1
|
Dinges SS, Amini K, Notarangelo LD, Delmonte OM. Primary and secondary defects of the thymus. Immunol Rev 2024; 322:178-211. [PMID: 38228406 PMCID: PMC10950553 DOI: 10.1111/imr.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The thymus is the primary site of T-cell development, enabling generation, and selection of a diverse repertoire of T cells that recognize non-self, whilst remaining tolerant to self- antigens. Severe congenital disorders of thymic development (athymia) can be fatal if left untreated due to infections, and thymic tissue implantation is the only cure. While newborn screening for severe combined immune deficiency has allowed improved detection at birth of congenital athymia, thymic disorders acquired later in life are still underrecognized and assessing the quality of thymic function in such conditions remains a challenge. The thymus is sensitive to injury elicited from a variety of endogenous and exogenous factors, and its self-renewal capacity decreases with age. Secondary and age-related forms of thymic dysfunction may lead to an increased risk of infections, malignancy, and autoimmunity. Promising results have been obtained in preclinical models and clinical trials upon administration of soluble factors promoting thymic regeneration, but to date no therapy is approved for clinical use. In this review we provide a background on thymus development, function, and age-related involution. We discuss disease mechanisms, diagnostic, and therapeutic approaches for primary and secondary thymic defects.
Collapse
Affiliation(s)
- Sarah S. Dinges
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kayla Amini
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Corral-Ruiz GM, Pérez-Vega MJ, Galán-Salinas A, Mancilla-Herrera I, Barrios-Payán J, Fabila-Castillo L, Hernández-Pando R, Sánchez-Torres LE. Thymic atrophy induced by Plasmodium berghei ANKA and Plasmodium yoelii 17XL infection. Immunol Lett 2023; 264:4-16. [PMID: 37875239 DOI: 10.1016/j.imlet.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/06/2023] [Accepted: 10/21/2023] [Indexed: 10/26/2023]
Abstract
The thymus is the anatomical site where T cells undergo a complex process of differentiation, proliferation, selection, and elimination of autorreactive cells which involves molecular signals in different intrathymic environment. However, the immunological functions of the thymus can be compromised upon exposure to different infections, affecting thymocyte populations. In this work, we investigated the impact of malaria parasites on the thymus by using C57BL/6 mice infected with Plasmodium berghei ANKA and Plasmodium yoelii 17XL; these lethal infection models represent the most severe complications, cerebral malaria, and anemia respectively. Data showed a reduction in the thymic weight and cellularity involving different T cell maturation stages, mainly CD4-CD8- and CD4+CD8+ thymocytes, as well as an increased presence of apoptotic cells, leading to significant thymic cortex reduction. Thymus atrophy showed no association with elevated serum cytokines levels, although increased glucocorticoid levels did. The severity of thymic damage in both models reached the same extend although it occurs at different stages of infection, showing that thymic atrophy does not depend on parasitemia level but on the specific host-parasite interaction.
Collapse
Affiliation(s)
- G M Corral-Ruiz
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico; Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - M J Pérez-Vega
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico; Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - A Galán-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico; Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - I Mancilla-Herrera
- Departamento de Infectología e Inmunología, Instituto Nacional de Perinatología, Mexico City, Mexico
| | - J Barrios-Payán
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - L Fabila-Castillo
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - R Hernández-Pando
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - L E Sánchez-Torres
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico.
| |
Collapse
|
3
|
Cronin SJF, Tejada MA, Song R, Laval K, Cikes D, Ji M, Brai A, Stadlmann J, Novatchikova M, Perlot T, Ali OH, Botta L, Decker T, Lazovic J, Hagelkruys A, Enquist L, Rao S, Koyuncu OO, Penninger JM. Pseudorabies virus hijacks DDX3X, initiating an addictive "mad itch" and immune suppression, to facilitate viral spread. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.539956. [PMID: 37214906 PMCID: PMC10197578 DOI: 10.1101/2023.05.09.539956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Infections with defined Herpesviruses, such as Pseudorabies virus (PRV) and Varicella zoster virus (VZV) can cause neuropathic itch, referred to as "mad itch" in multiple species. The underlying mechanisms involved in neuropathic "mad itch" are poorly understood. Here, we show that PRV infections hijack the RNA helicase DDX3X in sensory neurons to facilitate anterograde transport of the virus along axons. PRV induces re-localization of DDX3X from the cell body to the axons which ultimately leads to death of the infected sensory neurons. Inducible genetic ablation of Ddx3x in sensory neurons results in neuronal death and "mad itch" in mice. This neuropathic "mad itch" is propagated through activation of the opioid system making the animals "addicted to itch". Moreover, we show that PRV co-opts and diverts T cell development in the thymus via a sensory neuron-IL-6-hypothalamus-corticosterone stress pathway. Our data reveal how PRV, through regulation of DDX3X in sensory neurons, travels along axons and triggers neuropathic itch and immune deviations to initiate pathophysiological programs which facilitate its spread to enhance infectivity.
Collapse
Affiliation(s)
- Shane J F Cronin
- Institute of Molecular Biotechnology Austria (IMBA), Dr. Bohrgasse 3, A-1030 Vienna, Austria
| | - Miguel A Tejada
- Institute of Molecular Biotechnology Austria (IMBA), Dr. Bohrgasse 3, A-1030 Vienna, Austria
| | - Ren Song
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Kathlyn Laval
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Domagoj Cikes
- Institute of Molecular Biotechnology Austria (IMBA), Dr. Bohrgasse 3, A-1030 Vienna, Austria
| | - Ming Ji
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Annalaura Brai
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, I-53100 Siena, Italy
| | - Johannes Stadlmann
- Institute of Molecular Biotechnology Austria (IMBA), Dr. Bohrgasse 3, A-1030 Vienna, Austria
| | - Maria Novatchikova
- Institute of Molecular Biotechnology Austria (IMBA), Dr. Bohrgasse 3, A-1030 Vienna, Austria
| | - Thomas Perlot
- Institute of Molecular Biotechnology Austria (IMBA), Dr. Bohrgasse 3, A-1030 Vienna, Austria
| | - Omar Hasan Ali
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
- Institute of Immunobiology, Cantonal Hospital St. Gallen, Rorschacher Strasse 95, 9007 St. Gallen, Switzerland
- Department of Dermatology, University of Zurich, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Lorenzo Botta
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, I-53100 Siena, Italy
| | - Thomas Decker
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Jelena Lazovic
- Institute of Molecular Biotechnology Austria (IMBA), Dr. Bohrgasse 3, A-1030 Vienna, Austria
| | - Astrid Hagelkruys
- Institute of Molecular Biotechnology Austria (IMBA), Dr. Bohrgasse 3, A-1030 Vienna, Austria
| | - Lynn Enquist
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Shuan Rao
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Orkide O Koyuncu
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697-4025, USA
| | - Josef M Penninger
- Institute of Molecular Biotechnology Austria (IMBA), Dr. Bohrgasse 3, A-1030 Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| |
Collapse
|
4
|
Nasrollahi H, Talepoor AG, Saleh Z, Eshkevar Vakili M, Heydarinezhad P, Karami N, Noroozi M, Meri S, Kalantar K. Immune responses in mildly versus critically ill COVID-19 patients. Front Immunol 2023; 14:1077236. [PMID: 36793739 PMCID: PMC9923185 DOI: 10.3389/fimmu.2023.1077236] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023] Open
Abstract
The current coronavirus pandemic (COVID-19), caused by SARS-CoV-2, has had devastating effects on the global health and economic system. The cellular and molecular mediators of both the innate and adaptive immune systems are critical in controlling SARS-CoV-2 infections. However, dysregulated inflammatory responses and imbalanced adaptive immunity may contribute to tissue destruction and pathogenesis of the disease. Important mechanisms in severe forms of COVID-19 include overproduction of inflammatory cytokines, impairment of type I IFN response, overactivation of neutrophils and macrophages, decreased frequencies of DC cells, NK cells and ILCs, complement activation, lymphopenia, Th1 and Treg hypoactivation, Th2 and Th17 hyperactivation, as well as decreased clonal diversity and dysregulated B lymphocyte function. Given the relationship between disease severity and an imbalanced immune system, scientists have been led to manipulate the immune system as a therapeutic approach. For example, anti-cytokine, cell, and IVIG therapies have received attention in the treatment of severe COVID-19. In this review, the role of immunity in the development and progression of COVID-19 is discussed, focusing on molecular and cellular aspects of the immune system in mild vs. severe forms of the disease. Moreover, some immune- based therapeutic approaches to COVID-19 are being investigated. Understanding key processes involved in the disease progression is critical in developing therapeutic agents and optimizing related strategies.
Collapse
Affiliation(s)
- Hamid Nasrollahi
- Radio-Oncology Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atefe Ghamar Talepoor
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Saleh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Eshkevar Vakili
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Paria Heydarinezhad
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Karami
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Noroozi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seppo Meri
- Department of Bacteriology and Immunology, University of Helsinki and Diagnostic Center of the Helsinki University Hospital, Helsinki, Finland
| | - Kurosh Kalantar
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Petrušić M, Stojić-Vukanić Z, Pilipović I, Kosec D, Prijić I, Leposavić G. Thymic changes as a contributing factor in the increased susceptibility of old Albino Oxford rats to EAE development. Exp Gerontol 2023; 171:112009. [PMID: 36334894 DOI: 10.1016/j.exger.2022.112009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
The study was aimed to examine putative contribution of thymic involution to ageing-associated increase in susceptibility of Albino Oxford (AO) rats to the development of clinical EAE, and vice versa influence of the disease on the progression of thymic involution. To this end we examined (i) the parameters of thymocyte negative selection efficacy, the thymic generation of CD4+CD25+Foxp3+ T regulatory cells (Tregs) and thymic capacity to instruct/predetermine IL-17-producing T-cell differentiation, and thymopietic efficacy-associated accumulation of "inflammescent" cytotoxic CD28- T cells in the periphery, and (ii) the key underlying mechanisms in young and old non-immunised AO rats and their counterparts immunised for EAE (on the 16th day post-immunisation when the disease in old rats reached the plateau) using flow cytometry analysis and/or RT-qPCR. It was found that thymic involution impairs: (i) the efficacy of negative selection (by affecting thymocyte expression of CD90, negative regulator of selection threshold and the expression of thymic stromal cell integrity factors) and (ii) Treg generation (by diminishing expression of cytokines supporting their differentiation/maturation). Additionally, the results suggest that thymic involution facilitates CD8+ T-cell differentiation into IL-17-producing cells (previously linked to the development of clinical EAE in old AO rats). Furthermore, they confirmed that ageing-related decrease in thymic T-cell output (as indicated by diminished frequency of recent thymic emigrants in peripheral blood) resulted in the accumulation of CD28- T cells in peripheral blood and, upon immunisation, in the target organ. On the other hand, the development of EAE (most likely by increasing circulatory levels of proinflammatory cytokines) contributed to the decline in thymic output of T cells, including Tregs, and thereby to the progression/maintenance of clinical EAE. Thus, in AO rats thymic involution via multi-layered mechanisms may favour the development of clinically manifested autoimmunity, which, in turn, precipitates the thymus atrophy.
Collapse
Affiliation(s)
- Marija Petrušić
- Department of Pathobiology, University of Belgrade, Faculty of Pharmacy, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, University of Belgrade, Faculty of Pharmacy, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Ivan Pilipović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Duško Kosec
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Ivana Prijić
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Gordana Leposavić
- Department of Pathobiology, University of Belgrade, Faculty of Pharmacy, 450 Vojvode Stepe, 11221 Belgrade, Serbia.
| |
Collapse
|
6
|
Saini A, Oh TH, Ghanem DA, Castro M, Butler M, Sin Fai Lam CC, Posporelis S, Lewis G, David AS, Rogers JP. Inflammatory and blood gas markers of COVID-19 delirium compared to non-COVID-19 delirium: a cross-sectional study. Aging Ment Health 2022; 26:2054-2061. [PMID: 34651536 DOI: 10.1080/13607863.2021.1989375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES We aimed to find the association of inflammation and respiratory failure with delirium in COVID-19 patients. We compare the inflammatory and arterial blood gas markers between patients with COVID-19 delirium and delirium in other medical disorders. METHODS This cross-sectional study used the CHART-DEL, a validated research tool, to screen patients for delirium retrospectively from clinical notes. Inflammatory markers C-reactive protein (CRP) and white cell count (WBC), and the partial pressures of oxygen (PO2) and carbon dioxide (PCO2) were compared between patients with COVID-19 delirium and delirium in other medical disorders. RESULTS In bivariate analysis, CRP (mg/L) was significantly higher in the COVID-19 group, (81.7 ± 80.0 vs. 58.8 ± 87.7, p = 0.04), and WBC (109/L) was significantly lower (7.44 ± 3.42 vs. 9.71 ± 5.45, p = 0.04). The geometric mean of CRP in the COVID-19 group was 140% higher in multiple linear regression (95% CI = 7-439%, p = 0.03) with age and sex as covariates. There were no significant differences in pO2 or pCO2 across groups. CONCLUSION The association between higher CRP and COVID-19 in patients with delirium may suggest an inflammatory basis for delirium in COVID-19. Our findings may assist clinicians in establishing whether delirium is due to COVID-19, which may improve management and outcomes of infected patients.
Collapse
Affiliation(s)
- Aman Saini
- Medical School, University College London, London, UK
| | - Tae Hyun Oh
- Department of Psychological Medicine, King's College London, London, UK
| | | | - Megan Castro
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Matthew Butler
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | - Sotiris Posporelis
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,South London and Maudsley NHS Foundation Trust, London, UK
| | - Glyn Lewis
- Division of Psychiatry, University College London, London, UK
| | - Anthony S David
- Institute of Mental Health, University College London, London, UK
| | - Jonathan P Rogers
- South London and Maudsley NHS Foundation Trust, London, UK.,Division of Psychiatry, University College London, London, UK
| |
Collapse
|
7
|
Fonseca KCB, Pessoa FG, Ribeiro ODN, Hotta VT, Ianni BM, Fernandes F, Ferreira Rivero DHR, Saldiva PHN, Mady C, Ramires FJA. Air Pollution’s Impact on Cardiac Remodeling in an Experimental Model of Chagas Cardiomyopathy. Front Cell Infect Microbiol 2022; 12:830761. [PMID: 35928208 PMCID: PMC9343625 DOI: 10.3389/fcimb.2022.830761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background Chagas disease is characterized by intense myocardial fibrosis stimulated by the exacerbated production of inflammatory cytokines, oxidative stress, and apoptosis. Air pollution is a serious public health problem and also follows this same path. Therefore, air pollution might amplify the inflammatory response of Chagas disease and increase myocardial fibrosis. Methods We studied groups of Trypanosoma cruzi infected Sirius hamsters (Chagas=CH and Chagas exposed to pollution=CH+P) and 2 control groups (control healthy animals=CT and control exposed to pollution=CT+P). We evaluated acute phase (60 days post infection) and chronic phase (10 months). Echocardiograms were performed to assess left ventricular systolic and diastolic diameter, in addition to ejection fraction. Interstitial collagen was measured by morphometry in picrosirius red staining tissue. The evaluation of inflammation was performed by gene and protein expression of cytokines IL10, IFN-γ, and TNF; oxidative stress was quantified by gene expression of NOX1, MnSOD, and iNOS and by analysis of reactive oxygen species; and apoptosis was performed by gene expression of BCL2 and Capsase3, in addition to TUNEL analysis. Results Chagas groups had increased collagen deposition mainly in the acute phase, but air pollution did not increase this deposition. Also, Chagas groups had lower ejection fraction in the acute phase (p = 0.002) and again air pollution did not worsen ventricular function or dilation. The analysis of the inflammation and oxidative stress pathways were also not amplified by air pollution. Apoptosis analysis showed increased expression of BCL2 and Caspase3 genes in chagasic groups in the acute phase, with a marginal p of 0.054 in BCL2 expression among infected groups, and TUNEL technique showed amplified of apoptotic cells by pollution among infected groups. Conclusions A possible modulation of the apoptotic pathway was observed, inferring interference from air pollution in this pathway. However, it was not enough to promote a greater collagen deposition, or worsening ventricular function or dilation caused by air pollution in this model of Chagas cardiomyopathy.
Collapse
Affiliation(s)
- Keila Cardoso Barbosa Fonseca
- Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
| | - Fernanda Gallinaro Pessoa
- Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
| | - Orlando do Nascimento Ribeiro
- Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
| | - Viviane Tiemi Hotta
- Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
| | - Barbara Maria Ianni
- Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
| | - Fabio Fernandes
- Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
| | - Dolores Helena Rodriguez Ferreira Rivero
- Department of Pathology, Experimental Air Pollution Laboratory, Laboratório de Investigação Médica 05 (LIM 05) - School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Paulo Hilário Nascimento Saldiva
- Department of Pathology, Experimental Air Pollution Laboratory, Laboratório de Investigação Médica 05 (LIM 05) - School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Charles Mady
- Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
| | - Felix José Alvarez Ramires
- Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
- *Correspondence: Felix José Alvarez Ramires,
| |
Collapse
|
8
|
Marins-Dos-Santos A, Ayres-Silva JDP, Antunes D, Moreira CJDC, Pelajo-Machado M, Alfaro D, Zapata AG, Bonomo AC, Savino W, de Meis J, Farias-de-Oliveira DA. Oral Trypanosoma cruzi Acute Infection in Mice Targets Primary Lymphoid Organs and Triggers Extramedullary Hematopoiesis. Front Cell Infect Microbiol 2022; 12:800395. [PMID: 35402296 PMCID: PMC8990980 DOI: 10.3389/fcimb.2022.800395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/24/2022] [Indexed: 12/03/2022] Open
Abstract
During the acute phase of Chagas disease, Trypanosoma cruzi circulation through the bloodstream leads to high tissue parasitism in the host. In primary lymphoid organs, progenitor cell reduction paralleled transient immunosuppression. Herein we showed that acute oral infection in mice promotes diffuse parasitism in bone marrow cells at 14 and 21 days post-infection (dpi), with perivascular regions, intravascular regions, and regions near the bone being target sites of parasite replication. Phenotypic analysis of hematopoietic differentiation in the bone marrow of infected mice showed that the cell number in the tissue is decreased (lineage-negative and lineage-positive cells). Interestingly, analysis of hematopoietic branching points showed that hematopoietic stem and progenitor cells (HSPCs) were significantly increased at 14 dpi. In addition, the pool of progenitors with stem plasticity (HSC-MPP3), as well as multipotent progenitors (MPPs) such as MPP4, also showed this pattern of increase. In contrast, subsequent progenitors that arise from MPPs, such as common lymphoid progenitors (CLPs), lymphoid-primed MPPs (LMPPs), and myeloid progenitors, were not enhanced; conversely, all presented numeric decline. Annexin V staining revealed that cell death increase in the initial hematopoietic branching point probably is not linked to CLPs and that myeloid progenitors decreased at 14 and 21 dpi. In parallel, our investigation provided clues that myeloid progenitor decrease could be associated with an atypical expression of Sca-1 in this population leading to a remarkable increase on LSK-like cells at 14 dpi within the HSPC compartment. Finally, these results led us to investigate HSPC presence in the spleen as a phenomenon triggered during emergency hematopoiesis due to mobilization or expansion of these cells in extramedullary sites. Splenocyte analysis showed a progressive increase in HSPCs between 14 and 21 dpi. Altogether, our study shows that the bone marrow is a target tissue in T. cruzi orally infected mice, leading to a hematopoietic disturbance with LSK-like cell bias accounting on HSPCs possibly affecting myeloid progenitor numbers. The LMPP and CLP reduction converges with defective thymocyte development. Lastly, it is tempting to speculate that the extramedullary hematopoiesis seen in the spleen is a mechanism involved in the hematological maintenance reported during the acute phase of oral T. cruzi infection.
Collapse
Affiliation(s)
- Alessandro Marins-Dos-Santos
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Dina Antunes
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Marcelo Pelajo-Machado
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory of Pathology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - David Alfaro
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Agustín G. Zapata
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Adriana Cesar Bonomo
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- *Correspondence: Wilson Savino, ; ; Désio Aurélio Farias-de-Oliveira, ;
| | - Juliana de Meis
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Désio Aurélio Farias-de-Oliveira
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- *Correspondence: Wilson Savino, ; ; Désio Aurélio Farias-de-Oliveira, ;
| |
Collapse
|
9
|
Nicoli F, Clave E, Wanke K, von Braun A, Bondet V, Alanio C, Douay C, Baque M, Lependu C, Marconi P, Stiasny K, Heinz FX, Muetsch M, Duffy D, Boddaert J, Sauce D, Toubert A, Karrer U, Appay V. Primary immune responses are negatively impacted by persistent herpesvirus infections in older people: results from an observational study on healthy subjects and a vaccination trial on subjects aged more than 70 years old. EBioMedicine 2022; 76:103852. [PMID: 35114631 PMCID: PMC8818547 DOI: 10.1016/j.ebiom.2022.103852] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 01/08/2023] Open
Abstract
Background Advanced age is accompanied by a decline of immune functions, which may play a role in increased vulnerability to emerging pathogens and low efficacy of primary vaccinations in elderly people. The capacity to mount immune responses against new antigens is particularly affected in this population. However, its precise determinants are not fully understood. We aimed here at establishing the influence of persistent viral infections on the naive T-cell compartment and primary immune responsiveness in older adults. Methods We assessed immunological parameters, related to CD8+ and CD4+ T-cell responsiveness, according to the serological status for common latent herpesviruses in two independent cohorts: 1) healthy individuals aged 19y to 95y (n = 150) and 2) individuals above 70y old enrolled in a primo-vaccination clinical trial (n = 137). Findings We demonstrate a prevalent effect of age and CMV infection on CD8+ and CD4+ naive T cells, respectively. CMV seropositivity was associated with blunted CD4+ T-cell and antibody responses to primary vaccination. Interpretation These data provide insights on the changes in adaptive immunity over time and the associated decline in vaccine efficacy with ageing. This knowledge is important for the management of emerging infectious diseases in elderly populations.
Collapse
Affiliation(s)
- Francesco Nicoli
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, 75013 Paris, France; Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Emmanuel Clave
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, Paris F-75010, France
| | - Kerstin Wanke
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, Zurich, Switzerland
| | - Amrei von Braun
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Vincent Bondet
- Translational Immunology Lab, Institut Pasteur, Université de Paris, Paris, France
| | - Cécile Alanio
- INSERM U932, PSL University, Institut Curie, Paris 75005, France; Laboratoire D'immunologie Clinique, Institut Curie, Paris 75005, France
| | - Corinne Douay
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, Paris F-75010, France
| | - Margaux Baque
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, 75013 Paris, France
| | - Claire Lependu
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, 75013 Paris, France
| | - Peggy Marconi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Austria
| | - Franz X Heinz
- Center for Virology, Medical University of Vienna, Austria
| | - Margot Muetsch
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Darragh Duffy
- Translational Immunology Lab, Institut Pasteur, Université de Paris, Paris, France
| | - Jacques Boddaert
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, 75013 Paris, France
| | - Delphine Sauce
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, 75013 Paris, France
| | - Antoine Toubert
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, Paris F-75010, France; Laboratoire d'Immunologie et d'Histocompatibilité, AP-HP, Hopital Saint-Louis, Paris F-75010, France
| | - Urs Karrer
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, Zurich, Switzerland; Division of Infectious Diseases, Department of Medicine, Cantonal Hospital of Winterthur, Winterthur, Switzerland.
| | - Victor Appay
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, 75013 Paris, France; Université de Bordeaux, CNRS UMR5164, INSERM ERL1303, ImmunoConcEpT, Bordeaux, France; International Research Center of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
10
|
Barreira-Silva P, Melo-Miranda R, Nobrega C, Roque S, Serre-Miranda C, Borges M, Armada G, de Sá Calçada D, Behar SM, Appelberg R, Correia-Neves M. IFNγ and iNOS-Mediated Alterations in the Bone Marrow and Thymus and Its Impact on Mycobacterium avium-Induced Thymic Atrophy. Front Immunol 2021; 12:696415. [PMID: 34987496 PMCID: PMC8721011 DOI: 10.3389/fimmu.2021.696415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Disseminated infection with the high virulence strain of Mycobacterium avium 25291 leads to progressive thymic atrophy. We previously showed that M. avium-induced thymic atrophy results from increased glucocorticoid levels that synergize with nitric oxide (NO) produced by interferon gamma (IFNγ) activated macrophages. Where and how these mediators act is not understood. We hypothesized that IFNγ and NO promote thymic atrophy through their effects on bone marrow (BM) T cell precursors and T cell differentiation in the thymus. We show that M. avium infection cause a reduction in the percentage and number of common lymphoid progenitors (CLP). Additionally, BM precursors from infected mice show an overall impaired ability to reconstitute thymi of RAGKO mice, in part due to IFNγ. Thymi from infected mice present an IFNγ and NO-driven inflammation. When transplanted under the kidney capsule of uninfected mice, thymi from infected mice are unable to sustain T cell differentiation. Finally, we observed increased thymocyte death via apoptosis after infection, independent of both IFNγ and iNOS; and a decrease on active caspase-3 positive thymocytes, which is not observed in the absence of iNOS expression. Together our data suggests that M. avium-induced thymic atrophy results from a combination of defects mediated by IFNγ and NO, including alterations in the BM T cell precursors, the thymic structure and the thymocyte differentiation.
Collapse
Affiliation(s)
- Palmira Barreira-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B’s), PT Government Associate Laboratory, Braga, Portugal
- *Correspondence: Palmira Barreira-Silva, ; Margarida Correia-Neves,
| | - Rita Melo-Miranda
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B’s), PT Government Associate Laboratory, Braga, Portugal
| | - Claudia Nobrega
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B’s), PT Government Associate Laboratory, Braga, Portugal
| | - Susana Roque
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B’s), PT Government Associate Laboratory, Braga, Portugal
| | - Cláudia Serre-Miranda
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B’s), PT Government Associate Laboratory, Braga, Portugal
| | - Margarida Borges
- Research Unit on Applied Molecular Biosciences (UCIBIO)/Rede de Química e Tecnologia (REQUINTE), Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Gisela Armada
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B’s), PT Government Associate Laboratory, Braga, Portugal
| | - Daniela de Sá Calçada
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B’s), PT Government Associate Laboratory, Braga, Portugal
| | - Samuel M. Behar
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - Rui Appelberg
- Instituto de Investigação e Inovação em Saúde (i3S), Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B’s), PT Government Associate Laboratory, Braga, Portugal
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- *Correspondence: Palmira Barreira-Silva, ; Margarida Correia-Neves,
| |
Collapse
|
11
|
Luo M, Xu L, Qian Z, Sun X. Infection-Associated Thymic Atrophy. Front Immunol 2021; 12:652538. [PMID: 34113341 PMCID: PMC8186317 DOI: 10.3389/fimmu.2021.652538] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/07/2021] [Indexed: 12/17/2022] Open
Abstract
The thymus is a vital organ of the immune system that plays an essential role in thymocyte development and maturation. Thymic atrophy occurs with age (physiological thymic atrophy) or as a result of viral, bacterial, parasitic or fungal infection (pathological thymic atrophy). Thymic atrophy directly results in loss of thymocytes and/or destruction of the thymic architecture, and indirectly leads to a decrease in naïve T cells and limited T cell receptor diversity. Thus, it is important to recognize the causes and mechanisms that induce thymic atrophy. In this review, we highlight current progress in infection-associated pathogenic thymic atrophy and discuss its possible mechanisms. In addition, we discuss whether extracellular vesicles/exosomes could be potential carriers of pathogenic substances to the thymus, and potential drugs for the treatment of thymic atrophy. Having acknowledged that most current research is limited to serological aspects, we look forward to the possibility of extending future work regarding the impact of neural modulation on thymic atrophy.
Collapse
Affiliation(s)
- Mingli Luo
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Lingxin Xu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Zhengyu Qian
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Xi Sun
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| |
Collapse
|
12
|
Modeling the Dynamics of T-Cell Development in the Thymus. ENTROPY 2021; 23:e23040437. [PMID: 33918050 PMCID: PMC8069328 DOI: 10.3390/e23040437] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 12/24/2022]
Abstract
The thymus hosts the development of a specific type of adaptive immune cells called T cells. T cells orchestrate the adaptive immune response through recognition of antigen by the highly variable T-cell receptor (TCR). T-cell development is a tightly coordinated process comprising lineage commitment, somatic recombination of Tcr gene loci and selection for functional, but non-self-reactive TCRs, all interspersed with massive proliferation and cell death. Thus, the thymus produces a pool of T cells throughout life capable of responding to virtually any exogenous attack while preserving the body through self-tolerance. The thymus has been of considerable interest to both immunologists and theoretical biologists due to its multi-scale quantitative properties, bridging molecular binding, population dynamics and polyclonal repertoire specificity. Here, we review experimental strategies aimed at revealing quantitative and dynamic properties of T-cell development and how they have been implemented in mathematical modeling strategies that were reported to help understand the flexible dynamics of the highly dividing and dying thymic cell populations. Furthermore, we summarize the current challenges to estimating in vivo cellular dynamics and to reaching a next-generation multi-scale picture of T-cell development.
Collapse
|
13
|
Ronit A, Berg RMG, Bay JT, Haugaard AK, Ahlström MG, Burgdorf KS, Ullum H, Rørvig SB, Tjelle K, Foss NB, Benfield T, Marquart HV, Plovsing RR. Compartmental immunophenotyping in COVID-19 ARDS: A case series. J Allergy Clin Immunol 2021; 147:81-91. [PMID: 32979342 PMCID: PMC7581505 DOI: 10.1016/j.jaci.2020.09.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Severe immunopathology may drive the deleterious manifestations that are observed in the advanced stages of coronavirus disease 2019 (COVID-19) but are poorly understood. OBJECTIVE Our aim was to phenotype leukocyte subpopulations and the cytokine milieu in the lungs and blood of critically ill patients with COVID-19 acute respiratory distress syndrome (ARDS). METHODS We consecutively included patients less than 72 hours after intubation following informed consent from their next of kin. Bronchoalveolar lavage fluid was evaluated by microscopy; bronchoalveolar lavage fluid and blood were assessed by 10-color flow cytometry and a multiplex cytokine panel. RESULTS Four mechanically ventilated patients (aged 40-75 years) with moderate-to-severe COVID-19 ARDS were included. Immature neutrophils dominated in both blood and lungs, whereas CD4 and CD8 T-cell lymphopenia was observed in the 2 compartments. However, regulatory T cells and TH17 cells were found in higher fractions in the lung. Lung CD4 and CD8 T cells and macrophages expressed an even higher upregulation of activation markers than in blood. A wide range of cytokines were expressed at high levels both in the blood and in the lungs, most notably, IL-1RA, IL-6, IL-8, IP-10, and monocyte chemoattactant protein-1, consistent with hyperinflammation. CONCLUSION COVID-19 ARDS exhibits a distinct immunologic profile in the lungs, with a depleted and exhausted CD4 and CD8 T-cell population that resides within a heavily hyperinflammatory milieu.
Collapse
Affiliation(s)
- Andreas Ronit
- Department of Infectious Diseases, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Ronan M G Berg
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine and PET and Centre for Physical Activity Research, University of Copenhagen, Copenhagen, Denmark; Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, United Kingdom
| | - Jakob T Bay
- Department of Clinical Immunology, University of Copenhagen, Copenhagen, Denmark
| | - Anna K Haugaard
- Department of Clinical Immunology, University of Copenhagen, Copenhagen, Denmark
| | - Magnus G Ahlström
- Department of Clinical Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | - Henrik Ullum
- Department of Clinical Immunology, University of Copenhagen, Copenhagen, Denmark
| | - Sara B Rørvig
- Department of Pathology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Tjelle
- Department of Anesthesiology and Intensive Care, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai B Foss
- Department of Anesthesiology and Intensive Care, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Benfield
- Department of Infectious Diseases, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | - Ronni R Plovsing
- Department of Anesthesiology and Intensive Care, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
14
|
Abstract
Following periods of haematopoietic cell stress, such as after chemotherapy, radiotherapy, infection and transplantation, patient outcomes are linked to the degree of immune reconstitution, specifically of T cells. Delayed or defective recovery of the T cell pool has significant clinical consequences, including prolonged immunosuppression, poor vaccine responses and increased risks of infections and malignancies. Thus, strategies that restore thymic function and enhance T cell reconstitution can provide considerable benefit to individuals whose immune system has been decimated in various settings. In this Review, we focus on the causes and consequences of impaired adaptive immunity and discuss therapeutic strategies that can recover immune function, with a particular emphasis on approaches that can promote a diverse repertoire of T cells through de novo T cell formation.
Collapse
|
15
|
Jafarzadeh A, Jafarzadeh S, Nozari P, Mokhtari P, Nemati M. Lymphopenia an important immunological abnormality in patients with COVID-19: Possible mechanisms. Scand J Immunol 2020; 93:e12967. [PMID: 32875598 DOI: 10.1111/sji.12967] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023]
Abstract
The lymphopenia as a major immunological abnormality occurs in the majority of severe COVID-19 patients, which is strongly associated with mortality rate. A low proportion of lymphocytes may express the main receptor for SARS-CoV-2, called angiotensin-converting enzyme 2 (ACE2). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can also use ACE2-independent pathways to enter lymphocytes. Both SARS-CoV-2- and immune-mediated mechanisms may contribute to the occurrence of lymphopenia through influencing the lymphocyte production, survival or tissue re-distribution. The metabolic and biochemical changes can also affect the production and survival of lymphocytes in COVID-19 patients. Lymphopenia can cause general immunosuppression and promote cytokine storm, both of them play an important role in the viral persistence, viral replication, multi-organ failure and eventually death. Here, a comprehensive view concerning the possible mechanisms that may lead to the lymphocyte reduction in COVID-19 patients is provided, while highlighting the potential intervention approaches to prevent lymphopenia.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Parvin Nozari
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Pejman Mokhtari
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Nemati
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
16
|
De Niz M, Meehan GR, Tavares J. Intravital microscopy: Imaging host-parasite interactions in lymphoid organs. Cell Microbiol 2019; 21:e13117. [PMID: 31512335 DOI: 10.1111/cmi.13117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/25/2019] [Accepted: 09/01/2019] [Indexed: 12/11/2022]
Abstract
Intravital microscopy allows imaging of biological phenomena within living animals, including host-parasite interactions. This has advanced our understanding of both, the function of lymphoid organs during parasitic infections, and the effect of parasites on such organs to allow their survival. In parasitic research, recent developments in this technique have been crucial for the direct study of host-parasite interactions within organs at depths, speeds and resolution previously difficult to achieve. Lymphoid organs have gained more attention as we start to understand their function during parasitic infections and the effect of parasites on them. In this review, we summarise technical and biological findings achieved by intravital microscopy with respect to the interaction of various parasites with host lymphoid organs, namely the bone marrow, thymus, lymph nodes, spleen and the mucosa-associated lymphoid tissue, and present a view into possible future applications.
Collapse
Affiliation(s)
- Mariana De Niz
- Institute of Cell Biology, Heussler Lab, University of Bern, Bern, Switzerland
| | - Gavin R Meehan
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Joana Tavares
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,IBMC-Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| |
Collapse
|
17
|
Nacka-Aleksić M, Pilipović I, Kotur-Stevuljević J, Petrović R, Sopta J, Leposavić G. Sexual dimorphism in rat thymic involution: a correlation with thymic oxidative status and inflammation. Biogerontology 2019; 20:545-569. [DOI: 10.1007/s10522-019-09816-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/12/2019] [Indexed: 01/05/2023]
|
18
|
Brazão V, Colato RP, Santello FH, Vale GTD, Gonzaga NDA, Tirapelli CR, Prado JCD. Effects of melatonin on thymic and oxidative stress dysfunctions during Trypanosoma cruzi infection. J Pineal Res 2018; 65:e12510. [PMID: 29781553 DOI: 10.1111/jpi.12510] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/09/2018] [Indexed: 12/11/2022]
Abstract
Although the exact etiology of Chagas disease is not completely elucidated, thymic atrophy and oxidative stress are believed to be important contributors to the pathogenesis during acute Trypanosoma cruzi (T. cruzi) infection. We hypothesized that exogenous melatonin, administered by gavage (5 mg/kg, p.o., gavage) to young (5 weeks old) and middle-aged (18 months old) male Wistar rats, would modulate thymic oxidative damage and reverse the age-related thymus regression during T. cruzi acute infection. Increased levels of superoxide anion (O2- ) were detected in the thymus of infected animals, and treatment with melatonin reverted this response. We found reduced TBARS levels as well as a significant increase in superoxide dismutase (SOD) activity in the thymus of all middle-aged melatonin-treated animals, infected or not with T. cruzi. Furthermore, melatonin increased the thymic expression of SOD1 and SOD2 in middle-aged control animals. Nox2 expression was not affected by melatonin treatment in young or middle-aged animals. Melatonin reverted the age-related thymic regression as revealed by the increase in thymus weight, total number of thymocytes, and reduction in age-related accumulation of double-negative thymocytes. This is the first report to directly examine the effects of melatonin treatment on the thymic antioxidant/oxidant status and thymic changes during T. cruzi infection. Our results revealed new antioxidant features that turn melatonin a potentially useful compound for the treatment of Chagas disease, a condition in which an excessive oxidative damage occurs.
Collapse
Affiliation(s)
- Vânia Brazão
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rafaela Pravato Colato
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Fabricia Helena Santello
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Gabriel Tavares do Vale
- Department of Psychiatric Nursing and Human Sciences, Laboratory of Pharmacology, College of Nursing of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Natália de Almeida Gonzaga
- Department of Psychiatric Nursing and Human Sciences, Laboratory of Pharmacology, College of Nursing of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Carlos Renato Tirapelli
- Department of Psychiatric Nursing and Human Sciences, Laboratory of Pharmacology, College of Nursing of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - José Clóvis do Prado
- College of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
19
|
Pérez AR, Morrot A, Carvalho VF, de Meis J, Savino W. Role of Hormonal Circuitry Upon T Cell Development in Chagas Disease: Possible Implications on T Cell Dysfunctions. Front Endocrinol (Lausanne) 2018; 9:334. [PMID: 29963015 PMCID: PMC6010535 DOI: 10.3389/fendo.2018.00334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 05/31/2018] [Indexed: 12/22/2022] Open
Abstract
T cell response plays an essential role in the host resistance to infection by the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease. This infection is often associated with multiple manifestations of T cell dysfunction, both during the acute and the chronic phases of disease. Additionally, the normal development of T cells is affected. As seen in animal models of Chagas disease, there is a strong thymic atrophy due to massive death of CD4+CD8+ double-positive cells by apoptosis and an abnormal escape of immature and potentially autoreactive thymocytes from the organ. Furthermore, an increase in the release of corticosterone triggered by T. cruzi-driven systemic inflammation is strongly associated with the alterations seen in the thymus of infected animals. Moreover, changes in the levels of other hormones, including growth hormone, prolactin, and testosterone are also able to contribute to the disruption of thymic homeostasis secondary to T. cruzi infection. In this review, we discuss the role of hormonal circuits involved in the normal T cell development and trafficking, as well as their role on the thymic alterations likely related to the peripheral T cell disturbances largely reported in both chagasic patients and animal models of Chagas disease.
Collapse
Affiliation(s)
- Ana Rosa Pérez
- Institute of Clinical and Experimental Immunology (IDICER-CONICET UNR), Rosario, Argentina
- *Correspondence: Ana Rosa Pérez, ,
| | - Alexandre Morrot
- Faculty of Medicine, Tuberculosis Research Center, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Vinicius Frias Carvalho
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Juliana de Meis
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| |
Collapse
|