1
|
Wang J, Fang Q. Peimine inhibits cell proliferation and migration of breast cancer via regulating the O-GlcNAcylation of USP41. Int Immunopharmacol 2025; 149:114108. [PMID: 39923575 DOI: 10.1016/j.intimp.2025.114108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 02/11/2025]
Abstract
Peimine is a isosteroidal alkaloid with multiple biological activities and has gained widespread clinical applications. This study was designed to investigate the effects of peimine (PM) on breast cancer (BC) and the underlying mechanism. Cell counting kit-8, EdU and transwell migration assays were performed to assess the cell viability, proliferation, and migration of MCF-7 and MDA-MB-231 cells. The interaction between USP41 and O-linked N-acetylglucosamine transferase (OGT) was evaluated by co-immunoprecipitation assay. A xenograft mouse model was established. Results showed that the cell viability of MCF-7 and MDA-MB-231 cells was decreased with the increasing concentration of PM, and the concentration of 20 μM was chosen for followed experiments. Besides, PM suppressed the proliferation and migration of MCF-7 and MDA-MB-231 cells. Moreover, PM treatment decreased the O-linked N-acetylglucosaminylation (O-GlcNAcylation) and OGT protein levels in MCF-7 and MDA-MB-231 cells. Mechanically, USP41 interacted with OGT in MDA-MB-231 cells. Overexpression of OGT enhanced the protein stability of USP41. Final rescue results demonstrated that overexpressing OGT or USP41 reversed the decreases of cell viability, proliferation, and migration in PM-treated MCF-7 and MDA-MB-231 cells; while OGT or USP41 knockout showed opposite results. Animal studies showed that PM treatment inhibited the tumor growth. In summary, PM inhibited cell viability, proliferation, and migration of BC by regulating the O-GlcNAcylation of USP41.
Collapse
Affiliation(s)
- Jinxian Wang
- Department of Preventable Diseases Treatment, Qiqihar City Hospital of Traditional Chinese Medicine, Qiqihar City, Heilongjiang Province 161005, China.
| | - Qiushi Fang
- The Qiqihar City Center for Disease Control and Prevention, Qiqihar City, Heilongjiang Province 161005, China
| |
Collapse
|
2
|
Kumar P, Kumar V, Sharma S, Sharma R, Warghat AR. Fritillaria steroidal alkaloids and their multi-target therapeutic mechanisms: insights from network pharmacology. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2209-2228. [PMID: 39382678 DOI: 10.1007/s00210-024-03502-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Medicinal Fritillaria herbs, known for their rich content of steroidal alkaloids, have emerged as promising candidates in the treatment of chronic diseases due to their diverse pharmacological properties. Leveraging advancements in network pharmacology and molecular docking, this study explores the multi-target mechanisms through which these alkaloids exert therapeutic effects. The integration of bioinformatics, systems biology, and pharmacology in drug discovery has provided insights into the molecular interactions and pathways influenced by Fritillaria steroidal alkaloids. This review synthesizes comprehensive literature from 1985 to 2024, revealing the potential of these compounds in addressing respiratory diseases, inflammation, and cancer. The integration of traditional Chinese medicine (TCM) with modern pharmacological techniques underscores the relevance of these compounds in next-generation drug discovery. While initial findings are promising, further empirical validation is necessary to fully harness the therapeutic potential of Fritillaria steroidal alkaloids.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Biotechnology, Dr Y.S, Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India.
| | - Vinay Kumar
- Department of Biotechnology, Dr Y.S, Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Shagun Sharma
- Department of Biotechnology, Dr Y.S, Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Rohit Sharma
- Department of Forest Products, Dr Y.S, Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Ashish R Warghat
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| |
Collapse
|
3
|
Zhang Z, Wu H, Li M, Zhou F, Huang Y. From natural herbal wisdom to nano innovation: Revolutionizing tumor treatment through intervening in metabolic reprogramming. Biochim Biophys Acta Rev Cancer 2025; 1880:189263. [PMID: 39800231 DOI: 10.1016/j.bbcan.2025.189263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
In recent years, with the deepening understanding of the biological mechanisms underlying tumorigenesis, metabolic reprogramming has emerged as a pivotal process in cancer initiation, progression, and treatment resistance, gradually paving the way for new avenues in precision oncology. Natural herbal ingredients, characterized by their multi-target engagement, low toxicity, and wide-ranging biological activities, exhibit unique advantages in anti-cancer therapy. Nonetheless, the clinical application of these components has been constrained by issues such as poor solubility, low bioavailability, and inadequate stability when administered through traditional delivery methods. The advent of multifunctional nanoformulations has offered solutions to these challenges, substantially advancing the utilization of natural herbal components in precision therapy targeting tumor metabolic reprogramming. This article provides a comprehensive review of the multidimensional features of cancer metabolic reprogramming and its intricate regulatory network, highlighting the latest advancements in metabolic regulation, targeted delivery, and precision therapy achieved through natural herbs and their multifunctional nanomedicines. It also offers insights into future directions in this field. We are justified in believing that continued breakthroughs in this area will usher in safer and more effective treatment options for cancer patients, heralding a new chapter in cancer therapy.
Collapse
Affiliation(s)
- Zhengguang Zhang
- Central Laboratory, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Jiangsu, Nanjing, China; School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, China.
| | - Haitao Wu
- School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, China
| | - Min Li
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Jiangsu, Nanjing, China.
| | - Fuqiong Zhou
- Central Laboratory, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Jiangsu, Nanjing, China.
| | - Yan Huang
- Central Laboratory, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Jiangsu, Nanjing, China.
| |
Collapse
|
4
|
Hedayati S, Soltanzadeh H, Esmaeili Gouvarchin Ghaleh H, Bonab ZH, Alvanegh AG. Peiminine Enhances Doxorubicin Cytotoxicity and Downregulates hsa-miR-106a-5p and hsa -miR-181a-5p in Human Gastric Adenocarcinoma Cells. Adv Biomed Res 2024; 13:121. [PMID: 40007732 PMCID: PMC11850945 DOI: 10.4103/abr.abr_535_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 02/27/2025] Open
Abstract
Background Gastric cancer (GC) is a prevalent and deadly cancer worldwide. Chemotherapy is the primary treatment, but some patients use herbal remedies, such as Peiminine from Fritillaria walujewii, for palliative care. Cancer cells can affect the expression of noncoding RNAs, like microRNA, which can then influence the expression of genes. This research aims to study the effects of Peiminine on Doxorubicin cytotoxicity and detect the expression levels of hsa-miR-106a-5p and hsa-miR-181a-5p in AGS human gastric adenocarcinoma cells. Materials and Methods AGS cells were cultured and treated with different concentrations of Peiminine. An MTT assay was performed to determine the concentration of Peiminine required to prohibit 50% cell growth (IC50) and the cell viability percentage of the AGS cell line. The percentage of AGS cell line apoptosis was determined using acridine orange (AO) and ethidium bromide (EtBr). Finally, molecular studies were conducted to compare hsa-miR-106a-5p and hsa-miR-181a-5p expression in the control and treated groups. Results According to the study, Peiminine has been found to enhance the cytotoxicity of Doxorubicin, which reduces cell viability and increases apoptosis in the AGS cell line. Furthermore, the study also indicates that the AGS cell line treated with Peiminine shows lower expression of hsa -miR-106a-5p and hsa -miR-181a-5p compared to the control group that was not treated. Conclusion Peiminine enhances Doxorubicin's effectiveness, inhibits AGS cell line growth, and reduces miRNA expression. Further research is needed for potential use as a supplementary GC treatment.
Collapse
Affiliation(s)
- Shirin Hedayati
- Department of Genetics, Islamic Azad University Bonab Branch, Bonab, Iran
| | - Hossein Soltanzadeh
- Department of Genetics, Bonab Branch, Islamic Azad University, Bonab, Iran
- Medicinal Plants Research Center, Maragheh University of Medical Sciences, Maragheh, Iran
| | | | - Zahra Hojjati Bonab
- Faculty of Basic Sciences, Islamic Azad University Bonab Branch, Bonab, Iran
| | | |
Collapse
|
5
|
Wang M, Qu L, Du X, Song P, Ng JPL, Wong VKW, Law BYK, Fu X. Natural Products and Derivatives Targeting Metabolic Reprogramming in Colorectal Cancer: A Comprehensive Review. Metabolites 2024; 14:490. [PMID: 39330497 PMCID: PMC11433951 DOI: 10.3390/metabo14090490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Metabolic reprogramming is a critical pathogenesis of colorectal cancer (CRC), referring to metabolic disorders that cancer cells make in response to the stimulating pressure. Metabolic reprogramming induces changes in genetic material and promotes CRC progression and has been proven to be an efficient target of CRC. As natural products have garnered interest due to notable pharmacological effects and potential in counteracting chemoresistance, an increasing body of research is delving into the impact of these natural products on the metabolic reprogramming associated with CRC. In this review, we collected published data from the Web of Science and PubMed, covering the period from January 1980 to October 2023. This article focuses on five central facets of metabolic alterations in cancer cells, glucose metabolism, mitochondrial oxidative phosphorylation (OXPHOS), amino acid metabolism, fatty acid synthesis, and nucleotide metabolism, to provide an overview of recent advancements in natural product interventions targeting metabolic reprogramming in CRC. Our analysis underscores the potential of natural products in disrupting the metabolic pathways of CRC, suggesting promising therapeutic targets for CRC and expanding treatment options for metabolic-associated ailments.
Collapse
Affiliation(s)
- Mengyu Wang
- Nehr’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (M.W.)
- Research Institute for Marine Traditional Chinese Medicine, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Liqun Qu
- Research Institute for Marine Traditional Chinese Medicine, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Qingdao Academy of Chinese Medical Sciences Shandong University of Traditional Chinese Medicine, Qingdao Key Laboratory of Research in Marine Traditional Chinese Medicine, Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine’s Deep Development and Industrialization, Qingdao 266114, China
| | - Xinying Du
- Research Institute for Marine Traditional Chinese Medicine, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Qingdao Academy of Chinese Medical Sciences Shandong University of Traditional Chinese Medicine, Qingdao Key Laboratory of Research in Marine Traditional Chinese Medicine, Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine’s Deep Development and Industrialization, Qingdao 266114, China
| | - Peng Song
- Nehr’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (M.W.)
- Research Institute for Marine Traditional Chinese Medicine, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jerome P. L. Ng
- Nehr’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (M.W.)
| | - Vincent Kam Wai Wong
- Nehr’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (M.W.)
| | - Betty Yuen Kwan Law
- Nehr’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (M.W.)
| | - Xianjun Fu
- Research Institute for Marine Traditional Chinese Medicine, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Qingdao Academy of Chinese Medical Sciences Shandong University of Traditional Chinese Medicine, Qingdao Key Laboratory of Research in Marine Traditional Chinese Medicine, Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine’s Deep Development and Industrialization, Qingdao 266114, China
| |
Collapse
|
6
|
Yang Z, Guo R, Bi Y, Xu W, Hao M, Liang Y, Li Y, Wang H, Zhang J, Xie J, Wan C, Sun J. Peimenine unleashes therapeutic promise in urothelial bladder cancer: inhibition of proliferation, induction of cell death and modulation of key pathways. Chem Biol Drug Des 2024; 103:e14528. [PMID: 38811358 DOI: 10.1111/cbdd.14528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/16/2024] [Accepted: 03/18/2024] [Indexed: 05/31/2024]
Abstract
Peimenine (PEI) is a steroid alkaloid substance isolated from Fritillaria thunbergii bulbs. It has various pharmacological activities, such as relief from coughs and asthma, expectorant properties, antibacterial effects, sedative qualities, and anti-inflammatory properties. Notably, PEI can effectively inhibit the proliferation and tumor formation of liver cancer and osteosarcoma cells by inducing autophagic cell death. However, the precise effect and mechanisms of PEI on urothelial bladder cancer (UBC) cells remain uncertain. Thus, this study aims to investigate the impact of PEI on UBC cells both in vivo and in vitro. The IC50 values of BIU-87 and EJ-1 cells after 48 h were 710.3 and 651.1 μg/mL, respectively. Additionally, PEI blocked the cell cycle in BIU-87 and EJ-1 cells during the G1 phase. Furthermore, it hindered the migration of BIU-87 and EJ-1 cells substantially. PEI significantly inhibited the tumor development of EJ-1 cells within the xenograft tumor model in vivo. Mechanically, PEI augmented the protein and mRNA expression of BIM, BAK1, and Cytochrome C (CYCS) in UBC cells. Taken together, PEI suppressed the proliferation of UBC cells both in vitro and in vivo by inducing cell death and cell cycle arrest, suggesting that PEI could be applied in the treatment of UBC.
Collapse
Affiliation(s)
- Zhao Yang
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
- College of Life Science and Technology, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Alar, Xinjiang, China
| | - Rui Guo
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
- College of Life Science and Technology, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Alar, Xinjiang, China
| | - Ying Bi
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Wenkai Xu
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Mingxuan Hao
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Youfeng Liang
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
| | - Yongchao Li
- College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, China
- College of Life Science and Technology, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Alar, Xinjiang, China
| | - Haifeng Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jun Zhang
- School of Medicine, Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University, Shihezi, Xinjiang, China
| | - Jianxin Xie
- School of Medicine, Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University, Shihezi, Xinjiang, China
| | - Chuanxing Wan
- College of Life Science and Technology, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Alar, Xinjiang, China
| | - Jirui Sun
- Department of Pathology, Baoding No.1 Central Hospital, Baoding, Hebei, China
- Key Laboratory of Molecular Pathology and Early Diagnosis of Tumor in Hebei Province, Baoding, Hebei, China
| |
Collapse
|
7
|
Liu Z, Ying J, Liu C. Changes in Rhizosphere Soil Microorganisms and Metabolites during the Cultivation of Fritillaria cirrhosa. BIOLOGY 2024; 13:334. [PMID: 38785816 PMCID: PMC11117757 DOI: 10.3390/biology13050334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Fritillaria cirrhosa is an important cash crop, and its industrial development is being hampered by continuous cropping obstacles, but the composition and changes of rhizosphere soil microorganisms and metabolites in the cultivation process of Fritillaria cirrhosa have not been revealed. We used metagenomics sequencing to analyze the changes of the microbiome in rhizosphere soil during a three-year cultivation process, and combined it with LC-MS/MS to detect the changes of metabolites. Results indicate that during the cultivation of Fritillaria cirrhosa, the composition and structure of the rhizosphere soil microbial community changed significantly, especially regarding the relative abundance of some beneficial bacteria. The abundance of Bradyrhizobium decreased from 7.04% in the first year to about 5% in the second and third years; the relative abundance of Pseudomonas also decreased from 6.20% in the first year to 2.22% in the third year; and the relative abundance of Lysobacter decreased significantly from more than 4% in the first two years of cultivation to 1.01% in the third year of cultivation. However, the relative abundance of some harmful fungi has significantly increased, such as Botrytis, which increased significantly from less than 3% in the first two years to 7.93% in the third year, and Talaromyces fungi, which were almost non-existent in the first two years of cultivation, significantly increased to 3.43% in the third year of cultivation. The composition and structure of Fritillaria cirrhosa rhizosphere metabolites also changed significantly, the most important of which were carbohydrates represented by sucrose (48.00-9.36-10.07%) and some amino acid compounds related to continuous cropping obstacles. Co-occurrence analysis showed that there was a significant correlation between differential microorganisms and differential metabolites, but Procrustes analysis showed that the relationship between bacteria and metabolites was closer than that between fungi and metabolites. In general, in the process of Fritillaria cirrhosa cultivation, the beneficial bacteria in the rhizosphere decreased, the harmful bacteria increased, and the relative abundance of carbohydrate and amino acid compounds related to continuous cropping obstacles changed significantly. There is a significant correlation between microorganisms and metabolites, and the shaping of the Fritillaria cirrhosa rhizosphere's microecology by bacteria is more relevant.
Collapse
Affiliation(s)
- Zhixiang Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jizhe Ying
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China;
| | - Chengcheng Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
8
|
Yi N, Wang L, Jiang Z, Xu G, Li L, Zhang Y, Tan Y. Peiminine triggers ferroptosis to inhibit breast cancer growth through triggering Nrf2 signaling. Tissue Cell 2024; 87:102323. [PMID: 38412577 DOI: 10.1016/j.tice.2024.102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Peiminine (PMI) is an active alkaloid sourced from Fritillaria thunbergii, which has been shown to suppress the development of a variety of tumors. Whereas, the roles and precise mechanism of PMI in breast cancer (BC) development remain not been clarified. METHODS The cytotoxic effect of PMI on MCF-10A and BC cell lines (MCF-7 and BT-549) were assessed by MTT and LDH release assay. Cell proliferation was evaluated by EdU staining. Levels of Malondialdehyde (MDA), reactive oxygen species (ROS), glutathione (GSH) activity and iron assay were measured by Enzyme linked immunosorbent assay (ELISA) kits, respectively. Transmission Electron Microscope was performed to observe mitochondrial morphological structure. Immunofluorescence, immunohistochemistry, and western blot were conducted to examine protein levels, respectively. Xenograft model was used to confirm cellular findings. RESULTS PMI treatment reduced the viability and enhanced LDH level of MCF-7 and BT-549 cells in a time- and concentration-dependent manner, and further suppressed cell proliferation in vitro and tumor growth in vivo. Subsequently, PMI administration resulted in significant increases of ROS, MDA and iron levels, reduction of GSH activity as well as mitochondrial shrinkage and GPX4 reduction, while all these phenomena could be rescued by ferrostatin-1. Mechanistically, PMI treatment led to promoted Nrf2 expression and its nuclear translocation, as well as it's downstream protein HO-1 and NQO1 expressions. Notably, ML-385, a Nrf2 specific inhibitor, greatly reversed the anti-tumor effects and pro-ferroptosis role of PMI in BC cells. CONCLUSION Taking these finding together, PMI could stimulate ferroptosis to inhibit BC tumor growth by activating Nrf2-HO-1 signaling pathway.
Collapse
Affiliation(s)
- Nian Yi
- Thyroid and Breast Surgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, PR China
| | - Li Wang
- Thyroid and Breast Surgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, PR China
| | - Zhongjun Jiang
- Thyroid and Breast Surgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, PR China
| | - Ge Xu
- Thyroid and Breast Surgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, PR China
| | - Lihong Li
- Thyroid and Breast Surgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, PR China
| | - Ya Zhang
- Thyroid and Breast Surgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, PR China
| | - Yinna Tan
- Department of Anesthesiology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, No. 336 Dongfeng South Road, Zhuhui District, Hengyang City, Hunan Province, PR China.
| |
Collapse
|
9
|
Ranjbar Bushehri M, Babaei N, Esmaeili Gouvarchin Ghaleh H, Khamisipour G, Farnoosh G. Anti-inflammatory activity of peiminine in acetic acid-induced ulcerative colitis model. Inflammopharmacology 2024; 32:657-665. [PMID: 37855980 DOI: 10.1007/s10787-023-01360-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 10/20/2023]
Abstract
Ulcerative colitis is a chronic inflammatory disorder of the intestinal mucosa and a prevalent gastrointestinal condition in developed countries. Peiminine, derived from the Fritillaria imperialis plant, exhibits remarkable anti-inflammatory and anti-cancer properties. This study aims to investigate the anti-inflammatory effects of peiminine in an experimental model of ulcerative colitis. Ulcerative colitis was induced intra-rectally in all groups, except the negative control, using 100 μl of 4% acetic acid. Peiminine treatment was initiated after ulcerative colitis induction and symptom manifestation. After the final injection, mice were sacrificed on day 15 for assessment. Various parameters were evaluated, including disease activity index, myeloperoxidase activity, nitric oxide levels, production and expression of IL-1, IL-6, TNF-α cytokines, and expression of IL-1β, IL-6, TNF-α, iNOS, and COX2 genes. Microscopic pathological evaluation was performed on colon tissue. Peiminine treatment resulted in reduced levels of NO, MPO, IL-1β, IL-6, and TNF-α. Furthermore, the expression of IL-1β, IL-6, TNF-α genes, iNOS, and COX2 genes was decreased in response to peiminine treatment in these mice. This study demonstrates the effectiveness of peiminine in alleviating inflammatory manifestations and mitigating intestinal tissue damage in an experimental model of ulcerative colitis, probably by anti-inflammatory procedure. Peiminine holds potential as a therapeutic adjunct for the management of ulcerative colitis.
Collapse
Affiliation(s)
- Maryam Ranjbar Bushehri
- Department of Molecular Cell Biology and Genetics, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Nahid Babaei
- Department of Molecular Cell Biology and Genetics, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | | | - Gholamreza Khamisipour
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Gholamreza Farnoosh
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Cha SJ, Kim SS, Shin JH, Seo SR. Peiminine Exerts Its Anti-Acne Effects by Regulating the NF-κB Pathway. Antioxidants (Basel) 2024; 13:131. [PMID: 38275656 PMCID: PMC10812726 DOI: 10.3390/antiox13010131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Peiminine is the main natural alkaloid compound extracted from the Chinese herb Fritillaria. Although peiminine is known for its antioxidant and anti-inflammatory effects in conditions such as mastitis and arthritis, its impact on inflammation induced by Cutibacterisum acnes (C. acnes) has not been explored. The aim of this study was to investigate the effect of peiminine on C. acnes-induced inflammatory responses in the skin and to identify the underlying mechanism involved. We discovered that peiminine inhibits the C. acnes-induced expression of inflammatory mediators such as pro-interleukin-1β (pro-IL-1β), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in mouse bone marrow-derived macrophages (BMDMs). Peiminine suppressed the activation of nuclear factor-kappa B (NF-κB) without affecting the activation of mitogen-activated protein kinase (MAPK) pathways such as JNK, ERK, and p38 MAPK. In addition, we found that peiminine suppressed inflammatory cytokine expression and ameliorated histological symptoms in C. acnes-induced mouse skin. Our study is the first to provide evidence that peiminine has an inhibitory effect on acne, and it points toward the potential of incorporating peiminine into cosmetic and pharmaceutical formulations for acne treatment.
Collapse
Affiliation(s)
- So Jin Cha
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea; (S.J.C.); (J.H.S.)
| | - Seon Sook Kim
- Institute of Life Science, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Jin Hak Shin
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea; (S.J.C.); (J.H.S.)
| | - Su Ryeon Seo
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea; (S.J.C.); (J.H.S.)
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
11
|
Bhat BA, Rashid Mir W, Alkhanani M, Almilaibary A, Mir MA. Network pharmacology and experimental validation for deciphering the action mechanism of Fritillaria cirrhosa D. Don constituents in suppressing breast carcinoma. J Biomol Struct Dyn 2023; 42:13002-13022. [PMID: 37948293 DOI: 10.1080/07391102.2023.2274966] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
Fritillaria cirrhosa D. Don is a well-known medicinal plant of Kashmir Himalaya. Traditionally, it has been used to treat several diseases, including cancer. However, the molecular mechanism behind anticancer activity remains unclear. Therefore, in the present study, we have performed high performance-liquid chromatography-mass spectrometry (HR-LC/MS), network pharmacology, molecular docking and molecular dynamic (MD) simulation methods were used to explore the underlying molecular mechanism of F. cirrhosa for the treatment of breast cancer (BC). The targets of F. cirrhosa for treating BC were predicted using databases like SwissTargetPrediction, Gene Cards and OMIM. Protein-protein interaction analysis and network construction were performed using the Search Tool for the Retrieval of Interacting Genes/Proteins programme, and analysis of Gene Ontology term enrichment and Kyoto Encyclopedia of Genes and Genomes pathway enrichment was done using the Cytoscape programme. In addition, molecular docking was used to investigate intermolecular interactions between the compounds and the proteins using the Autodock tool. MD simulations studies were also used to explore the stability of the representative AKT1 gene peiminine and Imperialine-3-β-glucoside. In addition, experimental treatment of F. cirrhosa was also verified. HR-LC/MS detected the presence of several secondary metabolites. Afterward, molecular docking was used to verify the effective activity of the active ingredients against the prospective targets. Additionally, Peiminine and Imperialine-3-β-glucoside showed the highest binding energy score against AKT-1 (-12.99 kcal/mol and -12.08 kcal/mol). AKT1 with Peiminine and Imperialine-3-β-glucoside was further explored for MD simulations. During the MD simulation study at 100 nanoseconds, a stable complex formation of AKT1 + Peiminine and Imperialine-3-β-glucoside was observed. The binding free energy calculations using MM/GBSA showed significant binding of the ligand with protein (ΔG: -79.83 ± 3.0 kcal/mol) between AKT1 + Peiminine was observed. The principal component analysis exhibited a stable converged structure by achieving global motion. Lastly, F. cirrhosa extracts also exhibited momentous anticancer activity through in vitro studies. Therefore, present study revealed the molecular mechanism of F. cirrhosa constituents for the effective treatment of BC by deactivating various multiple gene targets, multiple pathways particularly the PI3K-Akt signaling pathway. These findings emphasized the momentous anti-BC activity of F. cirrhosa constituents.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Basharat Ahmad Bhat
- Department of Bio-Resources, School of Biological Sciences, University of Kashmir, Srinagar, JK, India
| | - Wajahat Rashid Mir
- Department of Bio-Resources, School of Biological Sciences, University of Kashmir, Srinagar, JK, India
| | - Mustfa Alkhanani
- Department of Biology, College of Science, Hafr Al Batin University of Hafr Al-Batin, KSA
| | - Abdullah Almilaibary
- Department of Family and Community Medicine, Faculty of Medicine, Al Baha University, Albaha, KSA
| | - Manzoor Ahmad Mir
- Department of Bio-Resources, School of Biological Sciences, University of Kashmir, Srinagar, JK, India
| |
Collapse
|
12
|
Jin C, Wang T, Yang Y, Zhou P, Li J, Wu W, Lv X, Ma G, Wang A. Rational targeting of autophagy in colorectal cancer therapy: From molecular interactions to pharmacological compounds. ENVIRONMENTAL RESEARCH 2023; 227:115721. [PMID: 36965788 DOI: 10.1016/j.envres.2023.115721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 05/08/2023]
Abstract
The abnormal progression of tumors has been a problem for treatment of cancer and therapeutic should be directed towards targeting main mechanisms involved in tumorigenesis in tumors. The genomic mutations can result in changes in biological mechanisms in human cancers. Colorectal cancer is one of the most malignant tumors of gastrointestinal tract and its treatment has been faced some difficulties due to development of resistance in tumor cells and also, their malignant behavior. Hence, new therapeutic modalities for colorectal cancer are being investigated. Autophagy is a "self-digestion" mechanism that is responsible for homeostasis preserving in cells and its aberrant activation/inhibition can lead to tumorigenesis. The current review focuses on the role of autophagy mechanism in colorectal cancer. Autophagy may be associated with increase/decrease in progression of colorectal cancer due to mutual function of this molecular mechanism. Pro-survival autophagy inhibits apoptosis to increase proliferation and survival rate of colorectal tumor cells and it is also involved in cancer metastasis maybe due to EMT induction. In contrast, pro-death autophagy decreases growth and invasion of colorectal tumor cells. The status of autophagy (upregulation and down-regulation) is a determining factor for therapy response in colorectal tumor cells. Therefore, targeting autophagy can increase sensitivity of colorectal tumor cells to chemotherapy and radiotherapy. Interestingly, nanoparticles can be employed for targeting autophagy in cancer therapy and they can both induce/suppress autophagy in tumor cells. Furthermore, autophagy modulators can be embedded in nanostructures in improving tumor suppression and providing cancer immunotherapy.
Collapse
Affiliation(s)
- Canhui Jin
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Tianbao Wang
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Yanhui Yang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471003, China
| | - Pin Zhou
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Juncheng Li
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Wenhao Wu
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Xin Lv
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Guoqing Ma
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China
| | - Aihong Wang
- Department of Gastrointestinal Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, PR China.
| |
Collapse
|
13
|
El-Hazek RMM, Zaher NH, Emam HES, El-Gazzar MG, Khalil A. Pyrazole-sulfonamide scaffold featuring dual-tail strategy as apoptosis inducers in colon cancer. Sci Rep 2023; 13:5782. [PMID: 37031294 PMCID: PMC10082777 DOI: 10.1038/s41598-023-32820-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/03/2023] [Indexed: 04/10/2023] Open
Abstract
Dual-tail strategy has been successfully utilized in the development of novel carbonic anhydrase IX (CA IX) inhibitors. Herein we adopted this approach in the design and synthesis of a series of novel pyridine sulfonamide-pyrazole hybrid scaffold mimicking dual-tail inhibitors of CA IX. A library of 15 compounds was synthesized and assessed for their potential cytotoxic effects against colorectal cancer cells. Compounds 3, and 11 induced potential cytotoxic effects against the three cancer cell lines (HCT-116, HT-29, and SW-620) with IC50s' of 45.88, 28.27, and 16.57 uM, 25.01, 8.99, and 3.27 µM, respectively. Both compounds induced cellular apoptosis on HCT-116 and SW-620 cells, while compound 3 induced necrosis as well. In addition, both compounds induced cell cycle arrest on G0/G1, and S phases. Also, compound 11 showed potential autophagy induction on both colon cancer cell lines (HCT-116, and HT-29), and a little bit on metastatic type. Both compounds were less cytotoxic than the reference drug on normal epithelial cell. The migration rates of HCT-116 and the metastatic one SW-620 were reduced by both compounds. Finally, molecular docking of compounds 3 and 11 into the active site of CA IX confirmed in vitro inhibitory activity for both compounds.
Collapse
Affiliation(s)
- Reham M M El-Hazek
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt
| | - Nashwa H Zaher
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt
| | - Hagar E S Emam
- Biomedical Research Division, Nawah Scientific, Cairo, Egypt
| | - Marwa G El-Gazzar
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt.
| | - Amira Khalil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk City, 11837, Egypt.
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk City, Cairo, 11837, Egypt.
| |
Collapse
|
14
|
Mass spectrometry-based metabolomics approach and in vitro assays revealed promising role of 2,3-dihydroquinazolin-4(1H)-one derivatives against colorectal cancer cell lines. Eur J Pharm Sci 2023; 182:106378. [PMID: 36638899 DOI: 10.1016/j.ejps.2023.106378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/24/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Colorectal cancer (CRC) is the most frequent form of gastrointestinal cancer and one of the major causes of human mortality worldwide. Many of the current CRC therapies have limitations due to multidrug resistance and/or severe side effects. Quinazoline derivatives are promising lead compounds with a wide range of pharmacological actions. In this study, the effect of seven synthesized 2,3-dihydroquinazolin-4(1H)-one analogues as potential anticancer agents against two CRC cell lines (HCT116 and SW480) was investigated using cell viability proliferation, migration, adhesion and invasion assays. A liquid chromatography-mass spectrometry (LC-MS/MS) metabolomics approach was used to identify the underlying biochemical pathways disturbed in treated-HCT116 cells. Cell viability proliferation assay revealed that four compounds (C2, C3, C5, and C7) had IC50 < 10 µM with C5 displaying the most potent cytotoxic effect (IC50 1.4 and 0.3 µM against HCT116 and SW480, respectively). Additionally, the compounds showed suppression of wound closure after 72 h, and both C2 and C5 significantly decreased the number of adherent cells and suppressed HCT116 cells invasion. Metabolomics study revealed that C5 induced significant perturbations in the level of several metabolites including spermine, polyamines, glutamine, creatine and carnitine, and altered biochemical processes essential for cell proliferation and progression such as amino acids biosynthesis and metabolism, redox homeostasis, energy related processes (e.g., fatty acid oxidation, second Warburg like effect) and one-carbon metabolism. Our findings indicate that 2,3-dihydroquinazolin-4(1H)-one analogues, particularly C5, have promising anticancer properties, and shed light on the role of metabolomics in identifying new therapeutic targets and providing better understanding of the pathways altered in treated cancer cells.
Collapse
|
15
|
Guo C, Zhang L, Zhao M, Ai Y, Liao W, Wan L, Liu Q, Li S, Zeng J, Ma X, Tang J. Targeting lipid metabolism with natural products: A novel strategy for gastrointestinal cancer therapy. Phytother Res 2023; 37:2036-2050. [PMID: 36748953 DOI: 10.1002/ptr.7735] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 02/08/2023]
Abstract
Gastrointestinal cancer (GIC), including gastric cancer and colorectal cancer, is a common malignant tumor originating from gastrointestinal epithelial cells. Although the pathogenesis of GIC remains unclear, aberrant lipid metabolism has emerged as a hallmark of cancer. Several enzymes, proteins, and transcription factors are involved in lipid metabolism reprogramming in GIC, and their abnormal expression can promote lipid synthesis and accumulation of lipid droplets through numerous mechanisms, thereby affecting the growth, proliferation, and metastasis of GIC cells. Studies show that some natural compounds, including flavonoids, alkaloids, and saponins, can inhibit the de novo synthesis of lipids in GIC, reduce the level of lipid accumulation, and subsequently, inhibit the occurrence and development of GIC by regulating Sterol regulatory element-binding protein 1 (SREBP-1), adenosine monophosphate-activated protein kinase (AMPK), 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), phosphatidylinositol-3-kinase/Akt and the mammalian target of rapamycin PI3K/Akt/mTOR, amongst other targets and pathways. Therefore, targeting tumor lipid metabolism is the focus of anti-gastrointestinal tumor therapy. Although most natural products require further high-quality studies to firmly establish their clinical efficacy, we review the potential of natural products in the treatment of GIC and summarize the application prospect of lipid metabolism as a new target for the treatment of GIC, hoping to provide a reference for drug development for gastrointestinal tumors.
Collapse
Affiliation(s)
- Cui Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lanlan Zhang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Maoyuan Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanling Ai
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenhao Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lina Wan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingsong Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Songtao Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Department of geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
16
|
Wan X, Tou F, Zeng J, Chen X, Li S, Chen L, Zheng Z, Rao J. Integrative analysis and identification of key elements and pathways regulated by Traditional Chinese Medicine (Yiqi Sanjie formula) in colorectal cancer. Front Pharmacol 2022; 13:1090599. [PMID: 36582529 PMCID: PMC9792787 DOI: 10.3389/fphar.2022.1090599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction: The clinical efficacy of Yiqi Sanjie (YQSJ) formula in the treatment of stage III colorectal cancer (CRC) has been demonstrated. However, the underlying antitumor mechanisms remain poorly understood. Materials and methods: The aim of the present study was to comprehensively characterize the molecular and microbiota changes in colon tissues and fecal samples from CRC mice and in CRC cell lines treated with YQSJ or its main active component, peiminine. Integrative tandem mass tag-based proteomics and ultra-performance liquid chromatography coupled with time-of-flight tandem mass spectrometry metabolomics were used to analyze azoxymethane/dextran sulfate sodium-induced CRC mouse colon tissues. Results: The results showed that 0.8% (57/7568) of all detected tissue proteins and 3.2% (37/1141) of all detected tissue metabolites were significantly changed by YQSJ treatment, with enrichment in ten and six pathways associated with colon proteins and metabolites, respectively. The enriched pathways were related to inflammation, sphingolipid metabolism, and cholesterol metabolism. Metabolomics analysis of fecal samples from YQSJ-treated mice identified 121 altered fecal metabolites and seven enriched pathways including protein digestion and absorption pathway. 16S rRNA sequencing analysis of fecal samples indicated that YQSJ restored the CRC mouse microbiota structure by increasing the levels of beneficial bacteria such as Ruminococcus_1 and Prevotellaceae_UCG_001. In HCT-116 cells treated with peiminine, data-independent acquisition-based proteomics analysis showed that 1073 of the 7152 identified proteins were significantly altered and involved in 33 pathways including DNA damage repair, ferroptosis, and TGF-β signaling. Conclusion: The present study identified key regulatory elements (proteins/metabolites/bacteria) and pathways involved in the antitumor mechanisms of YQSJ, suggesting new potential therapeutic targets in CRC.
Collapse
Affiliation(s)
- Xianghui Wan
- Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Fangfang Tou
- Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Jiquan Zeng
- Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Xinyi Chen
- Department of Hematology and Oncology, Beijing University of Chinese Medicine, Beijing, China
| | - Shanshan Li
- Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Lanyu Chen
- Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Zhi Zheng
- Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China,*Correspondence: Jun Rao, ; Zhi Zheng,
| | - Jun Rao
- Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China,*Correspondence: Jun Rao, ; Zhi Zheng,
| |
Collapse
|
17
|
Wu F, Tian M, Sun Y, Wu C, Liu X. Efficacy, chemical composition, and pharmacological effects of herbal drugs derived from Fritillaria cirrhosa D. Don and Fritillaria thunbergii Miq. Front Pharmacol 2022; 13:985935. [PMID: 36532788 PMCID: PMC9748432 DOI: 10.3389/fphar.2022.985935] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/22/2022] [Indexed: 09/08/2023] Open
Abstract
Fritillaria cirrhosa D. Don and F. thunbergii Miq. belong to the genus Fritillaria within the Liliaceae family. They are used in traditional Chinese medicines that are often administered in clinical settings as they have notable effects on cough, bronchitis, pneumonia, lung injury, cancer, and other diseases. In this review, we focus on the history, origin, similarities, and differences in efficacy, chemical composition, and pharmacological outcomes of the drugs obtained from F. cirrhosa (FRC) and F. thunbergii (FRT). We list various valuable pharmacological effects of FRC and FRT, including antitussive, expectorant, anti-inflammatory, antioxidant, and anticancer effects. Thus, this review offers a basis for the medical application of and further research into the pharmacological impacts of these two drugs. We believe that new drugs derived from the phytoconstituents of F. cirrhosa and F. thunbergii that have specific therapeutic properties can be developed in the future.
Collapse
Affiliation(s)
- Fan Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mei Tian
- Department of Respiration, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuefeng Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changhao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xue Liu
- Department of Respiration, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
18
|
Guo W, Cao P, Wang X, Hu M, Feng Y. Medicinal Plants for the Treatment of Gastrointestinal Cancers From the Metabolomics Perspective. Front Pharmacol 2022; 13:909755. [PMID: 35833022 PMCID: PMC9271783 DOI: 10.3389/fphar.2022.909755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/23/2022] [Indexed: 12/27/2022] Open
Abstract
Gastrointestinal cancer (GIC), primarily including colorectal cancer, gastric cancer, liver cancer, pancreatic cancer, and esophageal cancer, is one of the most common causes of cancer-related deaths with increasing prevalence and poor prognosis. Medicinal plants have been shown to be a great resource for the treatment of GIC. Due to their complex manifestations of multi-component and multi-target, the underlying mechanisms how they function against GIC remain to be completely deciphered. Cell metabolism is of primary importance in the initialization and development of GIC, which is reported to be a potential target. As an essential supplement to the newest “omics” sciences, metabolomics focuses on the systematic study of the small exogenous and endogenous metabolites involved in extensive biochemical metabolic pathways of living system. In good agreement with the systemic perspective of medicinal plants, metabolomics offers a new insight into the efficacy assessment and action mechanism investigation of medicinal plants as adjuvant therapeutics for GIC therapy. In this review, the metabolomics investigations on metabolism-targeting therapies for GIC in the recent 10 years were systematically reviewed from five aspects of carbohydrate, lipid, amino acid, and nucleotide metabolisms, as well as other altered metabolisms (microbial metabolism, inflammation, and oxidation), with particular attention to the potential of active compounds, extracts, and formulae from medicinal plants. Meanwhile, the current perspectives and future challenges of metabolism-targeting therapies of medicinal plants for GIC were also discussed. In conclusion, the understanding of the action mechanisms of medicinal plants in GIC from the metabolomics perspective will contribute to the clinical application of potential candidates from the resourceful medicinal plants as novel and efficient adjuvant therapeutics for GIC therapy.
Collapse
Affiliation(s)
- Wei Guo
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Peng Cao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Xuanbin Wang
- Laboratory of Chinese Herbal Pharmacology, Department of Pharmacy, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Min Hu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
- *Correspondence: Min Hu, ; Yibin Feng,
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- *Correspondence: Min Hu, ; Yibin Feng,
| |
Collapse
|
19
|
Zhang C, Zhu N, Li H, Gong Y, Gu J, Shi Y, Liao D, Wang W, Dai A, Qin L. New dawn for cancer cell death: Emerging role of lipid metabolism. Mol Metab 2022; 63:101529. [PMID: 35714911 PMCID: PMC9237930 DOI: 10.1016/j.molmet.2022.101529] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/30/2022] [Accepted: 06/11/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Resistance to cell death, a protective mechanism for removing damaged cells, is a "Hallmark of Cancer" that is essential for cancer progression. Increasing attention to cancer lipid metabolism has revealed a number of pathways that induce cancer cell death. SCOPE OF REVIEW We summarize emerging concepts regarding lipid metabolic reprogramming in cancer that is mainly involved in lipid uptake and trafficking, de novo synthesis and esterification, fatty acid synthesis and oxidation, lipogenesis, and lipolysis. During carcinogenesis and progression, continuous metabolic adaptations are co-opted by cancer cells, to maximize their fitness to the ever-changing environmental. Lipid metabolism and the epigenetic modifying enzymes interact in a bidirectional manner which involves regulating cancer cell death. Moreover, lipids in the tumor microenvironment play unique roles beyond metabolic requirements that promote cancer progression. Finally, we posit potential therapeutic strategies targeting lipid metabolism to improve treatment efficacy and survival of cancer patient. MAJOR CONCLUSIONS The profound comprehension of past findings, current trends, and future research directions on resistance to cancer cell death will facilitate the development of novel therapeutic strategies targeting the lipid metabolism.
Collapse
Affiliation(s)
- Chanjuan Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Neng Zhu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, PR China
| | - Hongfang Li
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Yongzhen Gong
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Jia Gu
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Yaning Shi
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Duanfang Liao
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| | - Aiguo Dai
- Institutional Key Laboratory of Vascular Biology and Translational Medicine in Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| | - Li Qin
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Institutional Key Laboratory of Vascular Biology and Translational Medicine in Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Hunan Province Engineering Research Center of Bioactive Substance Discovery of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| |
Collapse
|
20
|
Quan Y, Li L, Yin Z, Chen S, Yi J, Lang J, Zhang L, Yue Q, Zhao J. Bulbus Fritillariae Cirrhosae as a Respiratory Medicine: Is There a Potential Drug in the Treatment of COVID-19? Front Pharmacol 2022; 12:784335. [PMID: 35126123 PMCID: PMC8811224 DOI: 10.3389/fphar.2021.784335] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/03/2021] [Indexed: 01/08/2023] Open
Abstract
Bulbus fritillariae cirrhosae (BFC) is one of the most used Chinese medicines for lung disease, and exerts antitussive, expectorant, anti-inflammatory, anti-asthmatic, and antioxidant effects, which is an ideal therapeutic drug for respiratory diseases such as ARDS, COPD, asthma, lung cancer, and pulmonary tuberculosis. Through this review, it is found that the therapeutic mechanism of BFC on respiratory diseases exhibits the characteristics of multi-components, multi-targets, and multi-signaling pathways. In particular, the therapeutic potential of BFC in terms of intervention of “cytokine storm”, STAT, NF-κB, and MAPK signaling pathways, as well as the renin-angiotensin system (RAS) that ACE is involved in. In the “cytokine storm” of SARS-CoV-2 infection there is an intense inflammatory response. ACE2 regulates the RAS by degradation of Ang II produced by ACE, which is associated with SARS-CoV-2. For COVID-19, may it be a potential drug? This review summarized the research progress of BFC in the respiratory diseases, discussed the development potentiality of BFC for the treatment of COVID-19, explained the chemical diversity and biological significance of the alkaloids in BFC, and clarified the material basis, molecular targets, and signaling pathways of BFC for the respiratory diseases. We hope this review can provide insights on the drug discovery of anti-COVID-19.
Collapse
Affiliation(s)
- Yunyun Quan
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
- Department of Pharmacognosy, West China School of Pharmacy Sichuan University, Chengdu, China
| | - Li Li
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Zhujun Yin
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Shilong Chen
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Jing Yi
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Jirui Lang
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Lu Zhang
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Qianhua Yue
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Junning Zhao
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
- Department of Pharmacognosy, West China School of Pharmacy Sichuan University, Chengdu, China
- *Correspondence: Junning Zhao,
| |
Collapse
|
21
|
Rao J, Wan X, Tou F, He Q, Xiong A, Chen X, Cui W, Zheng Z. Molecular Characterization of Advanced Colorectal Cancer Using Serum Proteomics and Metabolomics. Front Mol Biosci 2021; 8:687229. [PMID: 34386520 PMCID: PMC8353147 DOI: 10.3389/fmolb.2021.687229] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/16/2021] [Indexed: 01/20/2023] Open
Abstract
Colorectal cancer (CRC) is a growing public health concern due to its high mortality rate. Currently, there is a lack of valid diagnostic biomarkers and few therapeutic strategies are available for CRC treatment, especially for advanced CRC whose underlying pathogenic mechanisms remain poorly understood. In the present study, we investigated the serum samples from 20 patients with stage III or IV advanced CRC using data-independent acquisition (DIA)-based proteomics and ultra-performance liquid chromatography coupled to time-of-flight tandem mass spectrometry (UPLC-TOF-MS/MS) metabolomics techniques. Overall, 551 proteins and 719 metabolites were identified. Hierarchical clustering analysis revealed that the serum proteomes of advanced CRC are more diversified than the metabolomes. Ten biochemical pathways associated with cancer cell metabolism were enriched in the detected proteins and metabolites, including glycolysis/gluconeogenesis, biosynthesis of amino acids, glutathione metabolism, and arachidonic acid metabolism, etc. A protein-protein interaction network in advanced CRC serum was constructed with 80 proteins and 21 related metabolites. Correlation analysis revealed conserved roles of lipids and lipid-like molecules in a regulatory network of advanced CRC. Three metabolites (hydroquinone, leucenol and sphingomyelin) and two proteins (coagulation factor XIII A chain and plasma kallikrein) were selected to be potential biomarkers for advanced CRC, which are positively and significantly correlated with CEA and/or CA 19-9. Altogether, the results expanded our understanding of the physiopathology of advanced CRC and discovered novel potential biomarkers for further validation and application to improve the diagnosis and monitoring of advanced CRC.
Collapse
Affiliation(s)
- Jun Rao
- Jiangxi Cancer Hospital, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| | - Xianghui Wan
- Jiangxi Cancer Hospital, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| | - Fangfang Tou
- Jiangxi Cancer Hospital, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| | - Qinsi He
- Jiangxi Cancer Hospital, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| | - Aihua Xiong
- Jiangxi Cancer Hospital, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| | - Xinyi Chen
- Department of Hematology and Oncology, Beijing University of Chinese Medicine, Beijing, China
| | - Wenhao Cui
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Zhi Zheng
- Jiangxi Cancer Hospital, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
22
|
Integrated tissue proteome and metabolome reveal key elements and regulatory pathways in cutaneous squamous cell carcinoma. J Proteomics 2021; 247:104320. [PMID: 34237460 DOI: 10.1016/j.jprot.2021.104320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022]
Abstract
Cutaneous squamous cell carcinoma (CSCC) is a widespread malignancy but has a very low long-term survival rate for patients at the metastatic stage. Therefore, it is urgent to identify prognostic biomarkers for CSCC and improve our understanding of disease progression. Here we took advantage of a data-independent acquisition (DIA)-based nano liquid chromatography equipped with an orbitrap mass spectrometry (nLC-MS/MS) and ultraperformance LC coupled to a time-of-flight tandem MS (UPLC-TOF-MS/MS) technique to analyze cancer and corresponding noncancerous tissues from 20 CSCC patients for integrated proteomic and metabolomic analyses. Overall, 6241 tissue proteins were detected, while 136 proteins were significantly expressed in CSCC tissues. Further functional analysis revealed that various biological processes were highly enriched and participated in the pathogenesis of CSCC, especially DNA damage responses. Moreover, 641 named metabolites in total were identified, among which 181 were significantly changed in CSCC tissues. A total of 101 pathways were significantly enriched including apoptosis, autophagy, PI3K-Akt and mTOR signaling pathways. Interestingly, two pathways, protein digestion & absorption and platelet activation were both enriched in proteomic and metabolomic studies involving 5 proteins and 11 metabolites. Accordingly, a four-metabolite panel consisting of arachidonate, glutamine, glutamic acid, and proline (all area under the curve (AUC) values more than 0.9) was developed with a high accuracy (0.971) to distinguish the 20 detected cancer tissues from their noncancerous tissues. Collectively, our work highlighted the key elements and regulatory pathways involved in the pathogenesis of CSCC. More importantly, the present study not only provided potential biomarkers for the early diagnosis of CSCC, but also expanded our knowledge of the physiopathology of the disease. SIGNIFICANCE: CSCC is the second most common human cancer but has few treatment options and few sensitive biomarkers for diagnosis. Here we comprehensively revealed its molecular characteristics by performing integrated tissue proteomic and metabolomic analyses. Significantly distinct profiles and certain enriched pathways including DNA damage responses were identified as associated with CSCC. Moreover, protein digestion & absorption and platelet activation were both enriched in the proteome and metabolome. These identified molecular changes probably play significant roles in CSCC development. Finally, we developed a four-metabolite panel to distinguish CSCC with high accuracy. Overall, our data not only provided potential diagnostic biomarkers, but also extended knowledge on the pathogenesis of CSCC.
Collapse
|
23
|
Rahman HS. Preclinical Drug Discovery in Colorectal Cancer: A Focus on Natural Compounds. Curr Drug Targets 2021; 22:977-997. [PMID: 33820517 DOI: 10.2174/1389450122666210405105206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/15/2021] [Accepted: 02/01/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is considered one of the most predominant and deadly cancer globally. Nowadays, the main clinical management for this cancer includes chemotherapy and surgery; however, these treatments result in the occurrence of drug resistance and severe side effects, and thus it is a crucial requirement to discover an alternative and potential therapy for CRC treatment. Numerous therapeutic cancers were initially recognized from natural metabolites utilized in traditional medicine, and several recent types of research have shown that many natural products own potential effects against CRC and may assist the action of chemotherapy for the treatment of CRC. It has been indicated that most patients are well tolerated by natural compounds without showing any toxicity signs even at high doses. Conventional chemotherapeutics interaction with natural medicinal compounds presents a new feature in cancer exploration and treatment. Most of the natural compounds overwhelm malignant cell propagation by apoptosis initiation of CRC cells and arresting of the cell cycle (especially at G, S, and G2/M phase) that result in inhibition of tumor growth. OBJECTIVE This mini-review aimed to focus on natural compounds (alkaloids, flavonoids, polysaccharides, polyphenols, terpenoids, lactones, quinones, etc.) that were identified to have anti- CRC activity in vitro on CRC cell lines and/or in vivo experiments on animal models. CONCLUSION Most of the studied active natural compounds possess anti-CRC activity via different mechanisms and pathways in vitro and in vivo that might be used as assistance by clinicians to support chemotherapy therapeutic strategy and treatment doses for cancer patients.
Collapse
Affiliation(s)
- Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Sulaimani, 46001 Sulaymaniyah, Iraq.,Department of Medical Laboratory Sciences, Komar University of Science and Technology, Chaq-Chaq Qularaisee, Sulaimaniyah, Iraq
| |
Collapse
|
24
|
Massaro C, Safadeh E, Sgueglia G, Stunnenberg HG, Altucci L, Dell’Aversana C. MicroRNA-Assisted Hormone Cell Signaling in Colorectal Cancer Resistance. Cells 2020; 10:cells10010039. [PMID: 33396628 PMCID: PMC7823834 DOI: 10.3390/cells10010039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 12/17/2022] Open
Abstract
Despite substantial progress in cancer therapy, colorectal cancer (CRC) is still the third leading cause of cancer death worldwide, mainly due to the acquisition of resistance and disease recurrence in patients. Growing evidence indicates that deregulation of hormone signaling pathways and their cross-talk with other signaling cascades inside CRC cells may have an impact on therapy resistance. MicroRNAs (miRNAs) are small conserved non-coding RNAs thatfunction as negative regulators in many gene expression processes. Key studies have identified miRNA alterations in cancer progression and drug resistance. In this review, we provide a comprehensive overview and assessment of miRNAs role in hormone signaling pathways in CRC drug resistance and their potential as future targets for overcoming resistance to treatment.
Collapse
Affiliation(s)
- Crescenzo Massaro
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio, 7, 80138 Naples, Italy; (C.M.); (E.S.); (G.S.)
| | - Elham Safadeh
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio, 7, 80138 Naples, Italy; (C.M.); (E.S.); (G.S.)
| | - Giulia Sgueglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio, 7, 80138 Naples, Italy; (C.M.); (E.S.); (G.S.)
| | | | - Lucia Altucci
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio, 7, 80138 Naples, Italy; (C.M.); (E.S.); (G.S.)
- Correspondence: (L.A.); (C.D.); Tel.: +39-081-566-7564 (L.A.); +39-081-566-7566 (C.D.)
| | - Carmela Dell’Aversana
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via De Crecchio, 7, 80138 Naples, Italy; (C.M.); (E.S.); (G.S.)
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS)-National Research Council (CNR), Via Sergio Pansini 5, 80131 Naples, Italy
- Correspondence: (L.A.); (C.D.); Tel.: +39-081-566-7564 (L.A.); +39-081-566-7566 (C.D.)
| |
Collapse
|
25
|
Chen T, Zhong F, Yao C, Chen J, Xiang Y, Dong J, Yan Z, Ma Y. A Systematic Review on Traditional Uses, Sources, Phytochemistry, Pharmacology, Pharmacokinetics, and Toxicity of Fritillariae Cirrhosae Bulbus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:1536534. [PMID: 33273948 PMCID: PMC7676930 DOI: 10.1155/2020/1536534] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/05/2020] [Accepted: 10/14/2020] [Indexed: 12/31/2022]
Abstract
Fritillariae Cirrhosae Bulbus (known as chuanbeimu in Chinese, FCB) is a famous folk medicine which has been widely used to relieve cough and eliminate phlegm for thousands of years in China. The medicine originates from dried bulbs of six species of Fritillaria which are distributed in the temperate zone of the Northern Hemisphere. Increasing attention has been paid to FCB because of its excellent medicinal value such as being antitussive, expectorant, analgesic, anticancer, anti-inflammatory, and antioxidative. During the past years, a large number of research studies have been conducted to investigate the phytochemistry, pharmacology, and pharmacokinetics of FCB. A range of compounds have been isolated and identified from FCB, including alkaloids, saponins, nucleosides, organic acids, terpenoids, and sterols. Among them, alkaloids as the main active ingredient have been illustrated to exert significant therapeutic effects on many diseases such as cancer, acute lung injury, chronic obstructive pulmonary disease, asthma, Parkinson's disease, and diabetes. Due to the excellent medical value and low toxicity, FCB has a huge market all over the world and triggers a growing enthusiasm among researchers. However, there is still a lack of systematic review. Hence, in this work, we reviewed the FCB-based articles published in Sci Finder, Web of Science, PubMed, Google Scholar, CNKI, and other databases in the recent years. The traditional uses, sources, phytochemistry, pharmacology, pharmacokinetics, and toxicity of FCB were discussed in the review, which aims to provide a reference for further development and utilization of FCB.
Collapse
Affiliation(s)
- Ting Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Furong Zhong
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Cheng Yao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Jia Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Yiqing Xiang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Jijing Dong
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Zhuyun Yan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Yuntong Ma
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| |
Collapse
|
26
|
Li R, Zhang Y, Wang Y, Huang K, Yang Q, Zhang T, Xie K, Li J, Zhao Q. Aqueous extract of Fritillariae cirrhosae induces cellular apoptosis through activation of STATs-mediated immunomodulation. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:112338. [PMID: 31669666 DOI: 10.1016/j.jep.2019.112338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/08/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fritillariae cirrhosae (FC), referred to'Chuan beimu'in China. As an important edible and medicinal plant, the bulbs of F.cirrhosae is used traditionally in the treatment of pulmonary diseases associated with lung heat, inflammation and tumors. In the study, we investigated the effect of aqueous extract of FC (FC-AE) and elucidated its mechanism in non-small cell lung cancer A549 cells and a xenograft model of nude mice. MATERIALS AND METHODS CCK-8 and plate colony formation assay were used to evaluate the effect of FC-AE in A549 cells in vitro, and the gene expression profile of FC-AE on A549 cells was assessed by RNA sequencing system. Then, the effects of FC-AE on cell cycle and apoptosis of A549 cells were analyzed by flow cytometry. In combination with RNA-seq data, RT-PCR and western blot were used to evaluate the expression of proteins related to apoptosis and immune regulation. A xenograft model of nude mice was used to assess the effect of FC-AE in vivo. RESULTS CCK-8 and plate cloning assays showed that FC-AE inhibited the proliferation and colony formation of A549 cells. A549 cells treated with FC-AE can triggered apoptosis. GO and KEGG pathway enrichment analysis of RNA-seq data showed that most of the differentially expressed genes (DEGs) were related to immune response, apoptosis and cell cycle process. Several immune and apoptotic DEGs were identified by qRT-PCR which were consistented with RNA-seq data. In nude mice, FC-AE reduced the tumor size and promoted the secretion of cytokines IL12 and IFNγ. FC-AE up-regulated the two members (STAT1 and STAT4) of STATs and their target genes (IFNγ and IL-12, respectively) protein expressions, and actively regulates Bcl-2/Bax family proteins which resulted in cellular apoptosis in A549 cells. CONCLUSION Our finding suggests that FC-AE mediates apoptosis through a STAT1 and STAT4-mediated co-regulatory network, which may be the key novel mechanism for its antitumor activity. The F. cirrhosa may be a promising antitumor drug for modulating immune responses to improve cancer therapy.
Collapse
Affiliation(s)
- Rui Li
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Yang Zhang
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Yucheng Wang
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Kejia Huang
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Qianye Yang
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Tiantian Zhang
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Kun Xie
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Jian Li
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China; School of Medicine, Chengdu University, Chengdu, China.
| | - Qi Zhao
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China; Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China.
| |
Collapse
|
27
|
Rashid MM, Lee H, Jung BH. Evaluation of the antitumor effects of PP242 in a colon cancer xenograft mouse model using comprehensive metabolomics and lipidomics. Sci Rep 2020; 10:17523. [PMID: 33067464 PMCID: PMC7568555 DOI: 10.1038/s41598-020-73721-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/22/2020] [Indexed: 01/16/2023] Open
Abstract
PP242, an inhibitor of mechanistic target of rapamycin (mTOR), displays potent anticancer effects against various cancer types. However, the underlying metabolic mechanism associated with the PP242 effects is not clearly understood. In this study, comprehensive metabolomics and lipidomics investigations were performed using ultra-high-performance chromatography-Orbitrap-mass spectrometry (UHPLC-Orbitrap-MS) in plasma and tumor tissue to reveal the metabolic mechanism of PP242 in an LS174T cell-induced colon cancer xenograft mouse model. After 3 weeks of PP242 treatment, a reduction in tumor size and weight was observed without any critical toxicities. According to results, metabolic changes due to the effects of PP242 were not significant in plasma. In contrast, metabolic changes in tumor tissues were very significant in the PP242-treated group compared to the xenograft control (XC) group, and revealed that energy and lipid metabolism were mainly altered by PP242 treatment like other cancer inhibitors. Additionally, in this study, it was discovered that not only TCA cycle but also fatty acid β-oxidation (β-FAO) for energy metabolism was inhibited and clear reduction in glycerophospholipid was observed. This study reveals new insights into the underlying anticancer mechanism of the dual mTOR inhibitor PP242, and could help further to facilitate the understanding of PP242 effects in the clinical application.
Collapse
Affiliation(s)
- Md Mamunur Rashid
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, 02792, South Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, South Korea
| | - Hyunbeom Lee
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Byung Hwa Jung
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, 02792, South Korea. .,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, South Korea.
| |
Collapse
|
28
|
Peiminine inhibits the progression of colorectal cancer through up-regulating miR-760 via declining the expression of long noncoding RNA LINC00659. Anticancer Drugs 2020; 32:148-156. [DOI: 10.1097/cad.0000000000000981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
29
|
Hu Y, Sun L, Zhang Y, Lang J, Rao J. Phosphoproteomics Reveals Key Regulatory Kinases and Modulated Pathways Associated with Ovarian Cancer Tumors. Onco Targets Ther 2020; 13:3595-3605. [PMID: 32425555 PMCID: PMC7196812 DOI: 10.2147/ott.s240164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/06/2020] [Indexed: 12/17/2022] Open
Abstract
Background Ovarian cancer (OC) is the seventh most common cancer worldwide for women. However, there are no sufficient diagnostic methods and few treatment options available due to poor understanding of its pathogenic mechanisms. Methods To comprehensively analyze the phosphoproteomic characterization for OC, we took advantage of a quantitative global phosphoproteomics method, titanium(IV) immobilized metal affinity chromatography (Ti4+-IMAC) coupled to nanoscale liquid chromatography and quadrupole time-of-flight tandem mass spectrometry (nanoLC/Q-TOF-MS/MS) on ovarian tissue samples obtained from five OC patients and five matched controls. Results A total of 722 phosphorylated sites corresponding to 534 proteins were significantly different (fold change ≥ 2, p < 0.01) between OC patients and the controls. Among them, 83 transcription factors mainly consisted of transcription cofactors, zf-C2H2, and chromatin remodeling factors and 29 kinases were included. Further functional analysis suggested significantly biological processes were highly enriched and involved in the pathogenesis of OC, especially fructose and mannose metabolism. Moreover, the regulatory roles of modulated pathways, including MAPK, ErbB, and GnRH signaling pathways were also identified as critical processes involved in OC. The results here highlighted key phosphorylated proteins, particularly kinases, and the corresponding cancer-related metabolic and signal pathways that played important roles in the development of OC. Additionally, the expression levels of two kinases, phosphorylated CDK (T14) and phosphorylated PRKCQ (S695), were validated by Western blot analysis in the other group of ovarian tissue samples. Conclusion Altogether, our data not only provided novel insights into the potential biomarkers and therapy options for OC but also extended our knowledge on its pathophysiological mechanism.
Collapse
Affiliation(s)
- Yingchao Hu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Lejia Sun
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences, Beijing 100730, People's Republic of China
| | - Yinglan Zhang
- Department of Obstetrics and Gynecology, Affiliated Beijing Chaoyang Hospital of Capital Medical University, Beijing 100020, People's Republic of China
| | - Jinghe Lang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Jun Rao
- Jiangxi Provincial Key Laboratory of Translational Medicine and Oncology, Jiangxi Cancer Hospital, Jiangxi Cancer Center, Nanchang 330029, People's Republic of China
| |
Collapse
|
30
|
Zhang L, Cui M, Chen S. Identification of the Molecular Mechanisms of Peimine in the Treatment of Cough Using Computational Target Fishing. Molecules 2020; 25:E1105. [PMID: 32131410 PMCID: PMC7179178 DOI: 10.3390/molecules25051105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 01/19/2023] Open
Abstract
Peimine (also known as verticine) is the major bioactive and characterized compound of Fritillariae Thunbergii Bulbus, a traditional Chinese medicine that is most frequently used to relieve a cough. Nevertheless, its molecular targets and mechanisms of action for cough are still not clear. In the present study, potential targets of peimine for cough were identified using computational target fishing combined with manual database mining. In addition, protein-protein interaction (PPI), gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using, GeneMANIA and Database for Annotation, Visualization and Integrated Discovery (DAVID) databases respectively. Finally, an interaction network of drug-targets-pathways was constructed using Cytoscape. The results identified 23 potential targets of peimine associated with cough, and suggested that MAPK1, AKT1 and PPKCB may be important targets of pemine for the treatment of cough. The functional annotations of protein targets were related to the regulation of immunological and neurological function through specific biological processes and related pathways. A visual representation of the multiple targets and pathways that form a network underlying the systematic actions of peimine was generated. In summary, peimine is predicted to exert its systemic pharmacological effects on cough by targeting a network composed of multiple proteins and pathways.
Collapse
Affiliation(s)
- Lihua Zhang
- Department of Food Science, Zhejiang Pharmaceutical College, Ningbo 315000, China;
| | - Mingchao Cui
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical College, Ningbo 315000, China;
| | - Shaojun Chen
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical College, Ningbo 315000, China;
| |
Collapse
|
31
|
Du L, Du DH, Chen B, Ding Y, Zhang T, Xiao W. Anti-Inflammatory Activity of Sanjie Zhentong Capsule Assessed By Network Pharmacology Analysis of Adenomyosis Treatment. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:697-713. [PMID: 32109994 PMCID: PMC7039068 DOI: 10.2147/dddt.s228721] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/08/2020] [Indexed: 12/23/2022]
Abstract
Background Sanjie Zhentong capsule (SZC) offers excellent effect in treating adenomyosis (AM), which is a common and difficult gynecological disease in the clinic. However, the systematic analysis of its mechanism has not been carried out yet and further studies are needed to reveal the role of SZC. Methods A systematic network pharmacology analysis was conducted by integrating construction of SZC compound database and AM target database, prediction of potential active compounds and targets by molecular docking combined with compound-target prediction graph (CTPG), protein-protein interaction (PPI) analysis, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Then, the anti-inflammation experiments in vitro were performed by investigating SZC and the representative compounds regulating nitric oxide (NO), interleukin-6 (IL-6), and interleukin-10 (IL-10). Results Our findings show that SZC mainly treated AM by stimulating 28 core targets through 30 key potential active compounds, and affecting 4 crucial pathways. The treatment was associated with inflammation reaction, hormone regulation, cell adhesion, proliferation, and angiogenesis. Additionally, SZC achieved the anti-inflammatory activity by the cooperation of the compounds through inhibiting NO and IL-6, both promoting and inhibiting IL-10. Conclusion This study investigated the anti-inflammatory activity of SZC based on a systematic analysis of SZC remedying AM, which was revealed to be one of the essential mechanisms. These findings will provide valuable guidance for further research of the SZC treatment of AM, and help improve the comprehension of SZC pharmacological basis as well as AM pathogenesis.
Collapse
Affiliation(s)
- Li Du
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - De-Hui Du
- Shanghai Key Laboratory of Trustworthy Computing and Software Engineering Institute, East China Normal University, Shanghai, People's Republic of China
| | - Biao Chen
- Shanghai Key Laboratory of Trustworthy Computing and Software Engineering Institute, East China Normal University, Shanghai, People's Republic of China
| | - Yue Ding
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Tong Zhang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Wei Xiao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.,Jiangsu Kanion Pharmaceutical Co., Ltd, Jiangsu, People's Republic of China
| |
Collapse
|
32
|
Li CL, Hsia TC, Li CH, Chen KJ, Yang YH, Yang ST. Adjunctive Traditional Chinese Medicine Improves Survival in Patients With Advanced Lung Adenocarcinoma Treated With First-Line Epidermal Growth Factor Receptor (EGFR) Tyrosine Kinase Inhibitors (TKIs): A Nationwide, Population-Based Cohort Study. Integr Cancer Ther 2019; 18:1534735419827079. [PMID: 30836771 PMCID: PMC7242801 DOI: 10.1177/1534735419827079] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Objectives: The clinical effect of traditional Chinese medicine
(TCM) on survival in patients with advanced lung adenocarcinoma treated with
first-line epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors
(TKIs) is a major concern and requires more evidence from large-scale clinical
studies. Materials and Methods: This population-based cohort study
used the Taiwan National Health Insurance Research Database to enroll patients
between 2006 and 2012 who had newly diagnosed locally advanced and metastatic
lung adenocarcinoma treated with first-line gefitinib or erlotinib. Survival was
tracked until 2013. The patients were separated into TCM users and nonusers, and
Cox regression models were applied to determine the association between the use
of TCM and the survival of patients. Results: A total of 1988
patients receiving first-line gefitinib or erlotinib for the treatment of
EGFR-mutated advanced lung adenocarcinoma, with the exclusion of TCM users after
tumor progression, were included in this cohort study. Compared with TCM nonuse,
TCM use for ≥180 days was associated with a significantly decreased risk of
mortality by 68% (adjusted hazard ratio [HR], 0.32 [95% CI, 0.21-0.50],
P < .0001). Compared with TCM nonuse, TCM use for ≥180
days was associated with a significantly decreased risk of disease progression
by 59% (adjusted HR, 0.41 [95% CI, 0.29-0.58], P < .0001).
Conclusion: This cohort study suggests that adjunctive TCM
therapy could improve overall survival and progression-free survival in patients
with advanced lung adenocarcinoma treated with first-line TKIs. Future
randomized, controlled trials are required to validate these findings.
Collapse
Affiliation(s)
- Chia-Ling Li
- 1 Graduate Institute of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Te-Chun Hsia
- 2 Division of Pulmonary and Critical Care Medicine, China Medical University Hospital, Taichung, Taiwan.,3 Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan.,4 Department of Respiratory Therapy, China Medical University, Taichung, Taiwan.,5 Health Information and Epidemiology Laboratory of Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chia-Hsiang Li
- 2 Division of Pulmonary and Critical Care Medicine, China Medical University Hospital, Taichung, Taiwan.,3 Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan.,4 Department of Respiratory Therapy, China Medical University, Taichung, Taiwan
| | - Ko-Jung Chen
- 5 Health Information and Epidemiology Laboratory of Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yao-Hsu Yang
- 5 Health Information and Epidemiology Laboratory of Chang Gung Memorial Hospital, Chiayi, Taiwan.,6 Department of Traditional Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan.,7 School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Su-Tso Yang
- 8 School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan.,9 Department of Radiology, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
33
|
Zhang J, Sun L, Cui J, Wang J, Liu X, Aung TN, Qu Z, Chen Z, Adelson DL, Lin L. Yiqi Chutan Tang Reduces Gefitinib-Induced Drug Resistance in Non-Small-Cell Lung Cancer by Targeting Apoptosis and Autophagy. Cytometry A 2019; 97:70-77. [PMID: 31411813 PMCID: PMC7004076 DOI: 10.1002/cyto.a.23869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/21/2019] [Accepted: 07/01/2019] [Indexed: 12/27/2022]
Abstract
High incidence and mortality rates for non-small-cell lung cancer (NSCLC) lead to low survival rates. Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKI) are commonly first prescribed for NSCLC patients with EGFR mutations. However, most patients with sensitizing EGFR mutations become resistant to EGFR-TKI after 9-13 months treatment. Yiqi Chutan Tang (YQCT) has been prescribed as a treatment to this issue for over 20 years. In this report, high-performance liquid chromatography (HPLC) analysis, flow cytometry, western blot analysis, and functional annotation analysis were applied to uncover the molecular mechanisms of YQCT. Our results show the application of YQCT reduces gefitinib-induced drug resistance, induces slight cell cycle arrest, enhances gefitinib-induced apoptosis, and activates the autophagy. These results indicate that at the molecular level YQCT can reduce drug resistance and improve anti-cancer effects when associated with gefitinib, which could be a result of enhancement of apoptosis and autophagy in the EGFR-TKI resistant cells of NSCLC. This research provides a new treatment strategy for patients with EGFR-TKI resistance in NSCLC. © 2019 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Jue Zhang
- First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510000, Guangdong Province, China
| | - Lingling Sun
- First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510000, Guangdong Province, China
| | - Jian Cui
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Jing Wang
- First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510000, Guangdong Province, China
| | - Xiaomin Liu
- Guangzhou University of Chinese Medicine, Guangzhou, 510000, Guangdong Province, China
| | - Thazin Nwe Aung
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Zhipeng Qu
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Zhuangzhong Chen
- First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510000, Guangdong Province, China
| | - David L Adelson
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Lizhu Lin
- First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510000, Guangdong Province, China
| |
Collapse
|
34
|
Tan H, Zhang G, Yang X, Jing T, Shen D, Wang X. Peimine inhibits the growth and motility of prostate cancer cells and induces apoptosis by disruption of intracellular calcium homeostasis through Ca
2+
/CaMKII/JNK pathway. J Cell Biochem 2019; 121:81-92. [PMID: 31081133 DOI: 10.1002/jcb.28870] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/22/2019] [Accepted: 02/28/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Hailin Tan
- Department of Urinary Surgery The Affiliated Hospital of Qingdao University Qingdao Shandong Province China
| | - Guiming Zhang
- Department of Urinary Surgery The Affiliated Hospital of Qingdao University Qingdao Shandong Province China
| | - Xuecheng Yang
- Department of Urinary Surgery The Affiliated Hospital of Qingdao University Qingdao Shandong Province China
| | - Tao Jing
- Department of Urinary Surgery The Affiliated Hospital of Qingdao University Qingdao Shandong Province China
| | - Daqing Shen
- Department of Urinary Surgery Affiliated Hospital of Jining Medical University Jining Shandong Province China
| | - Xinsheng Wang
- Department of Urinary Surgery The Affiliated Hospital of Qingdao University Qingdao Shandong Province China
| |
Collapse
|
35
|
Chang CC, Bi KW, Lin HJ, Su YC, Wang WL, Lin CY, Ting CF, Sun MF, Huang ST. Conventional Western Treatment Associated With Chinese Herbal Medicine Ameliorates the Incidence of Head and Neck Cancer Among Patients With Esophageal Cancer. Integr Cancer Ther 2019; 18:1534735419834353. [PMID: 30866690 PMCID: PMC6419260 DOI: 10.1177/1534735419834353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Because of advances in medical treatment, the survival of cancer patients is prolonged. In line with the prolonged survival time of cancer the incidence of second primary cancer has increased. There is currently no effective way to prevent the occurrence of secondary primary cancer (SPC). OBJECTIVES The aim of this study is to evaluate whether Chinese Herbal Medicine (CHM) is correlated with reduced occurrence of second primary cancer (SPC) of head and neck (H&N) in patients with esophageal cancer (EC). METHOD We identified 15,546 patients who were diagnosed with esophageal cancer between Jan 1, 2000, and Dec 31, 2010. The patients with H&N cancer before receiving CHM were excluded. After the selection and matching process, both CHM and non-CHM cohorts each contained 850 individuals. We compared the cumulative incidence of SPC of H&N with or without CHM treatment in patients with EC by the Kaplan-Meier method. NodeXL is used to run a network analysis of CHM to examine the association between herbs and formulas. RESULTS Compared with non-CHM users, CHM-users showed a reduced incidence rate of SPC of H&N among the patients with EC. Reduced cumulative incidence of SPC of H&N among patients with EC was noted in the CHM cohort compared to the non-CHM cohort. The most commonly used single herbs and formulas were associated with reducing SPC occurrence. CONCLUSION We propose that CHM as an adjuvant therapy may prevent the occurrence of SPC of H&N in patients with EC.
Collapse
Affiliation(s)
| | - Kuo-Wei Bi
- 2 Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung, China
| | - Hung-Jen Lin
- 1 China Medical University Hospital, Taichung, China.,3 China Medical University, Taichung, China
| | - Yuan-Chih Su
- 1 China Medical University Hospital, Taichung, China.,3 China Medical University, Taichung, China
| | - Wen-Ling Wang
- 1 China Medical University Hospital, Taichung, China.,3 China Medical University, Taichung, China
| | - Chen-Yuan Lin
- 1 China Medical University Hospital, Taichung, China.,3 China Medical University, Taichung, China
| | - Chun-Fu Ting
- 1 China Medical University Hospital, Taichung, China.,3 China Medical University, Taichung, China
| | - Mao-Feng Sun
- 1 China Medical University Hospital, Taichung, China.,3 China Medical University, Taichung, China
| | - Sheng-Teng Huang
- 1 China Medical University Hospital, Taichung, China.,3 China Medical University, Taichung, China.,4 China Medical University, Tainan, China
| |
Collapse
|
36
|
Kim HY, Jin H, Bae J, Choi HK. Metabolic and lipidomic investigation of the antiproliferative effects of coronatine against human melanoma cells. Sci Rep 2019; 9:3140. [PMID: 30816283 PMCID: PMC6395766 DOI: 10.1038/s41598-019-39990-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 02/04/2019] [Indexed: 12/22/2022] Open
Abstract
Melanoma is the most aggressive form of skin cancer, with metastatic melanoma being refractory to currently available conventional therapies. In this study, we evaluated the inhibitory effect of coronatine (COR) on the proliferation of metastatic melanoma cells. COR inhibited the proliferation of melanoma cells but negligibly affected the proliferation of normal melanocytes. Comparative metabolic and lipidomic profiling using gas chromatography-mass spectrometry and direct infusion-mass spectrometry was performed to investigate COR-induced metabolic changes. These analyses identified 33 metabolites and 82 lipids. Of these, the levels of lactic acid and glutamic acid, which are involved in energy metabolism, significantly decreased in COR-treated melanoma cells. Lipidomic profiling indicated that ceramide levels increased in COR-treated melanoma cells, suggesting that ceramides could function as a suppressor of cancer cell proliferation. In contrast, the levels of phosphatidylinositol (PI) species, including PI 16:0/18:0, 16:0/18:1, 18:0/18:0, and 18:0/18:1, which were found to be potential biomarkers of melanoma metastasis in our previous study, were lower in the COR-treated cells than in control cells. The findings of metabolomic and lipidomic profiling performed in the present study provide new insights on the anticancer mechanisms of COR and can be used to apply COR in cancer treatment.
Collapse
Affiliation(s)
- Hye-Youn Kim
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hanyong Jin
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jeehyeon Bae
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyung-Kyoon Choi
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
37
|
Chao X, Wang G, Tang Y, Dong C, Li H, Wang B, Wu J, Zhao J. The effects and mechanism of peiminine-induced apoptosis in human hepatocellular carcinoma HepG2 cells. PLoS One 2019; 14:e0201864. [PMID: 30615617 PMCID: PMC6322737 DOI: 10.1371/journal.pone.0201864] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/10/2018] [Indexed: 02/08/2023] Open
Abstract
Peiminine is a compound isolated from Bolbostemma paniculatum (Maxim) Franquet (Cucurbitaceae family), which has demonstrated antitumor activities. But its precise molecular mechanism underlying antitumor activity remain elusive. In this study, peiminine-induced apoptosis towards human hepatocellular carcinoma and its molecular mechanism were investigated. MTT assay was employed to assess anticancer effects of peiminine upon Hela, HepG2, SW480 and MCF-7 cell lines. Nuclear staining and flow cytometry were carried out to detect apoptosis induced by peiminine. Mitochondrial membrane potential evaluation and Western blot analysis were performed to investigate the mechanism of peiminine-induced apoptosis. The results showed peiminine reduced the viability of HepG2 cells in a time- and dose-dependent manner and had an IC50 of 4.58 μg/mL at 24h. Peiminine significantly increased the percentage of apoptotic cells and the mitochondrial membrane potential dose-dependently in HepG2 cells. The results of Western blotting indicated the expressions of Bcl-2, procaspase-3, procaspase-8, procaspase-9, and PARP decreased in HepG2 cells treated with peiminine, while the expressions of Bax, caspase-3, caspase-8, caspase-9, and cleaved PARP1 increased. The result suggests that peiminine can induce apoptosis in human hepatocellular carcinoma HepG2 cells through both extrinsic and intrinsic apoptotic pathways.
Collapse
Affiliation(s)
- Xu Chao
- The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, P. R.China
- The College of Basic Medicine Sciences, Shaanxi University of Chinese Medicine, Xi’an, Shaanxi, P. R.China
| | - Guoquan Wang
- The College of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, Shaanxi, P. R.China
| | - Yuping Tang
- The College of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, Shaanxi, P. R.China
| | - Changhu Dong
- The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, P. R.China
| | - Hong Li
- The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, P. R.China
| | - Bin Wang
- The College of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, Shaanxi, P. R.China
| | - Jieqiong Wu
- The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, P. R.China
| | - Jiarong Zhao
- The College of Basic Medicine Sciences, Shaanxi University of Chinese Medicine, Xi’an, Shaanxi, P. R.China
| |
Collapse
|
38
|
Antti H, Sellstedt M. Metabolic effects of an aspartate aminotransferase-inhibitor on two T-cell lines. PLoS One 2018; 13:e0208025. [PMID: 30532126 PMCID: PMC6285999 DOI: 10.1371/journal.pone.0208025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/11/2018] [Indexed: 12/29/2022] Open
Abstract
An emerging method to help elucidate the mode of action of experimental drugs is to use untargeted metabolomics of cell-systems. The interpretations of such screens are however complex and more examples with inhibitors of known targets are needed. Here two T-cell lines were treated with an inhibitor of aspartate aminotransferase and analyzed with untargeted GC-MS. The interpretation of the data was enhanced by the use of two different cell-lines and supports aspartate aminotransferase as a target. In addition, the data suggest an unexpected off-target effect on glutamate decarboxylase. The results exemplify the potency of metabolomics to provide insight into both mode of action and off-target effects of drug candidates.
Collapse
Affiliation(s)
- Henrik Antti
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | |
Collapse
|
39
|
Wang G, Wang JJ, Yin PH, Xu K, Wang YZ, Shi F, Gao J, Fu XL. New strategies for targeting glucose metabolism-mediated acidosis for colorectal cancer therapy. J Cell Physiol 2018; 234:348-368. [PMID: 30069931 DOI: 10.1002/jcp.26917] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/13/2018] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) is a heterogeneous group of diseases that are the result of abnormal glucose metabolism alterations with high lactate production by pyruvate to lactate conversion, which remodels acidosis and offers an evolutional advantage for tumor cells, even enhancing their aggressive phenotype. This review summarizes recent findings that involve multiple genes, molecules, and downstream signaling in the dysregulated glycolytic pathway, which can allow a tumor to initiate acid byproducts and to progress, thereby resulting in acidosis commonly found in the tumor microenvironment of CRC. Moreover, the relationship between CRC cells and the tumor acidic microenvironment, especially for regulating lactate production and lactate dehydrogenase A levels, is also discussed, as well as comprehensively defining different aspects of glycolytic pathways that affect cancer cell proliferation, invasion, and migration. Furthermore, this review concentrates on glucose metabolism-mediated transduction factors in CRC, which include acid-sensing ion channels, triosephosphate isomerase and key glycolysis-related enzymes that regulate glycolytic metabolites, coupled with the effect on tumor cell glycolysis as well as signaling pathways. In conclusion, glucose metabolism mediated by glycolytic pathways that are integral to tumor acidosis in CRC is demonstrated. Therefore, selective metabolic inhibitors or agents against these targets in glucose metabolism through glycolytic pathways may be clinically useful to regulate the tumor's acidic microenvironment for CRC treatment and to identify specific targets that regulate tumor acidosis through a cancer patient-personalized approach. Furthermore, strategies for modifying the metabolic processes that effectively inhibit cancer cell growth and tumor progression and activate potent anticancer effects may provide more effective antitumor prospects for CRC therapy.
Collapse
Affiliation(s)
- Gang Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Jun-Jie Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Pei-Hao Yin
- Department of Cancer, Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ke Xu
- Department of Cancer, Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-Zhu Wang
- Department of Medicine, Jiangsu University, Zhenjiang, China
| | - Feng Shi
- Department of Medicine, Jiangsu University, Zhenjiang, China
| | - Jing Gao
- Department of Medicine, Jiangsu University, Zhenjiang, China
| | - Xing-Li Fu
- Department of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
40
|
Li S, Zeng X, Ma R, Wang L. MicroRNA-21 promotes the proliferation, migration and invasion of non-small cell lung cancer A549 cells by regulating autophagy activity via AMPK/ULK1 signaling pathway. Exp Ther Med 2018; 16:2038-2045. [PMID: 30186437 DOI: 10.3892/etm.2018.6370] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 04/24/2018] [Indexed: 12/19/2022] Open
Abstract
The present study investigated the expression of microRNA (miR)-21 in non-small cell lung cancer (NSCLC) tissues, its biological functions and mechanism of autophagy regulation. A total of 46 patients with NSCLC were enrolled in the present study. To measure the expression of miR-21, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was employed. NSCLC A549 cells were transfected with miR-negative control (NC), miR-21 mimics or inhibitor. The CCK-8 assay was used to investigate the proliferation of A549 cells. To study migration and invasion abilities of A549 cells, The Transwell assay was performed. In addition, to determine the expression levels of ULK1, LC3B, AMPKα, p-AMPKα and p62 proteins, western blotting was conducted and laser confocal microscopy was performed to observe the formation of autophagosomes in A549 cells. To explore whether miR-21 regulates the biological functions of A549 cells via autophagy, an autophagy inhibitor, 3-MA, or agonist, rapamycin, were used in a rescue assay. Results indicated that miR-21 expression in NSCLC tissues was enhanced, and closely correlated with the occurrence and development of NSCLC. In vitro experiments showed that miR-21 mimics promoted the proliferation, migration and invasion of A549 cells, while miR-21 inhibitor inhibited these biological functions. Western blotting indicated that miR-21 upregulated autophagy marker LC3BII protein, but downregulated p62 protein. Laser confocal microscopy showed that miR-21 activated autophagy of A549. Rescue experiments indicated that autophagy reversed the effect of miR-21 on the proliferation, migration and invasion of A549 cells. Western blotting data suggested that autophagy-related AMPK/ULK1 signaling pathway was activated by miR-21, and interference or overexpression of ULK1 reversed the biological functions of miR-21. The present study demonstrated that miR-21 expression in NSCLC tissues was upregulated and positively correlated with lymphatic metastasis and clinical staging. In addition, miR-21 regulated autophagy activity of NSCLC A549 cells via AMPK/ULK1 signaling pathway, and promoted the proliferation, migration and invasion of NSCLC A549 cells.
Collapse
Affiliation(s)
- Shuping Li
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Xiaofei Zeng
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Ruidong Ma
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Li Wang
- Department of Anesthesiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| |
Collapse
|
41
|
Simultaneous Determination and Pharmacokinetics of Peimine and Peiminine in Beagle Dog Plasma by UPLC-MS/MS after the Oral Administration of Fritillariae ussuriensis Maxim and Fritillariae thunbergii Miq Powder. Molecules 2018; 23:molecules23071573. [PMID: 29958456 PMCID: PMC6100562 DOI: 10.3390/molecules23071573] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/18/2018] [Accepted: 06/21/2018] [Indexed: 02/06/2023] Open
Abstract
A simple and high sensitive ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for the simultaneous determination of peimine and peiminine in beagle dog plasma after the oral administration of Fritillariae ussuriensis Maxim and Fritillariae thunbergii Miq powder. Chromatographic separation was achieved on an ACQUIT UPLC® BEH C18 column (1.7 μm, 2.1 × 100 mm) in a gradient elution way with a mobile phase consisting of acetonitrile and water containing 0.1% formic acid at a flow rate of 0.4 mL/min. The plasma samples were prepared by a liquid–liquid extraction (LLE) method with ethyl acetate. The analytes were detected with a triple quadrupole tandem mass spectrometry (MS) in multiple reaction monitoring (MRM) mode and a positive ion electrospray ionization (ESI) of the transitions at m/z 432.4→414.4 for peimine and m/z 430.3→412.3 for peiminine. The method was linear for two analytes over the investigated range with all determined correlation coefficients exceeding 0.9900. The lower limit of quantification (LLOQ) was 0.988 ng/mL for peimine and 0.980 ng/mL for peiminine. The mean extraction recoveries of peimine and peiminine at three quality control samples (QC) levels were ranged from 82.56 to 88.71%, and matrix effects ranged from 92.06 to 101.2%. The intra-day and inter-day precision and accuracy were within the acceptable limits at LLOQ and QC levels. The method was effectively and successfully applied to the pharmacokinetics of peimine and peiminine after oral administration of powder to beagle dogs. The obtained results may be help to guide the clinical application of Fritillaria ussuriensis Maxim and Fritillaria thunbergii Miq.
Collapse
|
42
|
Antimicrobial peptides, nanotechnology, and natural metabolites as novel approaches for cancer treatment. Pharmacol Ther 2018; 183:160-176. [DOI: 10.1016/j.pharmthera.2017.10.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
43
|
Zheng Z, Liu P, Xu L, Peng Z, Zhang Y, Chen X, Hou L, Cui W, Tou F, Rao J, Fan X. Metabolomics analysis of salvage chemotherapy on refractory acute myeloid leukemia patients. RSC Adv 2018; 8:14445-14453. [PMID: 35540790 PMCID: PMC9079900 DOI: 10.1039/c7ra13298k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/10/2018] [Indexed: 12/25/2022] Open
Abstract
Acute myeloid leukemia (AML) is a group of hematological malignancies causing high mortality around the world. However, the treatment of AML is still one of the most formidable challenges. In this study, we employed a well-established global metabolic profiling platform, which combined ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) with gas chromatography mass spectrometry (GC-MS) to investigate the metabolic alterations associated with salvage chemotherapy on 10 refractory acute myeloid leukemia (RAML) patients. A total of 390 metabolites were identified from 20 serum samples obtained from all 10 patients before and post salvage chemotherapy. The metabolomics profile was found to be very heterogeneous across the RAML patients. The results showed very subtle metabolic differences upon one-time chemotherapy treatment for an individual patient. Only 9 metabolites including imidazole lactate, glycerol 3-phosphate, three fatty acids, and four lysolipids in the blood serum were significantly changed before and post chemotherapy, suggesting their important roles during the development of RAML. This study may not only provide new insight into the metabolomics features in RAML patients, but also have relevance to improve the treatment and outcome of RAML. Salvage chemotherapy had minimal impact on the metabolomics for individual RAML patient.![]()
Collapse
|