1
|
Akane Y, Yamamoto M, Takebayashi A, Hamada R, Igarashi K, Emori M, Sugita S, Takada K, Hasegawa T, Tsugawa T. Crizotinib therapy for congenital embryonal rhabdomyosarcoma associated with an ATIC-ALK gene fusion. Pediatr Blood Cancer 2024; 71:e31148. [PMID: 38884266 DOI: 10.1002/pbc.31148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 06/18/2024]
Affiliation(s)
- Yusuke Akane
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masaki Yamamoto
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akira Takebayashi
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ryo Hamada
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Keita Igarashi
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Makoto Emori
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shintaro Sugita
- Department of Surgical Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kohichi Takada
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tadashi Hasegawa
- Department of Surgical Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takeshi Tsugawa
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
2
|
Liu W, Liu HJ, Wang WY, Tang Y, Zhao S, Zhang WY, Yan JQ, Liu WP. Multisystem ALK-positive histiocytosis: a multi-case study and literature review. Orphanet J Rare Dis 2023; 18:53. [PMID: 36915094 PMCID: PMC10010018 DOI: 10.1186/s13023-023-02649-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/27/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Anaplastic lymphoma kinase (ALK)-positive histiocytosis, a novel rare histiocytic proliferation, was first described in 2008; it occurs in early infancy with liver and hematopoietic involvement. The spectrum was subsequently broadened to include localized diseases in older children and young adults. However, its full clinicopathological features and molecular lineage have not been fully elucidated. RESULTS Here, we report four cases of multisystem ALK-positive histiocytosis without hematopoietic involvement. Clinically, three patients were adults aged between 32 and 51 years. Two patients', whose main manifestations were intracranial mass and numerous micronodules in the thoracoabdominal cavity organs and skin papules respectively, had a partial response to ALK inhibitors after surgery. One patient presented with mediastinal neoplasm without surgical treatment, and progressive disease occurred after two years of ALK inhibitor therapy. The fourth patient was a 17-month-old male with a large intracranial mass and presented with a poor response to ALK inhibitor and chemoradiotherapy; he died eight months after surgery. Pathologically, the histiocytes were large, with abundant eosinophilic cytoplasm, and mixed with variable numbers of foamy cells and Touton giant cells. Interstitial fibrosis was also observed. Histiocytes were positive for macrophage markers (CD68 and CD163) and ALK. KIF5B-ALK fusions were detected in two cases, EML4-ALK in one, and both DCTN1-ALK and VRK2-ALK fusions were detected in one case. CONCLUSIONS We observed that ALK inhibitors present robust and durable responses in adult patients but a poor response in young children with central nervous system involvement. There is no consensus on the optimal treatment regimen and long-term prognosis requires further observation. Moreover, every unusual histiocytic proliferative lesion, especially unresectable and multisystem involvement, should be routinely tested for ALK immunohistochemical staining to identify this rare disease.
Collapse
Affiliation(s)
- Wei Liu
- Department of Pathology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Hong-Jie Liu
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei-Ya Wang
- Department of Pathology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan Province, China
| | - Yuan Tang
- Department of Pathology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan Province, China
| | - Sha Zhao
- Department of Pathology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan Province, China
| | - Wen-Yan Zhang
- Department of Pathology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan Province, China
| | - Jia-Qi Yan
- Department of Pathology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan Province, China
| | - Wei-Ping Liu
- Department of Pathology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
3
|
Singh P, Nambirajan A, Gaur MK, Raj R, Kumar S, Malik PS, Jain D. Primary pulmonary epithelioid inflammatory myofibroblastic sarcoma: a rare entity and a literature review. J Pathol Transl Med 2022; 56:231-237. [PMID: 35843628 PMCID: PMC9288894 DOI: 10.4132/jptm.2022.05.08] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/08/2022] [Indexed: 11/25/2022] Open
Abstract
Epithelioid inflammatory myofibroblastic sarcoma (EIMS) is an aggressive subtype of inflammatory myofibroblastic tumor (IMT) harboring anaplastic lymphoma kinase (ALK) gene fusions and is associated with high risk of local recurrence and poor prognosis. Herein, we present a young, non-smoking male who presented with complaints of cough and dyspnoea and was found to harbor a large right lower lobe lung mass. Biopsy showed a high-grade epithelioid to rhabdoid tumor with ALK and desmin protein expression. The patient initially received 5 cycles of crizotinib and remained stable for 1 year; however, he then developed multiple bony metastases, for which complete surgical resection was performed. Histopathology confirmed the diagnosis of EIMS, with ALK gene rearrangement demonstrated by fluorescence in situ hybridization. Postoperatively, the patient is asymptomatic with stable metastatic disease on crizotinib and has been started on palliative radiotherapy. EIMS is a very rare subtype of IMT that needs to be included in the differential diagnosis of ALKexpressing lung malignancies in young adults.
Collapse
Affiliation(s)
- Priyanka Singh
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Aruna Nambirajan
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Manish Kumar Gaur
- Department of Surgical Oncology, Dr. BRA Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Rahul Raj
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Sunil Kumar
- Department of Surgical Oncology, Dr. BRA Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Prabhat Singh Malik
- Department of Medical Oncology, Dr. BRA Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Deepali Jain
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
- Corresponding Author: Deepali Jain, MD, FIAC, Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India Tel: +91-1126549200, E-mail:
| |
Collapse
|
4
|
Fung CK, Chow C, Chan WK, Choi EWK, To KF, Chan JKC, Cheuk W. Spindle cell/sclerosing rhabdomyosarcoma with DCTN1::ALK fusion: broadening the molecular spectrum with potential therapeutic implications. Virchows Arch 2022; 480:927-932. [PMID: 35229187 DOI: 10.1007/s00428-022-03305-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 12/20/2022]
Abstract
Spindle cell/sclerosing rbabdomyosarcoma (RMS) is a recently characterized variant of RMS with several distinct molecular subtypes. We describe an example occurring in the tongue of a 10-year-old boy with a novel DCTN1::ALK fusion. The tumor exhibited infiltrative growth and was comprised of fascicles and focally whorls of spindle cells with eosinophilic cytoplasm, in a collagenous or myxoid stroma. Moderate cytologic atypia, mitotic activity (2/10 HPFs), and perineural invasion were identified. The tumor cells expressed actin, desmin, MyoD1, myogenin, and ALK. An in-frame fusion between DCTN1 exon 26 and ALK exon 20 was detected by RNA sequencing, which was confirmed by split reads and supported by FISH studies. The tumor showed an indolent behavior with local recurrence 3 years after excision. This study broadens the molecular spectrum of spindle cell/sclerosing RMS and this molecular aberration may represent a potential therapeutic target for unresectable or disseminated disease.
Collapse
Affiliation(s)
- C K Fung
- Department of Pathology, United Christian Hospital, Kwun Tong, Hong Kong
| | - Chit Chow
- Department of Cellular and Anatomical Pathology, Chinese University of Hong Kong, Shatin, Hong Kong
| | - W K Chan
- Department of Pathology, Hong Kong Sanatorium and Hospital, Happy Valley, Hong Kong
| | - Eric W K Choi
- Department of Pathology, Hong Kong Sanatorium and Hospital, Happy Valley, Hong Kong
| | - K F To
- Department of Cellular and Anatomical Pathology, Chinese University of Hong Kong, Shatin, Hong Kong
| | - John K C Chan
- Department of Pathology, Queen Elizabeth Hospital, Hong Kong, SAR, China
| | - Wah Cheuk
- Department of Pathology, Queen Elizabeth Hospital, Hong Kong, SAR, China.
| |
Collapse
|
5
|
ALK alterations in salivary gland carcinomas. Virchows Arch 2020; 478:933-941. [PMID: 33237469 PMCID: PMC8099847 DOI: 10.1007/s00428-020-02971-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/25/2020] [Accepted: 11/15/2020] [Indexed: 12/15/2022]
Abstract
Salivary gland carcinomas represent a heterogeneous group of poorly characterized head and neck tumors. The purpose of this study was to evaluate ALK gene and protein aberrations in a large, well-characterized cohort of these tumors. A total of 182 salivary gland carcinomas were tested for anaplastic lymphoma kinase (ALK) positivity by immunohistochemistry (IHC) using the cut-off of 10% positive cells. ALK positive tumors were subjected to FISH analysis and followed by hybrid capture–based next generation sequencing (NGS). Of the 182 tumors, 8 were ALK positive by IHC. Further analysis using hybrid capture NGS analysis revealed a novel MYO18A (Exon1-40)-ALK (exon 20-29) gene fusion in one case of intraductal carcinoma. Additional genomic analyses resulted in the detection of inactivating mutations in BRAF and TP53, as well as amplifications of ERBB2 and ALK. ALK rearrangements are a rare entity in salivary gland carcinomas. We identified a potentially targetable novel ALK fusion in an intraductal carcinoma of minor salivary glands.
Collapse
|
6
|
Abstract
Rhabdomyosarcoma (RMS) is an aggressive childhood mesenchymal tumor with two major molecular and histopathologic subtypes: fusion-positive (FP)RMS, characterized by the PAX3-FOXO1 fusion protein and largely of alveolar histology, and fusion-negative (FN)RMS, the majority of which exhibit embryonal tumor histology. Metastatic disease continues to be associated with poor overall survival despite intensive treatment strategies. Studies on RMS biology have provided some insight into autocrine as well as paracrine signaling pathways that contribute to invasion and metastatic propensity. Such pathways include those driven by the PAX3-FOXO1 fusion oncoprotein in FPRMS and signaling pathways such as IGF/RAS/MEK/ERK, PI3K/AKT/mTOR, cMET, FGFR4, and PDGFR in both FP and FNRMS. In addition, specific cytoskeletal proteins, G protein coupled receptors, Hedgehog, Notch, Wnt, Hippo, and p53 pathways play a role, as do specific microRNA. Paracrine factors, including secreted proteins and RMS-derived exosomes that carry cargo of protein and miRNA, have also recently emerged as potentially important players in RMS biology. This review summarizes the known factors contributing to RMS invasion and metastasis and their implications on identifying targets for treatment and a better understanding of metastatic RMS.
Collapse
|
7
|
Chrisinger JSA, Wehrli B, Dickson BC, Fasih S, Hirbe AC, Shultz DB, Zadeh G, Gupta AA, Demicco EG. Epithelioid and spindle cell rhabdomyosarcoma with FUS-TFCP2 or EWSR1-TFCP2 fusion: report of two cases. VIRCHOWS ARCHIV : AN INTERNATIONAL JOURNAL OF PATHOLOGY 2020. [PMID: 32556562 DOI: 10.1007/s00428‐020‐02870‐0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The WHO Classification of Tumors of Soft Tissue and Bone divides rhabdomyosarcoma (RMS) into alveolar, embryonal, pleomorphic, and spindle cell/sclerosing types. Advances in molecular diagnostics have allowed for further refinement of RMS classification including the identification of new subtypes. Very rare RMS with epithelioid and spindle cell morphology, female predominance, marked osseous predilection, ALK expression, EWSR1/FUS-TFCP2 gene fusions, and highly aggressive clinical behavior have recently been recognized with only 23 cases reported in the English language literature. Herein, we report two additional cases with detailed clinicopathologic description and molecular confirmation. In brief, two young women presented each with a primary bone tumor-one with a frontal bone tumor and another with an osseous pelvic tumor. Both tumors showed epithelioid to spindle cell morphology, ALK expression, and EWSR1/FUS-TFCP2 gene fusions. Both patients died of disease less than 17 months from diagnosis despite administration of multiple lines of aggressive treatment. In addition, we review the literature and discuss differential diagnostic and potential treatment considerations.
Collapse
Affiliation(s)
- John S A Chrisinger
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Bret Wehrli
- Department of Pathology and Laboratory Medicine, London Health Sciences Centre, Western University, London, ON, Canada
| | - Brendan C Dickson
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Samir Fasih
- Princess Margaret Cancer Centre, Division of Medical Oncology, University of Toronto, Toronto, ON, Canada
| | - Angela C Hirbe
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - David B Shultz
- Department of Radiation Oncology, Princess Margaret Cancer Centre & Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Gelareh Zadeh
- Division of Neurosurgery, University Health Network, University of Toronto, Toronto, ON, Canada
- MacFeeters-Hamilton Center for Neuro-Oncology, Princess Margaret Cancer Center, Toronto, ON, Canada
| | - Abha A Gupta
- Princess Margaret Cancer Centre, Division of Medical Oncology, University of Toronto, Toronto, ON, Canada
- Division of Haematology/Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Elizabeth G Demicco
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Chrisinger JSA, Wehrli B, Dickson BC, Fasih S, Hirbe AC, Shultz DB, Zadeh G, Gupta AA, Demicco EG. Epithelioid and spindle cell rhabdomyosarcoma with FUS-TFCP2 or EWSR1-TFCP2 fusion: report of two cases. Virchows Arch 2020; 477:725-732. [PMID: 32556562 DOI: 10.1007/s00428-020-02870-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/27/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022]
Abstract
The WHO Classification of Tumors of Soft Tissue and Bone divides rhabdomyosarcoma (RMS) into alveolar, embryonal, pleomorphic, and spindle cell/sclerosing types. Advances in molecular diagnostics have allowed for further refinement of RMS classification including the identification of new subtypes. Very rare RMS with epithelioid and spindle cell morphology, female predominance, marked osseous predilection, ALK expression, EWSR1/FUS-TFCP2 gene fusions, and highly aggressive clinical behavior have recently been recognized with only 23 cases reported in the English language literature. Herein, we report two additional cases with detailed clinicopathologic description and molecular confirmation. In brief, two young women presented each with a primary bone tumor-one with a frontal bone tumor and another with an osseous pelvic tumor. Both tumors showed epithelioid to spindle cell morphology, ALK expression, and EWSR1/FUS-TFCP2 gene fusions. Both patients died of disease less than 17 months from diagnosis despite administration of multiple lines of aggressive treatment. In addition, we review the literature and discuss differential diagnostic and potential treatment considerations.
Collapse
Affiliation(s)
- John S A Chrisinger
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Bret Wehrli
- Department of Pathology and Laboratory Medicine, London Health Sciences Centre, Western University, London, ON, Canada
| | - Brendan C Dickson
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Samir Fasih
- Princess Margaret Cancer Centre, Division of Medical Oncology, University of Toronto, Toronto, ON, Canada
| | - Angela C Hirbe
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - David B Shultz
- Department of Radiation Oncology, Princess Margaret Cancer Centre & Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Gelareh Zadeh
- Division of Neurosurgery, University Health Network, University of Toronto, Toronto, ON, Canada.,MacFeeters-Hamilton Center for Neuro-Oncology, Princess Margaret Cancer Center, Toronto, ON, Canada
| | - Abha A Gupta
- Princess Margaret Cancer Centre, Division of Medical Oncology, University of Toronto, Toronto, ON, Canada.,Division of Haematology/Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Elizabeth G Demicco
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Penel N, Lebellec L, Blay JY, Robin YM. Overview of « druggable » alterations by histological subtypes of sarcomas and connective tissue intermediate malignancies. Crit Rev Oncol Hematol 2020; 150:102960. [PMID: 32320927 DOI: 10.1016/j.critrevonc.2020.102960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 10/24/2022] Open
Abstract
We summarize herein the literature data about molecular targeted therapies in sarcomas and conjunctive tissue intermediate malignancies. For each clinical setting, the level of evidence, the mechanism of action and the target are described. The two major axes include (i) identification of subgroups of tumors with druggable alteration irrespective of the histological diagnosis (e.g. NTRK), and (ii) druggable target of pathway related to the physiopathology of the tumor: denosumab and bone giant cell tumor, imatinib and soft tissue giant cell tumor, mTOR inhibitor and PECOMA.
Collapse
Affiliation(s)
- Nicolas Penel
- Department of Medical Oncology, Centre Oscar Lambret, Lille, France; Lille University, Medical School, Lille, France.
| | - Loïc Lebellec
- Lille University, Medical School, Lille, France; Medical Oncology Unit, Dron Hospital, Tourcoing, France
| | - Jean-Yves Blay
- Department of Medicine, Centre Leon Bérard, Lyon, France; Claude Bernard University, Medical School Lyon, France
| | - Yves-Marie Robin
- Biopathology department, Centre Oscar Lambret, Lille, France; Lille University, Inserm U1192, Laboratoire « Protéomique, Réponse Inflammatoire et Spectrométrie de Masse » (PRISM), Villeneuve d'Ascq, France
| |
Collapse
|
10
|
Expanding the Spectrum of Intraosseous Rhabdomyosarcoma: Correlation Between 2 Distinct Gene Fusions and Phenotype. Am J Surg Pathol 2020; 43:695-702. [PMID: 30720533 DOI: 10.1097/pas.0000000000001227] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Primary intraosseous rhabdomyosarcomas (RMSs) are extremely rare. Recently 2 studies reported 4 cases of primary intraosseous RMS with EWSR1/FUS-TFCP2 gene fusions, associated with somewhat conflicting histologic features, ranging from spindle to epithelioid. In this study we sought to further investigate the pathologic and molecular abnormalities of a larger group of intraosseous RMSs by a combined approach using targeted RNA sequencing analysis and fluorescence in situ hybridization (FISH). We identified 7 cases, 3 males and 4 females, all in young adults, age range 20 to 39 years (median, 27 y). Three cases involved the pelvis, 2 involved the femur and 1 each involved the maxilla and the skull. Molecular studies identified recurrent gene fusions in all 7 cases tested, including: a novel MEIS1-NCOA2 fusion in 2 cases, EWSR1-TFCP2 in 3 cases, and FUS-TFCP2 gene fusions in 1 case. One case showed a FUS gene rearrangement, without a TFCP2 gene abnormality by FISH. The MEIS1-NCOA2-positive cases were characterized by a more primitive and fascicular spindle cell appearance, while the EWSR1/FUS rearranged tumors had a hybrid spindle and epithelioid phenotype, with more abundant eosinophilic cytoplasm and mild nuclear pleomorphism. Immunohistochemically, all tumors were positive for desmin and myogenin (focal). In addition, 4 tumors with TFCP2-associated gene fusions also coexpressed ALK and cytokeratin. In conclusion, our results suggest a high incidence of gene fusions in primary RMSs of bone, with 2 molecular subsets emerging, defined by either MEIS1-NCOA2 or EWSR1/FUS-TFCP2 fusions, showing distinct morphology and immunophenotype. Additional studies with larger numbers of cases and longer follow-up data are required to definitively evaluate the biological behavior of these tumors and to establish their relationship to other spindle cell RMS genetic groups.
Collapse
|
11
|
Gasparini P, Ferrari A, Casanova M, Limido F, Massimino M, Sozzi G, Fortunato O. MiRNAs as Players in Rhabdomyosarcoma Development. Int J Mol Sci 2019; 20:ijms20225818. [PMID: 31752446 PMCID: PMC6888285 DOI: 10.3390/ijms20225818] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
Rhabdomyosarcoma (RMS), the most common soft tissue sarcoma of childhood and adolescence, is a rare but aggressive malignancy that originates from immature mesenchymal cells committed to skeletal muscle differentiation. Although RMS is, generally, responsive to the modern multimodal therapeutic approaches, the prognosis of RMS depends on multiple variables and for some patients the outcome remains dismal. Further comprehension of the molecular and cellular biology of RMS would lead to identification of novel therapeutic targets. MicroRNAs (miRNAs) are small non-coding RNAs proved to function as key regulators of skeletal muscle cell fate determination and to play important roles in RMS pathogenesis. The purpose of this review is to better delineate the role of miRNAs as a biomarkers or functional leaders in RMS development, so to possibly elucidate some of RMS molecular mechanisms and potentially therapeutically target them to improve clinical management of pediatric RMS.
Collapse
Affiliation(s)
- Patrizia Gasparini
- Tumor Genomics Unit, Department of Research; Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy;
- Correspondence: (O.F.); (P.G.); Tel.: +39-02-2390-3775 (O.F. & P.G.); Fax: +39-02-2390-2928 (O.F. & P.G.)
| | - Andrea Ferrari
- Pediatric Oncology Unit; Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (A.F.); (M.C.); (F.L.); (M.M.)
| | - Michela Casanova
- Pediatric Oncology Unit; Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (A.F.); (M.C.); (F.L.); (M.M.)
| | - Francesca Limido
- Pediatric Oncology Unit; Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (A.F.); (M.C.); (F.L.); (M.M.)
| | - Maura Massimino
- Pediatric Oncology Unit; Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (A.F.); (M.C.); (F.L.); (M.M.)
| | - Gabriella Sozzi
- Tumor Genomics Unit, Department of Research; Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy;
| | - Orazio Fortunato
- Tumor Genomics Unit, Department of Research; Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy;
- Correspondence: (O.F.); (P.G.); Tel.: +39-02-2390-3775 (O.F. & P.G.); Fax: +39-02-2390-2928 (O.F. & P.G.)
| |
Collapse
|
12
|
Kaleta M, Wakulińska A, Karkucińska-Więckowska A, Dembowska-Bagińska B, Grajkowska W, Pronicki M, Łastowska M. OLIG2 is a novel immunohistochemical marker associated with the presence of PAX3/7-FOXO1 translocation in rhabdomyosarcomas. Diagn Pathol 2019; 14:103. [PMID: 31493794 PMCID: PMC6731563 DOI: 10.1186/s13000-019-0883-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/02/2019] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND The most frequent histological types of rhabdomyosarcoma (RMS) in children are embryonal (ERMS) and alveolar (ARMS) tumours. The majority of ARMS are characterized by the presence of PAX3/7-FOXO1 gene fusion and have a worse prognosis than fusion gene-negative ARMS. However, identification of PAX3/7-FOXO1 fusion status is challenging when using formalin-fixed, paraffin-embedded (FFPE) material. Microarray analyses revealed that high expression of several genes is associated with PAX3/7-FOXO1 fusion status. Therefore, we investigated if immunohistochemical approach may detect surrogate marker genes as indicators of fusion gene-positive RMS. METHODS Forty five RMS patients were included in the analysis and immunohistochemistry was applied to FFPE tissues collected at diagnosis. Protein expression of OLIG2, a novel marker in RMS, was investigated using antibody EP112 (Cell Marque). In addition already known two markers were also analyzed: TFAP2B using rabbit anti-TFAP2β antibody (Santa Cruz Biotechnology) and ALK using anti-ALK antibody clone D5F3 #3633 (Cell Signalling). Fluorescence in situ hybridization (FISH) was performed on FFPE sections with FOXO1/PAX3 and/or FOXO1/PAX7 probes (Dual Colour Single Fusion Probe, Zytovision). RESULTS Our analysis revealed that all three immunohistochemical markers are associated with the presence of PAX3/7-FOXO1 fusion: TFAP2B (p < 0.00001), OLIG2 (p = 0.0001) and ALK (p = 0.0007). Four ARMS had negative PAX3/7-FOXO1 status and none of them displayed positive reaction with the analysed markers. Positive reaction with OLIG2 (6 tumours) was always associated with the presence of PAX3/7-FOXO1 rearrangement. Two additional OLIG2 positive cases showed inconclusive FISH results, but were positive for TFAP2B and ALK, what suggests that these tumours expressed fusion positive signature. CONCLUSION Our results indicate that TFAP2B, ALK and a novel marker OLIG2 may serve as surrogate markers for PAX3/7-FOXO1 status what is especially beneficial in cases where poor quality tumour tissue is not suitable for reliable genetic analyses or shows inconclusive result.
Collapse
Affiliation(s)
- Magdalena Kaleta
- Department of Pathology, The Children's Memorial Health Institute, Av. Dzieci Polskich 20, 04-730, Warsaw, Poland.
| | - Anna Wakulińska
- Clinic of Oncology, The Children's Memorial Health Institute, Av. Dzieci Polskich 20, 04-730, Warsaw, Poland
| | | | - Bożenna Dembowska-Bagińska
- Clinic of Oncology, The Children's Memorial Health Institute, Av. Dzieci Polskich 20, 04-730, Warsaw, Poland
| | - Wiesława Grajkowska
- Department of Pathology, The Children's Memorial Health Institute, Av. Dzieci Polskich 20, 04-730, Warsaw, Poland
| | - Maciej Pronicki
- Department of Pathology, The Children's Memorial Health Institute, Av. Dzieci Polskich 20, 04-730, Warsaw, Poland
| | - Maria Łastowska
- Department of Pathology, The Children's Memorial Health Institute, Av. Dzieci Polskich 20, 04-730, Warsaw, Poland
| |
Collapse
|
13
|
van Erp AEM, Hillebrandt-Roeffen MHS, van Houdt L, Fleuren EDG, van der Graaf WTA, Versleijen-Jonkers YMH. Targeting Anaplastic Lymphoma Kinase (ALK) in Rhabdomyosarcoma (RMS) with the Second-Generation ALK Inhibitor Ceritinib. Target Oncol 2018; 12:815-826. [PMID: 29067644 PMCID: PMC5700232 DOI: 10.1007/s11523-017-0528-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background The receptor tyrosine kinase (RTK) anaplastic lymphoma kinase (ALK) has been implicated in the tumorigenesis of rhabdomyosarcoma (RMS). However, the exact role of ALK in RMS is debatable and remains to be elucidated. Objective To determine the in vitro and in vivo effects and mechanism of action of the second-generation ALK inhibitor ceritinib on RMS cell growth. Methods Effects of ceritinib on cell proliferation, wound healing, cell cycle, and RTK signaling were determined in alveolar and embryonal rhabdomyosarcoma (ARMS, ERMS). In addition, possible synergistic effects of combined treatment with ceritinib and the Abl/Src family kinase inhibitor dasatinib were determined. Results Ceritinib treatment led to decreased cell proliferation, cell cycle arrest, apoptosis, and decreased in vivo tumor growth for the ARMS subtype. ERMS cell lines were less affected and showed no cell cycle arrest or apoptosis. Both subtypes lacked intrinsic ALK phosphorylation, and ceritinib was shown to affect the IGF1R signaling pathway. High levels of phosphorylated Src (Tyr416) were present following ceritinib treatment, making combined treatment with a Src inhibitor a potential treatment option. Combined treatment of ceritinib and dasatinib showed synergistic effects in both ERMS and ARMS cell lines. Conclusion This study shows that monotherapy with an ALK inhibitor, such as ceritinib, in RMS, has no effect on ALK signaling. However, the synergistic effects of ceritinib and dasatinib are promising, most probably due to targeting of IGF1R and Src.![]() Electronic supplementary material The online version of this article (10.1007/s11523-017-0528-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anke E M van Erp
- Department of Medical Oncology, Radboud University Medical Center, P.O. Box 9101, 6500HB, Nijmegen, The Netherlands.
| | | | - Laurens van Houdt
- Department of Medical Oncology, Radboud University Medical Center, P.O. Box 9101, 6500HB, Nijmegen, The Netherlands
| | - Emmy D G Fleuren
- Clinical Studies, Clinical and Translational Sarcoma/Gene Function, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Winette T A van der Graaf
- Department of Medical Oncology, Radboud University Medical Center, P.O. Box 9101, 6500HB, Nijmegen, The Netherlands.,The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, SW7 3RP, UK
| | | |
Collapse
|
14
|
Akaike K, Suehara Y, Kohsaka S, Hayashi T, Tanabe Y, Kazuno S, Mukaihara K, Toda-Ishii M, Kurihara T, Kim Y, Okubo T, Hayashi Y, Takamochi K, Takahashi F, Kaneko K, Ladanyi M, Saito T. PPP2R1A regulated by PAX3/FOXO1 fusion contributes to the acquisition of aggressive behavior in PAX3/FOXO1-positive alveolar rhabdomyosarcoma. Oncotarget 2018; 9:25206-25215. [PMID: 29861864 PMCID: PMC5982774 DOI: 10.18632/oncotarget.25392] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/28/2018] [Indexed: 12/18/2022] Open
Abstract
To better characterize the oncogenic role of the PAX3-FOXO1 fusion protein in the acquisition of aggressive behavior in ARMS, we employed a proteomic approach using a PAX3-FOXO1 knockdown system in ARMS cell lines. This approach revealed a protein list consisting of 107 consistently upregulated and 114 consistently downregulated proteins that were expected to be regulated by PAX3-FOXO1 fusion protein. Furthermore, we identified 16 upregulated and 17 downregulated critical proteins based on a data-mining analysis. We also evaluated the function of PPP2R1A in ARMS cells. The PPP2R1A expression was upregulated at both the mRNA and protein levels by PAX3-FOXO1 silencing. The silencing of PPP2R1A significantly increased the cell growth of all four ARMS cells, suggesting that PPP2R1A still has a tumor suppressive function in ARMS cells; however, the native expression of PPP2R1A was low in the presence of PAX3-FOXO1. In addition, the activation of PP2A-part of which was encoded by PPP2R1A-by FTY720 treatment in ARMS cell lines inhibited cell growth. On the human phospho-kinase array analysis of 46 specific Ser/Thr or Tyr phosphorylation sites on 39 selected proteins, eNOS, AKT1/2/3, RSK1/2/3 and STAT3 phosphorylation were decreased by FTY-720 treatment. These findings suggest that PPP2R1A is a negatively regulated by PAX3-FOXO1 in ARMS. The activation of PP2A-probably in combination with kinase inhibitors-may represent a therapeutic target in ARMS. We believe that the protein expression profile associated with PAX3-FOXO1 would be valuable for discovering new therapeutic targets in ARMS.
Collapse
Affiliation(s)
- Keisuke Akaike
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan.,Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yoshiyuki Suehara
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Shinji Kohsaka
- Department of Medical Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takuo Hayashi
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yu Tanabe
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Saiko Kazuno
- Laboratory of Proteomics and Biomolecular Science, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kenta Mukaihara
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Midori Toda-Ishii
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Taisei Kurihara
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Youngji Kim
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Taketo Okubo
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Yasuhide Hayashi
- Department of Hematology/Oncology, Gunma Children's Medical Center, Shibukawa, Gunma, Japan
| | - Kazuya Takamochi
- Department of General Thoracic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Fumiyuki Takahashi
- Department of Respiratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazuo Kaneko
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Tsuyoshi Saito
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
15
|
Choi PJ, Iwanaga J, Tubbs RS, Yilmaz E. Surgical Interventions for Advanced Parameningeal Rhabdomyosarcoma of Children and Adolescents. Cureus 2018. [PMID: 29541566 PMCID: PMC5844646 DOI: 10.7759/cureus.2045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Owing to its rarity, rhabdomyosarcoma of the head and neck (HNRMS) has seldom been discussed in the literature. As most of the data is based only on the retrospective experiences of tertiary healthcare centers, there are difficulties in formulating a standard treatment protocol. Moreover, the disease is poorly understood at its pathological, genetic, and molecular levels. For instance, 20% of all histological assessment is inaccurate; even an experienced pathologist can confuse rhabdomyosarcoma (RMS) with neuroblastoma, Ewing’s sarcoma, and lymphoma. RMS can occur sporadically or in association with genetic syndromes associated with predisposition to other cancers such as Li-Fraumeni syndrome and neurofibromatosis type 1 (von Recklinghausen disease). Such associations have a potential role in future gene therapies but are yet to be fully confirmed. Currently, chemotherapies are ineffective in advanced or metastatic disease and there is lack of targeted chemotherapy or biological therapy against RMS. Also, reported uses of chemotherapy for RMS have not produced reasonable responses in all cases. Despite numerous molecular and biological studies during the past three decades, the chemotherapeutic regimen remains unchanged. This vincristine, actinomycin, cyclophosphamide (VAC) regime, described in Kilman, et al. (1973) and Koop, et al. (1963), has achieved limited success in controlling the progression of RMS. Thus, the pathogenesis of RMS remains poorly understood despite extensive modern trials and more than 30 years of studies exploring the chemotherapeutic options. This suggests a need to explore surgical options for managing the disease. Surgery is the single most critical therapy for pediatric HNRMS. However, very few studies have explored the surgical management of pediatric HNRMS and there is no standard surgical protocol. The aim of this review is to explore and address such issues in the hope of maximizing the number of options available for young patients with HNRMS.
Collapse
Affiliation(s)
- Paul J Choi
- Clinical Anatomy, Seattle Science Foundation
| | | | | | - Emre Yilmaz
- Swedish Medical Center, Swedish Neuroscience Institute
| |
Collapse
|
16
|
Rhabdomyosarcoma cells are susceptible to cell death by LDK378 alone or in combination with sorafenib independently of anaplastic lymphoma kinase status. Anticancer Drugs 2018; 28:1118-1125. [PMID: 29045271 DOI: 10.1097/cad.0000000000000552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase that is often overexpressed in rhabdomyosarcoma (RMS). However, its oncogenic and functional role in RMS remains unclear. Therefore, we investigated the antitumor activity of LDK378 (ceritinib), a new second-generation ALK inhibitor approved for patients with ALK-positive non-small-cell lung cancers. Here, we report that LDK378 reduces cell viability and induces cell death in RMS cell lines at low micromolar IC50 concentrations irrespective of ALK expression levels or phosphorylation status. Compared with Karpas 299 non-Hodgkin's lymphoma cells carrying the NPM-ALK fusion gene, RMS cell lines proved to be far less sensitive to LDK378. The broad-range caspase inhibitor zVAD.fmk significantly protects RMS cells from LDK378-mediated cell death, indicating that LDK378 induces caspase-dependent apoptotic cell death. Before the onset of apoptosis, LDK378 reduces phosphorylation of AKT, S6 ribosomal protein, STAT3 and - to a lesser extent - phosphorylation of ERK, showing that it suppresses key survival pathways. Importantly, we identify a synergistic induction of cell death by combining subtoxic concentrations of LDK378 with the multitargeting kinase inhibitor sorafenib. Calculation of the combination index confirmed that this interaction is synergistic. Also, LDK378 cooperates with sorafenib to significantly reduce colony formation of RMS cells, showing that this combination affects long-term clonogenic growth. In conclusion, LDK378 induces caspase-dependent apoptotic cell death in RMS cells independent of their ALK status and synergizes at subtoxic concentrations with sorafenib to induce cell death. These findings have important implications for the use of LDK378 in RMS.
Collapse
|
17
|
Lee JW, Park SH, Kang HJ, Park KD, Shin HY, Ahn HS. ALK Protein Expression Is Related to Neuroblastoma Aggressiveness But Is Not Independent Prognostic Factor. Cancer Res Treat 2017; 50:495-505. [PMID: 28546523 PMCID: PMC5912141 DOI: 10.4143/crt.2016.577] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 05/16/2017] [Indexed: 12/11/2022] Open
Abstract
PURPOSE In this study, anaplastic lymphoma kinase (ALK) mutation and amplification, ALK protein expression, loss of the nuclear alpha thalassemia/mental retardation syndrome X-linked (ATRX) protein, and telomerase reverse transcriptase (TERT) protein expressionwere studied to investigate potential correlations between these molecular characteristics and clinical features or outcomes in neuroblastoma. MATERIALS AND METHODS Seventy-two patients were enrolled in this study. Polymerase chain reaction amplification and direct sequencing were used for mutation analysis. ALK and MYCN amplifications were detected by fluorescence in situ hybridization. Protein expressionwas evaluated by immunohistochemical (IHC) staining. RESULTS ALK mutation was found in only two patients (4.1%); ALK amplification was not detected. ALK positivity, loss of nuclear ATRX protein, TERT positivity by IHC were detected in 40 (55.6%), nine (13.0%), and 42 (59.2%) patients, respectively. The incidence of ALK expression increased in accordance with increasing tumor stage (p=0.001) and risk group (p < 0.001). The relapse rate was significantly higher in ALK+ patients compared to that of other patients (47.5% vs. 11.3%, p=0.007). However, there was no significant difference in relapse rate when the survival analysis was confined to the high-risk patients. CONCLUSION Although ALK mutation was rare and no amplification was observed, ALK protein expression was found in a significant number of patients and was correlated with advanced stage and high-risk neuroblastoma. ALK protein expression could be considered as a marker related to the aggressive neuroblastoma, but it was not the independent prognostic factor for the outcome.
Collapse
Affiliation(s)
- Ji Won Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung Hye Park
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Hyoung Jin Kang
- Department of Pediatrics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Kyung Duk Park
- Department of Pediatrics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hee Young Shin
- Department of Pediatrics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyo Seop Ahn
- Department of Pediatrics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|