1
|
Liu G, Liu Q, Jia L, Chai Z, Jing L, Xu F, Fan Y. Exosomal circRNAs: key modulators in breast cancer progression. Cell Death Discov 2025; 11:196. [PMID: 40274787 PMCID: PMC12022065 DOI: 10.1038/s41420-025-02494-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/13/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025] Open
Abstract
Breast cancer (BC) poses significant challenges globally, necessitating a deeper understanding of its complexities. Exosomes are cell-specific secreted extracellular vesicles of interest, characterized by a lipid bilayer structure. Exosomes can carry a variety of bioactive components, including nucleic acids, lipids, amino acids, and small molecules, to mediate intercellular signaling. CircRNAs are a novel class of single-stranded RNA molecules, characterized by a closed-loop structure. CircRNAs mainly exert ceRNA functions to intricately modulate gene expression and signaling pathways in breast cancer, influencing tumor progression and therapeutic responses. The unique packaging of circRNAs within exosomes serves as novel genetic information transmitters, facilitating communication between BC cells and microenvironmental cells, thereby regulating critical aspects of BC progression, immune evasion, and drug resistance. Besides, exosomal circRNAs possess the capabilities of serving as diagnostic and therapeutic biomarkers of BC, due to their stability, specificity, and regulatory roles in tumorigenesis and metastasis. Therefore, this review aims to elucidate the novel roles and mechanisms of exosomal circRNAs in BC progression, as well as their potential for diagnosis and therapeutics. The ongoing investigations of exosomal circRNAs will potentially revolutionize treatment paradigms and improve patient outcomes of BC.
Collapse
Affiliation(s)
- Guozhen Liu
- Department of Spinal Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Quan Liu
- Department of Thyroid and Breast Surgery, The First People's Hospital of Xiantao, Affiliated Hospital of Hubei University of Science and Technology, Xiantao, China
| | - Lingmei Jia
- Department of Anesthesiology and Perioperative Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Zhi Chai
- Clinical Laboratory Center, Xi'an People's Hospital Xi'an Fourth Hospital, Affiliated People's Hospital of Northwest University, Xi'an, China
| | - Li Jing
- School of Basic Medical Sciences, Ningxia Key Laboratory of Vascular Injury and Repair, Ningxia Medical University, Yinchuan, Ningxia, China.
| | - Fangjing Xu
- Department of Critical Care Medicine, Yinchuan Hospital of Traditional Chinese Medicine, Affiliated to Ningxia Medical University, Yinchuan City, Ningxia Hui Autonomous Region, China.
| | - Yucheng Fan
- Department of Pathology, The First People's Hospital of Shizuishan, Affiliated to Ningxia Medical University, Shizuishan City, Ningxia Hui Autonomous Region, China.
| |
Collapse
|
2
|
Piergentili R, Sechi S. Targeting Regulatory Noncoding RNAs in Human Cancer: The State of the Art in Clinical Trials. Pharmaceutics 2025; 17:471. [PMID: 40284466 PMCID: PMC12030637 DOI: 10.3390/pharmaceutics17040471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025] Open
Abstract
Noncoding RNAs (ncRNAs) are a heterogeneous group of RNA molecules whose classification is mainly based on arbitrary criteria such as the molecule length, secondary structures, and cellular functions. A large fraction of these ncRNAs play a regulatory role regarding messenger RNAs (mRNAs) or other ncRNAs, creating an intracellular network of cross-interactions that allow the fine and complex regulation of gene expression. Altering the balance between these interactions may be sufficient to cause a transition from health to disease and vice versa. This leads to the possibility of intervening in these mechanisms to re-establish health in patients. The regulatory role of ncRNAs is associated with all cancer hallmarks, such as proliferation, apoptosis, invasion, metastasis, and genomic instability. Based on the function performed in carcinogenesis, ncRNAs may behave either as oncogenes or tumor suppressors. However, this distinction is not rigid; some ncRNAs can fall into both classes depending on the tissue considered or the target molecule. Furthermore, some of them are also involved in regulating the response to traditional cancer-therapeutic approaches. In general, the regulation of molecular mechanisms by ncRNAs is very complex and still largely unclear, but it has enormous potential both for the development of new therapies, especially in cases where traditional methods fail, and for their use as novel and more efficient biomarkers. Overall, this review will provide a brief overview of ncRNAs in human cancer biology, with a specific focus on describing the most recent ongoing clinical trials (CT) in which ncRNAs have been tested for their potential as therapeutic agents or evaluated as biomarkers.
Collapse
|
3
|
Hu G, Cai P, Li J, Yu L, Zhao B, Chen G. Serum exosomal miR-454-3p contributes to malignant progression of lung cancer by inhibiting HHEX. Mol Cell Probes 2025; 80:102019. [PMID: 39929349 DOI: 10.1016/j.mcp.2025.102019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 02/08/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Lung cancer is a common cancer. Exosomes are emerging mediators of intercellular communication, and miRNAs serve a crucial position in cancer progression. This project intends to discover whether exosomal miR-454-3p affects tumor progression and its underlying mechanisms. METHODS Exosomes were isolated utilizing ultracentrifugation. The exosomal biomarkers level was monitored by western blot (WB). The miR-454-3p levels were assessed by quantitative reverse transcription polymerase chain reaction (qRT-PCR), and HHEX expression were detected by qRT-PCR and WB. Cell growth and metastasis were detected through CCK-8, colony formation assay and transwell. Meanwhile, the dual luciferase reporter system and immunoprecipitation (RIP) assay was applied to clarify the interactions between miR-454-3p and HHEX. RESULTS We successfully isolated serum exosomes from NSCLC patients. Then, our team discovered that miR-454-3p was elevated in serum-derived exosomes from NSCLC patients. Functional analysis disclosed that exosomes accelerated NSCLC cell proliferation and metastasis. Silencing of exosomal miR-454-3p hindered NSCLC cell proliferation and metastasis. Subsequently, the starbase database declared that miR-454-3p was interacted with HHEX. HHEX overexpression reversed the promotion of NSCLC cell proliferation and metastasis by exosomal miR-454-3p. CONCLUSIONS Exosomal miR-454-3p enhanced the progression of NSCLC cells through HHEX. miR-454-3p may be a therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Gangqin Hu
- Medical Oncology, Jingmen People's Hospital, Jingmen, 448000, Hubei, China
| | - Peng Cai
- Medical Oncology, Jingmen People's Hospital, Jingmen, 448000, Hubei, China
| | - Jingjing Li
- Medical Oncology, Jingmen People's Hospital, Jingmen, 448000, Hubei, China
| | - Liuyang Yu
- Medical Oncology, Jingmen People's Hospital, Jingmen, 448000, Hubei, China
| | - Bolin Zhao
- Medical Oncology, Jingmen People's Hospital, Jingmen, 448000, Hubei, China
| | - Guiming Chen
- Medical Oncology, Jingmen People's Hospital, Jingmen, 448000, Hubei, China.
| |
Collapse
|
4
|
Kirimura S, Kurata M, Ishibashi H, Taniguchi Y, Kinowaki Y, Sugita K, Okubo K. Cytoplasmic HuR Expression Enhances Chemoresistance in Pleural Mesothelioma Through Increased Expression of CALB2, Promotion of the E2F Pathway, and Suppression of the p53 Pathway. Thorac Cancer 2025; 16:e70062. [PMID: 40200787 PMCID: PMC11979354 DOI: 10.1111/1759-7714.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/06/2025] [Accepted: 03/30/2025] [Indexed: 04/10/2025] Open
Abstract
INTRODUCTION Chemotherapy is crucial for treating pleural mesothelioma; however, the outcomes are poor, necessitating an urgent need to study the mechanism of chemotherapy resistance in mesothelioma cells. Human antigen R (HuR), an RNA-binding protein and key post-transcriptional regulator of mRNA, is linked to poor prognosis in cancers like mesothelioma. We investigated the involvement of cytoplasmic HuR expression in drug resistance mechanisms in mesothelioma. METHODS We retrospectively evaluated cytoplasmic HuR expression in 30 patients with pleural mesothelioma who underwent surgical resection using immunohistochemistry. We also examined the role of forced cytoplasmic expression of HuR in drug resistance using mesothelioma cell lines and performed RNA-Seq analysis to identify gene expression changes responsible for drug resistance acquisition via HuR cytoplasmic expression. RESULTS Patients with mesotheliomas who expressed cytoplasmic HuR exhibited significantly worse disease-free survival following post-operative chemotherapy. Forced cytoplasmic HuR expression in mesothelioma cell lines increased chemotherapy resistance through increased expression of CALB2, upregulation of the E2F pathway and suppression of the p53 pathway. CONCLUSIONS Cytoplasmic HuR expression increases the chemoresistance and postoperative recurrence risk of pleural mesothelioma, making it a potential biomarker for predicting therapeutic prognosis. However, the mechanism of HuR transfer to the cytoplasm remains unclear for therapeutic application.
Collapse
Affiliation(s)
- Susumu Kirimura
- Division of PathologyInstitute of Science Tokyo HospitalTokyoJapan
| | - Morito Kurata
- Department of Comprehensive Pathology, Graduate School of Medical and Dental SciencesInstitute of Science TokyoTokyoJapan
| | - Hironori Ishibashi
- Department of Thoracic Surgery, Graduate School of Medical and Dental SciencesInstitute of Science TokyoTokyoJapan
| | - Yusuke Taniguchi
- Department of Comprehensive Pathology, Graduate School of Medical and Dental SciencesInstitute of Science TokyoTokyoJapan
| | - Yuko Kinowaki
- Department of Comprehensive Pathology, Graduate School of Medical and Dental SciencesInstitute of Science TokyoTokyoJapan
| | - Keisuke Sugita
- Department of Comprehensive Pathology, Graduate School of Medical and Dental SciencesInstitute of Science TokyoTokyoJapan
- Department of PathologyThe Cancer Institute Hospital, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Kenichi Okubo
- Department of Thoracic Surgery, Graduate School of Medical and Dental SciencesInstitute of Science TokyoTokyoJapan
| |
Collapse
|
5
|
Malla R, Bhamidipati P, Samudrala AS, Nuthalapati Y, Padmaraju V, Malhotra A, Rolig AS, Malhotra SV. Exosome-Mediated Cellular Communication in the Tumor Microenvironment Imparts Drug Resistance in Breast Cancer. Cancers (Basel) 2025; 17:1167. [PMID: 40227747 PMCID: PMC11987792 DOI: 10.3390/cancers17071167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/22/2025] [Accepted: 03/29/2025] [Indexed: 04/15/2025] Open
Abstract
Globally, breast cancer (BC) is the leading cause of cancer-related death for women. BC is characterized by heterogeneity, aggressive behavior, and high metastatic potential. Chemotherapy, administered as monotherapy or adjuvant therapy, remains a cornerstone of treatment; however, acquired drug resistance is a significant clinical challenge. Deciphering mechanisms of drug resistance will be central to developing more efficient treatment options and improving patient outcomes. The current review examines the multifaceted nature of exosomes in conferring drug resistance in BC through complex communication networks within the tumor microenvironment. We further explore recent advances in understanding how exosomes contribute to resistance against established chemotherapeutic agents such as tamoxifen, paclitaxel, doxorubicin, platinum-based drugs, trastuzumab, and newer immunotherapies, such as immune checkpoint inhibitors. Moreover, we discuss existing systematic approaches to investigating the exosome-drug resistance relationship in BC. Finally, we explore promising therapeutic approaches to overcome exosome-dependent drug resistance in BC, highlighting potential avenues for improved treatment efficacy. Investigating the distinct functions and cargo of exosomes offers potential for developing innovative approaches to overcoming treatment resistance.
Collapse
Affiliation(s)
- RamaRao Malla
- Cancer Biology Group, Cancer Biology Laboratory, Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - Priyamvada Bhamidipati
- Cancer Biology Group, Cancer Biology Laboratory, Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - Anuveda Sree Samudrala
- Cancer Biology Group, Cancer Biology Laboratory, Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - Yerusha Nuthalapati
- Cancer Biology Group, Cancer Biology Laboratory, Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - Vasudevaraju Padmaraju
- Cancer Biology Group, Cancer Biology Laboratory, Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - Aditya Malhotra
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Annah S. Rolig
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Sanjay V. Malhotra
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| |
Collapse
|
6
|
Abdulmonem WA, Ahsan M, Mallick AK, Mohamed AH, Waggiallah HA, Shafie A, Alzahrani HS, Ashour AA, Rab SO, Mirdad MT, Ali HTO. The Role of Exosomal miRNAs in Female Infertility: Therapeutic Potential and Mechanisms of Action. Stem Cell Rev Rep 2025:10.1007/s12015-025-10869-w. [PMID: 40126819 DOI: 10.1007/s12015-025-10869-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2025] [Indexed: 03/26/2025]
Abstract
Reproductive disorders, including preeclampsia (PE), endometriosis, premature ovarian failure (POF), and polycystic ovary syndrome (PCOS), present substantial challenges to women's reproductive health. Exosomes (EXOs) are cell-derived vesicles containing molecules that influence target cells' gene expression and cellular behavior. Among their cargo, microRNAs (miRNAs)-short, non-coding RNAs typically 19-25 nucleotides in length-play a crucial role in post-transcriptional gene regulation and have been extensively studied for their therapeutic potential. miRNAs are considered therapeutic targets because they regulate key cellular pathways such as proliferation, apoptosis, angiogenesis, and tissue repair. This review examines the role of exosomal miRNAs from sources such as mesenchymal stem cells (MSCs), plasma, and amniotic fluid in female reproductive disorders, including PE, POF, PCOS, and endometriosis. We discuss their biological origins, mechanisms of miRNA sorting and packaging, and their therapeutic applications in modulating disease progression. By categorizing miRNAs according to their beneficial or detrimental effects in specific conditions, we aim to simplify the understanding of their roles in female infertility.
Collapse
Affiliation(s)
- Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Marya Ahsan
- Department of Pharmacology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13317, Saudi Arabia
| | - Ayaz Khurram Mallick
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Asma'a H Mohamed
- Department of Optometry Techniques, Technical College Al-Mussaib, Al-Furat Al-Awsat Technical University, Najaf, Iraq.
| | - Hisham Ali Waggiallah
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Alkharj, 11942, Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O.Box 11099, Taif, 21944, Saudi Arabia
| | - Hassan Swed Alzahrani
- Counseling Healthy Marriage, Jeddah Regional Laboratory, Jeddah First Cluster , Jeddah, Saudi Arabia
| | - Amal Adnan Ashour
- Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammed Tarek Mirdad
- Medical Intern MBBS, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Hatim T O Ali
- Obstetrics and Gynecology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
7
|
Yan YY, Deng ZF, Wu XT, Lu Y, Zhu ZY, Wen Q, Zhang W, Zhang HY, Chen XZ, Wu YS, He XB, Ma ZA, Li JS, Bi H, Zhang JY. Low miR-224-5p in exosomes confers colorectal cancer 5-FU resistance by upregulating S100A4. Drug Resist Updat 2025; 79:101211. [PMID: 39956015 DOI: 10.1016/j.drup.2025.101211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/27/2025] [Accepted: 02/03/2025] [Indexed: 02/18/2025]
Abstract
This study aimed to identify molecular markers that mediate 5-fluorouracil (5-FU) resistance in colorectal cancer (CRC). Exosomes from 5-FU resistant CRC cells (HCT-15/FU) significantly enhanced the resistance to 5-FU and the malignant properties of HCT-15 cells. Double screening of miRNAs in CRC cell-exosomes and serum-exosomes from clinical CRC patients revealed that miR-224-5p was expressed at significantly lower levels in the 5-FU resistant type than in the 5-FU sensitive type. Moreover, the overall survival rates of 5-FU-resistant CRC patients were much lower than those of 5-FU-sensitive CRC patients. Furthermore, cellular miRNA sequencing (miR-Seq) and proteomic studies revealed that several miRNAs such as miR-224-5p, were significantly downregulated and that calcium-related proteins, including S100 calcium-binding protein A4 (S100A4), were upregulated in HCT-15/FU cells. An analysis of data from public databases revealed that patients with CRC with lower S100A4 expression had a better prognosis. In addition, miR-224-5p was shown to directly target S100A4. Functionally, in vitro and in vivo experiments verified that the downregulation of miR-224-5p promoted malignant properties and resistance to 5-FU in HCT-15 cells, whereas the upregulation of miR-224-5p in HCT-15/FU cells attenuated these effects. Notably, 5-FU combined with verapamil reversed 5-FU resistance in CRC by regulating the miR-224-5p/S100A4 pathway. Triptolide inhibited the malignant properties of HCT-15/FU cells by affecting the miR-224-5p/S100A4 axis. Overall, miR-224-5p is involved in CRC 5-FU resistance by regulating S100A4, and might serve as a molecular marker for the early prediction and intervention of 5-FU resistance in CRC patients in the clinic. Triptolide or 5-FU combined with a calcium antagonist could be used as a trial therapy for 5-FU resistant CRC patients.
Collapse
Affiliation(s)
- Yan-Yan Yan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China; Institute of Immunology, School of Medicine, Shanxi Datong University, Datong 037009, PR China
| | - Zhuo-Fen Deng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Xing-Tao Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Yu Lu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Zhuang-Yan Zhu
- Institute of Immunology, School of Medicine, Shanxi Datong University, Datong 037009, PR China
| | - Qing Wen
- Department of Gastroenterology, Cancer Center of Datong, The Second People's Hospital of Datong, Datong 037005, PR China
| | - Wei Zhang
- Department of Gastroenterology, Cancer Center of Datong, The Second People's Hospital of Datong, Datong 037005, PR China
| | - Hai-Yan Zhang
- Institute of Immunology, School of Medicine, Shanxi Datong University, Datong 037009, PR China
| | - Xin-Zhu Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Yu-Song Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Xue-Bing He
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Zi-Ang Ma
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Jin-Shuo Li
- Institute of Immunology, School of Medicine, Shanxi Datong University, Datong 037009, PR China
| | - Hong Bi
- The Pathology Department of Shanxi Provincial People's Hospital, Taiyuan 030012, PR China
| | - Jian-Ye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China; The Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan 511518, PR China.
| |
Collapse
|
8
|
Ciferri MC, Tasso R. Extracellular vesicle-mediated chemoresistance in breast cancer: focus on miRNA cargo. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2025; 6:112-127. [PMID: 40206797 PMCID: PMC11977373 DOI: 10.20517/evcna.2024.90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/14/2025] [Accepted: 02/05/2025] [Indexed: 04/11/2025]
Abstract
The role of extracellular vesicles (EVs) in mediating chemoresistance has gained significant attention due to their ability to transfer bioactive molecules between drug-resistant and drug-sensitive cells. In particular, they have been demonstrated to play an active part in breast cancer chemoresistance by the horizontal transfer of genetic and protein material. This review highlights the role of EVs, particularly their miRNA cargo, in driving drug resistance in breast cancer. EVs derived from chemoresistant cells carry miRNAs and lncRNAs, which are known to modulate gene networks involved in cell proliferation and survival. These cargo molecules suppress apoptosis by targeting pro-apoptotic genes like PTEN and BIM, promote epithelial-mesenchymal transition (EMT) through the regulation of pathways such as TGF-β and Wnt/b-catenin, and contribute to tumor growth and resistance by enhancing angiogenesis and modulating the tumor microenvironment. Beyond RNA-mediated effects, EVs also transfer functional proteins, including P-glycoprotein and Hsp70, which impact cellular metabolism and survival pathways. Our findings underscore the significance of EVs in breast cancer chemoresistance, suggesting their potential involvement as possible prognostic factors to predict therapy response and as therapeutic targets in combination with usual therapy.
Collapse
Affiliation(s)
- Maria Chiara Ciferri
- Department of Experimental Medicine (DIMES), University of Genova, Genova 16132, Italy
| | - Roberta Tasso
- Department of Experimental Medicine (DIMES), University of Genova, Genova 16132, Italy
- Dipartimento della Ricerca, IRCCS Ospedale Policlinico San Martino, Genova 16132, Italy
| |
Collapse
|
9
|
Zhang H, Wu B, Wang Y, Du H, Fang L. Extracellular Vesicles as Mediators and Potential Targets in Combating Cancer Drug Resistance. Molecules 2025; 30:498. [PMID: 39942602 PMCID: PMC11819960 DOI: 10.3390/molecules30030498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/12/2024] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Extracellular vesicles (EVs) are key mediators in the communication between cancer cells and their microenvironment, significantly influencing drug resistance. This review provides a comprehensive analysis of the roles of EVs in promoting drug resistance through mechanisms such as drug efflux, apoptosis resistance, autophagy imbalance, and tumor microenvironment modulation. Despite extensive research, details of EVs biogenesis, cargo selection, and specific pathways in EVs-mediated drug resistance are not fully understood. This review critically examines recent advancements, highlighting key studies that elucidate the molecular mechanisms of EVs functions. Additionally, innovative therapeutic strategies targeting EVs are explored, including inhibiting EVs biogenesis, engineering EVs for drug delivery, and identifying resistance-inhibiting molecules within EVs. By integrating insights from primary research and proposing new directions for future studies, this review aims to advance the understanding of EVs in cancer biology and foster effective interventions to mitigate drug resistance in cancer therapy.
Collapse
Affiliation(s)
- Haodong Zhang
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (H.Z.); (H.D.)
| | - Bohan Wu
- Westa College, Southwest University, Chongqing 400715, China; (B.W.); (Y.W.)
| | - Yanheng Wang
- Westa College, Southwest University, Chongqing 400715, China; (B.W.); (Y.W.)
| | - Huamao Du
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (H.Z.); (H.D.)
| | - Liaoqiong Fang
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (H.Z.); (H.D.)
- National Engineering Research Center of Ultrasound Medicine, Chongqing 401121, China
| |
Collapse
|
10
|
Wang M, Zheng Y, Hao Q, Mao G, Dai Z, Zhai Z, Lin S, Liang B, Kang H, Ma X. Hypoxic BMSC-derived exosomal miR-210-3p promotes progression of triple-negative breast cancer cells via NFIX-Wnt/β-catenin signaling axis. J Transl Med 2025; 23:39. [PMID: 39789572 PMCID: PMC11720919 DOI: 10.1186/s12967-024-05947-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Bone marrow mesenchymal stem cells (BMSCs) are a crucial component of the tumor microenvironment (TME), with hypoxic conditions promoting their migration to tumors. Exosomes play a vital role in cell-to-cell communication within the TME. Hypoxic TME have a great impact on the release, uptake and biofunctions of exosomes. This study aims to elucidate the communication between BMSC-derived exosomal miRNA and triple-negative breast cancer (TNBC) in a hypoxic environment. METHODS Exosomes were isolated via ultracentrifugation and identified using scanning electron microscopy (SEM), nanoparticle tracking analysis (NTA) and western blot. A range of bioinformatics approaches were used to screen exosomal miRNAs and the target mRNAs of miRNAs and predict the possible signaling pathways. Expression levels of genes and proteins were assessed by quantitative real-time PCR and western blot. Cell proliferation, apoptosis, migration and invasion were analyzed using CCK-8 assay, EDU assay, transwell migration, wound healing assay and invasion assay, respectively. Dual luciferase reporter gene assay was conducted to confirm the binding between miRNAs and the target mRNAs. The impact of hypoxic BMSC-derived exosomal miRNA on TNBC progression in vivo was evaluated using tumor xenograft nude mouse models. Furthermore, the impact of patients' serum exosomal miRNA on TNBC was implemented. RESULTS Exosomes derived from hypoxic BMSCs promotes the proliferation, migration, invasion and epithelial-mesenchymal transition of TNBC and suppresses the apoptosis of TNBC. The expression of miR-210-3p in BMSC-derived exosomes is markedly elevated in hypoxic conditions. Exosome-mediated transfer of miR-210-3p from hypoxic BMSCs to TNBC targets NFIX and activates Wnt/β-Catenin signaling in TNBC. Deletion of miR-210-3p in hypoxic BMSC-derived exosomes attenuates TNBC in vivo. Additionally, human exosomal miR-210-3p from the serum of TNBC patients promotes TNBC progression. Moreover, we notably observed a marked downregulation of NFIX expression levels in cancerous tissues compared to paracancerous tissues. CONCLUSIONS Hypoxic BMSC-derived exosomal miR-210-3p promotes TNBC progression via NFIX-Wnt/β-catenin signaling axis.
Collapse
Affiliation(s)
- Meng Wang
- The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yi Zheng
- The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
- Department of Oncology of Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Qian Hao
- The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Guochao Mao
- The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Zhen Zhai
- The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Shuai Lin
- The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Baobao Liang
- The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Huafeng Kang
- The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Xiaobin Ma
- The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
11
|
Kumar S, Ranga A. Role of miRNAs in breast cancer development and progression: Current research. Biofactors 2025; 51:e2146. [PMID: 39601401 DOI: 10.1002/biof.2146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024]
Abstract
Breast cancer, a complex and heterogeneous ailment impacting numerous women worldwide, persists as a prominent cause of cancer-related fatalities. MicroRNAs (miRNAs), small non-coding RNAs, have garnered significant attention for their involvement in breast cancer's progression. These molecules post-transcriptionally regulate gene expression, influencing crucial cellular processes including proliferation, differentiation, and apoptosis. This review provides an overview of the current research on the role of miRNAs in breast cancer. It discusses the role of miRNAs in breast cancer, including the different subtypes of breast cancer, their molecular characteristics, and the mechanisms by which miRNAs regulate gene expression in breast cancer cells. Additionally, the review highlights recent studies identifying specific miRNAs that are dysregulated in breast cancer and their potential use as diagnostic and prognostic biomarkers. Furthermore, the review explores the therapeutic potential of miRNAs in breast cancer treatment. Preclinical studies have shown the effectiveness of miRNA-based therapies, such as antagomir and miRNA mimic therapies, in inhibiting tumor growth and metastasis. Emerging areas, including the application of artificial intelligence (AI) to advance miRNA research and the "One Health" approach that integrates human and animal cancer insights, are also discussed. However, challenges remain before these therapies can be fully translated into clinical practice. In conclusion, this review emphasizes the significance of miRNAs in breast cancer research and their potential as innovative diagnostic and therapeutic tools. A deeper understanding of miRNA dysregulation in breast cancer is essential for their successful application in clinical settings. With continued research, miRNA-based approaches hold promise for improving patient outcomes in this devastating disease.
Collapse
Affiliation(s)
- Sachin Kumar
- Department of Pharmacology, DIPSAR, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Abhishek Ranga
- Department of Pharmacology, DIPSAR, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| |
Collapse
|
12
|
Zhou Y, Lu Y, Xu H, Ji X, Deng Q, Wang X, Zhang Y, Li Q, Lu Y, Rustempasic A, Liu Y, Wang Y. The effect of miR-205a with RUNX2 towards proliferation and differentiation of chicken chondrocytes in thiram-induced tibial dyschondroplasia. Poult Sci 2024; 103:104535. [PMID: 39541878 PMCID: PMC11609359 DOI: 10.1016/j.psj.2024.104535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/23/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Tibial dyschondroplasia (TD) is a kind of metabolic bone disease in fast-growing broilers, which seriously restricts the development of poultry industry. Our previous studies have revealed a significant upregulation of miR-205a in TD cartilage tissue, suggesting its potential role as a regulatory factor in the pathogenesis of TD. However, the precise function implications and underlying regulatory mechanism remain elusive. Therefore, this study aims to elucidate the biological functions and regulatory mechanisms of miR-205a in the progression of TD by employing mehtodologies such as qRT-PCR, CCK-8 assay, EdU assays, and flow cytometry. The findings demonstrated that the transfection of miR-205a overexpression plasmid reduced chondrocytes growth and development in TD while enhancing apoptosis; conversely, blocking miR-205a had opposite effects. RUNX2 was identified as a target gene of miR-205a through biosynthesis and dual luciferase assays, and its overexpression helps chondrocytes in TD grow and develop. However, when both miR-205a and RUNX2 were overexpressed, the regulatory effect of RUNX2 was significantly suppressed. In conclusion, miR-205a plays a role in slowing the growth and development of chondrocytes in TD by targeting and reducing RUNX2 expression, which helps to initiate and progress TD.
Collapse
Affiliation(s)
- Yuxin Zhou
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yuxiang Lu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Hengyong Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xuyang Ji
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Qingqing Deng
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xi Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yao Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Qiuhang Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yusheng Lu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Alma Rustempasic
- Faculty of Agriculture and Food Science, University in Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
| | - Yiping Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China.
| |
Collapse
|
13
|
Mirzaei S, Ahangari F, Faramarzi F, Khoshnazar SM, Khormizi FZ, Aghagolzadeh M, Rostami M, Asghariazar V, Alimohammadi M, Rahimzadeh P, Farahani N. MicroRNA-146 family: Molecular insights into their role in regulation of signaling pathways in glioma progression. Pathol Res Pract 2024; 264:155707. [PMID: 39536541 DOI: 10.1016/j.prp.2024.155707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Glioma is a highly lethal brain cancer in humans. Despite advancements in treatment, the prognosis for patients remains unfavorable. Epigenetic factors, along with their interactions and non-coding RNAs (ncRNAs), are crucial in glioma cells' development and aggressive characteristics. MicroRNAs (miRNAs) are a class of small non-coding RNAs (ncRNAs) that modulate the expression of various genes by binding to target mRNA molecules. They play a critical role in regulating essential biological mechanisms such as cell proliferation and differentiation, cell cycle, and apoptosis. MiR-146a/miR-146b is a significant and prevalent miRNA whose expression alterations are linked to various pathological changes in cancer cells, as well as the modulation of several cellular signaling pathways, including NF-κB, TGF-β, PI3K/Akt, and Notch-1. Scientists may identify novel targets in clinical settings by studying the complicated link between Mir-146a/mir-146b, drug resistance, molecular pathways, and pharmacological intervention in gliomas. Additionally, its interactions with other ncRNAs, such as circular RNA and long non-coding RNA, contribute to the pathogenesis of glioma. As well as miR-146 holds potential as both a diagnostic and therapeutic biomarker for patients with this condition. In the current review, we investigate the significance of miRNAs in the context of glioma, with a particular focus on the critical role of Mir-146a/mir-146b in glioma tumors. Additionally, we examined the clinical relevance of this miRNA, highlighting its potential implications for diagnosis and treatment.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Fatemeh Ahangari
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Faramarzi
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mahboobeh Aghagolzadeh
- Department of Biology, Faculty of Basic Sciences, University of Shahid Chamran of Ahvaz, Ahvaz, Iran
| | - Mohammadreza Rostami
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Food Science and Nutrition Group (FSAN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Vahid Asghariazar
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
14
|
Ouyang B, Bi M, Jadhao M, Bick G, Zhang X. miR-205 Regulates Tamoxifen Resistance by Targeting Estrogen Receptor Coactivator MED1 in Human Breast Cancer. Cancers (Basel) 2024; 16:3992. [PMID: 39682180 PMCID: PMC11640040 DOI: 10.3390/cancers16233992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: Estrogen receptor-α coactivator MED1 is overexpressed in 40-60% of human breast cancers, and its high expression correlates with poor disease-free survival of patients undergoing anti-estrogen therapy. However, the molecular mechanism underlying MED1 upregulation and activation in breast cancer treatment resistance remains elusive. Methods: miRNA and mRNA expression analysis was performed using the NCBI GEO database. MED1 targeting and its impact on therapy resistance was evaluated in control and tamoxifen-resistant breast cancer cell lines by miR-205 overexpression and inhibition. Immunoblotting, chromatin immunoprecipitation, and luciferase reporter assays were used to understand the molecular mechanism of MED1-mediated tamoxifen resistance. Mice xenograft models were used to validate treatment efficacy and molecular mechanisms in vivo. Results: miR-205 was found to directly target and suppress the expression of MED1 through bioinformatic analyses and experimental validations. An inverse correlation of miR-205 and MED1 was observed in breast cancer patients with high MED1/low miR-205, indicative of poor prognosis in long-term anti-estrogen treatment. Furthermore, the depletion of miR-205 was observed in tamoxifen-resistant breast cancer cells overexpressing MED1. The restoration of miR-205 expression attenuated MED1 expression and re-sensitized cells to tamoxifen both in vitro and in vivo. Interestingly, miR205 was also found to target another key regulatory gene, HER3, which drives PI3K/Akt signaling and MED1 activation by phosphorylation. Importantly, we found ER target gene transcription and promoter cofactor recruitment by tamoxifen can be reversed by induced miR205 expression. Conclusions: Altogether, miR-205 functions as a negative regulator of MED1 and HER3, affecting the regulation of the HER3-PI3K/Akt-MED1 axis in anti-estrogen resistance, and could serve as a potential therapeutic regime to overcome treatment resistance.
Collapse
Affiliation(s)
- Bin Ouyang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (B.O.); (M.B.); or (M.J.); (G.B.)
| | - Mingjun Bi
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (B.O.); (M.B.); or (M.J.); (G.B.)
| | - Mahendra Jadhao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (B.O.); (M.B.); or (M.J.); (G.B.)
| | - Gregory Bick
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (B.O.); (M.B.); or (M.J.); (G.B.)
| | - Xiaoting Zhang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (B.O.); (M.B.); or (M.J.); (G.B.)
- Breast Cancer Research Program, University of Cincinnati Cancer Center, Cincinnati, OH 45267, USA
| |
Collapse
|
15
|
Bafiti V, Thanou E, Ouzounis S, Kotsakis A, Georgoulias V, Lianidou E, Katsila T, Markou A. Profiling Plasma Extracellular Vesicle Metabotypes and miRNAs: An Unobserved Clue for Predicting Relapse in Patients with Early-Stage NSCLC. Cancers (Basel) 2024; 16:3729. [PMID: 39594687 PMCID: PMC11592109 DOI: 10.3390/cancers16223729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Lung cancer, the second most prevalent cancer globally, poses significant challenges in early detection and prognostic assessment. Despite advancements in targeted therapies and immunotherapy, the timely identification of relapse remains elusive. Blood-based liquid biopsy biomarkers, including circulating tumor cells (CTCs), cell-free DNA (cfDNA), circulating tumor DNA (ctDNA), circulating-free RNAs (cfRNAs), and extracellular vesicles (EVs)/exosomes, offer promise for non-invasive monitoring. METHODS We employ a comprehensive approach integrating miRNA/lncRNA/metabolomic datasets, following a mixed-methods content analysis, to identify candidate biomarkers in NSCLC. NSCLC-associated miRNA/gene/lncRNA associations were linked to in silico-derived molecular pathways. RESULTS For data validation, mass spectrometry-based untargeted metabolomics of plasma EVs highlighted miRNA/lncRNA/metabotypes, linking "glycerophospholipid metabolism" to lncRNA H19 and "alanine, aspartate and glutamate metabolism" to miR-29a-3p. Prognostic significance was established for miR-29a-3p, showing lower expression in NSCLC patients with disease progression compared to stable disease (p = 0.004). Kaplan-Meier survival analysis indicated that patients with miR-29a-3p under-expression had significantly shorter overall survival (OS) (p = 0.038). Despite the expression of lncRNA H19 in plasma EVs being undetected, its expression in plasma cfRNAs correlated significantly with disease progression (p = 0.035). CONCLUSIONS Herein, we showcase the potential of plasma EV-derived miR-29a-3p as a prognostic biomarker and underscore the intricate interplay of miRNAs, lncRNAs, and metabolites in NSCLC biology. Our findings offer new insights and avenues for further exploration, contributing to the ongoing quest for effective biomarkers in early-stage NSCLC.
Collapse
Affiliation(s)
- Vivi Bafiti
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (V.B.); (S.O.)
| | - Eleni Thanou
- Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (E.T.); (E.L.)
| | - Sotiris Ouzounis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (V.B.); (S.O.)
| | - Athanasios Kotsakis
- Department of Medical Oncology, University General Hospital of Larissa, 41334 Larissa, Greece;
| | - Vasilis Georgoulias
- First Department of Medical Oncology, Metropolitan General Hospital of Athens, 15562 Cholargos, Greece;
| | - Evi Lianidou
- Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (E.T.); (E.L.)
| | - Theodora Katsila
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (V.B.); (S.O.)
| | - Athina Markou
- Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (E.T.); (E.L.)
| |
Collapse
|
16
|
Zhou Y, Zhang Q, Xu Q, Liao B, Qiu X. circ_0006089 facilitates gastric cancer progression and oxaliplatin resistance via miR-217/NRP1. Pathol Res Pract 2024; 263:155596. [PMID: 39321710 DOI: 10.1016/j.prp.2024.155596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/29/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Oxaliplatin (OXA) is a vital tool in the chemotherapy of gastric cancer (GC) patients. Circular RNAs (circRNAs) are a group of non-coding RNAs that have been associated with tumorigenesis. Nevertheless, the function of circRNAs in OXA resistance of GC is unknown. METHODS Circ_0006089/miR-217/NRP1 were elucidated through qRT-PCR in GC OXA-tolerant tissues and cell lines. OXA half-inhibitory concentration (IC50) was quantified by MTT assay. RNA pull-down and luciferase reporter tests were applied to characterize the interaction between circ_0006089 and miR-217, miR-217 and NRP1 in GC cells. RESULTS The findings disclosed that circ_0006089 and NRP1 was heightened whereas miR-217 was dramatically declined in OXA-tolerant GC tissues and cell lines. OXA resistance was reduced and the proliferation, migration and invasion ability of OXA cells were diminished after silencing circ_0006089. In addition, circ_0006089 raised OXA resistance by sponging miR-217. Further studies revealed that miR-217 bound to NRP1 and weakened OXA resistance. In addition, it was found that circ_0006089 accelerated GC progression and OXA resistance by upregulating NRP1 expression via sponging miR-217. CONCLUSION Circ_0006089 regulated OXA resistance in GC cells through miR-217/NRP1 axis, implying it was a promising biomarker for GC therapy.
Collapse
Affiliation(s)
- Ying Zhou
- Gastroenterology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Qilin Zhang
- Department of General Surgery, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Qihua Xu
- Gastroenterology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Bingling Liao
- Gastroenterology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Xiaofeng Qiu
- Department of General Surgery, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| |
Collapse
|
17
|
Chen Z, Wang Y, Tang W, Xu S, Yu H, Chen Z. HES6 Mediates Oxidative Phosphorylation Pathway to Promote Immune Infiltration of CD8 + T Cells in Lung Adenocarcinoma. J Immunother 2024; 47:313-322. [PMID: 39005046 DOI: 10.1097/cji.0000000000000535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/10/2024] [Indexed: 07/16/2024]
Abstract
Tumor immunotherapy has recently gained popularity as a cancer treatment strategy. The molecular mechanism controlling immune infiltration in lung adenocarcinoma (LUAD) cells, however, is not well characterized. Investigating the immune infiltration modulation mechanism in LUAD is crucial. LUAD patient samples were collected, and HES6 expression and immune infiltration level of CD8 + T cells in patient tissues were analyzed. Bioinformatics was utilized to identify binding relationship between E2F1 and HES6, and enrichment pathway of HES6. The binding of E2F1 to HES6 was verified using dual-luciferase and ChIP experiments. HES6 and E2F1 expression in LUAD cells was detected. LUAD cells were co-cultured with CD8 + T cells, and the CD8 + T cell killing level, IFN-γ secretion, and CD8 + T-cell chemotaxis level were measured. Expression of key genes involved in oxidative phosphorylation was detected, and the oxygen consumption rate of LUAD cells was assessed. A mouse model was constructed to assay Ki67 expression and apoptosis in tumor tissue. High expression of HES6 promoted CD8 + T-cell infiltration and enhanced T-cell killing ability through oxidative phosphorylation. Further bioinformatics analysis, molecular experiments, and cell experiments verified that E2F1 negatively regulated HES6 by oxidative phosphorylation, which suppressed CD8 + T-cell immune infiltration. In addition, in vivo assays illustrated that silencing HES6 repressed tumor cell immune evasion. E2F1 inhibited HES6 transcription, thereby mediating oxidative phosphorylation to suppress immune infiltration of CD8 + T cells in LUAD. The biological functions and signaling pathways of these genes were analyzed, which may help to understand the possible mechanisms regulating immune infiltration in LUAD.
Collapse
Affiliation(s)
- Zhoumiao Chen
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongliang Wang
- Department of Thoracic Surgery, Xinchang County People's Hospital, Xinchang, China
| | - Weijian Tang
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shaohua Xu
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Yu
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhao Chen
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Liu X, Wu F, Pan W, Liu G, Zhang H, Yan D, Zheng S, Ma Z, Ren X. Tumor-associated exosomes in cancer progression and therapeutic targets. MedComm (Beijing) 2024; 5:e709. [PMID: 39247621 PMCID: PMC11380050 DOI: 10.1002/mco2.709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024] Open
Abstract
Exosomes are small membrane vesicles that are released by cells into the extracellular environment. Tumor-associated exosomes (TAEs) are extracellular vesicles that play a significant role in cancer progression by mediating intercellular communication and contributing to various hallmarks of cancer. These vesicles carry a cargo of proteins, lipids, nucleic acids, and other biomolecules that can be transferred to recipient cells, modifying their behavior and promoting tumor growth, angiogenesis, immune modulation, and drug resistance. Several potential therapeutic targets within the TAEs cargo have been identified, including oncogenic proteins, miRNAs, tumor-associated antigens, immune checkpoint proteins, drug resistance proteins, and tissue factor. In this review, we will systematically summarize the biogenesis, composition, and function of TAEs in cancer progression and highlight potential therapeutic targets. Considering the complexity of exosome-mediated signaling and the pleiotropic effects of exosome cargoes has challenge in developing effective therapeutic strategies. Further research is needed to fully understand the role of TAEs in cancer and to develop effective therapies that target them. In particular, the development of strategies to block TAEs release, target TAEs cargo, inhibit TAEs uptake, and modulate TAEs content could provide novel approaches to cancer treatment.
Collapse
Affiliation(s)
- Xiaomin Liu
- Lab for Noncoding RNA & Cancer School of Life Sciences Shanghai University Shanghai China
- Shanghai New Tobacco Product Research Institute Co., Ltd. Shanghai China
| | - Fan Wu
- Lab for Noncoding RNA & Cancer School of Life Sciences Shanghai University Shanghai China
| | - Wei Pan
- Lab for Noncoding RNA & Cancer School of Life Sciences Shanghai University Shanghai China
| | - Guangchao Liu
- Shanghai New Tobacco Product Research Institute Co., Ltd. Shanghai China
| | - Hui Zhang
- Shanghai New Tobacco Product Research Institute Co., Ltd. Shanghai China
| | - Dawei Yan
- Shanghai New Tobacco Product Research Institute Co., Ltd. Shanghai China
| | - Saijing Zheng
- Shanghai New Tobacco Product Research Institute Co., Ltd. Shanghai China
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer School of Life Sciences Shanghai University Shanghai China
| | - Xiaojun Ren
- Department of Chemistry College of Chemistry and Life Sciences Beijing University of Technology Beijing China
| |
Collapse
|
19
|
Li H, Li X, Du W. Interplay between Wnt signaling molecules and exosomal miRNAs in breast cancer (Review). Oncol Rep 2024; 52:107. [PMID: 38940326 PMCID: PMC11234250 DOI: 10.3892/or.2024.8766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024] Open
Abstract
Breast cancer (BC) is the most common malignancy in women worldwide. Wnt signaling is involved in tumorigenesis and cancer progression, and is closely associated with the characteristics of BC. Variation in the expression of exosomal microRNAs (miRNAs) modulates key cancer phenotypes, such as cellular proliferation, epithelial‑mesenchymal transition, metastatic potential, immune evasion and treatment resistance. The present review aimed to discuss the importance of Wnt signaling and exosomal miRNAs in regulating the occurrence and development of BC. In addition, the present review determined the crosstalk between Wnt signaling and exosomal miRNAs, and highlighted potential diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Hailong Li
- Department of Pathology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde, Hunan 415003, P.R. China
| | - Xia Li
- Department of Pathology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde, Hunan 415003, P.R. China
| | - Wei Du
- Department of Pathology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde, Hunan 415003, P.R. China
| |
Collapse
|
20
|
Sanli F, Tatar A, Gundogdu B, Karatas OF. IP3R1 dysregulation via mir-200c-3p/SSFA2 axis contributes to taxol resistance in head and neck cancer. Eur J Pharmacol 2024; 973:176592. [PMID: 38642666 DOI: 10.1016/j.ejphar.2024.176592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
Head and neck cancer (HNC) is the sixth most common malignancy worldwide. Although current modalities offer a wide variety of therapy choices, head and neck carcinoma has poor prognosis due to its diagnosis at later stages and development of resistance to current therapeutic tools. In the current study, we aimed at exploring the roles of miR-200c-3p during head and neck carcinogenesis and acquisition of taxol resistance. We analyzed miR-200c-3p levels in HNC clinical samples and cell lines using quantitative real-time polymerase chain reaction and evaluated the effects of differential miR-200c-3p expression on cancer-related cellular phenotypes using in-vitro tools. We identified and characterized a direct target of miR-200c-3p using in-silico tools, luciferase and various in-vitro assays. We investigated potential involvement of miR-200c-3p/SSFA2 axis in taxol resistance in-vitro. We found miR-200c-3p expression as significantly downregulated in both HNC tissues and cells compared to corresponding controls. Ectopic miR-200c-3p expression in HNC cells significantly inhibited cancer-related phenotypes such as viability, clonogenicity, migration, and invasion. We, then, identified SSFA2 as a direct target of miR-200c-3p and demonstrated that overexpression of SSFA2 induced malignant phenotypes in HNC cells. Furthermore, we found reduced miR-200c-3p expression in parallel with overexpression of SSFA2 in taxol resistant HNC cells compared to parental sensitive cells. Both involved in intracellular cytoskeleton remodeling, we found that SSFA2 works collaboratively with IP3R1 to modulate resistance to taxol in HNC cells. When considered collectively, our results showed that miR-200c-3p acts as a tumor suppressor microRNA and targets SSFA2/IP3R1 axis to sensitize HNC cells to taxol.
Collapse
Affiliation(s)
- Fatma Sanli
- Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkiye; Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkiye
| | - Arzu Tatar
- Department of Otorhinolaryngology Diseases, Faculty of Medicine, Ataturk University, Erzurum, Turkiye
| | - Betul Gundogdu
- Department of Medical Pathology, Faculty of Medicine, Ataturk University, Erzurum, Turkiye
| | - Omer Faruk Karatas
- Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkiye; Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkiye.
| |
Collapse
|
21
|
Kavishahi NN, Rezaee A, Jalalian S. The Impact of miRNAs on the Efficacy of Tamoxifen in Breast Cancer Treatment: A Systematic Review. Clin Breast Cancer 2024; 24:341-350. [PMID: 38413339 DOI: 10.1016/j.clbc.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/29/2024]
Abstract
Seventy percent of breast cancer patients have an active estrogen receptor. Tamoxifen interferes with estrogen's ability to bind to cancer cells. The most challenging aspect of tamoxifen, however, is that breast cancer cells become resistant to its effects. Some studies have shown that alterations in miRNA expression contribute significantly to drug resistance in breast cancer. Therefore, the present systematic review aims to investigate miRNAs that significantly influence the response to tamoxifen treatment. The present study follows the PRISMA instructions. The Web of Science, PubMed, and Scopus databases were searched to retrieve English articles. The searches were conducted up to September 11, 2022. The search strategy included the terms "Tamoxifen", "Breast Neoplasm", and "MicroRNA". The inclusion criteria of this study are English, original, and experimental studies investigating miRNAs that are effective in the treatment efficacy of tamoxifen. A total of 565 articles were retrieved. After screening, 75 studies met our inclusion criteria. This systematic review study examined 105 miRNAs, of which 44 have a positive effect, and 47 miRNAs inhibit tamoxifen function. Fourteen miRNAs have a controversial effect, ie, some studies show positive and negative effects. The study of miRNAs affecting tamoxifen function in breast cancer patients may facilitate the identification of individuals at higher risk of disease recurrence. Conversely, it can potentially utilize appropriate interventions to defeat drug resistance effectively.
Collapse
Affiliation(s)
- Nima Nikbin Kavishahi
- Department of Medical Genetics, Student Research Committee, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sara Jalalian
- Medical Doctor Student, Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| |
Collapse
|
22
|
Ma Q, Ye S, Liu H, Zhao Y, Zhang W. The emerging role and mechanism of HMGA2 in breast cancer. J Cancer Res Clin Oncol 2024; 150:259. [PMID: 38753081 PMCID: PMC11098884 DOI: 10.1007/s00432-024-05785-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
High mobility group AT-hook 2 (HMGA2) is a member of the non-histone chromosomal high mobility group (HMG) protein family, which participate in embryonic development and other biological processes. HMGA2 overexpression is associated with breast cancer (BC) cell growth, proliferation, metastasis, and drug resistance. Furthermore, HMGA2 expression is positively associated with poor prognosis of patients with BC, and inhibiting HMGA2 signaling can stimulate BC cell progression and metastasis. In this review, we focus on HMGA2 expression changes in BC tissues and multiple BC cell lines. Wnt/β-catenin, STAT3, CNN6, and TRAIL-R2 proteins are upstream mediators of HMGA2 that can induce BC invasion and metastasis. Moreover, microRNAs (miRNAs) can suppress BC cell growth, invasion, and metastasis by inhibiting HMGA2 expression. Furthermore, long noncoding RNAs (LncRNAs) and circular RNAs (CircRNAs) mainly regulate HMGA2 mRNA and protein expression levels by sponging miRNAs, thereby promoting BC development. Additionally, certain small molecule inhibitors can suppress BC drug resistance by reducing HMGA2 expression. Finally, we summarize findings demonstrating that HMGA2 siRNA and HMGA2 siRNA-loaded nanoliposomes can suppress BC progression and metastasis.
Collapse
Affiliation(s)
- Qing Ma
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, China
| | - Sisi Ye
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, China
| | - Hong Liu
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, China
| | - Yu Zhao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, China
| | - Wei Zhang
- Emergency Department of West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China.
| |
Collapse
|
23
|
Chen Z, Ma X, Chen Z, Chen W, Li L, Lin Y, Hu Y, Shang Y, Zhao Y, He J, Zhou C, Meng X. Exosome-transported circ_0061407 and circ_0008103 play a tumour-repressive role and show diagnostic value in non-small-cell lung cancer. J Transl Med 2024; 22:427. [PMID: 38711144 PMCID: PMC11071259 DOI: 10.1186/s12967-024-05215-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs), one of the major contents of exosomes, have been shown to participate in the occurrence and progression of cancers. The role and the diagnostic potential of exosome-transported circRNAs in non-small-cell lung cancer (NSCLC) remain largely unknown. METHODS The NSCLC-associated exosomal circ_0061407 and circ_0008103 were screened by circRNA microarray. The role of circ_0061407 and circ_0008103 in NSCLC was examined in vitro and in vivo. The encapsulation of the two circRNAs into exosomes and the transport to recipient cells were observed by confocal microscopy. The effects of exosome-transported circ_0061407 and circ_0008103 on recipient cells were investigated using a co-culture device. Bioinformatics analyses were performed to predict the mechanisms by which circ_0061407 and circ_0008103 affected NSCLC. The quantitative polymerase chain reaction was used to quantify the exosome-containing circ_0061407 and circ_0008103 in the serum samples of healthy, pneumonia, benign lung tumours, and NSCLC. The diagnostic efficacy was evaluated using receiver operating characteristic curves. RESULTS The levels of circ_0061407 and circ_0008103 within exosomes were down-regulated in the serum of patients with NSCLC. The up-regulation of circ_0061407 and circ_0008103 inhibited the proliferation, migration/invasion, cloning formation of NSCLC cells in vitro and inhibited lung tumour growth in vivo. Circ_0061407 and circ_0008103 were observed to be packaged in exosomes and transported to recipient cells, where they inhibited the proliferation, migration/invasion, and cloning formation abilities of the recipient cells. Moreover, circ_0061407 and circ_0008103 might be involved in the progression of NSCLC by interacting with microRNAs and proteins. Additionally, lower serum exosomal circ_0061407 and circ_0008103 levels were associated with advanced pathological staging and distant metastasis. CONCLUSIONS This study identified two novel exosome-transported circRNAs (circ_0061407 and circ_0008103) associated with NSCLC. These findings may provide additional insights into the development of NSCLC and potential diagnostic biomarkers for NSCLC.
Collapse
MESH Headings
- Exosomes/metabolism
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/blood
- RNA, Circular/genetics
- RNA, Circular/blood
- RNA, Circular/metabolism
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Lung Neoplasms/blood
- Animals
- Cell Line, Tumor
- Cell Movement/genetics
- Cell Proliferation/genetics
- Male
- Gene Expression Regulation, Neoplastic
- Female
- Mice, Nude
- Middle Aged
- Mice, Inbred BALB C
- ROC Curve
- Mice
Collapse
Affiliation(s)
- Zhenhua Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, 315211, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Xinyi Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, 315211, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Ziyuan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, 315211, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315020, Zhejiang, China
| | - Wei Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, 315211, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315020, Zhejiang, China
| | - Leyi Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, 315211, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Yichen Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, 315211, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Yulin Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, 315211, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Yue Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, 315211, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Yikai Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, 315211, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Jinxian He
- Department of Thoracic Surgery, The Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, 315048, China
| | - Chengwei Zhou
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315020, Zhejiang, China
| | - Xiaodan Meng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, 315211, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
24
|
Song B, Hou G, Xu M, Chen M. Exosomal miR-122-3p represses the growth and metastasis of MCF-7/ADR cells by targeting GRK4-mediated activation of the Wnt/β-catenin pathway. Cell Signal 2024; 117:111101. [PMID: 38365112 DOI: 10.1016/j.cellsig.2024.111101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Breast cancer (BC) is a common cancer whose incidence continues to grow while its medical progress has stagnated. miRNAs are vital messengers that facilitate communications among different cancer cells. This study was to reveal the correlation of miR-122-3p expression with BC metastasis and Adriamycin (ADM) resistance and its mechanism of inhibiting BC metastasis. We found that expression of miR-122-3p is negatively correlated with BC metastasis and is lower in MCF-7/ADR cells. Overexpression of miR-122-3p in MCF-7/ADR cancer cells impairs their ability to migrate, invade, and stimulate blood vessel formation. Further research found that miR-122-3p directly binds to the 3' UTR of GRK4, reducing the phosphorylation of LRP6, which activates the Wnt/β-catenin signaling pathway, facilitating BC development and metastasis. In addition, we observed that miR-122-3p is present in MCF-7 cells, and treatment of MCF-7/ADR cells with MCF-7-derived exosomes, but not with exosomes from miR-122-3p-deficient MCF-7 cells, has identical effects to miR-122-3p overexpression. Data from xenograft experiments further suggest that excess miR-122-3p and MCF-7-derived exosomes inhibit the growth and metastasis of MCF-7/ADR cancer cells in vivo. In conclusion our data reveal that exosomal miR-122-3p may negatively regulate BC growth and metastasis, potentially serving as a diagnostic and druggable target for BC treatment.
Collapse
Affiliation(s)
- Binbin Song
- Department of Radiotherapy, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, China.; Department of Medical Oncology, The Affiliated Hospital of Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Guoxin Hou
- Department of Medical Oncology, The Affiliated Hospital of Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Maoyi Xu
- Department of Medical Oncology, The Affiliated Hospital of Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Ming Chen
- Department of Radiotherapy, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, China..
| |
Collapse
|
25
|
Ye S, Chen S, Yang X, Lei X. Drug resistance in breast cancer is based on the mechanism of exocrine non-coding RNA. Discov Oncol 2024; 15:138. [PMID: 38691224 PMCID: PMC11063018 DOI: 10.1007/s12672-024-00993-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/22/2024] [Indexed: 05/03/2024] Open
Abstract
Breast cancer (BC) ranks first among female malignant tumors and involves hormonal changes and genetic as well as environmental risk factors. In recent years, with the improvement of medical treatment, a variety of therapeutic approaches for breast cancer have emerged and have strengthened to accommodate molecular diversity. However, the primary way to improve the effective treatment of breast cancer patients is to overcome treatment resistance. Recent studies have provided insights into the mechanisms of resistance to exosome effects in BC. Exosomes are membrane-bound vesicles secreted by both healthy and malignant cells that facilitate intercellular communication. Specifically, exosomes released by tumor cells transport their contents to recipient cells, altering their properties and promoting oncogenic components, ultimately resulting in drug resistance. As important coordinators, non-coding RNAs (ncRNAs) are involved in this process and are aberrantly expressed in various human cancers. Exosome-derived ncRNAs, including microRNAs (miRNAs), long-noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), have emerged as crucial components in understanding drug resistance in breast cancer. This review provides insights into the mechanism of exosome-derived ncRNAs in breast cancer drug resistance, thereby suggesting new strategies for the treatment of BC.
Collapse
Affiliation(s)
- Simin Ye
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Shiyu Chen
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China.
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China.
- The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
26
|
Chen Y, Mao X, Xu Y, Li L, Geng J, Dai T, Wang Q, Xue L, Tao L, Liu X. PTOV1-AS1 desensitizes colorectal cancer cells to 5-FU through depressing miR-149-5p to activate the positive feedback loop with Wnt/β-catenin pathway. Phytother Res 2024; 38:1313-1328. [PMID: 38194947 DOI: 10.1002/ptr.8095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 11/17/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2024]
Abstract
5-Fluorouracil is a commonly used chemotherapy drug for colorectal cancer. Resistance to 5-Fluorouracil remains a challenge. This research aimed to explore the mechanism of 5-Fluorouracil resistance in colorectal cancer. RT-qPCR and Western blot were used to determine the RNA and protein expression in both cells and exosome. Assays in vitro and in vivo were performed to measure the role of miR-149-5p in colorectal cancer cells. RIP, luciferase activity report, and RNA pulldown assay were applied to detect the association of PTOV1-AS1, SUV39H1, miR-149-5p, and FOXM1. MiR-149-5p was down-expressed in 5-Fluorouracil-resistant cells. MiR-149-5p enhanced the effectiveness of 5-Fluorouracil both in vitro and in vivo. Sensitive colorectal cancer cells released exosomal miR-149-5p to sensitize resistant cells to chemotherapy. Mechanistically, miR-149-5p targeted the FOXM1 to inactivate Wnt/β-catenin pathway, and PTOV1-AS1 recruited SUV39H1 to suppress miR-149-5p transcription, in turn activating Wnt/β-catenin pathway, and forming a positive feedback loop with FOXM1. PTOV1-AS1 inhibits miR-149-5p by a positive feedback loop with FOXM1-mediated Wnt/β-catenin pathway, which provides insights into a potential novel target for enhancing the effectiveness of chemotherapy in colorectal cancer patients.
Collapse
Affiliation(s)
- Yanan Chen
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiaobei Mao
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yichen Xu
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lin Li
- Department of Health, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jian Geng
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tingting Dai
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qian Wang
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lijun Xue
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
- Department of Medical Oncology, Jinling Hospital, First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Leilei Tao
- Department of Medical Oncology, the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
- Department of Medical Oncology, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, China
| | - Xiaobei Liu
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
- Department of Medical Oncology, Jinling Hospital, First School of Clinical Medicine, Southern Medical University, Nanjing, China
| |
Collapse
|
27
|
Salehi M, Kamali MJ, Arab D, Safaeian N, Ashuori Z, Maddahi M, Latifi N, Jahromi AM. Exosomal microRNAs in regulation of tumor cells resistance to apoptosis. Biochem Biophys Rep 2024; 37:101644. [PMID: 38298209 PMCID: PMC10827597 DOI: 10.1016/j.bbrep.2024.101644] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
Exosomes are a type of extracellular vesicle that contains bioactive molecules that can be secreted by most cells. Nevertheless, the content of these cells differs depending on the cell from which they originate. The exosome plays a crucial role in modulating intercellular communication by conveying molecular messages to neighboring or distant cells. Cancer-derived exosomes can transfer several types of molecules into the tumor microenvironment, including high levels of microRNA (miRNA). These miRNAs significantly affect cell proliferation, angiogenesis, apoptosis resistance, metastasis, and immune evasion. Increasing evidence indicates that exosomal miRNAs (exomiRs) are crucial to regulating cancer resistance to apoptosis. In cancer cells, exomiRs orchestrate communication channels between them and their surrounding microenvironment, modulating gene expression and controlling apoptosis signaling pathways. This review presents an outline of present-day knowledge of the mechanisms that affect target cells and drive cancer resistance to apoptosis. Also, our study looks at the regulatory role of exomiRs in mediating intercellular communication between tumor cells and surrounding microenvironmental cells, specifically stromal and immune cells, to evade therapy-induced apoptosis.
Collapse
Affiliation(s)
- Mohammad Salehi
- Department of Medical Genetics, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
- Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Javad Kamali
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Daniyal Arab
- Department of Human Genetics, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Naghme Safaeian
- Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Ashuori
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Moein Maddahi
- Faculty of Dentistry, Yeditepe University, Istanbul, Turkey
| | - Narges Latifi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Iran
| | - Amir Moein Jahromi
- School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Gulati R, Mitra T, Rajiv R, Rajan EJE, Pierret C, Enninga EAL, Janardhanan R. Exosomal microRNAs in breast cancer: towards theranostic applications. Front Mol Biosci 2024; 11:1330144. [PMID: 38455764 PMCID: PMC10918471 DOI: 10.3389/fmolb.2024.1330144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/29/2024] [Indexed: 03/09/2024] Open
Abstract
Breast cancer is one of the top two reproductive cancers responsible for high rates of morbidity and mortality among women globally. Despite the advancements in the treatment of breast cancer, its early diagnosis remains a challenge. Recent evidence indicates that despite the adroit use of numerous strategies to facilitate rapid and precision-oriented screening of breast cancer at the community level through the use of mammograms, Fine-needle aspiration cytology (FNAC) and biomarker tracking, no strategy has been unequivocally accepted as a gold standard for facilitating rapid screening for disease. This necessitates the need to identify novel strategies for the detection and triage of breast cancer lesions at higher rates of specificity, and sensitivity, whilst taking into account the epidemiologic and social-demographic features of the patients. Recent shreds of evidence indicate that exosomes could be a robust source of biomaterial for the rapid screening of breast cancer due to their high stability and their presence in body fluids. Increasing evidence indicates that the Exosomal microRNAs- play a significant role in modifying the tumour microenvironment of breast cancers, thereby potentially aiding in the proliferation, invasion and metastasis of breast cancer. In this review, we summarize the role of ExomiRs in the tumour microenvironment in breast cancer. These ExomiRs can also be used as candidate biomarkers for facilitating rapid screening and triaging of breast cancer patients for clinical intervention.
Collapse
Affiliation(s)
- Richa Gulati
- Division of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Tridip Mitra
- Division of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Rohan Rajiv
- Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Emilda Judith Ezhil Rajan
- Division of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Chris Pierret
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | | | - Rajiv Janardhanan
- Division of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
29
|
Yousafzai NA, El Khalki L, Wang W, Szpendyk J, Sossey-Alaoui K. Advances in 3D Culture Models to Study Exosomes in Triple-Negative Breast Cancer. Cancers (Basel) 2024; 16:883. [PMID: 38473244 PMCID: PMC10931050 DOI: 10.3390/cancers16050883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Breast cancer, a leading cause of cancer-related deaths globally, exhibits distinct subtypes with varying pathological, genetic, and clinical characteristics. Despite advancements in breast cancer treatments, its histological and molecular heterogeneity pose a significant clinical challenge. Triple-negative breast cancer (TNBC), a highly aggressive subtype lacking targeted therapeutics, adds to the complexity of breast cancer treatment. Recent years have witnessed the development of advanced 3D culture technologies, such as organoids and spheroids, providing more representative models of healthy human tissue and various malignancies. These structures, resembling organs in structure and function, are generated from stem cells or organ-specific progenitor cells via self-organizing processes. Notably, 3D culture systems bridge the gap between 2D cultures and in vivo studies, offering a more accurate representation of in vivo tumors' characteristics. Exosomes, small nano-sized molecules secreted by breast cancer and stromal/cancer-associated fibroblast cells, have garnered significant attention. They play a crucial role in cell-to-cell communication, influencing tumor progression, invasion, and metastasis. The 3D culture environment enhances exosome efficiency compared to traditional 2D cultures, impacting the transfer of specific cargoes and therapeutic effects. Furthermore, 3D exosomes have shown promise in improving therapeutic outcomes, acting as potential vehicles for cancer treatment administration. Studies have demonstrated their role in pro-angiogenesis and their innate therapeutic potential in mimicking cellular therapies without side effects. The 3D exosome model holds potential for addressing challenges associated with drug resistance, offering insights into the mechanisms underlying multidrug resistance and serving as a platform for drug screening. This review seeks to emphasize the crucial role of 3D culture systems in studying breast cancer, especially in understanding the involvement of exosomes in cancer pathology.
Collapse
Affiliation(s)
- Neelum Aziz Yousafzai
- MetroHealth System, Cleveland, OH 44109, USA; (N.A.Y.); (L.E.K.); (W.W.)
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106-4909, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44106-7285, USA
| | - Lamyae El Khalki
- MetroHealth System, Cleveland, OH 44109, USA; (N.A.Y.); (L.E.K.); (W.W.)
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106-4909, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44106-7285, USA
| | - Wei Wang
- MetroHealth System, Cleveland, OH 44109, USA; (N.A.Y.); (L.E.K.); (W.W.)
- Case Comprehensive Cancer Center, Cleveland, OH 44106-7285, USA
| | - Justin Szpendyk
- MetroHealth System, Cleveland, OH 44109, USA; (N.A.Y.); (L.E.K.); (W.W.)
| | - Khalid Sossey-Alaoui
- MetroHealth System, Cleveland, OH 44109, USA; (N.A.Y.); (L.E.K.); (W.W.)
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106-4909, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44106-7285, USA
| |
Collapse
|
30
|
Abbasi-Malati Z, Azizi SG, Milani SZ, Serej ZA, Mardi N, Amiri Z, Sanaat Z, Rahbarghazi R. Tumorigenic and tumoricidal properties of exosomes in cancers; a forward look. Cell Commun Signal 2024; 22:130. [PMID: 38360641 PMCID: PMC10870553 DOI: 10.1186/s12964-024-01510-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/01/2024] [Indexed: 02/17/2024] Open
Abstract
In recent decades, emerging data have highlighted the critical role of extracellular vesicles (EVs), especially (exosomes) Exos, in the progression and development of several cancer types. These nano-sized vesicles are released by different cell lineages within the cancer niche and maintain a suitable platform for the interchange of various signaling molecules in a paracrine manner. Based on several studies, Exos can transfer oncogenic factors to other cells, and alter the activity of immune cells, and tumor microenvironment, leading to the expansion of tumor cells and metastasis to the remote sites. It has been indicated that the cell-to-cell crosstalk is so complicated and a wide array of factors are involved in this process. How and by which mechanisms Exos can regulate the behavior of tumor cells and non-cancer cells is at the center of debate. Here, we scrutinize the molecular mechanisms involved in the oncogenic behavior of Exos released by different cell lineages of tumor parenchyma. Besides, tumoricidal properties of Exos from various stem cell (SC) types are discussed in detail.
Collapse
Affiliation(s)
- Zahra Abbasi-Malati
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Ghader Azizi
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Soheil Zamen Milani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Aliyari Serej
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Mardi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Amiri
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Sanaat
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
31
|
Jing Z, Guo Z, Zhang C. Plasma-derived Exosomal miR-25-3p and miR-23b-3p as Predictors of Response to Chemoradiotherapy in Esophageal Squamous Cell Carcinoma. Technol Cancer Res Treat 2024; 23:15330338241289520. [PMID: 39380461 PMCID: PMC11465297 DOI: 10.1177/15330338241289520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Exosomal miRNAs have emerged as promising biomarkers for cancer. However, little is known about the role of exosomal miRNAs in the response prediction of esophageal squamous cell carcinoma (ESCC) patients treated with chemoradiotherapy (CRT). METHODS In this prospective study, 40 ESCC patients treated by CRT were enrolled from January 2021 to June 2022. Exosomes were isolated from plasma through EXODUS platform. We used small RNA sequencing in 14 samples of ESCC patients (7 responders, 7 non-responders) and the selected exosomal miRNAs were further validated in the extended cohort of 40 ESCC patients by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS In the discovery phase, we identified five significantly differentially expressed exosomal miRNAs from miRNA sequencing data between the responder and non-responder patients. In the extended groups of responders (n = 27) and non-responders (n = 13), only miR-23b-3p (p = 0.035, AUC = 0.708) and miR-25-3p (p < 0.001, AUC = 0.932) were confirmed to have the predictive ability to distinguish non-responders from responders. The patients with low levels of miR-25-3p had a significantly shorter progression-free survival (PFS) than those with high levels (p = 0.035). Multivariate Cox regression analysis revealed that miR-25-3p may serve as an independent predictive biomarker of PFS in ESCC patients received CRT. CONCLUSION Exosomal miR-25-3p and miR-23b-3p serve as promising biomarkers for predicting the early effectiveness of CRT in locally advanced ESCC patients, whereas miR-25-3p is a novel prognostic marker for ESCC. However, further larger prospective studies are needed to confirm their utility for individualized treatment decision in ESCC.
Collapse
Affiliation(s)
- Zhao Jing
- Department of Oncology, Zhejiang Hospital, Hangzhou, Zhejiang, People's Republic of China
| | - Zhen Guo
- Department of Oncology, Zhejiang Hospital, Hangzhou, Zhejiang, People's Republic of China
| | - Chuanfeng Zhang
- Department of Oncology, Zhejiang Hospital, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
32
|
Zhao K, Jia C, Wang J, Shi W, Wang X, Song Y, Peng C. Exosomal hsa-miR-151a-3p and hsa-miR-877-5p are potential novel biomarkers for predicting bone metastasis in lung cancer. Aging (Albany NY) 2023; 15:14864-14888. [PMID: 38180107 PMCID: PMC10781484 DOI: 10.18632/aging.205314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/08/2023] [Indexed: 01/06/2024]
Abstract
Exosomal miRNAs (exo-miRNAs) have arisen as novel diagnostic biomarkers for various cancers. However, few reports on exo-miRNAs related to bone metastasis (BM) in lung cancer exist. This study aims to screen out key exo-miRNAs and estimate their prognostic values for predicting BM in lung cancer. The differentially expressed exo-miRNAs between the highly-metastatic (95D) and lowly-metastatic (A549) human lung cancer cell lines were comprehensively analyzed using high-throughput sequencing followed by bioinformatic analyses. 29 candidate exo-miRNAs were identified, and 101 BM-related target genes were predicted. Enrichment analysis revealed that these target genes were mainly involved in regulating transcription and pathways in cancer. An exosomal miRNA-mRNA regulatory network consisting of 7 key miRNAs and 10 hub genes was constructed. Further function analysis indicated that these 10 hub genes were mainly enriched in regulating cancer's apoptosis and central carbon metabolism. The survival analysis indicated that 7 of 10 hub genes were closely related to prognosis. Mutation analysis showed that lung cancer patients presented certain genetic alterations in the 7 real hub genes. GSEA for a single hub gene suggested that 6 of 7 real hub genes had close associations with lung cancer development. Finally, ROC analysis revealed that hsa-miR-151a-3p and hsa-miR-877-5p provided high diagnostic accuracy in discriminating patients with bone metastasis (BM+) from patients without bone metastasis (BM-). These findings provided a comprehensive analysis of exo-miRNAs and target genes in the regulatory network of BM in lung cancer. In particular, hsa-miR-151a-3p and hsa-miR-877-5p may be novel biomarkers for predicting BM in lung cancer.
Collapse
Affiliation(s)
- Kun Zhao
- Department of Spinal Surgery, The Second Hospital of Shandong University, Jinan 250033, China
| | - Changji Jia
- Department of Spinal Surgery, The Second Hospital of Shandong University, Jinan 250033, China
| | - Jin Wang
- Department of Spinal Surgery, The Second Hospital of Shandong University, Jinan 250033, China
| | - Weiye Shi
- Department of Spinal Surgery, The Second Hospital of Shandong University, Jinan 250033, China
| | - Xiaoying Wang
- Department of Pathology, The Second Hospital of Shandong University, Jinan 250033, China
| | - Yan Song
- Department of Nephrology, The Second Hospital of Shandong University, Jinan 250033, China
| | - Changliang Peng
- Department of Spinal Surgery, The Second Hospital of Shandong University, Jinan 250033, China
| |
Collapse
|
33
|
Liao L, Wang H, Wei D, Yi M, Gu Y, Zhang M, Wang L. Exosomal microRNAs: implications in the pathogenesis and clinical applications of subarachnoid hemorrhage. Front Mol Neurosci 2023; 16:1300864. [PMID: 38143562 PMCID: PMC10748509 DOI: 10.3389/fnmol.2023.1300864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) is a severe acute neurological disorder with a high fatality rate. Early brain injury (EBI) and cerebral vasospasm are two critical complications of SAH that significantly contribute to poor prognosis. Currently, surgical intervention and interventional therapy are the main treatment options for SAH, but their effectiveness is limited. Exosomes, which are a type of extracellular vesicles, play a crucial role in intercellular communication and have been extensively studied in the past decade due to their potential influence on disease progression, diagnosis, and treatment. As one of the most important components of exosomes, miRNA plays both direct and indirect roles in affecting disease progression. Previous research has found that exosomal miRNA is involved in the development of various diseases, such as tumors, chronic hepatitis, atherosclerosis, diabetes, and SAH. This review focuses on exploring the impact of exosomal miRNA on SAH, including its influence on neuronal apoptosis, inflammatory response, and immune activation following SAH. Furthermore, this review highlights the potential clinical applications of exosomal miRNA in the treatment of SAH. Although current research on this topic is limited and the clinical application of exosomal miRNA has inherent limitations, we aim to provide a concise summary of existing research progress and offer new insights for future research directions and trends in this field.
Collapse
Affiliation(s)
- Lishang Liao
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Haoran Wang
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Deli Wei
- Department of Neurosurgery, The People’s Hospital of Fushun County, Zigong, China
| | - Mingliang Yi
- Department of Neurosurgery, The People’s Hospital of Fushun County, Zigong, China
| | - Yingjiang Gu
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Department of Neurosurgery, The People’s Hospital of Fushun County, Zigong, China
| | - Mingwei Zhang
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Li Wang
- Department of Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
34
|
Pu Q, Gao H. The Role of the Tumor Microenvironment in Triple-Positive Breast Cancer Progression and Therapeutic Resistance. Cancers (Basel) 2023; 15:5493. [PMID: 38001753 PMCID: PMC10670777 DOI: 10.3390/cancers15225493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/26/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
Breast cancer (BRCA) is a highly heterogeneous systemic disease. It is ranked first globally in the incidence of new cancer cases and has emerged as the primary cause of cancer-related death among females. Among the distinct subtypes of BRCA, triple-positive breast cancer (TPBC) has been associated with increased metastasis and invasiveness, exhibiting greater resistance to endocrine therapy involving trastuzumab. It is now understood that invasion, metastasis, and treatment resistance associated with BRCA progression are not exclusively due to breast tumor cells but are from the intricate interplay between BRCA and its tumor microenvironment (TME). Accordingly, understanding the pathogenesis and evolution of the TPBC microenvironment demands a comprehensive approach. Moreover, addressing BRCA treatment necessitates a holistic consideration of the TME, bearing significant implications for identifying novel targets for anticancer interventions. This review expounds on the relationship between critical cellular components and factors in the TPBC microenvironment and the inception, advancement, and therapeutic resistance of breast cancer to provide perspectives on the latest research on TPBC.
Collapse
Affiliation(s)
- Qian Pu
- Department of Breast Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China;
- Oncology Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China
| | - Haidong Gao
- Department of Breast Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China;
- Oncology Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China
| |
Collapse
|
35
|
Nogueras Pérez R, Heredia-Nicolás N, de Lara-Peña L, López de Andrés J, Marchal JA, Jiménez G, Griñán-Lisón C. Unraveling the Potential of miRNAs from CSCs as an Emerging Clinical Tool for Breast Cancer Diagnosis and Prognosis. Int J Mol Sci 2023; 24:16010. [PMID: 37958993 PMCID: PMC10647353 DOI: 10.3390/ijms242116010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Breast cancer (BC) is the most diagnosed cancer in women and the second most common cancer globally. Significant advances in BC research have led to improved early detection and effective therapies. One of the key challenges in BC is the presence of BC stem cells (BCSCs). This small subpopulation within the tumor possesses unique characteristics, including tumor-initiating capabilities, contributes to treatment resistance, and plays a role in cancer recurrence and metastasis. In recent years, microRNAs (miRNAs) have emerged as potential regulators of BCSCs, which can modulate gene expression and influence cellular processes like BCSCs' self-renewal, differentiation, and tumor-promoting pathways. Understanding the miRNA signatures of BCSCs holds great promise for improving BC diagnosis and prognosis. By targeting BCSCs and their associated miRNAs, researchers aim to develop more effective and personalized treatment strategies that may offer better outcomes for BC patients, minimizing tumor recurrence and metastasis. In conclusion, the investigation of miRNAs as regulators of BCSCs opens new directions for advancing BC research through the use of bioinformatics and the development of innovative therapeutic approaches. This review summarizes the most recent and innovative studies and clinical trials on the role of BCSCs miRNAs as potential tools for early diagnosis, prognosis, and resistance.
Collapse
Affiliation(s)
- Raquel Nogueras Pérez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; (R.N.P.); (N.H.-N.); (L.d.L.-P.); (J.L.d.A.); (J.A.M.)
| | - Noelia Heredia-Nicolás
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; (R.N.P.); (N.H.-N.); (L.d.L.-P.); (J.L.d.A.); (J.A.M.)
| | - Laura de Lara-Peña
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; (R.N.P.); (N.H.-N.); (L.d.L.-P.); (J.L.d.A.); (J.A.M.)
- Biosanitary Research Institute of Granada (ibs. GRANADA), University Hospitals of Granada, University of Granada, 18012 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Julia López de Andrés
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; (R.N.P.); (N.H.-N.); (L.d.L.-P.); (J.L.d.A.); (J.A.M.)
- Biosanitary Research Institute of Granada (ibs. GRANADA), University Hospitals of Granada, University of Granada, 18012 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; (R.N.P.); (N.H.-N.); (L.d.L.-P.); (J.L.d.A.); (J.A.M.)
- Biosanitary Research Institute of Granada (ibs. GRANADA), University Hospitals of Granada, University of Granada, 18012 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Gema Jiménez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; (R.N.P.); (N.H.-N.); (L.d.L.-P.); (J.L.d.A.); (J.A.M.)
- Biosanitary Research Institute of Granada (ibs. GRANADA), University Hospitals of Granada, University of Granada, 18012 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Carmen Griñán-Lisón
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; (R.N.P.); (N.H.-N.); (L.d.L.-P.); (J.L.d.A.); (J.A.M.)
- Biosanitary Research Institute of Granada (ibs. GRANADA), University Hospitals of Granada, University of Granada, 18012 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
| |
Collapse
|
36
|
Jiang W, Yu Y, Ou J, Li Y, Zhu N. Exosomal circRNA RHOT1 promotes breast cancer progression by targeting miR-204-5p/ PRMT5 axis. Cancer Cell Int 2023; 23:260. [PMID: 37924099 PMCID: PMC10623849 DOI: 10.1186/s12935-023-03111-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Circular RNA RHOT1 (circRHOT1) plays crucial roles in tumorigenesis by competing with microRNAs. It is largely abundant in tumor cell-derived exosomes. Meanwhile, cancer-derived exosomes participate in diverse biological processes. However, the expression patterns and functions of exosomal circRHOT1 in breast cancer remain unknown. This study is aimed to investigate and elucidate the exosomal circRHOT1/miR-204-5p/PRMT5 axis in breast cancer. METHODS The exosomes derived from serum samples of breast cancer patients and breast cancer cell lines were characterized using transmission electron microscopy and Western blot. MTT, colony formation, wound healing, and transwell assays were utilized to analyze cell proliferation, migration, and invasion of breast cancer cells. Flow cytometry was used for apoptosis analysis. The bioinformatics method was employed to screen differentially expressed novel circRNAs and predict the microRNA targets of circRHOT1. Dual-luciferase reporter gene assays were performed to verify their direct interaction. Finally, Xenograft experiments were used to investigate the effect of exosomal circRHOT1 on tumor growth in vivo. RESULTS CircRHOT1 exhibited significantly high expression in exosomes derived from the serum of breast cancer patients and breast cancer cell lines, which suggested its potential diagnostic value. Breast cancer-derived exosomes promoted the cell proliferation, migration, invasion, and epithelial-mesenchymal transition of breast cancer cells while inhibiting apoptosis. However, exosomes with downregulated circRHOT1 inhibited the growth of co-cultured cells. Mechanistically, circRHOT1 acted as a sponge of miR-204-5p and promoted protein arginine methyltransferase 5 (PRMT5) expression. Moreover, miR-204-5p inhibitor and pcPRMT5 could reverse the tumor suppressive effects mediated by circRHOT1-knockdown. Furthermore, treatment with exosomes derived from breast cancer cells with circRHOT1 knockdown attenuated tumor growth in tumor-bearing nude mice, which was accompanied by a reduction in PRMT5 expression and an enhancement of miR-204-5p expression. CONCLUSION The exosomal circRHOT1 may promote breast cancer progression by regulating the miR-204-5p/PRMT5 axis. The current study strengthens the role of circRHOT1, miR-204-5p, and PRMT5 in breast cancer development and provides a potential treatment strategy for breast cancer.
Collapse
Affiliation(s)
- Weihua Jiang
- Department of Breast Surgery, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang, China
| | - YinPing Yu
- Department of Breast Surgery, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang, China
| | - Jianghua Ou
- Department of Breast Surgery, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang, China
| | - Yongtao Li
- Department of Breast Surgery, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang, China
| | - Ning Zhu
- Medical School, Hunan University of Medicine, No. 492, Jinxi South Road, Hecheng District, Huaihua, 418000, Hunan, China.
| |
Collapse
|
37
|
Landry J, Shows K, Jagdeesh A, Shah A, Pokhriyal M, Yakovlev V. Regulatory miRNAs in cancer cell recovery from therapy exposure and its implications as a novel therapeutic strategy for preventing disease recurrence. Enzymes 2023; 53:113-196. [PMID: 37748835 DOI: 10.1016/bs.enz.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The desired outcome of cancer therapies is the eradication of disease. This can be achieved when therapy exposure leads to therapy-induced cancer cell death as the dominant outcome. Theoretically, a permanent therapy-induced growth arrest could also contribute to a complete response, which has the potential to lead to remission. However, preclinical models have shown that therapy-induced growth arrest is not always durable, as recovering cancer cell populations can contribute to the recurrence of cancer. Significant research efforts have been expended to develop strategies focusing on the prevention of recurrence. Recovery of cells from therapy exposure can occur as a result of several cell stress adaptations. These include cytoprotective autophagy, cellular quiescence, a reversable form of senescence, and the suppression of apoptosis and necroptosis. It is well documented that microRNAs regulate the response of cancer cells to anti-cancer therapies, making targeting microRNAs therapeutically a viable strategy to sensitization and the prevention of recovery. We propose that the use of microRNA-targeting therapies in prolonged sequence, that is, a significant period after initial therapy exposure, could reduce toxicity from the standard combination strategy, and could exploit new epigenetic states essential for cancer cells to recover from therapy exposure. In a step toward supporting this strategy, we survey the available scientific literature to identify microRNAs which could be targeted in sequence to eliminate residual cancer cell populations that were arrested as a result of therapy exposure. It is our hope that by successfully identifying microRNAs which could be targeted in sequence we can prevent disease recurrence.
Collapse
Affiliation(s)
- Joseph Landry
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| | - Kathryn Shows
- Department of Biology, Virginia State University, Petersburg, VA, United States
| | - Akash Jagdeesh
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Aashka Shah
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Mihir Pokhriyal
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Vasily Yakovlev
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
38
|
Murillo Carrasco AG, Otake AH, Macedo-da-Silva J, Feijoli Santiago V, Palmisano G, Andrade LNDS, Chammas R. Deciphering the Functional Status of Breast Cancers through the Analysis of Their Extracellular Vesicles. Int J Mol Sci 2023; 24:13022. [PMID: 37629204 PMCID: PMC10455604 DOI: 10.3390/ijms241613022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Breast cancer (BC) accounts for the highest incidence of tumor-related mortality among women worldwide, justifying the growing search for molecular tools for the early diagnosis and follow-up of BC patients under treatment. Circulating extracellular vesicles (EVs) are membranous nanocompartments produced by all human cells, including tumor cells. Since minimally invasive methods collect EVs, which represent reservoirs of signals for cell communication, these particles have attracted the interest of many researchers aiming to improve BC screening and treatment. Here, we analyzed the cargoes of BC-derived EVs, both proteins and nucleic acids, which yielded a comprehensive list of potential markers divided into four distinct categories, namely, (i) modulation of aggressiveness and growth; (ii) preparation of the pre-metastatic niche; (iii) epithelial-to-mesenchymal transition; and (iv) drug resistance phenotype, further classified according to their specificity and sensitivity as vesicular BC biomarkers. We discuss the therapeutic potential of and barriers to the clinical implementation of EV-based tests, including the heterogeneity of EVs and the available technologies for analyzing their content, to present a consistent, reproducible, and affordable set of markers for further evaluation.
Collapse
Affiliation(s)
- Alexis Germán Murillo Carrasco
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 01246-000, Brazil; (A.G.M.C.); (A.H.O.); (L.N.d.S.A.)
- Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Andreia Hanada Otake
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 01246-000, Brazil; (A.G.M.C.); (A.H.O.); (L.N.d.S.A.)
- Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Janaina Macedo-da-Silva
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (J.M.-d.-S.); (V.F.S.); (G.P.)
| | - Veronica Feijoli Santiago
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (J.M.-d.-S.); (V.F.S.); (G.P.)
| | - Giuseppe Palmisano
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (J.M.-d.-S.); (V.F.S.); (G.P.)
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Luciana Nogueira de Sousa Andrade
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 01246-000, Brazil; (A.G.M.C.); (A.H.O.); (L.N.d.S.A.)
- Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Roger Chammas
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 01246-000, Brazil; (A.G.M.C.); (A.H.O.); (L.N.d.S.A.)
- Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, Brazil
| |
Collapse
|
39
|
Cruz-Burgos M, Cortés-Ramírez SA, Losada-García A, Morales-Pacheco M, Martínez-Martínez E, Morales-Montor JG, Servín-Haddad A, Izquierdo-Luna JS, Rodríguez-Martínez G, Ramos-Godínez MDP, González-Covarrubias V, Cañavera-Constantino A, González-Ramírez I, Su B, Leong HS, Rodríguez-Dorantes M. Unraveling the Role of EV-Derived miR-150-5p in Prostate Cancer Metastasis and Its Association with High-Grade Gleason Scores: Implications for Diagnosis. Cancers (Basel) 2023; 15:4148. [PMID: 37627176 PMCID: PMC10453180 DOI: 10.3390/cancers15164148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/05/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Metastasis remains the leading cause of mortality in prostate cancer patients. The presence of tumor cells in lymph nodes is an established prognostic indicator for several cancer types, such as melanoma, breast, oral, pancreatic, and cervical cancers. Emerging evidence highlights the role of microRNAs enclosed within extracellular vesicles as facilitators of molecular communication between tumors and metastatic sites in the lymph nodes. This study aims to investigate the potential diagnostic utility of EV-derived microRNAs in liquid biopsies for prostate cancer. By employing microarrays on paraffin-embedded samples, we characterized the microRNA expression profiles in metastatic lymph nodes, non-metastatic lymph nodes, and primary tumor tissues of prostate cancer. Differential expression of microRNAs was observed in metastatic lymph nodes compared to prostate tumors and non-metastatic lymph node tissues. Three microRNAs (miR-140-3p, miR-150-5p, and miR-23b-3p) were identified as differentially expressed between tissue and plasma samples. Furthermore, we evaluated the expression of these microRNAs in exosomes derived from prostate cancer cells and plasma samples. Intriguingly, high Gleason score samples exhibited the lowest expression of miR-150-5p compared to control samples. Pathway analysis suggested a potential regulatory role for miR-150-5p in the Wnt pathway and bone metastasis. Our findings suggest EV-derived miR-150-5p as a promising diagnostic marker for identifying patients with high-grade Gleason scores and detecting metastasis at an early stage.
Collapse
Affiliation(s)
- Marian Cruz-Burgos
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (M.C.-B.)
| | - Sergio A. Cortés-Ramírez
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (M.C.-B.)
| | - Alberto Losada-García
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (M.C.-B.)
| | - Miguel Morales-Pacheco
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (M.C.-B.)
| | - Eduardo Martínez-Martínez
- Laboratory of Cell Communication and Extracellular Vesicles, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico
| | | | - Alejandro Servín-Haddad
- Urology Department, Hospital General Dr. Manuel Gea Gonzalez, Mexico City 14080, Mexico; (J.G.M.-M.); (A.S.-H.)
| | | | - Griselda Rodríguez-Martínez
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (M.C.-B.)
| | | | | | | | - Imelda González-Ramírez
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana, Mexico City 14387, Mexico
| | - Boyang Su
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L7, Canada
- Biological Sciences Platform, Sunybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Hon S. Leong
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L7, Canada
- Biological Sciences Platform, Sunybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Mauricio Rodríguez-Dorantes
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (M.C.-B.)
| |
Collapse
|
40
|
Bogaczyk A, Zawlik I, Zuzak T, Kluz M, Potocka N, Kluz T. The Role of miRNAs in the Development, Proliferation, and Progression of Endometrial Cancer. Int J Mol Sci 2023; 24:11489. [PMID: 37511248 PMCID: PMC10380838 DOI: 10.3390/ijms241411489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/30/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Endometrial cancer is one of the most common cancers in developing and developed countries. Although the detection of this cancer is high at the early stages, there is still a lack of markers to monitor the disease, its recurrence, and metastasis. MiRNAs are in charge of the post-transcriptional regulation of genes responsible for the most important biological processes, which is why they are increasingly used as biomarkers in many types of cancer. Many studies have demonstrated the influence of miRNAs on the processes related to carcinogenesis. The characteristics of miRNA expression profiles in endometrial cancer will allow their use as diagnostic and prognostic biomarkers. This paper focuses on the discussion of selected miRNAs based on the literature and their role in the development of endometrial cancer.
Collapse
Affiliation(s)
- Anna Bogaczyk
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, F.Szopena 2, 35-055 Rzeszow, Poland; (A.B.); (T.Z.); (T.K.)
| | - Izabela Zawlik
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, Warzywna 1a, 35-959 Rzeszow, Poland;
- Institute of Medical Sciences, Medical College of Rzeszow University, Kopisto 2a, 35-959 Rzeszow, Poland
| | - Tomasz Zuzak
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, F.Szopena 2, 35-055 Rzeszow, Poland; (A.B.); (T.Z.); (T.K.)
| | - Marta Kluz
- Department of Pathology, Fryderyk Chopin University Hospital, F.Szopena 2, 35-055 Rzeszow, Poland;
| | - Natalia Potocka
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, Warzywna 1a, 35-959 Rzeszow, Poland;
| | - Tomasz Kluz
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, F.Szopena 2, 35-055 Rzeszow, Poland; (A.B.); (T.Z.); (T.K.)
- Institute of Medical Sciences, Medical College of Rzeszow University, Kopisto 2a, 35-959 Rzeszow, Poland
| |
Collapse
|
41
|
Aseervatham J. Dynamic Role of Exosome microRNAs in Cancer Cell Signaling and Their Emerging Role as Noninvasive Biomarkers. BIOLOGY 2023; 12:biology12050710. [PMID: 37237523 DOI: 10.3390/biology12050710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/26/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Exosomes are extracellular vesicles that originate from endosomes and are released by all cells irrespective of their origin or type. They play an important role in cell communication and can act in an autocrine, endocrine, or paracrine fashion. They are 40-150 nm in diameter and have a similar composition to the cell of origin. An exosome released by a particular cell is unique since it carries information about the state of the cell in pathological conditions such as cancer. miRNAs carried by cancer-derived exosomes play a multifaceted role by taking part in cell proliferation, invasion, metastasis, epithelial-mesenchymal transition, angiogenesis, apoptosis, and immune evasion. Depending on the type of miRNA that it carries as its cargo, it can render cells chemo- or radiosensitive or resistant and can also act as a tumor suppressor. Since the composition of exosomes is affected by the cellular state, stress, and changes in the environment, they can be used as diagnostic or prognostic biomarkers. Their unique ability to cross biological barriers makes them an excellent choice as vehicles for drug delivery. Because of their easy availability and stability, they can be used to replace cancer biopsies, which are invasive and expensive. Exosomes can also be used to follow the progression of diseases and monitor treatment strategies. A better understanding of the roles and functions of exosomal miRNA can be used to develop noninvasive, innovative, and novel treatments for cancer.
Collapse
Affiliation(s)
- Jaya Aseervatham
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
42
|
Mao P, Wang T, Gao K, Li Y, Du C, Wang M. MiR-320b aberrant expression enhances the radioresistance of human glioma via upregulated expression of ALDH1A3. Aging (Albany NY) 2023; 15:2347-2357. [PMID: 36996494 PMCID: PMC10085615 DOI: 10.18632/aging.204617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Accumulating evidence has demonstrated that ALDH1A3 is closely associated with development, progression, radioresistance and prognosis in a variety of cancers. However, the upstream miRNA that plays in the ALDH1A3 signaling pathways in regulating the radioresistance of glioma remains unclear. In this study, ALDH1A3 was enriched in high-grade glioma and was determined to be essential for radioresistance in GBM cell lines. Moreover, miR-320b was identified as an upstream miRNA that interacts with ALDH1A3. Low expression of miR-320b was associated with poor prognosis and radioresistance in glioma. In addition, overexpression of miR-320b counteracted the effects of ALDH1A3 on GBM cell proliferation, apoptosis and radioresistance when exposed to X-ray irradiation. Collectively, miR-320b may serve as a novel therapeutic target for glioma patients.
Collapse
|
43
|
Shen HM, Zhang D, Xiao P, Qu B, Sun YF. E2F1-mediated KDM4A-AS1 up-regulation promotes EMT of hepatocellular carcinoma cells by recruiting ILF3 to stabilize AURKA mRNA. Cancer Gene Ther 2023:10.1038/s41417-023-00607-0. [PMID: 36973424 DOI: 10.1038/s41417-023-00607-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/11/2023] [Accepted: 03/09/2023] [Indexed: 03/29/2023]
Abstract
Hepatocellular carcinoma (HCC) is a gastrointestinal tumor with high clinical incidence. Long non-coding RNAs (lncRNAs) play vital roles in modulating the growth and epithelial-mesenchymal transition (EMT) of HCC. However, the underlying mechanism of lncRNA KDM4A antisense RNA 1 (KDM4A-AS1) in HCC remains elusive. In our study, the role of KDM4A-AS1 in HCC was systematically investigated. The levels of KDM4A-AS1, interleukin enhancer-binding factor 3 (ILF3), Aurora kinase A (AURKA), and E2F transcription factor 1 (E2F1) were determined by RT-qPCR or western blot. ChIP and dual luciferase reporter experiments were performed to detect the binding relationship between E2F1 and KDM4A-AS1 promoter sequence. RIP and RNA-pull down confirmed the interaction of ILF3 with KDM4A-AS1/AURKA. Cellular functions were analyzed by MTT, flow cytometry, wound healing and transwell assays. IHC was performed to detect Ki67 in vivo. We found that KDM4A-AS1 was increased in HCC tissues and cells. Elevated KDM4A-AS1 level was correlated to poor prognosis of HCC. Knockdown of KDM4A-AS1 inhibited the proliferation, migration, invasion and EMT of HCC cells. ILF3 bound to KDM4A-AS1 and AURKA. KDM4A-AS1 maintained the stability of AURKA mRNA by recruiting ILF3. E2F1 transcriptionally activated KDM4A-AS1. Overexpressed KDM4A-AS1 reversed the contribution of E2F1 depletion to AURKA expression and EMT in HCC cells. KDM4A-AS1 promoted tumor formation in vivo through the PI3K/AKT pathway. These results revealed that E2F1 transcriptionally activated KDM4A-AS1 to regulate HCC progression via the PI3K/AKT pathway. E2F1 and KDM4A-AS1 may serve as good prognostic targets for HCC treatment.
Collapse
Affiliation(s)
- Hao-Ming Shen
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Di Zhang
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Ping Xiao
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Bin Qu
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yi-Fan Sun
- Department of Clinical Laboratory, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang City People's Hospital, Guigang, 537100, Guangxi, China.
| |
Collapse
|
44
|
Kumar V, Pandey A, Arora A, Gautam P, Bisht D, Gupta S, Chaurasia A, Sachan M. Diagnostics and Therapeutic Potential of miR-205 and miR-34a in Ovarian Cancer Management: A miRNA-Target-Based Analysis. DNA Cell Biol 2023; 42:151-162. [PMID: 36779980 DOI: 10.1089/dna.2022.0487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
Epithelial ovarian cancer (EOC) treatment strategies mainly focused on surgery combined with chemotherapy. Recent targeted therapy techniques emerge as milestone and could be used for management of ovarian cancer (OC) progression with more efficacy. The aim is to evaluate the therapeutic and diagnostic potential of microRNA (miRNA) in management of EOC using in silico and quantitative real-time PCR (qRT-PCR) expression analysis. We performed functional enrichment and miRNA-Target genes expression analysis in 48 EOC and 22 normal tissue samples using qRT-PCR and correlated with miRNA expression data in matched samples to evaluate the diagnostic and therapeutic potential of miRNA in OC management. In silico functional enrichment analysis revealed miRNA association with disease. Target genes of miRNAs participate in several biologically important pathways leading to cancer progression. Targets of miRNA-205 and miRNA-34a were significantly downregulated, and upregulated, respectively, in EOC. Moreover, significant negative correlation between relative expression of miRNA-205 and target genes (BCL2, ZEB1, E2F1, and TP53) was observed with r = -0.813; r = -0.755; r = -0.559; and r = -0.767, respectively. Similarly, miRNA-34a also showed higher negative correlation with target genes (MDM4, MAPK3, BRCA1, AREG) with r = -0.840; r = -0.870; r = -0.622; and r = -0.623, respectively. In addition, receiver operating characteristics analysis of combined miRNA panel, miRNA-205-Target gene panel, and miRNA-34a-Target gene panel exhibited higher diagnostics value with area under the curve (AUC) of 92.7 (p < 0.0001), 94.8 (p < 0.0001), and 98.3 (p < 0.0001), respectively. Negative Correlation between miRNA and target genes expression data in matched samples highlights therapeutic potential of miRNA in EOC management. Moreover, combined diagnostic potential of miRNA-target gene panel could predict risk of EOC with higher AUC, sensitivity, and specificity.
Collapse
Affiliation(s)
- Vivek Kumar
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Prayagraj, India
| | - Archana Pandey
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Prayagraj, India
| | - Arisha Arora
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam, India
| | - Priyanka Gautam
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Prayagraj, India
| | - Deepa Bisht
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Prayagraj, India
| | - Sameer Gupta
- Department of Surgical Oncology, King George Medical University, Lucknow, India
| | - Amrita Chaurasia
- Department of Gynaecology and Obstetrics, Motilal Nehru Medical College Allahabad, Allahabad, Prayagraj, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Prayagraj, India
| |
Collapse
|
45
|
Through the Looking Glass: Updated Insights on Ovarian Cancer Diagnostics. Diagnostics (Basel) 2023; 13:diagnostics13040713. [PMID: 36832201 PMCID: PMC9955065 DOI: 10.3390/diagnostics13040713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/30/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is the deadliest gynaecological malignancy and the eighth most prevalent cancer in women, with an abysmal mortality rate of two million worldwide. The existence of multiple overlapping symptoms with other gastrointestinal, genitourinary, and gynaecological maladies often leads to late-stage diagnosis and extensive extra-ovarian metastasis. Due to the absence of any clear early-stage symptoms, current tools only aid in the diagnosis of advanced-stage patients, wherein the 5-year survival plummets further to less than 30%. Therefore, there is a dire need for the identification of novel approaches that not only allow early diagnosis of the disease but also have a greater prognostic value. Toward this, biomarkers provide a gamut of powerful and dynamic tools to allow the identification of a spectrum of different malignancies. Both serum cancer antigen 125 (CA-125) and human epididymis 4 (HE4) are currently being used in clinics not only for EOC but also peritoneal and GI tract cancers. Screening of multiple biomarkers is gradually emerging as a beneficial strategy for early-stage diagnosis, proving instrumental in administration of first-line chemotherapy. These novel biomarkers seem to exhibit an enhanced potential as a diagnostic tool. This review summarizes existing knowledge of the ever-growing field of biomarker identification along with potential future ones, especially for ovarian cancer.
Collapse
|
46
|
Contributions and therapeutic potential of tumor-derived microRNAs containing exosomes to cancer progression. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Hashemi M, Arani HZ, Orouei S, Fallah S, Ghorbani A, Khaledabadi M, Kakavand A, Tavakolpournegari A, Saebfar H, Heidari H, Salimimoghadam S, Entezari M, Taheriazam A, Hushmandi K. EMT mechanism in breast cancer metastasis and drug resistance: Revisiting molecular interactions and biological functions. Biomed Pharmacother 2022; 155:113774. [DOI: 10.1016/j.biopha.2022.113774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 12/24/2022] Open
|
48
|
Ashekyan O, Abdallah S, Shoukari AA, Chamandi G, Choubassy H, Itani ARS, Alwan N, Nasr R. Spotlight on Exosomal Non-Coding RNAs in Breast Cancer: An In Silico Analysis to Identify Potential lncRNA/circRNA-miRNA-Target Axis. Int J Mol Sci 2022; 23:8351. [PMID: 35955480 PMCID: PMC9369058 DOI: 10.3390/ijms23158351] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer (BC) has recently become the most common cancer type worldwide, with metastatic disease being the main reason for disease mortality. This has brought about strategies for early detection, especially the utilization of minimally invasive biomarkers found in various bodily fluids. Exosomes have been proposed as novel extracellular vesicles, readily detectable in bodily fluids, secreted from BC-cells or BC-tumor microenvironment cells, and capable of conferring cellular signals over long distances via various cargo molecules. This cargo is composed of different biomolecules, among which are the novel non-coding genome products, such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and the recently discovered circular RNA (circRNA), all of which were found to be implicated in BC pathology. In this review, the diverse roles of the ncRNA cargo of BC-derived exosomes will be discussed, shedding light on their primarily oncogenic and additionally tumor suppressor roles at different levels of BC tumor progression, and drug sensitivity/resistance, along with presenting their diagnostic, prognostic, and predictive biomarker potential. Finally, benefiting from the miRNA sponging mechanism of action of lncRNAs and circRNAs, we established an experimentally validated breast cancer exosomal non-coding RNAs-regulated target gene axis from already published exosomal ncRNAs in BC. The resulting genes, pathways, gene ontology (GO) terms, and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis could be a starting point to better understand BC and may pave the way for the development of novel diagnostic and prognostic biomarkers and therapeutics.
Collapse
Affiliation(s)
- Ohanes Ashekyan
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon;
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon; (S.A.); (G.C.); (H.C.)
| | - Samira Abdallah
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon; (S.A.); (G.C.); (H.C.)
| | - Ayman Al Shoukari
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon;
| | - Ghada Chamandi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon; (S.A.); (G.C.); (H.C.)
- INSERM U976, HIPI, Pathophysiology of Breast Cancer Team, Université de Paris, 75010 Paris, France
| | - Hayat Choubassy
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon; (S.A.); (G.C.); (H.C.)
- Faculty of Sciences, Lebanese University, Beirut 11-0236, Lebanon
| | - Abdul Rahman S. Itani
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany;
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
- Division of Inflammatory Stress in Stem Cells, Deutsches Krebsforschungszentrum (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Nisreen Alwan
- College of Health Sciences, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon; (S.A.); (G.C.); (H.C.)
| |
Collapse
|
49
|
A Novel Identified Long Intergenic Noncoding RNA, LINC01574, Contributes to Breast Cancer Deterioration via the Regulation of miR-6745/TTYH3 Axis. J Immunol Res 2022; 2022:4201283. [PMID: 35935583 PMCID: PMC9348968 DOI: 10.1155/2022/4201283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/20/2022] [Accepted: 07/01/2022] [Indexed: 11/18/2022] Open
Abstract
Objective Compelling evidence suggested that lncRNAs performed vital functions in the development of breast cancer (BC). The study intended to mine the functional roles of LINC01574 in BC and further excavated its underlying regulatory mechanism. Methods The expression and prognosis of LINC01574 in BC were detected by integrating analysis of data mining, bioinformatics, and RT-qPCR. Then, the effect of LINC01574 knockdown on BC cell growth and metastasis was evaluated in vitro and in vivo. Interactions between miR-6745 and LINC01574 or TTYH3 were revealed by both target prediction and dual luciferase reporter assay. Results Our data found that LINC01574 was markedly elevated in BC tissues and cells and was an independent prognostic risk factor for patients with BC. Further functional studies revealed that knockdown of LINC01574 remarkably inhibited the growth and metastasis of BC cells in vitro and in vivo. Mechanistically, LINC01574 competitively binds with miR-6745 to prevent the degradation of TTYH3, thereby promoting the development of BC. Conclusion Our results unmasked a novel LINC01574/miR-6745/TTYH3 regulatory axis in BC progression and suggested that LINC01574 might be a promising prognostic indicator and therapeutic target for patients with BC.
Collapse
|
50
|
Small but Powerful: The Human Vault RNAs as Multifaceted Modulators of Pro-Survival Characteristics and Tumorigenesis. Cancers (Basel) 2022; 14:cancers14112787. [PMID: 35681764 PMCID: PMC9179338 DOI: 10.3390/cancers14112787] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Small non-protein-coding RNAs have been recognized as valuable regulators of gene expression in all three domains of life. Particularly in multicellular organisms, ncRNAs-mediated gene expression control has evolved as a central principle of cellular homeostasis. Thus, it is not surprising that non-coding RNA misregulation has been linked to various diseases. Here, we review the contributions of the four human vault RNAs to cellular proliferation, apoptosis and cancer biology. Abstract The importance of non-coding RNAs for regulating gene expression has been uncovered in model systems spanning all three domains of life. More recently, their involvement in modulating signal transduction, cell proliferation, tumorigenesis and cancer progression has also made them promising tools and targets for oncotherapy. Recent studies revealed a class of highly conserved small ncRNAs, namely vault RNAs, as regulators of several cellular homeostasis mechanisms. The human genome encodes four vault RNA paralogs that share significant sequence and structural similarities, yet they seem to possess distinct roles in mammalian cells. The alteration of vault RNA expression levels has frequently been observed in cancer tissues, thus hinting at a putative role in orchestrating pro-survival characteristics. Over the last decade, significant advances have been achieved in clarifying the relationship between vault RNA and cellular mechanisms involved in cancer development. It became increasingly clear that vault RNAs are involved in controlling apoptosis, lysosome biogenesis and function, as well as autophagy in several malignant cell lines, most likely by modulating signaling pathways (e.g., the pro-survival MAPK cascade). In this review, we discuss the identified and known functions of the human vault RNAs in the context of cell proliferation, tumorigenesis and chemotherapy resistance.
Collapse
|