1
|
Cao LM, Qiu YZ, Li ZZ, Wang GR, Xiao Y, Luo HY, Liu B, Wu Q, Bu LL. Extracellular Vesicles: Hermes between cancers and lymph nodes. Cancer Lett 2025; 623:217735. [PMID: 40268131 DOI: 10.1016/j.canlet.2025.217735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/16/2025] [Accepted: 04/19/2025] [Indexed: 04/25/2025]
Abstract
Cancer is one of the main causes of death and a major obstacle to increasing life expectancy in all countries of the world. Lymph node metastasis (LNM) of in cancer patients indicates poor prognosis and it is an important indication to determine the therapeutic regime. Therefore, more attention should be given to the molecular mechanics of tumor lymphangiogenesis and LNM. Extracellular vesicles (EVs) are nanoscale cargo-bearing membrane vesicles that can serve as key mediators for the intercellular communication. Like Hermes, the messenger of the Greek gods, EVs can be secreted by tumor cells to regulate the LNM process. Many evidence has proved the clinical correlation between EVs and LNM in various cancer types. EVs plays an active role in the process of metastasis by expressing its connotative molecules, including proteins, nucleic acids, and metabolites. However, the clear role of EVs in the process of cancer LNM has not been thoroughly studied yet. In this review, we will summarize the clinical and mechanical findings of EVs regulating role on cancer LNM, and discuss the advanced modification of the research proposal. We propose the "PUMP" principle of EVs in LNM, including Preparation, Unleash, Migration, and Planting.
Collapse
Affiliation(s)
- Lei-Ming Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yu-Zhong Qiu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Guang-Rui Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yao Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Han-Yue Luo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China; Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Qiuji Wu
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China; Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
2
|
Xu C, Jiang C, Li Z, Gao H, Xian J, Guo W, He D, Peng X, Zhou D, Li D. Exosome nanovesicles: biomarkers and new strategies for treatment of human diseases. MedComm (Beijing) 2024; 5:e660. [PMID: 39015555 PMCID: PMC11247338 DOI: 10.1002/mco2.660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024] Open
Abstract
Exosomes are nanoscale vesicles of cellular origin. One of the main characteristics of exosomes is their ability to carry a wide range of biomolecules from their parental cells, which are important mediators of intercellular communication and play an important role in physiological and pathological processes. Exosomes have the advantages of biocompatibility, low immunogenicity, and wide biodistribution. As researchers' understanding of exosomes has increased, various strategies have been proposed for their use in diagnosing and treating diseases. Here, we provide an overview of the biogenesis and composition of exosomes, describe the relationship between exosomes and disease progression, and focus on the use of exosomes as biomarkers for early screening, disease monitoring, and guiding therapy in refractory diseases such as tumors and neurodegenerative diseases. We also summarize the current applications of exosomes, especially engineered exosomes, for efficient drug delivery, targeted therapies, gene therapies, and immune vaccines. Finally, the current challenges and potential research directions for the clinical application of exosomes are also discussed. In conclusion, exosomes, as an emerging molecule that can be used in the diagnosis and treatment of diseases, combined with multidisciplinary innovative solutions, will play an important role in clinical applications.
Collapse
Affiliation(s)
- Chuan Xu
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Chaoyang Jiang
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Zhihui Li
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Hui Gao
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Jing Xian
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Wenyan Guo
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Dan He
- Department of OncologyThe Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduSichuanChina
| | - Xingchen Peng
- Department of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Daijun Zhou
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Dong Li
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| |
Collapse
|
3
|
Liu M, Wen Z, Zhang T, Zhang L, Liu X, Wang M. The role of exosomal molecular cargo in exosome biogenesis and disease diagnosis. Front Immunol 2024; 15:1417758. [PMID: 38983854 PMCID: PMC11231912 DOI: 10.3389/fimmu.2024.1417758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024] Open
Abstract
Exosomes represent a type of extracellular vesicles derived from the endosomal pathway that transport diverse molecular cargoes such as proteins, lipids, and nucleic acids. These cargoes have emerged as crucial elements impacting disease diagnosis, treatment, and prognosis, and are integral to the process of exosome formation. This review delves into the essential molecular cargoes implicated in the phases of exosome production and release. Emphasis is placed on their significance as cancer biomarkers and potential therapeutic targets, accompanied by an exploration of the obstacles and feasible applications linked to these developments.
Collapse
Affiliation(s)
- Meijin Liu
- Laboratory Medicine, People's Hospital of Ganzhou Economic Development Zone, Ganzhou, China
| | - Zhenzhen Wen
- Laboratory Medicine, People's Hospital of Ganzhou Economic Development Zone, Ganzhou, China
| | - Tingting Zhang
- Laboratory Medicine, People's Hospital of Ganzhou Economic Development Zone, Ganzhou, China
| | - Linghan Zhang
- Laboratory Medicine, People's Hospital of Ganzhou Economic Development Zone, Ganzhou, China
| | - Xiaoyan Liu
- Laboratory Medicine, People's Hospital of Ganzhou Economic Development Zone, Ganzhou, China
| | - Maoyuan Wang
- Laboratory Medicine, People's Hospital of Ganzhou Economic Development Zone, Ganzhou, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Gannan Medical University, GanZhou, China
| |
Collapse
|
4
|
Su H, Masters CL, Bush AI, Barnham KJ, Reid GE, Vella LJ. Exploring the significance of lipids in Alzheimer's disease and the potential of extracellular vesicles. Proteomics 2024; 24:e2300063. [PMID: 37654087 DOI: 10.1002/pmic.202300063] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
Lipids play a significant role in maintaining central nervous system (CNS) structure and function, and the dysregulation of lipid metabolism is known to occur in many neurological disorders, including Alzheimer's disease. Here we review what is currently known about lipid dyshomeostasis in Alzheimer's disease. We propose that small extracellular vesicle (sEV) lipids may provide insight into the pathophysiology and progression of Alzheimer's disease. This stems from the recognition that sEV likely contributes to disease pathogenesis, but also an understanding that sEV can serve as a source of potential biomarkers. While the protein and RNA content of sEV in the CNS diseases have been studied extensively, our understanding of the lipidome of sEV in the CNS is still in its infancy.
Collapse
Affiliation(s)
- Huaqi Su
- The Florey, The University of Melbourne, Parkville, Victoria, Australia
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Colin L Masters
- The Florey, The University of Melbourne, Parkville, Victoria, Australia
| | - Ashley I Bush
- The Florey, The University of Melbourne, Parkville, Victoria, Australia
| | - Kevin J Barnham
- The Florey, The University of Melbourne, Parkville, Victoria, Australia
| | - Gavin E Reid
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Laura J Vella
- The Florey, The University of Melbourne, Parkville, Victoria, Australia
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
5
|
Rani S, Lai A, Nair S, Sharma S, Handberg A, Carrion F, Möller A, Salomon C. Extracellular vesicles as mediators of cell-cell communication in ovarian cancer and beyond - A lipids focus. Cytokine Growth Factor Rev 2023; 73:52-68. [PMID: 37423866 DOI: 10.1016/j.cytogfr.2023.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023]
Abstract
Extracellular vesicles (EVs) are messengers that carry information in the form of proteins, lipids, and nucleic acids and are not only essential for intercellular communication but also play a critical role in the progression of various pathologies, including ovarian cancer. There has been recent substantial research characterising EV cargo, specifically, the lipid profile of EVs. Lipids are involved in formation and cargo sorting of EVs, their release and cellular uptake. Numerous lipidomic studies demonstrated the enrichment of specific classes of lipids in EVs derived from cancer cells suggesting that the EV associated lipids can potentially be employed as minimally invasive biomarkers for early diagnosis of various malignancies, including ovarian cancer. In this review, we aim to provide a general overview of the heterogeneity of EV, biogenesis, their lipid content, and function in cancer progression focussing on ovarian cancer.
Collapse
Affiliation(s)
- Shikha Rani
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD 4029, Australia
| | - Andrew Lai
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD 4029, Australia
| | - Soumya Nair
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD 4029, Australia
| | - Shayna Sharma
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD 4029, Australia
| | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Flavio Carrion
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile
| | - Andreas Möller
- Department of Otorhinolaryngology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD 4029, Australia; Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile.
| |
Collapse
|
6
|
El-Tanani M, Nsairat H, Matalka II, Aljabali AAA, Mishra V, Mishra Y, Naikoo GA, Chava SR, Charbe NB, Tambuwala MM. Impact of exosome therapy on pancreatic cancer and its progression. Med Oncol 2023; 40:225. [PMID: 37405480 PMCID: PMC10322774 DOI: 10.1007/s12032-023-02101-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/19/2023] [Indexed: 07/06/2023]
Abstract
Pancreatic cancer, one of the most aggressive tumors, has a dismal prognosis because of the low rates of early identification, fast progression, difficulties following surgery, and the ineffectiveness of current oncologic therapies. There are no imaging techniques or biomarkers that can accurately identify, categorize, or predict the biological behavior of this tumor. Exosomes are extracellular vesicles that play a crucial rule in the progression, metastasis, and chemoresistance of pancreatic cancer. They have been verified to be potential biomarkers for pancreatic cancer management. Studying the role of exosomes in pancreatic cancer is substantial. Exosomes are secreted by most eukaryotic cells and participated in intercellular communication. The components of exosomes, including proteins, DNA, mRNA, microRNA, long non-coding RNA, circular RNA, etc., play a crucial role in regulating tumor growth, metastasis, and angiogenesis in the process of cancer development, and can be used as a prognostic marker and/or grading basis for tumor patients. Hereby, in this concise review, we intend to summarize exosomes components and isolation, exosome secretion, function, importance of exosomes in the progression of pancreatic cancer and exosomal miRNAs as possible pancreatic cancer biomarkers. Finally, the application potential of exosomes in the treatment of pancreatic cancer, which provides theoretical supports for using exosomes to serve precise tumor treatment in the clinic, will be discussed.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan.
- Institute of Cancer Therapeutics, University of Bradford, Bradford, BD7 1DP, West Yorkshire, UK.
- Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, UAE.
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Ismail I Matalka
- Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, UAE
- Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid, 21163, Jordan
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Yachana Mishra
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India
| | - Gowhar A Naikoo
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, PC 211, Salalah, Oman
| | | | - Nitin B Charbe
- Department of Pharmaceutics, College of Pharmacy, Center for Pharmacometrics and Systems Pharmacology, University of Florida, Orlando, FL, USA
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK.
| |
Collapse
|
7
|
Modified lipidomic profile of cancer-associated small extracellular vesicles facilitates tumorigenic behaviours and contributes to disease progression. Adv Biol Regul 2023; 87:100935. [PMID: 36443198 DOI: 10.1016/j.jbior.2022.100935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
Metabolic rewiring is a key feature of cancer cells, which involves the alteration of amino acids, glucose and lipids to support aggressive cancer phenotypes. Changes in lipid metabolism alter cancer growth characteristics, membrane integrity and signalling pathways. Small extracellular vesicles (sEVs) are membrane-bound vesicles secreted by cells into the extracellular environment, where they participate in cell-to-cell communication. Lipids are involved in the formation and cargo assortment of sEVs, resulting in their selective packaging in these vesicles. Further, sEVs participate in different aspects of cancer development, such as proliferation, migration and angiogenesis. Various lipidomic studies have indicated the enrichment of specific lipids in sEVs derived from tumour cells, which aid in their pathological functioning. This paper summarises how the modified lipid profile of sEVs contributes to carcinogenesis and disease progression.
Collapse
|
8
|
Yasuda T, Watanabe H, Hirosawa KM, Suzuki KGN, Suga K, Hanashima S. Fluorescence Spectroscopic Analysis of Lateral and Transbilayer Fluidity of Exosome Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14695-14703. [PMID: 36421004 PMCID: PMC9731264 DOI: 10.1021/acs.langmuir.2c02258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Exosomes are small extracellular vesicles (sEVs) involved in distal cell-cell communication and cancer migration by transferring functional cargo molecules. Membrane domains similar to lipid rafts are assumed to occur in exosome membranes and are involved in interactions with target cells. However, the bilayer membrane properties of these small vesicles have not been fully investigated. Therefore, we examined the fluidity, lateral domain separation, and transbilayer asymmetry of exosome membranes using fluorescence spectroscopy. Although there were some differences between the exosomes, TMA-DPH anisotropy showing moderate lipid chain order indicated that ordered phases comprised a significant proportion of exosome membranes. Selective TEMPO quenching of the TMA-DPH fluorescence in the liquid-disordered phase indicated that 40-50% of the exosome membrane area belonged to the ordered phase based on a phase-separated model. Furthermore, NBD-PC in the outer leaflet showed longer fluorescence lifetimes than those in the inner leaflets. Therefore, the exosome membranes maintained transbilayer asymmetry with a topology similar to that of the plasma membranes. In addition, the lateral and transbilayer orders of exosome membranes obtained from different cell lines varied, probably depending on the different membrane lipid components and compositions partially derived from donor cells. As these higher membrane orders and asymmetric topologies are similar to those of cell membranes with lipid rafts, raft-like functional domains are possibly enriched on exosome membranes. These domains likely play key roles in the biological functions and cellular uptake of exosomes by facilitating selective membrane interactions with target organs.
Collapse
Affiliation(s)
- Tomokazu Yasuda
- Graduate
School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka560-0043, Japan
| | - Hirofumi Watanabe
- Graduate
School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka560-0043, Japan
| | - Koichiro M. Hirosawa
- Institute
for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu501-1193, Japan
| | - Kenichi G. N. Suzuki
- Institute
for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu501-1193, Japan
| | - Keishi Suga
- Department
of Chemical Engineering, Tohoku University, 6-6-07, Aoba, Aramaki-aza, Aoba-ku, Sendai, Miyagi980-8579, Japan
| | - Shinya Hanashima
- Graduate
School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka560-0043, Japan
| |
Collapse
|
9
|
Pan Z, Sun W, Chen Y, Tang H, Lin W, Chen J, Chen C. Extracellular Vesicles in Tissue Engineering: Biology and Engineered Strategy. Adv Healthc Mater 2022; 11:e2201384. [PMID: 36053562 DOI: 10.1002/adhm.202201384] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/07/2022] [Indexed: 01/28/2023]
Abstract
Extracellular vesicles (EVs), acting as an important ingredient of intercellular communication through paracrine actions, have gained tremendous attention in the field of tissue engineering (TE). Moreover, these nanosized extracellular particles (30-140 nm) can be incorporated into biomaterials according to different principles to facilitate signal delivery in various regenerative processes directly or indirectly. Bioactive biomaterials as the carrier will extend the retention time and realize the controlled release of EVs, which further enhance their therapeutic efficiency in tissue regeneration. Herein, the basic biological characteristics of EVs are first introduced, and then their outstanding performance in exerting direct impacts on target cells in tissue regeneration as well as indirect effects on promoting angiogenesis and regulating the immune environment, due to specific functional components of EVs (nucleic acid, protein, lipid, etc.), is emphasized. Furthermore, different design ideas for suitable EV-loaded biomaterials are also demonstrated. In the end, this review also highlights the engineered strategies, which aim at solving the problems related to natural EVs such as highly heterogeneous functions, inadequate tissue targeting capabilities, insufficient yield and scalability, etc., thus promoting the therapeutic pertinence and clinical potential of EV-based approaches in TE.
Collapse
Affiliation(s)
- Ziyin Pan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School Of Medicine, Shanghai, 200092, China.,Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Weiyan Sun
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School Of Medicine, Shanghai, 200092, China.,Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Yi Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School Of Medicine, Shanghai, 200092, China.,Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Hai Tang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School Of Medicine, Shanghai, 200092, China.,Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Weikang Lin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School Of Medicine, Shanghai, 200092, China.,Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Jiafei Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School Of Medicine, Shanghai, 200092, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School Of Medicine, Shanghai, 200092, China.,Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| |
Collapse
|
10
|
Yi X, Chen J, Huang D, Feng S, Yang T, Li Z, Wang X, Zhao M, Wu J, Zhong T. Current perspectives on clinical use of exosomes as novel biomarkers for cancer diagnosis. Front Oncol 2022; 12:966981. [PMID: 36119470 PMCID: PMC9472136 DOI: 10.3389/fonc.2022.966981] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/01/2022] [Indexed: 12/11/2022] Open
Abstract
Exosomes are a heterogeneous subset of extracellular vesicles (EVs) that biogenesis from endosomes. Besides, exosomes contain a variety of molecular cargoes including proteins, lipids and nucleic acids, which play a key role in the mechanism of exosome formation. Meanwhile, exosomes are involved with physiological and pathological conditions. The molecular profile of exosomes reflects the type and pathophysiological status of the originating cells so could potentially be exploited for diagnostic of cancer. This review aims to describe important molecular cargoes involved in exosome biogenesis. In addition, we highlight exogenous factors, especially autophagy, hypoxia and pharmacology, that regulate the release of exosomes and their corresponding cargoes. Particularly, we also emphasize exosome molecular cargoes as potential biomarkers in liquid biopsy for diagnosis of cancer.
Collapse
Affiliation(s)
- Xiaomei Yi
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jie Chen
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Defa Huang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Shuo Feng
- English Teaching and Research Section, Gannan Healthcare Vocational College, Ganzhou, China
| | - Tong Yang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhengzhe Li
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaoxing Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Minghong Zhao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiyang Wu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Tianyu Zhong,
| |
Collapse
|
11
|
Li Y, Zhao W, Wang Y, Wang H, Liu S. Extracellular vesicle-mediated crosstalk between pancreatic cancer and stromal cells in the tumor microenvironment. J Nanobiotechnology 2022; 20:208. [PMID: 35501802 PMCID: PMC9063273 DOI: 10.1186/s12951-022-01382-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/17/2022] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) interacts closely with the tumor microenvironment (TME). The TME is remodeled by crosstalk between pancreatic cancer cells and stromal cells, and is critical for cancer progression. Extracellular vesicles (EVs), including exosomes and microvesicles, help facilitate an exchange of information both within the TME and to distant organs. EVs have also been identified as potential diagnostic biomarkers, therapeutic targets, and drug carriers for pancreatic cancer treatment. Thus, understanding the selective packaging of EVs cargo and its mechanistic impact will increase our understanding of cancer biology. In this review, we collect and analyze recent findings of the pancreatic cancer-stromal cell interactions mediated by EVs and the mechanisms involved in cancer-related immunity and chemoresistance. These studies demonstrate the vital role of EVs in pancreatic cancer reprogramming and TME remodeling. We also summarize the EVs identified as potential PDAC diagnostic biomarkers and possible therapeutic targets. This greater understanding is a promising avenue for transitioning EVs from bench to bedside.
Collapse
Affiliation(s)
- Ying Li
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenjing Zhao
- Central Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Yanli Wang
- Department of Operating Room, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haiyan Wang
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shanglong Liu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
12
|
Monroe JD, Fraher D, Huang X, Mellett NA, Meikle PJ, Sinclair AJ, Lirette ST, Maihle NJ, Gong Z, Gibert Y. Identification of novel lipid biomarkers in xmrk- and Myc-induced models of hepatocellular carcinoma in zebrafish. Cancer Metab 2022; 10:7. [PMID: 35379333 PMCID: PMC8981695 DOI: 10.1186/s40170-022-00283-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/06/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the predominant form of liver cancer and is accompanied by complex dysregulation of lipids. Increasing evidence suggests that particular lipid species are associated with HCC progression. Here, we aimed to identify lipid biomarkers of HCC associated with the induction of two oncogenes, xmrk, a zebrafish homolog of the human epidermal growth factor receptor (EGFR), and Myc, a regulator of EGFR expression during HCC. METHODS We induced HCC in transgenic xmrk, Myc, and xmrk/Myc zebrafish models. Liver specimens were histologically analyzed to characterize the HCC stage, Oil-Red-O stained to detect lipids, and liquid chromatography/mass spectrometry analyzed to assign and quantify lipid species. Quantitative real-time polymerase chain reaction was used to measure lipid metabolic gene expression in liver samples. Lipid species data was analyzed using univariate and multivariate logistic modeling to correlate lipid class levels with HCC progression. RESULTS We found that induction of xmrk, Myc and xmrk/Myc caused different stages of HCC. Lipid deposition and class levels generally increased during tumor progression, but triglyceride levels decreased. Myc appears to control early HCC stage lipid species levels in double transgenics, whereas xmrk may take over this role in later stages. Lipid metabolic gene expression can be regulated by either xmrk, Myc, or both oncogenes. Our computational models showed that variations in total levels of several lipid classes are associated with HCC progression. CONCLUSIONS These data indicate that xmrk and Myc can temporally regulate lipid species that may serve as effective biomarkers of HCC progression.
Collapse
Affiliation(s)
- Jerry D Monroe
- Department of Cell and Molecular Biology, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Daniel Fraher
- Metabolic Genetic Diseases Laboratory, Metabolic Research Unit, Deakin University School of Medicine, 75 Pigdons Road, Geelong, VIC, 3216, Australia
| | - Xiaoqian Huang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Natalie A Mellett
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Andrew J Sinclair
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, VIC, 3168, Australia
| | - Seth T Lirette
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Nita J Maihle
- Department of Cell and Molecular Biology, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| | - Yann Gibert
- Department of Cell and Molecular Biology, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
| |
Collapse
|
13
|
Molecular Profile Study of Extracellular Vesicles for the Identification of Useful Small “Hit” in Cancer Diagnosis. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112210787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tumor-secreted extracellular vesicles (EVs) are the main mediators of cell-cell communication, permitting cells to exchange proteins, lipids, and metabolites in varying physiological and pathological conditions. They contain signature tumor-derived molecules that reflect the intracellular status of their cell of origin. Recent studies have shown that tumor cell-derived EVs can aid in cancer metastasis through the modulation of the tumor microenvironment, suppression of the immune system, pre-metastatic niche formation, and subsequent metastasis. EVs can easily be isolated from a variety of biological fluids, and their content makes them useful biomarkers for the diagnosis, prognosis, monitorization of cancer progression, and response to treatment. This review aims to explore the biomarkers of cancer cell-derived EVs obtained from liquid biopsies, in order to understand cancer progression and metastatic evolution for early diagnosis and precision therapy.
Collapse
|
14
|
Li ZB, Li HZ, Guo CH, Cui HL. Role of exosomes in diagnosis and treatment of pancreatic cancer. Shijie Huaren Xiaohua Zazhi 2021; 29:1186-1190. [DOI: 10.11569/wcjd.v29.i20.1186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is one of the common malignant tumors of the digestive system, which is insidious in origin and rapid in progression, and has a very poor prognosis. The incidence of pancreatic cancer is on the rise in recent years. Exosomes, an important vesicle in the human body, can reflect the physiological and pathological state of the source cells and play an important role in intercellular signal transduction. In recent years, the application of exosomes in tumor treatment has gained increasing attention from scholars. This article reviews the application of exosomes in the diagnosis and treatment of pancreatic cancer, to provide some reference for clinicians in the early diagnosis and treatment of this malignancy.
Collapse
Affiliation(s)
- Zong-Bei Li
- Department of General Surgery, Chuiyangliu Hospital Affiliated to Tsinghua University, Beijing 100022, China
| | - Hua-Zhi Li
- Department of General Surgery, Chuiyangliu Hospital Affiliated to Tsinghua University, Beijing 100022, China
| | - Chun-Hai Guo
- Department of General Surgery, Chuiyangliu Hospital Affiliated to Tsinghua University, Beijing 100022, China
| | - Hong-Li Cui
- Department of General Surgery, Chuiyangliu Hospital Affiliated to Tsinghua University, Beijing 100022, China
| |
Collapse
|
15
|
Liu Q, Li S, Dupuy A, le Mai H, Sailliet N, Logé C, Robert JMH, Brouard S. Exosomes as New Biomarkers and Drug Delivery Tools for the Prevention and Treatment of Various Diseases: Current Perspectives. Int J Mol Sci 2021; 22:ijms22157763. [PMID: 34360530 PMCID: PMC8346134 DOI: 10.3390/ijms22157763] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/17/2021] [Accepted: 07/17/2021] [Indexed: 02/06/2023] Open
Abstract
Exosomes are nano-sized vesicles secreted by most cells that contain a variety of biological molecules, such as lipids, proteins and nucleic acids. They have been recognized as important mediators for long-distance cell-to-cell communication and are involved in a variety of biological processes. Exosomes have unique advantages, positioning them as highly effective drug delivery tools and providing a distinct means of delivering various therapeutic agents to target cells. In addition, as a new clinical diagnostic biomarker, exosomes play an important role in many aspects of human health and disease, including endocrinology, inflammation, cancer, and cardiovascular disease. In this review, we summarize the development of exosome-based drug delivery tools and the validation of novel biomarkers, and illustrate the role of exosomes as therapeutic targets in the prevention and treatment of various diseases.
Collapse
Affiliation(s)
- Qi Liu
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; (Q.L.); (S.L.)
| | - Shiying Li
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; (Q.L.); (S.L.)
| | - Amandine Dupuy
- Unite Mixte de Recherche 1064, Centre de Recherche en Transplantation et Immunologie, Inserm, CHU Nantes, Université de Nantes, ITUN, F-44000 Nantes, France; (A.D.); (H.l.M.); (N.S.)
| | - Hoa le Mai
- Unite Mixte de Recherche 1064, Centre de Recherche en Transplantation et Immunologie, Inserm, CHU Nantes, Université de Nantes, ITUN, F-44000 Nantes, France; (A.D.); (H.l.M.); (N.S.)
| | - Nicolas Sailliet
- Unite Mixte de Recherche 1064, Centre de Recherche en Transplantation et Immunologie, Inserm, CHU Nantes, Université de Nantes, ITUN, F-44000 Nantes, France; (A.D.); (H.l.M.); (N.S.)
- Institut de Recherche en Santé 2, 22, Cibles et Médicaments du Cancer et de l’Immunité IICiMed-AE1155, Nantes Atlantique Universités, Université de Nantes, Boulevard Bénoni-Goullin, F-44000 Nantes, France;
| | - Cédric Logé
- Institut de Recherche en Santé 2, 22, Cibles et Médicaments du Cancer et de l’Immunité IICiMed-AE1155, Nantes Atlantique Universités, Université de Nantes, Boulevard Bénoni-Goullin, F-44000 Nantes, France;
| | - J.-Michel H. Robert
- Institut de Recherche en Santé 2, 22, Cibles et Médicaments du Cancer et de l’Immunité IICiMed-AE1155, Nantes Atlantique Universités, Université de Nantes, Boulevard Bénoni-Goullin, F-44000 Nantes, France;
- Correspondence: (J.-M.H.R.); (S.B.)
| | - Sophie Brouard
- Unite Mixte de Recherche 1064, Centre de Recherche en Transplantation et Immunologie, Inserm, CHU Nantes, Université de Nantes, ITUN, F-44000 Nantes, France; (A.D.); (H.l.M.); (N.S.)
- Correspondence: (J.-M.H.R.); (S.B.)
| |
Collapse
|
16
|
Donoso‐Quezada J, Ayala‐Mar S, González‐Valdez J. The role of lipids in exosome biology and intercellular communication: Function, analytics and applications. Traffic 2021; 22:204-220. [PMID: 34053166 PMCID: PMC8361711 DOI: 10.1111/tra.12803] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/18/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022]
Abstract
Exosomes are extracellular vesicles that in recent years have received special attention for their regulatory functions in numerous biological processes. Recent evidence suggests a correlation between the composition of exosomes in body fluids and the progression of some disorders, such as cancer, diabetes and neurodegenerative diseases. In consequence, numerous studies have been performed to evaluate the composition of these vesicles, aiming to develop new biomarkers for diagnosis and to find novel therapeutic targets. On their part, lipids represent one of the most important components of exosomes, with important structural and regulatory functions during exosome biogenesis, release, targeting and cellular uptake. Therefore, exosome lipidomics has emerged as an innovative discipline for the discovery of novel lipid species with biomedical applications. This review summarizes the current knowledge about exosome lipids and their roles in exosome biology and intercellular communication. Furthermore, it presents the state-of-the-art analytical procedures used in exosome lipidomics while emphasizing how this emerging discipline is providing new insights for future applications of exosome lipids in biomedicine.
Collapse
Affiliation(s)
| | - Sergio Ayala‐Mar
- Tecnologico de MonterreySchool of Engineering and ScienceMonterreyNuevo LeónMexico
| | - José González‐Valdez
- Tecnologico de MonterreySchool of Engineering and ScienceMonterreyNuevo LeónMexico
| |
Collapse
|
17
|
Hussain Z, Nigri J, Tomasini R. The Cellular and Biological Impact of Extracellular Vesicles in Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13123040. [PMID: 34207163 PMCID: PMC8235245 DOI: 10.3390/cancers13123040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The increased incidence and global failure of ongoing therapies project pancreatic cancer as the second deadliest cancer worldwide. While our knowledge of pancreatic cancer cells’ abilities and specificities has drastically improved based on multi-scaled omics, one must consider that much more remains to be uncovered on the role and impact of stromal cells and the established network of communication with tumor cells. This review article discusses how tumor cells communicate with the various cells composing the stroma and its implication in tumor cells’ abilities, PDA (pancreatic ductal adenocarcinoma) carcinogenesis and therapeutic response. We will focus on extracellular vesicles-mediated crosstalk and how this multifaceted dialogue impacts both cellular compartments and its subsequent impact on PDA biology. Abstract Deciphering the interactions between tumor and stromal cells is a growing field of research to improve pancreatic cancer-associated therapies and patients’ care. Indeed, while accounting for 50 to 90% of the tumor mass, many pieces of evidence reported that beyond their structural role, the non-tumoral cells composing the intra-tumoral microenvironment influence tumor cells’ proliferation, metabolism, cell death and resistance to therapies, among others. Simultaneously, tumor cells can influence non-tumoral neighboring or distant cells in order to shape a tumor-supportive and immunosuppressive environment as well as influencing the formation of metastatic niches. Among intercellular modes of communication, extracellular vesicles can simultaneously transfer the largest variety of signals and were recently reported as key effectors of cell–cell communication in pancreatic cancer, from its development to its evolution as well as its ability to resist available treatments. This review focuses on extracellular vesicles-mediated communication between different cellular components of pancreatic tumors, from the modulation of cellular activities and abilities to their biological and physiological relevance. Taking into consideration the intra-tumoral microenvironment and its extracellular-mediated crosstalk as main drivers of pancreatic cancer development should open up new therapeutic windows.
Collapse
|
18
|
Chen H, Li S, Xu W, Hong Y, Dou R, Shen H, Liu X, Wu T, He JC. Interleukin-17A promotes the differentiation of bone marrow mesenchymal stem cells into neuronal cells. Tissue Cell 2021; 69:101482. [PMID: 33418236 DOI: 10.1016/j.tice.2020.101482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 11/25/2022]
Abstract
Ischemia or hemorrhagic stroke is one of the leading causes of death and permanent disability in the worldwide population. As a consequence of the potential increasing in stroke, stem cell therapy is currently an area of intense focus. However, there are less data available regarding the promotion of healing efficacy after stroke. The present study aimed to investigate whether the cytokine interleukin-17A (IL-17A) could have a role in promoting the neuronal differentiation of mesenchymal stem cells (MSCs) and to investigate the associated molecular mechanism. Firstly, different concentration of IL-17A at range from 5-40 ng/mL was applied to stimulate bone marrow MSCs (BMSCs) during the course of neurogenic differentiation. Then reverse transcription-PCR, histological analyses and immunofluorescence assays were used to determine the optimum concentration of IL-17A in promoting the neuronal differentiation of BMSCs, which was 20 ng/mL. Mechanistically, Wnt signaling pathway was activated and Notch signaling pathway was suppressed. In addition, there were antergic effect of these two signaling pathways modulating the neurogenic differentiation of BMSCs induced by IL-17A. The present study demonstrated the potential role of IL-17A-based BMSCs strategy for promoting neuronal differentiation in vitro. However, the treatment efficacy could be considerably confirmed in animals with ischemia stroke. Therefore, a more sophisticated strategy that addresses the complicated treatment associated with stroke is needed.
Collapse
Affiliation(s)
- Hanlin Chen
- Stomatologic Hospital & College, Anhui Medical University, Key Lab of Oral Diseases Research of Anhui Province, 69 Meishan Road, Shushan District, Hefei, Anhui, 230001, China
| | - Shasha Li
- Stomatologic Hospital & College, Anhui Medical University, Key Lab of Oral Diseases Research of Anhui Province, 69 Meishan Road, Shushan District, Hefei, Anhui, 230001, China
| | - Wanting Xu
- Stomatologic Hospital & College, Anhui Medical University, Key Lab of Oral Diseases Research of Anhui Province, 69 Meishan Road, Shushan District, Hefei, Anhui, 230001, China
| | - Yongfeng Hong
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Shushan District, Hefei, Anhui, 230061, China
| | - Rengang Dou
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Shushan District, Hefei, Anhui, 230061, China
| | - Hongtao Shen
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Shushan District, Hefei, Anhui, 230061, China
| | - Xue Liu
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Shushan District, Hefei, Anhui, 230061, China
| | - Tingting Wu
- Stomatologic Hospital & College, Anhui Medical University, Key Lab of Oral Diseases Research of Anhui Province, 69 Meishan Road, Shushan District, Hefei, Anhui, 230001, China.
| | - Jia Cai He
- Stomatologic Hospital & College, Anhui Medical University, Key Lab of Oral Diseases Research of Anhui Province, 69 Meishan Road, Shushan District, Hefei, Anhui, 230001, China.
| |
Collapse
|
19
|
Abstract
Pancreatic cancer (PC) is a malignant tumour of the human digestive system that has a poor prognosis. Exosomes contain proteins and nucleic acids, and constitute a class of extracellular vesicles defined as membrane-bound nanovesicles of endocytic origin, with a diameter of 40-150 nm. Exosomes are potential diagnostic markers of PC; however, their roles in cancer initiation and progression remain unclear. Previous studies have focused on the molecular mechanisms and functions of exosomes that allow them to accelerate PC cell proliferation, migration and invasion. The present review discusses the interactions between exosomes and the pathophysiology of PC. The potential clinical applications of exosomes are also discussed.
Collapse
|
20
|
Exosomes: Their Role in Pathogenesis, Diagnosis and Treatment of Diseases. Cancers (Basel) 2020; 13:cancers13010084. [PMID: 33396739 PMCID: PMC7795854 DOI: 10.3390/cancers13010084] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The aim of this review is to provide an overview of the current scientific evidence concerning the role played by exosomes in the pathogenesis, diagnosis and treatment of diseases. The potential use of exosomes as delivery vectors for small-molecule therapeutic agents will be discussed. In addition, a special emphasis will be placed on the involvement of exosomes in oncological diseases, as well as to their potential therapeutic application as liquid biopsy tools mainly in cancer diagnosis. A better understanding of exosome biology could improve the results of clinical interventions using exosomes as therapeutic agents. Abstract Exosomes are lipid bilayer particles released from cells into their surrounding environment. These vesicles are mediators of near and long-distance intercellular communication and affect various aspects of cell biology. In addition to their biological function, they play an increasingly important role both in diagnosis and as therapeutic agents. In this paper, we review recent literature related to the molecular composition of exosomes, paying special attention to their role in pathogenesis, along with their application as biomarkers and as therapeutic tools. In this context, we analyze the potential use of exosomes in biomedicine, as well as the limitations that preclude their wider application.
Collapse
|
21
|
Shi Y, Riese DJ, Shen J. The Role of the CXCL12/CXCR4/CXCR7 Chemokine Axis in Cancer. Front Pharmacol 2020; 11:574667. [PMID: 33363463 PMCID: PMC7753359 DOI: 10.3389/fphar.2020.574667] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/29/2020] [Indexed: 12/27/2022] Open
Abstract
Chemokines are a family of small, secreted cytokines which regulate a variety of cell functions. The C-X-C motif chemokine ligand 12 (CXCL12) binds to C-X-C chemokine receptor type 4 (CXCR4) and C-X-C chemokine receptor type 7 (CXCR7). The interaction of CXCL12 and its receptors subsequently induces downstream signaling pathways with broad effects on chemotaxis, cell proliferation, migration, and gene expression. Accumulating evidence suggests that the CXCL12/CXCR4/CXCR7 axis plays a pivotal role in tumor development, survival, angiogenesis, metastasis, and tumor microenvironment. In addition, this chemokine axis promotes chemoresistance in cancer therapy via complex crosstalk with other pathways. Multiple small molecules targeting CXCR4/CXCR7 have been developed and used for preclinical and clinical cancer treatment. In this review, we describe the roles of the CXCL12/CXCR4/CXCR7 axis in cancer progression and summarize strategies to develop novel targeted cancer therapies.
Collapse
Affiliation(s)
| | | | - Jianzhong Shen
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| |
Collapse
|
22
|
Zhao X, Ren Y, Lu Z. Potential diagnostic and therapeutic roles of exosomes in pancreatic cancer. Biochim Biophys Acta Rev Cancer 2020; 1874:188414. [PMID: 32866530 DOI: 10.1016/j.bbcan.2020.188414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer (PaCa) is considered an aggressive but still asymptomatic malignancy. Due to the lack of effective diagnostic markers, PaCa is often diagnosed during late metastatic stages. Besides surgical resection, no other treatment appears to be effective during earlier stages of the disease. Exosomes are related to a class of nanovesicles coated by a bilayer lipid membrane and enriched in protein, nucleic acid, and lipid contents. They are widely present in human body fluids, including blood, saliva, and pancreatic duct fluid, with functions in signal transduction and material transport. A large number of studies have suggested for a crucial role for exosomes in PaCa, which may be utilized to improve its future diagnosis and treatment, but the underlying molecular mechanisms as well as their potential clinical applications are largely unknown. By collecting and analyzing the most up-to-date literature, here we summarize the current progress of the clinical applications related to exosomes in PaCa. Therefore, we presently provide some rationale for the potential value of exosomes in PaCa, thereby promoting putative applications in targeted PaCa treatment.
Collapse
Affiliation(s)
- Xiangxuan Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China.
| | - Ying Ren
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China
| | - Zaiming Lu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China
| |
Collapse
|
23
|
Resolving Metabolic Heterogeneity in Experimental Models of the Tumor Microenvironment from a Stable Isotope Resolved Metabolomics Perspective. Metabolites 2020; 10:metabo10060249. [PMID: 32549391 PMCID: PMC7345423 DOI: 10.3390/metabo10060249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022] Open
Abstract
The tumor microenvironment (TME) comprises complex interactions of multiple cell types that determines cell behavior and metabolism such as nutrient competition and immune suppression. We discuss the various types of heterogeneity that exist in solid tumors, and the complications this invokes for studies of TME. As human subjects and in vivo model systems are complex and difficult to manipulate, simpler 3D model systems that are compatible with flexible experimental control are necessary for studying metabolic regulation in TME. Stable Isotope Resolved Metabolomics (SIRM) is a valuable tool for tracing metabolic networks in complex systems, but at present does not directly address heterogeneous metabolism at the individual cell level. We compare the advantages and disadvantages of different model systems for SIRM experiments, with a focus on lung cancer cells, their interactions with macrophages and T cells, and their response to modulators in the immune microenvironment. We describe the experimental set up, illustrate results from 3D cultures and co-cultures of lung cancer cells with human macrophages, and outline strategies to address the heterogeneous TME.
Collapse
|
24
|
Vanherle S, Haidar M, Irobi J, Bogie JF, Hendriks JJ. Extracellular vesicle-associated lipids in central nervous system disorders. Adv Drug Deliv Rev 2020; 159:322-331. [PMID: 32360577 DOI: 10.1016/j.addr.2020.04.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/03/2020] [Accepted: 04/26/2020] [Indexed: 12/19/2022]
Abstract
Increasing evidence indicates that lipid metabolism is disturbed in central nervous system (CNS) disorders, such as multiple sclerosis, Alzheimer's, and Parkinson's disease. Extracellular vesicles (EVs), including exosomes and microvesicles, are nanosized particles that play an essential role in intercellular communication and tissue homeostasis by transporting diverse biologically active molecules, including a large variety of lipid species. In the last decade, studies defined that changes in the EV lipidome closely correlate with disease-progression and -remission in CNS disorders. In this review, we summarize and discuss these changes in the EV lipidome and elaborate on the impact of different EV-associated lipids on pathological processes in CNS disorders. We conclude that EV-associated lipids are closely associated with neuroinflammation, CNS repair, and pathological protein aggregation in CNS disorders, and that modulation of the EV lipidome represents a promising therapeutic strategy to halt disease progression in multiple sclerosis, Alzheimer's, and Parkinson's disease. Moreover, we predict that disease-stage specific EV-associated lipid signatures can be invaluable markers for the diagnosis and early detection of CNS disorders in the future.
Collapse
|
25
|
Saber SH, Ali HEA, Gaballa R, Gaballah M, Ali HI, Zerfaoui M, Abd Elmageed ZY. Exosomes are the Driving Force in Preparing the Soil for the Metastatic Seeds: Lessons from the Prostate Cancer. Cells 2020; 9:E564. [PMID: 32121073 PMCID: PMC7140426 DOI: 10.3390/cells9030564] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
Exosomes are nano-membrane vesicles that various cell types secrete during physiological and pathophysiological conditions. By shuttling bioactive molecules such as nucleic acids, proteins, and lipids to target cells, exosomes serve as key regulators for multiple cellular processes, including cancer metastasis. Recently, microvesicles have emerged as a challenge in the treatment of prostate cancer (PCa), encountered either when the number of vesicles increases or when the vesicles move into circulation, potentially with an ability to induce drug resistance, angiogenesis, and metastasis. Notably, the exosomal cargo can induce the desmoplastic response of PCa-associated cells in a tumor microenvironment (TME) to promote PCa metastasis. However, the crosstalk between PCa-derived exosomes and the TME remains only partially understood. In this review, we provide new insights into the metabolic and molecular signatures of PCa-associated exosomes in reprogramming the TME, and the subsequent promotion of aggressive phenotypes of PCa cells. Elucidating the molecular mechanisms of TME reprogramming by exosomes draws more practical and universal conclusions for the development of new therapeutic interventions when considering TME in the treatment of PCa patients.
Collapse
Affiliation(s)
- Saber H. Saber
- Laboratory of Molecular Cell Biology, Department of Zoology, Faculty of Science, Assiut University, Assiut 71515, Egypt;
| | - Hamdy E. A. Ali
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX 77843, USA; (H.E.A.A.); (R.G.); (M.G.); (H.I.A.)
| | - Rofaida Gaballa
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX 77843, USA; (H.E.A.A.); (R.G.); (M.G.); (H.I.A.)
| | - Mohamed Gaballah
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX 77843, USA; (H.E.A.A.); (R.G.); (M.G.); (H.I.A.)
| | - Hamed I. Ali
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX 77843, USA; (H.E.A.A.); (R.G.); (M.G.); (H.I.A.)
| | - Mourad Zerfaoui
- Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Zakaria Y. Abd Elmageed
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX 77843, USA; (H.E.A.A.); (R.G.); (M.G.); (H.I.A.)
| |
Collapse
|
26
|
Milon A, Kaczmarczyk M, Pawlicki P, Bilinska B, Duliban M, Gorowska-Wojtowicz E, Tworzydlo W, Kotula-Balak M. Do estrogens regulate lipid status in testicular steroidogenic Leydig cell? Acta Histochem 2019; 121:611-618. [PMID: 31126612 DOI: 10.1016/j.acthis.2019.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 12/24/2022]
Abstract
In this study mouse Leydig cell (MA-10) were treated with G-protein coupled membrane estrogen receptor antagonist (G-15; 10 nM). Cells were analyzed by Western blotting for expression of estrogen-related receptors (ERRα, β and γ), steroidogenic markers (lutropin receptor; LHR and 3β-hydroxysteroid dehydrogenase; 3β-HSD) and lipid droplet markers (perilipin; PLIN and microtubule-associated protein 1 A/1B-light chain 3; LC3). Concomitantly, microscopic analyses by light microscope (immunofluorescent staining for lipid droplets, PLIN and LC3) as well as by electron microscope (for lipid droplet ultrastructure) were utilized. For analysis of cholesterol content, cAMP level and progesterone secretion, G-15, estrogen receptor (ER) antagonist (ICI 182,780; 10 μM), 17β-estradiol (10 mM) and, bisphenol A (BPA; 10 nM) were used alone or in combinations. We revealed no changes in ERRs expression but alterations in ERRβ and γ localization in G-15-treated cells when compared to control. Partial translocation of ERRβ and γ from the cell nucleus to cytoplasm was observed. Decreased expression of LHR, 3β-HSD, PLIN and LC3 was detected. Moreover, in treated cells large lipid droplets and differences in their distribution were found. Very strong signal of co-localization for PLIN and LC3 was found in treated cells when compared to control. In ultrastructure of treated cells, degenerating lipid droplets and double membrane indicating on presence of lipophagosome were observed. We found, that only (i) BPA and G-15 did not effect on cholesterol content, (ii) BPA, G-15 and ICI did not effect on cAMP level and (iii) BPA, ICI alone and in combination, and BPA with G-15 did not modulate progesterone secretion. These findings showed complex and diverse estrogen effects on mouse Leydig cells at various steps of steroid hormone production (cholesterol storage, release and processing). Lipid homeostasis and metabolism in these cells were affected by endogenous and exogenous estrogen, interactions of receptors (GPER, ER and ERR) and GPER and ER antagonists.
Collapse
Affiliation(s)
- A Milon
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - M Kaczmarczyk
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - P Pawlicki
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - B Bilinska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - M Duliban
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - E Gorowska-Wojtowicz
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - W Tworzydlo
- Department of Developmental Biology and Invertebrate Morphology Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - M Kotula-Balak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland.
| |
Collapse
|
27
|
Ward C, Meehan J, Gray M, Kunkler IH, Langdon SP, Murray A, Argyle D. Preclinical Organotypic Models for the Assessment of Novel Cancer Therapeutics and Treatment. Curr Top Microbiol Immunol 2019. [PMID: 30859401 DOI: 10.1007/82_2019_159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The immense costs in both financial terms and preclinical research effort that occur in the development of anticancer drugs are unfortunately not matched by a substantial increase in improved clinical therapies due to the high rate of failure during clinical trials. This may be due to issues with toxicity or lack of clinical effectiveness when the drug is evaluated in patients. Currently, much cancer research is driven by the need to develop therapies that can exploit cancer cell adaptations to conditions in the tumor microenvironment such as acidosis and hypoxia, the requirement for more-specific, targeted treatments, or the exploitation of 'precision medicine' that can target known genomic changes in patient DNA. The high attrition rate for novel anticancer therapies suggests that the preclinical methods used in screening anticancer drugs need improvement. This chapter considers the advantages and disadvantages of 3D organotypic models in both cancer research and cancer drug screening, particularly in the areas of targeted drugs and the exploitation of genomic changes that can be used for therapeutic advantage in precision medicine.
Collapse
Affiliation(s)
- Carol Ward
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Roslin, Midlothian, EH25 9RG, Edinburgh, UK.
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, EH4 2XU, Edinburgh, UK.
| | - James Meehan
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, EH4 2XU, Edinburgh, UK
- School of Engineering and Physical Sciences, Institute of Sensors, Signals and Systems, Heriot-Watt University, EH14 4AS, Edinburgh, UK
| | - Mark Gray
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Roslin, Midlothian, EH25 9RG, Edinburgh, UK
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, EH4 2XU, Edinburgh, UK
| | - Ian H Kunkler
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, EH4 2XU, Edinburgh, UK
| | - Simon P Langdon
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, EH4 2XU, Edinburgh, UK
| | - Alan Murray
- School of Engineering, Faraday Building, The King's Buildings, Mayfield Road, EH9 3JL, Edinburgh, UK
| | - David Argyle
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Roslin, Midlothian, EH25 9RG, Edinburgh, UK
| |
Collapse
|
28
|
Jalalian SH, Ramezani M, Jalalian SA, Abnous K, Taghdisi SM. Exosomes, new biomarkers in early cancer detection. Anal Biochem 2019; 571:1-13. [PMID: 30776327 DOI: 10.1016/j.ab.2019.02.013] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/26/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023]
Abstract
Exosomes are endosomal-derived vesicles, playing a major role in cell-to-cell communication. Multiple cells secret these vesicles to induce and inhibit different cellular and molecular pathways. Cancer-derived exosomes have been shown to affect development of cancer in different stages and contribute to the recruitment and reprogramming of both proximal and distal tissues. The growing interest in defining the clinical relevance of these nano-sized particles in cancers, has led to the identification of either tissue- or disease-specific exosomal contents, such as nucleic acids, proteins and lipids as a source of new biomarkers which propose the diagnostic potentials of exosomes in early detection of cancers. In this review, we have discussed some aspects of exosomes including their contents, applications and isolation techniques in the field of early cancer detection. Although, exosomes are considered as ideal biomarkers in cancer diagnosis, due to their unique characteristics, there is still a long way in the development of exosome-based assays.
Collapse
Affiliation(s)
- Seyed Hamid Jalalian
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Students Research Committee, Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Academic Center for Education, Culture and Research (ACECR)-Mashhad Branch, Mashhad, Iran
| | - Mohammad Ramezani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ali Jalalian
- Students Research Committee, Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
29
|
Batista IA, Melo SA. Exosomes and the Future of Immunotherapy in Pancreatic Cancer. Int J Mol Sci 2019; 20:ijms20030567. [PMID: 30699928 PMCID: PMC6387297 DOI: 10.3390/ijms20030567] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/25/2019] [Indexed: 12/26/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease, associated with a late diagnosis and a five-year survival rate of 8%. Currently available treatments fall short in improving the survival and quality of life of PDAC patients. The only possible curative option is still the surgical resection of the tumor. Exosomes are extracellular vesicles secreted by cells that transport proteins, lipids, and nucleic acids to other cells, triggering phenotypic changes in the recipient cells. Tumor cells often secrete increased amounts of exosomes. Tumor exosomes are now accepted as important players in the remodeling of PDAC tumor stroma, particularly in the establishment of an immunosuppressive microenvironment. This has sparked the interest in their usefulness as mediators of immunomodulatory effects for the treatment of PDAC. In fact, exosomes are now under study to understand their potential as nanocarriers to stimulate an immune response against cancer. This review highlights the latest findings regarding the function of exosomes in tumor-driven immunomodulation, and the challenges and advantages associated with the use of these vesicles to potentiate immunotherapy in PDAC.
Collapse
Affiliation(s)
- Ines A Batista
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal (i3S), 4200-135 Porto, Portugal.
- Institute of Molecular Pathology & Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal.
| | - Sonia A Melo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal (i3S), 4200-135 Porto, Portugal.
- Institute of Molecular Pathology & Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal.
- Medical Faculty of the University of Porto (FMUP), 4200-319 Porto, Portugal.
| |
Collapse
|
30
|
Fan TWM, Zhang X, Wang C, Yang Y, Kang WY, Arnold S, Higashi RM, Liu J, Lane AN. Exosomal lipids for classifying early and late stage non-small cell lung cancer. Anal Chim Acta 2018; 1037:256-264. [PMID: 30292300 PMCID: PMC6582997 DOI: 10.1016/j.aca.2018.02.051] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/16/2018] [Accepted: 02/19/2018] [Indexed: 12/20/2022]
Abstract
Lung cancer is the leading cause of cancer deaths in the United States. Patients with early stage lung cancer have the best prognosis with surgical removal of the tumor, but the disease is often asymptomatic until advanced disease develops, and there are no effective blood-based screening methods for early detection of lung cancer in at-risk populations. We have explored the lipid profiles of blood plasma exosomes using ultra high-resolution Fourier transform mass spectrometry (UHR-FTMS) for early detection of the prevalent non-small cell lung cancers (NSCLC). Exosomes are nanovehicles released by various cells and tumor tissues to elicit important biofunctions such as immune modulation and tumor development. Plasma exosomal lipid profiles were acquired from 39 normal and 91 NSCLC subjects (44 early stage and 47 late stage). We have applied two multivariate statistical methods, Random Forest (RF) and Least Absolute Shrinkage and Selection Operator (LASSO) to classify the data. For the RF method, the Gini importance of the assigned lipids was calculated to select 16 lipids with top importance. Using the LASSO method, 7 features were selected based on a grouped LASSO penalty. The Area Under the Receiver Operating Characteristic curve for early and late stage cancer versus normal subjects using the selected lipid features was 0.85 and 0.88 for RF and 0.79 and 0.77 for LASSO, respectively. These results show the value of RF and LASSO for metabolomics data-based biomarker development, which provide robust an independent classifiers with sparse data sets. Application of LASSO and Random Forests identifies lipid features that successfully distinguish early stage lung cancer patient from healthy individuals.
Collapse
Affiliation(s)
- Teresa W M Fan
- Center for Environmental and Systems Biochemistry (CESB), Markey Cancer Center, Department of Toxicology and Cancer Biology, University of Kentucky, United States.
| | - Xiaofei Zhang
- Department of Computer Science and Markey Cancer Center, University of Kentucky, United States
| | - Chi Wang
- Department of Biostatistics and Markey Cancer Center, University of Kentucky, United States
| | - Ye Yang
- Center for Environmental and Systems Biochemistry (CESB), Markey Cancer Center, Department of Toxicology and Cancer Biology, University of Kentucky, United States
| | - Woo-Young Kang
- Center for Environmental and Systems Biochemistry (CESB), Markey Cancer Center, Department of Toxicology and Cancer Biology, University of Kentucky, United States
| | - Susanne Arnold
- Markey Cancer Center, University of Kentucky, United States
| | - Richard M Higashi
- Center for Environmental and Systems Biochemistry (CESB), Markey Cancer Center, Department of Toxicology and Cancer Biology, University of Kentucky, United States
| | - Jinze Liu
- Department of Computer Science and Markey Cancer Center, University of Kentucky, United States
| | - Andrew N Lane
- Center for Environmental and Systems Biochemistry (CESB), Markey Cancer Center, Department of Toxicology and Cancer Biology, University of Kentucky, United States.
| |
Collapse
|
31
|
Qian L, Yu S, Chen Z, Meng Z, Huang S, Wang P. Functions and clinical implications of exosomes in pancreatic cancer. Biochim Biophys Acta Rev Cancer 2018; 1871:75-84. [PMID: 30419313 DOI: 10.1016/j.bbcan.2018.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/31/2018] [Accepted: 11/04/2018] [Indexed: 01/18/2023]
Abstract
Pancreatic cancer is one of the most aggressive human malignancies and is associated with a dismal prognosis, which can be contributed to its atypical symptoms, metastatic propensity, and significant chemoresistance. Emerging evidence shows that pancreatic cancer cell-derived exosomes (PEXs) play critical roles in tumorigenesis and tumor development, as they are involved in drug resistance, immune evasion and metabolic reprograming, and distant metastasis of pancreatic cancer. Their numerous differentially expressed and functional contents make PEXs promising screening tools and therapeutic targets, which require further exploration. In this review, we focus on the functions of PEX contents and their clinical implications in pancreatic cancer.
Collapse
Affiliation(s)
- Ling Qian
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 2000332, China
| | - Shulin Yu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 2000332, China
| | - Zhen Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 2000332, China
| | - Zhiqiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 2000332, China
| | - Shenglin Huang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 2000332, China; Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 2000332, China.
| | - Peng Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 2000332, China.
| |
Collapse
|
32
|
ZHOU Y, CAO HB, LI WJ, ZHAO L. The CXCL12 (SDF-1)/CXCR4 chemokine axis: Oncogenic properties, molecular targeting, and synthetic and natural product CXCR4 inhibitors for cancer therapy. Chin J Nat Med 2018; 16:801-810. [DOI: 10.1016/s1875-5364(18)30122-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Indexed: 02/07/2023]
|
33
|
The implications of signaling lipids in cancer metastasis. Exp Mol Med 2018; 50:1-10. [PMID: 30242145 PMCID: PMC6154999 DOI: 10.1038/s12276-018-0150-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 12/19/2022] Open
Abstract
Metastasis is the most malignant stage of cancer. Lipid metabolic abnormalities are now increasingly recognized as characteristics of cancer cells. The accumulation of certain lipid species, such as signaling lipids, due to the avidity of lipid metabolism may be a causal factor of tumor malignant progression and metastatic behavior. In this review, we first describe signaling lipids implicated in cancer migration, invasion and metastasis. Next, we summarize the regulatory signaling hubs of lipid anabolic and catabolic metabolism. We then address lipid-rich circulating tumor cells (CTCs) and the lipid composition of exosomes budded off from tumor cells. We also present advances in targeting the regulatory hubs of lipid metabolism and signaling lipids in cancer therapy. Given the complexity of metabolic disorders in cancer, the development of significant portfolios of approaches to target signaling lipids by the integration of multiple chemical modulations, as well as molecular imaging modalities, should offer promising strategies for cancer therapy. Lipid molecules with cellular signaling roles are increasingly recognized as playing a role in cancer metastasis, the dangerous spread of cancer cells beyond a primary tumor, and these lipids may offer new targets for anti-cancer treatments. Researchers in China led by Xiangjian Luo and Ya Cao at the Central South University in Changsha review the involvement of signaling lipids in cancer. The signaling lipids are a structurally diverse range of molecules that can regulate metabolic processes which become disrupted in cancer. They can act within cells and also when released from some cells to interact with others. Some of the lipids are released in tiny membrane-bound sacs called exosomes. Modifying the lipid content of exosomes, or purifying and then re-administering exosomes to deliver drugs, could offer promising options for developing novel treatments for cancer.
Collapse
|
34
|
Brzozowski JS, Jankowski H, Bond DR, McCague SB, Munro BR, Predebon MJ, Scarlett CJ, Skelding KA, Weidenhofer J. Lipidomic profiling of extracellular vesicles derived from prostate and prostate cancer cell lines. Lipids Health Dis 2018; 17:211. [PMID: 30193584 PMCID: PMC6128989 DOI: 10.1186/s12944-018-0854-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 08/28/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are produced and secreted from most cells of the body and can be recovered in biological fluids. Although there has been extensive characterisation of the protein and nucleic acid component of EVs, their lipidome has received little attention and may represent a unique and untapped source of biomarkers for prostate cancer diagnosis and prognosis. METHODS EVs were isolated from non-tumourigenic (RWPE1), tumourigenic (NB26) and metastatic (PC-3) prostate cell lines. Lipids were extracted and subsequently used for targeted lipidomics analysis for the quantitation of molecular lipid species. RESULTS A total of 187 molecular lipid species were quantitatively identified in EV samples showing differential abundance between RWPE1, NB26 and PC-3 EV samples. Fatty acids, glycerolipids and prenol lipids were more highly abundant in EVs from non-tumourigenic cells, whereas sterol lipids, sphingolipids and glycerophospholipids were more highly abundant in EVs from tumourigenic or metastatic cells. CONCLUSIONS This study identified differences in the molecular lipid species of prostate cell-derived EVs, increasing our understanding of the changes that occur to the EV lipidome during prostate cancer progression. These differences highlight the importance of characterising the EV lipidome, which may lead to improved diagnostic and prognostic biomarkers for prostate cancer.
Collapse
Affiliation(s)
- Joshua S. Brzozowski
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Ourimbah, NSW Australia
- Cancer Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW Australia
| | - Helen Jankowski
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Ourimbah, NSW Australia
- Cancer Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW Australia
| | - Danielle R. Bond
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Ourimbah, NSW Australia
- Cancer Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW Australia
| | - Siobhan B. McCague
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Ourimbah, NSW Australia
- Cancer Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW Australia
| | - Benjamin R. Munro
- Cancer Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW Australia
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, NSW Australia
| | - Melanie J. Predebon
- Cancer Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW Australia
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, NSW Australia
| | - Christopher J. Scarlett
- Cancer Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW Australia
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, NSW Australia
| | - Kathryn A. Skelding
- Cancer Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW Australia
| | - Judith Weidenhofer
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Ourimbah, NSW Australia
- Cancer Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW Australia
| |
Collapse
|
35
|
Armstrong EA, Beal EW, Chakedis J, Paredes AZ, Moris D, Pawlik TM, Schmidt CR, Dillhoff ME. Exosomes in Pancreatic Cancer: from Early Detection to Treatment. J Gastrointest Surg 2018; 22:737-750. [PMID: 29423813 DOI: 10.1007/s11605-018-3693-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/12/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Pancreatic cancer (PC) remains one of the most fatal forms of cancer worldwide with incidence nearly equal to mortality. This is often attributed to the fact that diagnosis is often not made until later disease stages when treatment proves difficult. Efforts have been made to reduce the mortality of PC through improvements in early screening techniques and treatments of late-stage disease. Exosomes, small extracellular vesicles involved in cellular communication, have shown promise in helping understand PC disease biology. METHODS In this review, we discuss current studies of the role of exosomes in PC physiology, and their potential use as diagnostic and treatment tools. RESULTS Exosomes have a role in diagnosing pancreatic cancer and in understanding tumor biology including migration, proliferation, chemoresistance, immunosuppression, cachexia and diabetes, and have a potential role in therapy for pancreatic cancer. CONCLUSIONS Exosomal analysis is beneficial in demonstrating mechanisms behind PC growth and metastasis, immunosuppression, drug resistance, and paraneoplastic conditions. Furthermore, the use of exosomes can be beneficial in detecting early-stage PC and exosomes have potential applications as therapeutic targets.
Collapse
Affiliation(s)
- Emily A Armstrong
- The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Eliza W Beal
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, 320 W 10th Ave. M256 Starling Loving Hall, Columbus, OH, 43210, USA.
| | - Jeffery Chakedis
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, 320 W 10th Ave. M256 Starling Loving Hall, Columbus, OH, 43210, USA
| | - Anghela Z Paredes
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, 320 W 10th Ave. M256 Starling Loving Hall, Columbus, OH, 43210, USA
| | - Demetrios Moris
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, 320 W 10th Ave. M256 Starling Loving Hall, Columbus, OH, 43210, USA
| | - Timothy M Pawlik
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, 320 W 10th Ave. M256 Starling Loving Hall, Columbus, OH, 43210, USA
| | - Carl R Schmidt
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, 320 W 10th Ave. M256 Starling Loving Hall, Columbus, OH, 43210, USA
| | - Mary E Dillhoff
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, 320 W 10th Ave. M256 Starling Loving Hall, Columbus, OH, 43210, USA
| |
Collapse
|
36
|
Yan Y, Fu G, Ming L. Role of exosomes in pancreatic cancer. Oncol Lett 2018; 15:7479-7488. [PMID: 29731898 PMCID: PMC5920881 DOI: 10.3892/ol.2018.8348] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 11/20/2017] [Indexed: 01/10/2023] Open
Abstract
Pancreatic cancer is one of the most lethal malignancies. Exosomes, which are released by multiple cell types, such as cancer cells, contain functional biomolecules (including proteins, nucleic acids and lipids) that can be horizontally delivered to recipient cells. Exosomes act as the most prominent mediator of intercellular communication and can regulate, instruct and re-educate their surrounding microenvironment and target specific organs. The present review performed an extensive search of multiple databases from 2005 to April 23 2017, for eligible literature relating to exosomes and their role in pancreatic cancer. With a focus on the latest findings for pancreatic cancer exosomes, their role in tumorigenesis was summarized, as well as their aggressive behaviors and their contribution to immunosuppression and therapy resistance in pancreatic cancer. In addition, the potential function of exosomes as novel diagnostic biomarkers is briefly discussed. Finally, we propose potential clinical applications for exosomes in pancreatic cancer.
Collapse
Affiliation(s)
- Yunmeng Yan
- Department of Clinical Laboratory and Key Clinical Laboratory of The Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Guangzhen Fu
- Department of Clinical Laboratory and Key Clinical Laboratory of The Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Liang Ming
- Department of Clinical Laboratory and Key Clinical Laboratory of The Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
37
|
Samuel P, Fabbri M, Carter DRF. Mechanisms of Drug Resistance in Cancer: The Role of Extracellular Vesicles. Proteomics 2017; 17. [PMID: 28941129 DOI: 10.1002/pmic.201600375] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/11/2017] [Indexed: 12/11/2022]
Abstract
Drug resistance remains a major barrier to the successful treatment of cancer. The mechanisms by which therapeutic resistance arises are multifactorial. Recent evidence has shown that extracellular vesicles (EVs) play a role in mediating drug resistance. EVs are small vesicles carrying a variety of macromolecular cargo released by cells into the extracellular space and can be taken up into recipient cells, resulting in transfer of cellular material. EVs can mediate drug resistance by several mechanisms. They can serve as a pathway for sequestration of cytotoxic drugs, reducing the effective concentration at target sites. They can act as decoys carrying membrane proteins and capturing monoclonal antibodies intended to target receptors at the cell surface. EVs from resistant tumor cells can deliver mRNA, miRNA, long noncoding RNA, and protein inducing resistance in sensitive cells. This provides a new model for how resistance that arises can then spread through a heterogeneous tumor. EVs also mediate cross-talk between cancer cells and stromal cells in the tumor microenvironment, leading to tumor progression and acquisition of therapeutic resistance. In this review, we will describe what is known about how EVs can induce drug resistance, and discuss the ways in which EVs could be used as therapeutic targets or diagnostic markers for managing cancer treatment. While further characterization of the vesiculome and the mechanisms of EV function are still required, EVs offer an exciting opportunity in the fight against cancer.
Collapse
Affiliation(s)
- Priya Samuel
- Department of Biological and Medical Sciences Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Muller Fabbri
- Department of Pediatrics and Microbiology & Molecular Immunology University of Southern California-Keck School of Medicine Norris Comprehensive Cancer Center Children's Center for Cancer and Blood Diseases, Children's Hospital, Los Angeles, CA, USA
| | - David Raul Francisco Carter
- Department of Biological and Medical Sciences Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| |
Collapse
|
38
|
Intercellular Transfer of Cancer Drug Resistance Traits by Extracellular Vesicles. Trends Mol Med 2016; 21:595-608. [PMID: 26432017 DOI: 10.1016/j.molmed.2015.08.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/31/2015] [Accepted: 08/06/2015] [Indexed: 12/21/2022]
Abstract
Extracellular vesicles (EVs) are nanosized particles (100-1000 nm) enclosed by a phospholipid bilayer that have been described as important mediators of intercellular communication. The role of EVs in oncobiology has been extensively studied, including their contribution to the horizontal transfer of drug resistance from drug-resistant to drug-sensitive cancer cells. This review focuses on the EVs cargo responsible for this intercellular transfer of drug resistance; namely, drug-efflux pumps, miRNAs, long noncoding RNAs (lncRNAs), and other mediators. Additionally, the known molecular mechanisms and features of this transfer are discussed. This is an emerging area of research and we highlight topics that need to be further studied to fully understand and counteract the intercellular transfer of drug resistance mediated by EVs.
Collapse
|
39
|
Lane AN, Higashi RM, Fan TWM. Preclinical models for interrogating drug action in human cancers using Stable Isotope Resolved Metabolomics (SIRM). Metabolomics 2016; 12:118. [PMID: 27489532 PMCID: PMC4968890 DOI: 10.1007/s11306-016-1065-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
AIMS In this review we compare the advantages and disadvantages of different model biological systems for determining the metabolic functions of cells in complex environments, how they may change in different disease states, and respond to therapeutic interventions. BACKGROUND All preclinical drug-testing models have advantages and drawbacks. We compare and contrast established cell, organoid and animal models with ex vivo organ or tissue culture and in vivo human experiments in the context of metabolic readout of drug efficacy. As metabolism reports directly on the biochemical state of cells and tissues, it can be very sensitive to drugs and/or other environmental changes. This is especially so when metabolic activities are probed by stable isotope tracing methods, which can also provide detailed mechanistic information on drug action. We have developed and been applying Stable Isotope-Resolved Metabolomics (SIRM) to examine metabolic reprogramming of human lung cancer cells in monoculture, in mouse xenograft/explant models, and in lung cancer patients in situ (Lane et al. 2011; T. W. Fan et al. 2011; T. W-M. Fan et al. 2012; T. W. Fan et al. 2012; Xie et al. 2014b; Ren et al. 2014a; Sellers et al. 2015b). We are able to determine the influence of the tumor microenvironment using these models. We have now extended the range of models to fresh human tissue slices, similar to those originally described by O. Warburg (Warburg 1923), which retain the native tissue architecture and heterogeneity with a paired benign versus cancer design under defined cell culture conditions. This platform offers an unprecedented human tissue model for preclinical studies on metabolic reprogramming of human cancer cells in their tissue context, and response to drug treatment (Xie et al. 2014a). As the microenvironment of the target human tissue is retained and individual patient's response to drugs is obtained, this platform promises to transcend current limitations of drug selection for clinical trials or treatments. CONCLUSIONS AND FUTURE WORK Development of ex vivo human tissue and animal models with humanized organs including bone marrow and liver show considerable promise for analyzing drug responses that are more relevant to humans. Similarly using stable isotope tracer methods with these improved models in advanced stages of the drug development pipeline, in conjunction with tissue biopsy is expected significantly to reduce the high failure rate of experimental drugs in Phase II and III clinical trials.
Collapse
Affiliation(s)
- Andrew N Lane
- Center for Environmental and Systems Biochemistry, University of Kentucky
| | - Richard M Higashi
- Center for Environmental and Systems Biochemistry, University of Kentucky
| | - Teresa W-M Fan
- Center for Environmental and Systems Biochemistry, University of Kentucky
| |
Collapse
|
40
|
Erb U, Zöller M. Progress and potential of exosome analysis for early pancreatic cancer detection. Expert Rev Mol Diagn 2016; 16:757-67. [PMID: 27206554 DOI: 10.1080/14737159.2016.1187563] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Pancreatic cancer (PaCa) is the most deadly malignancy, due to late diagnosis prohibiting surgery. Thus, strong efforts are taken improving early diagnosis via biomarkers recovered in the serum of PaCa patients. AREAS COVERED One promising option are PaCa-derived exosomes in patients' sera. Exosomes, small vesicles delivered by live cells and recovered in all body fluids, are a powerful diagnostic tool due to relative stability and composition covering the whole range of cancer-related biomarkers including proteins, metabolites, DNA, DNA modifications, coding and noncoding RNA. We discuss the mechanisms accounting for the condensed packaging of biomarkers, refer to studies using PaCa serum-exosomes for diagnosis. Based on an extensive literature search, we outline questions that answers may help establishing a serum-exosome-based screening for early PaCa detection. Expert commentary: Improved proteomic and genomic characterization and progress in the biogenesis of exosomes will allow for optimized and unified screening panels for PaCa diagnosis via TEX in body fluids.
Collapse
Affiliation(s)
- Ulrike Erb
- a Department of Tumor Cell Biology , University Hospital of Surgery , Heidelberg , Germany
| | - Margot Zöller
- a Department of Tumor Cell Biology , University Hospital of Surgery , Heidelberg , Germany
| |
Collapse
|
41
|
Ferguson SW, Nguyen J. Exosomes as therapeutics: The implications of molecular composition and exosomal heterogeneity. J Control Release 2016; 228:179-190. [PMID: 26941033 DOI: 10.1016/j.jconrel.2016.02.037] [Citation(s) in RCA: 285] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 12/20/2022]
Abstract
Harnessing exosomes as therapeutic drug delivery vehicles requires a better understanding of exosomal composition and their mode of action. A full appreciation of all the exosomal components (proteins, lipids, and RNA content) will be important for the design of effective exosome-based or exosome-mimicking drug carriers. In this review we describe the presence of rarely studied, non-coding RNAs that exist in high numbers in exosomes. We discuss the implications of the molecular composition and heterogeneity of exosomes on their biological and therapeutic effects. Finally, we highlight outstanding questions with regard to RNA loading into exosomes, analytical methods to sort exosomes and their sub-populations, and the effects of exosomal proteins and lipids on recipient cells. Investigations into these facets of exosome biology will further advance the field, could lead to the clinical translation of exosome-based therapeutics, and aid in the reverse-engineering of synthetic exosomes. Although synthetic exosomes are still an underexplored area, they could offer researchers a way to manufacture exosomes with highly defined structure, composition, and function.
Collapse
Affiliation(s)
- Scott W Ferguson
- Department of Pharmaceutical Sciences, School of Pharmacy, The State University of New York at Buffalo, United States
| | - Juliane Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy, The State University of New York at Buffalo, United States.
| |
Collapse
|
42
|
The Emerging Role of Extracellular Vesicle-Mediated Drug Resistance in Cancers: Implications in Advanced Prostate Cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:454837. [PMID: 26587537 PMCID: PMC4637461 DOI: 10.1155/2015/454837] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 07/05/2015] [Indexed: 01/07/2023]
Abstract
Emerging evidence has shown that the extracellular vesicles (EVs) regulate various biological processes and can control cell proliferation and survival, as well as being involved in normal cell development and diseases such as cancers. In cancer treatment, development of acquired drug resistance phenotype is a serious issue. Recently it has been shown that the presence of multidrug resistance proteins such as Pgp-1 and enrichment of the lipid ceramide in EVs could have a role in mediating drug resistance. EVs could also mediate multidrug resistance through uptake of drugs in vesicles and thus limit the bioavailability of drugs to treat cancer cells. In this review, we discussed the emerging evidence of the role EVs play in mediating drug resistance in cancers and in particular the role of EVs mediating drug resistance in advanced prostate cancer. The role of EV-associated multidrug resistance proteins, miRNA, mRNA, and lipid as well as the potential interaction(s) among these factors was probed. Lastly, we provide an overview of the current available treatments for advanced prostate cancer, considering where EVs may mediate the development of resistance against these drugs.
Collapse
|