1
|
Xu H, Liu T, Dai Y, Li N, Cao Z. The role of ERK1/2 signaling in diabetes: pathogenic and therapeutic implications. Front Pharmacol 2025; 16:1600251. [PMID: 40417223 PMCID: PMC12098375 DOI: 10.3389/fphar.2025.1600251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Accepted: 04/28/2025] [Indexed: 05/27/2025] Open
Abstract
ERK1/2 (extracellular signal-regulated kinase 1/2) is an important member of the MAPK (mitogen-activated protein kinase) family and is widely involved in many biological processes such as cell proliferation, differentiation, apoptosis and migration. After activation by phosphorylation, ERK1/2 can be transferred into the nucleus and directly or indirectly affect the activity of transcription factors, thereby regulating gene expression. More and more studies have shown that ERK1/2 plays an important role in diabetes and its complications, such as insulin secretion, islet β cell function, diabetic cardiomyopathy, diabetic nephropathy, renal fibrosis, lipogenesis, diabetic vasculopathy, etc. These effects reveal the complexity and diversity of the ERK1/2 signaling pathway in the pathogenesis of diabetes, and its activation and inhibition mechanisms in multiple physiological and pathological processes provide potential targets for diabetes treatment. The purpose of this mini-review is to explore the key role of ERK1/2 in diabetes and the progress of research on targeted inhibitors of ERK1/2, which provides new strategies for the treatment of diabetes.
Collapse
Affiliation(s)
- Hanlin Xu
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tao Liu
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanfen Dai
- Department of Hyperbaric Oxygen, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Na Li
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhanqi Cao
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Zeng L, Deng Y, Zhou X, Ji S, Peng B, Lu H, He Q, Bi J, Kwan HY, Zhou L, You Y, Wang M, Zhao X. Simiao pills alleviates renal injury associated with hyperuricemia: A multi-omics analysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118492. [PMID: 38936642 DOI: 10.1016/j.jep.2024.118492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/05/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Simiao Pills, a classical traditional Chinese medicine prescription recorded in Cheng Fang Bian Du, has been traditionally used to treat hyperuricemia due to its heat-clearing and diuretic properties. Studies have shown that Simiao Pills effectively reduce uric acid levels. However, further research is needed to elucidate the precise composition of Simiao Pills for treating hyperuricemia and their potential pharmacological mechanism. AIM OF THE STUDY This study aimed to investigate the therapeutic effects of Simiao Pills on hyperuricemia, with a particular focus on evaluating their protective role against hyperuricemia-induced renal injury and elucidating the underlying mechanism of action. MATERIALS AND METHODS UPLC-MS/MS was used to identify the components of Simiao Pills. The hyperuricemia model mice were established by intraperitoneal injecting potassium oxonate (PO) and oral administrating hypoxanthine (HX). Network pharmacology, transcriptome, and metabolomics analyses were integrated to explore the mechanism of Simiao Pills in reducing uric acid and protecting the kidney. Mechanistic and functional studies were conducted to validate the potential mechanisms. RESULTS Simiao Pills were found to contain 12 characteristic components. Treatment with Simiao Pills significantly reduced serum uric acid levels and ameliorated hyperuricemia-induced renal injury. Simiao Pills inhibited the enzymatic activities of XOD and XDH, and regulated the uric acid transporters in the kidney and ileum. Transcriptome and network pharmacology analyses highlighted quercetin, berberine, kaempferol, and baicalein as the principal active components of Simiao Pills acting on the kidney during hyperuricemia treatment, primarily impacting fibrosis, apoptosis, and inflammation-related signaling pathways. Metabolomic analysis unveiled 21 differential metabolites and 5 metabolic pathways associated with Simiao Pills against renal injury associated with hyperuricemia. Further experimental results validated that Simiao Pills reduced renal fibrosis, apoptotic renal cells, serum inflammation levels, and inhibited the NF-κB/NLRP3/IL-1β signaling pathway. CONCLUSION This study demonstrated that Simiao Pills significantly reduced serum uric acid levels and improved renal injury by regulating inflammation, apoptosis, and renal fibrosis. These findings have provided a robust scientific pharmacological basis for the use of Simiao Pills in treating hyperuricemia patients.
Collapse
Affiliation(s)
- Liying Zeng
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yijian Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xinghong Zhou
- Dongguan Hospital of Traditional Chinese Medicine, Dongguan, Guangdong, 523000, China
| | - Shuai Ji
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Baizhao Peng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Hanqi Lu
- Dongguan Hospital of Traditional Chinese Medicine, Dongguan, Guangdong, 523000, China
| | - Qiuxing He
- Dongguan Hospital of Traditional Chinese Medicine, Dongguan, Guangdong, 523000, China
| | - Jianlu Bi
- Department of Endocrinology, Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, Guangdong, 510095, China
| | - Hiu Yee Kwan
- School of Chinese Medicine, Hong Kong Baptist University, China
| | - Lin Zhou
- Department of Endocrinology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yanting You
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Ming Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510280, China.
| | - Xiaoshan Zhao
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
3
|
Yu Z, You G. Recent Advances on the Regulations of Organic Anion Transporters. Pharmaceutics 2024; 16:1355. [PMID: 39598479 PMCID: PMC11597148 DOI: 10.3390/pharmaceutics16111355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
The organic anion transporter (OAT) family of over 10 members within the solute carrier (SLC) superfamily of membrane proteins plays critical roles in facilitating the flux of negatively charged molecules in and out of cell membranes. These anionic molecules include various endogenous and exogenous compounds such as signaling molecules, nutrients, metabolites, toxins, and drugs. Therefore, OATs actively contribute to the systemic homeostasis and efficacy of therapeutics. This article provides a brief overview on recent advances in the understanding of the regulatory mechanisms that control the expression and activity of OATs in both health and diseases.
Collapse
Affiliation(s)
| | - Guofeng You
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA;
| |
Collapse
|
4
|
Liu H, Chen Z, Liu M, Li E, Shen J, Wang J, Liu W, Jin X. The Terminalia chebula Retz extract treats hyperuricemic nephropathy by inhibiting TLR4/MyD88/NF-κB axis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117678. [PMID: 38159820 DOI: 10.1016/j.jep.2023.117678] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hyperuricemic nephropathy (HN) is a renal injury caused by hyperuricemia and is the main cause of chronic kidney disease and end-stage renal disease. ShiWeiHeZiSan, which is composed mainly of components of Terminalia chebula Retz. And is recorded in the Four Medical Tantras, is a typical traditional Tibetan medicinal formula for renal diseases. Although T. chebula has been reported to improve renal dysfunction and reduce renal cell apoptosis, the specific mechanism of the nephroprotective effects of T. chebula on HN is still unclear. AIM OF THE STUDY This study was conducted to evaluate the effects and specific mechanism of T. chebula extract on HN through network pharmacology and in vivo and in vitro experiments. MATERIALS AND METHODS Potassium oxalate (1.5 g/kg) and adenine (50 mg/kg) were combined for oral administration to establish the HN rat model, and the effects of T. chebula extract on rats in the HN model were evaluated by renal function indices and histopathological examinations. UPLC-Q-Exactive Orbitrap/MS analysis was also conducted to investigate the chemical components of T. chebula extract, and the potential therapeutic targets of T. chebula in HN were predicted by network pharmacology analysis. Moreover, the activation of potential pathways and the expression of related mRNAs and proteins were further observed in HN model rats and uric acid-treated HK-2 cells. RESULTS T. chebula treatment significantly decreased the serum uric acid (SUA), blood urea nitrogen (BUN) and serum creatinine (SCr) levels in HN rats and ameliorated renal pathological injury and fibrosis. A total of 25 chemical components in T. chebula extract were identified by UPLC-Q-Exactive Orbitrap/MS analysis, and network pharmacology analysis indicated that the NF-κB pathway was the potential pathway associated with the therapeutic effects of T. chebula extract on HN. RT‒PCR analysis, immunofluorescence staining and ELISA demonstrated that the mRNA and protein levels of TLR4 and MyD88 were significantly decreased in the renal tissue of HN rats after treatment with T. chebula extract at different concentrations, while the phosphorylation of P65 and the secretion of TNF-α and IL-6 were significantly inhibited. The results of in vitro experiments showed that T. chebula extract significantly decreased the protein levels of TLR4, MyD88, p-IκBα and p-P65 in uric acid-treated HK-2 cells and inhibited the nuclear translocation of p65 in these cells. In addition, the expression of inflammatory factors (IL-1β, IL-6 and TNF-α) and fibrotic genes (α-SMA and fibronectin) was significantly downregulated by T. chebula extract treatment, while E-cadherin expression was significantly upregulated. CONCLUSION T. chebula extract exerts nephroprotective effects on HN, such as anti-inflammatory effects and fibrosis improvement, by regulating the TLR4/MyD88/NF-κB axis, which supports the general use of T. chebula in the management of HN and other chronic kidney diseases.
Collapse
Affiliation(s)
- Hao Liu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou Guangdong 510006, PR China; School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou Guangdong 510006, PR China
| | - Zhiyu Chen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou Guangdong 510006, PR China; School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou Guangdong 510006, PR China
| | - Meng Liu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou Guangdong 510006, PR China; School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou Guangdong 510006, PR China
| | - Ertong Li
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou Guangdong 510006, PR China; School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou Guangdong 510006, PR China
| | - Juan Shen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou Guangdong 510006, PR China; School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou Guangdong 510006, PR China
| | - Jie Wang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou Guangdong 510006, PR China; School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou Guangdong 510006, PR China
| | - Wenbin Liu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou Guangdong 510006, PR China; School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou Guangdong 510006, PR China.
| | - Xiaobao Jin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou Guangdong 510006, PR China; School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou Guangdong 510006, PR China.
| |
Collapse
|
5
|
Wu Z, Wang C, Yang F, Zhou J, Zhang X, Xin J, Gao J. Network pharmacology, molecular docking, combined with experimental verification to explore the role and mechanism of shizhifang decoction in the treatment of hyperuricemia. Heliyon 2024; 10:e24865. [PMID: 38322942 PMCID: PMC10844032 DOI: 10.1016/j.heliyon.2024.e24865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/12/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Ethnopharmacological relevance Shizhifang Decoction, a traditional Chinese medicine prescription formulated by Professor Zheng Pingdong of Shuguang Hospital, has been widely utilized in clinical settings for the treatment of hyperuricemia due to its proven safety and efficacy. Objective In this study, we used network pharmacology, molecular docking technology, and experimental validation to elucidate the therapeutic effects and underlying mechanisms of Shizhifang Decoction in managing hyperuricemia. Methods Quality control and component identification of the freeze-dried powder of Shizhifang Decoction were conducted using ultra-high performance liquid chromatography-tandem quadrupole time-of-flight mass spectrometry. Active ingredients and their corresponding targets were obtained from Traditional Chinese Medicine Systems Pharmacology, Traditional Chinese Medicine Information Database, The Encyclopedia of Traditional Chinese Medicine, and other databases. Disease-related targets for hyperuricemia were collected from GeneCards and DisGeNET databases. The Venny platform is used to screen common targets for drug active ingredients and diseases. Subsequently, we constructed an active component-target-disease interaction network using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, create a component disease common target network using Cytoscape 3.9.1 software, from which core targets were selected. Import common targets into the Database for Annotation, Visualization and Integrated Discovery (DAVID) for Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analysis. Molecular docking was then conducted to validate the binding capacity of key active ingredients and their associated targets in Shizhifang Decoction. The theoretical predictions were further confirmed through in vitro and in vivo experiments. Result A total of 35 active ingredients and 597 action targets were identified, resulting in 890 disease-related targets for hyperuricemia. After comprehensive analysis, 99 common targets were determined. Protein-protein interaction network analysis revealed crucial relationships between these targets and hyperuricemia. Among them, 12 core targets (CASP3, IL1B, IL6, TNF, TP53, GAPDH, PTGS2, MYC, INS, VEGFA, ESR1, PPARG) were identified. Gene Ontology enrichment analysis demonstrated significant associations with the regulation of inflammatory response, cell apoptosis, and the positive regulation of extracellular regulated protein kinases 1 and extracellular regulated protein kinases 2 cascades. Kyoto Encyclopedia of Genes and Genomes pathway analysis highlighted inflammation and apoptosis-related pathways as critical mediators of Shizhifang Decoction's effects on hyperuricemia. Molecular docking studies further supported the interactions between apoptosis-related proteins and active ingredients in the extracellular regulated protein kinases 1/2 signaling pathway. In vitro experiments confirmed the downregulation of apoptosis-related proteins (caspase-3, Bax, Bcl-2) and the inhibition of the extracellular regulated protein kinases 1/2 signaling pathway by Shizhifang Decoction. These findings were also validated in animal models, demonstrating the potential of Shizhifang Decoction to mitigate renal injury induced by hyperuricemia through extracellular regulated protein kinases 1/2-mediated inhibition of renal tubular epithelial cell apoptosis. Conclusion Our study provides valuable insights into the main mechanism by which Shizhifang Decoction ameliorates hyperuricemia. By targeting the ERK1/2 signaling pathway and modulating cell apoptosis, Shizhifang Decoction exhibits promising therapeutic potential for the treatment of hyperuricemia. These findings support the continued exploration and development of Shizhifang Decoction as a potential herbal remedy for hyperuricemia management.
Collapse
Affiliation(s)
- Zhiyuan Wu
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chuanxu Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Yang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiabao Zhou
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuming Zhang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiadong Xin
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiandong Gao
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Li D, Yuan S, Deng Y, Wang X, Wu S, Chen X, Li Y, Ouyang J, Lin D, Quan H, Fu X, Li C, Mao W. The dysregulation of immune cells induced by uric acid: mechanisms of inflammation associated with hyperuricemia and its complications. Front Immunol 2023; 14:1282890. [PMID: 38053999 PMCID: PMC10694226 DOI: 10.3389/fimmu.2023.1282890] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/26/2023] [Indexed: 12/07/2023] Open
Abstract
Changes in lifestyle induce an increase in patients with hyperuricemia (HUA), leading to gout, gouty arthritis, renal damage, and cardiovascular injury. There is a strong inflammatory response in the process of HUA, while dysregulation of immune cells, including monocytes, macrophages, and T cells, plays a crucial role in the inflammatory response. Recent studies have indicated that urate has a direct impact on immune cell populations, changes in cytokine expression, modifications in chemotaxis and differentiation, and the provocation of immune cells by intrinsic cells to cause the aforementioned conditions. Here we conducted a detailed review of the relationship among uric acid, immune response, and inflammatory status in hyperuricemia and its complications, providing new therapeutic targets and strategies.
Collapse
Affiliation(s)
- Delun Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Nephrology Institute of Guangdong Provincial Academy of Chinese Medical Sciences (NIGH-CM), Guangzhou, China
| | - Siyu Yuan
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiyao Deng
- Department of Nephrology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Xiaowan Wang
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Shouhai Wu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Xuesheng Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Nephrology Institute of Guangdong Provincial Academy of Chinese Medical Sciences (NIGH-CM), Guangzhou, China
| | - Yimeng Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Nephrology Institute of Guangdong Provincial Academy of Chinese Medical Sciences (NIGH-CM), Guangzhou, China
| | - Jianting Ouyang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Nephrology Institute of Guangdong Provincial Academy of Chinese Medical Sciences (NIGH-CM), Guangzhou, China
| | - Danyao Lin
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Nephrology Institute of Guangdong Provincial Academy of Chinese Medical Sciences (NIGH-CM), Guangzhou, China
| | - Haohao Quan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Nephrology Institute of Guangdong Provincial Academy of Chinese Medical Sciences (NIGH-CM), Guangzhou, China
| | - Xinwen Fu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Nephrology Institute of Guangdong Provincial Academy of Chinese Medical Sciences (NIGH-CM), Guangzhou, China
| | - Chuang Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Nephrology Institute of Guangdong Provincial Academy of Chinese Medical Sciences (NIGH-CM), Guangzhou, China
| | - Wei Mao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Nephrology Institute of Guangdong Provincial Academy of Chinese Medical Sciences (NIGH-CM), Guangzhou, China
| |
Collapse
|
7
|
Caetano-Pinto P, Stahl SH. Renal Organic Anion Transporters 1 and 3 In Vitro: Gone but Not Forgotten. Int J Mol Sci 2023; 24:15419. [PMID: 37895098 PMCID: PMC10607849 DOI: 10.3390/ijms242015419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Organic anion transporters 1 and 3 (OAT1 and OAT3) play a crucial role in kidney function by regulating the secretion of multiple renally cleared small molecules and toxic metabolic by-products. Assessing the activity of these transporters is essential for drug development purposes as they can significantly impact drug disposition and safety. OAT1 and OAT3 are amongst the most abundant drug transporters expressed in human renal proximal tubules. However, their expression is lost when cells are isolated and cultured in vitro, which is a persistent issue across all human and animal renal proximal tubule cell models, including primary cells and cell lines. Although it is well known that the overall expression of drug transporters is affected in vitro, the underlying reasons for the loss of OAT1 and OAT3 are still not fully understood. Nonetheless, research into the regulatory mechanisms of these transporters has provided insights into the molecular pathways underlying their expression and activity. In this review, we explore the regulatory mechanisms that govern the expression and activity of OAT1 and OAT3 and investigate the physiological changes that proximal tubule cells undergo and that potentially result in the loss of these transporters. A better understanding of the regulation of these transporters could aid in the development of strategies, such as introducing microfluidic conditions or epigenetic modification inhibitors, to improve their expression and activity in vitro and to create more physiologically relevant models. Consequently, this will enable more accurate assessment for drug development and safety applications.
Collapse
Affiliation(s)
- Pedro Caetano-Pinto
- Department of Urology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Simone H. Stahl
- CVRM Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, 310 Darwin Building, Cambridge Science Park, Milton Road, Cambridge CB4 0WG, UK;
| |
Collapse
|
8
|
Zhao S, Jia N, Shen Z, Pei C, Huang D, Liu J, Wang Y, Shi S, Wang X, Wang M, He Y, Wang Z. Pretreatment with Notoginsenoside R1 attenuates high-altitude hypoxia-induced cardiac injury via activation of the ERK1/2-P90RSK-Bad signaling pathway in rats. Phytother Res 2023; 37:4522-4539. [PMID: 37313866 DOI: 10.1002/ptr.7923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023]
Abstract
High-altitude cardiac injury (HACI) is one of the common tissue injuries caused by high-altitude hypoxia that may be life threatening. Notoginsenoside R1 (NG-R1), a major saponin of Panax notoginseng, exerts anti-oxidative, anti-inflammatory, and anti-apoptosis effects, protecting the myocardium from hypoxic injury. This study aimed to investigate the protective effect and molecular mechanism of NG-R1 against HACI. We simulated a 6000 m environment for 48 h in a hypobaric chamber to create a HACI rat model. Rats were pretreated with NG-R1 (50, 100 mg/kg) or dexamethasone (4 mg/kg) for 3 days and then placed in the chamber for 48 h. The effect of NG-R1 was evaluated by changes in Electrocardiogram parameters, histopathology, cardiac biomarkers, oxidative stress and inflammatory indicators, key protein expression, and immunofluorescence. U0126 was used to verify whether the anti-apoptotic effect of NG-R1 was related to the activation of ERK pathway. Pretreatment with NG-R1 can improve abnormal cardiac electrical conduction and alleviate high-altitude-induced tachycardia. Similar to dexamethasone, NG-R1 can improve pathological damage, reduce the levels of cardiac injury biomarkers, oxidative stress, and inflammatory indicators, and down-regulate the expression of hypoxia-related proteins HIF-1α and VEGF. In addition, NG-R1 reduced cardiomyocyte apoptosis by down-regulating the expression of apoptotic proteins Bax, cleaved caspase 3, cleaved caspase 9, and cleaved PARP1 and up-regulating the expression of anti-apoptotic protein Bcl-2 through activating the ERK1/2-P90RSK-Bad pathway. In conclusion, NG-R1 prevented HACI and suppressed apoptosis via activation of the ERK1/2-P90RSK-Bad pathway, indicating that NG-R1 has therapeutic potential to treat HACI.
Collapse
Affiliation(s)
- Sijing Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Traditional Chinese Medicine, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Nan Jia
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zherui Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Caixia Pei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Demei Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Junling Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yilan Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shihua Shi
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaomin Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Mingjie Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yacong He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhenxing Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Zhan Y, Ma M, Chen Z, Ma A, Li S, Xia J, Jia Y. A Review on Extracts, Chemical Composition and Product Development of Walnut Diaphragma Juglandis Fructus. Foods 2023; 12:3379. [PMID: 37761088 PMCID: PMC10529104 DOI: 10.3390/foods12183379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Walnuts are one of the world's most important nut species and are popular for their high nutritional value, but the processing of walnuts produces numerous by-products. Among them, Diaphragma Juglandis Fructus has attracted the attention of researchers due to its complex chemical composition and diverse bioactivities. However, comprehensive reviews of extract activity and mechanistic studies, chemical composition functionality, and product types are scarce. Therefore, the aim of this review is to analyze the extracts, chemical composition, and product development of Diaphragma Juglandis Fructus. Conclusions: For extracts, the biological activities of aqueous and ethanol extracts have been studied more extensively than those of methanol extracts, but almost all of the studies have been based on crude extracts, with fewer explorations of their mechanisms. For chemical composition, the bioactivities of polyphenols and polysaccharides were more intensively studied, while other chemical constituents were at the stage of content determination. For product development, walnuts are mainly used in food and medicine, but the product range is limited. In the future, research on the bioactivity and related mechanisms of Diaphragma Juglandis Fructus can be further expanded to improve its value as a potential natural plant resource applied in multiple industries.
Collapse
Affiliation(s)
- Yuanrong Zhan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Y.Z.); (M.M.); (Z.C.); (A.M.); (S.L.)
| | - Mengge Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Y.Z.); (M.M.); (Z.C.); (A.M.); (S.L.)
| | - Zhou Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Y.Z.); (M.M.); (Z.C.); (A.M.); (S.L.)
| | - Aijin Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Y.Z.); (M.M.); (Z.C.); (A.M.); (S.L.)
| | - Siting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Y.Z.); (M.M.); (Z.C.); (A.M.); (S.L.)
| | - Junxia Xia
- Hebei Yangyuan ZhiHui Beverage Co., Ltd., Hengshui 053000, China;
- Institution of Chinese Walnut Industry, Hengshui 053000, China
- Hebei Key Laboratory of Walnut Nutritional Function and Processing Technology, Hengshui 053000, China
| | - Yingmin Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Y.Z.); (M.M.); (Z.C.); (A.M.); (S.L.)
| |
Collapse
|
10
|
Li K, Ma Y, Xia X, Huang H, Li J, Wang X, Gao Y, Zhang S, Fu T, Tong Y. Possible correlated signaling pathways with chronic urate nephropathy: A review. Medicine (Baltimore) 2023; 102:e34540. [PMID: 37565908 PMCID: PMC10419604 DOI: 10.1097/md.0000000000034540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/11/2023] [Indexed: 08/12/2023] Open
Abstract
Hyperuricemia nephropathy, also known as gouty nephropathy, refers to renal damage induced by hyperuricemia caused by excessive production of serum uric acid or low excretion of uric acid. the persistence of symptoms will lead to changes in renal tubular phenotype and accelerate the progress of renal fibrosis. The existence and progressive aggravation of symptoms will bring a heavy burden to patients, their families and society, affect their quality of life and reduce their well-being. With the increase of reports on hyperuricemia nephropathy, the importance of related signal pathways in the pathogenesis of hyperuricemia nephropathy is becoming more and more obvious, but most studies are limited to the upper and lower mediating relationship between 1 or 2 signal pathways. The research on the comprehensiveness of signal pathways and the breadth of crosstalk between signal pathways is limited. By synthesizing the research results of signal pathways related to hyperuricemia nephropathy in recent years, this paper will explore the specific mechanism of hyperuricemia nephropathy, and provide new ideas and methods for the treatment of hyperuricemia nephropathy based on a variety of signal pathway crosstalk and personal prospects.
Collapse
Affiliation(s)
- Kaiqing Li
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yanchun Ma
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xue Xia
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Huili Huang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Jianing Li
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xiaoxin Wang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yang Gao
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Shuxiang Zhang
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tong Fu
- Brandeis University, Waltham, MA
| | - Ying Tong
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
11
|
Huang KC, Chang YT, Pranata R, Cheng YH, Chen YC, Kuo PC, Huang YH, Tzen JTC, Chen RJ. Alleviation of Hyperuricemia by Strictinin in AML12 Mouse Hepatocytes Treated with Xanthine and in Mice Treated with Potassium Oxonate. BIOLOGY 2023; 12:biology12020329. [PMID: 36829604 PMCID: PMC9953564 DOI: 10.3390/biology12020329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
Hyperuricemia, an abnormally high level of blood uric acid, is a major risk factor for gout. Although xanthine oxidase inhibitors were clinically used to lower blood uric acid level, the concerned side effects restricted their utilization. In this study, strictinin, an abundant polyphenol in Pu'er tea, was evaluated for its preventive effects on hyperuricemia. The results showed that the xanthine oxidase activity, uric acid production, and inflammation in AML12 mouse hepatocytes treated with xanthine were significantly reduced by the supplementation of strictinin. Detailed analyses revealed that strictinin inhibited xanthine-induced NLRP3 inflammasome activation. Consistently, the elevated blood uric acid level and the enhanced xanthine oxidase activity in mice treated with potassium oxonate were effectively diminished by strictinin supplementation. Moreover, for the first time, strictinin was found to promote healthy gut microbiota. Overall, strictinin possesses a great potential to be utilized as a functional ingredient for the prevention of hyperuricemia.
Collapse
Affiliation(s)
- Kuo-Ching Huang
- Division of Nephrology, Department of Internal Medicine, Chi Mei Hospital, Tainan 736, Taiwan
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Yu-Ting Chang
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Rosita Pranata
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Yung-Hsuan Cheng
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Yu-Chi Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung 824, Taiwan
| | - Ping-Chung Kuo
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Yi-Hsuan Huang
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Jason T. C. Tzen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: (J.T.C.T.); (R.-J.C.)
| | - Rong-Jane Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Correspondence: (J.T.C.T.); (R.-J.C.)
| |
Collapse
|
12
|
Li Q, Liu P, Wu C, Bai L, Zhang Z, Bao Z, Zou M, Ren Z, Yuan L, Liao M, Lan Z, Yin S, Chen L. Integrating network pharmacology and pharmacological validation to explore the effect of Shi Wei Ru Xiang powder on suppressing hyperuricemia. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115679. [PMID: 36058481 DOI: 10.1016/j.jep.2022.115679] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shi Wei Ru Xiang powder (SWR) is a traditional Tibetan medicinal formula with the effect of dispelling dampness and dispersing cold. In clinical practice, SWR is generally used for the treatment of hyperuricemia (HUA). However, its exact pharmacological mechanism remains unclear. AIMS OF THE STUDY To preliminarily elucidate the regulatory effects and possible mechanisms of SWR on hyperuricemia using network pharmacology and experimental validation. MATERIALS AND METHODS A mouse model of hyperuricemia was used to evaluate the alleviating effect of SWR on hyperuricemia. The major components of SWR were acquired by UPLC-Q/TOF-MS. The potential molecular targets and associated signaling pathways were predicted through network pharmacology. The mechanism of action of SWR in ameliorating hyperuricemia was further investigated by pharmacological evaluation. RESULTS Mice with hyperuricemia and renal dysfunction were ameliorated by SWR. The 36 components of SWR included phenolic acids, terpenoids, alkaloids and flavonoids were identified. Network pharmacological analysis showed the involvement of the above compounds, and 115 targets were involved to treat hyperuricemia, involving multiple biological processes and different signaling pathways. Pharmacological experiments validated that SWR ameliorated hyperuricemic nephropathy in mice by modulating the mitogen-activated protein kinase (MAPK) signaling pathway, nuclear factor kappaB (NF-κB) signaling pathway and NOD-like receptor signaling pathway. CONCLUSION MAPK signaling pathway, NF-κB signaling pathway and NOD-like receptor signaling pathway play important roles in the therapeutic effects of SWR on hyperuricemia.
Collapse
Affiliation(s)
- Qiang Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Peng Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Chen Wu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Lijie Bai
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Zhongyun Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Zilu Bao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Min Zou
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Zhaoxiang Ren
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Lin Yuan
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Maochuan Liao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Zhou Lan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Shijin Yin
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China.
| | - Lvyi Chen
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China.
| |
Collapse
|
13
|
Yin N, Li X, Liu W, Qi Y, Wu R, Li Z, Ying S, Yang H, Gu Q, Wu Z, Zou N, Duan W, Peng J, Wan C. Jian Pi Shen Shi formula alleviates hyperuricemia and related renal fibrosis in uricase-deficient rats via suppression of the collagen-binding pathway. Int J Rheum Dis 2022; 25:1395-1407. [PMID: 36082436 DOI: 10.1111/1756-185x.14434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/17/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022]
Abstract
AIM Jian Pi Shen Shi Formula (JPSSF) is a beneficial treatment for hyperuricemia and related tissue damage in the clinical setting. This study was designed to investigate its therapeutic potential and underlying mechanisms in uricase-deficient rats (Uox-/- rats). METHODS Uox-/- rats were used to assess the therapeutic potential of JPSSF on hyperuricemia. Protein extracts from renal tissues of a Uox-/- group and a JPSSF group were analyzed using tandem mass tag labeling quantitative proteomic workflow. Collagen deposition in Uox-/- rat kidneys was analyzed by Masson trichromatic staining. The gene expression associated with collagen-binding-related signaling pathways in the kidneys was further explored using quantitative polymerase chain reaction assay. The protein expressions of collagen 1a1 (col1a1), col6a1, and α-smooth muscle actin were measured by Western blotting and immunohistochemistry. RESULTS JPSSF significantly decreased renal function indices and alleviated renal injuries. The action of JPSSF was manifested by down-regulation of col6a1 and interleukin-1 receptor-associated kinase-like 2, which blocked the binding sites on collagen and further prevented kidney injury. The anti-renal fibrosis effect of JPSSF was confirmed by reducing the collagen deposition and hydroxyproline concentrations. JPSSF treatment also intensely down-regulated the mRNA and protein expressions of col6a1, col1a1, and α-smooth muscle actin, which inhibited the function of the collagen-binding-related signaling pathway. CONCLUSION Our results indicated that JPSSF notably ameliorated hyperuricemia and related renal fibrosis in Uox-/- rats through lowering uric acid and down-regulating the function of the collagen-binding pathway. This suggested that JPSSF is a potential empirical formula for treating hyperuricemia and accompanying renal fibrosis.
Collapse
Affiliation(s)
- Na Yin
- School of Clinical Medicine and School of Pharmacy, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Xiaosi Li
- School of Clinical Medicine and School of Pharmacy, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Weichao Liu
- School of Clinical Medicine and School of Pharmacy, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yan Qi
- School of Clinical Medicine and School of Pharmacy, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Runfang Wu
- School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Zhaofu Li
- School of Clinical Medicine and School of Pharmacy, Yunnan University of Traditional Chinese Medicine, Kunming, China.,School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Sai Ying
- School of Clinical Medicine and School of Pharmacy, Yunnan University of Traditional Chinese Medicine, Kunming, China.,School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Haihao Yang
- School of Clinical Medicine and School of Pharmacy, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Qianlan Gu
- School of Clinical Medicine and School of Pharmacy, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Zhao Wu
- School of Clinical Medicine and School of Pharmacy, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Nanting Zou
- School of Clinical Medicine and School of Pharmacy, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Weigang Duan
- School of Clinical Medicine and School of Pharmacy, Yunnan University of Traditional Chinese Medicine, Kunming, China.,School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Jiangyun Peng
- School of Clinical Medicine and School of Pharmacy, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Chunping Wan
- School of Clinical Medicine and School of Pharmacy, Yunnan University of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
14
|
Hu L, Ding M, He W. Emerging Therapeutic Strategies for Attenuating Tubular EMT and Kidney Fibrosis by Targeting Wnt/β-Catenin Signaling. Front Pharmacol 2022; 12:830340. [PMID: 35082683 PMCID: PMC8784548 DOI: 10.3389/fphar.2021.830340] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/20/2021] [Indexed: 12/25/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is defined as a process in which differentiated epithelial cells undergo phenotypic transformation into myofibroblasts capable of producing extracellular matrix, and is generally regarded as an integral part of fibrogenesis after tissue injury. Although there is evidence that the complete EMT of tubular epithelial cells (TECs) is not a major contributor to interstitial myofibroblasts in kidney fibrosis, the partial EMT, a status that damaged TECs remain inside tubules, and co-express both epithelial and mesenchymal markers, has been demonstrated to be a crucial stage for intensifying fibrogenesis in the interstitium. The process of tubular EMT is governed by multiple intracellular pathways, among which Wnt/β-catenin signaling is considered to be essential mainly because it controls the transcriptome associated with EMT, making it a potential therapeutic target against kidney fibrosis. A growing body of data suggest that reducing the hyperactivity of Wnt/β-catenin by natural compounds, specific inhibitors, or manipulation of genes expression attenuates tubular EMT, and interstitial fibrogenesis in the TECs cultured under profibrotic environments and in animal models of kidney fibrosis. These emerging therapeutic strategies in basic researches may provide beneficial ideas for clinical prevention and treatment of chronic kidney disease.
Collapse
Affiliation(s)
- Lichao Hu
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Mengyuan Ding
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Weichun He
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Zou W, Shi B, Zeng T, Zhang Y, Huang B, Ouyang B, Cai Z, Liu M. Drug Transporters in the Kidney: Perspectives on Species Differences, Disease Status, and Molecular Docking. Front Pharmacol 2021; 12:746208. [PMID: 34912216 PMCID: PMC8666590 DOI: 10.3389/fphar.2021.746208] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/27/2021] [Indexed: 01/09/2023] Open
Abstract
The kidneys are a pair of important organs that excretes endogenous waste and exogenous biological agents from the body. Numerous transporters are involved in the excretion process. The levels of these transporters could affect the pharmacokinetics of many drugs, such as organic anion drugs, organic cationic drugs, and peptide drugs. Eleven drug transporters in the kidney (OAT1, OAT3, OATP4C1, OCT2, MDR1, BCRP, MATE1, MATE2-K, OAT4, MRP2, and MRP4) have become necessary research items in the development of innovative drugs. However, the levels of these transporters vary between different species, sex-genders, ages, and disease statuses, which may lead to different pharmacokinetics of drugs. Here, we review the differences of the important transports in the mentioned conditions, in order to help clinicians to improve clinical prescriptions for patients. To predict drug-drug interactions (DDIs) caused by renal drug transporters, the molecular docking method is used for rapid screening of substrates or inhibitors of the drug transporters. Here, we review a large number of natural products that represent potential substrates and/or inhibitors of transporters by the molecular docking method.
Collapse
Affiliation(s)
- Wei Zou
- Changsha Research and Development Center on Obstetric and Gynecologic Traditional Chinese Medicine Preparation, NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Birui Shi
- Biopharmaceutics, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Ting Zeng
- Changsha Research and Development Center on Obstetric and Gynecologic Traditional Chinese Medicine Preparation, NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Yan Zhang
- Biopharmaceutics, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Baolin Huang
- Biopharmaceutics, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Bo Ouyang
- Changsha Research and Development Center on Obstetric and Gynecologic Traditional Chinese Medicine Preparation, NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Zheng Cai
- Biopharmaceutics, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,TCM-Integrated Hospital, Southern Medical University, Guangzhou, China
| | - Menghua Liu
- Biopharmaceutics, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,TCM-Integrated Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Pan J, Shi M, Guo F, Ma L, Fu P. Pharmacologic inhibiting STAT3 delays the progression of kidney fibrosis in hyperuricemia-induced chronic kidney disease. Life Sci 2021; 285:119946. [PMID: 34516993 DOI: 10.1016/j.lfs.2021.119946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/22/2021] [Accepted: 09/03/2021] [Indexed: 02/08/2023]
Abstract
AIMS Kidney fibrosis is a histological hallmark of chronic kidney disease (CKD), where hyperuricemia is a key independent risk factor. Considerable evidence indicated that STAT3 is one of the crucial signaling pathways in the progression of kidney fibrosis. Here, we investigated that pharmacological blockade of STAT3 delayed the progression of renal fibrosis in hyperuricemia-induced CKD. MAIN METHODS In the study, we used the mixture of adenine and potassium oxonate to perform kidney injury and fibrosis in hyperuricemic mice, accompanied by STAT3 activation in tubular and interstitial cells. KEY FINDINGS Treatment with STAT3 inhibitor S3I-201 improved renal dysfunction, reduced serum uric acid level, and delayed the progression of kidney fibrosis. Furthermore, S3I-201 could suppress fibrotic signaling pathway of TGF-β/Smads, JAK/STAT and NF-κB, as well as inhibit the expression of multiple profibrogenic cytokines/chemokines in the kidneys of hyperuricemic mice. SIGNIFICANCE These data suggested that STAT3 inhibition was a potent anti-fibrotic strategy in hyperuricemia-related CKD.
Collapse
Affiliation(s)
- Jing Pan
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China; Department of Thoracic Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Min Shi
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Fan Guo
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Liang Ma
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Ping Fu
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
17
|
Dopkins N, Neameh WH, Hall A, Lai Y, Rutkovsky A, Gandy AO, Lu K, Nagarkatti PS, Nagarkatti M. Effects of Acute 2,3,7,8-Tetrachlorodibenzo-p-Dioxin Exposure on the Circulating and Cecal Metabolome Profile. Int J Mol Sci 2021; 22:11801. [PMID: 34769237 PMCID: PMC8583798 DOI: 10.3390/ijms222111801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a polyhalogenated planar hydrocarbon belonging to a group of highly toxic and persistent environmental contaminants known as "dioxins". TCDD is an animal teratogen and carcinogen that is well characterized for causing immunosuppression through activation of aryl hydrocarbon receptor (AHR). In this study, we investigated the effect of exposure of mice to an acute dose of TCDD on the metabolic profile within the serum and cecal contents to better define the effects of TCDD on host physiology. Our findings demonstrated that within the circulating metabolome following acute TCDD exposure, there was significant dysregulation in the metabolism of bioactive lipids, amino acids, and carbohydrates when compared with the vehicle (VEH)-treated mice. These widespread changes in metabolite abundance were identified to regulate host immunity via modulating nuclear factor-kappa B (NF-κB) and extracellular signal-regulated protein kinase (ERK1/2) activity and work as biomarkers for a variety of organ injuries and dysfunctions that follow TCDD exposure. Within the cecal content of mice exposed to TCDD, we were able to detect changes in inflammatory markers that regulate NF-κB, markers of injury-related inflammation, and changes in lysine degradation, nicotinamide metabolism, and butanoate metabolism, which collectively suggested an immediate suppression of broad-scale metabolic processes in the gastrointestinal tract. Collectively, these results demonstrate that acute TCDD exposure results in immediate irregularities in the circulating and intestinal metabolome, which likely contribute to TCDD toxicity and can be used as biomarkers for the early detection of individual exposure.
Collapse
Affiliation(s)
- Nicholas Dopkins
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Wurood Hantoosh Neameh
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Alina Hall
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Yunjia Lai
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Alex Rutkovsky
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Alexa Orr Gandy
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Prakash S Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| |
Collapse
|
18
|
Li L, Cheng D, An X, Liao G, Zhong L, Liu J, Chen Y, Yuan Y, Lu Y. Mesenchymal stem cells transplantation attenuates hyperuricemic nephropathy in rats. Int Immunopharmacol 2021; 99:108000. [PMID: 34352566 DOI: 10.1016/j.intimp.2021.108000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/05/2021] [Accepted: 07/18/2021] [Indexed: 02/05/2023]
Abstract
Mesenchymal stem cells (MSCs), due to their multi-directional differentiation, paracrine and immunomodulation potentials, and the capacity of homing to target organ, have been reported to facilitate regeneration and repair of kidney and improve kidney function in acute or chronic kidney injury. The present study was aimed to evaluate whether MSCs could have a protective effect in hyperuricemic nephropathy (HN) and the underlying mechanisms. A rat HN model was established by oral administration of a mixture of potassium oxonate (PO, 1.5 g/kg) and adenine (Ad, 50 mg/kg) daily for 4 weeks. For MSCs treatment, MSCs (3 × 106 cells/kg per week) were injected via tail vein from the 2nd week for 3 times. The results showed that along with the elevated uric acid (UA) in HN rats, creatinine (CREA), blood urea nitrogen (BUN), microalbuminuria (MAU) and 24-hour urinary protein levels were significantly increased comparing with the normal control rats, while decreased after MSCs treatment. Moreover, the mRNA levels of inflammation and fibrosis-related gene were reduced in UA + MSCs group. Consistently, hematoxylin-eosin (HE) staining results showed the destruction of kidney structure and fibrosis were significantly alleviated after MSCs administration. Similarly, in vitro, NRK-52Es cells were treated with high concentration UA (10 mg/dL) in the presence of MSCs, and we found that MSCs co-culture could inhibited UA-induced cell injury, characterized as improvement of cell viability and proliferation, inhibition of apoptosis, inflammation, and fibrosis. Collectively, MSCs treatment could effectively attenuate UA-induced renal injury, and thus it might be a potential therapy to hyperuricemia-related renal diseases.
Collapse
Affiliation(s)
- Lan Li
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Dongqi Cheng
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xingxing An
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China; Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Guangneng Liao
- Experimental Animal Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Zhong
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China; Department of Clinical and Experimental Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jingping Liu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Younan Chen
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yujia Yuan
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
19
|
Su Y, Hu L, Wang Y, Ying G, Ma C, Wei J. The Rho kinase signaling pathway participates in tubular mitochondrial oxidative injury and apoptosis in uric acid nephropathy. J Int Med Res 2021; 49:3000605211021752. [PMID: 34167354 PMCID: PMC8236795 DOI: 10.1177/03000605211021752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Introduction Oxidative stress is a pathologic feature of hyperuricemia that is highly prevalent and that contributes to kidney tubular interstitial fibrosis. Rho-kinase is closely related to mitochondrial-induced oxidative stress. Herein, we designed a study to explore the expression and role of Rho-kinase in hyperuricemia nephropathy. The secondary objective was to investigate whether the Rho-kinase signaling pathway regulates hyperuricemic tubular oxidative injury and apoptosis via the mitochondrial pathway in addition to the mechanisms that are involved. Materials and methods HK-2 cells were divided into the following five groups: normal; uric acid (UA); UA+Fasudil; UA+ROCK1 si-RNA; and UA+sc-siRNA. Rho-kinase activity, mitochondrial oxidative injury, and apoptosis-related protein levels were measured in each group. A t-test was used to analyze the difference between groups. Results Myosin phosphatase target subunit 1 (MYPT1) overexpression was shown in HK-2 cells, which was caused by UA. High concentrations of UA also up-regulated Rho-kinase expression and mitochondrial and apoptosis-related protein expression, while treatment with fasudil and ROCK1 si-RNA significantly attenuated these responses. Conclusion The Rho-kinase signaling pathway participates in tubular mitochondrial oxidative injury and apoptosis via regulating mitochondrial dyneins/biogenic genes in UA nephropathy, which suggests that the mitochondrial pathway might be a potential therapeutic target for hyperuricemia nephropathy.
Collapse
Affiliation(s)
- Yan Su
- Department of Nephrology, Hainan Affiliated Hospital of Hainan Medical College, Hainan, Haikou, China
| | - Langtao Hu
- Department of Nephrology, Hainan Affiliated Hospital of Hainan Medical College, Hainan, Haikou, China
| | - Yanni Wang
- Department of Nephrology, Hainan Affiliated Hospital of Hainan Medical College, Hainan, Haikou, China
| | - Gangqiang Ying
- Department of Nephrology, Hainan Affiliated Hospital of Hainan Medical College, Hainan, Haikou, China
| | - Chunyang Ma
- Department of Neurosurgery, First Affiliated Hospital of Hainan Medical College, Hainan, Haikou, China
| | - Jiali Wei
- Department of Nephrology, Hainan Affiliated Hospital of Hainan Medical College, Hainan, Haikou, China.,Department of Nephrology, Hainan General Hospital, Hainan, Haikou, China
| |
Collapse
|
20
|
Xiong C, Deng J, Wang X, Shao X, Zhou Q, Zou H, Zhuang S. Pharmacologic Targeting of BET Proteins Attenuates Hyperuricemic Nephropathy in Rats. Front Pharmacol 2021; 12:636154. [PMID: 33664670 PMCID: PMC7921804 DOI: 10.3389/fphar.2021.636154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/18/2021] [Indexed: 12/14/2022] Open
Abstract
Hyperuricemia is an independent risk factor for renal damage and promotes the progression of chronic kidney disease. In this study, we investigated the effect of I-BET151, a small-molecule inhibitor targeting the bromodomain and extraterminal (BET) proteins, on the development of hyperuricemic nephropathy (HN), and the mechanisms involved. Expression levels of bromodomain-containing protein 2 and 4, but not 3 were increased in the kidney of rats with HN; administration of I-BET151 effectively prevented renal dysfunction, decreased urine microalbumin, and attenuated renal fibrosis as indicated by reduced activation of renal interstitial fibroblasts and expression of fibronectin and collagen I in HN rats. Mechanistic studies show that I-BET151 treatment inhibited transition of renal epithelial cells to a mesenchymal cell type as evidenced by preservation of E-cadherin and reduction of vimentin expression. This was coincident with reduced expression of TGF-β1 and dephosphorylation of Smad3 and ERK1/2. I-BET151 was also effective in inhibiting phosphorylation of NF-κB, expression of multiple cytokines and chemokines, and infiltration of macrophages to the injured kidney. Although there were increased serum levels of uric acid and xanthine oxidase, an enzyme that catalyzes production of uric acid, and decreased expression of renal organic anion transporter 1 and 3 that promote urate excretion in the model of HN, and reduced expression levels of urine uric acid, I-BET151 treatment did not affect these responses. Collectively, our results indicate that I-BET151 alleviates HN by inhibiting epithelial to mesenchymal transition and inflammation in association with blockade of TGF-β, ERK1/2 and NF-κB signaling.
Collapse
Affiliation(s)
- Chongxiang Xiong
- Department of Nephrology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jin Deng
- Department of Nephrology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xin Wang
- Department of Nephrology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xiaofei Shao
- Department of Nephrology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Qin Zhou
- Department of Nephrology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hequn Zou
- Department of Nephrology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Alpert Medical School and Rhode Island Hospital, Brown University, Providence, RI, United States
| |
Collapse
|
21
|
The roles of NLRP3 inflammasome-mediated signaling pathways in hyperuricemic nephropathy. Mol Cell Biochem 2021; 476:1377-1386. [PMID: 33389490 DOI: 10.1007/s11010-020-03997-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023]
Abstract
Hyperuricemic nephropathy (HN) is a common clinical complication of hyperuricemia. High-serum uric acid can trigger renal inflammation. The inflammasome family has several members and shows a significant effect on inflammatory responses. NLRP3 (NOD-, LRR-, and pyrin domain-containing 3) senses the stimuli signal of excessive uric acid and then it recruits apoptosis-related specular protein (ASC) as well as aspartic acid-specific cysteine protease (caspase)-1 precursor to form NLRP3 inflammasome. NLRP3 inflammasome is activated in acute kidney injury (AKI), chronic kidney diseases (CKD), diabetic nephropathy (DN), and HN. This review focuses on important role for the involvement of NLRP3 inflammasome and associated signaling pathways in the pathogenesis of hyperuricemia-induced renal injury and the potential therapeutic implications. Additionally, several inhibitors targeting NLRP3 inflammasome are under development, most of them for experiment. Therefore, researches into NLRP3 inflammasome modulators may provide novel therapies for HN.
Collapse
|
22
|
Balakumar P, Alqahtani A, Khan NA, Mahadevan N, Dhanaraj SA. Mechanistic insights into hyperuricemia-associated renal abnormalities with special emphasis on epithelial-to-mesenchymal transition: Pathologic implications and putative pharmacologic targets. Pharmacol Res 2020; 161:105209. [DOI: 10.1016/j.phrs.2020.105209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 02/07/2023]
|
23
|
Pan J, Shi M, Ma L, Fu P. Mechanistic Insights of Soluble Uric Acid-related Kidney Disease. Curr Med Chem 2020; 27:5056-5066. [PMID: 30526453 DOI: 10.2174/0929867326666181211094421] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/21/2018] [Accepted: 12/03/2018] [Indexed: 02/07/2023]
Abstract
Hyperuricemia, defined as the presence of elevated serum uric acid (sUA), could lead to urate deposit in joints, tendons, kidney and other tissues. Hyperuricemia as an independent risk factor was common in patients during the causation and progression of kidney disease. Uric acid is a soluble final product of endogenous and dietary purine metabolism, which is freely filtered in kidney glomeruli where approximately 90% of filtered uric acid is reabsorbed. Considerable studies have demonstrated that soluble uric acid was involved in the pathophysiology of renal arteriolopathy, tubule injury, tubulointerstitial fibrosis, as well as glomerular hypertrophy and glomerulosclerosis. In the review, we summarized the mechanistic insights of soluble uric acid related renal diseases.
Collapse
Affiliation(s)
- Jing Pan
- Kidney Research Laboratory, Division of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Min Shi
- Kidney Research Laboratory, Division of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Liang Ma
- Kidney Research Laboratory, Division of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ping Fu
- Kidney Research Laboratory, Division of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
24
|
Shi Y, Tao M, Ma X, Hu Y, Huang G, Qiu A, Zhuang S, Liu N. Delayed treatment with an autophagy inhibitor 3-MA alleviates the progression of hyperuricemic nephropathy. Cell Death Dis 2020; 11:467. [PMID: 32555189 PMCID: PMC7298642 DOI: 10.1038/s41419-020-2673-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023]
Abstract
Autophagy is a cell self-renewal process that relies on the degradation of the cytoplasmic proteins or organelles of lysosomes and is associated with development of numerous diseases. However, the therapeutic effect of autophagy inhibition on hyperuricemic nephropathy (HN) and the underlying mechanisms are still unknown. Here, we investigated the effect of delayed treatment with 3-methyladenine (3-MA), a specific autophagy inhibitor, on the development of HN in a rat model. Administration of 3-MA at 21 days following after uric acid injury protected kidney from hyperuricemic-related injuries, as demonstrated by improving renal dysfunction and architecture damage, blocking Beclin-1 and LC3II/I and decreasing the number of autophagic vacuoles. Late treatment with 3-MA was also effective in attenuating renal fibrosis as evidenced by reducing ECM protein deposition, blocking epithelial-to-mesenchymal transition (EMT) and decreasing the number of renal epithelial cells arrested at the G2/M phase of cell cycle. Injury to the kidney resulted in increased expression of TGFβ receptor I, and phosphorylation of Smad3, 3-MA significantly abrogated all these responses. Moreover, inhibition of autophagy suppressed mitochondrial fission, downregulated the expression of Dynamin-related protein 1 (Drp-1), Cofilin and F-actin, and alleviated cell apoptosis. Finally, 3-MA effectively blocked STAT3 and NF-κB phosphorylation and suppressed infiltration of macrophages and lymphocytes as well as release of multiple profibrogenic cytokines/chemokines in the injured kidney. Taken together, these findings indicate that hyperuricemia-induced autophagy is critically involved in the activation of renal fibroblasts, EMT, mitochondrial fission and apoptosis of tubular epithelial cells and development of renal fibrosis. Thus, this study provides evidence for autophagy inhibitors as the treatment of HN patients.
Collapse
Affiliation(s)
- Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Min Tao
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyan Ma
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Hu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guansen Huang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Andong Qiu
- School of Life Science and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
25
|
Wang X, Deng J, Xiong C, Chen H, Zhou Q, Xia Y, Shao X, Zou H. Treatment with a PPAR-γ Agonist Protects Against Hyperuricemic Nephropathy in a Rat Model. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2221-2233. [PMID: 32606592 PMCID: PMC7292262 DOI: 10.2147/dddt.s247091] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/15/2020] [Indexed: 12/15/2022]
Abstract
Purpose Hyperuricemia is an independent risk factor for renal damage and can promote the progression of chronic kidney disease (CKD). In the present study, we employ a rat model to investigate the effects of rosiglitazone (RGTZ), a peroxisome proliferator-activated receptor-gamma agonist, on the development of hyperuricemic nephropathy (HN), and we elucidate the mechanisms involved. Methods An HN rat model was established by oral administration of a mixture of adenine and potassium oxonate daily for 3 weeks. Twenty-four rats were divided into 4 groups: sham treatment, sham treatment plus RGTZ, HN, and HN treated with RGTZ. Results Administration of RGTZ effectively preserved renal function, decreased urine microalbumin, and inhibited interstitial fibrosis and macrophage infiltration in a rat HN model. RGTZ treatment also inhibited TGF-β and NF-κB pathway activation, decreased expression of fibronectin, collagen I, α-SMA, vimentin, MCP-1, RANTES, TNF-α, and IL-1β, and increased E-cadherin expression in the kidneys of HN rats. Furthermore, RGTZ treatment preserved expression of OAT1 and OAT3 in the kidney of HN rats. Conclusion RGTZ attenuates the progression of HN through inhibiting TGF-β signaling, suppressing epithelial-to-mesenchymal transition, reducing inflammation, and lowering serum uric acid levels by preserving expression of urate transporters.
Collapse
Affiliation(s)
- Xin Wang
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jin Deng
- Department of Nephrology, The First Affiliated Hospital of University of South China, Hengyang, People's Republic of China
| | - Chongxiang Xiong
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Haishan Chen
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Qin Zhou
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yue Xia
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Xiaofei Shao
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Hequn Zou
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
26
|
Zerdoum AB, Fowler EW, Jia X. Induction of Fibrogenic Phenotype in Human Mesenchymal Stem Cells by Connective Tissue Growth Factor in a Hydrogel Model of Soft Connective Tissue. ACS Biomater Sci Eng 2019; 5:4531-4541. [PMID: 33178886 PMCID: PMC7654958 DOI: 10.1021/acsbiomaterials.9b00425] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Scar formation is the typical endpoint of wound healing in adult mammalian tissues. An overactive or prolonged fibrogenic response following injury leads to excessive deposition of fibrotic proteins that promote tissue contraction and scar formation. Although well-defined in the dermal tissue, the progression of fibrosis is less explored in other connective tissues, such as the vocal fold. To establish a physiologically relevant 3D model of loose connective tissue fibrosis, we have developed a synthetic extracellular matrix using hyaluronic acid (HA) and peptidic building blocks carrying complementary functional groups. The resultant network was cell adhesive and protease degradable, exhibiting viscoelastic properties similar to the human vocal fold. Human mesenchymal stem cells (hMSCs) were encapsulated in the HA matrix as single cells or multicellular aggregates and cultured in pro-fibrotic media containing connective tissue growth factor (CTGF) for up to 21 days. hMSCs treated with CTGF-supplemented media exhibited an increased expression of fibrogenic markers and ECM proteins associated with scarring. Incorporation of α-smooth muscle actin into F-actin stress fibers was also observed. Furthermore, CTGF treatment increased the migratory capacity of hMSCs as compared to the CTGF-free control groups, indicative of the development of a myofibroblast phenotype. Addition of an inhibitor of the mitogen-activated protein kinase (MAPK) pathway attenuated cellular expression of fibrotic markers and related ECM proteins. Overall, this study demonstrates that CTGF promotes the development of a fibrogenic phenotype in hMSCs encapsulated within an HA matrix and that the MAPK pathway is a potential target for future therapeutic endeavors towards limiting scar formation in loose connective tissues.
Collapse
Affiliation(s)
- Aidan B. Zerdoum
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Eric W. Fowler
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Xinqiao Jia
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| |
Collapse
|
27
|
Tao M, Shi Y, Tang L, Wang Y, Fang L, Jiang W, Lin T, Qiu A, Zhuang S, Liu N. Blockade of ERK1/2 by U0126 alleviates uric acid-induced EMT and tubular cell injury in rats with hyperuricemic nephropathy. Am J Physiol Renal Physiol 2019; 316:F660-F673. [PMID: 30648910 DOI: 10.1152/ajprenal.00480.2018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Extracellular signal-regulated kinases 1 and 2 (ERK1/2) are serine/threonine kinases and function as regulators of cellular proliferation and differentiation. Recently, we demonstrated that inhibition of ERK1/2 alleviates the development and progression of hyperuricemia nephropathy (HN). However, its potential roles in uric acid-induced tubular epithelial-mesenchymal transition (EMT) and tubular epithelial cell injury are unknown. In this study, we showed that hyperuricemic injury induced EMT as characterized by downregulation of E-cadherin and upregulation of vimentin and Snail1 in a rat model of HN. This was coincident with epithelial cells arrested at the G2/M phase of cell cycle, activation of Notch1/Jagged-1 and Wnt/β-catenin signaling pathways, and upregulation of matrix metalloproteinase-2 (MMP-2) and MMP-9. Administration of U0126, a selective inhibitor of ERK1/2, blocked all these responses. U0126 was also effective in inhibiting renal tubular cell injury, as shown by decreased expression of lipocalin-2 and kidney injury molecule-1 and active forms of caspase-3. U0126 or ERK1/2 siRNA can inhibit tubular cell EMT and cell apoptosis as characterized with decreased expression of cleaved caspase-3. Moreover, ERK1/2 inhibition suppressed hyperuricemic injury-induced oxidative stress as indicated by decreased malondialdehyde and increased superoxide dismutase. Collectively, ERK1/2 inhibition-elicited renal protection is associated with inhibition of EMT through inactivation of multiple signaling pathways and matrix metalloproteinases, as well as attenuation of renal tubule injury by enhancing cellular resistance to oxidative stress.
Collapse
Affiliation(s)
- Min Tao
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Lunxian Tang
- Emergency Department of Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Yi Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Lu Fang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Wei Jiang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Tao Lin
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Andong Qiu
- School of Life Science and Technology, Advanced Institute of Translational Medicine, Tongji University , Shanghai , China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University , Providence, Rhode Island
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| |
Collapse
|
28
|
Pterostilbene, a bioactive component of blueberries, alleviates renal fibrosis in a severe mouse model of hyperuricemic nephropathy. Biomed Pharmacother 2019; 109:1802-1808. [DOI: 10.1016/j.biopha.2018.11.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/23/2018] [Accepted: 11/06/2018] [Indexed: 11/20/2022] Open
|
29
|
Shi Y, Xu L, Tao M, Fang L, Lu J, Gu H, Ma S, Lin T, Wang Y, Bao W, Qiu A, Zhuang S, Liu N. Blockade of enhancer of zeste homolog 2 alleviates renal injury associated with hyperuricemia. Am J Physiol Renal Physiol 2018; 316:F488-F505. [PMID: 30566000 DOI: 10.1152/ajprenal.00234.2018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hyperuricemia has been identified as an independent risk factor for chronic kidney disease (CKD) and is associated with the progression of kidney diseases. It remains unknown whether enhancer of zeste homolog 2 (EZH2), a histone H3 lysine 27 methyltransferase, can regulate metabolism of serum uric acid and progression of renal injury induced by hyperuricemia. In this study, we demonstrated that blockade of EZH2 with 3-DZNeP, a selective EZH2 inhibitor, or silencing of EZH2 with siRNA inhibited uric acid-induced renal fibroblast activation and phosphorylation of Smad3, epidermal growth factor receptor (EGFR), and extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) in cultured renal fibroblasts. Inhibition of EZH2 also suppressed proliferation of renal fibroblasts and epithelial-mesenchymal transition of tubular cells. In a mouse model of renal injury induced by hyperuricemia, EZH2 and trimethylation of histone H3 at lysine27 expression levels were enhanced, which was coincident with renal damage and increased expression of lipocalin-2 and cleaved caspase-3. Inhibition of EZH2 with 3-DZNeP blocked all these responses. Furthermore, 3-DZNeP treatment decreased the level of serum uric acid and xanthine oxidase activity, alleviated renal interstitial fibrosis, inhibited activation of transforming growth factor-β/Smad3, EGFR/ERK1/2, and nuclear factor-κB signaling pathways, as well as reduced expression of multiple chemokines/cytokines. Collectively, EZH2 inhibition can reduce the level of serum uric acid and alleviate renal injury and fibrosis through a mechanism associated with inhibition of multiple signaling pathways. Targeting EZH2 may be a novel strategy for the treatment of hyperuricemia-induced CKD.
Collapse
Affiliation(s)
- Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Liuqing Xu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Min Tao
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Lu Fang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Jiasun Lu
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Hongwei Gu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Shuchen Ma
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Tao Lin
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Yi Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Wenfang Bao
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Andong Qiu
- School of Life Science and Technology, Advanced Institute of Translational Medicine, Tongji University , Shanghai , China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University , Providence, Rhode Island
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| |
Collapse
|
30
|
Andrikopoulos P, Kieswich J, Pacheco S, Nadarajah L, Harwood SM, O'Riordan CE, Thiemermann C, Yaqoob MM. The MEK Inhibitor Trametinib Ameliorates Kidney Fibrosis by Suppressing ERK1/2 and mTORC1 Signaling. J Am Soc Nephrol 2018; 30:33-49. [PMID: 30530834 DOI: 10.1681/asn.2018020209] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 10/13/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND During kidney fibrosis, a hallmark and promoter of CKD (regardless of the underlying renal disorder leading to CKD), the extracellular-regulated kinase 1/2 (ERK1/2) pathway, is activated and has been implicated in the detrimental differentiation and expansion of kidney fibroblasts. An ERK1/2 pathway inhibitor, trametinib, is currently used in the treatment of melanoma, but its efficacy in the setting of CKD and renal fibrosis has not been explored. METHODS We investigated whether trametinib has antifibrotic effects in two mouse models of renal fibrosis-mice subjected to unilateral ureteral obstruction (UUO) or fed an adenine-rich diet-as well as in cultured primary human fibroblasts. We also used immunoblot analysis, immunohistochemical staining, and other tools to study underlying molecular mechanisms for antifibrotic effects. RESULTS Trametinib significantly attenuated collagen deposition and myofibroblast differentiation and expansion in UUO and adenine-fed mice. We also discovered that in injured kidneys, inhibition of the ERK1/2 pathway by trametinib ameliorated mammalian target of rapamycin complex 1 (mTORC1) activation, another key profibrotic signaling pathway. Trametinib also inhibited the ERK1/2 pathway in cultured primary human renal fibroblasts stimulated by application of TGF-β1, the major profibrotic cytokine, thereby suppressing downstream mTORC1 pathway activation. Additionally, trametinib reduced the expression of myofibroblast marker α-smooth muscle actin and the proliferation of renal fibroblasts, corroborating our in vivo data. Crucially, trametinib also significantly ameliorated renal fibrosis progression when administered to animals subsequent to myofibroblast activation. CONCLUSIONS Further study of trametinib as a potential candidate for the treatment of chronic renal fibrotic diseases of diverse etiologies is warranted.
Collapse
Affiliation(s)
- Petros Andrikopoulos
- Diabetic Kidney Disease Centre, Renal Unit, Barts Health National Health Service Trust, The Royal London Hospital, London, UK; and .,Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Julius Kieswich
- Diabetic Kidney Disease Centre, Renal Unit, Barts Health National Health Service Trust, The Royal London Hospital, London, UK; and.,Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sabrina Pacheco
- Diabetic Kidney Disease Centre, Renal Unit, Barts Health National Health Service Trust, The Royal London Hospital, London, UK; and.,Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Luxme Nadarajah
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Steven Michael Harwood
- Diabetic Kidney Disease Centre, Renal Unit, Barts Health National Health Service Trust, The Royal London Hospital, London, UK; and.,Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Caroline E O'Riordan
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Christoph Thiemermann
- Diabetic Kidney Disease Centre, Renal Unit, Barts Health National Health Service Trust, The Royal London Hospital, London, UK; and.,Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Muhammad M Yaqoob
- Diabetic Kidney Disease Centre, Renal Unit, Barts Health National Health Service Trust, The Royal London Hospital, London, UK; and.,Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
31
|
Pharmacological inhibition of autophagy by 3-MA attenuates hyperuricemic nephropathy. Clin Sci (Lond) 2018; 132:2299-2322. [PMID: 30293967 PMCID: PMC6376616 DOI: 10.1042/cs20180563] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/30/2018] [Accepted: 10/05/2018] [Indexed: 12/17/2022]
Abstract
Autophagy has been identified as a cellular process of bulk degradation of cytoplasmic components and its persistent activation is critically involved in the renal damage induced by ureteral obstruction. However, the role and underlying mechanisms of autophagy in hyperuricemic nephropathy (HN) remain unknown. In the present study, we observed that inhibition of autophagy by 3-methyladenine (3-MA) abolished uric acid-induced differentiation of renal fibroblasts to myofibroblasts and activation of transforming growth factor-β1 (TGF-β1), epidermal growth factor receptor (EGFR), and Wnt signaling pathways in cultured renal interstitial fibroblasts. Treatment with 3-MA also abrogated the development of HN in vivo as evidenced by improving renal function, preserving renal tissue architecture, reducing the number of autophagic vacuoles, and decreasing microalbuminuria. Moreover, 3-MA was effective in attenuating renal deposition of extracellular matrix (ECM) proteins and expression of α-smooth muscle actin (α-SMA) and reducing renal epithelial cells arrested at the G2/M phase of cell cycle. Injury to the kidney resulted in increased expression of TGF-β1 and TGFβ receptor I, phosphorylation of Smad3 and TGF-β-activated kinase 1 (TAK1), and activation of multiple cell signaling pathways associated with renal fibrogenesis, including Wnt, Notch, EGFR, and nuclear factor-κB (NF-κB). 3-MA treatment remarkably inhibited all these responses. In addition, 3-MA effectively suppressed infiltration of macrophages and lymphocytes as well as release of multiple profibrogenic cytokines/chemokines in the injured kidney. Collectively, these findings indicate that hyperuricemia-induced autophagy is critically involved in the activation of renal fibroblasts and development of renal fibrosis and suggest that inhibition of autophagy may represent a potential therapeutic strategy for HN.
Collapse
|
32
|
Riggs JL, Pace CE, Ward HH, Gonzalez Bosc LV, Rios L, Barrera A, Kanagy NL. Intermittent hypoxia exacerbates increased blood pressure in rats with chronic kidney disease. Am J Physiol Renal Physiol 2018; 315:F927-F941. [PMID: 29897288 DOI: 10.1152/ajprenal.00420.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Kidney injury and sleep apnea (SA) are independent risk factors for hypertension. Exposing rats to intermittent hypoxia (IH) to simulate SA increases blood pressure whereas adenine feeding causes persistent kidney damage to model chronic kidney disease (CKD). We hypothesized that exposing CKD rats to IH would exacerbate the development of hypertension and renal failure. Male Sprague-Dawley rats were fed a 0.2% adenine diet or control diet (Control) until blood urea nitrogen was >120 mg/dl in adenine-fed rats (14 ± 4 days, mean ± SE). After 2 wk of recovery on normal chow, rats were exposed to IH (20 exposures/h of 5% O2-5% CO2 7 h/day) or control conditions (Air) for 6 wk. Mean arterial pressure (MAP) was monitored with telemeters, and plasma and urine samples were collected weekly to calculate creatinine clearance as an index of glomerular filtration rate (GFR). Prior to IH, adenine-fed rats had higher blood pressure than rats on control diet. IH treatment increased MAP in both groups, and after 6 wk, MAP levels in the CKD/IH rats were greater than those in the CKD/Air and Control/IH rats. MAP levels in the Control/Air rats were lower than those in the other three groups. Kidney histology revealed crystalline deposits, tubule dilation, and interstitial fibrosis in both CKD groups. IH caused no additional kidney damage. Plasma creatinine was similarly increased in both CKD groups throughout whereas IH alone increased plasma creatinine. IH increases blood pressure further in CKD rats without augmenting declines in GFR but appears to impair GFR in healthy rats. We speculate that treating SA might decrease hypertension development in CKD patients and protect renal function in SA patients.
Collapse
Affiliation(s)
- Jennifer L Riggs
- Department of Cell Biology and Physiology, University of New Mexico , Albuquerque, New Mexico
| | - Carolyn E Pace
- Department of Cell Biology and Physiology, University of New Mexico , Albuquerque, New Mexico
| | - Heather H Ward
- Department of Cell Biology and Physiology, University of New Mexico , Albuquerque, New Mexico
| | - Laura V Gonzalez Bosc
- Department of Cell Biology and Physiology, University of New Mexico , Albuquerque, New Mexico
| | - Lynnette Rios
- Department of Cell Biology and Physiology, University of New Mexico , Albuquerque, New Mexico
| | - Adelaeda Barrera
- Department of Cell Biology and Physiology, University of New Mexico , Albuquerque, New Mexico
| | - Nancy L Kanagy
- Department of Cell Biology and Physiology, University of New Mexico , Albuquerque, New Mexico
| |
Collapse
|
33
|
Konjac glucomannan improves hyperuricemia through regulating xanthine oxidase, adenosine deaminase and urate transporters in rats. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
34
|
Tong L, Qi G. Crocin prevents platelet‑derived growth factor BB‑induced vascular smooth muscle cells proliferation and phenotypic switch. Mol Med Rep 2018; 17:7595-7602. [PMID: 29620234 PMCID: PMC5983945 DOI: 10.3892/mmr.2018.8854] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 03/29/2018] [Indexed: 12/18/2022] Open
Abstract
The phenotypic switch of vascular smooth muscle cells (VSMCs) is a major initiating factor for atherosclerotic cardiovascular diseases. Platelet-derived growth factor-BB (PDGF-BB) initiates a number of biological processes that contribute to VSMC proliferation and phenotypic switch. Crocin, a component of saffron, has been reported to inhibit atheromatous plaque formation. However, the effects of crocin on PDGF-BB-induced VSMC proliferation and phenotypic switch remain unclear. The aim of the present study was to investigate the role of crocin on PDGF-BB-induced VSMCs proliferation and phenotypic switch and its underlying mechanisms. Cell proliferation and markers of VSMCs phenotypic switch were measured using a Cell Counting Kit-8 assay and western blot analysis, respectively. The signaling pathways involved in the effects of crocin on VSMCs were validated by western blot analysis with or without the use of specific pathway inhibitors. Crocin significantly inhibited PDGF-BB-induced VSMCs proliferation compared with the PDGF-BB only group (P<0.05). In addition, crocin significantly abrogated the PDGF-BB-induced increase in contractile protein α-smooth muscle actin, calponin and decrease in synthetic proteins osteopontin (OPN) in a concentration dependent manner (P<0.05). In addition, crocin slowed PDGF-BB-induced Janus kinase (JAK)-signal transducer and activator of transcription 3 (STAT3) and extracellular signal-regulated kinase (ERK)/Kruppel-like factor 4 (KLF4) signaling activation in VSMCs. By applying the JAK inhibitor (AG490) and ERK1/2 inhibitor (U0126), the results suggested that the crocin inhibited PDGF-BB-induced VSMCs phenotypic switch through the JAK/STAT3 and ERK/KLF4 signaling pathways. These results suggested that crocin may effectively prevent PDGF-BB-induced VSMCs proliferation and phenotypic switch and may be a promising candidate for the therapy of atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Lijian Tong
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Guoxian Qi
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
35
|
Xu L, Shi Y, Zhuang S, Liu N. Recent advances on uric acid transporters. Oncotarget 2017; 8:100852-100862. [PMID: 29246027 PMCID: PMC5725069 DOI: 10.18632/oncotarget.20135] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/29/2017] [Indexed: 02/07/2023] Open
Abstract
Uric acid is the product of purine metabolism and its increased levels result in hyperuricemia. A number of epidemiological reports link hyperuricemia with multiple disorders, such as kidney diseases, cardiovascular diseases and diabetes. Recent studies also showed that expression and functional changes of urate transporters are associated with hyperuricemia. Uric acid transporters are divided into two categories: urate reabsorption transporters, including urate anion transporter 1 (URAT1), organic anion transporter 4 (OAT4) and glucose transporter 9 (GLUT9), and urate excretion transporetrs, including OAT1, OAT3, urate transporter (UAT), multidrug resistance protein 4 (MRP4/ABCC4), ABCG-2 and sodium-dependent phosphate transport protein. In the kidney, uric acid transporters decrease the reabsorption of urate and increase its secretion. These transporters’ dysfunction would lead to hyperuricemia. As the function of urate transporters is important to control the level of serum uric acid, studies on the functional role of uric acid transporter may provide a new strategy to treat hyperuricemia associated diseases, such as gout, chronic kidney disease, hyperlipidemia, hypertension, coronary heart disease, diabetes and other disorders. This review article summarizes the physiology of urate reabsorption and excretion transporters and highlights the recent advances on their roles in hyperuricemia and various diseases.
Collapse
Affiliation(s)
- Liuqing Xu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Medicine, Rhode Island Hospital and Brown University School of Medicine, Providence, RI 02903, USA
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| |
Collapse
|