1
|
Sahu M, Paliwal T, Jain S, Verma K, Chakraborty D, Jaiswal S, Dwivedi J, Sharma S. Multifaceted Therapeutic Impacts of Cucurbitacin B: Recent Evidences From Preclinical Studies. Phytother Res 2025; 39:1966-1995. [PMID: 39963741 DOI: 10.1002/ptr.8454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/30/2024] [Accepted: 11/25/2024] [Indexed: 05/21/2025]
Abstract
The most prevalent and bioactive cucurbitacin is Cucurbitacin B (CuB, C32H46O8), which is a tetracyclic triterpene chiefly present in the Cucurbitaceae family. CuB has a wide spectrum of pharmacological properties namely antioxidant, anticancer, hepatoprotective, anti-inflammatory, antiviral, hypoglycaemic, insecticidal, and neuroprotective properties, owing to its ability to regulate several signaling pathways, including the Janus kinase/signal transducer and activator of transcription-3 (JAK/STAT3), AMP-activated protein kinase (AMPK), nuclear factor (NF)-κB, nuclear factor erythroid 2-related factor-2/antioxidant responsive element (Nrf2/ARE), phosphoinositide 3-kinase (PI3K)/Akt, mitogen-activated protein kinase (MAPK), Hippo-Yes-associated protein (YAP), focal adhesion kinase (FAK), cancerous inhibitor of protein phosphatase-2A/protein phosphatase-2A (CIP2A/PP2A), Wnt and Notch pathways. The present review highlights the medicinal attributes of Cucurbitacin B (CuB) with special emphasis on their signaling pathways to provide key evidence of its therapeutic utility in the near future.
Collapse
Affiliation(s)
- Meenal Sahu
- Department of Bioscience & Biotechnology, Banasthali Vidyapith, Banasthali, Rajasthan, India
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Tripti Paliwal
- Department of Bioscience & Biotechnology, Banasthali Vidyapith, Banasthali, Rajasthan, India
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Smita Jain
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Kishangarh, Rajasthan, India
| | - Kanika Verma
- Department of Internal Medicine, Division of Cardiology, LSU Health Sciences Center, Shreveport, Louisiana, USA
| | - Dipjyoti Chakraborty
- Department of Bioscience & Biotechnology, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Shivangi Jaiswal
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| |
Collapse
|
2
|
Neale DA, Morris JC, Verrills NM, Ammit AJ. Understanding the regulatory landscape of protein phosphatase 2A (PP2A): Pharmacological modulators and potential therapeutics. Pharmacol Ther 2025; 269:108834. [PMID: 40023321 DOI: 10.1016/j.pharmthera.2025.108834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/20/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Protein phosphatase 2A (PP2A) is a ubiquitously expressed serine/threonine phosphatase with a diverse and integral role in cellular signalling pathways. Consequently, its dysfunction is frequently observed in disease states such as cancer, inflammation and Alzheimer's disease. A growing understanding of both PP2A and its endogenous regulatory proteins has presented numerous targets for therapeutic intervention. This provides important context for the dynamic control and dysregulation of PP2A function in disease states. Understanding the intricate regulation of PP2A signalling in disease has resulted in the development of novel pharmacological agents aimed at restoring cellular homeostasis. Herein we review the structure and function of PP2A together with pharmacological modulators, both endogenous (proteins) and exogenous (small molecules and peptides), with relevance to targeting PP2A as a future pharmacotherapeutic strategy.
Collapse
Affiliation(s)
- David A Neale
- School of Chemistry, UNSW Sydney, NSW 2052, Australia
| | | | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, NSW 2308, Australia; Precision Medicine Program, Hunter Medical Research Institute, New Lambton, NSW 2305, Australia
| | - Alaina J Ammit
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, Macquarie University, NSW, Australia; School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia.
| |
Collapse
|
3
|
Hsu SY, Huang YP, Hsia TC, Chen JC, Peng SF, Hsieh WT, Chueh FS, Kuo CL. PEITC Induces DNA Damage and Inhibits DNA Repair-Associated Proteins in Human Retinoblastoma Cells In Vitro. ENVIRONMENTAL TOXICOLOGY 2024; 39:5274-5283. [PMID: 39177411 DOI: 10.1002/tox.24393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 06/25/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024]
Abstract
Phenethyl isothiocyanate (PEITC), a natural product, exists in biological activities, including anticancer activity in many human cancer cells. No information shows that PEITC affects DNA damage in human retinoblastoma (RB) cells in vitro. In this study, the aim of experiments was to determine whether PEITC decreased total viable cell number or not by inducing protein expressions involved in DNA damage and repair in Y79 RB cells in vitro. Total cell viability was measured by PI exclusion assay, and PEITC reduced the total Y79 viable cell numbers in a dose-dependent manner. DNA condensation and DNA impairment were conducted by DAPI staining and comet assays, respectively, in Y79 cells. The findings show that PEITC induced DNA condensation dose-dependently based on the brighter fluorescence of cell nuclei stained by DAPI staining. PEITC-induced DNA damage showed a more extended DNA migration smears than that of the control, which was performed by a comet assay. Western blotting was performed to measure the protein expressions involved in DNA damage and repair, which showed that PEITC at 2.5-10 μM increased NRF2, HO-1, SOD (Mn), and catalase; however, it decreased SOD (Cu/Zn) except 10 μM PEITC treatment, and decreased glutathione, which were associated with oxidative stress. Furthermore, PEITC increased DNA-PK, MDC1, H2A.XpSer139, ATMpSer1981, p53, p53pSer15, PARP, HSP70, and HSP90, but decreased TOPIIα, TOPIIβ, and MDM2pSer166 that were associated with DNA damage and repair mechanism in Y79 cells. The examination from confocal laser microscopy shows that PEITC increased H2A.XpSer139 and p53pSer15, and decreased glutathione and TOPIIα in Y79 cells. In conclusion, the cytotoxic effects of PEITC on reducing the number of viable cells may be due to the induction of DNA damage and the alteration of DNA repair proteins in Y79 cells in vitro.
Collapse
Affiliation(s)
- Sheng-Yao Hsu
- Department of Ophthalmology, An Nan Hospital, China Medical University, Tainan, Taiwan
- Department of Optometry, Chung Hwa University of Medical Technology, Tainan, Taiwan
- Department of Medicine, School of Medicine, China Medical University, Taichung, Taiwan
| | - Yi-Ping Huang
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Te-Chun Hsia
- Department of Respiratory Therapy, China Medical University, Taichung, Taiwan
- Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Jaw-Chyun Chen
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua, Taiwan
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Tsong Hsieh
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Pharmacology, China Medical University, Taichung, Taiwan
| | - Fu-Shin Chueh
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Chao-Lin Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| |
Collapse
|
4
|
Kozak J, Jonak K. Association between the antioxidant properties of SESN proteins and anti-cancer therapies. Amino Acids 2023:10.1007/s00726-023-03281-6. [PMID: 37284849 PMCID: PMC10372130 DOI: 10.1007/s00726-023-03281-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/17/2023] [Indexed: 06/08/2023]
Abstract
Since the beginning of SESN protein development, they have attracted highly progressive attention due to their regulatory role in multiple signalling pathways. Through their antioxidant activity and autophagy regulation implication, they can function as powerful antioxidants to reduce oxidative stress in cells. SESN proteins received special attention in the field of regulation of reactive oxygen species level in the cell and its interplay with signalling pathways determining energy and nutrient homeostasis. Since perturbations in these pathways are implicated in cancer onset and development, SESNs might constitute potential novel therapeutic targets of broad interest. In this review, we discuss the impact of SESN proteins on anti-cancer therapy based on naturally occurring compounds and conventionally used drugs that influence oxidative stress and autophagy-induced cellular signalling pathways. The significant changes in reactive oxygen species level and nutrient status in cancer cells generate subsequent biological effect through the regulation of SESN-dependent pathways. Thus, SESN may serve as the key molecule for regulating anti-cancer drugs' induced cellular response.
Collapse
Affiliation(s)
- Joanna Kozak
- Chair of Fundamental Sciences, Department of Human Anatomy, Medical University of Lublin, Kazimierza Jaczewskiego 4, 20-090, Lublin, Poland.
| | - Katarzyna Jonak
- Department of Foreign Languages, Interfaculty Centre for Didactics, Medical University of Lublin, 20-081, Lublin, Poland
| |
Collapse
|
5
|
Dai S, Wang C, Zhao X, Ma C, Fu K, Liu Y, Peng C, Li Y. Cucurbitacin B: A review of its pharmacology, toxicity, and pharmacokinetics. Pharmacol Res 2023; 187:106587. [PMID: 36460279 DOI: 10.1016/j.phrs.2022.106587] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/18/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Cucurbitacin B (CuB, C32H46O8), the most abundant and active member of cucurbitacins, which are highly oxidized tetracyclic triterpenoids. Cucurbitacins are widely distributed in a variety of plants and mainly isolated from plants in the Cucurbitaceae family. CuB is mostly obtained from the pedicel of Cucumis melo L. Modern pharmacological studies have confirmed that CuB has a broad range of pharmacological activities, with significant therapeutic effects on a variety of diseases including inflammatory diseases, neurodegenerative diseases, diabetes mellitus, and cancers. In this study the PubMed, Web of Science, Science Direct, and China National Knowledge Infrastructure (CNKI) databases were searched from 1986 to 2022. After inclusion and exclusion criteria were applied, 98 out of 2484 articles were selected for a systematic review to comprehensively summarize the pharmacological activity, toxicity, and pharmacokinetic properties of CuB. The results showed that CuB exhibits potent anti-inflammatory, antioxidant, antiviral, hypoglycemic, hepatoprotective, neuroprotective, and anti-cancer activities mainly via regulating various signaling pathways, such as the Janus kinase/signal transducer and activator of transcription-3 (JAK/STAT3), nuclear factor erythroid 2-related factor-2/antioxidant responsive element (Nrf2/ARE), nuclear factor (NF)-κB, AMP-activated protein kinase (AMPK), mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K)/Akt, cancerous inhibitor of protein phosphatase-2A/protein phosphatase-2A (CIP2A/PP2A), Wnt, focal adhesion kinase (FAK), Notch, and Hippo-Yes-associated protein (YAP) pathways. Studies of its toxicity and pharmacokinetic properties showed that CuB has non-specific toxicity and low bioavailability. In addition, derivatives and clinical applications of CuB are discussed in this paper.
Collapse
Affiliation(s)
- Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - XingTao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yanfang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
6
|
Cucurbitacins as potential anticancer agents: new insights on molecular mechanisms. J Transl Med 2022; 20:630. [PMID: 36585670 PMCID: PMC9805216 DOI: 10.1186/s12967-022-03828-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/11/2022] [Indexed: 01/01/2023] Open
Abstract
Since ancient times, plants have been an extensive reservoir of bioactive compounds with therapeutic interest for new drug development and clinical application. Cucurbitacins are a compelling example of these drug leads, primarily present in the plant kingdom, especially in the Cucurbitaceae family. However, these natural compounds are also known in several genera within other plant families. Beyond the Cucurbitaceae family, they are also present in other plant families, as well as in some fungi and one shell-less marine mollusc. Despite the natural abundance of cucurbitacins in different natural species, their obtaining and isolation is limited, as a result, an increase in their chemical synthesis has been developed by researchers. Data on cucurbitacins and their anticancer activities were collected from databases such as PubMed/MedLine, TRIP database, Web of Science, Google Scholar, and ScienceDirect and the information was arranged sequentially for a better understanding of the antitumor potential. The results of the studies showed that cucurbitacins have significant biological activities, such as anti-inflammatory, antioxidant, antimalarial, antimicrobial, hepatoprotective and antitumor potential. In conclusion, there are several studies, both in vitro and in vivo reporting this important anticancer/chemopreventive potential; hence a comprehensive review on this topic is recommended for future clinical research.
Collapse
|
7
|
Khan A, Mishra A, Hasan SM, Usmani A, Ubaid M, Khan N, Saidurrahman M. Biological and medicinal application of Cucumis sativus Linn. - review of current status with future possibilities. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2022; 19:843-854. [PMID: 34047145 DOI: 10.1515/jcim-2020-0240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVES The increasing demand for herbal drugs for the human application is causing a growing demand for the cultivation of Medicinal Plants. This demand has developed because of cost-effective, plant-derived products rather than commercially available synthetic drugs. Cucumis sativus Linn. (Ver. Kheera) is a vegetable climber, species belongs to family Cucurbitaceae This species has a wide range of medicinal and biological applications thanks to its richness in carbohydrate, proteins, minerals (calcium, iron, magnesium, phosphorus, potassium, zinc) and secondary metabolites like alkaloids, tannins, flavonoids, saponins, and phenolic compounds These phytoconstituents may be responsible for allied therapeutic application. So, C. sativus possess wider applications for preventing certain ailments. CONTENT The literature in various national and international journals and reports pertaining to the medicinal and nutritional uses were reviewed. The result revealed the current therapeutic applications of C. sativus whole plants other than the nutritional value. C. sativus pharmacological action includes antioxidant, anti-diabetic, UV protectant, hepatoprotective, gastroprotective, anti-helminthic, wound healing, antimicrobial, and anticancer. So, it could be useful for both preventive and additive therapy along with modern medicine for the better management of certain disorders. SUMMARY AND OUTLOOK This review furnishes updated information about the phytoconstituents and their medicinal applications so that it can pose a path for the young researchers to do future findings.
Collapse
Affiliation(s)
- Anayatullah Khan
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Anuradha Mishra
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Syed Misbahul Hasan
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Afreen Usmani
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Mohd Ubaid
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Naimuddin Khan
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Mohd Saidurrahman
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
8
|
A comprehensive review on the botany, traditional uses, phytochemistry, pharmacology and toxicity of Anagallis arvensis (L).: A wild edible medicinal food plant. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Ji X, Chen X, Sheng L, Deng D, Wang Q, Meng Y, Qiu Z, Zhang B, Zheng G, Hu J. Metabolomics profiling of AKT/c-Met-induced hepatocellular carcinogenesis and the inhibitory effect of Cucurbitacin B in mice. Front Pharmacol 2022; 13:1009767. [PMID: 36506561 PMCID: PMC9728611 DOI: 10.3389/fphar.2022.1009767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC), the most common kind of liver cancer, accounts for the majority of liver cancer diagnoses and fatalities. Clinical aggressiveness, resistance to traditional therapy, and a high mortality rate are all features of this disease. Our previous studies have shown that co-activation of AKT and c-Met induces HCC development, which is the malignant biological feature of human HCC. Cucurbitacin B (CuB), a naturally occurring tetracyclic triterpenoid compound with potential antitumor activity. However, the metabolic mechanism of AKT/c-Met-induced Hepatocellular Carcinogenesis and CuB in HCC remains unclear. In this study, we established an HCC mouse model by hydrodynamically transfecting active AKT and c-Met proto-oncogenes. Based on the results of hematoxylin-eosin (H&E), oil red O (ORO) staining, and immunohistochemistry (IHC), HCC progression was divided into two stages: the early stage of HCC (3 weeks after AKT/c-Met injection) and the formative stage of HCC (6 weeks after AKT/c-Met injection), and the therapeutic effect of CuB was evaluated. Through UPLC-Q-TOF-MS/MS metabolomics, a total of 26 distinct metabolites were found in the early stage of HCC for serum samples, while in the formative stage of HCC, 36 distinct metabolites were found in serum samples, and 13 different metabolites were detected in liver samples. 33 metabolites in serum samples and 11 in live samples were affected by CuB administration. Additionally, metabolic pathways and western blotting analysis revealed that CuB influences lipid metabolism, amino acid metabolism, and glucose metabolism by altering the AKT/mTORC1 signaling pathway, hence decreasing tumor progression. This study provides a metabolic basis for the early diagnosis, therapy, and prognosis of HCC and the clinical application of CuB in HCC.
Collapse
Affiliation(s)
- Xiangyu Ji
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Xin Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Lei Sheng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Dongjie Deng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Qi Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Yan Meng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Zhenpeng Qiu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Baohui Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Guohua Zheng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China,Key Laboratory of Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, Hubei, China,*Correspondence: Guohua Zheng, ; Junjie Hu,
| | - Junjie Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China,*Correspondence: Guohua Zheng, ; Junjie Hu,
| |
Collapse
|
10
|
Patel A, Rasheed A, Reilly I, Pareek Z, Hansen M, Haque Z, Simon-Fajardo D, Davies C, Tummala A, Reinhardt K, Bustabad A, Shaw M, Robins J, Vera Gomez K, Suphakorn T, Camacho Gemelgo M, Law A, Lin K, Hospedales E, Haley H, Perez Martinez JP, Khan S, DeCanio J, Padgett M, Abramov A, Nanjundan M. Modulation of Cytoskeleton, Protein Trafficking, and Signaling Pathways by Metabolites from Cucurbitaceae, Ericaceae, and Rosaceae Plant Families. Pharmaceuticals (Basel) 2022; 15:1380. [PMID: 36355554 PMCID: PMC9698530 DOI: 10.3390/ph15111380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 10/22/2023] Open
Abstract
One promising frontier within the field of Medical Botany is the study of the bioactivity of plant metabolites on human health. Although plant metabolites are metabolic byproducts that commonly regulate ecological interactions and biochemical processes in plant species, such metabolites also elicit profound effects on the cellular processes of human and other mammalian cells. In this regard, due to their potential as therapeutic agents for a variety of human diseases and induction of toxic cellular responses, further research advances are direly needed to fully understand the molecular mechanisms induced by these agents. Herein, we focus our investigation on metabolites from the Cucurbitaceae, Ericaceae, and Rosaceae plant families, for which several plant species are found within the state of Florida in Hillsborough County. Specifically, we compare the molecular mechanisms by which metabolites and/or plant extracts from these plant families modulate the cytoskeleton, protein trafficking, and cell signaling to mediate functional outcomes, as well as a discussion of current gaps in knowledge. Our efforts to lay the molecular groundwork in this broad manner hold promise in supporting future research efforts in pharmacology and drug discovery.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Meera Nanjundan
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| |
Collapse
|
11
|
Agrawal MY, Gaikwad S, Srivastava S, Srivastava SK. Research Trend and Detailed Insights into the Molecular Mechanisms of Food Bioactive Compounds against Cancer: A Comprehensive Review with Special Emphasis on Probiotics. Cancers (Basel) 2022; 14:5482. [PMID: 36428575 PMCID: PMC9688469 DOI: 10.3390/cancers14225482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
In an attempt to find a potential cure for cancer, scientists have been probing the efficacy of the food we eat and its bioactive components. Over the decades, there has been an exponentially increasing trend of research correlating food and cancer. This review explains the molecular mechanisms by which bioactive food components exhibit anticancer effects in several cancer models. These bioactive compounds are mainly plant based or microbiome based. While plants remain the primary source of these phytochemicals, little is known about probiotics, i.e., microbiome sources, and their relationships with cancer. Thus, the molecular mechanisms underlying the anticancer effect of probiotics are discussed in this review. The principal mode of cell death for most food bioactives is found to be apoptosis. Principal oncogenic signaling axes such as Akt/PI3K, JAK/STAT, and NF-κB seem to be modulated due to these bioactives along with certain novel targets that provide a platform for further oncogenic research. It has been observed that probiotics have an immunomodulatory effect leading to their chemopreventive actions. Various foods exhibit better efficacy as complete extracts than their individual phytochemicals, indicating an orchestrated effect of the food components. Combining bioactive agents with available chemotherapies helps synergize the anticancer action of both to overcome drug resistance. Novel techniques to deliver bioactive agents enhance their therapeutic response. Such combinations and novel approaches are also discussed in this review. Notably, most of the food components that have been studied for cancer have shown their efficacy in vivo. This bolsters the claims of these studies and, thus, provides us with hope of discovering anticancer agents in the food that we eat.
Collapse
Affiliation(s)
- Manas Yogendra Agrawal
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
- Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Shreyas Gaikwad
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
- Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | | | - Sanjay K. Srivastava
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
- Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| |
Collapse
|
12
|
Kriek N, Nock SH, Sage T, Khalifa B, Bye AP, Mitchell JL, Thomson S, McLaughlin MG, Jones S, Gibbins JM, Unsworth AJ. Cucurbitacins Elicit Anti-Platelet Activity via Perturbation of the Cytoskeleton and Integrin Function. Thromb Haemost 2022; 122:1115-1129. [PMID: 35253142 PMCID: PMC9385249 DOI: 10.1055/a-1788-5322] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/06/2021] [Indexed: 11/23/2022]
Abstract
Cucurbitacins are dietary compounds that have been shown to elicit a range of anti-tumour, anti-inflammatory and anti-atherosclerotic activities. Originally identified as signal transducer and activator of transcription, STAT, inhibitors, a variety of mechanisms of action have since been described, including dysregulation of the actin cytoskeleton and disruption of integrin function. Integrin outside-in signalling and cytoskeletal rearrangements are critical for the propagation of stable thrombus formation and clot retraction following platelet adhesion at the site of vessel damage. The effects of cucurbitacins on platelet function and thrombus formation are unknown. We report for the first time anti-platelet and anti-thrombotic effects of cucurbitacins B, E and I in human platelets. Treatment of platelets with cucurbitacins resulted in attenuation of platelet aggregation, secretion and fibrinogen binding following stimulation by platelet agonists. Cucurbitacins were also found to potently inhibit other integrin- and cytoskeleton-mediated events, including adhesion, spreading and clot retraction. Further investigation of cytoskeletal dynamics found treatment with cucurbitacins altered cofilin phosphorylation, enhanced activation and increased F actin polymerisation and microtubule assembly. Disruption to cytoskeletal dynamics has been previously shown to impair integrin activation, platelet spreading and clot retraction. Anti-platelet properties of cucurbitacins were found to extend to a disruption of stable thrombus formation, with an increase in thrombi instability and de-aggregation under flow. Our research identifies novel, anti-platelet and anti-thrombotic actions of cucurbitacins that appear to be linked to dysregulation of cytoskeletal dynamics and integrin function.
Collapse
Affiliation(s)
- Neline Kriek
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Sophie H. Nock
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Tanya Sage
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Badrija Khalifa
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Alexander P. Bye
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Joanne L. Mitchell
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Steven Thomson
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Mark G. McLaughlin
- Department of Chemistry, Lancaster University, Lancaster, United Kingdom
| | - Sarah Jones
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Jonathan M. Gibbins
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Amanda J. Unsworth
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
13
|
Leng J, Dai X, Cheng X, Zhou H, Wang D, Zhao J, Ma K, Cui C, Wang L, Guo Z. Biomimetic Cucurbitacin B-Polydopamine Nanoparticles for Synergistic Chemo-Photothermal Therapy of Breast Cancer. Front Bioeng Biotechnol 2022; 10:841186. [PMID: 35223801 PMCID: PMC8864241 DOI: 10.3389/fbioe.2022.841186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/13/2022] [Indexed: 11/23/2022] Open
Abstract
Breast cancer is the most common malignant tumor in women. Researchers have found that the combined use of multiple methods to treat tumors is a promising strategy. Here, we have developed a biomimetic nano-platform PDA@MB for tumor targeted photothermal therapy (PTT) combined with chemotherapy. The 4T1 cell membrane loaded with cucurbitacin B (CuB) was used to coat polydopamine (PDA) nanoparticles, which gave PDA@MB nanoparticles the ability to target tumors and escape immune cells from phagocytosis. PDA@MB showed excellent photothermal performance including high photothermal conversion efficiency and photostability, and exhibited outstanding in vitro PTT effect under NIR laser irradiation. The high temperature ruptured the PDA@MB membrane to release CuB, which changed the tumor hypoxic environment, down-regulated the FAK/MMP signaling pathway, and significantly inhibited the metastasis and proliferation of tumor cells. The results of in vivo experiments indicated that the tumor growth of the 4T1 mouse tumor model was significantly inhibited. Additionally, toxicity studies showed that PDA@MB had good biocompatibility and safety. In conclusion, this study provides a promising chemo-photothermal therapy (CPT) nano-platform for precise and effective breast cancer therapy.
Collapse
Affiliation(s)
- Junke Leng
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Xiaofeng Dai
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Xiao Cheng
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Hao Zhou
- School of Food and Environment, Dalian University of Technology, Panjin, China
| | - Dong Wang
- Panjin People’s Hospital, Panjin, China
| | - Jing Zhao
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Kun Ma
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Changhao Cui
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Li Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Zhaoming Guo
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
- *Correspondence: Zhaoming Guo,
| |
Collapse
|
14
|
Inhibition of the lncRNA Coded within Transglutaminase 2 Gene Impacts Several Relevant Networks in MCF-7 Breast Cancer Cells. Noncoding RNA 2021; 7:ncrna7030049. [PMID: 34449674 PMCID: PMC8395837 DOI: 10.3390/ncrna7030049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNAs are nucleotide molecules that regulate transcription in numerous cellular processes and are related to the occurrence of many diseases, including cancer. In this regard, we recently discovered a polyadenylated long non-coding RNA (named TG2-lncRNA) encoded within the first intron of the Transglutaminase type 2 gene (TGM2), which is related to tumour proliferation in human cancer cell lines. To better characterize this new biological player, we investigated the effects of its suppression in MCF-7 breast cancer cells, using siRNA treatment and RNA-sequencing. In this way, we found modifications in several networks associated to biological functions relevant for tumorigenesis (apoptosis, chronic inflammation, angiogenesis, immunomodulation, cell mobility, and epithelial–mesenchymal transition) that were originally attributed only to Transglutaminase type 2 protein but that could be regulated also by TG2-lncRNA. Moreover, our experiments strongly suggest the ability of TG2-lncRNA to directly interact with important transcription factors, such as RXRα and TP53, paving the way for several regulatory loops that can potentially influence the phenotypic behaviour of MCF-7 cells. These considerations imply the need to further investigate the relative relevance of the TG2 protein itself and/or other gene products as key regulators in the organization of breast cancer program.
Collapse
|
15
|
Tao B, Wang D, Yang S, Liu Y, Wu H, Li Z, Chang L, Yang Z, Liu W. Cucurbitacin B Inhibits Cell Proliferation by Regulating X-Inactive Specific Transcript Expression in Tongue Cancer. Front Oncol 2021; 11:651648. [PMID: 34295808 PMCID: PMC8290325 DOI: 10.3389/fonc.2021.651648] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 06/18/2021] [Indexed: 01/28/2023] Open
Abstract
Cucurbitacin B (CuB), a natural product, has anti-tumor effects on various cancers. In order to investigate the expression of long non-coding RNAs (lncRNA), we carried out RNA sequencing (RNA-seq) and quantitative PCR (qPCR). The data indicated that CAL27 and SCC9 tongue squamous cell carcinoma (TSCC) cells had reduced expression of X-inactive specific transcript (XIST) after CuB treatment. Moreover, our results showed increased expression of XIST in human tongue cancer. In this study, CuB treatment inhibited proliferation, migration and invasion of SCC9 cells, and induced cellular apoptosis. Interestingly, knockdown of XIST led to inhibition of cell proliferation and induced apoptosis in vitro. In addition, reduced expression of XIST suppressed cell migration and invasion. MicroRNA 29b (miR-29b) was identified as a direct target of XIST. Previous reports indicated that miR-29b regulates p53 protein. Our results suggest that increased expression of miR-29b induces cell apoptosis through p53 protein. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9) system validated the role of XIST knockout in tumor development in vivo. Together, these results suggest that CuB exerts significant anti-cancer activity by regulating expression of XIST via miR-29b.
Collapse
Affiliation(s)
- Boqiang Tao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China.,Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Changchun, China
| | - Dongxu Wang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China.,Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Shuo Yang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Yingkun Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Han Wu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhanjun Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Lu Chang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhijing Yang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Weiwei Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
16
|
Gupta N, Srivastava SK. Atovaquone Suppresses the Growth of Metastatic Triple-Negative Breast Tumors in Lungs and Brain by Inhibiting Integrin/FAK Signaling Axis. Pharmaceuticals (Basel) 2021; 14:521. [PMID: 34071408 PMCID: PMC8229709 DOI: 10.3390/ph14060521] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/17/2021] [Accepted: 05/22/2021] [Indexed: 11/29/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is considered to be the most aggressive and malignant neoplasm and is highly metastatic in nature. In the current study, we investigated the anti-metastatic potential of atovaquone, a protozoal drug prescribed for Pneumocystis pneumonia. We showed that atovaquone induced apoptosis and reduced the survival of several aggressive metastatic TNBC cell lines including metastatic patient-derived cells by reducing the expression of integrin α6, integrin β4, FAK, Src, and Vimentin. In order to study the efficacy of atovaquone in suppressing metastasized breast tumor cells in brain and lungs, we performed three in vivo experiments. We demonstrated that oral administration of 50 mg/kg of atovaquone suppressed MDA-MB-231 breast tumor growth by 90% in lungs in an intravenous metastatic tumor model. Anti-metastatic effect of atovaquone was further determined by intracardiac injection of 4T1-luc breast tumor cells into the left ventricle of mouse heart. Our results showed that atovaquone treatment suppressed the growth of metastatic tumors in lungs, liver and brain by 70%, 50% and 30% respectively. In an intracranial model, the growth of HCC1806-luc brain tumors in atovaquone treated mice was about 55% less than that of control. Taken together, our results indicate the anti-metastatic effects of atovaquone in vitro and in vivo in various breast tumor metastasis models.
Collapse
Affiliation(s)
- Nehal Gupta
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA;
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Sanjay K. Srivastava
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA;
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| |
Collapse
|
17
|
Goyal N, Sridhar J, Do C, Bratton M, Shaik S, Jiang Q, Foroozesh M. Identification of CYP 2A6 inhibitors in an effort to mitigate the harmful effects of the phytochemical nicotine. JOURNAL OF CANCER METASTASIS AND TREATMENT 2021; 7:18. [PMID: 34722929 PMCID: PMC8555909 DOI: 10.20517/2394-4722.2020.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AIM In this study, our goal was to study the inhibition of nicotine metabolism by P450 2A6, as a means for reduction in tobacco use and consequently the prevention of smoking-related cancers. Nicotine, a phytochemical, is an addictive stimulant, responsible for the tobacco-dependence in smokers. Many of the other phytochemicals in tobacco, including polycyclic aromatic hydrocarbons, N-nitrosamines, and aromatic amines, are potent systemic carcinogens. Tobacco smoking causes about one of every five deaths in the United States annually. Nicotine plasma concentration is maintained by the smokers' smoking behavior within a small range. Nicotine is metabolized by cytochrome P450s 2A6 and 2A13 to cotinine. This metabolism causes a decrease in nicotine plasma levels, which in turn leads to increased tobacco smoking, and increased exposure to the tobacco carcinogens. METHODS Using the phytochemical nicotine as a lead structure, and taking its interactions with the P450 2A6 binding pocket into consideration, new pyridine derivatives were designed and synthesized as potential selective mechanism-based inhibitors for this enzyme. RESULTS The design and synthesis of two series of novel pyridine-based compounds, with varying substituents and substitution locations on the pyridine ring, as well as their inhibitory activities on cytochrome P450 2A6 and their interactions with its active site are discussed here. Substitutions at position 3 of the pyridine ring with an imidazole or propargyl ether containing group showed the most optimal interactions with the P4502A6 active site. CONCLUSION The pyridine compounds with an imidazole or propargyl ether containing substituent on position 3 were found to be promising lead compounds for further development. Hydrogen-bonding interactions were determined to be crucial for effective binding of these molecules within the P450 2A6 active site.
Collapse
Affiliation(s)
- Navneet Goyal
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Jayalakshmi Sridhar
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Camilla Do
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Melyssa Bratton
- Cell and Molecular Biology and Bioinformatic Core, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Shahensha Shaik
- Cell and Molecular Biology and Bioinformatic Core, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Quan Jiang
- Cell and Molecular Biology and Bioinformatic Core, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Maryam Foroozesh
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA
| |
Collapse
|
18
|
Mesas C, Fuel M, Martínez R, Prados J, Melguizo C, Porres JM. In vitro evidence of the antitumor capacity of Solanaceae and Cucurbitaceae in colon cancer: A systematic review. Crit Rev Food Sci Nutr 2021; 62:6293-6314. [PMID: 33739207 DOI: 10.1080/10408398.2021.1900058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Colon cancer is the fourth leading cause of cancer deaths around the world. Despite advances in understanding its etiology and in diagnosis and treatment, new therapeutic strategies are still required. In this sense, the Solanaceae and Cucurbitaceae families have been widely used to treat various pathologies, including cancer, for their bioactive components. The objective of this systematic review was to analyze the antitumor activity of the bioactive components present in extracts from Solanaceae and Cucurbitaceae families using different in in vitro models of colon cancer. 241 publications have been identified (published from January 2008 to January 2020) from different electronic data base. 44 articles were included, 26 of which examined the Solanaceae family. The antitumor activity exhibited by this family was due to the withanolide-type steroid compounds they harbor. 18 articles were related to the Cucurbitaceae family. This family is characterized by their production of cucurbitacin-type triterpenoid compounds and their derivatives, which confer antitumor activity. In conclusion, the different genera belonging to both families are an important source of bioactive compounds with relevant activity against colon cancer. More experimental and in vivo studies will be required to corroborate their antitumor activity and to leverage them in future clinical practice.
Collapse
Affiliation(s)
- Cristina Mesas
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain.,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Marco Fuel
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Rosario Martínez
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain.,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain.,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Jesús M Porres
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
| |
Collapse
|
19
|
Şoica C, Voicu M, Ghiulai R, Dehelean C, Racoviceanu R, Trandafirescu C, Roșca OJ, Nistor G, Mioc M, Mioc A. Natural Compounds in Sex Hormone-Dependent Cancers: The Role of Triterpenes as Therapeutic Agents. Front Endocrinol (Lausanne) 2021; 11:612396. [PMID: 33552000 PMCID: PMC7859451 DOI: 10.3389/fendo.2020.612396] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Sex hormone-dependent cancers currently contribute to the high number of cancer-related deaths worldwide. The study and elucidation of the molecular mechanisms underlying the progression of these tumors was a double-edged sword, leading to the expansion and development of new treatment options, with the cost of triggering more aggressive, therapy resistant relapses. The interaction of androgen, estrogen and progesterone hormones with specific receptors (AR, ER, PR) has emerged as a key player in the development and progression of breast, ovarian, prostate and endometrium cancers. Sex hormone-dependent cancers share a common and rather unique carcinogenesis mechanism involving the active role of endogenous and exogenous sex hormones to maintain high mitotic rates and increased cell proliferation thus increasing the probability of aberrant gene occurrence and accumulation highly correlated with abnormal cell division and the occurrence of malignant phenotypes. Cancer related hormone therapy has evolved, currently being associated with the blockade of other signaling pathways often associated with carcinogenesis and tumor progression in cancers, with promising results. However, despite the established developments, there are still several shortcomings to be addressed. Triterpenes are natural occurring secondary metabolites biosynthesized by various pathways starting from squalene cyclization. Due to their versatile therapeutic potential, including the extensively researched antiproliferative effect, these compounds are most definitely a cornerstone in the research and development of new natural/semisynthetic anticancer therapies. The present work thoroughly describes the ongoing research related to the antitumor activity of triterpenes in sex hormone-dependent cancers. Also, the current review highlights both the biological activity of various triterpenoid compounds and their featured mechanisms of action correlated with important chemical structural features.
Collapse
Affiliation(s)
- Codruţa Şoica
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Mirela Voicu
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Roxana Ghiulai
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Cristina Dehelean
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Roxana Racoviceanu
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Cristina Trandafirescu
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Oana-Janina Roșca
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
- Department of Vascular Surgery, Pius Brinzeu Timisoara City Emergency Clinical Hospital, Timisoara, Romania
| | - Gabriela Nistor
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Marius Mioc
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Alexandra Mioc
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| |
Collapse
|
20
|
Gwon MH, Im YS, Seo AR, Kim KY, Moon HR, Yun JM. Phenethyl Isothiocyanate Protects against High Fat/Cholesterol Diet-Induced Obesity and Atherosclerosis in C57BL/6 Mice. Nutrients 2020; 12:nu12123657. [PMID: 33261070 PMCID: PMC7761196 DOI: 10.3390/nu12123657] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
This study concerns obesity-related atherosclerosis, hyperlipidemia, and chronic inflammation. We studied the anti-obesity and anti-atherosclerosis effects of phenethyl isothiocyanate (PEITC) and explored their underlying mechanisms. We established an animal model of high fat/cholesterol-induced obesity in C57BL/6 mice fed for 13 weeks. We divided the mice into five groups: control (CON), high fat/cholesterol (HFCD), HFCD with 3 mg/kg/day gallic acid (HFCD + G), and HFCD with PEITC (30 and 75 mg/kg/day; HFCD + P30 and P75). The body weight, total cholesterol, and triglyceride were significantly lower in the HFCD + P75 group than in the HFCD group. Hepatic lipid accumulation and atherosclerotic plaque formation in the aorta were significantly lower in both HFCD + PEITC groups than in the HFCD group, as revealed by hematoxylin and eosin (H&E) staining. To elucidate the mechanism, we identified the expression of genes related to inflammation, reverse cholesterol transport, and lipid accumulation pathway in the liver. The expression levels of peroxisome proliferator activated receptor gamma (PPARγ), liver-X-receptor α (LXR-α), and ATP binding cassette subfamily A member 1 (ABCA1) were increased, while those of scavenger receptor A (SR-A1), cluster of differentiation 36 (CD36), and nuclear factor-kappa B (NF-κB) were decreased in the HFCD + P75 group compared with those in the HFCD group. Moreover, PEITC modulated H3K9 and H3K27 acetylation, H3K4 dimethylation, and H3K27 di-/trimethylation in the HFCD + P75 group. We, therefore, suggest that supplementation with PEITC may be a potential candidate for the treatment and prevention of atherosclerosis and obesity.
Collapse
Affiliation(s)
- Min-Hee Gwon
- Nutrition Education Major, Graduate School of Education, Chonnam National University, Gwangju 61186, Korea;
| | - Young-Sun Im
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea; (Y.-S.I.); (A.-R.S.); (K.Y.K.); (H.-R.M.)
| | - A-Reum Seo
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea; (Y.-S.I.); (A.-R.S.); (K.Y.K.); (H.-R.M.)
| | - Kyoung Yun Kim
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea; (Y.-S.I.); (A.-R.S.); (K.Y.K.); (H.-R.M.)
| | - Ha-Rin Moon
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea; (Y.-S.I.); (A.-R.S.); (K.Y.K.); (H.-R.M.)
| | - Jung-Mi Yun
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea; (Y.-S.I.); (A.-R.S.); (K.Y.K.); (H.-R.M.)
- Correspondence: ; Tel.: +82-62-530-1332
| |
Collapse
|
21
|
STAT3 transcription factor as target for anti-cancer therapy. Pharmacol Rep 2020; 72:1101-1124. [PMID: 32880101 DOI: 10.1007/s43440-020-00156-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022]
Abstract
STATs constitute a large family of transcription activators and transducers of signals that have an important role in many cell functions as regulation of proliferation and differentiation of the cell also regulation of apoptosis and angiogenesis. STAT3 as a member of that family, recently was discovered to have a vital role in progression of different types of cancers. The activation of STAT3 was observed to regulate multiple gene functions during cancer-like cell proliferation, differentiation, apoptosis, metastasis, inflammation, immunity, cell survival, and angiogenesis. The inhibition of STAT3 activation has been an important target for cancer therapy. Inhibitors of STAT3 have been used for a long time for treatment of many types of cancers like leukemia, melanoma, colon, and renal cancer. In this review article, we summarize and discuss different drugs inhibiting the action of STAT3 and used in treatment of different types of cancer.
Collapse
|
22
|
Patel SB, Attar UA, Sakate DM, Ghane SG. Efficient extraction of cucurbitacins from Diplocyclos palmatus (L.) C. Jeffrey: Optimization using response surface methodology, extraction methods and study of some important bioactivities. Sci Rep 2020; 10:2109. [PMID: 32034276 PMCID: PMC7005863 DOI: 10.1038/s41598-020-58924-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/09/2019] [Indexed: 01/24/2023] Open
Abstract
Diplocyclos palmatus (L.) C. Jeffrey is an important medicinal plant used in several reproductive medicines. It serves as a wide source of tetracyclic triterpens called cucurbitacins. Response surface methodology (RSM) with Box-Behnken design (BBD) was studied to optimize the production of cucurbitacins. RSM put forth the ideal conditions such as 1:30 SS ratio (g/mL), 80 rpm (mixing extraction speed), 150 µm mean particle size, 30 min extraction time and 50 °C using chloroform in continuous shaking extraction (CSE) and showed the highest cucurbitacin I (CUI) content (2.345 ± 0.1686 mg/g DW). Similarly, the highest yield of cucurbitacin B (CUB) (1.584 ± 0.15 mg/g DW) was recorded at ideal conditions (1:40 g/mL SS ratio and 60 min time and others similar to CUI). Among the tested extraction methods, the highest CUI, CUB, and CUI + B yield (1.437 ± 0.03, 0.782 ± 0.10, 2.17 ± 0.35 mg/g DW, respectively) as well as promising DPPH radical scavenging activity (25.06 ± 0.1 µgAAE/g DW) were recorded from the SBAE (steam bath assisted extraction). In addition, MAE and UAE revealed the highest inhibition of α-amylase (68.68%) and α-glucosidase (56.27%) enzymes, respectively. Fruit extracts showed potent anticancer activity against breast (MCF-7) and colon (HT-29) cancer cell lines (LC50 - 44.27 and 46.88 µg/mL, respectively). Our study proved that SS ratio, particle size and temperature were the most positively influencing variables and served to be the most efficient for the highest recovery of CUI and CUB. Based on the present study, the fruits of D. palmatus were revealed as a potent antioxidant, anti-diabetic and anticancer bio-resource that could be explored further to develop novel drug to manage diabetes, cancer and oxidative stress related disorders.
Collapse
Affiliation(s)
- S B Patel
- Plant Physiology Laboratory, Department of Botany, Shivaji University, Kolhapur, 416 004, Maharashtra, India
| | - U A Attar
- Plant Physiology Laboratory, Department of Botany, Shivaji University, Kolhapur, 416 004, Maharashtra, India
| | - D M Sakate
- Department of Statistics, Shivaji University, Kolhapur, 416 004, Maharashtra, India
| | - S G Ghane
- Plant Physiology Laboratory, Department of Botany, Shivaji University, Kolhapur, 416 004, Maharashtra, India.
| |
Collapse
|
23
|
Luo H, Vong CT, Chen H, Gao Y, Lyu P, Qiu L, Zhao M, Liu Q, Cheng Z, Zou J, Yao P, Gao C, Wei J, Ung COL, Wang S, Zhong Z, Wang Y. Naturally occurring anti-cancer compounds: shining from Chinese herbal medicine. Chin Med 2019; 14:48. [PMID: 31719837 PMCID: PMC6836491 DOI: 10.1186/s13020-019-0270-9] [Citation(s) in RCA: 334] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022] Open
Abstract
Numerous natural products originated from Chinese herbal medicine exhibit anti-cancer activities, including anti-proliferative, pro-apoptotic, anti-metastatic, anti-angiogenic effects, as well as regulate autophagy, reverse multidrug resistance, balance immunity, and enhance chemotherapy in vitro and in vivo. To provide new insights into the critical path ahead, we systemically reviewed the most recent advances (reported since 2011) on the key compounds with anti-cancer effects derived from Chinese herbal medicine (curcumin, epigallocatechin gallate, berberine, artemisinin, ginsenoside Rg3, ursolic acid, silibinin, emodin, triptolide, cucurbitacin B, tanshinone I, oridonin, shikonin, gambogic acid, artesunate, wogonin, β-elemene, and cepharanthine) in scientific databases (PubMed, Web of Science, Medline, Scopus, and Clinical Trials). With a broader perspective, we focused on their recently discovered and/or investigated pharmacological effects, novel mechanism of action, relevant clinical studies, and their innovative applications in combined therapy and immunomodulation. In addition, the present review has extended to describe other promising compounds including dihydroartemisinin, ginsenoside Rh2, compound K, cucurbitacins D, E, I, tanshinone IIA and cryptotanshinone in view of their potentials in cancer therapy. Up to now, the evidence about the immunomodulatory effects and clinical trials of natural anti-cancer compounds from Chinese herbal medicine is very limited, and further research is needed to monitor their immunoregulatory effects and explore their mechanisms of action as modulators of immune checkpoints.
Collapse
Affiliation(s)
- Hua Luo
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Chi Teng Vong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Hanbin Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yan Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peng Lyu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Ling Qiu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Mingming Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Qiao Liu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zehua Cheng
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jian Zou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peifen Yao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Caifang Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jinchao Wei
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Carolina Oi Lam Ung
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Shengpeng Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zhangfeng Zhong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yitao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| |
Collapse
|
24
|
Ranjan A, Ramachandran S, Gupta N, Kaushik I, Wright S, Srivastava S, Das H, Srivastava S, Prasad S, Srivastava SK. Role of Phytochemicals in Cancer Prevention. Int J Mol Sci 2019; 20:4981. [PMID: 31600949 PMCID: PMC6834187 DOI: 10.3390/ijms20204981] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023] Open
Abstract
The use of synthetic, natural, or biological agents to minimize the occurrence of cancer in healthy individuals is defined as cancer chemoprevention. Chemopreventive agents inhibit the development of cancer either by impeding DNA damage, which leads to malignancy or by reversing or blocking the division of premalignant cells with DNA damage. The benefit of this approach has been demonstrated in clinical trials of breast, prostate, and colon cancer. The continuous increase in cancer cases, failure of conventional chemotherapies to control cancer, and excessive toxicity of chemotherapies clearly demand an alternative approach. The first trial to show benefit of chemoprevention was undertaken in breast cancer patients with the use of tamoxifen, which demonstrated a significant decrease in invasive breast cancer. The success of using chemopreventive agents for protecting the high risk populations from cancer indicates that the strategy is rational and promising. Dietary components such as capsaicin, cucurbitacin B, isoflavones, catechins, lycopenes, benzyl isothiocyanate, phenethyl isothiocyanate, and piperlongumine have demonstrated inhibitory effects on cancer cells indicating that they may serve as chemopreventive agents. In this review, we have addressed the mechanism of chemopreventive and anticancer effects of several natural agents.
Collapse
Affiliation(s)
- Alok Ranjan
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| | - Sharavan Ramachandran
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA.
| | - Nehal Gupta
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| | - Itishree Kaushik
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA.
| | - Stephen Wright
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| | - Suyash Srivastava
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| | - Hiranmoy Das
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| | - Sangeeta Srivastava
- Department of Chemistry, Lucknow University, Mahatma Gandhi Road, Lucknow, UP 226007, India.
| | - Sahdeo Prasad
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA.
| | - Sanjay K Srivastava
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA.
| |
Collapse
|
25
|
Gupta P, Gupta N, Fofaria NM, Ranjan A, Srivastava SK. HER2-mediated GLI2 stabilization promotes anoikis resistance and metastasis of breast cancer cells. Cancer Lett 2019; 442:68-81. [PMID: 30409762 PMCID: PMC6311434 DOI: 10.1016/j.canlet.2018.10.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/09/2018] [Accepted: 10/17/2018] [Indexed: 10/28/2022]
Abstract
Breast cancer metastasis is a multi-step process and requires cells to overcome anoikis. Anoikis is defined as cell-death that occurs due to loss of cell adhesion. During the course of cancer progression, tumor cells acquire resistance to anoikis. However, mechanisms of anoikis resistance are not clear. Human epidermal growth receptor 2 (HER2) overexpressing breast tumors are known to be highly aggressive and metastatic. The mechanisms correlating HER2 with metastasis are poorly understood. We observed increased anoikis resistance in HER2 overexpressing breast cancer cells. In addition, we identified that HER2 overexpression was also associated with increased sonic hedgehog (SHH) signaling especially GLI2, and that inhibition of SHH pathway suppressed anoikis resistance. GSK3β is known to facilitate proteasome-mediated degradation of GLI2. Moreover, we observed that silencing of GLI2 resulted in reduced migration and invasion of HER2 overexpressing cells. Anoikis resistant HER2 overexpressing cells also showed increased rate and extent of metastasis in vivo, as compared to wild type anoikis resistant cells. Taken together, this study indicates a novel role of HER2/GSK3β/GLI2 axis in anoikis resistance and metastasis, and that GLI2 could be a potential target for anti-cancer therapies.
Collapse
Affiliation(s)
- Parul Gupta
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Nehal Gupta
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Neel M Fofaria
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Alok Ranjan
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Sanjay K Srivastava
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA; Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Abilene, TX, 79601, USA.
| |
Collapse
|
26
|
Zhou J, Liu M, Chen Y, Xu S, Guo Y, Zhao L. Cucurbitacin B suppresses proliferation of pancreatic cancer cells by ceRNA: Effect of miR-146b-5p and lncRNA-AFAP1-AS1. J Cell Physiol 2018; 234:4655-4667. [PMID: 30206930 DOI: 10.1002/jcp.27264] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 07/24/2018] [Indexed: 12/22/2022]
Abstract
Cucurbitacin B (CuB) is a natural tetracyclic triterpene product that displays antitumor activity against a wide variety of cancers. In this study, we explored the antipancreatic cancer activity of CuB via the inhibition of expression of the cancer-related long noncoding RNA, actin filament-associated protein 1-antisense RNA 1 (AFAP1-AS1). CuB arrested pancreatic cancer (PC) cells in the G2/M cell cycle phase by suppressing the expression of AFAP1-AS1. Insights into the mechanisms of competing endogenous RNAs (ceRNAs) gained from bioinformatics analysis and luciferase activity assays showed that the epidermal growth factor receptor (EGFR) and AFAP1-AS1 directly compete for miR-146b-5p binding. CuB-induced high miR-146b-5p expression and inhibited the expression of AFAP1-AS1. In summary, reducing the expression of endogenous AFAP1-AS1 effectively increased the available concentration of miR-146b-5p in PC, whereas miR-146b-5p overexpression prevented the expression of endogenous AFAP1-AS1. In particular, we hypothesized that AFAP1-AS1 might act as a ceRNA, effectively becoming a sponge for miR-146b-5p, thereby activating the expression of the EGFR. Thus, CuB suppresses the proliferation, in vitro and in vivo, of PC cells through the ceRNA effect of AFAP1-AS1 on miR-146b-5p.
Collapse
Affiliation(s)
- Jingkai Zhou
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mei Liu
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Yanan Chen
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shansen Xu
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yingjie Guo
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin
| | - Limei Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
27
|
Wang W, Yang H, Li Y, Zheng Z, Liu Y, Wang H, Mu Y, Yao Q. Identification of 16,25- O-diacetyl-cucurbitane F and 25- O-acetyl-23,24-dihydrocucurbitacin F as novel anti-cancer chemicals. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180723. [PMID: 30225067 PMCID: PMC6124052 DOI: 10.1098/rsos.180723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/11/2018] [Indexed: 05/14/2023]
Abstract
Seven new cucurbitane glucosides, hemslepensides J-P (1-7), and two known compounds, 16,25-O-diacetyl-cucurbitane F (8) and 25-O-acetyl-23,24-dihydrocucurbitacin F (9), were isolated from the tubers of Hemsleya pengxianensis var. jinfushanensis. The structures of 1-7 were elucidated using infrared absorption spectroscopy, nuclear magnetic resonance spectroscopy and high-resolution electrospray ionization mass spectrometry. The treatment of HT29 cells, human colon cancer cells, with compounds 8 and 9 inhibited cell proliferation. Further study demonstrated that compounds 8 and 9 induced F-actin aggregation, G2/M phase cell cycle arrest and cell apoptosis in HT29 cells. In summary, the present study enriched the chemical composition research of H. pengxianensis, and suggested that the compounds 8/9 treatment may be a potentially useful therapeutic option for colon cancer.
Collapse
Affiliation(s)
- Wenxue Wang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan 250200, Shandong, People's Republic of China
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, People's Republic of China
- Key Laboratory for Biotech-Drugs Ministry of Health, Jinan 250062, Shandong, People's Republic of China
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Jinan 250062, Shandong, People's Republic of China
| | - Haoran Yang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan 250200, Shandong, People's Republic of China
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, People's Republic of China
- Key Laboratory for Biotech-Drugs Ministry of Health, Jinan 250062, Shandong, People's Republic of China
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Jinan 250062, Shandong, People's Republic of China
| | - Ying Li
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, People's Republic of China
- Key Laboratory for Biotech-Drugs Ministry of Health, Jinan 250062, Shandong, People's Republic of China
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Jinan 250062, Shandong, People's Republic of China
| | - Zhongfei Zheng
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, People's Republic of China
- Key Laboratory for Biotech-Drugs Ministry of Health, Jinan 250062, Shandong, People's Republic of China
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Jinan 250062, Shandong, People's Republic of China
| | - Yongjun Liu
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, People's Republic of China
- Key Laboratory for Biotech-Drugs Ministry of Health, Jinan 250062, Shandong, People's Republic of China
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Jinan 250062, Shandong, People's Republic of China
| | - Haiyang Wang
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, People's Republic of China
- Key Laboratory for Biotech-Drugs Ministry of Health, Jinan 250062, Shandong, People's Republic of China
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Jinan 250062, Shandong, People's Republic of China
| | - Yanling Mu
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, People's Republic of China
- Key Laboratory for Biotech-Drugs Ministry of Health, Jinan 250062, Shandong, People's Republic of China
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Jinan 250062, Shandong, People's Republic of China
- Authors for correspondence: Yanling Mu e-mail:
| | - Qingqiang Yao
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, People's Republic of China
- Key Laboratory for Biotech-Drugs Ministry of Health, Jinan 250062, Shandong, People's Republic of China
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Jinan 250062, Shandong, People's Republic of China
- Authors for correspondence: Qingqiang Yao e-mail:
| |
Collapse
|
28
|
Piao XM, Gao F, Zhu JX, Wang LJ, Zhao X, Li X, Sheng MM, Zhang Y. Cucurbitacin B inhibits tumor angiogenesis by triggering the mitochondrial signaling pathway in endothelial cells. Int J Mol Med 2018; 42:1018-1025. [PMID: 29717773 DOI: 10.3892/ijmm.2018.3647] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/09/2018] [Indexed: 11/06/2022] Open
Abstract
Cucurbitacin B (CuB), the active component of a traditional Chinese herbal medicine, Pedicellus Melo, has been shown to exhibit antitumor and anti-inflammation effects, but its role in tumor angiogenesis, the key step involved in tumor growth and metastasis, and the involved molecular mechanism are unknown. Tumor angiogenesis is one of the hallmarks of the development in malignant neoplasias and metastasis. Effective targeting of tumor angiogenesis is a key area of interest for cancer therapy. Here, we demonstrated that CuB significantly inhibited human umbilical vascular endothelial cell (HUVEC) proliferation, migration, tubulogenesis in vitro, and blocked angiogenesis in chick embryo chorioallantoic membrane (CAM) assay in vivo. Furthermore, CuB induced HUVEC apoptosis and may induce apoptosis by triggering the mitochondrial apoptotic pathway. Finally, we found that CuB inhibiting angiogenesis was associated with inhibition of the activity of vascular endothelial growth factor receptor 2 (VEGFR2). Our investigations suggested that CuB was a potential drug candidate for angiogenesis related diseases.
Collapse
Affiliation(s)
- Xian-Mei Piao
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin, Heilongjiang 150086, P.R. China
| | - Feng Gao
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin, Heilongjiang 150086, P.R. China
| | - Jiu-Xin Zhu
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin, Heilongjiang 150086, P.R. China
| | - Li-Juan Wang
- Shuangyashan Coal General Hospital, Shuangyashan, Heilongjiang 155100, P.R. China
| | - Xin Zhao
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin, Heilongjiang 150086, P.R. China
| | - Xin Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin, Heilongjiang 150086, P.R. China
| | - Miao-Miao Sheng
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin, Heilongjiang 150086, P.R. China
| | - Yan Zhang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
29
|
Waltonitone inhibits proliferation of hepatoma cells and tumorigenesis via FXR-miR-22-CCNA2 signaling pathway. Oncotarget 2018; 7:75165-75175. [PMID: 27738335 PMCID: PMC5342731 DOI: 10.18632/oncotarget.12614] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/29/2016] [Indexed: 12/16/2022] Open
Abstract
Waltonitone (WA), an ursane-type pentacyclic triterpene extracted from Gentiana waltonii Burkill, was recently appeared to exert anti-tumor effect. However, the biological underpinnings underlying the role of WA in hepatocellular carcinoma (HCC) cells have not been completely elucidated. Our previous report indicated that the FXR-regulated miR-22-CCNA2 pathway contributed to the progression and development of HCC. Besides, a wide spectrum of microRNAs (miRNAs) could be up- or down-regulated upon WA treatment, including miR-22. Hence, we aimed to determine whether WA inhibited HCC cell proliferation via the FXR-miR-22-CCNA2 axis. In this study, we observed a significant downregulation of FXR and miR-22, along with upregulation of CCNA2 in 80 paired tumors relative to adjacent normal tissues of HCC subjects, which were obtained from the available GEO database in NCBI (GSE22058). Furthermore, we validated the expression patterns of these three targets in another set of HCC samples and found the highly correlation within each other. Additionally, our data demonstrated that WA induced miR-22 and repressed CCNA2 in HCC cells, which contributed to the cell proliferation arrest. In addition, evidence suggested that either miR-22 silencing or FXR knockdown reversed the diminished CCNA2 expression as well as cell proliferation inhibition caused by WA treatment and WA inhibited tumor masses in vivo in a subcutaneous xenograft mouse model of HCC. Overall, our data indicated that WA inhibited HCC cell proliferation and tumorigenesis through miR-22-regulated CCNA2 repression, which was at least partially through FXR modulation.
Collapse
|
30
|
Yang T, Liu J, Yang M, Huang N, Zhong Y, Zeng T, Wei R, Wu Z, Xiao C, Cao X, Li M, Li L, Han B, Yu X, Li H, Zou Q. Cucurbitacin B exerts anti-cancer activities in human multiple myeloma cells in vitro and in vivo by modulating multiple cellular pathways. Oncotarget 2018; 8:5800-5813. [PMID: 27418139 PMCID: PMC5351590 DOI: 10.18632/oncotarget.10584] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/30/2016] [Indexed: 02/05/2023] Open
Abstract
Cucurbitacin B (CuB), a triterpenoid compound isolated from the stems of Cucumis melo, has long been used to treat hepatitis and hepatoma in China. Although its remarkable anti-cancer activities have been reported, the mechanism by which it achieves this therapeutic activity remains unclear. This study was designed to investigate the molecular mechanisms by which CuB inhibits cancer cell proliferation. Our results indicate that CuB is a novel inhibitor of Aurora A in multiple myeloma (MM) cells, arresting cells in the G2/M phase. CuB also inhibited IL-10-induced STAT3 phosphorylation, synergistically increasing the anti-tumor activity of Adriamycin in vitro. CuB induced dephosphorylation of cofilin, resulting in the loss of mitochondrial membrane potential, release of cytochrome c, and activation of caspase-8. CuB inhibited MM tumor growth in a murine MM model, without host toxicity. In conclusion, these results indicate that CuB interferes with multiple cellular pathways in MM cells. CuB thus represents a promising therapeutic tool for the treatment of MM.
Collapse
Affiliation(s)
- Tai Yang
- School of Pharmacy, Chengdu Medical College, Chengdu, China.,Department of Immunology, Chengdu Medical College, Chengdu, China
| | - Jin Liu
- Department of Immunology, Chengdu Medical College, Chengdu, China
| | - Mali Yang
- Department of Immunology, Chengdu Medical College, Chengdu, China
| | - Ning Huang
- Laboratory for Aging Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yueling Zhong
- School of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Ting Zeng
- Department of Immunology, Chengdu Medical College, Chengdu, China
| | - Rong Wei
- Department of Immunology, Chengdu Medical College, Chengdu, China
| | - Zhongjun Wu
- Department of Immunology, Chengdu Medical College, Chengdu, China
| | - Cui Xiao
- Department of Immunology, Chengdu Medical College, Chengdu, China
| | - Xiaohua Cao
- Department of Immunology, Chengdu Medical College, Chengdu, China
| | - Minhui Li
- Department of Immunology, Chengdu Medical College, Chengdu, China
| | - Limei Li
- Department of Immunology, Chengdu Medical College, Chengdu, China
| | - Bin Han
- Department of Public Health, Chengdu Medical College, Chengdu, China
| | - Xiaoping Yu
- Department of Public Health, Chengdu Medical College, Chengdu, China
| | - Hua Li
- Cancer Center, Chengdu Military General Hospital, Chengdu, China
| | - Qiang Zou
- Department of Immunology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
31
|
LUO WW, ZHAO WW, LU JJ, WANG YT, CHEN XP. Cucurbitacin B suppresses metastasis mediated by reactive oxygen species (ROS) via focal adhesion kinase (FAK) in breast cancer MDA-MB-231 cells. Chin J Nat Med 2018; 16:10-19. [DOI: 10.1016/s1875-5364(18)30025-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Indexed: 12/15/2022]
|
32
|
Dalasanur Nagaprashantha L, Adhikari R, Singhal J, Chikara S, Awasthi S, Horne D, Singhal SS. Translational opportunities for broad-spectrum natural phytochemicals and targeted agent combinations in breast cancer. Int J Cancer 2017; 142:658-670. [PMID: 28975625 DOI: 10.1002/ijc.31085] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/18/2017] [Accepted: 09/12/2017] [Indexed: 12/17/2022]
Abstract
Breast cancer (BC) prevention and therapy in the context of life-style risk factors and biological drivers is a major focus of developmental therapeutics in oncology. Obesity, alcohol, chronic estrogen signaling and smoking have distinct BC precipitating and facilitating effects that may act alone or in combination. A spectrum of signaling events including enhanced oxidative stress and changes in estrogen-receptor (ER)-dependent and -independent signaling drive the progression of BC. Breast tumors modulate ERα/ERβ ratio, upregulate proliferative pathways driven by ERα and HER2 with a parallel loss and/or downregulation of tumor suppressors such as TP53 and PTEN which together impact the efficacy of therapeutic strategies and frequently lead to emergence of drug resistance. Natural phytochemicals modulate oxidative stress, leptin, integrin, HER2, MAPK, ERK, Wnt/β-catenin and NFκB signaling along with regulating ERα and ERβ, thereby presenting unique opportunities for both primary and combinatorial interventions in BC. In this regard, this article focuses on critical analyses of the evidence from multiple studies on the efficacy of natural phytochemicals in BC. In addition, areas in which the combinations of such effective natural phytochemicals with approved and/or developing anticancer agents can be translationally beneficial are discussed to derive evidence-based inference for addressing challenges in BC control and therapy.
Collapse
Affiliation(s)
| | | | - Jyotsana Singhal
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, CA
| | - Shireen Chikara
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, CA
| | - Sanjay Awasthi
- Texas Tech University Health Sciences Center, Lubbock, TX
| | - David Horne
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, CA
| | - Sharad S Singhal
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, CA
| |
Collapse
|
33
|
Garg S, Kaul SC, Wadhwa R. Cucurbitacin B and cancer intervention: Chemistry, biology and mechanisms (Review). Int J Oncol 2017; 52:19-37. [PMID: 29138804 DOI: 10.3892/ijo.2017.4203] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/23/2017] [Indexed: 11/06/2022] Open
Abstract
Cancer is one of the most important healthcare matters, with the worst prognosis but the best possibilities for scientific development. It is likely to increase in the future and cause global havoc designating it as an epidemic. Cancer development requires urgent intervention. Past few decades have witnessed extensive research to challenge carcinogenesis. Treatment involving synthetic discipline is often associated with severe adverse effects, or even worsened prognosis. Accordingly, newer economic and patient friendly molecules are warranted. Many natural substances have proved their potential so far. Cucurbitacin B against cancer and other diseases has achieved towering popularity among the researchers around the world, as detailed in the below sections with summarized tables. In line with the fascinating role of cucurbitacin B against various types of cancers, through various molecular signaling pathways, it is justifiable to propose cucurbitacin B as a mainline chemotherapy before the onset and after the diagnosis of cancer.
Collapse
Affiliation(s)
- Sukant Garg
- Drug Discovery and Assets Innovation Lab, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| | - Sunil C Kaul
- Drug Discovery and Assets Innovation Lab, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| | - Renu Wadhwa
- Drug Discovery and Assets Innovation Lab, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| |
Collapse
|
34
|
Zhou J, Zhao T, Ma L, Liang M, Guo YJ, Zhao LM. Cucurbitacin B and SCH772984 exhibit synergistic anti-pancreatic cancer activities by suppressing EGFR, PI3K/Akt/mTOR, STAT3 and ERK signaling. Oncotarget 2017; 8:103167-103181. [PMID: 29262554 PMCID: PMC5732720 DOI: 10.18632/oncotarget.21704] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/21/2017] [Indexed: 01/05/2023] Open
Abstract
Cucurbitacin B (CuB) is a natural tetracyclic triterpene product and displays antitumor activity across a wide array of cancers. In this study, we explored the anti-pancreatic cancer activity of CuB alone and in combination with SCH772984, an ERK inhibitor, in vitro and in vivo. CuB inhibited proliferation of pancreatic cancer cells by arresting them in the G2/M cell cycle phase. This was associated with inhibition of EGFR expression and activity and downstream signaling, including PI3K/Akt/mTOR and STAT3. Interestingly, ERK activity was markedly enhanced by activating AMPK signaling after 12 h of CuB treatment. SCH772984 potentiates the cytotoxic effect of CuB on pancreatic cancer cells through complementary inhibition of EGFR, PI3K/Akt/mTOR, STAT3 and ERK signaling, followed by an increase in the pro-apoptotic protein Bim and a decrease in the anti-apoptotic proteins Mcl-1, Bcl-2, Bcl-xl and survivin. Furthermore, combined therapy with CuB and SCH772984 resulted in highly significant growth inhibition of pancreatic cancer xenografts. These results may provide a basis for further development of combining CuB and ERK inhibitors to treat pancreatic cancer.
Collapse
Affiliation(s)
- Jingkai Zhou
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tiangang Zhao
- School of Life Sciences, Jilin University, Changchun, China
| | - Linfeng Ma
- School of Life Sciences, Jilin University, Changchun, China
| | - Min Liang
- School of Life Sciences, Jilin University, Changchun, China
| | - Ying-Jie Guo
- School of Life Sciences, Jilin University, Changchun, China
| | - Li-Mei Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
35
|
Ding X, Chi J, Yang X, Hao J, Liu C, Zhu C, Wang X, Liu X, Niu Y, Ji W, Chen D, Wu X. Cucurbitacin B synergistically enhances the apoptosis-inducing effect of arsenic trioxide by inhibiting STAT3 phosphorylation in lymphoma Ramos cells. Leuk Lymphoma 2017; 58:2439-2451. [PMID: 28278714 DOI: 10.1080/10428194.2017.1289521] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 01/20/2017] [Accepted: 01/24/2017] [Indexed: 02/07/2023]
Abstract
Arsenic trioxide (ATO) is a classic apoptosis-inducing agent used to treat acute promyelocytic leukemia. However, the therapeutic effect of ATO is limited in lymphoma, which resists apoptosis possibly due to inappropriate activation of STAT3. Therefore, combination of ATO and STAT3 inhibitor may be a potential strategy to treat lymphoma. Dramatically, Cucurbitacin B (CuB), an effective component of the dichloromethane extraction from Trichosanthes kirilowii Maxim, synergistically eliminated the apoptosis resistance of Burkitt's lymphoma Ramos cells to ATO by inhibiting the phosphorylation of STAT3, followed in turn by downregulation of Bcl-2 and upregulation of Bax. Furthermore, CuB and ATO in combination have no pro-apoptotic effect on normal lymphatic cells, indicating the absence of toxicity to hematological cells. This synergistic effect was further confirmed in nude murine lymphoma model, which exhibited significant apoptosis induction and tumor growth inhibition. Collectively, CuB synergistically enhances the apoptosis-inducing effect of ATO by inhibiting STAT3 phosphorylation in Ramos cells.
Collapse
Affiliation(s)
- Xiuli Ding
- a Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer , Tianjin , China
- b Key Laboratory of Cancer Prevention and Therapy , Tianjin's Clinical Research Center for Cancer , Tianjin , China
| | - Jiadong Chi
- a Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer , Tianjin , China
- b Key Laboratory of Cancer Prevention and Therapy , Tianjin's Clinical Research Center for Cancer , Tianjin , China
| | - Xue Yang
- a Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer , Tianjin , China
- b Key Laboratory of Cancer Prevention and Therapy , Tianjin's Clinical Research Center for Cancer , Tianjin , China
| | - Jian Hao
- a Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer , Tianjin , China
- b Key Laboratory of Cancer Prevention and Therapy , Tianjin's Clinical Research Center for Cancer , Tianjin , China
| | - Chang Liu
- a Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer , Tianjin , China
- b Key Laboratory of Cancer Prevention and Therapy , Tianjin's Clinical Research Center for Cancer , Tianjin , China
| | - Cuihong Zhu
- a Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer , Tianjin , China
- b Key Laboratory of Cancer Prevention and Therapy , Tianjin's Clinical Research Center for Cancer , Tianjin , China
| | - Xiaodong Wang
- a Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer , Tianjin , China
- b Key Laboratory of Cancer Prevention and Therapy , Tianjin's Clinical Research Center for Cancer , Tianjin , China
| | - Xiaohui Liu
- a Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer , Tianjin , China
- b Key Laboratory of Cancer Prevention and Therapy , Tianjin's Clinical Research Center for Cancer , Tianjin , China
| | - Yangyang Niu
- a Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer , Tianjin , China
- b Key Laboratory of Cancer Prevention and Therapy , Tianjin's Clinical Research Center for Cancer , Tianjin , China
| | - Wei Ji
- c Opening Cancer Laboratory , Tianjin Medical University Cancer Institute and Hospital , Tianjin , China
| | - Dan Chen
- d Department of Pharmacology , Basic Medical College, Tianjin Medical University , Tianjin , China
| | - Xiongzhi Wu
- a Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer , Tianjin , China
- b Key Laboratory of Cancer Prevention and Therapy , Tianjin's Clinical Research Center for Cancer , Tianjin , China
| |
Collapse
|
36
|
Khan N, Jajeh F, Khan MI, Mukhtar E, Shabana SM, Mukhtar H. Sestrin-3 modulation is essential for therapeutic efficacy of cucurbitacin B in lung cancer cells. Carcinogenesis 2017; 38:184-195. [PMID: 27881463 DOI: 10.1093/carcin/bgw124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 11/22/2016] [Indexed: 12/12/2022] Open
Abstract
Many purified compounds from dietary sources have been investigated for their anticancer activities. The main issue with most agents is their effectiveness at high doses which generally could not be delivered to humans through dietary consumption. Here, we observed that cucurbitacin B, a tetracyclic triterpenoid present in pumpkins, gourds and squashes, exhibits antiproliferative effects on human non-small cell lung cancer (NSCLC) cells at nanomolar concentrations. Treatment with cucurbitacin B (0.2-0.6 μM; 24 h) was found to result in decrease in the viability of EGFR-wild type (A549 and H1792) and EGFR-mutant lung cancer cells (H1650 and H1975) and reduction in cell-colonies but had only minimal effect on normal human bronchial epithelial cells. Treatment with cucurbitacin B also caused inhibition of PI3K/mTOR and signal transducer and activator of transcription (STAT)-3 signaling along with simultaneous activation of AMPKα levels in both EGFR-wild type and EGFR-mutant lung cancer cells. Cucurbitacin B caused specific increase in the protein and mRNA expression of sestrin-3 in EGFR-mutant lung cancer cells, but not in EGFR-wild type cells. Treatment with cucurbitacin B to sestrin-3 siRNA treated EGFR-mutant cells further amplified the decrease in cell-viability and caused more sustained G2-phase cell cycle arrest, suggesting that these effects are mediated partly through sestrin-3. We also found that sestrin-3 has a role in the induction of apoptosis by cucurbitacin B in both EGFR-wild type and EGFR-mutant lung cancer cells. These findings suggest novel mechanism by the modulation of sestrin-3 for the action of cucurbitacin B and suggest that it could be developed as an agent for therapy of NSCLC.
Collapse
Affiliation(s)
- Naghma Khan
- Department of Dermatology, University of Wisconsin, Madison, WI 53706, USA and
| | - Farah Jajeh
- Department of Dermatology, University of Wisconsin, Madison, WI 53706, USA and
| | - Mohammad Imran Khan
- Department of Dermatology, University of Wisconsin, Madison, WI 53706, USA and
| | - Eiman Mukhtar
- Department of Dermatology, University of Wisconsin, Madison, WI 53706, USA and
| | - Sameh M Shabana
- Department of Dermatology, University of Wisconsin, Madison, WI 53706, USA and.,Department of Zoology, Faculty of Science, Mansoura University, Egypt
| | - Hasan Mukhtar
- Department of Dermatology, University of Wisconsin, Madison, WI 53706, USA and
| |
Collapse
|
37
|
Ranjan A, Srivastava SK. Penfluridol suppresses glioblastoma tumor growth by Akt-mediated inhibition of GLI1. Oncotarget 2017; 8:32960-32976. [PMID: 28380428 PMCID: PMC5464842 DOI: 10.18632/oncotarget.16515] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/03/2017] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma (GBM) is the most common brain tumor with poor survival rate. Our results show that penfluridol, an antipsychotic drug significantly reduced the survival of ten adult and pediatric glioblastoma cell lines with IC50 ranging 2-5 μM after 72 hours of treatment and induced apoptosis. Penfluridol treatment suppressed the phosphorylation of Akt at Ser473 and reduced the expression of GLI1, OCT4, Nanog and Sox2 in several glioblastoma cell lines in a concentration-dependent manner. Inhibiting Akt with LY294002 and siRNA, or inhibiting GLI1 using GANT61, cyclopamine, siRNA and CRISPR/Cas9 resulted in enhanced cell growth suppressive effects of penfluridol. On the other hand, overexpression of GLI1 significantly attenuated the effects of penfluridol. Our results further demonstrated that penfluridol treatment inhibited the growth of U87MG tumors by 65% and 72% in subcutaneous and intracranial in vivo glioblastoma tumor models respectively. Immunohistochemical and western blot analysis of tumors revealed reduced pAkt (Ser 473), GLI1, OCT4 and increase in caspase-3 cleavage and TUNEL staining, confirming in vitro findings. Taken together, our results indicate that overall glioblastoma tumor growth suppression by penfluridol was associated with Akt-mediated inhibition of GLI1.
Collapse
Affiliation(s)
- Alok Ranjan
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Sanjay K. Srivastava
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| |
Collapse
|
38
|
Qu Y, Cong P, Lin C, Deng Y, Li-Ling J, Zhang M. Inhibition of paclitaxel resistance and apoptosis induction by cucurbitacin B in ovarian carcinoma cells. Oncol Lett 2017; 14:145-152. [PMID: 28693146 PMCID: PMC5494940 DOI: 10.3892/ol.2017.6148] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 03/09/2017] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer is the leading cause of mortality among all gynecological malignancies. Drug resistance is a cause of ovarian cancer recurrence and low rate of overall survival. There is a requirement for more effective treatment approaches. Cucurbitacin B (CuB) is an antineoplastic agent derived from traditional Chinese medicinal herbs. Its activity against paclitaxel-resistant human ovarian cancer cells has, however, not yet been established. The purpose of the present study was to investigate the effect and mechanism of CuB on human paclitaxel-resistant ovarian cancer A2780/Taxol cells. Cell viability was evaluated by a cell counting assay, while cell cycle arrest and apoptosis were assessed by microscopy and flow cytometry, and proteins associated with apoptotic pathways and drug resistance were evaluated by western blotting. The present results demonstrated that CuB exerts dose- and time-dependent cytotoxicity against the ovarian cancer A2780 cell line, with half-maximal inhibitory concentration (IC50) values 0.48, 0.25 and 0.21 µM following 24, 48 and 72 h of incubation, respectively. Compared with its sensitive counterpart, A2780, paclitaxel-resistant A2780/Taxol cells had almost identical IC50 values. Cell cycle analysis demonstrated that treatment with CuB may induce cell cycle arrest at the G2/M phase of the cell cycle in the two cell lines. As revealed by Annexin V/propidium iodide-labeled flow cytometry and Hoechst 33258 staining, CuB-induced apoptosis was accompanied by activation of caspase-3 and downregulation of B-cell lymphoma-2. Western blotting demonstrated that CuB may enhance the expression of p53 and p21 in the two cell lines. CuB may also downregulate the expression of P-glycoprotein. These results indicate that CuB may exert a therapeutic effect on paclitaxel-resistant human ovarian cancer.
Collapse
Affiliation(s)
- Yingchun Qu
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Peifang Cong
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Chengjiang Lin
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yihui Deng
- Department of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110015, P.R. China
| | - Jesse Li-Ling
- Nanchuan Institute of Biological Research, Joint Key Laboratory for Bioresource Research and Utilization of Sichuan and Chongqing, Chongqing 408400, P.R. China.,Institute of Genetic Medicine, Joint Key Laboratory for Bioresource Research and Utilization of Sichuan and Chongqing, School of Life Science, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Meixia Zhang
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
39
|
Cucurbitacin B purified from Ecballium elaterium (L.) A. Rich from Tunisia inhibits α5β1 integrin-mediated adhesion, migration, proliferation of human glioblastoma cell line and angiogenesis. Eur J Pharmacol 2017; 797:153-161. [DOI: 10.1016/j.ejphar.2017.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/04/2017] [Accepted: 01/11/2017] [Indexed: 11/20/2022]
|
40
|
Differential expression of epithelial–mesenchymal transition and stem cell markers in intrinsic subtypes of breast cancer. Breast Cancer Res Treat 2016; 154:45-55. [PMID: 26467042 DOI: 10.1007/s10549-015-3598-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/06/2015] [Indexed: 12/11/2022]
Abstract
The transcription factors SLUG and SOX9 have been shown to define mammary stem cell state. Similarly, epithelial–mesenchymal transition (EMT) markers (E-Cadherin, mTOR) have been shown to play a role in tumor-progression and metastatic potential in breast cancer. Finally, SOX10 is known to be expressed in breast cancer as well. The overexpressions of EMT and stem cell markers have been shown to correlate with poor overall survival. In this study, we examined whether the expression of these markers correlates with intrinsic subtypes of breast cancer and whether there is a prognostic difference in their expression-profile. We analyzed 617 breast cancer samples from two tissue micro arrays. Breast cancer samples were categorized into three groups according to hormone receptor expression and HER2-status as Luminal A/B, HER2-positive, and triple negative subgroup. Immunohistochemical expressions of SLUG, SOX9, SOX10, E-Cadherin, and mTOR were semi-quantitatively analyzed using a two-tiered and three-tiered scoring system in which cytoplasmic and nuclear stains were considered. Strong nuclear expression of SLUG was observed preferentially in triple negative but not in Luminal A/B or HER2-positive cases (24 vs. 3 and 0 %, p < 0.001). Loss of SOX9 in the nuclear stain was less frequent in triple negative than in Luminal A/B or HER2-positive cases (4 vs. 9 vs. 13 %, p < 0.001). Expression of nuclear SOX10 was lower in triple negative than in Luminal A/B and HER2-positive cases (67 vs.78 and 79 %, p = 0.012). E-Cadherin loss was observed only in Luminal A/B tumors (p = 0.016), no difference in the mTOR expression was seen between any of the three groups. No correlation to conventional histopathological-parameters or stage could be established in our cohort. Our study shows an inversed preferential nuclear expression of SLUG, SOX10, and SOX9 in triple negative and non-triple negative cases. This information is important in understanding the biology of triple negative breast cancer, also in terms of future studies dealing with targeted therapies based on the alterations of EMT and stem cell markers.
Collapse
|
41
|
Cucurbitacin B inhibits breast cancer metastasis and angiogenesis through VEGF-mediated suppression of FAK/MMP-9 signaling axis. Int J Biochem Cell Biol 2016; 77:41-56. [DOI: 10.1016/j.biocel.2016.05.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/28/2016] [Accepted: 05/17/2016] [Indexed: 12/19/2022]
|
42
|
Ranjan A, Srivastava SK. Penfluridol suppresses pancreatic tumor growth by autophagy-mediated apoptosis. Sci Rep 2016; 6:26165. [PMID: 27189859 PMCID: PMC4870635 DOI: 10.1038/srep26165] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/27/2016] [Indexed: 01/06/2023] Open
Abstract
Pancreatic tumors exhibit enhanced autophagy as compared to any other cancer, making it resistant to chemotherapy. We evaluated the effect of penfluridol against pancreatic cancer. Penfluridol treatment induced apoptosis and inhibited the growth of Panc-1, BxPC-3 and AsPC-1, pancreatic cancer cells with IC50 ranging between 6-7 μM after 24 h of treatment. Significant autophagy was induced by penfluridol treatment in pancreatic cancer cells. Punctate LC3B and autophagosomes staining confirmed autophagy. Inhibiting autophagy by chloroquine, bafilomycin, 3-methyladenine or LC3BsiRNA, significantly blocked penfluridol-induced apoptosis, suggesting that autophagy lead to apoptosis in our model. Penfluridol treatment suppressed the growth of BxPC-3 tumor xenografts by 48% as compared to 17% when treated in combination with chloroquine. Similarly, penfluridol suppressed the growth of AsPC-1 tumors by 40% versus 16% when given in combination with chloroquine. TUNEL staining and caspase-3 cleavage revealed less apoptosis in the tumors from mice treated with penfluridol and chloroquine as compared to penfluridol alone. Penfluridol treatment also suppressed the growth of orthotopically implanted Panc-1 tumors by 80% by inducing autophagy-mediated apoptosis in the tumors. These studies established that penfluridol inhibits pancreatic tumor growth by autophagy-mediated apoptosis. Since penfluridol is already in clinic, positive findings from our study will accelerate its clinical development.
Collapse
Affiliation(s)
- Alok Ranjan
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Sanjay K Srivastava
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| |
Collapse
|
43
|
Ranjan A, Gupta P, Srivastava SK. Penfluridol: An Antipsychotic Agent Suppresses Metastatic Tumor Growth in Triple-Negative Breast Cancer by Inhibiting Integrin Signaling Axis. Cancer Res 2016; 76:877-890. [PMID: 26627008 PMCID: PMC4755811 DOI: 10.1158/0008-5472.can-15-1233] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 11/13/2015] [Indexed: 01/01/2023]
Abstract
Metastasis of breast cancer, especially to the brain, is the major cause of mortality. The inability of anticancer agents to cross the blood-brain-barrier represents a critical challenge for successful treatment. In the current study, we investigated the antimetastatic potential of penfluridol, an antipsychotic drug frequently prescribed for schizophrenia with anticancer activity. We show that penfluridol induced apoptosis and reduced the survival of several metastatic triple-negative breast cancer (TNBC) cell lines. In addition, penfluridol treatment significantly reduced the expression of integrin α6, integrin β4, Fak, paxillin, Rac1/2/3, and ROCK1 in vitro. We further evaluated the efficacy of penfluridol in three different in vivo tumor models. We demonstrate that penfluridol administration to an orthotopic model of breast cancer suppressed tumor growth by 49%. On the other hand, penfluridol treatment inhibited the growth of metastatic brain tumors introduced by intracardiac or intracranial injection of breast cancer cells by 90% and 72%, respectively. Penfluridol-treated tumors from all three models exhibited reduced integrin β4 and increased apoptosis. Moreover, chronic administration of penfluridol failed to elicit significant toxic or behavioral side effects in mice. Taken together, our results indicate that penfluridol effectively reduces the growth of primary TNBC tumors and especially metastatic growth in the brain by inhibiting integrin signaling, and prompt further preclinical investigation into repurposing penfluridol for the treatment of metastatic TNBC.
Collapse
Affiliation(s)
- Alok Ranjan
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Parul Gupta
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Sanjay K Srivastava
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, Texas.
| |
Collapse
|
44
|
Yao Y, Shi M, Liu S, Li Y, Guo K, Ci Y, Liu W, Li Y. MARVELD1 modulates cell surface morphology and suppresses epithelial-mesenchymal transition in non-small cell lung cancer. Mol Carcinog 2015; 55:1714-1727. [PMID: 26509557 DOI: 10.1002/mc.22421] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/02/2015] [Accepted: 10/02/2015] [Indexed: 11/11/2022]
Abstract
Integrins have been known to play pivotal roles in malignant progression and epithelial-mesenchymal transition (EMT) of non-small cell lung cancer (NSCLC). We previously demonstrated that MARVELD1, a potential tumor suppressor, is epigenetically silenced in multiple cancer cells. In this study, we found MARVELD1 silencing altered cell surface ultrastructure of NSCLC cells and inhibited the formation of punctate integrin β1/β4 cluster in microvillus, whereas MARVELD1 overexpression suppressed TGF-β1-induced EMT. Remarkably, the balance of integrin β1 and β4 was modulated by MARVELD1. MARVELD1 silencing led to imbalance of integrin β1/β4 and significantly reduced microvillus length, furthermore affected the localization of β1/β4 at microvilli tips. TGF-β1-induced EMT was promoted by MARVELD1 silencing, while rebalance of integrin β1/β4 partly rescued the epithelial phenotype of MARVELD1-silenced cells. Mechanistically, we demonstrate that MARVELD1-mediated balance of integrin β1 and β4 regulates cell surface ultrastructure and EMT phenotype of NSCLC cells, suggesting MARVELD1 has a potential to be developed as a therapeutic target for NSCLC. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yuanfei Yao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Ming Shi
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Shanshan Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yiqun Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Kexin Guo
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yanpeng Ci
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Weizhe Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yu Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
45
|
Cai Y, Fang X, He C, Li P, Xiao F, Wang Y, Chen M. Cucurbitacins: A Systematic Review of the Phytochemistry and Anticancer Activity. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015; 43:1331-50. [PMID: 26503558 DOI: 10.1142/s0192415x15500755] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cucurbitacins are highly oxidized tetracyclic triterpenoids that are widely present in traditional Chinese medicines (Cucurbitaceae family), possess strong anticancer activity, and are divided into 12 classes from A to T with over 200 derivatives. The eight most active cucurbitacin components against cancer are cucurbitacin B, D, E, I, IIa, L glucoside, Q, and R. Their mechanisms of action include antiproliferation, inhibition of migration and invasion, proapoptosis, and cell cycle arrest promotion. Cucurbitacins are also found to be the inhibitors of JAK-STAT3, Wnt, PI3K/Akt, and MAPK signaling pathways, which play important roles in the apoptosis and survival of cancer cells. Recently, new studies have discovered synergistic anticancer effects by using cucurbitacins together with clinically approved chemotherapeutic drugs, such as docetaxel and methotrexate. This paper provides a summary of recent research progress on the anticancer property of cucurbitacins and the various intracellular signaling pathways involved in the regulation of cancer cell proliferation, death, invasion, and migration. Therefore, cucurbitacins are a class of promising anticancer drugs to be used alone or be intergraded in current chemotherapies and radiotherapies to treat many types of cancers.
Collapse
Affiliation(s)
- Yuee Cai
- * State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| | - Xiefan Fang
- † Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Chengwei He
- * State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| | - Peng Li
- * State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| | - Fei Xiao
- * State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China.,‡ Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, P.R. China
| | - Yitao Wang
- * State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| | - Meiwan Chen
- * State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| |
Collapse
|
46
|
Ranjan A, Fofaria NM, Kim SH, Srivastava SK. Modulation of signal transduction pathways by natural compounds in cancer. Chin J Nat Med 2015; 13:730-742. [PMID: 26481373 DOI: 10.1016/s1875-5364(15)30073-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Indexed: 02/07/2023]
Abstract
Cancer is generally regarded as the result of abnormal growth of cells. According to World Health Organization, cancer is the leading cause of mortality worldwide. Mother nature provides a large source of bioactive compounds with excellent therapeutic efficacy. Numerous phytochemicals from nature have been investigated for anticancer properties. In this review article, we discuss several natural compounds, which have shown anti-cancer activity. Natural compounds induce cell cycle arrest, activate intrinsic and extrinsic apoptosis pathways, generate Reactive Oxygen Species (ROS), and down-regulate activated signaling pathways, resulting in inhibition of cell proliferation, progression and metastasis of cancer. Several preclinical studies have suggested that natural compounds can also increase the sensitivity of resistant cancers to available chemotherapy agents. Furthermore, combining FDA approved anti-cancer drugs with natural compounds results in improved efficacy. On the basis of these exciting outcomes of natural compounds against several cancer types, several agents have already advanced to clinical trials. In conclusion, preclinical results and clinical outcomes against cancer suggest promising anticancer efficacy of agents from natural sources.
Collapse
Affiliation(s)
- Alok Ranjan
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Neel M Fofaria
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Sung-Hoon Kim
- Cancer Preventive Material Development Research Center, College of Korean Medicine, Department of Pathology, Kyunghee University, Seoul 131-701, South Korea.
| | - Sanjay K Srivastava
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Cancer Preventive Material Development Research Center, College of Korean Medicine, Department of Pathology, Kyunghee University, Seoul 131-701, South Korea.
| |
Collapse
|
47
|
Lal S, Kersch C, Beeson KA, Wu YJ, Muldoon LL, Neuwelt EA. Interactions between αv-Integrin and HER2 and Their Role in the Invasive Phenotype of Breast Cancer Cells In Vitro and in Rat Brain. PLoS One 2015. [PMID: 26222911 PMCID: PMC4519046 DOI: 10.1371/journal.pone.0131842] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background We tested the hypothesis that αv-integrin and the human epidermal growth factor receptor type 2 (HER2) interact with each other in brain trophic metastatic breast cancer cells and influence their invasive phenotype. Methods Clones of MDA-MB231BR human breast cancer cells with stable knock down of αv-integrin in combination with high or low levels of HER2 were created. The interactions of these two proteins and their combined effect on cell migration and invasion were investigated in vitro and in vivo. Results Knockdown of αv-integrin in MDA-MB231BR clones altered the actin cytoskeleton and cell morphology. HER2 co-precipitated with αv-integrin in three breast cancer cell lines in vitro, suggesting they complex in cells. Knockdown of αv-integrin altered HER2 localization from its normal membrane position to a predominantly lysosomal localization. When αv-integrin expression was decreased by 69–93% in HER2-expressing cells, cellular motility was significantly reduced. Deficiency of both αv-integrin and HER2 decreased cellular migration and invasion by almost 90% compared to cells expressing both proteins (P<0.01). After intracerebral inoculation, cells expressing high levels of both αv-integrin and HER2 showed a diffusely infiltrative tumor phenotype, while cells deficient in αv-integrin and/or HER2 showed a compact tumor growth phenotype. In the αv-integrin positive/HER2 positive tumors, infiltrative growth was 57.2 ± 19% of tumor volume, compared to only 5.8 ± 6.1% infiltration in the double deficient tumor cells. Conclusions αv-integrin interacts with HER2 in breast cancer cells and may regulate HER2 localization. The combined impacts of αv-integrin and HER2 influence the invasive phenotype of breast cancer cells. Targeting αv-integrin in HER2-positive breast cancer may slow growth and decrease infiltration in the normal brain.
Collapse
Affiliation(s)
- Sangeet Lal
- Department of Neurology, Oregon Health & Sciences University, Portland, Oregon, United States of America
| | - Cymon Kersch
- Department of Neurology, Oregon Health & Sciences University, Portland, Oregon, United States of America
| | - Kathleen A. Beeson
- Department of Neurology, Oregon Health & Sciences University, Portland, Oregon, United States of America
| | - Y. Jeffrey Wu
- Department of Neurology, Oregon Health & Sciences University, Portland, Oregon, United States of America
| | - Leslie L. Muldoon
- Department of Neurology, Oregon Health & Sciences University, Portland, Oregon, United States of America
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Sciences University, Portland, Oregon, United States of America
| | - Edward A. Neuwelt
- Department of Neurology, Oregon Health & Sciences University, Portland, Oregon, United States of America
- Department of Neurosurgery, Oregon Health & Sciences University, Portland, Oregon, United States of America
- Veterans Administration Medical Center (EAN), Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
48
|
Tang K, Cai Y, Joshi S, Tovar E, Tucker SC, Maddipati KR, Crissman JD, Repaskey WT, Honn KV. Convergence of eicosanoid and integrin biology: 12-lipoxygenase seeks a partner. Mol Cancer 2015; 14:111. [PMID: 26037302 PMCID: PMC4453211 DOI: 10.1186/s12943-015-0382-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 05/08/2015] [Indexed: 11/28/2022] Open
Abstract
Background Integrins and enzymes of the eicosanoid pathway are both well-established contributors to cancer. However, this is the first report of the interdependence of the two signaling systems. In a screen for proteins that interacted with, and thereby potentially regulated, the human platelet-type 12-lipoxygenase (12-LOX, ALOX12), we identified the integrin β4 (ITGB4). Methods Using a cultured mammalian cell model, we have demonstrated that ITGB4 stimulation leads to recruitment of 12-LOX from the cytosol to the membrane where it physically interacts with the integrin to become enzymatically active to produce 12(S)-HETE, a known bioactive lipid metabolite that regulates numerous cancer phenotypes. Results The net effect of the interaction was the prevention of cell death in response to starvation. Additionally, regulation of β4-mediated, EGF-stimulated invasion was shown to be dependent on 12-LOX, and downstream Erk signaling in response to ITGB4 activation also required 12-LOX. Conclusions This is the first report of an enzyme of the eicosanoid pathway being recruited to and regulated by activated β4 integrin. Integrin β4 has recently been shown to induce expansion of prostate tumor progenitors and there is a strong correlation between stage/grade of prostate cancer and 12-LOX expression. The 12-LOX enzymatic product, 12(S)-HETE, regulates angiogenesis and cell migration in many cancer types. Therefore, disruption of integrin β4-12LOX interaction could reduce the pro-inflammatory oncogenic activity of 12-LOX. This report on the consequences of 12-LOX and ITGB4 interaction sets a precedent for the linkage of integrin and eicosanoid biology through direct protein-protein association. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0382-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Keqin Tang
- Department of Radiation Oncology, John D. Dingell VA Medical Center, 48201, Detroit, MI, USA. .,Department of Pathology, Bioactive Lipids Research Program, Wayne State University School of Medicine, Karmanos Cancer Institute, 431 Chemistry Building, 48202, Detroit, MI, USA.
| | - Yinlong Cai
- Department of Pathology, Bioactive Lipids Research Program, Wayne State University School of Medicine, Karmanos Cancer Institute, 431 Chemistry Building, 48202, Detroit, MI, USA.
| | - Sangeeta Joshi
- Department of Pathology, Bioactive Lipids Research Program, Wayne State University School of Medicine, Karmanos Cancer Institute, 431 Chemistry Building, 48202, Detroit, MI, USA. .,Present address: Roswell Park Cancer Institute, 14263, Buffalo, New York, USA.
| | - Elizabeth Tovar
- Department of Pathology, Bioactive Lipids Research Program, Wayne State University School of Medicine, Karmanos Cancer Institute, 431 Chemistry Building, 48202, Detroit, MI, USA. .,Program in Cancer Biology, Wayne State University School of Medicine, 48202, Detroit, MI, USA. .,Present address: Van Andel Institute, 49503, Grand Rapids, MI, USA.
| | - Stephanie C Tucker
- Department of Pathology, Bioactive Lipids Research Program, Wayne State University School of Medicine, Karmanos Cancer Institute, 431 Chemistry Building, 48202, Detroit, MI, USA.
| | - Krishna Rao Maddipati
- Department of Pathology, Bioactive Lipids Research Program, Wayne State University School of Medicine, Karmanos Cancer Institute, 431 Chemistry Building, 48202, Detroit, MI, USA.
| | - John D Crissman
- Department of Pathology, Bioactive Lipids Research Program, Wayne State University School of Medicine, Karmanos Cancer Institute, 431 Chemistry Building, 48202, Detroit, MI, USA.
| | - William T Repaskey
- Department of Internal Medicine, University of Michigan, 48109, Ann Arbor, MI, USA.
| | - Kenneth V Honn
- Department of Pathology, Bioactive Lipids Research Program, Wayne State University School of Medicine, Karmanos Cancer Institute, 431 Chemistry Building, 48202, Detroit, MI, USA.
| |
Collapse
|
49
|
Ren G, Sha T, Guo J, Li W, Lu J, Chen X. Cucurbitacin B induces DNA damage and autophagy mediated by reactive oxygen species (ROS) in MCF-7 breast cancer cells. J Nat Med 2015; 69:522-30. [PMID: 26018422 DOI: 10.1007/s11418-015-0918-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/06/2015] [Indexed: 01/11/2023]
Abstract
Cucurbitacin B (Cuc B), a natural compound extracted from cucurbitaceous plants, demonstrated potent anticancer activities, while the underlying mechanisms remain unclear. We investigated the anticancer effect of Cuc B on MCF-7 breast cancer cells. Cuc B drastically decreased cell viability in a concentration-dependent manner. Cuc B treatment caused DNA damage, as shown by long tails in the comet assay and increased γH2AX protein expression. Immunofluorescence staining showed that Cuc B treatment induced nuclear γH2AX foci. Cuc B activated DNA damage pathways by phosphorylation of ATM/ATR [two large phosphatidylinositol-3-kinase-like kinase family (PIKKs) members]. Furthermore, it also induced autophagy, as evidenced by monodansylcadaverine (MDC) staining and autophagic protein expression. In addition, Cuc B treatment led to increased reactive oxygen species (ROS) formation, which was inhibited by N-acetyl-L-cysteine (NAC) pretreatment. NAC pretreatment inhibited Cuc-B-induced DNA damage and autophagy. Taken together, these results suggest that ROS-mediated Cuc-B-induced DNA damage and autophagy in MCF-7 cells, which provides new insights into the anticancer molecular mechanism of Cuc B.
Collapse
Affiliation(s)
- Guowen Ren
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | | | | | | | | | | |
Collapse
|
50
|
Chung SO, Kim YJ, Park SU. An updated review of Cucurbitacins and their biological and pharmacological activities. EXCLI JOURNAL 2015; 14:562-6. [PMID: 26648815 PMCID: PMC4669946 DOI: 10.17179/excli2015-283] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 04/27/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Sun Ok Chung
- Department of Biosystems Machinery Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Korea
| | - Yong Joo Kim
- Department of Biosystems Machinery Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Korea
| |
Collapse
|