1
|
Rukmini D, Kannan B, Pandi C, Pandi A, Prasad P, Jayaseelan VP, Arumugam P. Aberrated PSMA1 expression associated with clinicopathological features and prognosis in oral squamous cell carcinoma. Odontology 2024; 112:950-958. [PMID: 38216818 DOI: 10.1007/s10266-023-00883-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/04/2023] [Indexed: 01/14/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is a globally prevalent cancer with significant mortality rates. OSCC a predominant subtype of head and neck squamous cell carcinoma (HNSCC), poses a substantial health burden. Despite advancements in diagnosis and therapy, OSCC prognosis remains poor. The 26S proteasome, a cellular protein degradation complex, is associated with cancer, including PSMA1, a proteasomal subunit, which is upregulated in various cancers. We analyzed PSMA1 expression using TCGA data, validated it in OSCC samples using real-time PCR, and explored its role through various databases. Tumor and adjacent normal tissues from OSCC patients were examined, and PSMA1 expression was analyzed. Survival analysis assessed the impact of PSMA1 on patient outcomes, while immune infiltration was examined using the TIMER database. GeneMANIA, STRING, and Metascape were utilized for gene interaction and pathway analysis. PSMA1 was significantly upregulated in OSCC and HNSCC. Its overexpression correlated with advanced clinicopathological features and poorer prognosis in HNSCC patients. PSMA1 expression is also related to immune cell infiltration. Gene interaction analysis revealed PSMA1 involvement in proteolysis regulation, suggesting its potential as a therapeutic target. PSMA1 upregulation in HNSCC association with adverse clinicopathological features and prognosis underscores its potential significance. Further research is warranted to elucidate its molecular mechanisms and therapeutic potential in OSCC management.
Collapse
Affiliation(s)
- Dodla Rukmini
- Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 602 105, TN, India
| | - Balachander Kannan
- Center for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600 077, TN, India
| | - Chandra Pandi
- Center for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600 077, TN, India
| | - Anitha Pandi
- Center for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600 077, TN, India
| | - Prathibha Prasad
- College of Dentistry, Ajman University, Ajman, United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Vijayashree Priyadharsini Jayaseelan
- Center for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600 077, TN, India
| | - Paramasivam Arumugam
- Center for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600 077, TN, India.
| |
Collapse
|
2
|
Di Giuseppe F, Ricci-Vitiani L, Pallini R, Di Pietro R, Di Iorio P, Ascani G, Ciccarelli R, Angelucci S. Changes Induced by P2X7 Receptor Stimulation of Human Glioblastoma Stem Cells in the Proteome of Extracellular Vesicles Isolated from Their Secretome. Cells 2024; 13:571. [PMID: 38607010 PMCID: PMC11011151 DOI: 10.3390/cells13070571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/13/2024] Open
Abstract
Extracellular vesicles (EVs) are secreted from many tumors, including glioblastoma multiforme (GBM), the most common and lethal brain tumor in adults, which shows high resistance to current therapies and poor patient prognosis. Given the high relevance of the information provided by cancer cell secretome, we performed a proteomic analysis of microvesicles (MVs) and exosomes (EXOs) released from GBM-derived stem cells (GSCs). The latter, obtained from the brain of GBM patients, expressed P2X7 receptors (P2X7Rs), which positively correlate with GBM growth and invasiveness. P2X7R stimulation of GSCs caused significant changes in the EV content, mostly ex novo inducing or upregulating the expression of proteins related to cytoskeleton reorganization, cell motility/spreading, energy supply, protection against oxidative stress, chromatin remodeling, and transcriptional regulation. Most of the induced/upregulated proteins have already been identified as GBM diagnostic/prognostic factors, while others have only been reported in peripheral tumors. Our findings indicate that P2X7R stimulation enhances the transport and, therefore, possible intercellular exchange of GBM aggressiveness-increasing proteins by GSC-derived EVs. Thus, P2X7Rs could be considered a new druggable target of human GBM, although these data need to be confirmed in larger experimental sets.
Collapse
Affiliation(s)
- Fabrizio Di Giuseppe
- Department of Innovative Technologies in Medicine and Dentistry, ‘G. d’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy;
- Center for Advanced Studies and Technology (CAST), ‘G d’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy;
- Stem TeCh Group, Via L Polacchi 13, 66100 Chieti, Italy
| | - Lucia Ricci-Vitiani
- Department of Medical, Oral and Biotechnological Sciences, ‘G d’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy;
| | - Roberto Pallini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Via Regina Elena 299, 00161 Rome, Italy;
| | - Roberta Di Pietro
- Institute of Neurosurgery, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168 Rome, Italy;
| | - Patrizia Di Iorio
- Department of Medicine and Aging Sciences, ‘G. d’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy;
| | - Giuliano Ascani
- UOSD Maxillofacial Surgery, Azienda Sanitaria Locale di Pescara, Via Renato Paolini 47, 65124 Pescara, Italy;
| | - Renata Ciccarelli
- Center for Advanced Studies and Technology (CAST), ‘G d’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy;
| | - Stefania Angelucci
- Department of Innovative Technologies in Medicine and Dentistry, ‘G. d’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy;
- Center for Advanced Studies and Technology (CAST), ‘G d’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy;
- Stem TeCh Group, Via L Polacchi 13, 66100 Chieti, Italy
| |
Collapse
|
3
|
Zhao Z, Wang Q, Zhao F, Ma J, Sui X, Choe HC, Chen P, Gao X, Zhang L. Single-cell and transcriptomic analyses reveal the influence of diabetes on ovarian cancer. BMC Genomics 2024; 25:1. [PMID: 38166541 PMCID: PMC10759538 DOI: 10.1186/s12864-023-09893-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/11/2023] [Indexed: 01/04/2024] Open
Abstract
BACKGROUND There has been a significant surge in the global prevalence of diabetes mellitus (DM), which increases the susceptibility of individuals to ovarian cancer (OC). However, the relationship between DM and OC remains largely unexplored. The objective of this study is to provide preliminary insights into the shared molecular regulatory mechanisms and potential biomarkers between DM and OC. METHODS Multiple datasets from the GEO database were utilized for bioinformatics analysis. Single cell datasets from the GEO database were analysed. Subsequently, immune cell infiltration analysis was performed on mRNA expression data. The intersection of these datasets yielded a set of common genes associated with both OC and DM. Using these overlapping genes and Cytoscape, a protein‒protein interaction (PPI) network was constructed, and 10 core targets were selected. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were then conducted on these core targets. Additionally, advanced bioinformatics analyses were conducted to construct a TF-mRNA-miRNA coregulatory network based on identified core targets. Furthermore, immunohistochemistry staining (IHC) and real-time quantitative PCR (RT-qPCR) were employed for the validation of the expression and biological functions of core proteins, including HSPAA1, HSPA8, SOD1, and transcription factors SREBF2 and GTAT2, in ovarian tumors. RESULTS The immune cell infiltration analysis based on mRNA expression data for both DM and OC, as well as analysis using single-cell datasets, reveals significant differences in mononuclear cell levels. By intersecting the single-cell datasets, a total of 119 targets related to mononuclear cells in both OC and DM were identified. PPI network analysis further identified 10 hub genesincludingHSP90AA1, HSPA8, SNRPD2, UBA52, SOD1, RPL13A, RPSA, ITGAM, PPP1CC, and PSMA5, as potential targets of OC and DM. Enrichment analysis indicated that these genes are primarily associated with neutrophil degranulation, GDP-dissociation inhibitor activity, and the IL-17 signaling pathway, suggesting their involvement in the regulation of the tumor microenvironment. Furthermore, the TF-gene and miRNA-gene regulatory networks were validated using NetworkAnalyst. The identified TFs included SREBF2, GATA2, and SRF, while the miRNAs included miR-320a, miR-378a-3p, and miR-26a-5p. Simultaneously, IHC and RT-qPCR reveal differential expression of core targets in ovarian tumors after the onset of diabetes. RT-qPCR further revealed that SREBF2 and GATA2 may influence the expression of core proteins, including HSP90AA1, HSPA8, and SOD1. CONCLUSION This study revealed the shared gene interaction network between OC and DM and predicted the TFs and miRNAs associated with core genes in monocytes. Our research findings contribute to identifying potential biological mechanisms underlying the relationship between OC and DM.
Collapse
Affiliation(s)
- Zhihao Zhao
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Qilin Wang
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Fang Zhao
- Institute of Innovation and Applied Research in Chinese Medicine, Department of Rheumatology of The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Junnan Ma
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Xue Sui
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Hyok Chol Choe
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Department of Clinical Medicine, Sinuiju Medical University, Sinuiju, Democratic People's Republic of Korea
| | - Peng Chen
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Xue Gao
- Department of Pathology, the First Hospital of Dalian Medical University, Dalian, Liaoning Province, 116027, China.
| | - Lin Zhang
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China.
| |
Collapse
|
4
|
Steinskog ESS, Finne K, Enger M, Helgeland L, Iversen PO, McCormack E, Wiig H, Tenstad O. Isolation of lymph shows dysregulation of STAT3 and CREB pathways in the spleen and liver during leukemia development in a rat model. Microcirculation 2023; 30:e12800. [PMID: 36702790 DOI: 10.1111/micc.12800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND AIMS Acute myeloid leukemia (AML) is a heterogeneous malignant condition characterized by massive infiltration of poorly differentiated white blood cells in the blood stream, bone marrow, and extramedullary sites. During leukemic development, hepatosplenomegaly is expected to occur because large blood volumes are continuously filtered through these organs. We asked whether infiltration of leukemic blasts initiated a response that could be detected in the interstitial fluid phase of the spleen and liver. MATERIAL AND METHODS We used a rat model known to mimic human AML in growth characteristics and behavior. By cannulating efferent lymphatic vessels from the spleen and liver, we were able to monitor the response of the microenvironment during AML development. RESULTS AND DISCUSSION Flow cytometric analysis of lymphocytes showed increased STAT3 and CREB signaling in spleen and depressed signaling in liver, and proteins related to these pathways were identified with a different profile in lymph and plasma in AML compared with control. Additionally, several proteins were differently regulated in the microenvironment of spleen and liver in AML when compared with control. CONCLUSION Interstitial fluid, and its surrogate efferent lymph, can be used to provide unique information about responses in AML-infiltered organs and substances released to the general circulation during leukemia development.
Collapse
Affiliation(s)
| | - Kenneth Finne
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Marianne Enger
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Lars Helgeland
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Per Ole Iversen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Emmet McCormack
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
| | - Helge Wiig
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Olav Tenstad
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
5
|
Rashid MU, Lorzadeh S, Gao A, Ghavami S, Coombs KM. PSMA2 knockdown impacts expression of proteins involved in immune and cellular stress responses in human lung cells. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166617. [PMID: 36481484 DOI: 10.1016/j.bbadis.2022.166617] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Proteasome subunit alpha type-2 (PSMA2) is a critical component of the 20S proteasome, which is the core particle of the 26S proteasome complex and is involved in cellular protein quality control by recognizing and recycling defective proteins. PSMA2 expression dysregulation has been detected in different human diseases and viral infections. No study yet has reported PSMA2 knockdown (KD) effects on the cellular proteome. METHODS We used SOMAScan, an aptamer-based multiplexed technique, to measure >1300 human proteins to determine the impact of PSMA2 KD on A549 human lung epithelial cells. RESULTS PSMA2 KD resulted in significant dysregulation of 52 cellular proteins involved in different bio-functions, including cellular movement and development, cell death and survival, and cancer. The immune system and signal transduction were the most affected cellular functions. PSMA2 KD caused dysregulation of several signaling pathways involved in immune response, cytokine signaling, organismal growth and development, cellular stress and injury (including autophagy and unfolded protein response), and cancer responses. CONCLUSIONS In summary, this study helps us better understand the importance of PSMA2 in different cellular functions, signaling pathways, and human diseases.
Collapse
Affiliation(s)
- Mahamud-Ur Rashid
- University of Manitoba, Department of Medical Microbiology & Infectious Diseases, Room 543 Basic Medical Sciences Building, 745 Bannatyne Ave., Winnipeg, MB R3E 0J9, Canada; Manitoba Centre for Proteomics & Systems Biology, Room 799, 715 McDermot Ave., Winnipeg, MB R3E 3P4, Canada
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Ang Gao
- Manitoba Centre for Proteomics & Systems Biology, Room 799, 715 McDermot Ave., Winnipeg, MB R3E 3P4, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Kevin M Coombs
- University of Manitoba, Department of Medical Microbiology & Infectious Diseases, Room 543 Basic Medical Sciences Building, 745 Bannatyne Ave., Winnipeg, MB R3E 0J9, Canada; Manitoba Centre for Proteomics & Systems Biology, Room 799, 715 McDermot Ave., Winnipeg, MB R3E 3P4, Canada; Children's Hospital Research Institute of Manitoba, Room 513, 715 McDermot Ave., Winnipeg, MB R3E 3P4, Canada.
| |
Collapse
|
6
|
Kalinkin AI, Sigin VO, Nemtsova MV, Strelnikov VV. Identification of prognostically significant DNA methylation signatures in patients with various breast cancer types. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2022. [DOI: 10.24075/brsmu.2022.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Breast cancer (BC) is the most frequently diagnosed cancer and one of the major causes of female mortality. The development of prognostic models based on multiomics data is the main goal of precision oncology. Aberrant DNA methylation in BC is a diagnostic marker of carcinogenesis. Despite the existing factors of BC prognosis, introduction of methylation markers would make it possible to obtain more accurate prognostic scores. The study was aimed to assess DNA methylation signatures in various BC subtypes for clinical endpoints and patients' clinicopathological characteristics. The data on methylation of CpG dinucleotides (probes) and clinical characteristics of BC samples were obtained from The Cancer Genome Atlas Breast Cancer database. CpG dinucleotides associated with the selected endpoints were chosen by univariate Cox regression method. The LASSO method was used to search for stable probes, while further signature construction and testing of the clinical characteristics independence were performed using multivariate Cox regression. The dignostic and prognostic potential of the signatures was assessed using ROC analysis and Kaplan–Meier curves. It has been shown that the signatures of selected probes have a significant diagnostic (AUC 0.76–1) and prognostic (p < 0.05) potential. This approach has made it possible to identify 47 genes associated with good and poor prognosis, among these five genes have been described earlier. If the genome-wide DNA analysis results are available, the research approach applied can be used to study molecular pathogenesis of BC and other disorders.
Collapse
Affiliation(s)
- AI Kalinkin
- Research Centre for Medical Genetics, Moscow, Russia
| | - VO Sigin
- Research Centre for Medical Genetics, Moscow, Russia
| | - MV Nemtsova
- Research Centre for Medical Genetics, Moscow, Russia
| | - VV Strelnikov
- Research Centre for Medical Genetics, Moscow, Russia
| |
Collapse
|
7
|
Larsson P, Pettersson D, Engqvist H, Werner Rönnerman E, Forssell-Aronsson E, Kovács A, Karlsson P, Helou K, Parris TZ. Pan-cancer analysis of genomic and transcriptomic data reveals the prognostic relevance of human proteasome genes in different cancer types. BMC Cancer 2022; 22:993. [PMID: 36123629 PMCID: PMC9484138 DOI: 10.1186/s12885-022-10079-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 09/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background The human proteasome gene family (PSM) consists of 49 genes that play a crucial role in cancer proteostasis. However, little is known about the effect of PSM gene expression and genetic alterations on clinical outcome in different cancer forms. Methods Here, we performed a comprehensive pan-cancer analysis of genetic alterations in PSM genes and the subsequent prognostic value of PSM expression using data from The Cancer Genome Atlas (TCGA) containing over 10,000 samples representing up to 33 different cancer types. External validation was performed using a breast cancer cohort and KM plotter with four cancer types. Results The PSM genetic alteration frequency was high in certain cancer types (e.g. 67%; esophageal adenocarcinoma), with DNA amplification being most common. Compared with normal tissue, most PSM genes were predominantly overexpressed in cancer. Survival analysis also established a relationship with PSM gene expression and adverse clinical outcome, where PSMA1 and PSMD11 expression were linked to more unfavorable prognosis in ≥ 30% of cancer types for both overall survival (OS) and relapse-free interval (PFI). Interestingly, PSMB5 gene expression was associated with OS (36%) and PFI (27%), and OS for PSMD2 (42%), especially when overexpressed. Conclusion These findings indicate that several PSM genes may potentially be prognostic biomarkers and novel therapeutic targets for different cancer forms. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10079-4.
Collapse
Affiliation(s)
- Peter Larsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. .,Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Daniella Pettersson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hanna Engqvist
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Elisabeth Werner Rönnerman
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anikó Kovács
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Per Karlsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
8
|
Chu PY, Huang WC, Tung SL, Tsai CY, Chen CJ, Liu YC, Lee CW, Lin YH, Lin HY, Chen CY, Yeh CT, Lin KH, Chi HC. IFITM3 promotes malignant progression, cancer stemness and chemoresistance of gastric cancer by targeting MET/AKT/FOXO3/c-MYC axis. Cell Biosci 2022; 12:124. [PMID: 35941699 PMCID: PMC9361616 DOI: 10.1186/s13578-022-00858-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/22/2022] [Indexed: 12/09/2022] Open
Abstract
Background Targeting the HGF/MET signaling pathway has been a viable therapeutic strategy for various cancer types due to hyperactivation of HGF/MET axis occurs frequently that leads to detrimental cancer progression and recurrence. Deciphering novel molecule mechanisms underlying complex HGF/MET signaling network is therefore critical to development of effective therapeutics for treating MET-dependent malignancies. Results Using isobaric mass tag-based quantitative proteomics approach, we identified IFITM3, an interferon-induced transmembrane protein that was highly expressed in micro-dissected gastric cancer (GC) tumor regions relative to adjacent non-tumor epithelia. Analyses of GC clinical specimens revealed that expression IFITM3 was closely correlated to advanced pathological stages. IFITM3 has been reported as a PIP3 scaffold protein that promotes PI3K signaling. In present study, we unprecedentedly unraveled that IFITM3 associated with MET and AKT to facilitate HGF/MET mediated AKT signaling crosstalk in suppressing FOXO3, consequently leading to c-MYC mediated GC progression. In addition, gene ontology analyses of the clinical GC cohort revealed significant correlation between IFITM3-associated genes and targets of c-MYC, which is a crucial downstream effector of HGF/MET pathway in cancer progression. Moreover, we demonstrated ectopic expression of IFITM3 suppressed FOXO3 expression, consequently led to c-MYC induction to promote tumor growth, cell metastasis, cancer stemness as well as chemoresistance. Conversely, depletion of IFITM3 resulted in suppression of HGF triggered cellular growth and migration via inhibition of AKT/c-MYC signaling in GC. Conclusions In summary, our present study unveiled a novel regulatory mechanism for c-MYC-driven oncogenesis underlined by IFITM3-mediated signaling crosstalk between MET associated AKT signaling cascade. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00858-8.
Collapse
|
9
|
AKT1 Transcriptomic Landscape in Breast Cancer Cells. Cells 2022; 11:cells11152290. [PMID: 35892586 PMCID: PMC9332453 DOI: 10.3390/cells11152290] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 12/10/2022] Open
Abstract
Overexpression and hyperactivation of the serine/threonine protein kinase B (AKT) pathway is one of the most common cellular events in breast cancer progression. However, the nature of AKT1-specific genome-wide transcriptomic alterations in breast cancer cells and breast cancer remains unknown to this point. Here, we delineate the impact of selective AKT1 knock down using gene-specific siRNAs or inhibiting the AKT activity with a pan-AKT inhibitor VIII on the nature of transcriptomic changes in breast cancer cells using the genome-wide RNA-sequencing analysis. We found that changes in the cellular levels of AKT1 lead to changes in the levels of a set of differentially expressed genes and, in turn, imply resulting AKT1 cellular functions. In addition to an expected positive relationship between the status of AKT1 and co-expressed cellular genes, our study unexpectedly discovered an inherent role of AKT1 in inhibiting the expression of a subset of genes in both unstimulated and growth factor stimulated breast cancer cells. We found that depletion of AKT1 leads to upregulation of a subset of genes—many of which are also found to be downregulated in breast tumors with elevated high AKT1 as well as upregulated in breast tumors with no detectable AKT expression. Representative experimental validation studies in two breast cancer cell lines showed a reasonable concurrence between the expression data from the RNA-sequencing and qRT-PCR or data from ex vivo inhibition of AKT1 activity in cancer patient-derived cells. In brief, findings presented here provide a resource for further understanding of AKT1-dependent modulation of gene expression in breast cancer cells and broaden the scope and significance of AKT1 targets and their functions.
Collapse
|
10
|
Ciereszko A, Dietrich MA, Słowińska M, Nynca J, Ciborowski M, Kaczmarek MM, Myszczyński K, Kiśluk J, Majewska A, Michalska-Falkowska A, Kodzik N, Reszeć J, Sierko E, Nikliński J. Application of two-dimensional difference gel electrophoresis to identify protein changes between center, margin, and adjacent non-tumor tissues obtained from non-small-cell lung cancer with adenocarcinoma or squamous cell carcinoma subtype. PLoS One 2022; 17:e0268073. [PMID: 35512017 PMCID: PMC9071164 DOI: 10.1371/journal.pone.0268073] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/21/2022] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is responsible for the most cancer-related mortality worldwide and the mechanism of its development is poorly understood. Proteomics has become a powerful tool offering vital knowledge related to cancer development. Using a two-dimensional difference gel electrophoresis (2D-DIGE) approach, we sought to compare tissue samples from non-small-cell lung cancer (NSCLC) patients taken from the tumor center and tumor margin. Two subtypes of NSCLC, adenocarcinoma (ADC) and squamous cell carcinoma (SCC) were compared. Data are available via ProteomeXchange with identifier PXD032736 and PXD032962 for ADC and SCC, respectively. For ADC proteins, 26 significant canonical pathways were identified, including Rho signaling pathways, a semaphorin neuronal repulsive signaling pathway, and epithelial adherens junction signaling. For SCC proteins, nine significant canonical pathways were identified, including hypoxia-inducible factor-1α signaling, thyroid hormone biosynthesis, and phagosome maturation. Proteins differentiating the tumor center and tumor margin were linked to cancer invasion and progression, including cell migration, adhesion and invasion, cytoskeletal structure, protein folding, anaerobic metabolism, tumor angiogenesis, EMC transition, epithelial adherens junctions, and inflammatory responses. In conclusion, we identified several proteins that are important for the better characterization of tumor development and molecular specificity of both lung cancer subtypes. We also identified proteins that may be important as biomarkers and/or targets for anticancer therapy.
Collapse
Affiliation(s)
- Andrzej Ciereszko
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
- * E-mail:
| | - Mariola A. Dietrich
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Mariola Słowińska
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Joanna Nynca
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Michał Ciborowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Monika M. Kaczmarek
- Molecular Biology Laboratory, Institute of Animal Reproduction and Food Research Polish Academy of Sciences, Olsztyn, Poland
| | - Kamil Myszczyński
- Molecular Biology Laboratory, Institute of Animal Reproduction and Food Research Polish Academy of Sciences, Olsztyn, Poland
| | - Joanna Kiśluk
- Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| | - Anna Majewska
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | | | - Natalia Kodzik
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Joanna Reszeć
- Department of Medical Pathomorphology, Medical University of Bialystok, Bialystok, Poland
| | - Ewa Sierko
- Department of Oncology, Medical University of Bialystok, Bialystok, Poland
| | - Jacek Nikliński
- Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
11
|
Kanjanapruthipong T, Sukphopetch P, Reamtong O, Isarangkul D, Muangkaew W, Thiangtrongjit T, Sansurin N, Fongsodsri K, Ampawong S. Cytoskeletal Alteration Is an Early Cellular Response in Pulmonary Epithelium Infected with Aspergillus fumigatus Rather than Scedosporium apiospermum. MICROBIAL ECOLOGY 2022; 83:216-235. [PMID: 33890146 DOI: 10.1007/s00248-021-01750-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Invasive aspergillosis and scedosporiosis are life-threatening fungal infections with similar clinical manifestations in immunocompromised patients. Contrarily, Scedosporium apiospermum is susceptible to some azole derivative but often resistant to amphotericin B. Histopathological examination alone cannot diagnose these two fungal species. Pathogenesis studies could contribute to explore candidate protein markers for new diagnosis and treatment methods leading to a decrease in mortality. In the present study, proteomics was conducted to identify significantly altered proteins in A549 cells infected with or without Aspergillus fumigatus and S. apiospermum as measured at initial invasion. Protein validation was performed with immunogold labelling alongside immunohistochemical techniques in infected A549 cells and lungs from murine models. Further, cytokine production was measured, using the Bio-Plex-Multiplex immunoassay. The cytoskeletal proteins HSPA9, PA2G4, VAT1, PSMA2, PEX1, PTGES3, KRT1, KRT9, CLIP1 and CLEC20A were mainly changed during A. fumigatus infection, while the immunologically activated proteins WNT7A, GAPDH and ANXA2 were principally altered during S. apiospermum infection. These proteins are involved in fungal internalisation and structural destruction leading to pulmonary disorders. Interleukin (IL)-21, IL-1α, IL-22, IL-2, IL-8, IL-12, IL-17A, interferon-γ and tumour necrosis factor-α were upregulated in both aspergillosis and scedosporiosis, although more predominately in the latter, in accordance with chitin synthase-1 and matrix metalloproteinase levels. Our results demonstrated that during invasion, A. fumigatus primarily altered host cellular integrity, whereas S. apiospermum chiefly induced and extensively modulated host immune responses.
Collapse
Affiliation(s)
- Tapanee Kanjanapruthipong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Passanesh Sukphopetch
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetic, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Duangnate Isarangkul
- Department of Microbiology, Faculty of Science, Mahidol University, 272, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Watcharamat Muangkaew
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Tipparat Thiangtrongjit
- Department of Molecular Tropical Medicine and Genetic, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Nichapa Sansurin
- Northeast Laboratory Animal Center, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kamonpan Fongsodsri
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand.
| |
Collapse
|
12
|
Chiao CC, Liu YH, Phan NN, An Ton NT, Ta HDK, Anuraga G, Minh Xuan DT, Fitriani F, Putri Hermanto EM, Athoillah M, Andriani V, Ajiningrum PS, Wu YF, Lee KH, Chuang JY, Wang CY, Kao TJ. Prognostic and Genomic Analysis of Proteasome 20S Subunit Alpha (PSMA) Family Members in Breast Cancer. Diagnostics (Basel) 2021; 11:diagnostics11122220. [PMID: 34943457 PMCID: PMC8699889 DOI: 10.3390/diagnostics11122220] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
The complexity of breast cancer includes many interacting biological processes, and proteasome alpha (PSMA) subunits are reported to be involved in many cancerous diseases, although the transcriptomic expression of this gene family in breast cancer still needs to be more thoroughly investigated. Consequently, we used a holistic bioinformatics approach to study the PSMA genes involved in breast cancer by integrating several well-established high-throughput databases and tools, such as cBioPortal, Oncomine, and the Kaplan–Meier plotter. Additionally, correlations of breast cancer patient survival and PSMA messenger RNA expressions were also studied. The results demonstrated that breast cancer tissues had higher expression levels of PSMA genes compared to normal breast tissues. Furthermore, PSMA2, PSMA3, PSMA4, PSMA6, and PSMA7 showed high expression levels, which were correlated with poor survival of breast cancer patients. In contrast, PSMA5 and PSMA8 had high expression levels, which were associated with good prognoses. We also found that PSMA family genes were positively correlated with the cell cycle, ubiquinone metabolism, oxidative stress, and immune response signaling, including antigen presentation by major histocompatibility class, interferon-gamma, and the cluster of differentiation signaling. Collectively, these findings suggest that PSMA genes have the potential to serve as novel biomarkers and therapeutic targets for breast cancer. Nevertheless, the bioinformatic results from the present study would be strengthened with experimental validation in the future by prospective studies on the underlying biological mechanisms of PSMA genes and breast cancer.
Collapse
Affiliation(s)
- Chung-Chieh Chiao
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science, Taipei Medical University, Taipei 11031, Taiwan; (C.-C.C.); (H.D.K.T.); (G.A.); (K.-H.L.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.L.); (D.T.M.X.)
| | - Yen-Hsi Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.L.); (D.T.M.X.)
| | - Nam Nhut Phan
- NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam; (N.N.P.); (N.T.A.T.)
| | - Nu Thuy An Ton
- NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam; (N.N.P.); (N.T.A.T.)
| | - Hoang Dang Khoa Ta
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science, Taipei Medical University, Taipei 11031, Taiwan; (C.-C.C.); (H.D.K.T.); (G.A.); (K.-H.L.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.L.); (D.T.M.X.)
| | - Gangga Anuraga
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science, Taipei Medical University, Taipei 11031, Taiwan; (C.-C.C.); (H.D.K.T.); (G.A.); (K.-H.L.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.L.); (D.T.M.X.)
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia; (F.F.); (E.M.P.H.); (M.A.)
| | - Do Thi Minh Xuan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.L.); (D.T.M.X.)
| | - Fenny Fitriani
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia; (F.F.); (E.M.P.H.); (M.A.)
| | - Elvira Mustikawati Putri Hermanto
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia; (F.F.); (E.M.P.H.); (M.A.)
| | - Muhammad Athoillah
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia; (F.F.); (E.M.P.H.); (M.A.)
| | - Vivin Andriani
- Department of Biological Science, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia; (V.A.); (P.S.A.)
| | - Purity Sabila Ajiningrum
- Department of Biological Science, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia; (V.A.); (P.S.A.)
| | - Yung-Fu Wu
- Department of Medical Research, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Kuen-Haur Lee
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science, Taipei Medical University, Taipei 11031, Taiwan; (C.-C.C.); (H.D.K.T.); (G.A.); (K.-H.L.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.L.); (D.T.M.X.)
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Jian-Ying Chuang
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Research Center of Neuroscience, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Yang Wang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science, Taipei Medical University, Taipei 11031, Taiwan; (C.-C.C.); (H.D.K.T.); (G.A.); (K.-H.L.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.L.); (D.T.M.X.)
- Correspondence: (C.-Y.W.); (T.-J.K.)
| | - Tzu-Jen Kao
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Research Center of Neuroscience, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (C.-Y.W.); (T.-J.K.)
| |
Collapse
|
13
|
Molecular Profile Study of Extracellular Vesicles for the Identification of Useful Small “Hit” in Cancer Diagnosis. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112210787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tumor-secreted extracellular vesicles (EVs) are the main mediators of cell-cell communication, permitting cells to exchange proteins, lipids, and metabolites in varying physiological and pathological conditions. They contain signature tumor-derived molecules that reflect the intracellular status of their cell of origin. Recent studies have shown that tumor cell-derived EVs can aid in cancer metastasis through the modulation of the tumor microenvironment, suppression of the immune system, pre-metastatic niche formation, and subsequent metastasis. EVs can easily be isolated from a variety of biological fluids, and their content makes them useful biomarkers for the diagnosis, prognosis, monitorization of cancer progression, and response to treatment. This review aims to explore the biomarkers of cancer cell-derived EVs obtained from liquid biopsies, in order to understand cancer progression and metastatic evolution for early diagnosis and precision therapy.
Collapse
|
14
|
Whiteaker JR, Lundeen RA, Zhao L, Schoenherr RM, Burian A, Huang D, Voytovich U, Wang T, Kennedy JJ, Ivey RG, Lin C, Murillo OD, Lorentzen TD, Thiagarajan M, Colantonio S, Caceres TW, Roberts RR, Knotts JG, Reading JJ, Kaczmarczyk JA, Richardson CW, Garcia-Buntley SS, Bocik W, Hewitt SM, Murray KE, Do N, Brophy M, Wilz SW, Yu H, Ajjarapu S, Boja E, Hiltke T, Rodriguez H, Paulovich AG. Targeted Mass Spectrometry Enables Multiplexed Quantification of Immunomodulatory Proteins in Clinical Biospecimens. Front Immunol 2021; 12:765898. [PMID: 34858420 PMCID: PMC8632241 DOI: 10.3389/fimmu.2021.765898] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022] Open
Abstract
Immunotherapies are revolutionizing cancer care, producing durable responses and potentially cures in a subset of patients. However, response rates are low for most tumors, grade 3/4 toxicities are not uncommon, and our current understanding of tumor immunobiology is incomplete. While hundreds of immunomodulatory proteins in the tumor microenvironment shape the anti-tumor response, few of them can be reliably quantified. To address this need, we developed a multiplex panel of targeted proteomic assays targeting 52 peptides representing 46 proteins using peptide immunoaffinity enrichment coupled to multiple reaction monitoring-mass spectrometry. We validated the assays in tissue and plasma matrices, where performance figures of merit showed over 3 orders of dynamic range and median inter-day CVs of 5.2% (tissue) and 21% (plasma). A feasibility study in clinical biospecimens showed detection of 48/52 peptides in frozen tissue and 38/52 peptides in plasma. The assays are publicly available as a resource for the research community.
Collapse
Affiliation(s)
- Jeffrey R. Whiteaker
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Rachel A. Lundeen
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Lei Zhao
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Regine M. Schoenherr
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Aura Burian
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Dongqing Huang
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Ulianna Voytovich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Tao Wang
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Jacob J. Kennedy
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Richard G. Ivey
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Chenwei Lin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Oscar D. Murillo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Travis D. Lorentzen
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | | | - Simona Colantonio
- Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Tessa W. Caceres
- Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Rhonda R. Roberts
- Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Joseph G. Knotts
- Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Joshua J. Reading
- Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Jan A. Kaczmarczyk
- Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Christopher W. Richardson
- Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Sandra S. Garcia-Buntley
- Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - William Bocik
- Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Stephen M. Hewitt
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, United States
| | - Karen E. Murray
- Veteran’s Administration (VA) Cooperative Studies Program, Veteran’s Administration (VA) Boston Healthcare System (151MAV), Jamaica Plain, MA, United States
| | - Nhan Do
- Veteran’s Administration (VA) Cooperative Studies Program, Veteran’s Administration (VA) Boston Healthcare System (151MAV), Jamaica Plain, MA, United States
- Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Mary Brophy
- Veteran’s Administration (VA) Cooperative Studies Program, Veteran’s Administration (VA) Boston Healthcare System (151MAV), Jamaica Plain, MA, United States
- Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Stephen W. Wilz
- Department of Medicine, Boston University School of Medicine, Boston, MA, United States
- Pathology and Laboratory Medicine Service, Program, Veteran’s Administration (VA) Boston Healthcare System, Jamaica Plain, MA, United States
| | - Hongbo Yu
- Pathology and Laboratory Medicine Service, Program, Veteran’s Administration (VA) Boston Healthcare System, Jamaica Plain, MA, United States
- Department of Pathology, Harvard Medical School, Boston, MA, United States
| | - Samuel Ajjarapu
- Veteran’s Administration (VA) Cooperative Studies Program, Veteran’s Administration (VA) Boston Healthcare System (151MAV), Jamaica Plain, MA, United States
- Department of Medicine, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Emily Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, United States
| | - Tara Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, United States
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, United States
| | - Amanda G. Paulovich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| |
Collapse
|
15
|
Faraji S, Sharafi M, Shahverdi A, Fathi R. Sperm Associated Antigens: Vigorous Influencers in Life. CELL JOURNAL 2021; 23:495-502. [PMID: 34837675 PMCID: PMC8588810 DOI: 10.22074/cellj.2021.7377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 06/27/2020] [Indexed: 11/21/2022]
Abstract
Sperm associated antigens (SPAGs) are specific proteins in terms of performance and evolution, that have common expressions in the testes or sperm cells. Moreover, the humoral immune response against some of SPAGs can result in immunological infertilities. On the other hand, recent studies have explored several new properties of SPAGs and shed light on sperm's function, the impact of anti-sperm antibodies (ASA) in immunological infertility, and some tumors related to SPAGs. This article presents an exhaustive review of SPAGs and their roles in the cell cycle, signaling pathways, fertility, sperm-oocyte cross-talk as well as their unfavorable positions as prognostic factors in many types of cancers.
Collapse
Affiliation(s)
- Samaneh Faraji
- Department of Molecular and Cellular Biology, Faculty of Basic Science and Advanced Technologies in Biology, University of Science
and Culture, ACECR, Tehran, Iran,Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR,
Tehran, Iran
| | - Mohsen Sharafi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR,
Tehran, Iran
| | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR,
Tehran, Iran,Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran,P.O.Box: 16635-148Department of EmbryologyReproductive Biomedicine Research CenterRoyan Institute for
Reproductive BiomedicineACECRTehranIran
Emails:,
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR,
Tehran, Iran,P.O.Box: 16635-148Department of EmbryologyReproductive Biomedicine Research CenterRoyan Institute for
Reproductive BiomedicineACECRTehranIran
Emails:,
| |
Collapse
|
16
|
Aliabadi F, Sohrabi B, Mostafavi E, Pazoki-Toroudi H, Webster TJ. Ubiquitin-proteasome system and the role of its inhibitors in cancer therapy. Open Biol 2021; 11:200390. [PMID: 33906413 PMCID: PMC8080017 DOI: 10.1098/rsob.200390] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite all the other cells that have the potential to prevent cancer development and metastasis through tumour suppressor proteins, cancer cells can upregulate the ubiquitin–proteasome system (UPS) by which they can degrade tumour suppressor proteins and avoid apoptosis. This system plays an extensive role in cell regulation organized in two steps. Each step has an important role in controlling cancer. This demonstrates the importance of understanding UPS inhibitors and improving these inhibitors to foster a new hope in cancer therapy. UPS inhibitors, as less invasive chemotherapy drugs, are increasingly used to alleviate symptoms of various cancers in malignant states. Despite their success in reducing the development of cancer with the lowest side effects, thus far, an appropriate inhibitor that can effectively inactivate this system with the least drug resistance has not yet been fully investigated. A fundamental understanding of the system is necessary to fully elucidate its role in causing/controlling cancer. In this review, we first comprehensively investigate this system, and then each step containing ubiquitination and protein degradation as well as their inhibitors are discussed. Ultimately, its advantages and disadvantages and some perspectives for improving the efficiency of these inhibitors are discussed.
Collapse
Affiliation(s)
- Fatemeh Aliabadi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Beheshteh Sohrabi
- Department of Chemistry, Surface Chemistry Research Laboratory, Iran University of Science and Technology, PO Box 16846-13114, Tehran, Iran
| | - Ebrahim Mostafavi
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.,Stanford Cardiovascular Institute, Stanford, CA, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
17
|
Xia S, Tang Q, Wang X, Zhang L, Jia L, Wu D, Xu P, Zhang X, Tang G, Yang T, Feng Z, Lu L. Overexpression of PSMA7 predicts poor prognosis in patients with gastric cancer. Oncol Lett 2019; 18:5341-5349. [PMID: 31612044 PMCID: PMC6781669 DOI: 10.3892/ol.2019.10879] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/19/2019] [Indexed: 12/27/2022] Open
Abstract
Gastric cancer (GC) is the fourth most common tumor and the second most common cause of cancer-associated mortality worldwide. Current tumor biomarkers for GC, such as serum carcinoembryonic antigen and carbohydrate antigen 19-9, are not ideal due to their limited role as prognostic indicators for GC. Proteasome subunit α7 (PSMA7) is a multifunctional protein, which has been revealed to be involved in the development and progression of various types of malignancy. However, little is known about the role of PSMA7 in GC. In the present study, PSMA7 was identified to be overexpressed at the mRNA and protein levels in GC tissues, compared with in non-tumor tissues, using reverse transcription-quantitative PCR and immunohistochemistry. Furthermore, PSMA7 expression is associated with tumor invasion, lymph node metastasis, distant metastasis, and Tumor-Node-Metastasis stage. Univariate and multivariate Cox regression analysis identified that PSMA7 expression is an independent prognostic factor for poor survival. Kaplan-Meier survival curves revealed that high PSMA7 expression is associated with a poor prognosis in patients with GC. Overall, the results of the present study suggested that PSMA7 may be a promising biomarker for the prognosis of GC, and may represent a new diagnostic marker and molecular therapeutic target for GC.
Collapse
Affiliation(s)
- Shujing Xia
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China.,Department of Gastroenterology, Affiliated Xinghua People's Hospital of Yangzhou University Medical College, Xinghua, Jiangsu 225700, P.R. China.,Department of Gastroenterology, Shanghai General Hospital, Nanjing Medical University, Shanghai 200080, P.R. China
| | - Qi Tang
- Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Xudong Wang
- The Clinical Bio-Bank, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Lili Zhang
- Department of Gastroenterology, Affiliated Xinghua People's Hospital of Yangzhou University Medical College, Xinghua, Jiangsu 225700, P.R. China
| | - Lizhou Jia
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Duo Wu
- Department of Gastrointestinal Surgery, Affiliated Xinghua People's Hospital of Yangzhou University Medical College, Xinghua, Jiangsu 225700, P.R. China
| | - Pingxiang Xu
- Department of Gastrointestinal Surgery, Affiliated Xinghua People's Hospital of Yangzhou University Medical College, Xinghua, Jiangsu 225700, P.R. China
| | - Xiumei Zhang
- Department of Pathology, Affiliated Xinghua People's Hospital of Yangzhou University Medical College, Xinghua, Jiangsu 225700, P.R. China
| | - Genxiong Tang
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Tingting Yang
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Zhenqing Feng
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China.,Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China.,Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Cancer Center, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China.,Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Lungen Lu
- Department of Gastroenterology, Shanghai General Hospital, Nanjing Medical University, Shanghai 200080, P.R. China
| |
Collapse
|
18
|
Fararjeh AS, Chen LC, Ho YS, Cheng TC, Liu YR, Chang HL, Chang HW, Wu CH, Tu SH. Proteasome 26S Subunit, non-ATPase 3 (PSMD3) Regulates Breast Cancer by Stabilizing HER2 from Degradation. Cancers (Basel) 2019; 11:cancers11040527. [PMID: 31013812 PMCID: PMC6549480 DOI: 10.3390/cancers11040527] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 03/28/2019] [Accepted: 04/09/2019] [Indexed: 12/24/2022] Open
Abstract
It is well-known that human epidermal growth factor receptor 2 (HER2) is critical for breast cancer (BC) development and progression. Several studies have revealed the role of the ubiquitin/proteasome system (UPS) in cancer. In this study, we investigated the expression level of Proteasome 26S subunit, non-ATPase 3 (PSMD3) in BC using BC cell lines, human BC tissue samples, Oncomine, and TCGA databases and studied the PSMD3-HER2 protein interaction. PSMD3 was upregulated in BC, particularly in the HER2+ subtype. PSMD3 immunostaining was detected in the cytoplasm and nucleus of BC tumor tissues. Strong interaction between PSMD3 and HER2 at the protein level was observed. Knockdown of PSMD3 significantly impaired the stability of HER2, inhibited BC cell proliferation and colony formation, and induced cell apoptosis. Ubiquitination process was strongly enhanced after knockdown of PSMD3 in association with decreased HER2 level. Accumulation and Localization of LAMP-1 in the cell membrane with decreased HER2 immunostaining was observed after knockdown of PSMD3. High expression level of PSMD3 was associated with HER2 expression (p < 0.001), tumor size (p < 0.001), and clinical stage (p = 0.036). High expression level of PSMD3 predicted a short overall survival (OS), particularly for HER2+. Overall, we provide a novel function for PSMD3 in stabilizing HER2 from degradation in HER2+ BC, which suggests that PSMD3 is a novel target for HER2+ BC.
Collapse
Affiliation(s)
- Abdulfattah Salah Fararjeh
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 110, Taiwan.
| | - Li-Ching Chen
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Division of Breast Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 110, Taiwan.
- Taipei Cancer Center, Taipei Medical University, Taipei 110, Taiwan.
| | - Yuan-Soon Ho
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Taipei Cancer Center, Taipei Medical University, Taipei 110, Taiwan.
- Department of Medical Laboratory, Taipei Medical University Hospital, Taipei 110, Taiwan.
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| | - Tzu-Chun Cheng
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| | - Yun-Ru Liu
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei 110, Taiwan.
| | - Hang-Lung Chang
- Department of Surgery, EnChu Kong Hospital, New Taipei City237, Taiwan.
| | - Hui-Wen Chang
- Department of Medical Laboratory, Taipei Medical University Hospital, Taipei 110, Taiwan.
| | - Chih-Hsiung Wu
- Department of Surgery, EnChu Kong Hospital, New Taipei City237, Taiwan.
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Shih-Hsin Tu
- Division of Breast Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 110, Taiwan.
- Taipei Cancer Center, Taipei Medical University, Taipei 110, Taiwan.
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
19
|
Betancourt LH, Pawłowski K, Eriksson J, Szasz AM, Mitra S, Pla I, Welinder C, Ekedahl H, Broberg P, Appelqvist R, Yakovleva M, Sugihara Y, Miharada K, Ingvar C, Lundgren L, Baldetorp B, Olsson H, Rezeli M, Wieslander E, Horvatovich P, Malm J, Jönsson G, Marko-Varga G. Improved survival prognostication of node-positive malignant melanoma patients utilizing shotgun proteomics guided by histopathological characterization and genomic data. Sci Rep 2019; 9:5154. [PMID: 30914758 PMCID: PMC6435712 DOI: 10.1038/s41598-019-41625-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 03/13/2019] [Indexed: 12/18/2022] Open
Abstract
Metastatic melanoma is one of the most common deadly cancers, and robust biomarkers are still needed, e.g. to predict survival and treatment efficiency. Here, protein expression analysis of one hundred eleven melanoma lymph node metastases using high resolution mass spectrometry is coupled with in-depth histopathology analysis, clinical data and genomics profiles. This broad view of protein expression allowed to identify novel candidate protein markers that improved prediction of survival in melanoma patients. Some of the prognostic proteins have not been reported in the context of melanoma before, and few of them exhibit unexpected relationship to survival, which likely reflects the limitations of current knowledge on melanoma and shows the potential of proteomics in clinical cancer research.
Collapse
Affiliation(s)
| | - Krzysztof Pawłowski
- Lund University, Lund, Sweden.
- Warsaw University of Life Sciences SGGW, Warszawa, Poland.
| | | | - A Marcell Szasz
- Lund University, Lund, Sweden
- National Koranyi Institute of Pulmonology, Budapest, Hungary
- Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Peter Horvatovich
- Lund University, Lund, Sweden
- University of Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
20
|
Pfeifer A, Rusinek D, Żebracka-Gala J, Czarniecka A, Chmielik E, Zembala-Nożyńska E, Wojtaś B, Gielniewski B, Szpak-Ulczok S, Oczko-Wojciechowska M, Krajewska J, Polańska J, Jarząb B. Novel TG-FGFR1 and TRIM33-NTRK1 transcript fusions in papillary thyroid carcinoma. Genes Chromosomes Cancer 2019; 58:558-566. [PMID: 30664823 PMCID: PMC6594006 DOI: 10.1002/gcc.22737] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 02/06/2023] Open
Abstract
Papillary thyroid carcinoma (PTC) is most common among all thyroid cancers. Multiple genomic alterations occur in PTC, and gene rearrangements are one of them. Here we screened 14 tumors for novel fusion transcripts by RNA‐Seq. Two samples harboring RET/PTC1 and RET/PTC3 rearrangements were positive controls whereas the remaining ones were negative regarding the common PTC alterations. We used Sanger sequencing to validate potential fusions. We detected 2 novel potentially oncogenic transcript fusions: TG‐FGFR1 and TRIM33‐NTRK1. We detected 4 novel fusion transcripts of unknown significance accompanying the TRIM33‐NTRK1 fusion: ZSWIM5‐TP53BP2, TAF4B‐WDR1, ABI2‐MTA3, and ARID1B‐PSMA1. Apart from confirming the presence of RET/PTC1 and RET/PTC3 in positive control samples, we also detected known oncogenic fusion transcripts in remaining samples: TFG‐NTRK1, ETV6‐NTRK3, MKRN1‐BRAF, EML4‐ALK, and novel isoform of CCDC6‐RET.
Collapse
Affiliation(s)
- Aleksandra Pfeifer
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Institute - Oncology Center Gliwice Branch, Gliwice, Poland
| | - Dagmara Rusinek
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Institute - Oncology Center Gliwice Branch, Gliwice, Poland
| | - Jadwiga Żebracka-Gala
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Institute - Oncology Center Gliwice Branch, Gliwice, Poland
| | - Agnieszka Czarniecka
- Department of Oncological and Reconstructive Surgery, Maria Sklodowska-Curie Institute - Oncology Center Gliwice Branch, Gliwice, Poland
| | - Ewa Chmielik
- Tumor Pathology Department, Maria Sklodowska-Curie Institute - Oncology Center Gliwice Branch, Gliwice, Poland
| | - Ewa Zembala-Nożyńska
- Tumor Pathology Department, Maria Sklodowska-Curie Institute - Oncology Center Gliwice Branch, Gliwice, Poland
| | - Bartosz Wojtaś
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Bartłomiej Gielniewski
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Sylwia Szpak-Ulczok
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Institute - Oncology Center Gliwice Branch, Gliwice, Poland
| | - Małgorzata Oczko-Wojciechowska
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Institute - Oncology Center Gliwice Branch, Gliwice, Poland
| | - Jolanta Krajewska
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Institute - Oncology Center Gliwice Branch, Gliwice, Poland
| | - Joanna Polańska
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland
| | - Barbara Jarząb
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Institute - Oncology Center Gliwice Branch, Gliwice, Poland
| |
Collapse
|
21
|
Nono AD, Chen K, Liu X. Comparison of different functional prediction scores using a gene-based permutation model for identifying cancer driver genes. BMC Med Genomics 2019; 12:22. [PMID: 30704472 PMCID: PMC6357357 DOI: 10.1186/s12920-018-0452-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Identifying cancer driver genes (CDG) is a crucial step in cancer genomic toward the advancement of precision medicine. However, driver gene discovery is a very challenging task because we are not only dealing with huge amount of data; but we are also faced with the complexity of the disease including the heterogeneity of background somatic mutation rate in each cancer patient. It is generally accepted that CDG harbor variants conferring growth advantage in the malignant cell and they are positively selected, which are critical to cancer development; whereas, non-driver genes harbor random mutations with no functional consequence on cancer. Based on this fact, function prediction based approaches for identifying CDG have been proposed to interrogate the distribution of functional predictions among mutations in cancer genomes (eLS 1–16, 2016). Assuming most of the observed mutations are passenger mutations and given the quantitative predictions for the functional impact of the mutations, genes enriched of functional or deleterious mutations are more likely to be drivers. The promises of these methods have been continually refined and can therefore be applied to increase accuracy in detecting new candidate CDGs. However, current function prediction based approaches only focus on coding mutations and lack a systematic way to pick the best mutation deleteriousness prediction algorithms for usage. Results In this study, we propose a new function prediction based approach to discover CDGs through a gene-based permutation approach. Our method not only covers both coding and non-coding regions of the genes; but it also accounts for the heterogeneous mutational context in cohort of cancer patients. The permutation model was implemented independently using seven popular deleteriousness prediction scores covering splicing regions (SPIDEX), coding regions (MetaLR, and VEST3) and pan-genome (CADD, DANN, Fathmm-MKL coding and Fathmm-MKL noncoding). We applied this new approach to somatic single nucleotide variants (SNVs) from whole-genome sequences of 119 breast and 24 lung cancer patients and compared the seven deleteriousness prediction scores for their performance in this study. Conclusion The new function prediction based approach not only predicted known cancer genes listed in the Cancer Gene Census (CGC), but also new candidate CDGs that are worth further investigation. The results showed the advantage of utilizing pan-genome deleteriousness prediction scores in function prediction based methods. Although VEST3 score, a deleteriousness prediction score for missense mutations, has the best performance in breast cancer, it was topped by CADD and Fathmm-MKL coding, two pan-genome deleteriousness prediction scores, in lung cancer. Electronic supplementary material The online version of this article (10.1186/s12920-018-0452-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alice Djotsa Nono
- Human Genetics Center, UTHealth School of Public Health, Houston, TX, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaoming Liu
- Human Genetics Center, UTHealth School of Public Health, Houston, TX, USA. .,Present Address: USF Genomics, College of Public Health, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
22
|
Chu J, Li N, Li F. A risk score staging system based on the expression of seven genes predicts the outcome of bladder cancer. Oncol Lett 2018; 16:2091-2096. [PMID: 30008905 PMCID: PMC6036497 DOI: 10.3892/ol.2018.8904] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 10/24/2017] [Indexed: 12/17/2022] Open
Abstract
Bladder cancer (BLCA) is among the most malignant types of cancer. At present, the prognostic tools available for this disease are insufficient. In the present study, the transcriptome of 1,049 BLCA samples from four datasets from the Gene Expression Omnibus and The Cancer Genome Atlas (TCGA) were analyzed. By utilizing the RNA-seq data provided by TCGA, a risk score staging system model was built to predict the outcome of patients with BLCA using random forest variable hunting and Cox multivariate regression. A total of 7 genes, including zinc finger protein 230, Bcl2-like 14, AHNAK, transmembrane protein 109, apolipoprotein L2, advanced glycation end-product specific receptor and amine oxidase, copper containing 2 were identified as predicting the survival time of patients with BLCA. The patients with a low risk score had a significantly higher survival rate than those with a high-risk score both in the training and validation datasets. Association analyses between risk score and other clinical information were additionally performed; it was demonstrated that the risk score was significantly associated with pathological stage. A nomogram was plotted to compare risk score and other clinical information. The risk score spanned the greatest range of points, indicating the relative accuracy of risk score. In summary, the risk staging model based on the expression of 7 genes is robust and performs more effectively than other clinical information in predicting a prognosis.
Collapse
Affiliation(s)
- Jianfeng Chu
- Department of Urinary Surgery, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| | - Ning Li
- Department of Urinary Surgery, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| | - Fengguang Li
- Department of Urinary Surgery, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
23
|
Huang H, Chen Q, Sun W, Lu M, Yu Y, Zheng Z, Li P. Expression signature of ten genes predicts the survival of patients with estrogen receptor positive-breast cancer that were treated with tamoxifen. Oncol Lett 2018; 16:573-579. [PMID: 29928444 DOI: 10.3892/ol.2018.8663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 02/09/2018] [Indexed: 12/20/2022] Open
Abstract
Although tamoxifen is the most frequently used drug for the treatment of estrogen receptor positive (ER+)-breast cancer (BRCA), its efficacy varies between patients. In the present study, Cox multivariate regression of the relative mRNA expression levels in two microarray-based datasets (GSE17005 and GSE26971) was employed to develop a risk score model to evaluate the outcome of patients with BRCA in the GSE17005 dataset. A total of ten genes were used to develop the prediction model for the survival of tamoxifen-treated patients with breast cancer. The survival time of patients in the low risk score group was significantly longer compared with patients in the high risk score group. This observation was validated in three other datasets (GSE26971, GSE22219 and GSE56884). The prognostic effect of the clinicopathological indicators and the risk score were tested with the 5-year event receiving operating characteristic curve, and the risk score had an improved prognostic value in patients with ER+-BRCA with an area under the curve value of 0.733 compared with the factors of age, tumor stage, tumor grade, chemotherapy, lymph invasion and tumor size. The risk score was significantly associated with the tumor-node-metastasis stage and grade, but was independent of age, sex, lymph invasion and tumor size. In summary, the risk model for breast cancer using the expression signature of ten genes may be an important indicator for predicting the survival of patients with ER+-breast cancer and treated with tamoxifen.
Collapse
Affiliation(s)
- He Huang
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Qiyu Chen
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Weijian Sun
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Mingdong Lu
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Yaojun Yu
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Zhiqiang Zheng
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Pihong Li
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| |
Collapse
|
24
|
Kulichkova VA, Artamonova TO, Lyublinskaya OG, Khodorkovskii MA, Tomilin AN, Tsimokha AS. Proteomic analysis of affinity-purified extracellular proteasomes reveals exclusively 20S complexes. Oncotarget 2017; 8:102134-102149. [PMID: 29254231 PMCID: PMC5731941 DOI: 10.18632/oncotarget.22230] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 09/29/2017] [Indexed: 12/31/2022] Open
Abstract
Proteasome-mediated proteolysis is important for many basic cellular processes. In addition to their functions in the cell, proteasomes have been found in physiological fluids of both healthy and diseased humans including cancer patients. Higher levels of these proteasomes are associated with higher cancer burden and stage. The etiology and functions of these proteasomes, referred to as circulating, plasmatic, or extracellular proteasomes (ex-PSs), are unclear. Here we show that human cancer cell lines, as well as human endometrium-derived mesenchymal stem cells (hMESCs), release proteasome complexes into culture medium (CM). To define ex-PS composition, we have affinity purified them from CM conditioned by human leukemia cell line K562. Using matrix-assisted laser desorption/ionization (MALDI) Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS), we have identified core 20S proteasome subunits and a set of 15 proteasome-interacting proteins (PIPs), all previously described as exosome cargo proteins. Three of them, PPIase A, aldolase A, and transferrin, have never been reported as PIPs. The study provides compelling arguments that ex-PSs do not contain 19S or PA200 regulatory particles and are represented exclusively by the 20S complex.
Collapse
Affiliation(s)
| | - Tatiana O. Artamonova
- Institute of Nanobiotechnologies, Peter the Great St-Petersburg Polytechnic University, St-Petersburg 195251, Russia
| | - Olga G. Lyublinskaya
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg 194064, Russia
| | - Mikhail A. Khodorkovskii
- Institute of Nanobiotechnologies, Peter the Great St-Petersburg Polytechnic University, St-Petersburg 195251, Russia
| | - Alexey N. Tomilin
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg 194064, Russia
- Institute of Translational Biomedicine, St-Petersburg State University, St-Petersburg 199034, Russia
| | - Anna S. Tsimokha
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg 194064, Russia
| |
Collapse
|
25
|
Liu Q, Diao R, Feng G, Mu X, Li A. Risk score based on three mRNA expression predicts the survival of bladder cancer. Oncotarget 2017; 8:61583-61591. [PMID: 28977887 PMCID: PMC5617447 DOI: 10.18632/oncotarget.18642] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/23/2017] [Indexed: 01/08/2023] Open
Abstract
Bladder cancer (BLCA) is one of the most malignant cancers worldwide, and its prognosis varies. 1214 BLCA samples in five different datasets and 2 platforms were enrolled in this study. By utilizing the gene expression in The Cancer Genome Atlas (TCGA) dataset, and another two datasets, in GSE13507 and GSE31684, we constructed a risk score staging system with Cox multivariate regression to evaluate predict the outcome of BLCA patients. Three genes consist of RCOR1, ST3GAL5, and COL10A1 were used to predict the survival of BLCA patients. The patients with low risk score have a better survival rate than those with high risk score, significantly. The survival profiles of another two datasets (GSE13507 and GSE31684), which were used for candidate gene selection, were similar as the training dataset (TCGA). Furthermore, survival prediction effect of risk score staging system in another 2 independent datasets, GSE40875 and E-TABM-4321, were also validated. Compared with other clinical observations, and the risk score performs better in evaluating the survival of BLCA patients. Moreover, the correlation between radiation were also evaluated, and we found that patients have a poor survival in high risk group, regardless of radiation. Gene Set Enrichment Analysis was also implemented to find the difference between high-risk and low-risk groups on biological pathways, and focal adhesion and JAK signaling pathway were significantly enriched. In summary, we developed a risk staging model for BLCA patients with three gene expression. The model is independent from and performs better than other clinical information.
Collapse
Affiliation(s)
- Qingzuo Liu
- Yantai Yuhuangding Hospital, Zhifu District, Yantai 264000, China
| | - Ruigang Diao
- Yantai Yuhuangding Hospital, Zhifu District, Yantai 264000, China
| | - Guoyan Feng
- Yantai Yuhuangding Hospital, Zhifu District, Yantai 264000, China
| | - Xiaodong Mu
- Yantai Yuhuangding Hospital, Zhifu District, Yantai 264000, China
| | - Aiqun Li
- Yantai Affiliated Hospital of Binzhou Medical University, Muping District, Yantai 264003, China
| |
Collapse
|