blood mononuclear cells induce immune-mediated apoptosis in both human PCa LNCaP and C4-2 cells. Interestingly, pretreating LNCaP and C4-2 cells with either androgen or the androgen receptor (AR) antagonist enzalutamide mediates resistance to this immunogenic attack. This is associated with a reduction of both total cell loss and apoptosis levels suggesting one possible mechanism blunting onco-immunological activity. The data also suggest that secreted factors from AR ligand-treated PCa cell suppress lymphocyte proliferation. Further, we analysed immune-mediated killing activity using conditioned media from LNCaP and C4-2 treated cells. The obtained data suggest that the conditioned media from PCa treated cells does not influence a measurable lymphocyte-mediated apoptosis. However, analysing clonal expansion of activated lymphocytes, the androgen-derived conditioned media suppresses lymphocyte proliferation/expansion suggesting inhibition of onco-immunological activity by pretreatment of PCa cells with AR ligands.
Collapse
Affiliation(s)
- Thanakorn Pungsrinont
- Institute of Human Genetics, Jena University HospitalFriedrich Schiller UniversityJenaGermany
| | - Margret Ann Schneider
- Institute of Human Genetics, Jena University HospitalFriedrich Schiller UniversityJenaGermany
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University HospitalFriedrich Schiller UniversityJenaGermany
| |
Collapse
|
12
|
Burgermeister E. Mitogen-Activated Protein Kinase and Nuclear Hormone Receptor Crosstalk in Cancer Immunotherapy. Int J Mol Sci 2023; 24:13661. [PMID: 37686465 PMCID: PMC10488039 DOI: 10.3390/ijms241713661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
The three major MAP-kinase (MAPK) pathways, ERK1/2, p38 and JNK/SAPK, are upstream regulators of the nuclear "hormone" receptor superfamily (NHRSF), with a prime example given by the estrogen receptor in breast cancer. These ligand-activated transcription factors exert non-genomic and genomic functions, where they are either post-translationally modified by phosphorylation or directly interact with components of the MAPK pathways, events that govern their transcriptional activity towards target genes involved in cell differentiation, proliferation, metabolism and host immunity. This molecular crosstalk takes place not only in normal epithelial or tumor cells, but also in a plethora of immune cells from the adaptive and innate immune system in the tumor-stroma tissue microenvironment. Thus, the drugability of both the MAPK and the NHRSF pathways suggests potential for intervention therapies, especially for cancer immunotherapy. This review summarizes the existing literature covering the expression and function of NHRSF subclasses in human tumors, both solid and leukemias, and their effects in combination with current clinically approved therapeutics against immune checkpoint molecules (e.g., PD1).
Collapse
Affiliation(s)
- Elke Burgermeister
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| |
Collapse
|
13
|
Chen J, Huang CP, Quan C, Zu X, Ou Z, Tsai YC, Messing E, Yeh S, Chang C. The androgen receptor in bladder cancer. Nat Rev Urol 2023; 20:560-574. [PMID: 37072491 DOI: 10.1038/s41585-023-00761-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 04/20/2023]
Abstract
Bladder cancer is the ninth most common cancer worldwide with a striking sex-based difference in incidence. Emerging evidence indicates that the androgen receptor (AR) might promote the development, progression and recurrence of bladder cancer, contributing to the observed sex differences. Targeting androgen-AR signalling has promise as potential therapy for bladder cancer and helps to suppress progression of this disease. In addition, the identification of a new membrane AR and AR-regulated non-coding RNAs has important implications for bladder cancer treatment. The success of human clinical trials of targeted-AR therapies will help in the development of improved treatments for patients with bladder cancer.
Collapse
Affiliation(s)
- Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Chi-Ping Huang
- Department of Urology, China Medical University Hospital, Taichung, Taiwan
| | - Chao Quan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Zhenyu Ou
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Yu-Chieh Tsai
- Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Edward Messing
- Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Shuyuan Yeh
- Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Chawnshang Chang
- Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Urology, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
14
|
Kiriyama Y, Nochi H. Regulation of PD-L1 Expression by Nuclear Receptors. Int J Mol Sci 2023; 24:9891. [PMID: 37373038 DOI: 10.3390/ijms24129891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The suppression of excessive immune responses is necessary to prevent injury to the body, but it also allows cancer cells to escape immune responses and proliferate. Programmed cell death 1 (PD-1) is a co-inhibitory molecule that is present on T cells and is the receptor for programmed cell death ligand 1 (PD-L1). The binding of PD-1 to PD-L1 leads to the inhibition of the T cell receptor signaling cascade. PD-L1 has been found to be expressed in many types of cancers, such as lung, ovarian, and breast cancer, as well as glioblastoma. Furthermore, PD-L1 mRNA is widely expressed in normal peripheral tissues including the heart, skeletal muscle, placenta, lungs, thymus, spleen, kidney, and liver. The expression of PD-L1 is upregulated by proinflammatory cytokines and growth factors via a number of transcription factors. In addition, various nuclear receptors, such as androgen receptor, estrogen receptor, peroxisome-proliferator-activated receptor γ, and retinoic-acid-related orphan receptor γ, also regulate the expression of PD-L1. This review will focus on the current knowledge of the regulation of PD-L1 expression by nuclear receptors.
Collapse
Affiliation(s)
- Yoshimitsu Kiriyama
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 769-2193, Kagawa, Japan
- Institute of Neuroscience, Tokushima Bunri University, Tokushima 769-2193, Kagawa, Japan
| | - Hiromi Nochi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 769-2193, Kagawa, Japan
| |
Collapse
|
15
|
May L, Shows K, Nana-Sinkam P, Li H, Landry JW. Sex Differences in Lung Cancer. Cancers (Basel) 2023; 15:3111. [PMID: 37370722 PMCID: PMC10296433 DOI: 10.3390/cancers15123111] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Sex disparities in the incidence and mortality of lung cancer have been observed since cancer statistics have been recorded. Social and economic differences contribute to sex disparities in lung cancer incidence and mortality, but evidence suggests that there are also underlying biological differences that contribute to the disparity. This review summarizes biological differences which could contribute to the sex disparity. Sex hormones and other biologically active molecules, tumor cell genetic differences, and differences in the immune system and its response to lung cancer are highlighted. How some of these differences contribute to disparities in the response to therapies, including cytotoxic, targeted, and immuno-therapies, is also discussed. We end the study with a discussion of our perceived future directions to identify the key biological differences which could contribute to sex disparities in lung cancer and how these differences could be therapeutically leveraged to personalize lung cancer treatment to the individual sexes.
Collapse
Affiliation(s)
- Lauren May
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, VCU School of Medicine, Richmond, VA 23298, USA;
| | - Kathryn Shows
- Department of Biology, Virginia State University, Petersburg, VA 23806, USA;
| | - Patrick Nana-Sinkam
- Department of Internal Medicine, Division of Pulmonary Disease and Critical Care Medicine, VCU School of Medicine, Richmond, VA 23298, USA; (P.N.-S.); (H.L.)
| | - Howard Li
- Department of Internal Medicine, Division of Pulmonary Disease and Critical Care Medicine, VCU School of Medicine, Richmond, VA 23298, USA; (P.N.-S.); (H.L.)
| | - Joseph W. Landry
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, VCU School of Medicine, Richmond, VA 23298, USA;
| |
Collapse
|
16
|
Sun A, Luo Y, Xiao W, Zhu Z, Yan H, Miao C, Zhang W, Bai P, Liu C, Yang D, Shao Z, Song J, Wu Z, Chen B, Xing J, Wang T. Androgen receptor transcriptionally inhibits programmed death ligand-1 (PD-L1) expression and influences immune escape in bladder cancer. J Transl Med 2023; 103:100148. [PMID: 37059268 DOI: 10.1016/j.labinv.2023.100148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/14/2023] [Accepted: 04/04/2023] [Indexed: 04/16/2023] Open
Abstract
In multiple clinical trials, immune checkpoint blockade-based immunotherapy has shown significant therapeutic efficacy in bladder cancer (BCa). Sex is closely related to the incidence rate and prognosis of BCa. As one of the sex hormone receptors, the androgen receptor (AR) is a well-known key regulator that promotes the progression of BCa. However, the regulatory mechanism of AR in the immune response of BCa is still unclear. In this study, the expression of AR and programmed cell death-ligand 1 (PD-L1) was negatively correlated in BCa cells, clinical tissues, and tumor data extracted from The Cancer Genome Atlas Bladder Urothelial Carcinoma (TCGA-BLCA) cohort. A human BCa cell line was transfected to alter expression of AR. The results show that AR negatively regulated PD-L1 expression by directly binding to AR response elements (AREs) on the PD-L1 promoter region. In addition, AR overexpression in BCa cells significantly enhanced the antitumor activity of co-cultured CD8+ T cells. Injection of anti-PD-L1 monoclonal antibodies into C3H/HeN mice significantly suppressed tumor growth, and stable expression of AR dramatically enhanced the antitumor activity in vivo. In conclusion, this study describes a novel role of AR in regulating the immune response to BCa by targeting PD-L1, thus providing potential therapeutic strategies for immunotherapy in BCa.
Collapse
Affiliation(s)
- Anran Sun
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China; Oncology Research Center, Foresea Life Insurance Guangzhou General Hospital, Guangzhou, Guangdong, China
| | - Yu Luo
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Wen Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhipeng Zhu
- School of Medicine, Xiamen University, Xiang'an, Xiamen, China
| | - Hongyu Yan
- School of Medicine, Xiamen University, Xiang'an, Xiamen, China
| | - Chaohao Miao
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Wenzhao Zhang
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Peide Bai
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Chenfeng Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, China
| | - Dianqiang Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen, China
| | - Zhiqiang Shao
- Xiamen University Laboratory Animal Center, Xiamen University, Xiang'an, Xiamen, China
| | - Jing Song
- Xiamen University Laboratory Animal Center, Xiamen University, Xiang'an, Xiamen, China
| | - Zhun Wu
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Bin Chen
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China; The School of Clinical Medicine, Fujian Medical University, Fuzhou, China.
| | - Jinchun Xing
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China; The School of Clinical Medicine, Fujian Medical University, Fuzhou, China.
| | - Tao Wang
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China; The School of Clinical Medicine, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
17
|
Zhang L, Wu J, Wu Q, Zhang X, Lin S, Ran W, Zhu L, Tang C, Wang X. Sex steroid axes in determining male predominance in hepatocellular carcinoma. Cancer Lett 2023; 555:216037. [PMID: 36563929 DOI: 10.1016/j.canlet.2022.216037] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death. The mechanisms for male propensity in HCC incidence, prognosis and treatment responses are complicated and remain inconclusive. Sex-biased molecular signatures in carcinogenesis, viral infections and immune responses have been studied predominantly within the context of sex hormones effects. This review integrates current knowledge on the mechanisms through which the hormones regulate HCC development in sexually dimorphic fashion. Firstly, the androgen/androgen receptor (AR) accelerate cell proliferation and virus infection, especially during the initial stage of HCC, while estrogen/estrogen receptor (ER) function in an opposite way to induce cell apoptosis and immune responses. Interestingly, the controversial effects of AR in late stage of HCC metastasis are summarized and the reasons are attributed to inconsistent cancer grading or experimental models between the studies. In addition, the new insights into these intricate cellular and molecular mechanisms underlying sexual dimorphism are fully discussed. A detailed understanding of sex hormones-associated regulation to male predominance in HCC may help to develop personalized therapeutic strategies in high-risk populations.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - JinFeng Wu
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - QiuMei Wu
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - XiangJuan Zhang
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - ShuaiCai Lin
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - WanLi Ran
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Li Zhu
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - ChengYan Tang
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Xing Wang
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
18
|
Bialek J, Yankulov S, Kawan F, Fornara P, Theil G. Role of Nivolumab in the Modulation of PD-1 and PD-L1 Expression in Papillary and Clear Cell Renal Carcinoma (RCC). Biomedicines 2022; 10:biomedicines10123244. [PMID: 36552000 PMCID: PMC9776360 DOI: 10.3390/biomedicines10123244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
The expression and cellular mechanisms of programmed cell death-1 protein (PD-1) and its ligands (PD-L1 and PD-L2) in renal cancer cells are not well known. Here, we aimed to investigate the response of renal carcinoma subtypes to the immune checkpoint inhibitor nivolumab and its impact on related signaling pathways. All cell lines analyzed (clear cell (cc)RCC (Caki-1, RCC31) and papillary (p)RCC (ACHN, RCC30)) expressed PD-1 and both ccRCC cell lines, and RCC30 expressed PD-L1. Nivolumab treatment at increasing doses led to increased PD-1 levels in analyzed cells and resulted in aggressive behavior of pRCC but diminished this behavior in ccRCC. The analysis of PD-1/PD-L1-associated signaling pathways demonstrated increased AKT activity in Caki-1 and RCC30 cells but decreased activity in ACHN and RCC31 cells, while ribosomal protein S6 remained largely unchanged. Androgen receptors are related to RCC and were predominantly increased in RCC30 cells, which were the only cells that formed nivolumab-dependent spheroids. Finally, all cell lines exhibited a complex response to nivolumab treatment. Since the pRCC cells responded with increased tumorigenicity and PD-1/PD-L1 levels while ccRCC tumorigenicity was diminished, further studies are needed to improve nivolumab-based therapy for renal carcinoma subtypes, especially the identification of response-involved molecular pathways.
Collapse
|
19
|
Salcher S, Sturm G, Horvath L, Untergasser G, Kuempers C, Fotakis G, Panizzolo E, Martowicz A, Trebo M, Pall G, Gamerith G, Sykora M, Augustin F, Schmitz K, Finotello F, Rieder D, Perner S, Sopper S, Wolf D, Pircher A, Trajanoski Z. High-resolution single-cell atlas reveals diversity and plasticity of tissue-resident neutrophils in non-small cell lung cancer. Cancer Cell 2022; 40:1503-1520.e8. [PMID: 36368318 PMCID: PMC9767679 DOI: 10.1016/j.ccell.2022.10.008] [Citation(s) in RCA: 201] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/26/2022] [Accepted: 10/06/2022] [Indexed: 11/12/2022]
Abstract
Non-small cell lung cancer (NSCLC) is characterized by molecular heterogeneity with diverse immune cell infiltration patterns, which has been linked to therapy sensitivity and resistance. However, full understanding of how immune cell phenotypes vary across different patient subgroups is lacking. Here, we dissect the NSCLC tumor microenvironment at high resolution by integrating 1,283,972 single cells from 556 samples and 318 patients across 29 datasets, including our dataset capturing cells with low mRNA content. We stratify patients into immune-deserted, B cell, T cell, and myeloid cell subtypes. Using bulk samples with genomic and clinical information, we identify cellular components associated with tumor histology and genotypes. We then focus on the analysis of tissue-resident neutrophils (TRNs) and uncover distinct subpopulations that acquire new functional properties in the tissue microenvironment, providing evidence for the plasticity of TRNs. Finally, we show that a TRN-derived gene signature is associated with anti-programmed cell death ligand 1 (PD-L1) treatment failure.
Collapse
Affiliation(s)
- Stefan Salcher
- Department of Internal Medicine V, Haematology & Oncology, Comprehensive Cancer Center Innsbruck (CCCI) and Tyrolean Cancer Research Institute (TKFI), Medical University of Innsbruck, Innsbruck, Austria
| | - Gregor Sturm
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Lena Horvath
- Department of Internal Medicine V, Haematology & Oncology, Comprehensive Cancer Center Innsbruck (CCCI) and Tyrolean Cancer Research Institute (TKFI), Medical University of Innsbruck, Innsbruck, Austria
| | - Gerold Untergasser
- Department of Internal Medicine V, Haematology & Oncology, Comprehensive Cancer Center Innsbruck (CCCI) and Tyrolean Cancer Research Institute (TKFI), Medical University of Innsbruck, Innsbruck, Austria
| | - Christiane Kuempers
- Institute of Pathology, University of Luebeck and University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Georgios Fotakis
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Elisa Panizzolo
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Agnieszka Martowicz
- Department of Internal Medicine V, Haematology & Oncology, Comprehensive Cancer Center Innsbruck (CCCI) and Tyrolean Cancer Research Institute (TKFI), Medical University of Innsbruck, Innsbruck, Austria; Tyrolpath Obrist Brunhuber GmbH, Zams, Austria
| | - Manuel Trebo
- Department of Internal Medicine V, Haematology & Oncology, Comprehensive Cancer Center Innsbruck (CCCI) and Tyrolean Cancer Research Institute (TKFI), Medical University of Innsbruck, Innsbruck, Austria
| | - Georg Pall
- Department of Internal Medicine V, Haematology & Oncology, Comprehensive Cancer Center Innsbruck (CCCI) and Tyrolean Cancer Research Institute (TKFI), Medical University of Innsbruck, Innsbruck, Austria
| | - Gabriele Gamerith
- Department of Internal Medicine V, Haematology & Oncology, Comprehensive Cancer Center Innsbruck (CCCI) and Tyrolean Cancer Research Institute (TKFI), Medical University of Innsbruck, Innsbruck, Austria
| | - Martina Sykora
- Department of Internal Medicine V, Haematology & Oncology, Comprehensive Cancer Center Innsbruck (CCCI) and Tyrolean Cancer Research Institute (TKFI), Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Augustin
- Department of Visceral, Transplant and Thoracic Surgery, Medical University Innsbruck, Innsbruck, Austria
| | - Katja Schmitz
- Tyrolpath Obrist Brunhuber GmbH, Zams, Austria; INNPATH GmbH, Institute of Pathology, Innsbruck, Austria
| | - Francesca Finotello
- Institute of Molecular Biology, University of Innsbruck, Innsbruck, Austria; Digital Science Center, University of Innsbruck, Innsbruck, Austria
| | - Dietmar Rieder
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Sven Perner
- Institute of Pathology, University of Luebeck and University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany; Pathology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Lung Research (DZL), Luebeck and Borstel, Germany
| | - Sieghart Sopper
- Department of Internal Medicine V, Haematology & Oncology, Comprehensive Cancer Center Innsbruck (CCCI) and Tyrolean Cancer Research Institute (TKFI), Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik Wolf
- Department of Internal Medicine V, Haematology & Oncology, Comprehensive Cancer Center Innsbruck (CCCI) and Tyrolean Cancer Research Institute (TKFI), Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Pircher
- Department of Internal Medicine V, Haematology & Oncology, Comprehensive Cancer Center Innsbruck (CCCI) and Tyrolean Cancer Research Institute (TKFI), Medical University of Innsbruck, Innsbruck, Austria.
| | - Zlatko Trajanoski
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
20
|
Zhang Y, Sun C, Li Y, Qin J, Amancherla K, Jing Y, Hu Q, Liang K, Zhang Z, Ye Y, Huang LA, Nguyen TK, Egranov SD, Zhao Z, Wu A, Xi Y, Yao J, Hung MC, Calin GA, Cheng J, Lim B, Lehmann LH, Salem JE, Johnson DB, Curran MA, Yu D, Han L, Darabi R, Yang L, Moslehi JJ, Lin C. Hormonal therapies up-regulate MANF and overcome female susceptibility to immune checkpoint inhibitor myocarditis. Sci Transl Med 2022; 14:eabo1981. [PMID: 36322628 PMCID: PMC9809130 DOI: 10.1126/scitranslmed.abo1981] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Immune checkpoint inhibitors (ICIs) have been increasingly used in combination for cancer treatment but are associated with myocarditis. Here, we report that tumor-bearing mice exhibited response to treatment with combinatorial anti-programmed cell death 1 and anti-cytotoxic T lymphocyte antigen-4 antibodies but also presented with cardiovascular toxicities observed clinically with ICI therapy, including myocarditis and arrhythmia. Female mice were preferentially affected with myocarditis compared to male mice, consistent with a previously described genetic model of ICI myocarditis and emerging clinical data. Mechanistically, myocardial tissue from ICI-treated mice, the genetic mouse model, and human heart tissue from affected patients with ICI myocarditis all exhibited down-regulation of MANF (mesencephalic astrocyte-derived neurotrophic factor) and HSPA5 (heat shock 70-kDa protein 5) in the heart; this down-regulation was particularly notable in female mice. ICI myocarditis was amplified by heart-specific genetic deletion of mouse Manf and was attenuated by administration of recombinant MANF protein, suggesting a causal role. Ironically, both MANF and HSPA5 were transcriptionally induced by liganded estrogen receptor β and inhibited by androgen receptor. However, ICI treatment reduced serum estradiol concentration to a greater extent in female compared to male mice. Treatment with an estrogen receptor β-specific agonist and androgen depletion therapy attenuated ICI-associated cardiac effects. Together, our data suggest that ICI treatment inhibits estradiol-dependent expression of MANF/HSPA5 in the heart, curtailing the cardiomyocyte response to immune injury. This endocrine-cardiac-immune pathway offers new insights into the mechanisms of sex differences in cardiac disease and may offer treatment strategies for ICI myocarditis.
Collapse
Affiliation(s)
- Yaohua Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 10069, China.,Corresponding author. (Y.Z.); (L.Y.); (J.J.M.); and (C.L.)
| | - Chengcao Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yajuan Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Current address: Incyte Corporation, Wilmington, DE 19803, USA
| | - Juan Qin
- Section of Cardio-Oncology & Immunology, Division of Cardiology and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Kaushik Amancherla
- Department of Medicine, Vanderbilt University of Medical Center, Nashville, TN 37232
| | - Ying Jing
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Qingsong Hu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Current address: The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China
| | - Ke Liang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Zhao Zhang
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Youqiong Ye
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Lisa A. Huang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Tina K. Nguyen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sergey D. Egranov
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Zilong Zhao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Andrew Wu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yutao Xi
- Texas Heart Institute, St. Luke’s Hospital, Houston, TX 77030, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan.,Department of Biotechnology, Asia University, Taichung 413, Taiwan
| | - George A. Calin
- Department of Experimental Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jie Cheng
- Texas Heart Institute, St. Luke’s Hospital, Houston, TX 77030, USA
| | - Bora Lim
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lorenz H. Lehmann
- Department of Cardiology, Heidelberg University Hospital, Heidelberg, Germany; Cardio-Oncology Unit, Heidelberg University Hospital, Heidelberg, Germany; German Cardiovascular Research Center (DZHK), partner site Heidelberg/Mannheim, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Joe-Elie Salem
- Deprtment of Pharmacology, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, INSERM, CIC-1901, UNICO-GRECO Cardiooncology Program, Paris, France
| | - Douglas B. Johnson
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Michael A. Curran
- Department of Immunology and Scientific Director of the Oncology Research for Biologics and Immunotherapy Translation (ORBIT), The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Leng Han
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Radbod Darabi
- Center for Stem Cell and Regenerative Medicine (CSCRM), The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Corresponding author. (Y.Z.); (L.Y.); (J.J.M.); and (C.L.)
| | - Javid J. Moslehi
- Section of Cardio-Oncology & Immunology, Division of Cardiology and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94143, USA,Corresponding author. (Y.Z.); (L.Y.); (J.J.M.); and (C.L.)
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Corresponding author. (Y.Z.); (L.Y.); (J.J.M.); and (C.L.)
| |
Collapse
|
21
|
Xu L, Yuan Y, Che Z, Tan X, Wu B, Wang C, Xu C, Xiao J. The Hepatoprotective and Hepatotoxic Roles of Sex and Sex-Related Hormones. Front Immunol 2022; 13:939631. [PMID: 35860276 PMCID: PMC9289199 DOI: 10.3389/fimmu.2022.939631] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/13/2022] [Indexed: 12/18/2022] Open
Abstract
Most liver diseases, including acute liver injury, drug-induced liver injury, viral hepatitis, metabolic liver diseases, and end-stage liver diseases, are strongly linked with hormonal influences. Thus, delineating the clinical manifestation and underlying mechanisms of the "sexual dimorphism" is critical for providing hints for the prevention, management, and treatment of those diseases. Whether the sex hormones (androgen, estrogen, and progesterone) and sex-related hormones (gonadotrophin-releasing hormone, luteinizing hormone, follicle-stimulating hormone, and prolactin) play protective or toxic roles in the liver depends on the biological sex, disease stage, precipitating factor, and even the psychiatric status. Lifestyle factors, such as obesity, alcohol drinking, and smoking, also drastically affect the involving mechanisms of those hormones in liver diseases. Hormones deliver their hepatic regulatory signals primarily via classical and non-classical receptors in different liver cell types. Exogenous sex/sex-related hormone therapy may serve as a novel strategy for metabolic liver disease, cirrhosis, and liver cancer. However, the undesired hormone-induced liver injury should be carefully studied in pre-clinical models and monitored in clinical applications. This issue is particularly important for menopause females with hormone replacement therapy (HRT) and transgender populations who want to receive gender-affirming hormone therapy (GAHT). In conclusion, basic and clinical studies are warranted to depict the detailed hepatoprotective and hepatotoxic mechanisms of sex/sex-related hormones in liver disease. Prolactin holds a promising perspective in treating metabolic and advanced liver diseases.
Collapse
Affiliation(s)
- Linlin Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuan Yuan
- Clinical Medicine Research Institute, Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhaodi Che
- Clinical Medicine Research Institute, Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaozhi Tan
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bin Wu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Cunchuan Wang
- Clinical Medicine Research Institute, Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Chengfang Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jia Xiao
- Clinical Medicine Research Institute, Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
22
|
shan L, xiaotong D, Qiyi W, Jingxian L, Tianmu H, Jianyong Z, Xiaofei L. Mechanisms underlying the activity of paederus in hepatocellular carcinoma: A network pharmacology and in vitro validation approach. PHARMACOLOGICAL RESEARCH - MODERN CHINESE MEDICINE 2022; 3:100089. [DOI: 10.1016/j.prmcm.2022.100089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
23
|
Lu Y, Li D, Cao Y, Ying L, Tao Q, Xiong F, Hu Z, Yang Y, Qiao X, Peng C, Zhu D, Wang D, Li X. A Genomic Signature Reflecting Fibroblast Infiltration Into Gastric Cancer Is Associated With Prognosis and Treatment Outcomes of Immune Checkpoint Inhibitors. Front Cell Dev Biol 2022; 10:862294. [PMID: 35557959 PMCID: PMC9087633 DOI: 10.3389/fcell.2022.862294] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The immunotherapy efficacy in gastric cancer (GC) is limited. Cancer-associated fibroblasts (CAFs) induce primary resistance to immunotherapy. However, CAF infiltration in tumors is difficult to evaluate due to the lack of validated and standardized quantified methods. This study aimed to investigate the impact of infiltrating CAFs alternatively using fibroblast-associated mutation scoring (FAMscore). Methods: In a GC cohort from Affiliated Hospital of Jiangsu University (AHJU), whole exon sequencing of genomic mutations, whole transcriptome sequencing of mRNA expression profiles, and immunofluorescence staining of tumor-infiltrating immune cells were performed. GC data from The Cancer Genome Atlas were used to identify genetic mutations which were associated with overall survival (OS) and impacted infiltrating CAF abundance determined by transcriptome-based estimation. FAMscore was then constructed through a least absolute shrinkage and selection operator Cox regression model and further validated in AHJU. The predictive role of FAMscore for immunotherapy outcomes was tested in 1 GC, one melanoma, and two non-small-cell lung cancer (NSCLC-1 and -2) cohorts wherein participants were treated by immune checkpoint inhibitors. Results: FAMscore was calculated based on a mutation signature consisting of 16 genes. In both TCGA and AHJU, a high FAMscore was an independent predictor for poor OS of GC patients. FAMscore was associated with immune-associated genome biomarkers, immune cell infiltration, and signaling pathways of abnormal immunity. Importantly, patients with high FAMscore presented inferiority in the objective response rate of immunotherapy compared to those with low FAMscore, with 14.6% vs. 66.7% (p<0.001) in GC, 19.6% vs. 68.2% (p<0.001) in NSCLC-1, 23.1% vs 75% (p = 0.007) in NSCLC-2, and 40.9% vs 75% (p = 0.037) in melanoma. For available survival data, a high FAMscore was also an independent predictor of poor progression-free survival in NSCLC-1 (HR = 2.55, 95% CI: 1.16-5.62, p = 0.02) and NSCLC-2 (HR = 5.0, 95% CI: 1.13-22.19, p = 0.034) and poor OS in melanoma (HR = 3.48, 95% CI: 1.27-9.55, p = 0.015). Conclusions: Alternative evaluation of CAF infiltration in GC by determining the FAMscore could independently predict prognosis and immunotherapy outcomes. The FAMscore may be used to optimize patient selection for immunotherapy.
Collapse
Affiliation(s)
- Yi Lu
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Dan Li
- Department of Hematology, Shaoxing Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Yixin Cao
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Leqian Ying
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Qing Tao
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Fen Xiong
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhangmin Hu
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yufei Yang
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xuehan Qiao
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chen Peng
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Dongqin Zhu
- Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Deqiang Wang
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaoqin Li
- Department of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
24
|
Bai Y, Xie T, Wang Z, Tong S, Zhao X, Zhao F, Cai J, Wei X, Peng Z, Shen L. Efficacy and predictive biomarkers of immunotherapy in Epstein-Barr virus-associated gastric cancer. J Immunother Cancer 2022; 10:jitc-2021-004080. [PMID: 35241494 PMCID: PMC8896035 DOI: 10.1136/jitc-2021-004080] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2022] [Indexed: 12/14/2022] Open
Abstract
Background Epstein-Barr virus (EBV)-associated gastric cancer (GC) (EBVaGC) is a distinct molecular subtype of GC with a favorable prognosis. However, the exact effects and potential mechanisms of EBV infection on immune checkpoint blockade (ICB) efficacy in GC remain to be clarified. Additionally, EBV-encoded RNA (EBER) in situ hybridization (ISH), the traditional method to detect EBV, could cause false-positive/false-negative results and not allow for characterizing other molecular biomarkers recommended by standard treatment guidelines for GC. Herein, we sought to investigate the efficacy and potential biomarkers of ICB in EBVaGC identified by next-generation sequencing (NGS). Design An NGS-based algorithm for detecting EBV was established and validated using two independent GC cohorts (124 in the training cohort and 76 in the validation cohort). The value of EBV infection for predicting ICB efficacy was evaluated among 95 patients with advanced or metastatic GC receiving ICB. The molecular predictive biomarkers for ICB efficacy were identified to improve the prediction accuracy of ICB efficacy in 22 patients with EBVaGC. Results Compared with orthogonal assay (EBER-ISH) results, the NGS-based algorithm achieved high performance with a sensitivity of 95.7% (22/23) and a specificity of 100% (53/53). EBV status was identified as an independent predictive factor for overall survival and progression-free survival in patients with DNA mismatch repair proficient (pMMR) GC following ICB. Moreover, the patients with EBV+/pMMR and EBV−/MMR deficient (dMMR) had comparable and favorable survival following ICB. Twenty-two patients with EBV+/pMMR achieved an objective response rate of 54.5% (12/22) on immunotherapy. Patients with EBVaGC with a high cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) level were less responsive to anti-programmed death-1/ligand 1 (PD-1/L1) monotherapy, and the combination of anti-CTLA-4 plus anti-PD-1/L1 checkpoint blockade benefited patients with EBVaGC more than anti-PD-1/L1 monotherapy with a trend close to significance (p=0.074). There were nearly significant differences in tumor mutational burden (TMB) level and SMARCA4 mutation frequency between the ICB response and non-response group. Conclusions We developed an efficient NGS-based EBV detection strategy, and this strategy-identified EBV infection was as effective as dMMR in predicting ICB efficacy in GC. Additionally, we identified CTLA-4, TMB, and SMARCA4 mutation as potential predictive biomarkers of ICB efficacy in EBVaGC, which might better inform ICB treatment for EBVaGC.
Collapse
Affiliation(s)
- Yuezong Bai
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Tong Xie
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhenghang Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Shuang Tong
- Medical Affairs, 3D Medicines, Inc, Shanghai, China
| | | | - Feilong Zhao
- Medical Affairs, 3D Medicines, Inc, Shanghai, China
| | - Jinping Cai
- Medical Affairs, 3D Medicines, Inc, Shanghai, China
| | - Xiaofan Wei
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhi Peng
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
25
|
Chen X, Zhang W, Yang W, Zhou M, Liu F. Acquired resistance for immune checkpoint inhibitors in cancer immunotherapy: challenges and prospects. Aging (Albany NY) 2022; 14:1048-1064. [PMID: 35037899 PMCID: PMC8833108 DOI: 10.18632/aging.203833] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/29/2021] [Indexed: 04/21/2023]
Abstract
Drug resistance has become an obstacle to the further development of immunotherapy in clinical applications and experimental studies. In the current review, the acquired resistance to immunotherapy was examined. The mechanisms of acquired resistance were based on three aspects as follows: The change of the tumor functions, the upregulated expression of inhibitory immune checkpoint proteins, and the effects of the tumor microenvironment. The combined use of immunotherapy and other therapies is performed to delay acquired resistance. A comprehensive understanding of acquired drug resistance may provide ideas for solving this dilemma.
Collapse
Affiliation(s)
- Xunrui Chen
- Department of Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China
| | - Wenhui Zhang
- Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Wenyan Yang
- Medical Center, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Min Zhou
- Department of Respirtory Medicine, Jinshan Branch of the Sixth People’s Hospital of Shanghai, Shanghai 201599, P.R. China
| | - Feng Liu
- Department of Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China
| |
Collapse
|
26
|
Huang C, Zhang C, Sheng J, Wang D, Zhao Y, Qian L, Xie L, Meng Z. Identification and Validation of a Tumor Microenvironment-Related Gene Signature in Hepatocellular Carcinoma Prognosis. Front Genet 2021; 12:717319. [PMID: 34899826 PMCID: PMC8662347 DOI: 10.3389/fgene.2021.717319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/25/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is a typical inflammatory-related malignant tumor with complex immune tolerance microenvironment and poor prognosis. In this study, we aimed to construct a novel immune-related gene signature for the prognosis of HCC patients, exploring tumor microenvironment (TME) cell infiltration characterization and potential mechanisms. Methods: A total of 364 HCC samples with follow-up information in the TCGA-LIHC dataset were analyzed for the training of the prognostic signature. The Least Absolute Shrinkage and Selector Operation (LASSO) regression based on the IRGs was conducted to identify the prognostic genes and establish an immune risk signature. The immune cell infiltration in TME was estimated via the CIBERSORT method. Gene Set Variation Analysis (GSVA) was conducted to compare the biological pathways involved in the low-risk and high-risk groups. Furthermore, paraffin sections of HCC tissue microarrays containing 77 patients from Fudan University Shanghai Cancer Center were used for IHC staining. The clinical characteristics of the 77 HCC patients were collected and summarized for survival analysis validation via the Kaplan-Meier (KM) method. Results: Three-gene signature with close immune correlation (Risk score = EPO * 0.02838 + BIRC5 * 0.02477 + SPP1 * 0.0002044) was constructed eventually and proven to be an effective prognostic factor for HCC patients. The patients were divided into a high-risk and a low-risk group according to the optimal cutoff, and the survival analysis revealed that HCC samples with high-risk immuno-score had significantly poorer outcomes than the low-risk group (p < 0.0001). The results of CIBERSORT suggested that the immune cell activation was relatively higher in the low-risk group with better prognosis. Besides, GSVA analysis showed multiple signaling differences between the high- and low-risk group, indicating that the three-gene prognostic model can affect the prognosis of patients by affecting immune-related mechanisms. Tissue microarray (TMA) results further confirmed that the expression of three genes in HCC tissues was closely related to the prognosis of patients, respectively. Conclusion: In this study, we constructed and validated a robust three-gene signature with close immune correlation in HCC, which presented a reliable performance in the prediction of HCC patients' survival.
Collapse
Affiliation(s)
- Changjing Huang
- Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chenyue Zhang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jie Sheng
- Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dan Wang
- Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai, China.,Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Yingke Zhao
- Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai, China.,Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Ling Qian
- Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lin Xie
- Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhiqiang Meng
- Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
27
|
O'Connell TJ, Dadafarin S, Jones M, Rodríguez T, Gupta A, Shin E, Moscatello A, Iacob C, Islam H, Tiwari RK, Geliebter J. Androgen Activity Is Associated With PD-L1 Downregulation in Thyroid Cancer. Front Cell Dev Biol 2021; 9:663130. [PMID: 34422798 PMCID: PMC8377372 DOI: 10.3389/fcell.2021.663130] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/23/2021] [Indexed: 02/05/2023] Open
Abstract
Thyroid cancer is the most prevalent endocrine malignancy in the United States with greater than 53,000 new cases in 2020. There is a significant gender disparity in disease incidence as well, with women developing thyroid cancer three times more often than men; however, the underlying cause of this disparity is poorly understood. Using RNA-sequencing, we profiled the immune landscape of papillary thyroid cancer (PTC) and identified a significant inverse correlation between androgen receptor (AR) levels and the immune checkpoint molecule PD-L1. The expression of PD-L1 was then measured in an androgen responsive-thyroid cancer cell line. Dihydrotestosterone (DHT) treatment resulted in significant reduction in surface PD-L1 expression in a time and dose-dependent manner. To determine if androgen-mediated PD-L1 downregulation was AR-dependent, we treated cells with flutamide, a selective AR antagonist, and prior to DHT treatment to pharmacologically inhibit AR-induced signaling. This resulted in a > 90% restoration of cell surface PD-L1 expression, suggesting a potential role for AR activity in PD-L1 regulation. Investigation into the AR binding sites showed AR activation impacts NF-kB signaling by increasing IkBα and by possibly preventing NF-kB translocation into the nucleus, reducing PD-L1 promoter activation. This study provides evidence of sex-hormone mediated regulation of immune checkpoint molecules in vitro with potential ramification for immunotherapies.
Collapse
Affiliation(s)
- Timmy J O'Connell
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Sina Dadafarin
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Melanie Jones
- United States Military Academy Preparatory School, West Point, NY, United States
| | - Tomás Rodríguez
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, United States.,Medical Scientist Training Program, University of Massachusetts Medical School, Worcester, MA, United States
| | - Anvita Gupta
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Edward Shin
- Department of Otolaryngology, New York Eye and Ear Infirmary, New York, NY, United States
| | - Augustine Moscatello
- Department of Otolaryngology, New York Medical College, Valhalla, NY, United States
| | - Codrin Iacob
- Department of Pathology, New York Eye and Ear Infirmary, New York, NY, United States
| | - Humayun Islam
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Raj K Tiwari
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Jan Geliebter
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States.,Department of Otolaryngology, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
28
|
A novel therapeutic strategy for hepatocellular carcinoma: Immunomodulatory mechanisms of selenium and/or selenoproteins on a shift towards anti-cancer. Int Immunopharmacol 2021; 96:107790. [PMID: 34162153 DOI: 10.1016/j.intimp.2021.107790] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/05/2021] [Accepted: 05/13/2021] [Indexed: 12/24/2022]
Abstract
Selenium (Se) is an essential trace chemical element that is widely distributed worldwide. Se exerts its immunomodulatory and nutritional activities in the human body in the form of selenoproteins. Se has increasingly appeared as a potential trace element associated with many human diseases, including hepatocellular carcinoma (HCC). Recently, increasing evidence has suggested that Se and selenoproteins exert their immunomodulatory effects on HCC by regulating the molecules of oxidative stress, inflammation, immune response, cell proliferation and growth, angiogenesis, signaling pathways, apoptosis, and other processes in vitro cell studies and in vivo animal studies. Se concentrations are generally low in tissues of patients with HCC, such as blood, serum, scalp hair, and toenail. However, Se concentrations were higher in HCC patient tissues after Se supplementation than before supplementation. This review summarizes the significant relationship between Se and HCC, and details the role of Se as a novel immunomodulatory or immunotherapeutic approach against HCC.
Collapse
|
29
|
Peng Y, Liu C, Li M, Li W, Zhang M, Jiang X, Chang Y, Liu L, Wang F, Zhao Q. Identification of a prognostic and therapeutic immune signature associated with hepatocellular carcinoma. Cancer Cell Int 2021; 21:98. [PMID: 33568167 PMCID: PMC7877064 DOI: 10.1186/s12935-021-01792-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most prevalent and inflammation-associated cancers. The tumor microenvironment (TME) plays an essential role in HCC development and metastasis, leading to poor prognosis. The overall TME immune cells infiltration characterizations mediated by immune-related genes (IRGs) remain unclear. In this study, we aimed to investigate whether immune-related genes could be indicators for the prognosis of HCC patients and TME cell infiltration characterization as well as responses to immunotherapy. Methods We obtained differentially expressed immune-related genes (DE IRGs) between normal liver tissues and liver cancer tissues from The Cancer Genome Atlas (TCGA) database. To identify the prognostic genes and establish an immune risk signature, we performed univariable Cox regression survival analysis and the Least Absolute Shrinkage and Selector Operation (LASSO) regression based on the DE IRGs by robust rank aggregation method. Cox regression analysis was used to identify independent prognostic factors in HCC. We estimated the immune cell infiltration in TME via CIBERSORT and immunotherapy response through TIDE algorithm. Results We constructed an immune signature and validated its predictive capability. The immune signature included 7 differentially expressed IRGs: BIRC5, CACYBP, NR0B1, RAET1E, S100A8, SPINK5, and SPP1. The univariate and multivariate cox analysis showed that the 7-IRGs signature was a robust independent prognostic factor in the overall survival of HCC patients. The 7-IRG signature was associated with some clinical features, including gender, vascular invasion, histological grade, clinical stage, T stage. We also found that the 7-IRG signature could reflect the infiltration characterization of different immunocytes in the tumor microenvironment (TME) and had a good correlation with immune checkpoint molecules, revealing that the poor prognosis might be partly due to immunosuppressive TME. The Tumour Immune Dysfunction and Exclusion (TIDE) analysis data showed that the 7-IRG signature had great potential for indicating the immunotherapy response in HCC patients. The mutation analysis demonstrated a significant difference in the tumor mutation burden (TMB) between the high- and low-risk groups, partially explaining this signature's predictive value. Conclusion In a word, we constructed and validated a novel, immune-related prognostic signature for HCC patients. This signature could effectively indicate HCC patients' survival and immunotherapy response. And it might act as potential immunotherapeutic targets for HCC patients.
Collapse
Affiliation(s)
- Yanan Peng
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Chang Liu
- Department of Obstetrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengting Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Wenjie Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Mengna Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Xiang Jiang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Lan Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Fan Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China. .,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China.
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China. .,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China.
| |
Collapse
|
30
|
Wang L, Jiang G, Jing N, Liu X, Zhuang H, Zeng W, Liang W, Liu Z. Downregulating testosterone levels enhance immunotherapy efficiency. Oncoimmunology 2021; 10:1981570. [PMID: 34595060 PMCID: PMC8477942 DOI: 10.1080/2162402x.2021.1981570] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Low response rates to certain tumor types remain a major challenge for immune checkpoint blockade therapy. In this study, we first conducted an integrated biomarker evaluation of bladder cancer patients from confirmatory cohorts (IMvigor210) and found that no significant differences exist between sexes before acceptance of anti-PD-L1 treatment, whereas male patients showed a better response. Thus, we then focused on sex-related changes post anti-PD-L1 treatment and found no obvious impact on the gut microbiota in male mice but a significant decrease in the sex hormone levels. Further, castration dramatically enhanced the antitumor efficacy against murine colon adenocarcinoma in male mice. Moreover, a narrow-spectrum antibiotic, colistin was innovatively used for deregulation of testosterone levels to enhance the immunotherapy efficiency in male mice. These findings indicate that the impact on the sex hormone levels in males may contribute to the sexual dimorphism in response and provide a promising way to enhance immunotherapy efficiency.
Collapse
Affiliation(s)
- Luoyang Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, China
- Key Lab of Industrial Biocatalysis, Ministry of Education, Beijing, China
| | - Guoqiang Jiang
- Department of Chemical Engineering, Tsinghua University, Beijing, China
- Key Lab of Industrial Biocatalysis, Ministry of Education, Beijing, China
- CONTACT Guoqiang Jiang
| | - Nan Jing
- Department of Chemical Engineering, Tsinghua University, Beijing, China
- Key Lab of Industrial Biocatalysis, Ministry of Education, Beijing, China
| | - Xuerun Liu
- Department of Chemical Engineering, Tsinghua University, Beijing, China
- Key Lab of Industrial Biocatalysis, Ministry of Education, Beijing, China
| | - Huiren Zhuang
- Department of Chemical Engineering, Tsinghua University, Beijing, China
- Key Lab of Industrial Biocatalysis, Ministry of Education, Beijing, China
| | - Wenfeng Zeng
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Liang
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zheng Liu
- Department of Chemical Engineering, Tsinghua University, Beijing, China
- Key Lab of Industrial Biocatalysis, Ministry of Education, Beijing, China
- Zheng Liu Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China; Key Lab of Industrial Biocatalysis, Ministry of Education, Beijing, China
| |
Collapse
|
31
|
Yuan Y, Lee JS, Yost SE, Frankel PH, Ruel C, Egelston CA, Guo W, Gillece JD, Folkerts M, Reining L, Highlander SK, Robinson K, Padam S, Martinez N, Tang A, Schmolze D, Waisman J, Sedrak M, Lee PP, Mortimer J. A Phase II Clinical Trial of Pembrolizumab and Enobosarm in Patients with Androgen Receptor-Positive Metastatic Triple-Negative Breast Cancer. Oncologist 2020; 26:99-e217. [PMID: 33141975 DOI: 10.1002/onco.13583] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/24/2020] [Indexed: 01/02/2023] Open
Abstract
LESSONS LEARNED The combination of enobosarm and pembrolizumab was well tolerated and showed a modest clinical benefit rate of 25% at 16 weeks. Future trials investigating androgen receptor-targeted therapy in combination with immune checkpoint inhibitors are warranted. BACKGROUND Luminal androgen receptor is a distinct molecular subtype of triple-negative breast cancer (TNBC) defined by overexpression of androgen receptor (AR). AR-targeted therapy has shown modest activity in AR-positive (AR+) TNBC. Enobosarm (GTx-024) is a nonsteroidal selective androgen receptor modulator (SARM) that demonstrates preclinical and clinical activity in AR+ breast cancer. The current study was designed to explore the safety and efficacy of the combination of enobosarm and pembrolizumab in patients with AR+ metastatic TNBC (mTNBC). METHODS This study was an open-label phase II study for AR+ (≥10%, 1+ by immunohistochemistry [IHC]) mTNBC. Eligible patients received pembrolizumab 200 mg intravenous (IV) every 3 weeks and enobosarm 18 mg oral daily. The primary objective was to evaluate the safety of enobosarm plus pembrolizumab and determine the response rate. Peripheral blood, tumor biopsies, and stool samples were collected for correlative analysis. RESULTS The trial was stopped early because of the withdrawal of GTx-024 drug supply. Eighteen patients were enrolled, and 16 were evaluable for responses. Median age was 64 (range 36-81) years. The combination was well tolerated, with only a few grade 3 adverse events: one dry skin, one diarrhea, and one musculoskeletal ache. The responses were 1 of 16 (6%) complete response (CR), 1 of 16 (6%) partial response (PR), 2 of 16 (13%) stable disease (SD), and 12 of 16 (75%) progressive disease (PD). Response rate (RR) was 2 of 16 (13%). Clinical benefit rate (CBR) at 16 weeks was 4 of 16 (25%). Median follow-up was 24.9 months (95% confidence interval [CI], 17.5-30.9). Progression-free survival (PFS) was 2.6 months (95% CI, 1.9-3.1) and overall survival (OS) was 25.5 months (95% CI, 10.4-not reached [NR]). CONCLUSION The combination of enobosarm and pembrolizumab was well tolerated, with a modest clinical benefit rate of 25% at 16 weeks in heavily pretreated AR+ TNBC without preselected programmed death ligand-1 (PD-L1). Future clinical trials combining AR-targeted therapy with immune checkpoint inhibitor (ICI) for AR+ TNBC warrant investigation.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, California, USA
| | - Jin Sun Lee
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, California, USA
| | - Susan E Yost
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, California, USA
| | - Paul H Frankel
- Department of Biostatistics, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, California, USA
| | - Christopher Ruel
- Department of Biostatistics, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, California, USA
| | - Colt A Egelston
- Department of Immune-Oncology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, California, USA
| | - Weihua Guo
- Department of Immune-Oncology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, California, USA
| | - John D Gillece
- Pathogen and Microbiome Division, Translational Genomics Research Institute North, Flagstaff, Arizona, USA
| | - Megan Folkerts
- Pathogen and Microbiome Division, Translational Genomics Research Institute North, Flagstaff, Arizona, USA
| | - Lauren Reining
- Pathogen and Microbiome Division, Translational Genomics Research Institute North, Flagstaff, Arizona, USA
| | - Sarah K Highlander
- Pathogen and Microbiome Division, Translational Genomics Research Institute North, Flagstaff, Arizona, USA
| | - Kim Robinson
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, California, USA
| | - Simran Padam
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, California, USA
| | - Norma Martinez
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, California, USA
| | - Aileen Tang
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, California, USA
| | - Daniel Schmolze
- Department of Pathology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, California, USA
| | - James Waisman
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, California, USA
| | - Mina Sedrak
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, California, USA
| | - Peter P Lee
- Department of Immune-Oncology, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, California, USA
| | - Joanne Mortimer
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, California, USA
| |
Collapse
|