1
|
Li D, Xie Z, Shaikh SB, Rahman I. Altered expression profile of plasma exosomal microRNAs in exclusive electronic cigarette adult users. Sci Rep 2025; 15:2714. [PMID: 39837838 PMCID: PMC11751386 DOI: 10.1038/s41598-025-85373-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 01/02/2025] [Indexed: 01/23/2025] Open
Abstract
Little is known about how exclusive e-cigarette use affects exosomal microRNA (miRNA) expression, which is crucial in inflammation and disease processes like cancer. We compared exosomal miRNA profiles between exclusive e-cigarette users and non-users. We used plasma samples from 15 exclusive e-cigarette users and 15 non-users from the Population Assessment of Tobacco and Health (PATH) Wave 1 study (2013-2014) and sequenced miRNAs with Illumina NextSeq 500/550. We performed differential analyses using DESeq2 in R/Bioconductor, adjusting for race, and conducted gene enrichment analyses on target genes regulated by significant miRNAs. Further, molecular-based techniques using the miRNA mimics and inhibitors were applied for the validation of the expressions of the miRNAs in vitro. We identified four miRNAs that were upregulated in exclusive e-cigarette users compared to non-users: hsa-miR-100-5p, hsa-miR-125a-5p, hsa-miR-125b-5p, and hsa-miR-99a-5p, after adjusting for the confounding effects of race. However, none of the miRNAs remained statistically significant after controlling for the false discovery rate (FDR) at 5%. Subgroup analysis of White participants only identified four miRNAs (hsa-miR-100-5p, hsa-miR-125b-5p, hsa-miR-200b-3p, and hsa-miR-99a-5p) that were also upregulated in e-cigarette users with one miRNA hsa-miR-200b-3p remaining statistical significance after controlling for the FDR at 5%. GO enrichment analysis showed that these miRNAs are involved in processes like transcription regulation and cellular protein modification. KEGG pathway analysis indicated their involvement in cancer pathways, including small cell lung cancer, renal cell carcinoma, and signaling pathways (neurotrophin, ErbB, PI3K-Akt, FoxO, Hippo, MAPK, TGF-beta). Overexpression of hsa-miR-125b-5p promoted DNA damage in bronchial epithelial cells. These findings suggest an elevation of carcinogenic cellular signaling pathways in exclusive e-cigarette users.
Collapse
Affiliation(s)
- Dongmei Li
- Department of Clinical and Translational Research, University of Rochester Medical Center, Rochester, NY, US.
| | - Zidian Xie
- Department of Clinical and Translational Research, University of Rochester Medical Center, Rochester, NY, US
| | - Sadiya Bi Shaikh
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, US
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, US
| |
Collapse
|
2
|
Li D, Xie Z, Shaikh SB, Rahman I. Abnormal expression profile of plasma exosomal microRNAs in exclusive electronic cigarette adult users. RESEARCH SQUARE 2024:rs.3.rs-3877316. [PMID: 38343804 PMCID: PMC10854321 DOI: 10.21203/rs.3.rs-3877316/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Background Exposure to electronic cigarette (e-cigarette) aerosol has been linked to several health concerns, including DNA damage, elevated oxidative stress, the release of inflammatory cytokine, and dysfunctions in epithelial barriers. However, little is known about the effect of exclusive e-cigarette use on expression profiles of exosomal miRNAs, which play critical regulatory roles in many inflammatory responses and disease processes including cancer. We aim to compare the exosomal microRNA expression profile between exclusive e-cigarette users and normal controls without any tobacco product use (non-users). Methods Using plasma samples from 15 exclusive e-cigarette users and 15 non-users in the Population Assessment of Tobacco and Health (PATH) Wave 1 study (2013-2014), we examined exosomal microRNAs expression levels through Illumina NextSeq 500/550 sequencing. The differential analyses between exclusive e-cigarette users and non-users were examined using the generalized linear model approach in the DESeq2 package in R/Bioconductor after adjusting the significant confounding effect from race. Gene enrichment analyses were conducted on target genes regulated by significant microRNAs in the differential analyses. Further, molecular-based techniques using the micro RNA mimics and inhibitors were applied for the validation of the expressions of the micro RNAs in vitro. Results We identified four microRNAs that have significantly higher expression levels in exclusive e-cigarette users than non-users including hsa-miR-100-5p, hsa-miR-125a-5p, hsa-miR-125b-5p, and hsa-miR-99a-5p. GO enrichment analysis on the target genes regulated by the four microRNAs showed that dysregulation of the four microRNAs in exclusive e-cigarette users involved in multiple cell processes such as protein kinase binding and miRNA metabolic process. KEGG pathway enrichment analysis found the four upregulated miRNAs in exclusive e-cigarette users involved in many cancer pathways such as the non-small cell lung cancer, small cell lung cancer, pancreatic cancer, p53 signaling pathway, Hippo signaling pathway, HIF-1 signaling pathway, and MAPK signaling pathway. Overexpression of miRNA hsa-miR-125b-5p was shown to promote DNA damage in bronchial epithelia cells. Conclusions Four plasma exosomal microRNAs involved in cancer development had higher expression levels in exclusive e-cigarette users than non-users, which might indicate a potentially elevated risk of cancer among exclusive e-cigarette users.
Collapse
|
3
|
Guo Y, Cui X, Zhang Y, Ma X, Ren A, Huang H. Diagnostic and Prognostic Value of Serum miR-296-5p and miR-28-3p in Human Gastric Cancer. Cancer Biother Radiopharm 2023; 38:95-101. [PMID: 32898433 DOI: 10.1089/cbr.2020.4144] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background: Previous studies reported the use of microRNAs (miRNAs) as diagnostic and/or prognostic biomarkers for various cancers, including gastric cancer (GC). This study evaluated the diagnostic and prognostic significance of serum miR-296-5p and miR-28-3p in GC. Materials and Methods: Serum samples of 90 patients with GC and 90 healthy individuals, and 20 pairs of tissue specimens from patients with GC were collected. The expression of miR-296-5p and miR-28-3p in both the serum and tissue samples were detected using quantitative real-time polymerase chain reaction analysis. The diagnostic and prognostic values of miR-296-5p and miR-28-3p were evaluated by using receiver operating characteristic curve and Kaplan-Meier analyses, respectively. Results: Compared with the healthy controls, the expression of miR-296-5p in the serum and tissues of patients with GC was significantly upregulated, whereas that of miR-28-3p was significantly downregulated. High miR-296-5p and low miR-28-3p levels in the serum significantly correlated with larger tumor size (>5 cm), lymph node metastasis, and TNM stage III+IV. The area under the curve values of miR-296-5p and miR-28-3p were 0.919 and 0.911, respectively, with high sensitivity and specificity. Kaplan-Meier survival curves showed that patients with GC with high level of miR-296-5p or low level of miR-1236-3p in the serum had the poorest overall survival. COX analysis showed that lymphatic metastasis, high miR-296-5p expression, and low miR-28-3p expression are independent parameters indicating poor prognosis in GC. Conclusion: Our findings indicate that serum miR-296-5p and miR-28-3p levels are potential biomarkers in the diagnosis and prognosis of GC.
Collapse
Affiliation(s)
- Yuntong Guo
- Department of Gastrointestinal Surgery, First Hospital of ShanXi Medical University, Taiyuan City, China
| | - Xiaolong Cui
- Department of Gastrointestinal Surgery, First Hospital of ShanXi Medical University, Taiyuan City, China
| | - Yu Zhang
- Department of Gastrointestinal Surgery, First Hospital of ShanXi Medical University, Taiyuan City, China
| | - Xiaobo Ma
- Department of Gastrointestinal Surgery, First Hospital of ShanXi Medical University, Taiyuan City, China
| | - Aigang Ren
- Department of Gastrointestinal Surgery, First Hospital of ShanXi Medical University, Taiyuan City, China
| | - He Huang
- Department of Gastrointestinal Surgery, First Hospital of ShanXi Medical University, Taiyuan City, China
| |
Collapse
|
4
|
MicroRNA biosensors for detection of gastrointestinal cancer. Clin Chim Acta 2023; 541:117245. [PMID: 36754191 DOI: 10.1016/j.cca.2023.117245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/27/2022] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
Gastrointestinal (GI) cancers are one of the most common causes of cancer-related mortality. The discovery of microRNAs (miRs) and their unique role in cancer and other diseases has prompted the development of highly sensitive molecular diagnostic tools using nanomaterials as sensitive and specific biosensors. Among these, electrochemical biosensors, which are based on a simple and inexpensive design, make them desirable in clinical applications as well as a mass-produced point-of-care device. We review miR-based electrochemical biosensors in GI cancer and examine the use of nanoparticles in the evolving development of miR-based biosensors. Among these, a number of approaches including redox labeled probes, catalysts, redox intercalating agents and free redox indicators are highlighted for use in electrochemical biosensor technology.
Collapse
|
5
|
Serum microRNAs as new criteria for referral to early palliative care services in treatment-naïve advanced cancer patients. Oncotarget 2022; 13:1341-1349. [PMID: 36528878 PMCID: PMC9760266 DOI: 10.18632/oncotarget.28327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A major obstacle to the implementation of early palliative care (EPC) is the lack of objective criteria for referral to EPC. Circulating microRNAs (miRNAs) have been recognized as promising biomarkers. The present study investigated objective definitions for referral to EPC using microRNA. A total of 178 serum samples were obtained from patients with lung, gastrointestinal, colorectal, bile duct, pancreas and bladder cancers who were treatment-naïve and received chemotherapy between January 2011 and December 2013 at National Cancer Center Hospital East. We investigated expression levels of miRNAs using microarrays. The primary outcome was prediction of admission to a palliative care unit ≤6 months after first visit. Diagnostic models using clinical characteristics, miRNAs and combinations of both were constructed. The miRNA models were constructed using 6 miRNA levels. The best areas under the receiver operating characteristic curve (AUCs) of the clinical model was 0.741, while the average AUCs of miRNA-based models and combination models were 0.769 and 0.806, respectively. Combination models showed higher AUCs than the clinical model (p < 0.023). The present combination models might offer new objective definitions for referral to EPC and thus contribute to real-world implementation of EPC.
Collapse
|
6
|
Shahmohamadnejad S, Nouri Ghonbalani Z, Tahbazlahafi B, Panahi G, Meshkani R, Emami Razavi A, Shokri Afra H, Khalili E. Aberrant methylation of miR-124 upregulates DNMT3B in colorectal cancer to accelerate invasion and migration. Arch Physiol Biochem 2022; 128:1503-1509. [PMID: 32552060 DOI: 10.1080/13813455.2020.1779311] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The dysregulation of microRNA expression is significantly associated with the initiation and development of CRC. miR-124 is markedly downregulated in colorectal cancer. In the present study, the effects of methylation, over expression and downregulation of miR-124 and its target gene DNMT3B on the proliferation, migration and invasion of colorectal cell line were investigated. The promoter methylation status of miR-124 in the CRC was investigated by methylation specific PCR (MSP). The potential role of miR-124 expression in CRC cells was investigated using the demethylation reagent 5-Aza-CdR and transfection of miR-124 mimic/antimir. MSP revealed that miR-124 promoter region was hypermethylated, result in its significant downregulation in tumour tissues. We showed miR-124 expression was upregulated following 5-AZA-CdR treatment. Transfected Hct-116 cell line with miR-124 leads to decreased DNMT3B expression, cell proliferation, migration and invasion of HCT-116. In conclusion, our data indicate that miR-124 suppress colorectal cancer proliferation, migration and invasion through downregulating DNMT3B level.
Collapse
Affiliation(s)
- Shiva Shahmohamadnejad
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Nouri Ghonbalani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnoosh Tahbazlahafi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghodratollah Panahi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirnader Emami Razavi
- Iran National Tumor Bank, Cancer Institute of Iran, Imam Hospitals Complex, Tehran, Iran
| | - Hajar Shokri Afra
- Gut and Liver Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ehsan Khalili
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Gu XJ, Li YJ, Wang F, Ye T. MiR-30e-3p inhibits gastric cancer development by negatively regulating THO complex 2 and PI3K/AKT/mTOR signaling. World J Gastrointest Oncol 2022; 14:2170-2182. [PMID: 36438699 PMCID: PMC9694264 DOI: 10.4251/wjgo.v14.i11.2170] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/05/2022] [Accepted: 10/12/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is a common type of digestive cancer with high morbidity and mortality rates worldwide. Considerable effort has been expended in understanding the mechanism of GC development and metastasis. The current study therefore explores the involvement of microRNAs in the regulation of GC progression.
AIM To explore the expression and function of miR-30e-3p in GC development.
METHODS MiR-30e-3p was found to be downregulated in GC, with low levels thereof predicting poor outcomes among patients with GC. Functionally, we revealed that miR-30e-3p suppressed cell growth and metastatic behaviors of GC cells. Bioinformatics analysis predicted that THO complex 2 (THOC2) was a direct target of miR-30e-3p, and the interaction between miR-30e-3p and THOC2 was further validated by a luciferase reporter assay.
RESULTS Our findings revealed that knockdown of THOC2 inhibited the growth and metastatic behaviors of GC cells. After investigating signaling pathways involved in miR-30e-3p regulation, we found that the miR-30e-3p/THOC2 axis regulated the PI3K/AKT/mTOR pathway in GC.
CONCLUSION Our findings suggest the novel functional axis miR-30e-3p/THOC2 is involved in GC development and progression. The miR-30e-3p/THOC2 axis could be utilized to develop new therapies against GC.
Collapse
Affiliation(s)
- Xiao-Jing Gu
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Prefecture, China
| | - Ya-Jun Li
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Prefecture, China
| | - Fang Wang
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Prefecture, China
| | - Ting Ye
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Prefecture, China
| |
Collapse
|
8
|
Hu X, Wang Z, Su P, Zhang Q, Kou Y. Advances in the research of the mechanism of secondary resistance to imatinib in gastrointestinal stromal tumors. Front Oncol 2022; 12:933248. [PMID: 36147927 PMCID: PMC9485670 DOI: 10.3389/fonc.2022.933248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/18/2022] [Indexed: 11/15/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. At present, surgery is the first-line treatment for primary resectable GISTs; however, the recurrence rate is high. Imatinib mesylate (IM) is an effective first-line drug used for the treatment of unresectable or metastatic recurrent GISTs. More than 80% of patients with GISTs show significantly improved 5-year survival after treatment; however, approximately 50% of patients develop drug resistance after 2 years of IM treatment. Therefore, an in-depth research is urgently needed to reveal the mechanisms of secondary resistance to IM in patients with GISTs and to develop new therapeutic targets and regimens to improve their long-term prognoses. In this review, research on the mechanisms of secondary resistance to IM conducted in the last 5 years is discussed and summarized from the aspects of abnormal energy metabolism, gene mutations, non-coding RNA, and key proteins. Studies have shown that different drug-resistance mechanism networks are closely linked and interconnected. However, the influence of these drug-resistance mechanisms has not been compared. The combined inhibition of drug-resistance mechanisms with IM therapy and the combined inhibition of multiple drug-resistance mechanisms are expected to become new therapeutic options in the treatment of GISTs. In addition, implementing individualized therapies based on the identification of resistance mechanisms will provide new adjuvant treatment options for patients with IM-resistant GISTs, thereby delaying the progression of GISTs. Previous studies provide theoretical support for solving the problems of drug-resistance mechanisms. However, most studies on drug-resistance mechanisms are still in the research stage. Further clinical studies are needed to confirm the safety and efficacy of the inhibition of drug-resistance mechanisms as a potential therapeutic target.
Collapse
Affiliation(s)
- Xiangchen Hu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhe Wang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Su
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiqi Zhang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Youwei Kou
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Youwei Kou,
| |
Collapse
|
9
|
Ferris WF. The Role and Interactions of Programmed Cell Death 4 and its Regulation by microRNA in Transformed Cells of the Gastrointestinal Tract. Front Oncol 2022; 12:903374. [PMID: 35847932 PMCID: PMC9277020 DOI: 10.3389/fonc.2022.903374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022] Open
Abstract
Data from GLOBOCAN 2020 estimates that there were 19.3 million new cases of cancer and 10.0 million cancer-related deaths in 2020 and that this is predicted to increase by 47% in 2040. The combined burden of cancers of the gastrointestinal (GI) tract, including oesophageal-, gastric- and colorectal cancers, resulted in 22.6% of the cancer-related deaths in 2020 and 18.7% of new diagnosed cases. Understanding the aetiology of GI tract cancers should have a major impact on future therapies and lessen this substantial burden of disease. Many cancers of the GI tract have suppression of the tumour suppressor Programmed Cell Death 4 (PDCD4) and this has been linked to the expression of microRNAs which bind to the untranslated region of PDCD4 mRNA and either inhibit translation or target the mRNA for degradation. This review highlights the properties of PDCD4 and documents the evidence for the regulation of PDCD4 expression by microRNAs in cancers of the GI tract.
Collapse
|
10
|
Mulcahy EQX, Zhang Y, Colόn RR, Cain SR, Gibert MK, Dube CJ, Hafner M, Abounader R. MicroRNA 3928 Suppresses Glioblastoma through Downregulation of Several Oncogenes and Upregulation of p53. Int J Mol Sci 2022; 23:3930. [PMID: 35409289 PMCID: PMC8998958 DOI: 10.3390/ijms23073930] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GBM) is the most frequent and lethal primary malignant brain tumor. Despite decades of research, therapeutic advances that significantly prolong life are non-existent. In recent years, microRNAs (miRNAs) have been a focus of study in the pathobiology of cancer because of their ability to simultaneously regulate multiple genes. The aim of this study was to determine the functional and mechanistic effects of miR-3928 in GBM both in vitro and in vivo. To the best of our knowledge, this is the first article investigating the role of miR-3928 in GBM. We measured endogenous miR-3928 expression levels in a panel of patient-derived GBM tissue samples and cell lines. We found that GBM tissue samples and cell lines express lower levels of miR-3928 than normal brain cortex and astrocytes, respectively. Therefore, we hypothesized that miR-3928 is a tumor suppressive microRNA. We verified this hypothesis by showing that exogenous expression of miR-3928 has a strong inhibitory effect on both cell growth and invasiveness of GBM cells. Stable ex vivo overexpression of miR-3928 in GBM cells led to a reduction in tumor size in nude mice xenografts. We identified many targets (MDM2, CD44, DDX3X, HMGA2, CCND1, BRAF, ATOH8, and BMI1) of miR-3928. Interestingly, inhibition of the oncogene MDM2 also led to an upregulation of wild-type p53 expression and phosphorylation. In conclusion, we find that miR-3928, through the downregulation of several oncogenes and upregulation and activation of wild-type p53, is a strong tumor suppressor in GBM. Furthermore, the fact that miR-3928 can target many important dysregulated proteins in GBM suggests it might be a "master" regulatory microRNA that could be therapeutically exploited.
Collapse
Affiliation(s)
- Elizabeth Q. X. Mulcahy
- Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA; (E.Q.X.M.); (Y.Z.); (R.R.C.); (S.R.C.); (M.K.G.J.); (C.J.D.)
| | - Ying Zhang
- Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA; (E.Q.X.M.); (Y.Z.); (R.R.C.); (S.R.C.); (M.K.G.J.); (C.J.D.)
| | - Rossymar R. Colόn
- Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA; (E.Q.X.M.); (Y.Z.); (R.R.C.); (S.R.C.); (M.K.G.J.); (C.J.D.)
| | - Shelby R. Cain
- Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA; (E.Q.X.M.); (Y.Z.); (R.R.C.); (S.R.C.); (M.K.G.J.); (C.J.D.)
| | - Myron K. Gibert
- Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA; (E.Q.X.M.); (Y.Z.); (R.R.C.); (S.R.C.); (M.K.G.J.); (C.J.D.)
| | - Collin J. Dube
- Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA; (E.Q.X.M.); (Y.Z.); (R.R.C.); (S.R.C.); (M.K.G.J.); (C.J.D.)
| | - Markus Hafner
- National Institutes of Health (NIH), Bethesda, MD 20894, USA;
| | - Roger Abounader
- Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA; (E.Q.X.M.); (Y.Z.); (R.R.C.); (S.R.C.); (M.K.G.J.); (C.J.D.)
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA
- University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22908, USA
| |
Collapse
|
11
|
Rihane FE, Erguibi D, Lamsisi M, Chehab F, Ennaji MM. RETRACTED ARTICLE: Upregulation of miR-21 Expression in Gastric Cancer and Its Clinicopathological Feature Association. J Gastrointest Cancer 2022; 53:236. [PMID: 34907506 DOI: 10.1007/s12029-021-00691-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2021] [Indexed: 12/29/2022]
Affiliation(s)
- Fatima Ezzahra Rihane
- Laboratory of Genetic and Molecular Pathology, Faculty of Medicine & Pharmacy Casablanca, University Hassan II of Casablanca, Casablanca, Morocco
- Laboratory of Virology, Microbiology, Quality, Biotechnologies/Ecotoxicology and Biodiversity, Faculty of Sciences & Technologies Mohammedia, University Hassan II of Casablanca, Casablanca, Morocco
| | - Driss Erguibi
- Service of Digestive Cancers Surgery and Liver Transplant, Department of Surgery, Ibn Rochd University Hospital Center, Faculty of Medicine & Pharmacy Casablanca, University Hassan II of Casablanca, Casablanca, Morocco
| | - Maryame Lamsisi
- Laboratory of Virology, Microbiology, Quality, Biotechnologies/Ecotoxicology and Biodiversity, Faculty of Sciences & Technologies Mohammedia, University Hassan II of Casablanca, Casablanca, Morocco
| | - Farid Chehab
- Service of Digestive Cancers Surgery and Liver Transplant, Department of Surgery, Ibn Rochd University Hospital Center, Faculty of Medicine & Pharmacy Casablanca, University Hassan II of Casablanca, Casablanca, Morocco
| | - Moulay Mustapha Ennaji
- Laboratory of Virology, Microbiology, Quality, Biotechnologies/Ecotoxicology and Biodiversity, Faculty of Sciences & Technologies Mohammedia, University Hassan II of Casablanca, Casablanca, Morocco.
| |
Collapse
|
12
|
Circulating MicroRNAs as Cancer Biomarkers in Liquid Biopsies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1385:23-73. [DOI: 10.1007/978-3-031-08356-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Cosandey J, Hamza E, Gerber V, Ramseyer A, Leeb T, Jagannathan V, Blaszczyk K, Unger L. Diagnostic and prognostic potential of eight whole blood microRNAs for equine sarcoid disease. PLoS One 2021; 16:e0261076. [PMID: 34941894 PMCID: PMC8699634 DOI: 10.1371/journal.pone.0261076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs have been proposed as biomarkers for equine sarcoids, the most prevalent equine skin tumors globally. This study served to validate the diagnostic and prognostic potential of whole blood microRNAs identified in a previous study for long-term equine sarcoid diagnosis and outcome prediction. Based on findings of a clinical examination at the age of 3 years and a follow-up following a further 5–12 years, 32 Franches-Montagnes and 45 Swiss Warmblood horses were assigned to four groups: horses with regression (n = 19), progression (n = 9), new occurrences of sarcoid lesions (n = 19) and tumor-free control horses (n = 30). The expression levels for eight microRNAs (eca-miR-127, eca-miR-432, eca-miR-24, eca-miR-125a-5p, eca-miR-134, eca-miR-379, eca-miR-381, eca-miR-382) were analyzed through reverse transcription quantitative polymerase chain reaction in whole blood samples collected on initial examination. Associations of sex, breed, diagnosis, and prognosis with microRNA expression levels were examined using multivariable analysis of variance. Sex and breed influenced the expression level of five and two microRNAs, respectively. Eca-miR-127 allowed discrimination between sarcoid-affected and tumor-free horses. No variation in microRNA expression was found when comparing horses with sarcoid regression and progression. Expression levels of eca-miR-125a-5p and eca-miR-432 varied in male horses that developed sarcoids throughout the study period in comparison to male control horses. While none of the investigated miRNAs was validated for predicting the prognosis of sarcoid regression / progression within young horses with this condition, two miRNAs demonstrated potential to predict if young male (though not female) tumor-free horse can develop sarcoids within the following years. Sex- and breed- biased miRNAs exist within the equine species and have an impact on biomarker discovery.
Collapse
Affiliation(s)
- Jeanne Cosandey
- Swiss Institute of Equine Medicine, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern and Agroscope, Bern, Switzerland
| | - Eman Hamza
- Swiss Institute of Equine Medicine, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern and Agroscope, Bern, Switzerland
- * E-mail:
| | - Vinzenz Gerber
- Swiss Institute of Equine Medicine, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern and Agroscope, Bern, Switzerland
| | - Alessandra Ramseyer
- Swiss Institute of Equine Medicine, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern and Agroscope, Bern, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Klaudia Blaszczyk
- Swiss Institute of Equine Medicine, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern and Agroscope, Bern, Switzerland
| | - Lucia Unger
- Swiss Institute of Equine Medicine, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern and Agroscope, Bern, Switzerland
| |
Collapse
|
14
|
Lu X, Zhang M, Wei C, Wang Z, Zheng Q, Yu C. The Impact of a Simplified Scoring System on Long-Term Survival Outcomes in Patients with Gastric Cancer Undergoing Gastrectomy. Nutr Cancer 2021; 74:2365-2372. [PMID: 34809498 DOI: 10.1080/01635581.2021.2005807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gastric cancer (GC) is a worldwide public health concern. We aimed to investigate the association between preoperative prognostic scoring system based on the combination of age, American Society of Anesthesiologists physical status (ASA-PS), and prognostic nutritional index (PNI) and long-term survival outcomes in patients with (GC). Data from 513 patients were analyzed using Cox proportional hazards regression models to evaluate the association between this prognostic score system and risks of all-cause mortality. This simple prognostic score system (0-3 points) was an independent predictor of long-term survival outcomes in patients with GC after radical gastrectomy based on multivariate analyses. Prognostic 1-point score, 2-point score, and 3-point score significantly increased 50% (95% CI, 14%-98%; P = 0.004), 75% (95% CI, 22%-151%; P = 0.003), and 116% (95% CI, 26%-271%; P = 0.005) hazards of 5-year all-cause mortality, respectively, compared to prognostic 0-point score. Five-year overall survival rates were significantly decreased as prognostic scores increased, (0 point, 57.3%; 1-point, 41.3%; 2-ponint, 36.6%; 3-point, 25.9%; P < 0.01; area under the curve [AUC] = 0.62). A prognostic scoring method based on combination of age, ASA-PS, and PNI may serve as an independent risk stratification metric for long-term survival in patients with GC.
Collapse
Affiliation(s)
- Xianfu Lu
- Department of Anesthesiology (High-Tech Branch), The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Man Zhang
- Department of Anesthesiology (High-Tech Branch), The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cuina Wei
- Department of Anesthesiology (High-Tech Branch), The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zan Wang
- Department of Anesthesiology (High-Tech Branch), The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiang Zheng
- Department of Anesthesiology (High-Tech Branch), The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Changjun Yu
- Department of Gastrointestinal Surgery (High-Tech Branch), The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
15
|
Wang Y, Chen X, Li J, Xia C. Quercetin Antagonizes Esophagus Cancer by Modulating miR-1-3p/TAGLN2 Pathway-Dependent Growth and Metastasis. Nutr Cancer 2021; 74:1872-1881. [PMID: 34498538 DOI: 10.1080/01635581.2021.1972125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The progression of esophagus cancer (EC) is associated with the alterative expressions of multiple microRNAs (miRs). MiR-1-3p is reported to inhibit the development of EC by targeting TAGLN2. Quercetin (Que) is a natural compound capable of antagonizing esophagus carcinoma (EC). In the current study, the role of miR-1-3p/TAGLN2 axis in the anti-EC function of Que was explored. Human EC cell lines KYSE-510 and TE-7 were treated with Que. Then the effects of Que on the growth and metastasis of EC cells, and on the activity of miR-1-3p/TAGLN2 axis were detected. The interaction between Que and miR-1-3p axis was further assessed by inhibiting miR-1-3p level in EC cells. The results showed that the treatment of Que impaired the growth and induced cell apoptosis in EC cells. The invasive ability of EC cells was also suppressed by Que. At molecular level, the expression of miR-1-3p was induced, while the expression of TAGLN2 was suppressed by Que. Moreover, the anti-EC effects of Que were blocked by miR-1-3p inhibition, which was represented by the restored growth and invasion of EC cells. Collectively, the current study demonstrated that Que exerted inhibitory effects on EC cells by inducing miR-1-3p.Supplemental data for this article is available online at https://doi.org/10.1080/01635581.2021.1972125.
Collapse
Affiliation(s)
- Yuyin Wang
- Endoscopy Center, The First People's Hospital of Wenling, Zhejiang, China
| | - Xia Chen
- Department of Gastroenterology, The First People's Hospital of Wenling, Zhejiang, China
| | - Jun Li
- Department of Joint Surgery, The First People's Hospital of Wenling, Zhejiang, China
| | - Chenmei Xia
- Department of Gastroenterology, The First People's Hospital of Wenling, Zhejiang, China
| |
Collapse
|
16
|
Dos Santos MP, Pereira JN, De Labio RW, Carneiro LC, Pontes JC, Barbosa MS, Smith MDAC, Payão SLM, Rasmussen LT. Decrease of miR-125a-5p in Gastritis and Gastric Cancer and Its Possible Association with H. pylori. J Gastrointest Cancer 2021; 52:569-574. [PMID: 32504357 DOI: 10.1007/s12029-020-00432-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE The aim of this study was to evaluate the expression of miR-125a-5p in patients with dyspeptic symptoms and gastric cancer, correlating them with the development of this cancer and H. pylori. METHODS Patients were divided in groups according to histopathological analysis (control, gastritis, and cancer groups). Polymerase chain reaction was performed to detect H. pylori and real-time quantitative PCR to determine miR-125a-5p expression. RESULTS H. pylori was detected in 44% of the patients, with prevalence in the gastritis and cancer groups. A statistically significant decrease of miR-125a-5p expression was found in the control positive (p = 0.0183*), gastritis positive (p = 0.0380*), and cancer positive (p = 0.0288*) groups when compared with the control negative group. CONCLUSION We suggest that decreased expression of the miRNA-125a-5p associated with the presence of the H. pylori is an important mechanism in gastric diseases and could be a possible marker for early diagnosis of gastric cancer.
Collapse
Affiliation(s)
- Mônica Pezenatto Dos Santos
- Genetics Laboratory, Marília Medical School (FAMEMA), Lourival Freire, 240, Bairro Fragata, Marília, São Paulo, CEP 17519-050, Brazil
| | - Jéssica Nunes Pereira
- Genetics Laboratory, Marília Medical School (FAMEMA), Lourival Freire, 240, Bairro Fragata, Marília, São Paulo, CEP 17519-050, Brazil
| | - Roger Willian De Labio
- Genetics Laboratory, Marília Medical School (FAMEMA), Lourival Freire, 240, Bairro Fragata, Marília, São Paulo, CEP 17519-050, Brazil
| | - Lilian Carla Carneiro
- Institute of Tropical Pathology and Public Health, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| | - Jaqueline Correia Pontes
- Institute of Tropical Pathology and Public Health, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| | - Mônica Santiago Barbosa
- Institute of Tropical Pathology and Public Health, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| | | | - Spencer Luíz Marques Payão
- Genetics Laboratory, Marília Medical School (FAMEMA), Lourival Freire, 240, Bairro Fragata, Marília, São Paulo, CEP 17519-050, Brazil
| | - Lucas Trevizani Rasmussen
- Biochemistry Department, Marília Medical School (FAMEMA), Lourival Freire, 240, Bairro Fragata, Marília, São Paulo, CEP 17519-050, Brazil.
| |
Collapse
|
17
|
Stoen MJ, Andersen S, Rakaee M, Pedersen MI, Ingebriktsen LM, Donnem T, Lombardi APG, Kilvaer TK, Busund LTR, Richardsen E. Overexpression of miR-20a-5p in Tumor Epithelium Is an Independent Negative Prognostic Indicator in Prostate Cancer-A Multi-Institutional Study. Cancers (Basel) 2021; 13:cancers13164096. [PMID: 34439249 PMCID: PMC8394585 DOI: 10.3390/cancers13164096] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary MicroRNAs (miRs) have critical regulatory roles in cell functions, and are involved in prostate cancer tumorigenesis. miR-20a-5p is a member of the oncogenic miR-17-92 cluster. Overexpressed miR-20a-5p has been shown to increase both cell proliferation and cell migration in cancers. The aim of our cohort study was to evaluate the prognostic role of miR-20a-5p in prostate cancer. We found miR-20a-5p associated with biochemical failure in tumor epithelium and tumor stroma. In the multivariable analysis miR-20a-5p in tumor epithelium was found to be an independent prognostic predictor for biochemical failure. In the functional studies, migration and invasion were significantly increased in miR-20a-5p transfected prostate cancer cell lines. In conclusion, high miR-20a-5p expression in tumor epithelium is a negative independent prognostic factor for biochemical failure in prostate cancer. Abstract Objective: assessing the prognostic role of miR-20a-5p, in terms of clinical outcome, in a large multi-institutional cohort study. Methods: Tissue microarrays from 535 patients’ prostatectomy specimens were constructed. In situ hybridization was performed to assess the expression level of miR-20a-5p in different tissue subregions: tumor stroma (TS) and tumor epithelium (TE). In vitro analysis was performed on prostate cancer cell lines. Results: A high miR-20a-5p expression was found negatively in association with biochemical failure in TE, TS and TE + TS (p = 0.001, p = 0.003 and p = 0.001, respectively). Multivariable analysis confirmed that high miR-20a-5p expression in TE independently predicts dismal prognosis for biochemical failure (HR = 1.56, 95% CI: 1.10–2.21, p = 0.014). Both DU145 and PC3 cells exhibited increased migration ability after transient overexpression of miR-20a-5p, as well as significant elevation of invasion in DU145 cells. Conclusion: A high miR-20a-5p expression in tumor epithelium is an independent negative predictor for biochemical prostate cancer recurrence.
Collapse
Affiliation(s)
- Maria J. Stoen
- Translational Cancer Research Group, Institute of Medical Biology, UiT The Arctic University of Norway, N-9037 Tromso, Norway; (L.M.I.); (A.P.G.L.); (T.K.K.); (L.-T.R.B.); (E.R.)
- Correspondence: ; Tel.: +47-97419736
| | - Sigve Andersen
- Translational Cancer Research Group, Institute of Clinical Medicine, UiT The Arctic University of Norway, N-9037 Tromso, Norway; (S.A.); (M.R.); (M.I.P.); (T.D.)
- Department of Oncology, University Hospital of North Norway, N-9038 Tromso, Norway
| | - Mehrdad Rakaee
- Translational Cancer Research Group, Institute of Clinical Medicine, UiT The Arctic University of Norway, N-9037 Tromso, Norway; (S.A.); (M.R.); (M.I.P.); (T.D.)
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mona I. Pedersen
- Translational Cancer Research Group, Institute of Clinical Medicine, UiT The Arctic University of Norway, N-9037 Tromso, Norway; (S.A.); (M.R.); (M.I.P.); (T.D.)
| | - Lise M. Ingebriktsen
- Translational Cancer Research Group, Institute of Medical Biology, UiT The Arctic University of Norway, N-9037 Tromso, Norway; (L.M.I.); (A.P.G.L.); (T.K.K.); (L.-T.R.B.); (E.R.)
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, N-5021 Bergen, Norway
| | - Tom Donnem
- Translational Cancer Research Group, Institute of Clinical Medicine, UiT The Arctic University of Norway, N-9037 Tromso, Norway; (S.A.); (M.R.); (M.I.P.); (T.D.)
- Department of Oncology, University Hospital of North Norway, N-9038 Tromso, Norway
| | - Ana P. G. Lombardi
- Translational Cancer Research Group, Institute of Medical Biology, UiT The Arctic University of Norway, N-9037 Tromso, Norway; (L.M.I.); (A.P.G.L.); (T.K.K.); (L.-T.R.B.); (E.R.)
| | - Thomas K. Kilvaer
- Translational Cancer Research Group, Institute of Medical Biology, UiT The Arctic University of Norway, N-9037 Tromso, Norway; (L.M.I.); (A.P.G.L.); (T.K.K.); (L.-T.R.B.); (E.R.)
- Department of Oncology, University Hospital of North Norway, N-9038 Tromso, Norway
| | - Lill-Tove R. Busund
- Translational Cancer Research Group, Institute of Medical Biology, UiT The Arctic University of Norway, N-9037 Tromso, Norway; (L.M.I.); (A.P.G.L.); (T.K.K.); (L.-T.R.B.); (E.R.)
- Department of Clinical Pathology, University Hospital of North Norway, N-9038 Tromso, Norway
| | - Elin Richardsen
- Translational Cancer Research Group, Institute of Medical Biology, UiT The Arctic University of Norway, N-9037 Tromso, Norway; (L.M.I.); (A.P.G.L.); (T.K.K.); (L.-T.R.B.); (E.R.)
- Department of Clinical Pathology, University Hospital of North Norway, N-9038 Tromso, Norway
| |
Collapse
|
18
|
Stoen MJ, Andersen S, Rakaee M, Pedersen MI, Ingebriktsen LM, Bremnes RM, Donnem T, Lombardi APG, Kilvaer TK, Busund LT, Richardsen E. High expression of miR-17-5p in tumor epithelium is a predictor for poor prognosis for prostate cancer patients. Sci Rep 2021; 11:13864. [PMID: 34226620 PMCID: PMC8257715 DOI: 10.1038/s41598-021-93208-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 06/15/2021] [Indexed: 02/04/2023] Open
Abstract
MicroRNAs (miRs) are small non-coding RNA molecules, which are involved in the development of various malignancies, including prostate cancer (PCa). miR-17-5p is considered the most prominent member of the miR-17-92 cluster, with an essential regulatory function of fundamental cellular processes. In many malignancies, up-regulation of miR-17-5p is associated with worse outcome. In PCa, miR-17-5p has been reported to increase cell proliferation and the risk of metastasis. In this study, prostatectomy specimens from 535 patients were collected. Tissue microarrays were constructed and in situ hybridization was performed, followed by scoring of miR-17-5p expression on different tumor compartments. High expression of miR-17-5p in tumor epithelium was associated with biochemical failure (BF, p < 0.001) and clinical failure (CF, p = 0.019). In multivariate analyses, high miR-17-5p expression in tumor epithelial cells was an independent negative prognostic factor for BF (HR 1.87, 95% CI 1.32-2.67, p < 0.001). In vitro analyses confirmed association between overexpression of miR-17-5p and proliferation, migration and invasion in prostate cancer cell lines (PC3 and DU145). In conclusion, our study suggests that a high cancer cell expression of miR-17-5p was an independent negative prognostic factor in PCa.
Collapse
Affiliation(s)
- Maria Jenvin Stoen
- Translational Cancer Research Group, Institute of Medical Biology, UiT the Arctic University of Norway, 9037, Tromso, Norway.
| | - S Andersen
- Translational Cancer Research Group, Institute of Clinical Medicine, UiT the Arctic University of Norway, Tromso, Norway.,Department of Oncology, University Hospital of North Norway, Tromso, Norway
| | - M Rakaee
- Translational Cancer Research Group, Institute of Medical Biology, UiT the Arctic University of Norway, 9037, Tromso, Norway.,Translational Cancer Research Group, Institute of Clinical Medicine, UiT the Arctic University of Norway, Tromso, Norway
| | - M I Pedersen
- Translational Cancer Research Group, Institute of Clinical Medicine, UiT the Arctic University of Norway, Tromso, Norway
| | - L M Ingebriktsen
- Translational Cancer Research Group, Institute of Medical Biology, UiT the Arctic University of Norway, 9037, Tromso, Norway.,Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, 5021, Bergen, Norway
| | - R M Bremnes
- Translational Cancer Research Group, Institute of Clinical Medicine, UiT the Arctic University of Norway, Tromso, Norway.,Department of Oncology, University Hospital of North Norway, Tromso, Norway
| | - T Donnem
- Translational Cancer Research Group, Institute of Clinical Medicine, UiT the Arctic University of Norway, Tromso, Norway.,Department of Oncology, University Hospital of North Norway, Tromso, Norway
| | - A P G Lombardi
- Translational Cancer Research Group, Institute of Medical Biology, UiT the Arctic University of Norway, 9037, Tromso, Norway
| | - T K Kilvaer
- Translational Cancer Research Group, Institute of Medical Biology, UiT the Arctic University of Norway, 9037, Tromso, Norway.,Department of Oncology, University Hospital of North Norway, Tromso, Norway
| | - L T Busund
- Translational Cancer Research Group, Institute of Medical Biology, UiT the Arctic University of Norway, 9037, Tromso, Norway.,Department of Clinical Pathology, University Hospital of North Norway, Tromso, Norway
| | - E Richardsen
- Translational Cancer Research Group, Institute of Medical Biology, UiT the Arctic University of Norway, 9037, Tromso, Norway.,Department of Clinical Pathology, University Hospital of North Norway, Tromso, Norway
| |
Collapse
|
19
|
Shatnawi A, Abu Rabe DI, Frigo DE. Roles of the tumor suppressor inhibitor of growth family member 4 (ING4) in cancer. Adv Cancer Res 2021; 152:225-262. [PMID: 34353439 DOI: 10.1016/bs.acr.2021.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Inhibitor of growth family member 4 (ING4) is best known as a tumor suppressor that is frequently downregulated, deleted, or mutated in many cancers. ING4 regulates a broad array of tumor-related processes including proliferation, apoptosis, migration, autophagy, invasion, angiogenesis, DNA repair and chromatin remodeling. ING4 alters local chromatin structure by functioning as an epigenetic reader of H3K4 trimethylation histone marks (H3K4Me3) and regulating gene transcription through directing histone acetyltransferase (HAT) and histone deacetylase (HDAC) protein complexes. ING4 may serve as a useful prognostic biomarker for many cancer types and help guide treatment decisions. This review provides an overview of ING4's central functions in gene expression and summarizes current literature on the role of ING4 in cancer and its possible use in therapy.
Collapse
Affiliation(s)
- Aymen Shatnawi
- Department of Pharmaceutical and Administrative Sciences, University of Charleston School of Pharmacy, Charleston, WV, United States.
| | - Dina I Abu Rabe
- Integrated Bioscience Program, North Carolina Central University, Durham, NC, United States
| | - Daniel E Frigo
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States; Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
20
|
Pourmohammad P, Maroufi NF, Rashidi M, Vahedian V, Pouremamali F, Faridvand Y, Ghaffari-Novin M, Isazadeh A, Hajazimian S, Nejabati HR, Nouri M. Potential Therapeutic Effects of Melatonin Mediate via miRNAs in Cancer. Biochem Genet 2021; 60:1-23. [PMID: 34181134 DOI: 10.1007/s10528-021-10104-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
miRNAs are evolutionarily conserved non-coding ribonucleic acids with a length of between 19 and 25 nucleotides. Because of their ability to regulate gene expression, miRNAs have an important function in the controlling of various biological processes, such as cell cycle, differentiation, proliferation, and apoptosis. Owing to the long-standing regulative potential of miRNAs in tumor-suppressive pathways, scholars have recently paid closer attention to the expression profile of miRNAs in various types of cancer. Melatonin, an indolic compound secreted from pineal gland and some peripheral tissues, has been considered as an effective anti-tumor hormone in a wide spectrum of cancers. Furthermore, it induces apoptosis, inhibits tumor metastasis and invasion, and also angiogenesis. A growing body of evidence indicates the effects of melatonin on miRNAs expression in broad spectrum of diseases, including cancer. Due to the long-term effects of the regulation of miRNAs expression, melatonin could be a promising therapeutic factor in the treatment of cancers via the regulation of miRNAs. Therefore, in this review, we will discuss the effects of melatonin on miRNAs expression in various types of cancers.
Collapse
Affiliation(s)
- Pirouz Pourmohammad
- Department of Clinical Biochemistry, School of Medicine, Ardabil University of Medical Science, Ardabil, Islamic Republic of Iran
| | - Nazila Fathi Maroufi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Rashidi
- Department of Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Vahid Vahedian
- Researchers Club of Tums Preclinical Core Facility (TPCF), Tehran University of Medical Science (TUMS), Tehran, Iran.,Department of Medical Laboratory Sciences, Faculty of Medicine, Islamic Azad University (IAU), Sari, Iran
| | - Farhad Pouremamali
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Faridvand
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Ghaffari-Novin
- Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Alireza Isazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Hajazimian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Nejabati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Nouri
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
21
|
Karkhane M, Lashgarian HE, Hormozi M, Fallahi S, Cheraghipour K, Marzban A. Oncogenesis and Tumor Inhibition by MicroRNAs and its Potential Therapeutic Applications: A Systematic Review. Microrna 2021; 9:198-215. [PMID: 31686643 DOI: 10.2174/2211536608666191104103834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/01/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022]
Abstract
MicroRNAs appear as small molecule modifiers, which improve many new findings and mechanical illustrations for critically important biological phenomena and pathologic events. The best-characterized non-coding RNA family consists of about 2600 human microRNAs. Rich evidence has revealed their crucial importance in maintaining normal development, differentiation, growth control, aging, modulation of cell survival or apoptosis, as well as migration and metastasis as microRNAs dysregulation leads to cancer incidence and progression. By far, microRNAs have recently emerged as attractive targets for therapeutic intervention. The rationale for developing microRNA therapeutics is based on the premise that aberrantly expressed microRNAs play a significant role in the emergence of a variety of human diseases ranging from cardiovascular defects to cancer, and that repairing these microRNA deficiencies by either antagonizing or restoring microRNA function may yield a therapeutic benefit. Although microRNA antagonists are conceptually similar to other inhibitory therapies, improving the performance of microRNAs by microRNA replacement or inhibition that is a less well- described attitude. In this assay, we have condensed the last global knowledge and concepts regarding the involvement of microRNAs in cancer emergence, which has been achieved from the previous studies, consisting of the regulation of key cancer-related pathways, such as cell cycle control and the DNA damage response and the disruption of profile expression in human cancer. Here, we have reviewed the special characteristics of microRNA replacement and inhibition therapies and discussed explorations linked with the delivery of microRNA mimics in turmeric cells. Besides, the achievement of biomarkers based on microRNAs in clinics is considered as novel non-invasive biomarkers in diagnostic and prognostic assessments.
Collapse
Affiliation(s)
- Maryam Karkhane
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hamed Esmaeil Lashgarian
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Maryam Hormozi
- Department of Biochemistry, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Shirzad Fallahi
- Department of Medical Parasitology and Mycology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Kourosh Cheraghipour
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Abdolrazagh Marzban
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
22
|
Chen R, Yang M, Huang W, Wang B. Cascades between miRNAs, lncRNAs and the NF-κB signaling pathway in gastric cancer (Review). Exp Ther Med 2021; 22:769. [PMID: 34055068 PMCID: PMC8145527 DOI: 10.3892/etm.2021.10201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/28/2021] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is a common digestive tract malignancy that is mainly treated with surgery combined with perioperative adjuvant chemoradiotherapy and biological targeted therapy. However, the diagnosis rate of early gastric cancer is low and both postoperative recurrence and distant metastasis are thorny problems. Therefore, it is essential to study the pathogenesis of gastric cancer and search for more effective means of treatment. The nuclear factor-κB (NF-κB) signaling pathway has an important role in the occurrence and development of gastric cancer and recent studies have revealed that microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are able to regulate this pathway through a variety of mechanisms. Understanding these interrelated molecular mechanisms is helpful in guiding improvements in gastric cancer treatment. In the present review, the functional associations between miRNAs, lncRNAs and the NF-κB signaling pathway in the occurrence, development and prognosis of gastric cancer were discussed. It was concluded that miRNAs and lncRNAs have complex relations with the NF-κB signaling pathway in gastric cancer. miRNAs/target genes/NF-κB/target proteins, signaling molecules/NF-κB/miRNAs/target genes, lncRNAs/miRNAs/NF-κB/genes or mRNAs, lncRNAs/target genes/NF-Κb/target proteins, and lncRNAs/NF-κB/target proteins cascades are all important factors in the occurrence and development of gastric cancer.
Collapse
Affiliation(s)
- Risheng Chen
- Department of Anesthesiology, Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Mingxiu Yang
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology (2016TP1015), Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Weiguo Huang
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology (2016TP1015), Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Baiyun Wang
- Department of Anesthesiology, Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
23
|
Xie Z, Rahman I, Goniewicz ML, Li D. Perspectives on Epigenetics Alterations Associated with Smoking and Vaping. FUNCTION (OXFORD, ENGLAND) 2021; 2:zqab022. [PMID: 35330676 PMCID: PMC8788872 DOI: 10.1093/function/zqab022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/03/2021] [Accepted: 04/21/2021] [Indexed: 01/11/2023]
Abstract
Epigenetic alterations, including DNA methylation, microRNA, and long noncoding RNA, play important roles in the pathogenesis of numerous respiratory health conditions and diseases. Exposure to tobacco smoking has been found to be associated with epigenetic changes in the respiratory tract. Marketed as a less harmful alternative to combustible cigarettes, electronic cigarette (e-cigarette) has rapidly gained popularity in recent years, especially among youth and young adults. Accumulative evidence from both animal and human studies has shown that e-cigarette use (vaping) is also linked to similar respiratory health conditions as observed with cigarette smoking, including wheezing, asthma, and COPD. This review aims to provide an overview of current studies on associations of smoking and vaping with epigenetic alterations in respiratory cells and provide future research directions in epigenetic studies related to vaping.
Collapse
Affiliation(s)
- Zidian Xie
- Department of Clinical & Translational Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Maciej L Goniewicz
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, USA
| | - Dongmei Li
- Department of Clinical & Translational Research, University of Rochester Medical Center, Rochester, NY, USA,Address correspondence to D.L. (e-mail: )
| |
Collapse
|
24
|
microRNA-184 enhances the sensitivity of pheochromocytoma-12 cells to doxorubicin by targeting ADAM22. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-021-00116-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Stevens MT, Saunders BM. Targets and regulation of microRNA-652-3p in homoeostasis and disease. J Mol Med (Berl) 2021; 99:755-769. [PMID: 33712860 DOI: 10.1007/s00109-021-02060-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 12/14/2022]
Abstract
microRNA are small non-coding RNA molecules which inhibit gene expression by binding mRNA, preventing its translation. As important regulators of gene expression, there is increasing interest in microRNAs as potential diagnostic biomarkers and therapeutic targets. Studies investigating the role of one of the miRNA-miR-652-3p-detail diverse roles for this miRNA in normal cell homoeostasis and disease states, including cancers, cardiovascular disease, mental health, and central nervous system diseases. Here, we review recent literature surrounding miR-652-3p, discussing its known target genes and their relevance to disease progression. These studies demonstrate that miR-652-3p targets LLGL1 and ZEB1 to modulate cell polarity mechanisms, with impacts on cancer metastasis and asymmetric cell division. Inhibition of the NOTCH ligand JAG1 by miR-652-3p can have diverse effects on angiogenesis and immune cell regulation. Investigation of miR-652-3p and other dysregulated miRNAs identified a number of pathways potentially regulated by miR-652-3p. This review demonstrates that miR-652-3p has great promise as a diagnostic or therapeutic target due to its activity across multiple cellular systems.
Collapse
Affiliation(s)
- Maxwell T Stevens
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Bernadette M Saunders
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.
- Centenary Institute, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
26
|
Lu YC, Shi JQ, Zhang ZX, Zhou JY, Zhou HK, Feng YC, Lu ZH, Yang SY, Zhang XY, Liu Y, Li ZC, Sun YJ, Zheng LH, Jiang DB, Yang K. Transcriptome Based System Biology Exploration Reveals Homogeneous Tumorigenicity of Alimentary Tract Malignancy. Front Oncol 2021; 10:580276. [PMID: 33552958 PMCID: PMC7862768 DOI: 10.3389/fonc.2020.580276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/30/2020] [Indexed: 12/24/2022] Open
Abstract
Malignancies of alimentary tract include esophageal carcinoma (ESCA), stomach adenocarcinoma (STAD), colon adenocarcinoma (COAD), and rectum adenocarcinoma (READ). Despite of their similarities in cancer development and progression, there are numerous researches concentrating on single tumor but relatively little on their common mechanisms. Our study explored the transcriptomic data of digestive tract cancers from The Cancer Genome Atlas database, yielding their common differentially expressed genes including 1,700 mRNAs, 29 miRNAs, and 362 long non-coding RNAs (lncRNAs). There were 12 mRNAs, 5 miRNAs, and 16 lncRNAs in the core competitive endogenous RNAs network by RNA-RNA interactions, highlighting the prognostic nodes of SERPINE1, hsa-mir-145, and SNHG1. In addition, the weighted gene co-expression network analysis (WGCNA) illustrated 20 gene modules associated with clinical traits. By taking intersections of modules related to the same trait, we got 67 common genes shared by ESCA and READ and screened 5 hub genes, including ADCY6, CXCL3, NPBWR1, TAS2R38, and PTGDR2. In conclusion, the present study found that SERPINE1/has-mir-145/SNHG1 axis acted as promising targets and the hub genes reasoned the similarity between ESCA and READ, which revealed the homogeneous tumorigenicity of digestive tract cancers at the transcriptome level and led to further comprehension and therapeutics for digestive tract cancers.
Collapse
Affiliation(s)
- Yu-Chen Lu
- Department of Immunology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Jing-Qi Shi
- Department of Immunology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Zi-Xin Zhang
- Department of Immunology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Jia-Yi Zhou
- Department of Immunology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China.,Aviation Psychology Research Office, Air Force Medical Center, Beijing, China
| | - Hai-Kun Zhou
- Department of Immunology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Yuan-Cai Feng
- Department of Immunology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Zhen-Hua Lu
- Department of Immunology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Shu-Ya Yang
- Department of Immunology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Xi-Yang Zhang
- Department of Immunology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Yang Liu
- Department of Immunology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Zi-Chao Li
- Department of Immunology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Yuan-Jie Sun
- Department of Immunology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Lian-He Zheng
- Department of Orthopedics, The Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Dong-Bo Jiang
- Department of Immunology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Kun Yang
- Department of Immunology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
27
|
Siasi E, Moniri E. The effect of extremely low frequency electromagnetic fields following on upregulation of miR-21 and miR-29 in gastric cancer cell line. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2021; 14:67-76. [PMID: 33868612 PMCID: PMC8035540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 12/22/2020] [Indexed: 11/03/2022]
Abstract
AIM Extremely low frequency electromagnetic fields affect miRNAs expression in cancer cell. In this study, electromagnetic fields exposed to low frequency were used to compare miR-21 and miR-29 expressions in a gastric cancer cell line. BACKGROUND It has been recently suggested that the low frequency electromagnetic fields probably function as a treatment for cancers. METHODS A cultured cell line of gastric cancer was exposed to an electromagnetic radiation system. The cell line was assigned to 4 groups under continuous and discontinuous radiations of 0.25 and 2.5 ml Tesla field strength. Then, the groups were compared with a non-radiation control group. Later, RNA extraction and cDNA synthesis were prepared for miR-21 and miR-29. Real Time PCR method was used to determine how expressions of these two microRNAs differ. Finally, the results were statistically analyzed. RESULTS The percentage of cell viability in the electromagnetic field radiation experienced a significant decrease compared to that of the control group. In addition, expression of miRNA-21 and miRNA-29 had a significant increase as the strength of the electromagnetic field radiations was on an upward trend. Similarly, the percentage of cell viability saw a significant decline in the upregulation of miRNA-21 and miRNA-29 regardless of radiation types. CONCLUSION Findings of this study showed the therapeutic effect of low frequency electromagnetic fields on the gastric cancer cell line. They also indicated that novel biomarkers (miRNA-21 and miRNA-29) could be proposed as potential treatments of gastric cancer, but the results are required to be well established by future studies.
Collapse
Affiliation(s)
- Elham Siasi
- Department of Genetic, Collage of Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Elaheh Moniri
- Department of Genetic, Collage of Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
28
|
Integrative p53, micro-RNA and Cathepsin Protease Co-Regulatory Expression Networks in Cancer. Cancers (Basel) 2020; 12:cancers12113454. [PMID: 33233599 PMCID: PMC7699684 DOI: 10.3390/cancers12113454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/05/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary This article describes an emerging area of significant interest in cancer and cell death and the relationships shared by these through the transcriptional regulation of cathepsin protease genes by micro-RNAs that are connected to p53 activation. While it has been demonstrated that the p53 protein can directly regulate some cathepsin genes and the expression of their upstream regulatory micro-RNAs, very little is known about what input the p53 isoform proteins may have in regulating this relationship. Herein, we draw attention to this important regulatory aspect in the context of describing mechanisms that are being established for the micro-RNA regulation of cathepsin protease genes and their collective use in diagnostic or prognostic assays. Abstract As the direct regulatory role of p53 and some of its isoform proteins are becoming established in modulating gene expression in cancer research, another aspect of this mode of gene regulation that has captured significant interest over the years is the mechanistic interplay between p53 and micro-RNA transcriptional regulation. The input of this into modulating gene expression for some of the cathepsin family members has been viewed as carrying noticeable importance based on their biological effects during normal cellular homeostasis and cancer progression. While this area is still in its infancy in relation to general cathepsin gene regulation, we review the current p53-regulated micro-RNAs that are generating significant interest through their regulation of cathepsin proteases, thereby strengthening the link between activated p53 forms and cathepsin gene regulation. Additionally, we extend our understanding of this developing relationship to how such micro-RNAs are being utilized as diagnostic or prognostic tools and highlight their future uses in conjunction with cathepsin gene expression as potential biomarkers within a clinical setting.
Collapse
|
29
|
Molecular and Functional Roles of MicroRNAs in the Progression of Hepatocellular Carcinoma-A Review. Int J Mol Sci 2020; 21:ijms21218362. [PMID: 33171811 PMCID: PMC7664704 DOI: 10.3390/ijms21218362] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
Liver cancer is the fourth leading cause of cancer deaths globally, of which hepatocellular carcinoma (HCC) is the major subtype. Viral hepatitis B and C infections, alcohol abuse, and metabolic disorders are multiple risk factors for liver cirrhosis and HCC development. Although great therapeutic advances have been made in recent decades, the prognosis for HCC patients remains poor due to late diagnosis, chemotherapy failure, and frequent recurrence. MicroRNAs (miRNAs) are endogenous, non-coding RNAs that regulate various molecular biological phenomena by suppressing the translation of target messenger RNAs (mRNAs). miRNAs, which often become dysregulated in malignancy, control cell proliferation, migration, invasion, and development in HCC by promoting or suppressing tumors. Exploring the detailed mechanisms underlying miRNA-mediated HCC development and progression can likely improve the outcomes of patients with HCC. This review summarizes the molecular and functional roles of miRNAs in the pathogenesis of HCC. Further, it elucidates the utility of miRNAs as novel biomarkers and therapeutic targets.
Collapse
|
30
|
Xue J, Zhu X, Huang P, He Y, Xiao Y, Liu R, Zhao M. Expression of miR-129-5p and miR-433 in the serum of breast cancer patients and their relationship with clinicopathological features. Oncol Lett 2020; 20:2771-2778. [PMID: 32782594 PMCID: PMC7400603 DOI: 10.3892/ol.2020.11827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/06/2020] [Indexed: 12/29/2022] Open
Abstract
Expression of miR-129-5p and miR-433 was detected in breast cancer to explore the relationship with clinicopathological features of breast cancer. Seventy-eight patients with breast cancer diagnosed in Zhengzhou Central Hospital Affiliated to Zhengzhou University (Zhengzhou, China) from February 2016 to September 2017 were collected and enrolled into the research group. Additionally, 72 healthy people who underwent physical examination during the same period were selected as the control group. The expression levels of miR-129-5p and miR-433 in peripheral blood of the two groups were detected by fluorescence quantitative PCR (RT-PCR). The relationship between the expression of miR-129-5p, miR-433 and clinicopathological features, clinical stages of breast cancer, and the degree of differentiation were analyzed. Expression of miR-129-5p and miR-433 in the research group was significantly lower than that in the control group (P<0.05). Expression of miR-129-5p in the blood of breast cancer patients was correlated with tumor size, differentiation degree, lymph node metastasis, depth of invasion and clinical stages (P<0.05). Expression level of miR-433 was correlated with the degree of differentiation, lymph node metastasis, depth of invasion and clinical stages (P<0.05). miR-129-5p and miR-433 were positively correlated with differentiation degree (r=0.8507, r=0.7522; P<0.05), and negatively correlated with clinical stages (r=−0.6595, −0.8947; P<0.05). The sensitivity and area under curve (AUC) were higher in joint detection (87.5 and 0.95% respectively), compared with those in single detection. Patients were separated into high and low expression groups according to the median values of miR-129-5p and miR-433. The one-year survival rate of breast cancer patients was analyzed. Patients in the low expression groups had lower survival rates than patients in the high expression groups (P<0.05). In conclusion, the expression of miR-129-5p and miR-433 in peripheral blood of breast cancer patients is lower than that of healthy people, and the expression level is closely related to clinical stages and differentiation degree, which is expected to provide reference value for judging the state of breast cancer patients. The combined detection of miR-129-5p and miR-433 is of great significance in the diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Jinhui Xue
- Department of Pathology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Xiaohan Zhu
- College of Nursing, Zheng Zhou Railway Vocational and Technical College, Zhengzhou, Henan 451460, P.R. China
| | - Pei Huang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yingying He
- Department of Pathology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Yanjing Xiao
- Department of Pathology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Ruihan Liu
- Department of Pathology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Min Zhao
- Department of Neurology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| |
Collapse
|
31
|
Da CM, Gong CY, Nan W, Zhou KS, Wu ZL, Zhang HH. The role of long non-coding RNA MIAT in cancers. Biomed Pharmacother 2020; 129:110359. [PMID: 32535389 DOI: 10.1016/j.biopha.2020.110359] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs), a kind of non-coding single-strand RNAs, play an important role as carcinogenic genes or tumor suppressors in the development of human cancer. Myocardial infarction-associated transcript (MIAT) was first identified as a lncRNA in 2006 and originally isolated as a candidate gene for myocardial infarction. Later, it was reported that MIAT exhibits regulatory effects on the human cell cycle. Since its discovery, MIAT has also been identified as a carcinogenic regulator in many malignant tumors. High expression of MIAT is related to the clinicopathological characteristics of cancer patients. It can also regulate cell proliferation, invasion, metastasis, and anti-apoptosis through a variety of mechanisms. Therefore, MIAT is considered a potential biomarker and therapeutic target in cancer. In this review, we summarize the biological function, mechanism, and potential clinical significance of MIAT during tumorigenesis.
Collapse
Affiliation(s)
- Chao-Ming Da
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Chao-Yang Gong
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Wei Nan
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China
| | - Kai-Sheng Zhou
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China
| | - Zuo-Long Wu
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Hai-Hong Zhang
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China.
| |
Collapse
|
32
|
Immunotherapy in gastrointestinal cancer: The current scenario and future perspectives. Cancer Treat Rev 2020; 88:102030. [PMID: 32505807 DOI: 10.1016/j.ctrv.2020.102030] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 02/06/2023]
Abstract
Gastrointestinal cancers include colorectal, gastric, oesophageal, pancreatic and liver cancers. They continue to be a significant cause of mortality and morbidity worldwide. Current treatment strategies include chemotherapy, surgery, radiotherapy and targeted therapies. Immunotherapy has recently been incorporated in treatment regimens for some gastrointestinal malignancies and research into different immune modifying treatments is being carried out in this context. Approaches to immune modulation such as vaccination, adoptive cell therapy and checkpoint inhibition have shown varying clinical benefit, with most of the benefit seen in checkpoint inhibition. This review summarises recent advances and future direction of immunotherapy in patients with gastrointestinal malignancies.
Collapse
|
33
|
Zhang ZG, Xu L, Zhang PJ, Han L. Evaluation of the value of multiparameter combined analysis of serum markers in the early diagnosis of gastric cancer. World J Gastrointest Oncol 2020; 12:483-491. [PMID: 32368325 PMCID: PMC7191329 DOI: 10.4251/wjgo.v12.i4.483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/05/2020] [Accepted: 03/22/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND In early gastric cancer (GC), tumor markers are increased in the blood. The levels of these markers have been used as important indexes for GC screening, early diagnosis and prognostic evaluation. However, specific tumor markers have not yet been discovered. Diagnosis based on a single tumor marker has limited significance. The detection rate of GC is still very low.
AIM To improve the diagnostic value of blood markers for GC.
METHODS We used a multiparameter joint analysis of 77 indexes of malignant GC and gastric polyp (GP), 64 indexes of GC and healthy controls (Ctrls).
RESULTS By analyzing the data, there are 27 indexes in the final Ctrls vs GC with P values < 0.01, the area under the curve (AUC) of albumin is the largest in Ctrls vs GC, and the AUC was 0.907. 30 indexes in GP vs GC have P values < 0.01. Among them, the D-dimer showed an AUC of 0.729. The 27 indexes in Ctrls vs GC and 30 indexes in GP vs GC were used for binary logistic regression, discriminant analysis, classification tree analysis and artificial neural network analysis model. For the ability to distinguish between Ctrls vs GC, GP vs GC, artificial neural networks had better diagnostic value when compared with classification tree, binary logistic regression, and discriminant analysis. When compared Ctrl and GC, the overall prediction accuracy was 92.9%, and the AUC was 0.992 (0.980, 1.000). When compared GP and GC, the overall prediction accuracy was 77.9%, and the AUC was 0.969 (0.948, 0.990).
CONCLUSION The diagnostic effect of multi-parameter joint artificial neural networks analysis is significantly better than the single-index test diagnosis, and it may provide an assistant method for the detection of GC.
Collapse
Affiliation(s)
- Zhi-Guo Zhang
- Department of Oncology, Beijing Daxing District People’s Hospital, Beijing 102600, China
| | - Liang Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Interventional Therapy Department, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Peng-Jun Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Interventional Therapy Department, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Lei Han
- Department of Oncology, Beijing Daxing District People’s Hospital, Beijing 102600, China
| |
Collapse
|
34
|
Manvati MKS, Khan J, Verma N, Dhar PK. Association of miR-760 with cancer: An overview. Gene 2020; 747:144648. [PMID: 32251703 DOI: 10.1016/j.gene.2020.144648] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules of around 22 nucleotides in length. They are crucially involved in the post transcriptional regulation and thus play a significant role in the modulation of different diseases. Several studies have suggested that miRNA expression is dysregulated in various cancers through different mechanisms and the dysregulated miRNA in return affects different cancer hallmarks including cell proliferation, cell death suppression, metastasis and angiogenesis. Compilation of the available miRNA data can be a stimulator for proper understanding of the correlation between the miRNA expression and cancer progression. In this review, we have focussed on the role of miR-760 in the progression of different cancer. MicroRNA-760 (miR-760) has been found to be down regulated in various cancers, thus it can be utilized as a possible prognostic marker for cancer detection. Here, we have tried to fill a gap regarding the role of miR-760 in relation to cervical cancer also. Moreover, unravelling the role of miR-760 in different cancers will enlighten the researchers with proper understanding of biology of miR-760 in regulation of different cancers.
Collapse
Affiliation(s)
| | - Juveria Khan
- School of Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India
| | - Neeraj Verma
- School of Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India
| | - Pawan K Dhar
- School of Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India.
| |
Collapse
|
35
|
Lee MS, Liu DW, Hung SK, Yu CC, Chi CL, Chiou WY, Chen LC, Lin RI, Huang LW, Chew CH, Hsu FC, Chan MWY, Lin HY. Emerging Challenges of Radiation-Associated Cardiovascular Dysfunction (RACVD) in Modern Radiation Oncology: Clinical Practice, Bench Investigation, and Multidisciplinary Care. Front Cardiovasc Med 2020; 7:16. [PMID: 32154267 PMCID: PMC7047711 DOI: 10.3389/fcvm.2020.00016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 01/31/2020] [Indexed: 02/06/2023] Open
Abstract
Radiotherapy (RT) is a crucial treatment modality in managing cancer patients. However, irradiation dose sprinkling to tumor-adjacent normal tissues is unavoidable, generating treatment toxicities, such as radiation-associated cardiovascular dysfunction (RACVD), particularly for those patients with combined therapies or pre-existing adverse features/comorbidities. Radiation oncologists implement several efforts to decrease heart dose for reducing the risk of RACVD. Even applying the deep-inspiration breath-hold (DIBH) technique, the risk of RACVD is though reduced but still substantial. Besides, available clinical methods are limited for early detecting and managing RACVD. The present study reviewed emerging challenges of RACVD in modern radiation oncology, in terms of clinical practice, bench investigation, and multidisciplinary care. Several molecules are potential for serving as biomarkers and therapeutic targets. Of these, miRNAs, endogenous small non-coding RNAs that function in regulating gene expression, are of particular interest because low-dose irradiation, i.e., 200 mGy (one-tenth of conventional RT daily dose) induces early changes of pro-RACVD miRNA expression. Moreover, several miRNAs, e.g., miR-15b and miR21, involve in the development of RACVD, further demonstrating the potential bio-application in RACVD. Remarkably, many RACVDs are late RT sequelae, characterizing highly irreversible and progressively worse. Thus, multidisciplinary care from oncologists and cardiologists is crucial. Combined managements with commodities control (such as hypertension, hypercholesterolemia, and diabetes), smoking cessation, and close monitoring are recommended. Some agents show abilities for preventing and managing RACVD, such as statins and angiotensin-converting enzyme inhibitors (ACEIs); however, their real roles should be confirmed by further prospective trials.
Collapse
Affiliation(s)
- Moon-Sing Lee
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Dai-Wei Liu
- School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Radiation Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Shih-Kai Hung
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Chih-Chia Yu
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan
| | - Chen-Lin Chi
- School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Anatomic Pathology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Wen-Yen Chiou
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Liang-Cheng Chen
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Ru-Inn Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan
| | - Li-Wen Huang
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Chia-Hui Chew
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Feng-Chun Hsu
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan
| | - Michael W Y Chan
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan
| | - Hon-Yi Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Cancer Centre, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Taiwan.,Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan
| |
Collapse
|
36
|
Sastre D, Baiochi J, de Souza Lima IM, Canto de Souza F, Corveloni AC, Thomé CH, Faça VM, Schiavinato JLDS, Covas DT, Panepucci RA. Focused screening reveals functional effects of microRNAs differentially expressed in colorectal cancer. BMC Cancer 2019; 19:1239. [PMID: 31864341 PMCID: PMC6925883 DOI: 10.1186/s12885-019-6468-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is still a leading cause of death worldwide. Recent studies have pointed to an important role of microRNAs in carcinogenesis. Several microRNAs are described as aberrantly expressed in CRC tissues and in the serum of patients. However, functional outcomes of microRNA aberrant expression still need to be explored at the cellular level. Here, we aimed to investigate the effects of microRNAs aberrantly expressed in CRC samples in the proliferation and cell death of a CRC cell line. METHODS We transfected 31 microRNA mimics into HCT116 cells. Total number of live propidium iodide negative (PI-) and dead (PI+) cells were measured 4 days post-transfection by using a high content screening (HCS) approach. HCS was further used to evaluate apoptosis (via Annexin V and PI staining), and to discern between intrinsic and extrinsic apoptotic pathways, by detecting cleaved Caspase 9 and 8, respectively. To reveal mRNA targets and potentially involved mechanisms, we performed microarray gene expression and functional pathway enrichment analysis. Quantitative PCR and western blot were used to validate potential mRNA targets. RESULTS Twenty microRNAs altered the proliferation of HCT116 cells in comparison to control. miR-22-3p, miR-24-3p, and miR-101-3p significantly repressed cell proliferation and induced cell death. Interestingly, all anti-proliferative microRNAs in our study had been previously described as poorly expressed in the CRC samples. Predicted miR-101-3p targets that were also downregulated by in our microarray were enriched for genes associated with Wnt and cancer pathways, including MCL-1, a member of the BCL-2 family, involved in apoptosis. Interestingly, miR-101-3p preferentially downregulated the long anti-apoptotic MCL-1 L isoform, and reduced cell survival specifically by activating the intrinsic apoptosis pathway. Moreover, miR-101-3p also downregulated IL6ST, STAT3A/B, and MYC mRNA levels, genes associated with stemness properties of CRC cells. CONCLUSIONS microRNAs upregulated in CRC tend to induce proliferation in vitro, whereas microRNAs poorly expressed in CRC halt proliferation and induce cell death. We provide novel evidence linking preferential inhibition of the anti-apoptotic MCL-1 L isoform by miR-101-3p and consequent activation of the intrinsic apoptotic pathway as potential mechanisms for its antitumoral activity, likely due to the inhibition of the IL-6/JAK/STAT signaling pathway.
Collapse
Affiliation(s)
- Danuta Sastre
- Laboratory of Human and Medical Genetics, Federal University of Pará, Rua Augusto Corrêa, 01. Guamá., Belém, Pará CEP 66075-110 Brazil
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center, Ribeirao Preto Medical School, University of São Paulo (USP), R. Ten. Catão Roxo, 2501., Ribeirão Preto, SP 14051-140 Brazil
| | - João Baiochi
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center, Ribeirao Preto Medical School, University of São Paulo (USP), R. Ten. Catão Roxo, 2501., Ribeirão Preto, SP 14051-140 Brazil
| | - Ildercilio Mota de Souza Lima
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center, Ribeirao Preto Medical School, University of São Paulo (USP), R. Ten. Catão Roxo, 2501., Ribeirão Preto, SP 14051-140 Brazil
| | - Felipe Canto de Souza
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center, Ribeirao Preto Medical School, University of São Paulo (USP), R. Ten. Catão Roxo, 2501., Ribeirão Preto, SP 14051-140 Brazil
| | - Amanda Cristina Corveloni
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center, Ribeirao Preto Medical School, University of São Paulo (USP), R. Ten. Catão Roxo, 2501., Ribeirão Preto, SP 14051-140 Brazil
| | - Carolina Hassib Thomé
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Av. Bandeirantes, 3900 - Vila Monte Alegre, Ribeirão Preto, SP 14049-900 Brazil
| | - Vitor Marcel Faça
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Av. Bandeirantes, 3900 - Vila Monte Alegre, Ribeirão Preto, SP 14049-900 Brazil
| | - Josiane Lilian dos Santos Schiavinato
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center, Ribeirao Preto Medical School, University of São Paulo (USP), R. Ten. Catão Roxo, 2501., Ribeirão Preto, SP 14051-140 Brazil
| | - Dimas Tadeu Covas
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center, Ribeirao Preto Medical School, University of São Paulo (USP), R. Ten. Catão Roxo, 2501., Ribeirão Preto, SP 14051-140 Brazil
| | - Rodrigo Alexandre Panepucci
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center, Ribeirao Preto Medical School, University of São Paulo (USP), R. Ten. Catão Roxo, 2501., Ribeirão Preto, SP 14051-140 Brazil
| |
Collapse
|
37
|
Yan L, You WQ, Sheng NQ, Gong JF, Hu LD, Tan GW, Chen HQ, Wang ZG. A CREB1/miR-433 reciprocal feedback loop modulates proliferation and metastasis in colorectal cancer. Aging (Albany NY) 2019; 10:3774-3793. [PMID: 30523220 PMCID: PMC6326693 DOI: 10.18632/aging.101671] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 11/15/2018] [Indexed: 12/28/2022]
Abstract
Increasing evidence has indicated the prognostic value of miR-433 across a series of malignancy types. However, the underlying mechanisms involved in cancer progression haven’t been sufficiently elucidated. In the present work, we found that miR-433 was downregulated in CRC tissues and cell lines. Ectopic expression of miR-433 obviously suppressed the proliferation, invasion and metastasis activity of CRC cells in vitro and in vivo. CREB1, CCAR1 and JNK1 were highly expressed and negatively correlated with miR-433 expression in CRC. CRC patients with higher expression of CREB1, CCAR1 or JNK1 presented a worse outcome relative to those with lower expression. CREB1 transactivated the expression of miR-433, and CREB1, CCAR1 and JNK1 simultaneously served as its targets, which in turn composed a feedback loop between CREB1 and miR-433. miR-433 blocked cell cycle progression and abolished EMT. Collectively, our study demonstrated the CREB1/miR-433 reciprocal feedback loop restrained the propagation, invasion and metastasis activities of CRC cells through abrogation of cell cycle progression and constraint of EMT.
Collapse
Affiliation(s)
- Li Yan
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei-Qiang You
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Neng-Quan Sheng
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jian-Feng Gong
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lan-Dian Hu
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Ge-Wen Tan
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hong-Qi Chen
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhi-Gang Wang
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
38
|
Myosin Heavy Chain-Associated RNA Transcripts Promotes Gastric Cancer Progression Through the miR-4529-5p/ROCK2 Axis. Dig Dis Sci 2019; 64:3539-3548. [PMID: 31273599 DOI: 10.1007/s10620-019-05708-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIM Characterization of genetic aberrations provides novel strategies for diagnosis and treatment of gastric cancer. Accumulating evidence has shown the involvement of long non-coding RNA (lncRNA) in the pathology of gastric cancer, especially in proliferation and metastasis. The aim of this study was to delineate the role of myosin heavy chain-associated RNA transcripts (MHRT), a heart-specific lncRNA, in gastric cancer and to understand the correlation between MHRT, miR-4529-5p, and ROCK2. METHODS To study expression level of MHRT, clinical gastric cancer samples, gastric cancer cell lines, adjacent normal tissues, and gastric epithelial cell lines were used. Additionally, apoptosis, proliferation, and invasion of gastric cancer cells were studied with or without downregulation of MHRT and miR-4529-5p. RESULTS We identified that MHRT was ectopically expressed in gastric cancer tissues and cell lines. Interestingly, similar to the anti-apoptotic role of MHRT in cardiomyocytes, our data illustrated that MHRT inhibits apoptosis of gastric cancer cells. Moreover, we found that MHRT promotes proliferation and invasion of gastric cancer cells in vitro. Importantly, our data revealed that MHRT regulates the expression of miR-4529-5p via direct binding. Additionally, functional experiments illustrated that miR-4529-5p is particularly responsible for MHRT-mediated regulation of apoptosis. Besides, ROCK2 was identified as a downstream target of miR-4529-5p. Additionally, upregulated MHRT promotes the expression of ROCK2 by inhibiting miR-4529-5p. CONCLUSION Our data illustrated a MHRT/miR-4529-5p/ROCK2 regulatory axis that contributes to the tumorigenesis of gastric cancer and provided potential therapeutic targets for precise gastric cancer treatment.
Collapse
|
39
|
Jin W, Han H, Liu D. Downregulation miR-539 is associated with poor prognosis of gastric cancer patients and aggressive progression of gastric cancer cells. Cancer Biomark 2019; 26:183-191. [DOI: 10.3233/cbm-190384] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
40
|
Zhang J, Cao Z, Yang G, You L, Zhang T, Zhao Y. MicroRNA-27a (miR-27a) in Solid Tumors: A Review Based on Mechanisms and Clinical Observations. Front Oncol 2019; 9:893. [PMID: 31572683 PMCID: PMC6751266 DOI: 10.3389/fonc.2019.00893] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are a family of highly conserved, non-coding single-stranded RNAs transcribed as ~70 nucleotide precursors to an 18–22 nucleotide product (1). miRNAs can silence their homologous target genes at the post-transcriptional level, and these genes have been revealed to play an important role in tumorigenesis, invasion and metastasis (2). MicroRNA-27a (miR-27a), transcripted by miR-27a gene, has proved to implicate with many kinds of solid tumors, showing potential as a useful biomarker or drug target for clinical application. However, even though miR-27a has been reported in many cancers, the mechanism and signal pathways of miR-27 in oncogenesis, invasion, and metastasis are still obscure. Moreover, recent studies show that miR-27a pays an important role in epithelial-mesenchymal-transition, regulating tumor immune response, and chemoresistance. In this review, we summarize the current literature, demonstrate the established link between miR-27a and tumorigenesis, and focus on recently identified mechanisms. The review also aims to demonstrate the potential of miR-27a as a diagnostic and/or prognostic biomarker in solid tumors and to discuss the possibilities of targeted therapy and drug design.
Collapse
Affiliation(s)
- Jingcheng Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhe Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
41
|
DC-SIGN-LEF1/TCF1-miR-185 feedback loop promotes colorectal cancer invasion and metastasis. Cell Death Differ 2019; 27:379-395. [PMID: 31217502 PMCID: PMC7205996 DOI: 10.1038/s41418-019-0361-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/31/2019] [Accepted: 05/28/2019] [Indexed: 02/07/2023] Open
Abstract
DC-SIGN is previously focused on its physiologic and pathophysiologic roles in immune cells. Little is known about whether DC-SIGN is expressed in malignant epithelial cells and how DC-SIGN participates in tumor progression. Here we showed that DC-SIGN expression was increased in metastatic colorectal cancer (CRC) cell lines and patient tissues. The overall survival in CRC patients with positive DC-SIGN was remarkably reduced. Gain of DC-SIGN function facilitated the CRC metastases both in vitro and in vivo, and this effect was reversed by miR-185. DC-SIGN and Lyn interacted physically, and Lyn maintained the stability of DC-SIGN in cells. DC-SIGN activation recruited Lyn and p85 to form the DC-SIGN-Lyn-p85 complex, which promoted CRC metastasis by increasing PI3K/Akt/β-catenin signaling in tyrosine kinase Lyn-dependent manner. Furthermore, activation of DC-SIGN promoted the transcription of MMP-9 and VEGF by increasing PI3K/Akt/β-catenin signaling, and induced TCF1/LEF1-mediated suppression of miR-185. Our findings reveal the presence of the DC-SIGN–TCF1/LEF1–miR-185 loop in cancer cells with metastatic traits, implying that it may represent a new pathogenic mechanism of CRC metastasis. This character of the loop promises to provide new targets for blocking CRC invasive and metastatic activity.
Collapse
|
42
|
Jadideslam G, Ansarin K, Sakhinia E, Babaloo Z, Abhari A, Ghahremanzadeh K, Khalili M, Radmehr R, Kabbazi A. Diagnostic biomarker and therapeutic target applications of miR-326 in cancers: A systematic review. J Cell Physiol 2019; 234:21560-21574. [PMID: 31069801 DOI: 10.1002/jcp.28782] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/14/2019] [Accepted: 04/17/2019] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are endogenous mediators of RNA interference and have key roles in the modulation of gene expression under healthy, inflamed, stimulated, carcinogenic, or other cells, and tissues of a pathological state. Many studies have proved the association between miRNAs and cancer. The role of miR-326 as a tumor suppressor miRNA in much human cancer confirmed. We will explain the history and the role of miRNAs changes, especially miR-326 in cancers and other pathological conditions. Attuned with these facts, this review highlights recent preclinical and clinical research performed on miRNAs as novel promising diagnostic biomarkers of patients at early stages, prediction of prognosis, and monitoring of the patients in response to treatment. All related publications retrieved from the PubMed database, with keywords such as epigenetic, miRNA, microRNA, miR-326, cancer, diagnostic biomarker, and therapeutic target similar terms from 1899 to 2018 with limitations in the English language. Recently, researchers have focused on the impacts of miRNAs and their association in inflammatory, autoinflammatory, and cancerous conditions. Recent studies have suggested a major pathogenic role in cancers and autoinflammatory diseases. Investigations have explained the role of miRNAs in cancers, autoimmunity, and autoinflammatory diseases, and so on. The miRNA-326 expression has an important role in cancer conditions and other diseases.
Collapse
Affiliation(s)
- Golamreza Jadideslam
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Internal Medicine Department, Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine, Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Internal Medicine, Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khalil Ansarin
- Department of Internal Medicine, Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ebrahim Sakhinia
- Internal Medicine Department, Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine and Tabriz Genetic Analysis Centre (TGAC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Babaloo
- Department of Immunology Medicine Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Abhari
- Division of Clinical Biochemistry, Department of Biochemistry and Clinical Laboratory, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kazem Ghahremanzadeh
- Labratory Medicine, Central laboratory of East Azerbaijan, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohamadreza Khalili
- Labratory Medicine, Central laboratory of East Azerbaijan, Tabriz University of Medical Science, Tabriz, Iran
| | - Rahman Radmehr
- Labratory Medicine, Central laboratory of East Azerbaijan, Tabriz University of Medical Science, Tabriz, Iran
| | - Alireza Kabbazi
- Internal Medicine Department, Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
43
|
Ren W, Zhang X, Li W, Feng Q, Feng H, Tong Y, Rong H, Wang W, Zhang D, Zhang Z, Tu S, Zhu X, Zhang Q. Exosomal miRNA-107 induces myeloid-derived suppressor cell expansion in gastric cancer. Cancer Manag Res 2019; 11:4023-4040. [PMID: 31190980 PMCID: PMC6511657 DOI: 10.2147/cmar.s198886] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 02/20/2019] [Indexed: 12/23/2022] Open
Abstract
Background: Myeloid-derived suppressor cells (MDSCs) promote immunosuppression in the tumor microenvironment, support tumor growth and survival, and may contribute to immunotherapy resistance. Recent studies showed that tumor-derived exosomes (TDEs) can induce MDSCs accumulation and expansion, the mechanisms of which are largely unknown. Methods: The morphologies and sizes of the exosomes was observed by using a JEM-1400 transmission electron microscope. MicroRNA(miR)-107 and ARG1, DICER1, PTEN, PI3K, AKT, mTOR, and NF-kB mRNAs were quantified by quantitative reverse tanscription PCR. Dual-Luciferase Reports Assay were used to examine the expression of genes which was targeted by miR-107. The expression of proteins were analyzed by using western blot. Results: MiR-107 was not only overexpressed in gastric cancer cells but also enriched in their secreted TDEs. Also, these miR-107 enriched TDEs could be taken up by HLA-DR-CD33+MDSCs, where miR-107 was able to target and suppress expression of DICER1 and PTEN genes. Dampened DICER1 expression supported expansion of MDSCs , while decreased PTEN led to activation of the PI3K pathway, resulting in increased ARG1 expression. Furthemore, gastric cancer-derived miR-107 TDEs, when dosed intravenously into mice, were also capable of inducing expansion of CD11b+Gr1+/high MDSCs in mouse peripheral blood and altering expression of DICER1, PTEN, ARG1, and NOS2 in the MDSCs. Conclusions: Our findings demonstrate for the first time that gastric cancer-secreted exosomes are able to deliver miR-107 to the host MDSCs where they induce their expansion and activition by targeting DICER1 and PTEN genes, thereby may provide novel cancer therapeutics target for gastric cancer.
Collapse
Affiliation(s)
- WeiHong Ren
- Department of Histology and Embryology, College of Basic Medicine, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China.,Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, People's Republic of China
| | - XuRan Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, People's Republic of China
| | - WenBo Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, People's Republic of China
| | - Qian Feng
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, People's Republic of China
| | - HuiJie Feng
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, People's Republic of China
| | - Yan Tong
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, People's Republic of China
| | - Hao Rong
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, People's Republic of China
| | - Wei Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, People's Republic of China
| | - Dai Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, People's Republic of China
| | - ZhenQiang Zhang
- Immunology Laboratory of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan Province, People's Republic of China
| | - ShiChun Tu
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA
| | - XiaoYan Zhu
- Department of Histology and Embryology, College of Basic Medicine, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - QinXian Zhang
- Department of Histology and Embryology, College of Basic Medicine, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| |
Collapse
|
44
|
Mohamed WA, Schaalan MF, Ramadan B. The expression profiling of circulating miR-204, miR-182, and lncRNA H19 as novel potential biomarkers for the progression of peptic ulcer to gastric cancer. J Cell Biochem 2019; 120:13464-13477. [PMID: 30945348 DOI: 10.1002/jcb.28620] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/17/2019] [Accepted: 02/28/2019] [Indexed: 12/17/2022]
Abstract
Deregulation of noncoding RNAs, microRNAs (miRNAs) and long noncoding RNA (lncRNA), are implicated in the initiation and progression of gastric cancer (GC). This study is a pilot case-control study carried out on 75 subjects, 40 of them were Helicobacter pylori-gastric ulcer patients and 35 were GC patients recruited from the Gastrointestinal Endoscopy Unit in Al-Kasr Al-Aini Hospital, Cairo University in Egypt. Real-time PCR was performed to evaluate the expression level of serum miR-204, miR-182, and lncRNA H19 in patients with peptic ulcer-progressed GC vs nonprogressed peptic ulcer patients. Fibroblast growth factor 18 (FGF-18)/FGF receptor 2 (FGFR2) expression and their downstream immunological and inflammatory signaling markers were assessed and their association with the addressed noncoding RNAs investigated. As regards miR-204 and miR-182, they were significantly increased (12.5 and 2.6 folds, respectively) in GU samples, compared with those of healthy control levels. The elevated levels of these miRNAs were significantly de-escalated in GC samples compared with GU and the fold decrease valued 2.2 fold for miR-204 and 1.8 folds for miR-182. On the other hand, the significant escalation in the level of lnRNA H19 in GU recorded a 16.6 fold increase and further elevation in its levels was evident in GC samples. The herein assessed miRNAs are correlated with disease duration and FGFR2 with miR-182 being significantly correlated with all inflammatory markers, TAC, INF-γ, matrix metallopeptidase 9, and FGF-18. In terms of diagnostic accuracy of assessed miRNAs (stages III to IV), the receiver operating characteristic analysis indicated that serum lncRNA H19 showed the highest diagnostic accuracy (95.5%), specificity (100%), and sensitivity (90.9%), compared with miR-204 and miR-182, which showed the same specificity (60%), sensitivity (72.7%), and diagnostic accuracy (68.8%). Our findings conclude that lnRNA H19, miR-204, and miR-182 may function as novel prospective plasma biomarkers to detect GC and its progression from H. pylori-peptic ulcer, which would be helpful to improve the theranostics of GC.
Collapse
Affiliation(s)
- Waleed A Mohamed
- Department of Chemistry, Kasr El Aini Teaching Hospital, Cairo University, Cairo, Egypt
| | - Mona F Schaalan
- Department of Clinical Pharmacy and Pharmacy Practice, Clinical and Translational Research Unit, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Basma Ramadan
- Department of Physiology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
45
|
Huang ZS, Guo XW, Zhang G, Liang LX, Nong B. The Diagnostic and Prognostic Value of miR-200c in Gastric Cancer: A Meta-Analysis. DISEASE MARKERS 2019; 2019:8949618. [PMID: 31089400 PMCID: PMC6476052 DOI: 10.1155/2019/8949618] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 02/04/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND The role of miR-200c in gastric cancer remains controversial. This study is aimed at clarifying the diagnostic and prognostic value of miR-200c in gastric cancer through a meta-analysis. METHODS A comprehensive literature search of PubMed, Embase, and Ovid library databases was conducted. The studies included were those conducted before December 2017. The sensitivity and specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and area under curve (AUC) were used to estimate the diagnostic value of miR-200c. Meanwhile, the pooled hazard ratio (HR) was used to estimate the prognostic value of miR-200c. RESULTS For the diagnostic value of miR-200c, six studies that included 202 patients with gastric cancer and 250 normal controls were analyzed. The sensitivity, specificity, PLR, NLR, DOR, and AUC were 0.74, 0.66, 2.20, 0.40, 5.34, and 0.75, respectively. Subgroup analysis showed no significant difference in the type of the sample, method for testing miR-200c, and ethnicity among the patients. Meanwhile, for the prognostic value of miR-200c, seven studies comprising 935 patients with gastric cancer were analyzed. The pooled results showed that miR-200c expression was associated with overall survival (HR = 2.19) and disease-free survival (HR = 1.73), but not with progression-free survival (HR = 1.64) in patients with gastric cancer. There was no publication bias across the studies. CONCLUSIONS Both serum and tissue miR-200c have moderate diagnostic accuracy in gastric cancer. miR-200c could also be used as a valuable indicator for predicting the prognosis of gastric cancer patients.
Collapse
Affiliation(s)
- Zong-Sheng Huang
- Department of Gastroenterology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xian-Wen Guo
- Department of Gastroenterology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Guo Zhang
- Department of Gastroenterology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Lie-Xin Liang
- Department of Gastroenterology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Bing Nong
- Department of Gastroenterology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
46
|
Wu W, Ye S, Tan W, Zhou Y, Quan J. Analysis of promoter methylation and epigenetic regulation of miR-32 in colorectal cancer cells. Exp Ther Med 2019; 17:3209-3214. [PMID: 30936995 DOI: 10.3892/etm.2019.7328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 02/11/2019] [Indexed: 11/05/2022] Open
Abstract
MicroRNA-32 (miR-32) is upregulated in colorectal cancer (CRC) tissues; its overexpression leads to increased cell proliferation, migration and invasion, as well as reduced apoptosis of CRC cells, at least partly by inhibiting the target gene phosphatase and tensin homolog. However, the mechanisms of its upregulation have remained elusive. In the present study, the effects of methylation and acetylation on the expression of miR-32 were investigated. The promoter methylation status of miR-32 in the CRC cell lines HT-29 and HCT-116 and the normal colonic epithelial cell line NCM460 was investigated by bisulfate sequencing polymerase chain reaction (BSP). The potential role of methylation and histone acetylation in the regulation of miR-32 expression in CRC cells was investigated using the demethylation reagent 5-aza-2'-deoxycytidine (5-Aza-dC), the histone deacetylase inhibitor trichostatin A (TSA) and transfection of DNA methyltransferase 1 (DNMT1) overexpression plasmid. BSP revealed that CpG sites in the miR-32 promoter region of CRC and normal colonic epithelial cells were all hypomethylated, with methylation rates of 0.12, 1.14 and 0.64% in HCT-116, HT-29 and NCM460 cells, respectively. Treatment with 5-Aza-dC and/or TSA and transfection with DNMT1 plasmid did not significantly alter the expression of miR-32. Therefore, the present results suggest that methylation and histone acetylation do not affect miR-32 expression in CRC cells.
Collapse
Affiliation(s)
- Weiyun Wu
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Shicai Ye
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Wenkai Tan
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Yu Zhou
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Juanhua Quan
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| |
Collapse
|
47
|
Peng ZY, Gu RH, Yan B. Downregulation of exosome-encapsulated miR-548c-5p is associated with poor prognosis in colorectal cancer. J Cell Biochem 2019; 120:1457-1463. [PMID: 30171732 DOI: 10.1002/jcb.27291] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/26/2018] [Indexed: 01/24/2023]
Abstract
The role of circulating exosomal microRNAs (miRNAs) in colorectal cancer (CRC) has drawn more and more attention during the past few years. Previously, we have identified several specific miRNAs in serum exosomes as potential CRC biomarkers. However, little is known about the association between exosome-encapsulated miR-548c-5p and outcomes of patients with CRC. In the current study, the expression of serum exosomal miR-548c-5p was investigated by quantitative real-time polymerase chain reaction. Its correlation with CRC prognosis was estimated by Kaplan-Meier survival and log-rank tests. Cox regression analysis based on uni- and multivariate analyses was performed to estimate the relationship of exosome-encapsulated miR-548c-5p with the clinicopathological factors of patients with CRC. Reduced levels of serum exosomal miR-548c-5p were more significant in CRC patients with liver metastasis and at later TNM stage (III/IV tumor stages). Serum exosomal miR-548c-5p could inhibit the proliferation of CRC cells, while the precise molecular mechanisms warranted further elucidation. In addition, decreased levels of serum exosomal miR-548c-5p were independently associated with shorter overall survival in CRC adjusted by age, sex, tumor grade vascular infiltration, TNM stage (III/IV tumor stages) and metastasis (hazard ratio = 3.40, 95% confidence interval 1.02-11.27; P = 0.046). The downregulation of exosomal miR-548c-5p in serum predicts poor prognosis in patients with CRC. Exosomal miR-548c-5p may be a critical biomarker for CRC diagnosis and prognosis.
Collapse
Affiliation(s)
- Zhi-Yong Peng
- Department of General Surgery, Zhongshan Hospital of Fudan University, Qingpu Branch, Shanghai, China
| | - Run-Huan Gu
- Department of Oncology, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Bin Yan
- Department of General Surgery, Zhongshan Hospital of Fudan University, Qingpu Branch, Shanghai, China
| |
Collapse
|
48
|
Wang C, Liu E, Li W, Cui J, Li T. MiR-3188 Inhibits Non-small Cell Lung Cancer Cell Proliferation Through FOXO1-Mediated mTOR-p-PI3K/AKT-c-JUN Signaling Pathway. Front Pharmacol 2018; 9:1362. [PMID: 30618730 PMCID: PMC6297856 DOI: 10.3389/fphar.2018.01362] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/05/2018] [Indexed: 12/15/2022] Open
Abstract
This study investigated the role of miR-3188 on the proliferation of non-small cell lung cancer cells and its relationship to FOXO1-modulated feedback loop. Two non-small cell lung cancer (NSCLC) cell lines A549 and H1299 were used. RNA silencing was achieved by lentiviral transfection. Cell proliferation was assessed by immunohistochemical staining of Ki67 and PCNA, Edu incorporation, and colony formation assay. Western blotting was used to examine expression of FOXO1, mTOR, p-mTOR, CCND1, p21, c-JUN, AKT, pAKT, PI3K, p-PI3K, and p27 proteins. It was found that miR-3188 reduced cell proliferation in NSCLC cells. Molecular analyses indicated that the effect of mammalian target of rapamycin (mTOR) was directly mediated by miR-3188, leading to p-PI3K/p-AKT/c-JUN inactivation. The inhibition of this signaling pathway further caused cell-cycle suppression. Moreover, FOXO1 was found to be involved in regulating the interaction of miR-3188 and mTOR through p-PI3K/p-AKT/c-JUN signaling pathway. Taken together, our study demonstrated that miR-3188 interacts with mTOR and FOXO1 to inhibit NSCLC cell proliferation through a mTOR-p-PI3K/AKT-c-JUN signaling pathway. Therefore, miR-3188 might be a potential target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Chunyan Wang
- College of Food and Biology Engineering, Xuzhou Institute of Technology, Xuzhou, China
| | - Enqi Liu
- College of Food and Biology Engineering, Xuzhou Institute of Technology, Xuzhou, China
| | - Wen Li
- College of Food and Biology Engineering, Xuzhou Institute of Technology, Xuzhou, China
| | - Jue Cui
- College of Food and Biology Engineering, Xuzhou Institute of Technology, Xuzhou, China
| | - Tongxiang Li
- College of Food and Biology Engineering, Xuzhou Institute of Technology, Xuzhou, China
| |
Collapse
|
49
|
Kong D, Zhang Z. NAIF1 suppresses osteosarcoma progression and is regulated by miR-128. Cell Biochem Funct 2018; 36:443-449. [PMID: 30407643 PMCID: PMC6587833 DOI: 10.1002/cbf.3365] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 08/13/2018] [Accepted: 10/03/2018] [Indexed: 11/06/2022]
Abstract
Nuclear apoptosis-inducing factor 1 (NAIF1) acts as an oncogene and involves in tumorigenesis in several cancers. However, the expression and mechanism of NAIF1 in osteosarcoma remains unclear. In this study, we demonstrated the downregulation of NAIF1 expression in both osteosarcoma tissues and cell lines. We next explored the potential role of NAIF1 in osteosarcoma cell proliferation and migration. The result showed that overexpression of NAIF1 evidently suppressed the cell proliferation and invasion of osteosarcoma. Furthermore, we investigated the potential mechanisms accounting for dysregulation of NAIF1 in osteosarcoma. The bioinformatic prediction and luciferase reporter assay revealed that miR-128 is a direct upstream regulator of NAIF1 and regulates NAIF1 expression by binding the 3'-UTR of NAIF1. Consistent with previous study, we found that miR-128 was upregulated in both osteosarcoma tissues and cell lines. Moreover, miR-128 expression levels were inversely correlated with that of NAIF1 in osteosarcoma tissues. Finally, functional assay showed that miR-128 significantly suppressed osteosarcoma progression partially mediated by inhibiting NAIF1 expression. These data indicate that the miR-128 and its target gene NAIF1 played important roles by regulating OS cell proliferation and migration phenotype. SIGNIFICANCE OF THE STUDY: Osteosarcoma (OS) is the most common malignant bone tumour and the second leading cause of cancer-related death affecting children and adolescents. Nuclear apoptosis-inducing factor 1 (NAIF1) plays an inhibitory role in the initial steps of different carcinomas. However, the expression and mechanism of NAIF1 in osteosarcoma remains unclear. The data of this study indicated that the miR-128 and its target gene NAIF1 played important roles by regulating OS cell proliferation and migration phenotype. It was demonstrated that NAIF1 would demonstrate important regulative effects and may be a promising therapeutic target of OS.
Collapse
Affiliation(s)
- Daliang Kong
- Orthopeadic SurgeryJilin University Sino‐Japanese Friendship HospitalChangchunChina
| | - Zhe Zhang
- Department of RadiologyJilin University Sino‐Japanese Friendship HospitalChangchunChina
| |
Collapse
|
50
|
Huang D, Peng Y, Ma K, Deng X, Tang L, Jing D, Shao Z. MiR-20a, a novel promising biomarker to predict prognosis in human cancer: a meta-analysis. BMC Cancer 2018; 18:1189. [PMID: 30497428 PMCID: PMC6267918 DOI: 10.1186/s12885-018-4907-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 10/08/2018] [Indexed: 02/09/2023] Open
Abstract
Background Recently, microRNA-20a (miR-20a) has been reported to influence the clinical features and may have prognostic value in human cancers. The present meta-analysis assessed the prognostic role of miR-20a in various carcinomas. Methods Literature searches of seven electronic databases were performed for eligible articles of the prognostic role of miR-20a in human cancers. Hazard ratios (HR) for overall survival (OS), disease free survival (DFS), progression-free survival (PFS) as well as their 95% confidence intervals (95%CIs) were used to assess the influence of miR-20a expression on patient prognosis. Odds ratio (OR) and 95%CIs were applied to evaluate the correlation between miR-20a expression and clinicopathological characteristics. Results Based on the OS analyzed by log rank tests, there was a significant association between miR-20a levels and OS by fixed effects model. By subgroup analyses, the significance was also observed in the studies of specimen derived from blood and gastrointestinal cancer group. The independent prognostic role of miR-20a expression for the OS was observed significantly by fixed effects model. In addition, we observed significant association between miR-20a expression levels and DFS of log rank tests, DFS of cox regression. Significant relation of gender/differentiation and the expression level of miR-20a was identified. Conclusions Base on the findings, the elevated miR-20a expression level is related to poor prognosis of gastrointestinal cancer patients. As for other types of carcinomas, the results are still not stable and more studies are required to further identify miR-20a prognostic values. In addition, miR-20a expression level is relatively higher in women than that in men, and increased miR-20a expression level is linked to poor tumor differentiation.
Collapse
Affiliation(s)
- Donghua Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kaige Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiangyu Deng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lu Tang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Doudou Jing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|