1
|
Alqahtani SM, Al-Kuraishy HM, Al-Gareeb AI, Alexiou A, Fawzy MN, Papadakis M, Al-Botaty BM, Alruwaili M, El-Saber Batiha G. The neuroprotective role of Humanin in Alzheimer's disease: The molecular effects. Eur J Pharmacol 2025; 998:177510. [PMID: 40090538 DOI: 10.1016/j.ejphar.2025.177510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/06/2025] [Accepted: 03/14/2025] [Indexed: 03/18/2025]
Abstract
Humanin (HN) is an endogenous micropeptide also known as a mitochondria-derived peptide. It has a neuroprotective effect against Alzheimer's disease (AD) and other neurodegenerative diseases by improving hippocampal acetylcholine and attenuating the development of oxidative stress and associated neurotoxicity. HN protects the neuron from the toxic effects of amyloid beta (Aβ). HN is regarded as a biomarker of mitochondrial stress. Interestingly, aging reduces brain expression of HN, leading to cognitive impairment and elevating the risk of neurodegeneration, including AD. However, in old subjects and AD patients, circulating HN levels increase as a compensatory mechanism to reduce neurodegeneration and mitochondrial dysfunction in AD. Conversely, other studies demonstrated a reduction in circulating HN levels in AD. These findings indicated controversial points regarding the precise mechanistic role of HN in AD. Therefore, the aim of this review was to discuss the exact role of HN in AD neuropathology and also to discuss the molecular mechanisms of HN in AD.
Collapse
Affiliation(s)
- Saad Misfer Alqahtani
- Department of Pathology, College of Medicine, The University Hospital, Najran University, Najran, Saudi Arabia.
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq.
| | - Ali I Al-Gareeb
- Jabir Ibn Hayyan Medical University, Al-Ameer Qu, PO.Box13, Kufa, Najaf, Iraq.
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India; Department of Research & Development, Funogen, Athens, Greece.
| | - Mohamed N Fawzy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University- Arish Branch, Arish, 45511, Egypt.
| | - Marios Papadakis
- University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany.
| | - Basant M Al-Botaty
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Ain Helwan, 11795, Cairo, Egypt.
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AlBeheira, Damanhour, 22511, Egypt.
| |
Collapse
|
2
|
Salahudeen T, Maalouf M, Elfadel I(AM, Jelinek HF. Predicting depression severity using machine learning models: Insights from mitochondrial peptides and clinical factors. PLoS One 2025; 20:e0320955. [PMID: 40367215 PMCID: PMC12077794 DOI: 10.1371/journal.pone.0320955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 02/26/2025] [Indexed: 05/16/2025] Open
Abstract
Depression presents a significant challenge to global mental health, often intertwined with factors including oxidative stress. Although the precise relationship with mitochondrial pathways remains elusive, recent advances in machine learning present an avenue for further investigation. This study employed advanced machine learning techniques to classify major depressive disorders based on clinical indicators and mitochondrial oxidative stress markers. Six machine learning algorithms, including Random Forest, were applied and their performance was investigated in balanced and unbalanced data sets with respect to binary and multiclass classification scenarios. Results indicate promising accuracy and precision, particularly with Random Forest on balanced data. RF achieved an average accuracy of 92.7% and an F1 score of 83.95% for binary classification, 90.36% and 90.1%, respectively, for the classification of three classes of severity of depression and 89.76% and 88.26%, respectively, for the classification of five classes. Including only oxidative stress markers resulted in accuracy and an F1 score of 79.52% and 80.56%, respectively. Notably, including mitochondrial peptides alongside clinical factors significantly enhances predictive capability, shedding light on the interplay between depression severity and mitochondrial oxidative stress pathways. These findings underscore the potential for machine learning models to aid clinical assessment, particularly in individuals with comorbid conditions such as hypertension, diabetes mellitus, and cardiovascular disease.
Collapse
Affiliation(s)
- Toheeb Salahudeen
- Department of Management Science and Engineering, Khalifa University, Abu Dhabi, UAE
| | - Maher Maalouf
- Department of Management Science and Engineering, Khalifa University, Abu Dhabi, UAE
| | - Ibrahim (Abe) M. Elfadel
- Department of Computer and Communication Engineering, Khalifa University, Abu Dhabi, UAE
- Center for Secure Cyber Physical Systems, Khalifa University, Abu Dhabi, UAE
| | - Herbert F. Jelinek
- Department of Medical Sciences and Health Engineering Innovation Group, Khalifa University, Abu Dhabi, UAE
- Biotechnology Center, Khalifa University, Abu Dhabi, UAE
| |
Collapse
|
3
|
Amman AM, Wolfe V, Piraino G, Ziady A, Zingarelli B. Humanin-G Ameliorates Hemorrhage-Induced Acute Lung Injury in Mice Through AMPKα1-Dependent and -Independent Mechanisms. Biomedicines 2024; 12:2615. [PMID: 39595179 PMCID: PMC11592305 DOI: 10.3390/biomedicines12112615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: The severity of acute lung injury is significantly impacted by age and sex in patients with hemorrhagic shock. AMP-activated protein kinase (AMPK) is a crucial regulator of energy metabolism but its activity declines with aging. Humanin is a mitochondrial peptide that exerts cytoprotective effects in response to oxidative stressors and is associated with longevity. Using a mouse model of hemorrhagic shock that mimics the clinical condition of adult patients, we investigated whether treatment with a humanin analog, humanin-G, mitigates lung injury and whether its mechanisms of action are dependent on the catalytic AMPKα1 subunit activation. Methods: Male and female AMPKα1 wild-type (WT) and knock-out (KO) mice (8-13 months old) were subjected to hemorrhagic shock by blood withdrawal, followed by resuscitation with shed blood and lactated Ringer's solution. The mice were treated with PEGylated humanin-G or vehicle and euthanized 3 h post-resuscitation. Results: Sex- and genotype-related differences were observed after hemorrhagic shock as lung neutrophil infiltration was more pronounced in the male AMPKα1 WT mice than the female WT mice; also, the male AMPKα1 KO mice experienced a significant decline in mean arterial blood pressure when compared to the male WT mice after resuscitation. The scores of histological lung injury were similarly elevated in all the male and female AMPKα1 WT and KO mice when compared to the control mice. At molecular analysis, acute lung injury was associated with the downregulation of AMPKα1/α2 catalytic subunits in the WT mice, whereas an increased activation of the signal transducer and activator of transcription-3 (STAT3) was observed in all the vehicle-treated groups. The in vivo administration of humanin-G ameliorated histological lung damage in all the groups of animals and ameliorated mean arterial blood pressure in the male AMPKα1 KO mice. The in vivo administration of humanin-G lowered lung neutrophil infiltration in the male and female AMPKα1 WT mice only but not in the KO mice. The beneficial results of humanin-G correlated with the lung cytosolic and nuclear activation of AMPKα in the male and female AMPKα1 WT groups, whereas STAT3 activation was not modified. Conclusions: In adult age, hemorrhage-induced acute lung injury manifests with sex-dependent characteristics. Humanin-G has therapeutic potential and the AMPKα1subunit is an important requisite for its inhibitory effects on lung leucosequestration, but not for the amelioration of lung alveolar structure or the hemodynamic effects of the peptide.
Collapse
Affiliation(s)
- Allison M. Amman
- Department of Surgery, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA;
| | - Vivian Wolfe
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; (V.W.); (G.P.)
| | - Giovanna Piraino
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; (V.W.); (G.P.)
| | - Assem Ziady
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Bone Marrow Transplantation & Immune Deficiency, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA;
| | - Basilia Zingarelli
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; (V.W.); (G.P.)
| |
Collapse
|
4
|
Lu Y, Bartoszek EM, Cortada M, Bodmer D, Levano Huaman S. Mitochondrial-derived peptides, HNG and SHLP3, protect cochlear hair cells against gentamicin. Cell Death Discov 2024; 10:445. [PMID: 39433756 PMCID: PMC11493991 DOI: 10.1038/s41420-024-02215-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024] Open
Abstract
Preservation of hair cells is critical for maintaining hearing function, as damage to sensory cells potentially leads to irreparable sensorineural hearing loss. Hair cell loss is often associated with inflammation and oxidative stress. One promising class of bioactive peptides is mitochondrial-derived peptides (MDPs), which have already been proven to protect various tissues from cellular stresses and delay aging processes. Humanin (HN) is one of the best-known members of this family, and recently, we have shown its protective effect in hair cells. The synthetic derivate HN S14G (HNG) has a more potent protective effect than natural HN making it a more useful peptide candidate to promote cytoprotection. A less-known MDP is small humanin-like peptide 3 (SHLP3), which has cytoprotective effects similar to HN, but likely acts through different signaling pathways. Therefore, we examined the effect of exogenous HNG and SHLP3 in auditory hair cells and investigated the molecular mechanisms involved. For this purpose, explants of the organ of Corti (OC) were treated with gentamicin in the presence and absence of HNG or SHLP3. Administration of HNG and SHLP3 reduced gentamicin-induced hair cell loss. The protective mechanisms of HNG and SHLP3 in OC explants included, in part, modulation of AKT and AMPKα. In addition, treatment with HNG and SHLP3 reduced gentamicin-induced oxidative stress and inflammatory gene overexpression. Overall, our data show that HNG and SHLP3 protect hair cells from gentamicin-induced toxicity. This offers new perspectives for the development of therapeutic strategies with MDPs against hearing loss.
Collapse
Affiliation(s)
- Yu Lu
- Department of Biomedicine, University of Basel Hospital, Basel, Switzerland
| | | | - Maurizio Cortada
- Department of Biomedicine, University of Basel Hospital, Basel, Switzerland
- Department of Otolaryngology, Head and Neck Surgery, University of Basel Hospital, Basel, Switzerland
| | - Daniel Bodmer
- Department of Biomedicine, University of Basel Hospital, Basel, Switzerland
- Department of Otolaryngology, Head and Neck Surgery, University of Basel Hospital, Basel, Switzerland
| | | |
Collapse
|
5
|
Wang F, Huynh PM, An YA. Mitochondrial Function and Dysfunction in White Adipocytes and Therapeutic Implications. Compr Physiol 2024; 14:5581-5640. [PMID: 39382163 DOI: 10.1002/cphy.c230009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
For a long time, white adipocytes were thought to function as lipid storages due to the sizeable unilocular lipid droplet that occupies most of their space. However, recent discoveries have highlighted the critical role of white adipocytes in maintaining energy homeostasis and contributing to obesity and related metabolic diseases. These physiological and pathological functions depend heavily on the mitochondria that reside in white adipocytes. This article aims to provide an up-to-date overview of the recent research on the function and dysfunction of white adipocyte mitochondria. After briefly summarizing the fundamental aspects of mitochondrial biology, the article describes the protective role of functional mitochondria in white adipocyte and white adipose tissue health and various roles of dysfunctional mitochondria in unhealthy white adipocytes and obesity. Finally, the article emphasizes the importance of enhancing mitochondrial quantity and quality as a therapeutic avenue to correct mitochondrial dysfunction, promote white adipocyte browning, and ultimately improve obesity and its associated metabolic diseases. © 2024 American Physiological Society. Compr Physiol 14:5581-5640, 2024.
Collapse
Affiliation(s)
- Fenfen Wang
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Phu M Huynh
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Yu A An
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
6
|
Wu P, Wang X, Ge C, Jin L, Ding Z, Liu F, Zhang J, Gao F, Du W. pSTAT3 activation of Foxl2 initiates the female pathway underlying temperature-dependent sex determination. Proc Natl Acad Sci U S A 2024; 121:e2401752121. [PMID: 39226347 PMCID: PMC11406301 DOI: 10.1073/pnas.2401752121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
Ovarian development was traditionally recognized as a "default" sexual outcome and therefore received much less scientific attention than testis development. In turtles with temperature-dependent sex determination (TSD), how the female pathway is initiated to induce ovary development remains unknown. In this study, we have found that phosphorylation of the signal transducer and activator of transcription 3 (pSTAT3) and Foxl2 exhibit temperature-dependent sexually dimorphic patterns and tempo-spatial coexpression in early embryos of the red-eared slider turtle (Trachemys scripta elegans). Inhibition of pSTAT3 at a female-producing temperature of 31 °C induces 64.7% female-to-male sex reversal, whereas activation of pSTAT3 at a male-producing temperature of 26 °C triggers 75.6% male-to-female sex reversal. In addition, pSTAT3 directly binds to the locus of the female sex-determining gene Foxl2 and promotes Foxl2 transcription. Overexpression or knockdown of Foxl2 can rescue the sex reversal induced by inhibition or activation of pSTAT3. This study has established a direct genetic link between warm temperature-induced STAT3 phosphorylation and female pathway initiation in a TSD system, highlighting the critical role of pSTAT3 in the cross talk between female and male pathways.
Collapse
Affiliation(s)
- Pengfei Wu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, People’s Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Xifeng Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, People’s Republic of China
| | - Chutian Ge
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo315100, People’s Republic of China
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo315100, People’s Republic of China
| | - Lin Jin
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo315100, People’s Republic of China
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo315100, People’s Republic of China
| | - Zihan Ding
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, People’s Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Fang Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, People’s Republic of China
| | - Ju Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, People’s Republic of China
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, People’s Republic of China
| | - Weiguo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, People’s Republic of China
| |
Collapse
|
7
|
Da W, Chen Q, Shen B. The current insights of mitochondrial hormesis in the occurrence and treatment of bone and cartilage degeneration. Biol Res 2024; 57:37. [PMID: 38824571 PMCID: PMC11143644 DOI: 10.1186/s40659-024-00494-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 04/03/2024] [Indexed: 06/03/2024] Open
Abstract
It is widely acknowledged that aging, mitochondrial dysfunction, and cellular phenotypic abnormalities are intricately associated with the degeneration of bone and cartilage. Consequently, gaining a comprehensive understanding of the regulatory patterns governing mitochondrial function and its underlying mechanisms holds promise for mitigating the progression of osteoarthritis, intervertebral disc degeneration, and osteoporosis. Mitochondrial hormesis, referred to as mitohormesis, represents a cellular adaptive stress response mechanism wherein mitochondria restore homeostasis and augment resistance capabilities against stimuli by generating reactive oxygen species (ROS), orchestrating unfolded protein reactions (UPRmt), inducing mitochondrial-derived peptides (MDP), instigating mitochondrial dynamic changes, and activating mitophagy, all prompted by low doses of stressors. The varying nature, intensity, and duration of stimulus sources elicit divergent degrees of mitochondrial stress responses, subsequently activating one or more signaling pathways to initiate mitohormesis. This review focuses specifically on the effector molecules and regulatory networks associated with mitohormesis, while also scrutinizing extant mechanisms of mitochondrial dysfunction contributing to bone and cartilage degeneration through oxidative stress damage. Additionally, it underscores the potential of mechanical stimulation, intermittent dietary restrictions, hypoxic preconditioning, and low-dose toxic compounds to trigger mitohormesis, thereby alleviating bone and cartilage degeneration.
Collapse
Affiliation(s)
- Wacili Da
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Quan Chen
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Bin Shen
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
8
|
Atakan MM, Türkel İ, Özerkliğ B, Koşar ŞN, Taylor DF, Yan X, Bishop DJ. Small peptides: could they have a big role in metabolism and the response to exercise? J Physiol 2024; 602:545-568. [PMID: 38196325 DOI: 10.1113/jp283214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024] Open
Abstract
Exercise is a powerful non-pharmacological intervention for the treatment and prevention of numerous chronic diseases. Contracting skeletal muscles provoke widespread perturbations in numerous cells, tissues and organs, which stimulate multiple integrated adaptations that ultimately contribute to the many health benefits associated with regular exercise. Despite much research, the molecular mechanisms driving such changes are not completely resolved. Technological advancements beginning in the early 1960s have opened new avenues to explore the mechanisms responsible for the many beneficial adaptations to exercise. This has led to increased research into the role of small peptides (<100 amino acids) and mitochondrially derived peptides in metabolism and disease, including those coded within small open reading frames (sORFs; coding sequences that encode small peptides). Recently, it has been hypothesized that sORF-encoded mitochondrially derived peptides and other small peptides play significant roles as exercise-sensitive peptides in exercise-induced physiological adaptation. In this review, we highlight the discovery of mitochondrially derived peptides and newly discovered small peptides involved in metabolism, with a specific emphasis on their functions in exercise-induced adaptations and the prevention of metabolic diseases. In light of the few studies available, we also present data on how both single exercise sessions and exercise training affect expression of sORF-encoded mitochondrially derived peptides. Finally, we outline numerous research questions that await investigation regarding the roles of mitochondrially derived peptides in metabolism and prevention of various diseases, in addition to their roles in exercise-induced physiological adaptations, for future studies.
Collapse
Affiliation(s)
- Muhammed M Atakan
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| | - İbrahim Türkel
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Berkay Özerkliğ
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Şükran N Koşar
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Dale F Taylor
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| | - Xu Yan
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
- Sarcopenia Research Program, Australia Institute for Musculoskeletal Sciences (AIMSS), Melbourne, Victoria, Australia
| | - David J Bishop
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Zhang B, Chang JY, Lee MH, Ju SH, Yi HS, Shong M. Mitochondrial Stress and Mitokines: Therapeutic Perspectives for the Treatment of Metabolic Diseases. Diabetes Metab J 2024; 48:1-18. [PMID: 38173375 PMCID: PMC10850273 DOI: 10.4093/dmj.2023.0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/28/2023] [Indexed: 01/05/2024] Open
Abstract
Mitochondrial stress and the dysregulated mitochondrial unfolded protein response (UPRmt) are linked to various diseases, including metabolic disorders, neurodegenerative diseases, and cancer. Mitokines, signaling molecules released by mitochondrial stress response and UPRmt, are crucial mediators of inter-organ communication and influence systemic metabolic and physiological processes. In this review, we provide a comprehensive overview of mitokines, including their regulation by exercise and lifestyle interventions and their implications for various diseases. The endocrine actions of mitokines related to mitochondrial stress and adaptations are highlighted, specifically the broad functions of fibroblast growth factor 21 and growth differentiation factor 15, as well as their specific actions in regulating inter-tissue communication and metabolic homeostasis. Finally, we discuss the potential of physiological and genetic interventions to reduce the hazards associated with dysregulated mitokine signaling and preserve an equilibrium in mitochondrial stress-induced responses. This review provides valuable insights into the mechanisms underlying mitochondrial regulation of health and disease by exploring mitokine interactions and their regulation, which will facilitate the development of targeted therapies and personalized interventions to improve health outcomes and quality of life.
Collapse
Affiliation(s)
- Benyuan Zhang
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Joon Young Chang
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Min Hee Lee
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Sang-Hyeon Ju
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Hyon-Seung Yi
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| |
Collapse
|
10
|
Karachaliou CE, Livaniou E. Neuroprotective Action of Humanin and Humanin Analogues: Research Findings and Perspectives. BIOLOGY 2023; 12:1534. [PMID: 38132360 PMCID: PMC10740898 DOI: 10.3390/biology12121534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Humanin is a 24-mer peptide first reported in the early 2000s as a new neuroprotective/cytoprotective factor rescuing neuronal cells from death induced by various Alzheimer's disease-associated insults. Nowadays it is known that humanin belongs to the novel class of the so-called mitochondrial-derived peptides (which are encoded by mitochondrial DNA) and has been shown to exert beneficial cytoprotective effects in a series of in vitro and/or in vivo experimental models of human diseases, including not only neurodegenerative disorders but other human diseases as well (e.g., age-related macular degeneration, cardiovascular diseases, or diabetes mellitus). This review article is focused on the presentation of recent in vitro and in vivo research results associated with the neuroprotective action of humanin as well as of various, mainly synthetic, analogues of the peptide; moreover, the main mode(s)/mechanism(s) through which humanin and humanin analogues may exert in vitro and in vivo regarding neuroprotection have been reported. The prospects of humanin and humanin analogues to be further investigated in the frame of future research endeavors against neurodegenerative/neural diseases have also been briefly discussed.
Collapse
Affiliation(s)
| | - Evangelia Livaniou
- Immunopeptide Chemistry Lab., Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, P.O. Box 60037, 153 10 Agia Paraskevi, Greece;
| |
Collapse
|
11
|
Waldmann D, Lu Y, Cortada M, Bodmer D, Levano Huaman S. Exogenous humanin and MOTS-c function as protective agents against gentamicin-induced hair cell damage. Biochem Biophys Res Commun 2023; 678:115-121. [PMID: 37633181 DOI: 10.1016/j.bbrc.2023.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/28/2023]
Abstract
Loss of hair cells can lead to irreversible sensorineural hearing loss. Therefore, hair cell preservation is critical for hearing. Mitochondrial derived peptides (MDPs) are bioactive peptides and prominent members of this family are humanin (HN) and the mitochondrial-open-reading frame of the twelve S c (MOTS-c). The protective roles of HN and MOTS-c in age-related diseases and in various tissues exposed to cellular stresses have been demonstrated. The involvement of MDPs in the inner ear remains to be investigated. Therefore, we determined the expression of rattin, the homolog of humanin, in inner ear tissues. Then, we found that HN and MOTS-c showed a significant protective effect on hair cells in organ of Corti explants exposed to gentamicin. Treatment with HN decreased gentamicin-induced phosphorylation of AKT, whereas treatment with MOTS-c increased phosphorylation of AMPKα in explants. Our data indicate that MDPs exert a protective function in gentamicin-induced hair cell damage. Therefore, MDPs may contribute to design new preventive strategies against hearing loss.
Collapse
Affiliation(s)
- Dominique Waldmann
- University of Basel Hospital, Department of Biomedicine, Basel, Switzerland.
| | - Yu Lu
- University of Basel Hospital, Department of Biomedicine, Basel, Switzerland.
| | - Maurizio Cortada
- University of Basel Hospital, Department of Biomedicine, Basel, Switzerland; University of Basel Hospital, Clinic for Otolaryngology, Head and Neck Surgery, Basel, Switzerland.
| | - Daniel Bodmer
- University of Basel Hospital, Department of Biomedicine, Basel, Switzerland; University of Basel Hospital, Clinic for Otolaryngology, Head and Neck Surgery, Basel, Switzerland.
| | | |
Collapse
|
12
|
Sousa T, Moreira PI, Cardoso S. Current Advances in Mitochondrial Targeted Interventions in Alzheimer's Disease. Biomedicines 2023; 11:2331. [PMID: 37760774 PMCID: PMC10525414 DOI: 10.3390/biomedicines11092331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Alzheimer's disease is the most prevalent neurodegenerative disorder and affects the lives not only of those who are diagnosed but also of their caregivers. Despite the enormous social, economic and political burden, AD remains a disease without an effective treatment and with several failed attempts to modify the disease course. The fact that AD clinical diagnosis is most often performed at a stage at which the underlying pathological events are in an advanced and conceivably irremediable state strongly hampers treatment attempts. This raises the awareness of the need to identify and characterize the early brain changes in AD, in order to identify possible novel therapeutic targets to circumvent AD's cascade of events. One of the most auspicious targets is mitochondria, powerful organelles found in nearly all cells of the body. A vast body of literature has shown that mitochondria from AD patients and model organisms of the disease differ from their non-AD counterparts. In view of this evidence, preserving and/or restoring mitochondria's health and function can represent the primary means to achieve advances to tackle AD. In this review, we will briefly assess and summarize the previous and latest evidence of mitochondria dysfunction in AD. A particular focus will be given to the recent updates and advances in the strategy options aimed to target faulty mitochondria in AD.
Collapse
Affiliation(s)
- Tiago Sousa
- Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal;
| | - Paula I. Moreira
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
| | - Susana Cardoso
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
13
|
Wagner ML, Ammann A, Piraino G, Wolfe V, O’Connor M, Lahni P, Ziady A, Zingarelli B. PROTECTIVE EFFECTS OF HUMANIN-G IN HEMORRHAGIC SHOCK IN FEMALE MICE VIA AMPKα1-INDEPENDENT MECHANISMS. Shock 2023; 60:64-74. [PMID: 37079467 PMCID: PMC10523894 DOI: 10.1097/shk.0000000000002134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
ABSTRACT Introduction: Despite therapeutic advances in hemorrhagic shock, mortality from multiple organ failure remains high. We previously showed that the α1 subunit of AMP-activated protein kinase (AMPK), a crucial regulator of mitochondrial function, exerts a protective role in hemorrhagic shock. Humanin is a mitochondrial peptide with cytoprotective properties against cellular stress. Here, we investigated whether AMPKα1 influences systemic levels of endogenous humanin in hemorrhagic shock and whether treatment with the synthetic analog humanin-G affords beneficial effects. Methods: AMPKα1 wild-type (WT) and knockout (KO) female mice were subjected to hemorrhagic shock followed by resuscitation with blood and lactated Ringer's solution. In short-term studies, mice were treated with humanin-G or vehicle and sacrificed at 3 h after resuscitation; in survival studies, mice were treated with PEGylated humanin-G and monitored for 7 days. Results: Compared with the vehicle WT group, KO mice exhibited severe hypotension, cardiac mitochondrial damage, and higher plasma levels of Th17 cytokines but had similar lung injury and similar plasma elevation of endogenous humanin. Treatment with humanin-G improved lung injury, mean arterial blood pressure, and survival in both WT and KO mice, without affecting systemic cytokine or humanin levels. Humanin-G also ameliorated cardiac mitochondrial damage and increased adenosine triphosphate levels in KO mice. Beneficial effects of humanin-G were associated with lung cytoplasmic and nuclear activation of the signal transducer and activator of transcription-3 (STAT3) in AMPKα1-independent manner with marginal or no effects on mitochondrial STAT3 and complex I subunit GRIM-19. Conclusions: Our data indicate that circulating levels of humanin increase during hemorrhagic shock in AMPKα1-independent fashion as a defense mechanism to counteract metabolic derangement and that administration of humanin-G affords beneficial effects through STAT3 activation even in the absence of a functional AMPKα1.
Collapse
Affiliation(s)
- Monica L. Wagner
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati Ohio, USA
| | - Allison Ammann
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati Ohio, USA
| | - Giovanna Piraino
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati Ohio, USA
| | - Vivian Wolfe
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati Ohio, USA
| | - Michael O’Connor
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati Ohio, USA
| | - Patrick Lahni
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati Ohio, USA
| | - Assem Ziady
- Division of Bone Marrow Transplantation & Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Ohio, USA
| | - Basilia Zingarelli
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Ohio, USA
| |
Collapse
|
14
|
Kim KH. Intranasal delivery of mitochondrial protein humanin rescues cell death and promotes mitochondrial function in Parkinson's disease. Theranostics 2023; 13:3330-3345. [PMID: 37351170 PMCID: PMC10283052 DOI: 10.7150/thno.84165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/21/2023] [Indexed: 06/24/2023] Open
Abstract
Rationale: Mitochondrial dysfunction is a key factor in the pathogenesis of Parkinson's disease (PD). Accordingly, many aspects of mitochondrial function have been studied as a putative therapeutic target. Here we present a novel strategy to promote mitochondrial function and protect against Parkinson's disease by the peptide encoded within mitochondrial genome, mitochondria-derived peptide (MDP) humanin (HN). Methods: To test humanin as a potential biomarker in PD, we measured protein levels of circulating humanin from the plasma of PD patients and transgenic or neurotoxic mouse models of PD. Next, we aimed to identify whether HN peptide treatment can regulate its activity or expression. Using mouse models of PD, we assessed HN delivery to the brain via the nasal route of administration. We further revealed a possible mechanism underlying the therapeutic effectiveness of HN peptide for PD using in vitro and ex vivo model of PD. Results: Although the expression of intracellular HN was not correlated with PD, HN treatment itself could induce intracellular HN expression and enhance mitochondrial biogenesis inducing mitochondrial gene expression. After intranasal administration, HN peptide resulted in neuroprotection and behavioral recovery in an animal model of PD. Interestingly, HN peptide following intranasal delivery was found within the brain, mainly via the trigeminal pathways. Mechanistically, HN treatment induced activation of phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) signaling pathway which led to enhanced mitochondrial biogenesis resulting in upregulation of mitochondrial gene including humanin. Conclusion: These data support a novel role of mitochondrial protein humanin in mitochondrial function and neuronal survival against Parkinson's disease, in which humanin treatment is sufficient for stimulating mitochondrial gene expression.
Collapse
Affiliation(s)
- Kyung Hwa Kim
- Department of Health Sciences, The Graduate School of Dong-A University, 840 Hadan-dong, Saha-gu, Busan 49315, Korea
| |
Collapse
|
15
|
Dabravolski SA. Mitochondria-derived peptides in healthy ageing and therapy of age-related diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:197-215. [PMID: 37437978 DOI: 10.1016/bs.apcsb.2023.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Mitochondrial-derived peptides (MDPs) are small bioactive peptides encoded by mitochondrial DNA and involved in various stress-protecting mechanisms. To date, eight mitochondrial-derived peptides have been identified: MOTS-c sequence is hidden in the 12 S rRNA gene (MT-RNR1), and the other 7 (humanin and small humanin-like peptides 1-6) are encoded by the 16 S rRNA (MT-RNR2) gene. While the anti-apoptotic, anti-inflammatory and cardioprotective activities of MDPs are well described, recent research suggests that MDPs are sensitive metabolic sensors, closely connected with mtDNA mutation-associated diseases and age-associated metabolic disorders. In this chapter, we focus on the recent progress in understanding the metabolo-protective properties of MDPs, their role in maintenance of the cellular and mitochondrial homeostasis associated with age-related diseases: Alzheimer's disease, cognitive decline, macular degeneration and cataracts. Also, we will discuss MDPs-based and MDPs-targeted interventions to treat age-related diseases and extend a healthy lifespan.
Collapse
Affiliation(s)
- Siarhei A Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Karmiel 2161002, Israel.
| |
Collapse
|
16
|
Miller B, Kim SJ, Mehta HH, Cao K, Kumagai H, Thumaty N, Leelaprachakul N, Braniff RG, Jiao H, Vaughan J, Diedrich J, Saghatelian A, Arpawong TE, Crimmins EM, Ertekin-Taner N, Tubi MA, Hare ET, Braskie MN, Décarie-Spain L, Kanoski SE, Grodstein F, Bennett DA, Zhao L, Toga AW, Wan J, Yen K, Cohen P. Mitochondrial DNA variation in Alzheimer's disease reveals a unique microprotein called SHMOOSE. Mol Psychiatry 2023; 28:1813-1826. [PMID: 36127429 PMCID: PMC10027624 DOI: 10.1038/s41380-022-01769-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 08/15/2022] [Accepted: 08/26/2022] [Indexed: 01/22/2023]
Abstract
Mitochondrial DNA variants have previously associated with disease, but the underlying mechanisms have been largely elusive. Here, we report that mitochondrial SNP rs2853499 associated with Alzheimer's disease (AD), neuroimaging, and transcriptomics. We mapped rs2853499 to a novel mitochondrial small open reading frame called SHMOOSE with microprotein encoding potential. Indeed, we detected two unique SHMOOSE-derived peptide fragments in mitochondria by using mass spectrometry-the first unique mass spectrometry-based detection of a mitochondrial-encoded microprotein to date. Furthermore, cerebrospinal fluid (CSF) SHMOOSE levels in humans correlated with age, CSF tau, and brain white matter volume. We followed up on these genetic and biochemical findings by carrying out a series of functional experiments. SHMOOSE acted on the brain following intracerebroventricular administration, differentiated mitochondrial gene expression in multiple models, localized to mitochondria, bound the inner mitochondrial membrane protein mitofilin, and boosted mitochondrial oxygen consumption. Altogether, SHMOOSE has vast implications for the fields of neurobiology, Alzheimer's disease, and microproteins.
Collapse
Affiliation(s)
- Brendan Miller
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Su-Jeong Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Hemal H Mehta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Kevin Cao
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Hiroshi Kumagai
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Neehar Thumaty
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Naphada Leelaprachakul
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Regina Gonzalez Braniff
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Henry Jiao
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Joan Vaughan
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jolene Diedrich
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Thalida E Arpawong
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Eileen M Crimmins
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | | | - Meral A Tubi
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, CA, USA
- Department of Neurology, University of Southern California, Los Angeles, CA, USA
| | - Evan T Hare
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, CA, USA
- Department of Neurology, University of Southern California, Los Angeles, CA, USA
| | - Meredith N Braskie
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, CA, USA
- Department of Neurology, University of Southern California, Los Angeles, CA, USA
| | - Léa Décarie-Spain
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA
| | - Scott E Kanoski
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA
| | - Francine Grodstein
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Lu Zhao
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Arthur W Toga
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Junxiang Wan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Kelvin Yen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Kumagai H, Miller B, Kim SJ, Leelaprachakul N, Kikuchi N, Yen K, Cohen P. Novel Insights into Mitochondrial DNA: Mitochondrial Microproteins and mtDNA Variants Modulate Athletic Performance and Age-Related Diseases. Genes (Basel) 2023; 14:286. [PMID: 36833212 PMCID: PMC9956216 DOI: 10.3390/genes14020286] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Sports genetics research began in the late 1990s and over 200 variants have been reported as athletic performance- and sports injuries-related genetic polymorphisms. Genetic polymorphisms in the α-actinin-3 (ACTN3) and angiotensin-converting enzyme (ACE) genes are well-established for athletic performance, while collagen-, inflammation-, and estrogen-related genetic polymorphisms are reported as genetic markers for sports injuries. Although the Human Genome Project was completed in the early 2000s, recent studies have discovered previously unannotated microproteins encoded in small open reading frames. Mitochondrial microproteins (also called mitochondrial-derived peptides) are encoded in the mtDNA, and ten mitochondrial microproteins, such as humanin, MOTS-c (mitochondrial ORF of the 12S rRNA type-c), SHLPs 1-6 (small humanin-like peptides 1 to 6), SHMOOSE (Small Human Mitochondrial ORF Over SErine tRNA), and Gau (gene antisense ubiquitous in mtDNAs) have been identified to date. Some of those microproteins have crucial roles in human biology by regulating mitochondrial function, and those, including those to be discovered in the future, could contribute to a better understanding of human biology. This review describes a basic concept of mitochondrial microproteins and discusses recent findings about the potential roles of mitochondrial microproteins in athletic performance as well as age-related diseases.
Collapse
Affiliation(s)
- Hiroshi Kumagai
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Brendan Miller
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Su-Jeong Kim
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Naphada Leelaprachakul
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Naoki Kikuchi
- Graduate School of Health and Sport Science, Nippon Sport Science University, Setagaya-ku, Tokyo 158-8508, Japan
| | - Kelvin Yen
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Pinchas Cohen
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
18
|
Tashiro R, Bautista-Garrido J, Ozaki D, Sun G, Obertas L, Mobley AS, Kim GS, Aronowski J, Jung JE. Transplantation of Astrocytic Mitochondria Modulates Neuronal Antioxidant Defense and Neuroplasticity and Promotes Functional Recovery after Intracerebral Hemorrhage. J Neurosci 2022; 42:7001-7014. [PMID: 35970559 PMCID: PMC9463988 DOI: 10.1523/jneurosci.2222-21.2022] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022] Open
Abstract
Astrocytes release functional mitochondria (Mt) that play regulatory and prosurvival functions on entering adjacent cells. We recently demonstrated that these released Mts could enter microglia to promote their reparative/prophagocytic phenotype that assists in hematoma cleanup and neurological recovery after intracerebral hemorrhage (ICH). However, the relevance of astrocytic Mt transfer into neurons in protecting brain after ICH is unclear. Here, we found that ICH causes a robust increase in superoxide generation and elevated oxidative damage that coincides with loss of the mitochondrial enzyme manganese superoxide dismutase (Mn-SOD). The damaging effect of ICH was reversed by intravenous transplantation of astrocytic Mt, which on entering the brain (and neurons), restored Mn-SOD levels and reduced neurological deficits in male mice subjected to ICH. Using an in vitro ICH-like injury model in cultured neurons, we established that astrocytic Mt on entering neurons prevented reactive oxygen species-induced oxidative stress and neuronal death by restoring neuronal Mn-SOD levels while at the same time promoted neurite extension and upregulation of synaptogenesis-related gene expression. Furthermore, we found that Mt genome-encoded small peptide humanin, which is normally abundant in Mt, could simulate Mt-transfer effect on neuronal Mn-SOD expression, oxidative stress, and neuroplasticity under ICH-like injury. This study demonstrates that adoptive astrocytic Mt transfer enhances neuronal Mn-SOD-mediated antioxidative defense and neuroplasticity in the brain, which potentiate functional recovery following ICH.SIGNIFICANCE STATEMENT Mitochondrial dysfunction and antioxidant defense play essential roles in brain damage after ICH. Astrocytes release functional Mt that enters adjacent cells to help brain homeostatic function. Here, we show that systemic transplantation of astrocytic Mt restores ICH-impaired neuronal antioxidative defense, enhances neurite outgrowth, and improves stroke recovery after ICH. Our study suggests that systemic transplantation of astrocytic Mt could be considered as a novel and potentially promising strategy for ICH treatment.
Collapse
Affiliation(s)
- Ryosuke Tashiro
- Department of Neurology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas 77030
| | - Jesus Bautista-Garrido
- Department of Neurology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas 77030
| | - Dan Ozaki
- Department of Neurology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas 77030
| | - Guanghua Sun
- Department of Neurology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas 77030
| | - Lidiya Obertas
- Department of Neurology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas 77030
| | - Alexis S Mobley
- Department of Neurology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas 77030
| | - Gab Seok Kim
- Department of Neurology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas 77030
| | - Jaroslaw Aronowski
- Department of Neurology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas 77030
| | - Joo Eun Jung
- Department of Neurology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas 77030
| |
Collapse
|
19
|
Arneson D, Zhang G, Ahn IS, Ying Z, Diamante G, Cely I, Palafox-Sanchez V, Gomez-Pinilla F, Yang X. Systems spatiotemporal dynamics of traumatic brain injury at single-cell resolution reveals humanin as a therapeutic target. Cell Mol Life Sci 2022; 79:480. [PMID: 35951114 PMCID: PMC9372016 DOI: 10.1007/s00018-022-04495-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/10/2022] [Accepted: 07/17/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND The etiology of mild traumatic brain injury (mTBI) remains elusive due to the tissue and cellular heterogeneity of the affected brain regions that underlie cognitive impairments and subsequent neurological disorders. This complexity is further exacerbated by disrupted circuits within and between cell populations across brain regions and the periphery, which occur at different timescales and in spatial domains. METHODS We profiled three tissues (hippocampus, frontal cortex, and blood leukocytes) at the acute (24-h) and subacute (7-day) phases of mTBI at single-cell resolution. RESULTS We demonstrated that the coordinated gene expression patterns across cell types were disrupted and re-organized by TBI at different timescales with distinct regional and cellular patterns. Gene expression-based network modeling implied astrocytes as a key regulator of the cell-cell coordination following mTBI in both hippocampus and frontal cortex across timepoints, and mt-Rnr2, which encodes the mitochondrial peptide humanin, as a potential target for intervention based on its broad regional and dynamic dysregulation following mTBI. Treatment of a murine mTBI model with humanin reversed cognitive impairment caused by mTBI through the restoration of metabolic pathways within astrocytes. CONCLUSIONS Our results offer a systems-level understanding of the dynamic and spatial regulation of gene programs by mTBI and pinpoint key target genes, pathways, and cell circuits that are amenable to therapeutics.
Collapse
Affiliation(s)
- Douglas Arneson
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Guanglin Zhang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - In Sook Ahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Zhe Ying
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Graciel Diamante
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Ingrid Cely
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Victoria Palafox-Sanchez
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA 90095 USA
- Brain Injury Research Center, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095 USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA 90095 USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095 USA
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095 USA
| |
Collapse
|
20
|
Katashima CK, de Oliveira Micheletti T, Braga RR, Gaspar RS, Goeminne LJE, Moura-Assis A, Crisol BM, Brícola RS, Silva VRR, de Oliveira Ramos C, da Rocha AL, Tavares MR, Simabuco FM, Matheus VA, Buscaratti L, Marques-Souza H, Pazos P, Gonzalez-Touceda D, Tovar S, del Carmen García M, Neto JCR, Curi R, Hirabara SM, Brum PC, Prada PO, de Moura LP, Pauli JR, da Silva ASR, Cintra DE, Velloso LA, Ropelle ER. Evidence for a neuromuscular circuit involving hypothalamic interleukin-6 in the control of skeletal muscle metabolism. SCIENCE ADVANCES 2022; 8:eabm7355. [PMID: 35905178 PMCID: PMC9337767 DOI: 10.1126/sciadv.abm7355] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 06/15/2022] [Indexed: 05/31/2023]
Abstract
Hypothalamic interleukin-6 (IL6) exerts a broad metabolic control. Here, we demonstrated that IL6 activates the ERK1/2 pathway in the ventromedial hypothalamus (VMH), stimulating AMPK/ACC signaling and fatty acid oxidation in mouse skeletal muscle. Bioinformatics analysis revealed that the hypothalamic IL6/ERK1/2 axis is closely associated with fatty acid oxidation- and mitochondrial-related genes in the skeletal muscle of isogenic BXD mouse strains and humans. We showed that the hypothalamic IL6/ERK1/2 pathway requires the α2-adrenergic pathway to modify fatty acid skeletal muscle metabolism. To address the physiological relevance of these findings, we demonstrated that this neuromuscular circuit is required to underpin AMPK/ACC signaling activation and fatty acid oxidation after exercise. Last, the selective down-regulation of IL6 receptor in VMH abolished the effects of exercise to sustain AMPK and ACC phosphorylation and fatty acid oxidation in the muscle after exercise. Together, these data demonstrated that the IL6/ERK axis in VMH controls fatty acid metabolism in the skeletal muscle.
Collapse
Affiliation(s)
- Carlos Kiyoshi Katashima
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeria, São Paulo 13484-350, Brazil
| | - Thayana de Oliveira Micheletti
- Faculty of Medical Sciences, Department of Internal Medicine, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Renata Rosseto Braga
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeria, São Paulo 13484-350, Brazil
| | - Rodrigo Stellzer Gaspar
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeria, São Paulo 13484-350, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Ludger J. E. Goeminne
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alexandre Moura-Assis
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Barbara Moreira Crisol
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeria, São Paulo 13484-350, Brazil
| | - Rafael S. Brícola
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeria, São Paulo 13484-350, Brazil
| | - Vagner Ramon R. Silva
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeria, São Paulo 13484-350, Brazil
| | - Camila de Oliveira Ramos
- Laboratory of Nutritional Genomic, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil
| | - Alisson L. da Rocha
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Pretol, São Paulo, Brazil
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Mariana Rosolen Tavares
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Fernando Moreira Simabuco
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Valquiria Aparecida Matheus
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Lucas Buscaratti
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Henrique Marques-Souza
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Patricia Pazos
- Department of Physiology, Research Center of Molecular Medicine and Chronic Diseases (CIMUS) and CIBER Fisiopatología Obesidad y Nutrición (CB 06/03), Instituto de Salud Carlos III (ISCIII, Ministerio de Economía y Competitividad (MINECO), University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - David Gonzalez-Touceda
- Department of Physiology, Research Center of Molecular Medicine and Chronic Diseases (CIMUS) and CIBER Fisiopatología Obesidad y Nutrición (CB 06/03), Instituto de Salud Carlos III (ISCIII, Ministerio de Economía y Competitividad (MINECO), University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Sulay Tovar
- Department of Physiology, Research Center of Molecular Medicine and Chronic Diseases (CIMUS) and CIBER Fisiopatología Obesidad y Nutrición (CB 06/03), Instituto de Salud Carlos III (ISCIII, Ministerio de Economía y Competitividad (MINECO), University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - María del Carmen García
- Department of Physiology, Research Center of Molecular Medicine and Chronic Diseases (CIMUS) and CIBER Fisiopatología Obesidad y Nutrición (CB 06/03), Instituto de Salud Carlos III (ISCIII, Ministerio de Economía y Competitividad (MINECO), University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Jose Cesar Rosa Neto
- Immunometabolism Research Group, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-900, Brazil
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-900, Brazil
- Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, São Paulo 01506-000, Brazil
| | - Sandro Massao Hirabara
- Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, São Paulo 01506-000, Brazil
| | - Patrícia Chakur Brum
- School of Physical Education and Sport, University of São Paulo (USP), São Paulo 05508-030, Brazil
| | - Patrícia Oliveira Prada
- Faculty of Medical Sciences, Department of Internal Medicine, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Leandro P. de Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeria, São Paulo 13484-350, Brazil
- CEPECE—Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeria, São Paulo 13484-350, Brazil
- CEPECE—Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil
| | - Adelino S. R. da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Pretol, São Paulo, Brazil
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Dennys Esper Cintra
- Laboratory of Nutritional Genomic, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil
| | - Licio A. Velloso
- Faculty of Medical Sciences, Department of Internal Medicine, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Eduardo Rochete Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeria, São Paulo 13484-350, Brazil
- Faculty of Medical Sciences, Department of Internal Medicine, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- CEPECE—Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil
| |
Collapse
|
21
|
Qian K, Bao X, Li Y, Wang P, Guo Q, Yang P, Xu S, Yu F, Meng R, Cheng Y, Sheng D, Cao J, Xu M, Wu J, Wang T, Wang Y, Xie Q, Lu W, Zhang Q. Cholinergic Neuron Targeting Nanosystem Delivering Hybrid Peptide for Combinatorial Mitochondrial Therapy in Alzheimer's Disease. ACS NANO 2022; 16:11455-11472. [PMID: 35839463 DOI: 10.1021/acsnano.2c05795] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mitochondrial dysfunction in neurons has recently become a promising therapeutic target for Alzheimer's disease (AD). Regulation of dysfunctional mitochondria through multiple pathways rather than antioxidation monotherapy indicates synergistic therapeutic effects. Therefore, we developed a multifunctional hybrid peptide HNSS composed of antioxidant peptide SS31 and neuroprotective peptide S14G-Humanin. However, suitable peptide delivery systems with excellent loading capacity and effective at-site delivery are still absent. Herein, the nanoparticles made of citraconylation-modified poly(ethylene glycol)-poly(trimethylene carbonate) polymer (PEG-PTMC(Cit)) exhibited desirable loading of HNSS peptide through electrostatic interactions. Meanwhile, based on fibroblast growth factor receptor 1(FGFR1) overexpression in both the blood-brain barrier and cholinergic neuron, an FGFR1 ligand-FGL peptide was modified on the nanosystem (FGL-NP(Cit)/HNSS) to achieve 4.8-fold enhanced accumulation in brain with preferred distribution into cholinergic neurons in the diseased region. The acid-sensitive property of the nanosystem facilitated lysosomal escape and intracellular drug release by charge switching, resulting in HNSS enrichment in mitochondria through directing of the SS31 part. FGL-NP(Cit)/HNSS effectively rescued mitochondria dysfunction via the PGC-1α and STAT3 pathways, inhibited Aβ deposition and tau hyperphosphorylation, and ameliorated memory defects and cholinergic neuronal damage in 3xTg-AD mice. The work provides a potential platform for targeted cationic peptide delivery, harboring utility for peptide therapy in other neurodegenerative diseases.
Collapse
Affiliation(s)
- Kang Qian
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Xiaoyan Bao
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Yixian Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Pengzhen Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Qian Guo
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Peng Yang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Shuting Xu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Fazhi Yu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Ran Meng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Yunlong Cheng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Dongyu Sheng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Jinxu Cao
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Minjun Xu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Jing Wu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Tianying Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Yonghui Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Qiong Xie
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Wei Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Qizhi Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| |
Collapse
|
22
|
Abstract
The mechanisms that explain mitochondrial dysfunction in aging and healthspan continue to be studied, but one element has been unexplored: microproteins. Small open reading frames in circular mitochondria DNA can encode multiple microproteins, called mitochondria-derived peptides (MDPs). Currently, eight MDPs have been published: humanin, MOTS-c, and SHLPs 1–6. This Review describes recent advances in microprotein discovery with a focus on MDPs. It discusses what is currently known about MDPs in aging and how this new understanding could add to the way we understand age-related diseases including type 2 diabetes, cancer, and neurodegenerative diseases at the genomic, proteomic, and drug-development levels.
Collapse
|
23
|
Boutari C, Pappas PD, Theodoridis TD, Vavilis D. Humanin and diabetes mellitus: A review of in vitro and in vivo studies. World J Diabetes 2022; 13:213-223. [PMID: 35432758 PMCID: PMC8984571 DOI: 10.4239/wjd.v13.i3.213] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/24/2021] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
Humanin (HN) is a 24-amino acid mitochondrial-derived polypeptide with cyto-protective and anti-apoptotic effects that regulates the mitochondrial functions under stress conditions. Accumulating evidence suggests the role of HN against age-related diseases, such as Alzheimer’s disease. The decline in insulin action is a metabolic feature of aging and thus, type 2 diabetes mellitus is considered an age-related disease, as well. It has been suggested that HN increases insulin sensitivity, improves the survival of pancreatic beta cells, and delays the onset of diabetes, actions that could be deployed in the treatment of diabetes. The aim of this review is to present the in vitro and in vivo studies that examined the role of HN in insulin resistance and diabetes and to discuss its newly emerging role as a therapeutic option against those conditions.
Collapse
Affiliation(s)
- Chrysoula Boutari
- Second Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| | - Panagiotis D Pappas
- First Department of Obstetrics and Gynaecology, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki 56429, Greece
| | - Theodoros D Theodoridis
- First Department of Obstetrics and Gynaecology, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki 56429, Greece
| | - Dimitrios Vavilis
- First Department of Obstetrics and Gynaecology, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki 56429, Greece
- Medical School, University of Cyprus, Nicosia, Cyprus 20537 1678, Cyprus
| |
Collapse
|
24
|
Rochette L, Rigal E, Dogon G, Malka G, Zeller M, Vergely C, Cottin Y. Mitochondrial-derived peptides: New markers for cardiometabolic dysfunction. Arch Cardiovasc Dis 2022; 115:48-56. [PMID: 34972639 DOI: 10.1016/j.acvd.2021.10.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 02/07/2023]
Abstract
Great attention is being paid to the evaluation of new markers in blood circulation for the estimation of tissue metabolism disturbance. This endogenous disturbance may contribute to the onset and progression of cardiometabolic disease. In addition to their role in energy production and metabolism, mitochondria play a main function in cellular mechanisms, including apoptosis, oxidative stress and calcium homeostasis. Mitochondria produce mitochondrial-derived peptides that mediate the transcriptional stress response by translocating into the nucleus and interacting with deoxyribonucleic acid. This class of peptides includes humanin, mitochondrial open reading frame of the 12S ribosomal ribonucleic acid type c (MOTS-c) and small humanin-like peptides. Mitochondrial-derived peptides are regulators of metabolism, exerting cytoprotective effects through antioxidative stress, anti-inflammatory responses and antiapoptosis; they are emerging biomarkers reflecting mitochondrial function, and the circulating concentration of these proteins can be used to diagnose cardiometabolic dysfunction. The aims of this review are: (1) to describe the emerging role for mitochondrial-derived peptides as biomarkers; and (2) to discuss the therapeutic application of these peptides.
Collapse
Affiliation(s)
- Luc Rochette
- Équipe d'Accueil (EA 7460), physiopathologie et épidémiologie cérébro-cardiovasculaires (PEC2), faculté des sciences de santé, université de Bourgogne-Franche Comté, 21000 Dijon, France.
| | - Eve Rigal
- Équipe d'Accueil (EA 7460), physiopathologie et épidémiologie cérébro-cardiovasculaires (PEC2), faculté des sciences de santé, université de Bourgogne-Franche Comté, 21000 Dijon, France
| | - Geoffrey Dogon
- Équipe d'Accueil (EA 7460), physiopathologie et épidémiologie cérébro-cardiovasculaires (PEC2), faculté des sciences de santé, université de Bourgogne-Franche Comté, 21000 Dijon, France
| | - Gabriel Malka
- Centre interface applications médicales (CIAM), université Mohammed VI Polytechnique, 43150 Ben Guerir, Morocco
| | - Marianne Zeller
- Équipe d'Accueil (EA 7460), physiopathologie et épidémiologie cérébro-cardiovasculaires (PEC2), faculté des sciences de santé, université de Bourgogne-Franche Comté, 21000 Dijon, France
| | - Catherine Vergely
- Équipe d'Accueil (EA 7460), physiopathologie et épidémiologie cérébro-cardiovasculaires (PEC2), faculté des sciences de santé, université de Bourgogne-Franche Comté, 21000 Dijon, France
| | - Yves Cottin
- Cardiology Unit, CHU de Dijon-Bourgogne, 21000 Dijon, France
| |
Collapse
|
25
|
Urban C, Hayes HV, Piraino G, Wolfe V, Lahni P, O'Connor M, Phares C, Zingarelli B. Colivelin, a synthetic derivative of humanin, ameliorates endothelial injury and glycocalyx shedding after sepsis in mice. Front Immunol 2022; 13:984298. [PMID: 36119052 PMCID: PMC9478210 DOI: 10.3389/fimmu.2022.984298] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/15/2022] [Indexed: 11/19/2022] Open
Abstract
Endothelial dysfunction plays a central role in the pathogenesis of sepsis-mediated multiple organ failure. Several clinical and experimental studies have suggested that the glycocalyx is an early target of endothelial injury during an infection. Colivelin, a synthetic derivative of the mitochondrial peptide humanin, has displayed cytoprotective effects in oxidative conditions. In the current study, we aimed to determine the potential therapeutic effects of colivelin in endothelial dysfunction and outcomes of sepsis in vivo. Male C57BL/6 mice were subjected to a clinically relevant model of polymicrobial sepsis by cecal ligation and puncture (CLP) and were treated with vehicle or colivelin (100-200 µg/kg) intraperitoneally at 1 h after CLP. We observed that vehicle-treated mice had early elevation of plasma levels of the adhesion molecules ICAM-1 and P-selectin, the angiogenetic factor endoglin and the glycocalyx syndecan-1 at 6 h after CLP when compared to control mice, while levels of angiopoietin-2, a mediator of microvascular disintegration, and the proprotein convertase subtilisin/kexin type 9, an enzyme implicated in clearance of endotoxins, raised at 18 h after CLP. The early elevation of these endothelial and glycocalyx damage biomarkers coincided with lung histological injury and neutrophil inflammation in lung, liver, and kidneys. At transmission electron microscopy analysis, thoracic aortas of septic mice showed increased glycocalyx breakdown and shedding, and damaged mitochondria in endothelial and smooth muscle cells. Treatment with colivelin ameliorated lung architecture, reduced organ neutrophil infiltration, and attenuated plasma levels of syndecan-1, tumor necrosis factor-α, macrophage inflammatory protein-1α and interleukin-10. These therapeutic effects of colivelin were associated with amelioration of glycocalyx density and mitochondrial structure in the aorta. At molecular analysis, colivelin treatment was associated with inhibition of the signal transducer and activator of transcription 3 and activation of the AMP-activated protein kinase in the aorta and lung. In long-term outcomes studies up to 7 days, co-treatment of colivelin with antimicrobial agents significantly reduced the disease severity score when compared to treatment with antibiotics alone. In conclusion, our data support that damage of the glycocalyx is an early pathogenetic event during sepsis and that colivelin may have therapeutic potential for the treatment of sepsis-associated endothelial dysfunction.
Collapse
Affiliation(s)
- Catherine Urban
- Division of Pediatric Critical Care, Stony Brook Children's, Stony Brook University, Stony Brook, NY, United States
| | - Hannah V Hayes
- Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Giovanna Piraino
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Vivian Wolfe
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Patrick Lahni
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Michael O'Connor
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Ciara Phares
- Department of Systems Biology and Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Basilia Zingarelli
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
26
|
Sahu R, Upadhayay S, Mehan S. Inhibition of extracellular regulated kinase (ERK)-1/2 signaling pathway in the prevention of ALS: Target inhibitors and influences on neurological dysfunctions. Eur J Cell Biol 2021; 100:151179. [PMID: 34560374 DOI: 10.1016/j.ejcb.2021.151179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/18/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Cell signal transduction pathways are essential modulators of several physiological and pathological processes in the brain. During overactivation, these signaling processes may lead to disease progression. Abnormal protein kinase activation is associated with several biological dysfunctions that facilitate neurodegeneration under different biological conditions. As a result, these signaling pathways are essential in understanding brain disorders' development or progression. Recent research findings indicate the crucial role of extracellular signal-regulated kinase-1/2 (ERK-1/2) signaling during the neuronal development process. ERK-1/2 is a key component of its mitogen-activated protein kinase (MAPK) group, controlling certain neurological activities by regulating metabolic pathways, cell proliferation, differentiation, and apoptosis. ERK-1/2 also influences neuronal elastic properties, nerve growth, and neurological and cognitive processing during brain injuries. The primary goal of this review is to elucidate the activation of ERK1/2 signaling, which is involved in the development of several ALS-related neuropathological dysfunctions. ALS is a rare neurological disorder category that mainly affects the nerve cells responsible for regulating voluntary muscle activity. ALS is progressive, which means that the symptoms are getting worse over time, and there is no cure for ALS and no effective treatment to avoid or reverse. Genetic abnormalities, oligodendrocyte degradation, glial overactivation, and immune deregulation are associated with ALS progression. Furthermore, the current review also identifies ERK-1/2 signaling inhibitors that can promote neuroprotection and neurotrophic effects against the clinical-pathological presentation of ALS. As a result, in the future, the potential ERK-1/2 signaling inhibitors could be used in the treatment of ALS and related neurocomplications.
Collapse
Affiliation(s)
- Rakesh Sahu
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Shubham Upadhayay
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India.
| |
Collapse
|
27
|
Perlikowska R. Whether short peptides are good candidates for future neuroprotective therapeutics? Peptides 2021; 140:170528. [PMID: 33716091 DOI: 10.1016/j.peptides.2021.170528] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/18/2021] [Accepted: 02/27/2021] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases are a broad group of largely debilitating, and ultimately terminal conditions resulting in progressive degeneration of different brain regions. The observed damages are associated with cell death, structural and functional deficits of neurons, or demyelination. The concept of neuroprotection concerns the administration of the agent, which should reverse some of the damage or prevent further adverse changes. A growing body of evidence suggested that among many classes of compounds considered as neuroprotective agents, peptides derived from natural materials or their synthetic analogs are good candidates. They presented a broad spectrum of activities and abilities to act through diverse mechanisms of action. Biologically active peptides have many properties, including antioxidant, antimicrobial, antiinflammatory, and immunomodulatory effects. Peptides with pro-survival and neuroprotective activities, associated with inhibition of oxidative stress, apoptosis, inflammation and are able to improve cell viability or mitochondrial functions, are also promising molecules of particular interest to the pharmaceutical industries. Peptide multiple activities open the way for broad application potential as therapeutic agents or ingredients of health-promoting functional foods. Significantly, synthetic peptides can be remodeled in numerous ways to have desired features, such as increased solubility or biological stability, as well as selectivity towards a specific receptor, and finally better membrane penetration. This review summarized the most common features of major neurodegenerative disorders, their causes, consequences, and reported new neuroprotective drug development approaches. The author focused on the unique perspectives in neuroprotection and provided a concise survey of short peptides proposed as novel therapeutic agents against various neurodegenerative diseases.
Collapse
Affiliation(s)
- Renata Perlikowska
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, 92-215, Lodz, Poland.
| |
Collapse
|
28
|
Kim SJ, Miller B, Kumagai H, Silverstein AR, Flores M, Yen K. Mitochondrial-derived peptides in aging and age-related diseases. GeroScience 2021; 43:1113-1121. [PMID: 32910336 PMCID: PMC8190245 DOI: 10.1007/s11357-020-00262-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/28/2020] [Indexed: 12/17/2022] Open
Abstract
A decline in mitochondrial quality and activity has been associated with normal aging and correlated with the development of a wide range of age-related diseases. Here, we review the evidence that a decline in the levels of mitochondrial-derived peptides contributes to aging and age-related diseases. In particular, we discuss how mitochondrial-derived peptides, humanin and MOTS-c, contribute to specific aspects of the aging process, including cellular senescence, chronic inflammation, and cognitive decline. Genetic variations in the coding region of humanin and MOTS-c that are associated with age-related diseases are also reviewed, with particular emphasis placed on how mitochondrial variants might, in turn, regulate MDP expression and age-related phenotypes. Taken together, these observations suggest that mitochondrial-derived peptides influence or regulate a number of key aspects of aging and that strategies directed at increasing mitochondrial-derived peptide levels might have broad beneficial effects.
Collapse
Affiliation(s)
- Su-Jeong Kim
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089-0191, USA.
| | - Brendan Miller
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Hiroshi Kumagai
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Institute of Health and Sports Science & Medicine, Juntendo University, Inzai, Chiba, Japan
| | - Ana R Silverstein
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Melanie Flores
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Kelvin Yen
- The Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089-0191, USA
| |
Collapse
|
29
|
Tiwari A, Khera R, Rahi S, Mehan S, Makeen HA, Khormi YH, Rehman MU, Khan A. Neuroprotective Effect of α-Mangostin in the Ameliorating Propionic Acid-Induced Experimental Model of Autism in Wistar Rats. Brain Sci 2021; 11:288. [PMID: 33669120 PMCID: PMC7996534 DOI: 10.3390/brainsci11030288] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/09/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Several studies have documented the role of hyper-activation of extracellular signal-regulated kinases (ERK) in Autism pathogenesis. Alpha-mangostin (AMG) is a phytoconstituents with anti-oxidants, anti-inflammatory, and ERK inhibition properties in many diseases. Our research aims to investigate the neuroprotective effect of AMG in the rat model of intracerebroventricular-propionic acid (ICV-PPA) induced autism with a confirmation of its effect on the ERK signaling. Autism was induced in Wistar rats (total 36 rats; 18 male/18 female) by multiple doses of PPA through ICV injection for 11 days. Actophotometer and beam walking tasks were used to evaluate animals' motor abilities, and the Morris water maze task was utilized to confirm the cognition and memory in animals. Long term administration of AMG 100 mg/kg and AMG 200mg/kg continued from day 12 to day 44 of the experiment. Before that, animals were sacrificed, brains isolated, morphological, gross pathological studies were performed, and neurochemical analysis was performed in the brain homogenates. Cellular and molecular markers, including ERK, myelin basic protein, apoptotic markers including caspase-3, Bax, Bcl-2, neuroinflammatory markers, neurotransmitters, and oxidative stress markers, have been tested throughout the brain. Thus, AMG reduces the overactivation of the ERK signaling and also restored autism-like behavioral and neurochemical alterations.
Collapse
Affiliation(s)
- Aarti Tiwari
- Department of Pharmacology, Neuropharmacology Division, ISF College of Pharmacy, Moga, Punjab 142001, India; (A.T.); (R.K.); (S.R.)
| | - Rishabh Khera
- Department of Pharmacology, Neuropharmacology Division, ISF College of Pharmacy, Moga, Punjab 142001, India; (A.T.); (R.K.); (S.R.)
| | - Saloni Rahi
- Department of Pharmacology, Neuropharmacology Division, ISF College of Pharmacy, Moga, Punjab 142001, India; (A.T.); (R.K.); (S.R.)
| | - Sidharth Mehan
- Department of Pharmacology, Neuropharmacology Division, ISF College of Pharmacy, Moga, Punjab 142001, India; (A.T.); (R.K.); (S.R.)
| | - Hafiz Antar Makeen
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Yahya H. Khormi
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia;
| | - Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Andleeb Khan
- Department of Pharmacology & Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
30
|
Shaw RL, Norton CE, Segal SS. Apoptosis in resistance arteries induced by hydrogen peroxide: greater resilience of endothelium versus smooth muscle. Am J Physiol Heart Circ Physiol 2021; 320:H1625-H1633. [PMID: 33606587 DOI: 10.1152/ajpheart.00956.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Reactive oxygen species (ROS) are implicated in cardiovascular and neurologic disorders including atherosclerosis, heart attack, stroke, and traumatic brain injury. Although oxidative stress can lead to apoptosis of vascular cells, such findings are largely based upon isolated vascular smooth muscle cells (SMCs) and endothelial cells (ECs) studied in culture. Studying intact resistance arteries, we have focused on understanding how SMCs and ECs in the blood vessel wall respond to acute oxidative stress induced by hydrogen peroxide, a ubiquitous, membrane-permeant ROS. We find that apoptosis induced by H2O2 is far greater in SMCs compared to ECs. For both cell types, apoptosis is associated with a rise in intracellular calcium concentration ([Ca2+]i) during H2O2 exposure. Consistent with their greater death, the rise in [Ca2+]i for SMCs exceeds that in ECs. Finding that disruption of the endothelium increases SMC death, we address how myoendothelial coupling and paracrine signaling attenuate apoptosis. Remarkably, conditions associated with chronic oxidative stress (advanced age, Western-style diet) protect SMCs during H2O2 exposure, as does female sex. In light of intracellular Ca2+ handling, we consider how glycolytic versus oxidative pathways for ATP production and changes in mitochondrial structure and function impact cellular resilience to H2O2-induced apoptosis. Gaining new insight into protective signaling within and between SMCs and ECs of the arterial wall can be applied to promote vascular cell survival (and recovery of blood flow) in tissues subjected to acute oxidative stress as occurs during reperfusion following myocardial infarction and thrombotic stroke.
Collapse
Affiliation(s)
- Rebecca L Shaw
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Charles E Norton
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Steven S Segal
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, Columbia, Missouri
| |
Collapse
|
31
|
Zempo H, Kim SJ, Fuku N, Nishida Y, Higaki Y, Wan J, Yen K, Miller B, Vicinanza R, Miyamoto-Mikami E, Kumagai H, Naito H, Xiao J, Mehta HH, Lee C, Hara M, Patel YM, Setiawan VW, Moore TM, Hevener AL, Sutoh Y, Shimizu A, Kojima K, Kinoshita K, Arai Y, Hirose N, Maeda S, Tanaka K, Cohen P. A pro-diabetogenic mtDNA polymorphism in the mitochondrial-derived peptide, MOTS-c. Aging (Albany NY) 2021; 13:1692-1717. [PMID: 33468709 PMCID: PMC7880332 DOI: 10.18632/aging.202529] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022]
Abstract
Type 2 Diabetes (T2D) is an emerging public health problem in Asia. Although ethnic specific mtDNA polymorphisms have been shown to contribute to T2D risk, the functional effects of the mtDNA polymorphisms and the therapeutic potential of mitochondrial-derived peptides at the mtDNA polymorphisms are underexplored. Here, we showed an Asian-specific mitochondrial DNA variation m.1382A>C (rs111033358) leads to a K14Q amino acid replacement in MOTS-c, an insulin sensitizing mitochondrial-derived peptide. Meta-analysis of three cohorts (n = 27,527, J-MICC, MEC, and TMM) show that males but not females with the C-allele exhibit a higher prevalence of T2D. In J-MICC, only males with the C-allele in the lowest tertile of physical activity increased their prevalence of T2D, demonstrating a kinesio-genomic interaction. High-fat fed, male mice injected with MOTS-c showed reduced weight and improved glucose tolerance, but not K14Q-MOTS-c treated mice. Like the human data, female mice were unaffected. Mechanistically, K14Q-MOTS-c leads to diminished insulin-sensitization in vitro. Thus, the m.1382A>C polymorphism is associated with susceptibility to T2D in men, possibly interacting with exercise, and contributing to the risk of T2D in sedentary males by reducing the activity of MOTS-c.
Collapse
Affiliation(s)
- Hirofumi Zempo
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan.,Department of Administrative Nutrition, Faculty of Health and Nutrition, Tokyo Seiei College, Tokyo, Japan
| | - Su-Jeong Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Noriyuki Fuku
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Yuichiro Nishida
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Yasuki Higaki
- Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Junxiang Wan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Kelvin Yen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Brendan Miller
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Roberto Vicinanza
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Eri Miyamoto-Mikami
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Hiroshi Kumagai
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hisashi Naito
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Jialin Xiao
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Hemal H Mehta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Megumi Hara
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Yesha M Patel
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Veronica W Setiawan
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Timothy M Moore
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine and the Iris Cantor-UCLA Women's Health Research Center at the David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Andrea L Hevener
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine and the Iris Cantor-UCLA Women's Health Research Center at the David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Yoichi Sutoh
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Iwate, Japan
| | - Atsushi Shimizu
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Iwate, Japan
| | - Kaname Kojima
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Miyagi, Japan
| | - Kengo Kinoshita
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Miyagi, Japan
| | - Yasumichi Arai
- Center for Supercentenarian Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Nobuyoshi Hirose
- Center for Supercentenarian Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Seiji Maeda
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Keitaro Tanaka
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
32
|
Wu Y, Sun L, Zhuang Z, Hu X, Dong D. Mitochondrial-Derived Peptides in Diabetes and Its Complications. Front Endocrinol (Lausanne) 2021; 12:808120. [PMID: 35185787 PMCID: PMC8851315 DOI: 10.3389/fendo.2021.808120] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022] Open
Abstract
The changes of mitochondrial function are closely related to diabetes and its complications. Here we describe the effects of mitochondrial-derived peptides (MDPs), short peptides formed by transcription and translation of the open reading frame site in human mitochondrial DNA (mtDNA), on diabetes and its complications. We mainly focus on MDPs that have been discovered so far, such as Humanin (HN), mitochondrial open reading frame of the 12S rRNA-c (MOTS-c) and Small humanin-like peptides (SHLP 1-6), and elucidated the role of MDPs in diabetes and its major complications stroke and myocardial infarction by improving insulin resistance, inhibiting inflammatory response and anti-apoptosis. It provides more possibilities for the clinical application of mitochondrial derived peptides.
Collapse
Affiliation(s)
- Ying Wu
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Liankun Sun
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Zhoudao Zhuang
- Clinical Medical College of Jilin University, The First Hospital of Jilin University, Changchun, China
| | - Xiaoqing Hu
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Xiaoqing Hu, ; Delu Dong,
| | - Delu Dong
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
- *Correspondence: Xiaoqing Hu, ; Delu Dong,
| |
Collapse
|
33
|
Cai H, Liu Y, Men H, Zheng Y. Protective Mechanism of Humanin Against Oxidative Stress in Aging-Related Cardiovascular Diseases. Front Endocrinol (Lausanne) 2021; 12:683151. [PMID: 34177809 PMCID: PMC8222669 DOI: 10.3389/fendo.2021.683151] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
Physiological reactive oxygen species (ROS) are important regulators of intercellular signal transduction. Oxidative and antioxidation systems maintain a dynamic balance under physiological conditions. Increases in ROS levels destroy the dynamic balance, leading to oxidative stress damage. Oxidative stress is involved in the pathogenesis of aging-related cardiovascular diseases (ACVD), such as atherosclerosis, myocardial infarction, and heart failure, by contributing to apoptosis, hypertrophy, and fibrosis. Oxidative phosphorylation in mitochondria is the main source of ROS. Increasing evidence demonstrates the relationship between ACVD and humanin (HN), an endogenous peptide encoded by mitochondrial DNA. HN protects cardiomyocytes, endothelial cells, and fibroblasts from oxidative stress, highlighting its protective role in atherosclerosis, ischemia-reperfusion injury, and heart failure. Herein, we reviewed the signaling pathways associated with the HN effects on redox signals, including Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2), chaperone-mediated autophagy (CMA), c-jun NH2 terminal kinase (JNK)/p38 mitogen-activated protein kinase (p38 MAPK), adenosine monophosphate-activated protein kinase (AMPK), and phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)-Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3). Furthermore, we discussed the relationship among HN, redox signaling pathways, and ACVD. Finally, we propose that HN may be a candidate drug for ACVD.
Collapse
|
34
|
Hazafa A, Batool A, Ahmad S, Amjad M, Chaudhry SN, Asad J, Ghuman HF, Khan HM, Naeem M, Ghani U. Humanin: A mitochondrial-derived peptide in the treatment of apoptosis-related diseases. Life Sci 2021; 264:118679. [PMID: 33130077 DOI: 10.1016/j.lfs.2020.118679] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/19/2020] [Accepted: 10/25/2020] [Indexed: 02/07/2023]
Abstract
Humanin (HN) is a small mitochondrial-derived cytoprotective polypeptide encoded by mtDNA. HN exhibits protective effects in several cell types, including leukocytes, germ cells, neurons, tissues against cellular stress conditions and apoptosis through regulating various signaling mechanisms, such as JAK/STAT pathway and interaction of BCL-2 family of protein. HN is an essential cytoprotective peptide in the human body that regulates mitochondrial functions under stress conditions. The present review aims to evaluate HN peptide's antiapoptotic activities as a potential therapeutic target in the treatment of cancer, diabetes mellitus, male infertility, bone-related diseases, cardiac diseases, and brain diseases. Based on in vitro and in vivo studies, HN significantly suppressed the apoptosis during the treatment of bone osteoporosis, cardiovascular diseases, diabetes mellitus, and neurodegenerative diseases. According to accumulated data, it is concluded that HN exerts the proapoptotic activity of TNF-α in cancer, which makes HN as a novel therapeutic agent in the treatment of cancer and suggested that along with HN, the development of another mitochondrial-derived peptide could be a viable therapeutic option against different oxidative stress and apoptosis-related diseases.
Collapse
Affiliation(s)
- Abu Hazafa
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Ammara Batool
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Saeed Ahmad
- Centre of Biotechnology & Microbiology, University of Peshawar, Pakistan
| | - Muhammad Amjad
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | - Sundas Nasir Chaudhry
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Jamal Asad
- Department of Biochemistry, University of Health Sciences Lahore, Pakistan
| | - Hasham Feroz Ghuman
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | | | - Muhammad Naeem
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Usman Ghani
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| |
Collapse
|
35
|
Ma P, Zhang C, Huo P, Li Y, Yang H. A novel role of the miR-152-3p/ERRFI1/STAT3 pathway modulates the apoptosis and inflammatory response after acute kidney injury. J Biochem Mol Toxicol 2020; 34:e22540. [PMID: 32583487 DOI: 10.1002/jbt.22540] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/07/2020] [Accepted: 05/29/2020] [Indexed: 12/18/2022]
Abstract
Acute kidney injury (AKI) is one of the most common and serious complications in the development of sepsis. Many microRNAs are closely related to the occurrence, development, and prognosis of sepsis AKI (but the effect and mechanism of miR-152-3p in it is unclear). Meanwhile, the ERBB receptor feedback inhibitor 1 (ERRFI1) has a negative regulatory effect on signal transducer and activator of transcription 3 (STAT3) phosphorylation on uterine epithelial cells. But, the relationship between miR-152-3p and renal function, inflammatory factors, prognosis in AKI, and the mechanism is not clear. Analyzing sepsis-induced AKI rats and the cell model, our results revealed that miR-152-3p was upregulated in septic AKI patients and positively correlated with serum creatinine, urea nitrogen, interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α). Downregulation of miR-152-3p with the inhibitor could dramatically attenuate caspase-3, bromodeoxyuridine and IL-1β, and TNF-α in the AKI rats' model. Furthermore, downregulation of miR-152-3p attenuated lipopolysaccharide-induced apoptosis and inflammatory response in HK-2 and HEK293 cells. To further explore the mechanisms, we found ERRFI1 was appreciably downregulated and STAT3 was upregulated in AKI, whereas ERRFI1 was radically upregulated and STAT3 was greatly downregulated after the addition of miR-152-3p inhibitor, no matter in vivo or in vitro. Summarily, our study confirmed that miR-152-3p could promote the expression of STAT3 by targeting ERRFI1, aggravate cell apoptosis and inflammatory response, and thereby aggravate kidney injury in sepsis AKI.
Collapse
Affiliation(s)
- Piyong Ma
- Intensive Care Unit of Emergency Department, The Third Hospital of Jilin University, Changchun, Jilin, China
| | - Chunmei Zhang
- Intensive Care Unit of Emergency Department, The Third Hospital of Jilin University, Changchun, Jilin, China
| | - Pengfei Huo
- Intensive Care Unit of Emergency Department, The Third Hospital of Jilin University, Changchun, Jilin, China
| | - Yan Li
- Emergency Department, The Third Hospital of Jilin University, Changchun, Jilin, China
| | - Hailing Yang
- Emergency Department, The Third Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
36
|
Miller B, Kim SJ, Kumagai H, Mehta HH, Xiang W, Liu J, Yen K, Cohen P. Peptides derived from small mitochondrial open reading frames: Genomic, biological, and therapeutic implications. Exp Cell Res 2020; 393:112056. [PMID: 32387288 PMCID: PMC7778388 DOI: 10.1016/j.yexcr.2020.112056] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/20/2020] [Accepted: 05/02/2020] [Indexed: 12/15/2022]
Abstract
Mitochondrial-derived peptides (MDPs) are a novel class of bioactive microproteins that modify cell metabolism. The the eight MDPs that been characterized (e.g., humanin, MOTS-c, SHLPs1-6) attenuate disease pathology including Alzheimer's disease, prostate cancer, macular degeneration, cardiovascular disease, and diabetes. The association between disease and human genetic variation in MDPs is underexplored, although two polymorphisms in humanin and MOTS-c associate with cognitive decline and diabetes, respectively, suggesting a precise role for MDPs in disease-modification. There could be hundreds of additional MDPs that have yet to be discovered. Altogether, MDPs could explain unanswered biological and metabolic questions and are part of a growing field of novel microproteins encoded by small open reading frames. In this review, the current state of MDPs are summarized with an emphasis on biological and therapeutic implications.
Collapse
Affiliation(s)
- Brendan Miller
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Su-Jeong Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Hiroshi Kumagai
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA; Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Hemal H Mehta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Wang Xiang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Jiali Liu
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Kelvin Yen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
37
|
Sreekumar PG, Kannan R. Mechanisms of protection of retinal pigment epithelial cells from oxidant injury by humanin and other mitochondrial-derived peptides: Implications for age-related macular degeneration. Redox Biol 2020; 37:101663. [PMID: 32768357 PMCID: PMC7767738 DOI: 10.1016/j.redox.2020.101663] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/18/2020] [Accepted: 07/26/2020] [Indexed: 02/06/2023] Open
Abstract
The mitochondrial-derived peptides (MDPs) are a new class of small open reading frame encoded polypeptides with pleiotropic properties. The prominent members are Humanin (HN) and small HN-like peptide (SHLP) 2, which encode 16S rRNA, while mitochondrial open reading frame of the twelve S c (MOTS-c) encodes 12S rRNA of the mitochondrial genome. While the multifunctional properties of HN and its analog 14-HNG have been well documented, their protective role in the retinal pigment epithelium (RPE)/retina has been investigated only recently. In this review, we have summarized the multiple effects of HN and its analogs, SHLP2 and MOTS-c in oxidatively stressed human RPE and the regulatory pathways of signaling, mitochondrial function, senescence, and inter-organelle crosstalk. Emphasis is given to the mitochondrial functions such as biogenesis, bioenergetics, and autophagy in RPE undergoing oxidative stress. Further, the potential use of HN and its analogs in the prevention of age-related macular degeneration (AMD) are also presented. In addition, the role of novel, long-acting HN elastin-like polypeptides in nanotherapy of AMD and other ocular diseases stemming from oxidative damage is discussed. It is expected MDPs will become a promising group of mitochondrial peptides with valuable therapeutic applications in the treatment of retinal diseases.
Collapse
Affiliation(s)
- Parameswaran G Sreekumar
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, Los Angeles, CA, 90033, USA
| | - Ram Kannan
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, Los Angeles, CA, 90033, USA; Stein Eye Institute, Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
38
|
Rochette L, Meloux A, Zeller M, Cottin Y, Vergely C. Role of humanin, a mitochondrial-derived peptide, in cardiovascular disorders. Arch Cardiovasc Dis 2020; 113:564-571. [PMID: 32680738 DOI: 10.1016/j.acvd.2020.03.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 11/29/2022]
Abstract
The mitochondria produce specific peptides-mitochondrial-derived peptides-that mediate the transcriptional stress response by their translocation into the nucleus and interaction with deoxyribonucleic acid. Mitochondrial-derived peptides are regulators of metabolism. This class of peptides comprises humanin, mitochondrial open reading frame of the 12S ribosomal ribonucleic acid type c (MOTS-c) and small humanin-like peptides (SHLPs). Humanin inhibits mitochondrial complex 1 activity and limits the level of oxidative stress in the cell. Data show that mitochondrial-derived peptides have a role in improving metabolic diseases, such as type 2 diabetes. Perhaps humanin can be used as a marker for mitochondrial function in cardiovascular disease or as a pharmacological strategy in patients with endothelial dysfunction. The goal of this review is to discuss the newly emerging functions of humanin, and its biological role in cardiovascular disorders.
Collapse
Affiliation(s)
- Luc Rochette
- Equipe d'Accueil (EA 7460), Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne - Franche Comté, Faculté des Sciences de Santé, 7, boulevard Jeanne-d'Arc, 21000 Dijon, France.
| | - Alexandre Meloux
- Equipe d'Accueil (EA 7460), Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne - Franche Comté, Faculté des Sciences de Santé, 7, boulevard Jeanne-d'Arc, 21000 Dijon, France
| | - Marianne Zeller
- Equipe d'Accueil (EA 7460), Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne - Franche Comté, Faculté des Sciences de Santé, 7, boulevard Jeanne-d'Arc, 21000 Dijon, France
| | - Yves Cottin
- Equipe d'Accueil (EA 7460), Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne - Franche Comté, Faculté des Sciences de Santé, 7, boulevard Jeanne-d'Arc, 21000 Dijon, France; Department of Cardiology, CHU Dijon Bourgogne, 21000 Dijon, France
| | - Catherine Vergely
- Equipe d'Accueil (EA 7460), Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne - Franche Comté, Faculté des Sciences de Santé, 7, boulevard Jeanne-d'Arc, 21000 Dijon, France
| |
Collapse
|
39
|
Kim SM, Kang JI, Yoon HS, Choi YK, Go JS, Oh SK, Ahn M, Kim J, Koh YS, Hyun JW, Yoo ES, Kang HK. HNG, A Humanin Analogue, Promotes Hair Growth by Inhibiting Anagen-to-Catagen Transition. Int J Mol Sci 2020; 21:ijms21124553. [PMID: 32604799 PMCID: PMC7348781 DOI: 10.3390/ijms21124553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
The hair follicle goes through repetitive cycles including anagen, catagen, and telogen. The interaction of dermal papilla cells (DPCs) and keratinocytes regulates the hair cycle and hair growth. Humanin was discovered in the surviving brain cells of patients with Alzheimer’s disease. HNG, a humanin analogue, activates cell growth, proliferation, and cell cycle progression, and it protects cells from apoptosis. This study was performed to investigate the promoting effect and action mechanisms of HNG on hair growth. HNG significantly increased DPC proliferation. HNG significantly increased hair shaft elongation in vibrissa hair follicle organ culture. In vivo experiment showed that HNG prolonged anagen duration and inhibited hair follicle cell apoptosis, indicating that HNG inhibited the transition from the anagen to catagen phase mice. Furthermore, HNG activated extracellular signal-regulated kinase (Erk)1/2, Akt, and signal transducer and activator of transcription (Stat3) within minutes and up-regulated vascular endothelial growth factor (VEGF) levels on DPCs. This means that HNG could induce the anagen phase longer by up-regulating VEGF, which is a Stat3 target gene and one of the anagen maintenance factors. HNG stimulated the anagen phase longer with VEGF up-regulation, and it prevented apoptosis by activating Erk1/2, Akt, and Stat3 signaling.
Collapse
Affiliation(s)
- Sung Min Kim
- Department of Medicine, School of Medicine, Jeju National University, 102 Jejudaehakno, Jeju 63243, Korea; (S.M.K.); (J.-I.K.); (H.-S.Y.); (Y.K.C.); (J.S.G.); (S.K.O.); (Y.S.K.); (J.W.H.); (E.-S.Y.)
| | - Jung-Il Kang
- Department of Medicine, School of Medicine, Jeju National University, 102 Jejudaehakno, Jeju 63243, Korea; (S.M.K.); (J.-I.K.); (H.-S.Y.); (Y.K.C.); (J.S.G.); (S.K.O.); (Y.S.K.); (J.W.H.); (E.-S.Y.)
| | - Hoon-Seok Yoon
- Department of Medicine, School of Medicine, Jeju National University, 102 Jejudaehakno, Jeju 63243, Korea; (S.M.K.); (J.-I.K.); (H.-S.Y.); (Y.K.C.); (J.S.G.); (S.K.O.); (Y.S.K.); (J.W.H.); (E.-S.Y.)
| | - Youn Kyung Choi
- Department of Medicine, School of Medicine, Jeju National University, 102 Jejudaehakno, Jeju 63243, Korea; (S.M.K.); (J.-I.K.); (H.-S.Y.); (Y.K.C.); (J.S.G.); (S.K.O.); (Y.S.K.); (J.W.H.); (E.-S.Y.)
| | - Ji Soo Go
- Department of Medicine, School of Medicine, Jeju National University, 102 Jejudaehakno, Jeju 63243, Korea; (S.M.K.); (J.-I.K.); (H.-S.Y.); (Y.K.C.); (J.S.G.); (S.K.O.); (Y.S.K.); (J.W.H.); (E.-S.Y.)
| | - Sun Kyung Oh
- Department of Medicine, School of Medicine, Jeju National University, 102 Jejudaehakno, Jeju 63243, Korea; (S.M.K.); (J.-I.K.); (H.-S.Y.); (Y.K.C.); (J.S.G.); (S.K.O.); (Y.S.K.); (J.W.H.); (E.-S.Y.)
| | - Meejung Ahn
- Department of Animal Science, College of Life Science, Sangji University, Wonju 26339, Korea;
| | - Jeongtae Kim
- Department of Anatomy, Kosin University College of Medicine, Busan 49267, Korea;
| | - Young Sang Koh
- Department of Medicine, School of Medicine, Jeju National University, 102 Jejudaehakno, Jeju 63243, Korea; (S.M.K.); (J.-I.K.); (H.-S.Y.); (Y.K.C.); (J.S.G.); (S.K.O.); (Y.S.K.); (J.W.H.); (E.-S.Y.)
- Jeju Research Center for Natural Medicine, Jeju National University, 102 Jejudaehakno, Jeju 63243, Korea
| | - Jin Won Hyun
- Department of Medicine, School of Medicine, Jeju National University, 102 Jejudaehakno, Jeju 63243, Korea; (S.M.K.); (J.-I.K.); (H.-S.Y.); (Y.K.C.); (J.S.G.); (S.K.O.); (Y.S.K.); (J.W.H.); (E.-S.Y.)
- Jeju Research Center for Natural Medicine, Jeju National University, 102 Jejudaehakno, Jeju 63243, Korea
| | - Eun-Sook Yoo
- Department of Medicine, School of Medicine, Jeju National University, 102 Jejudaehakno, Jeju 63243, Korea; (S.M.K.); (J.-I.K.); (H.-S.Y.); (Y.K.C.); (J.S.G.); (S.K.O.); (Y.S.K.); (J.W.H.); (E.-S.Y.)
- Jeju Research Center for Natural Medicine, Jeju National University, 102 Jejudaehakno, Jeju 63243, Korea
| | - Hee-Kyoung Kang
- Department of Medicine, School of Medicine, Jeju National University, 102 Jejudaehakno, Jeju 63243, Korea; (S.M.K.); (J.-I.K.); (H.-S.Y.); (Y.K.C.); (J.S.G.); (S.K.O.); (Y.S.K.); (J.W.H.); (E.-S.Y.)
- Jeju Research Center for Natural Medicine, Jeju National University, 102 Jejudaehakno, Jeju 63243, Korea
- Correspondence: ; Tel.: +82-64-754-3846; Fax: +82-64-702-2687
| |
Collapse
|
40
|
Kim SJ, Miller B, Mehta HH, Xiao J, Wan J, Arpawong TE, Yen K, Cohen P. The mitochondrial-derived peptide MOTS-c is a regulator of plasma metabolites and enhances insulin sensitivity. Physiol Rep 2020; 7:e14171. [PMID: 31293078 PMCID: PMC6640593 DOI: 10.14814/phy2.14171] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/16/2022] Open
Abstract
MOTS‐c is an exercise mimetic and improves insulin sensitivity in aged and diet‐induced obese mice. Although plasma markers are good markers for the metabolic condition, whether MOTS‐c changes plasma markers in diet‐induced obese mice has not been examined. Here, we used an unbiased metabolomics approach to examine the effect of MOTS‐c on plasma markers of metabolic dysfunction. We found that three pathways – sphingolipid metabolism, monoacylglycerol metabolism, and dicarboxylate metabolism – were reduced in MOTS‐c–injected mice. Interestingly, these pathways are upregulated in obese and T2D models. MOTS‐c improves insulin sensitivity and increases beta‐oxidation to prevent fat accumulation in DIO mice through these pathways. These results provide us a better understanding of the mechanism of how MOTS‐c improves insulin sensitivity and reduces the body weight and fatty liver and opens a new venue for further study.
Collapse
Affiliation(s)
- Su-Jeong Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Brendan Miller
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Hemal H Mehta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Jialin Xiao
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Junxiang Wan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Thalida E Arpawong
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Kelvin Yen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| |
Collapse
|
41
|
Efficacy of a Novel Mitochondrial-Derived Peptide in a Porcine Model of Myocardial Ischemia/Reperfusion Injury. JACC Basic Transl Sci 2020; 5:699-714. [PMID: 32760857 PMCID: PMC7393416 DOI: 10.1016/j.jacbts.2020.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/23/2020] [Accepted: 04/25/2020] [Indexed: 12/27/2022]
Abstract
A mitochondrial-derived peptide therapy, HNG, was safe and was delivered as adjunctive therapy with standard-of-care reperfusion in a translational large animal model of myocardial ischemia/reperfusion injury. HNG reduced infarct size per area-at-risk by 41% with an ischemic time of 60 min followed by 48 h of reperfusion. The infarct-sparing effects of HNG were abolished when the ischemic time was increased to 75 min followed by 48 h of reperfusion. The use of rigorous translational large animal models that account for clinically relevant variables is a prerequisite to better predict the clinical efficacy and outcomes of novel therapeutic strategies.
With the complexities that surround myocardial ischemia/reperfusion (MI/R) injury, therapies adjunctive to reperfusion that elicit beneficial pleiotropic effects and do not overlap with standard of care are necessary. This study found that the mitochondrial-derived peptide S14G-humanin (HNG) (2 mg/kg), an analogue of humanin, reduced infarct size in a large animal model of MI/R. However, when ischemic time was increased, the infarct-sparing effects were abolished with the same dose of HNG. Thus, although the 60-min MI/R study showed that HNG cardioprotection translates beyond small animal models, further studies are needed to optimize HNG therapy for longer, more patient-relevant periods of cardiac ischemia.
Collapse
Key Words
- AAR, area-at-risk
- Bax, Bcl-2–associated X protein
- DAPI, 4′,6-diamidino-2-phenylindole
- ELISA, enzyme-linked immunoadsorbent assay
- HNG, S14G-humanin analogue
- IGFBP3, insulin-like growth factor–binding protein-3
- IV, intravenously
- LAD, left anterior coronary artery
- LV, left ventricular
- MDP, mitochondrial-derived peptide
- MI, myocardial infarction
- MI/R, myocardial ischemia/reperfusion
- NIZ, nonischemic zone
- RMBF, regional myocardial blood flow
- STAT, signal transducer and activator of transcription
- TBARS, thiobarbituric acid–reactive substances
- TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling
- acute myocardial infarction
- adjunctive therapy
- cTnI, cardiac troponin I
- h-FABP, heart fatty acid–binding protein
- large animal model
- mitochondrial-derived peptide
- myocardial ischemia-reperfusion injury
Collapse
|
42
|
Bravo JI, Nozownik S, Danthi PS, Benayoun BA. Transposable elements, circular RNAs and mitochondrial transcription in age-related genomic regulation. Development 2020; 147:dev175786. [PMID: 32527937 PMCID: PMC10680986 DOI: 10.1242/dev.175786] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Our understanding of the molecular regulation of aging and age-related diseases is still in its infancy, requiring in-depth characterization of the molecular landscape shaping these complex phenotypes. Emerging classes of molecules with promise as aging modulators include transposable elements, circRNAs and the mitochondrial transcriptome. Analytical complexity means that these molecules are often overlooked, even though they exhibit strong associations with aging and, in some cases, may directly contribute to its progress. Here, we review the links between these novel factors and age-related phenotypes, and we suggest tools that can be easily incorporated into existing pipelines to better understand the aging process.
Collapse
Affiliation(s)
- Juan I Bravo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Graduate Program in the Biology of Aging, University of Southern California, Los Angeles, CA 90089, USA
| | - Séverine Nozownik
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Magistère européen de Génétique, Université Paris Diderot-Paris 7, Paris 75014, France
| | - Prakroothi S Danthi
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Bérénice A Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
- USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, CA 90089, USA
- USC Stem Cell Initiative, Los Angeles, CA 90089, USA
| |
Collapse
|
43
|
Effects of Mitochondrial-Derived Peptides (MDPs) on Mitochondrial and Cellular Health in AMD. Cells 2020; 9:cells9051102. [PMID: 32365540 PMCID: PMC7290668 DOI: 10.3390/cells9051102] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023] Open
Abstract
Substantive evidence demonstrates the contribution of mitochondrial dysfunction in the etiology and pathogenesis of Age-related Macular Degeneration (AMD). Recently, extensive characterization of Mitochondrial-Derived Peptides (MDPs) has revealed their cytoprotective role in several diseases, including AMD. Here we summarize the varied effects of MDPs on cellular and mitochondrial health, which establish the merit of MDPs as therapeutic targets for AMD. We argue that further research to delve into the mechanisms of action and delivery of MDPs may advance the field of AMD therapy.
Collapse
|
44
|
D'Souza RF, Woodhead JST, Hedges CP, Zeng N, Wan J, Kumagai H, Lee C, Cohen P, Cameron-Smith D, Mitchell CJ, Merry TL. Increased expression of the mitochondrial derived peptide, MOTS-c, in skeletal muscle of healthy aging men is associated with myofiber composition. Aging (Albany NY) 2020; 12:5244-5258. [PMID: 32182209 PMCID: PMC7138593 DOI: 10.18632/aging.102944] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 03/09/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria putatively regulate the aging process, in part, through the small regulatory peptide, mitochondrial open reading frame of the 12S rRNA-c (MOTS-c) that is encoded by the mitochondrial genome. Here we investigated the regulation of MOTS-c in the plasma and skeletal muscle of healthy aging men. Circulating MOTS-c reduced with age, but older (70-81 y) and middle-aged (45-55 y) men had ~1.5-fold higher skeletal muscle MOTS-c expression than young (18-30 y). Plasma MOTS-c levels only correlated with plasma in young men, was associated with markers of slow-type muscle, and associated with improved muscle quality in the older group (maximal leg-press load relative to thigh cross-sectional area). Using small mRNA assays we provide evidence that MOTS-c transcription may be regulated independently of the full length 12S rRNA gene in which it is encoded, and expression is not associated with antioxidant response element (ARE)-related genes as previously seen in culture. Our results suggest that plasma and muscle MOTS-c are differentially regulated with aging, and the increase in muscle MOTS-c expression with age is consistent with fast-to-slow type muscle fiber transition. Further research is required to determine the molecular targets of endogenous MOTS-c in human muscle but they may relate to factors that maintain muscle quality.
Collapse
Affiliation(s)
- Randall F D'Souza
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Jonathan S T Woodhead
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Christopher P Hedges
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Nina Zeng
- Liggins Institute, The University of Auckland, Auckland, New Zealand.,Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Junxiang Wan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Hiroshi Kumagai
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.,Japan Society for the Promotion of Science, Tokyo, Japan.,Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.,USC Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA.,Biomedical Science, Graduate School, Ajou University, Suwon, Korea
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | | | - Cameron J Mitchell
- Liggins Institute, The University of Auckland, Auckland, New Zealand.,School of Kinesiology, University of British Colombia, Vancouver, BC V6T 1Z1, Canada
| | - Troy L Merry
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
45
|
Abstract
Biomarkers that reflect aging could be used to target age-related diseases with precision and monitor treatment efficacy. One such biomarker is humanin, a 24-amino acid mitochondrial-derived peptide encoded within the mitochondrial 16S rRNA gene. Humanin is measured in biological fluids, associates with many aging phenotypes, and attenuates aging in several animal models. In this chapter, we highlight the development and protocol of an enzyme-linked immunosorbent assay that quantifies humanin levels in biological fluid.
Collapse
|
46
|
Baldauf C, Sondhi M, Shin BC, Ko YE, Ye X, Lee KW, Devaskar SU. Murine maternal dietary restriction affects neural Humanin expression and cellular profile. J Neurosci Res 2019; 98:902-920. [PMID: 31840315 DOI: 10.1002/jnr.24568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/06/2019] [Accepted: 11/15/2019] [Indexed: 11/10/2022]
Abstract
To understand the cellular basis for the neurodevelopmental effects of intrauterine growth restriction (IUGR), we examined the global and regional expression of various cell types within murine (Mus musculus) fetal brain. Our model employed maternal calorie restriction to 50% daily food intake from gestation day 10-19, producing IUGR offspring. Offspring had smaller head sizes with larger head:body ratios indicating a head sparing IUGR effect. IUGR fetuses at embryonic day 19 (E19) had reduced nestin (progenitors), β-III tubulin (immature neurons), Glial fibrillary acidic protein (astrocytes), and O4 (oligodendrocytes) cell lineages via immunofluorescence quantification and a 30% reduction in cortical thickness. No difference was found in Bcl-2 or Bax (apoptosis) between controls and IUGR, though qualitatively, immunoreactivity of doublecortin (migration) and Ki67 (proliferation) was decreased. In the interest of examining a potential therapeutic peptide, we next investigated a novel pro-survival peptide, mouse Humanin (mHN). Ontogeny examination revealed highest mHN expression at E19, diminishing by postnatal day 15 (P15), and nearly absent in adult (3 months). Subanalysis by sex at E19 yielded higher mHN expression among males during fetal life, without significant difference between sexes postnatally. Furthermore, female IUGR mice at E19 had a greater increase in cortical mHN versus the male fetus over their respective controls. We conclude that maternal dietary restriction-associated IUGR interferes with neural progenitors differentiating into the various cellular components populating the cerebral cortex, and reduces cerebral cortical size. mHN expression is developmental stage and sex specific, with IUGR, particularly in the females, adaptively increasing its expression toward mediating a pro-survival approach against nutritional adversity.
Collapse
Affiliation(s)
- Claire Baldauf
- Department of Pediatrics, Division of Neonatology & Developmental Biology, UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
| | - Monica Sondhi
- Department of Pediatrics, Division of Neonatology & Developmental Biology, UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
| | - Bo-Chul Shin
- Department of Pediatrics, Division of Neonatology & Developmental Biology, UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
| | - Young Eun Ko
- Department of Pediatrics, Division of Neonatology & Developmental Biology, UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
| | - Xin Ye
- Department of Pediatrics, Division of Neonatology & Developmental Biology, UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
| | - Kuk-Wha Lee
- Department of Pediatrics, Division of Endocrinology, Neonatal Research Center of the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
| | - Sherin U Devaskar
- Department of Pediatrics, Division of Neonatology & Developmental Biology, UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
47
|
Benayoun BA, Lee C. MOTS-c: A Mitochondrial-Encoded Regulator of the Nucleus. Bioessays 2019; 41:e1900046. [PMID: 31378979 PMCID: PMC8224472 DOI: 10.1002/bies.201900046] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/28/2019] [Indexed: 12/25/2022]
Abstract
Mitochondria are increasingly being recognized as information hubs that sense cellular changes and transmit messages to other cellular components, such as the nucleus, the endoplasmic reticulum (ER), the Golgi apparatus, and lysosomes. Nonetheless, the interaction between mitochondria and the nucleus is of special interest because they both host part of the cellular genome. Thus, the communication between genome-bearing organelles would likely include gene expression regulation. Multiple nuclear-encoded proteins have been known to regulate mitochondrial gene expression. On the contrary, no mitochondrial-encoded factors are known to actively regulate nuclear gene expression. MOTS-c (mitochondrial open reading frame of the 12S ribosomal RNA type-c) is a recently identified peptide encoded within the mitochondrial 12S ribosomal RNA gene that has metabolic functions. Notably, MOTS-c can translocate to the nucleus upon metabolic stress (e.g., glucose restriction and oxidative stress) and directly regulate adaptive nuclear gene expression to promote cellular homeostasis. It is hypothesized that cellular fitness requires the coevolved mitonuclear genomes to coordinate adaptive responses using gene-encoded factors that cross-regulate the opposite genome. This suggests that cellular gene expression requires the bipartite split genomes to operate as a unified system, rather than the nucleus being the sole master regulator.
Collapse
Affiliation(s)
- Bérénice A Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
- USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation Program, Los Angeles, CA, 90089, USA
- USC Stem Cell Initiative, Los Angeles, CA, 90089, USA
| | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
- USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation Program, Los Angeles, CA, 90089, USA
- Biomedical Sciences, Graduate School, Ajou University, Suwon, 16499, Republic of Korea
| |
Collapse
|
48
|
Mehta HH, Xiao J, Ramirez R, Miller B, Kim SJ, Cohen P, Yen K. Metabolomic profile of diet-induced obesity mice in response to humanin and small humanin-like peptide 2 treatment. Metabolomics 2019; 15:88. [PMID: 31172328 PMCID: PMC6554247 DOI: 10.1007/s11306-019-1549-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/24/2019] [Indexed: 01/10/2023]
Abstract
INTRODUCTION The mitochondrial-derived peptides (MDPs) are a novel group of natural occurring peptides that have important signaling functions and biological activity. Both humanin and small-humanin-like peptide 2 (SHLP2) have been reported to act as insulin sensitizers and modulate metabolism. OBJECTIVES By using a metabolomic approach, this study explores how the plasma metabolite profile is regulated in response to humanin and SHLP2 treatment in a diet-induced obesity (DIO) mouse model. The results also shed light on the potential mechanism underlying MDPs' insulin sensitization effects. METHODS Plasma samples were obtained from DIO mice subjected to vehicle (water) treatment, or peptide treatment with either humanin analog S14G (HNG) or SHLP2 (n = 6 per group). Vehicle or peptides were given as intraperitoneal (IP) injections twice a day at dose of 2.5 mg/kg/injection for 3 days. Metabolites in plasma samples were comprehensively identified and quantified using UPLC-MS/MS. RESULTS HNG and SHLP2 administration significantly altered the concentrations of amino acid and lipid metabolites in plasma. Among all the metabolic pathways, the glutathione and sphingolipid metabolism responded most strongly to the peptide treatment. CONCLUSIONS The present study indicates that humanin and SHLP2 can lower several markers associated with age-related metabolic disorders. With the previous understanding of the effects of humanin and SHLP2 on cardiovascular function, insulin sensitization, and anti-inflammation, this metabolomic discovery provides a more comprehensive molecular explanation of the mechanism of action for humanin and SHLP2 treatment.
Collapse
Affiliation(s)
- Hemal H Mehta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Jialin Xiao
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Ricardo Ramirez
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Brendan Miller
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Su-Jeong Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Kelvin Yen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
49
|
Zárate SC, Traetta ME, Codagnone MG, Seilicovich A, Reinés AG. Humanin, a Mitochondrial-Derived Peptide Released by Astrocytes, Prevents Synapse Loss in Hippocampal Neurons. Front Aging Neurosci 2019; 11:123. [PMID: 31214013 PMCID: PMC6555273 DOI: 10.3389/fnagi.2019.00123] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/09/2019] [Indexed: 01/13/2023] Open
Abstract
Astroglial cells are crucial for central nervous system (CNS) homeostasis. They undergo complex morpho-functional changes during aging and in response to hormonal milieu. Ovarian hormones positively affect different astroglia parameters, including regulation of cell morphology and release of neurotrophic and neuroprotective factors. Thus, ovarian hormone loss during menopause has profound impact in astroglial pathophysilogy and has been widely associated to the process of brain aging. Humanin (HN) is a secreted mitochondrial-encoded peptide with neuroprotective effects. It is localized in several tissues with high metabolic rate and its expression decreases with age. In the brain, humanin has been found in glial cells in physiological conditions. We previously reported that surgical menopause induces hippocampal mitochondrial dysfunction that mimics an aging phenotype. However, the effect of ovarian hormone deprivation on humanin expression in this area has not been studied. Also, whether astrocytes express and release humanin and the regulation of such processes by ovarian hormones remain elusive. Although humanin has also proven to be beneficial in ameliorating cognitive impairment induced by different insults, its putative actions on structural synaptic plasticity have not been fully addressed. In a model of surgical menopause in rats, we studied hippocampal humanin expression and localization by real-time quantitative polymerase chain reaction (RT-qPCR) and double immunohistochemistry, respectively. Humanin production and release and ovarian hormone regulation of such processes were studied in cultured astrocytes by flow cytometry and ELISA, respectively. Humanin effects on glutamate-induced structural synaptic alterations were determined in primary cultures of hippocampal neurons by immunocytochemistry. Humanin expression was lower in the hippocampus of ovariectomized rats and its immunoreactivity colocalized with astroglial markers. Chronic ovariectomy also promoted the presence of less complex astrocytes in this area. Ovarian hormones increased humanin intracellular content and release by cultured astrocytes. Humanin prevented glutamate-induced dendritic atrophy and reduction in puncta number and total puncta area for pre-synaptic marker synaptophysin in cultured hippocampal neurons. In conclusion, astroglial functional and morphological alterations induced by chronic ovariectomy resemble an aging phenotype and could affect astroglial support to neuronal function by altering synaptic connectivity and functionality. Reduced astroglial-derived humanin may represent an underlying mechanism for synaptic dysfunction and cognitive decline after menopause.
Collapse
Affiliation(s)
- Sandra Cristina Zárate
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marianela Evelyn Traetta
- Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martín Gabriel Codagnone
- Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Adriana Seilicovich
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Analía Gabriela Reinés
- Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
50
|
Miller B, Arpawong TE, Jiao H, Kim SJ, Yen K, Mehta HH, Wan J, Carpten JC, Cohen P. Comparing the Utility of Mitochondrial and Nuclear DNA to Adjust for Genetic Ancestry in Association Studies. Cells 2019; 8:E306. [PMID: 30987182 PMCID: PMC6523867 DOI: 10.3390/cells8040306] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 01/29/2023] Open
Abstract
Mitochondrial genome-wide association studies identify mitochondrial single nucleotide polymorphisms (mtSNPs) that associate with disease or disease-related phenotypes. Most mitochondrial and nuclear genome-wide association studies adjust for genetic ancestry by including principal components derived from nuclear DNA, but not from mitochondrial DNA, as covariates in statistical regression analyses. Furthermore, there is no standard when controlling for genetic ancestry during mitochondrial and nuclear genetic interaction association scans, especially across ethnicities with substantial mitochondrial genetic heterogeneity. The purpose of this study is to (1) compare the degree of ethnic variation captured by principal components calculated from microarray-defined nuclear and mitochondrial DNA and (2) assess the utility of mitochondrial principal components for association studies. Analytic techniques used in this study include a principal component analysis for genetic ancestry, decision-tree classification for self-reported ethnicity, and linear regression for association tests. Data from the Health and Retirement Study, which includes self-reported White, Black, and Hispanic Americans, was used for all analyses. We report that (1) mitochondrial principal component analysis (PCA) captures ethnic variation to a similar or slightly greater degree than nuclear PCA in Blacks and Hispanics, (2) nuclear and mitochondrial DNA classify self-reported ethnicity to a high degree but with a similar level of error, and 3) mitochondrial principal components can be used as covariates to adjust for population stratification in association studies with complex traits, as demonstrated by our analysis of height-a phenotype with a high heritability. Overall, genetic association studies might reveal true and robust mtSNP associations when including mitochondrial principal components as regression covariates.
Collapse
Affiliation(s)
- Brendan Miller
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| | - Thalida E Arpawong
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| | - Henry Jiao
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| | - Su-Jeong Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| | - Kelvin Yen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| | - Hemal H Mehta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| | - Junxiang Wan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| | - John C Carpten
- Department of Translational Genomics and Institute for Translational Genomics, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA.
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|