1
|
Xu L, Xu P, Wang J, Ji H, Zhang L, Tang Z. Advancements in clinical research and emerging therapies for triple-negative breast cancer treatment. Eur J Pharmacol 2025; 988:177202. [PMID: 39675457 DOI: 10.1016/j.ejphar.2024.177202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/30/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
Triple-negative breast cancer (TNBC), defined by the lack of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor 2 (HER2) expression, is acknowledged as the most aggressive form of breast cancer (BC), comprising 15%-20% of all primary cases. Despite the prevalence of TNBC, effective and well-tolerated targeted therapies remain limited, with chemotherapy continuing to be the mainstay of treatment. However, the horizon is brightened by recent advancements in immunotherapy and antibody-drug conjugates (ADCs), which have garnered the U.S. Food and Drug Administration (FDA) approval for various stages of TNBC. Poly (ADP-ribose) polymerase inhibitors (PARPi), particularly for TNBC with BRCA mutations, present a promising avenue, albeit with the challenge of resistance that must be addressed. The success of phosphoinositide-3 kinase (PI3K) pathway inhibitors in hormone receptor (HR)-positive BC suggests potential applicability in TNBC, spurring optimism within the research community. This review endeavors to offer a comprehensive synthesis of both established and cutting-edge targeted therapies for TNBC. We delve into the specifics of PARPi, androgen receptor (AR) inhibitors, Cancer stem cells (CSCs), PI3K/Protein Kinase B (AKT)/mammalian target of rapamycin (mTOR), the transforming growth factor-beta (TGF-β), Ntoch, Wnt/β-catenin, hedgehog (Hh) pathway inhibitors, Epigenetic target-mediated drug delivery, ADCs, immune checkpoint inhibitors (ICIs)and novel immunotherapeutic solutions, contextualizing TNBC within current treatment paradigms. By elucidating the mechanisms of these drugs and their prospective clinical applications, we aim to shed light on the challenges and underscore the beacon of hope that translational research and innovative therapies represent for the oncology field.
Collapse
Affiliation(s)
- Lili Xu
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Pengtao Xu
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Jingsong Wang
- Department of Pharmacy, Guangyuan Central Hospital, Guangyuan, Sichuan, 628000, China
| | - Hui Ji
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Lin Zhang
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Zhihua Tang
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China.
| |
Collapse
|
2
|
Nicolini A, Rossi G, Ferrari P. Experimental and clinical evidence in favour of an effective immune stimulation in ER-positive, endocrine-dependent metastatic breast cancer. Front Immunol 2024; 14:1225175. [PMID: 38332913 PMCID: PMC10850262 DOI: 10.3389/fimmu.2023.1225175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/04/2023] [Indexed: 02/10/2024] Open
Abstract
In ER+ breast cancer, usually seen as the low immunogenic type, the main mechanisms favouring the immune response or tumour growth and immune evasion in the tumour microenvironment (TME) have been examined. The principal implications of targeting the oestrogen-mediated pathways were also considered. Recent experimental findings point out that anti-oestrogens contribute to the reversion of the immunosuppressive TME. Moreover, some preliminary clinical data with the hormone-immunotherapy association in a metastatic setting support the notion that the reversion of immune suppression in TME is likely favoured by the G0-G1 state induced by anti-oestrogens. Following immune stimulation, the reverted immune suppression allows the boosting of the effector cells of the innate and adaptive immune response. This suggests that ER+ breast cancer is a molecular subtype where a successful active immune manipulation can be attained. If this is confirmed by a prospective multicentre trial, which is expected in light of the provided evidence, the proposed hormone immunotherapy can also be tested in the adjuvant setting. Furthermore, the different rationale suggests a synergistic activity of our proposed immunotherapy with the currently recommended regimen consisting of antioestrogens combined with cyclin kinase inhibitors. Overall, this lays the foundation for a shift in clinical practice within this most prevalent molecular subtype of breast cancer.
Collapse
Affiliation(s)
- Andrea Nicolini
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Giuseppe Rossi
- Epidemiology and Biostatistics Unit, Institute of Clinical Physiology, National Research Council and Gabriele Monasterio Foundation, Pisa, Italy
| | - Paola Ferrari
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
3
|
Nguyen VP, Campbell KM, Nowicki TS, Elumalai N, Medina E, Baselga-Carretero I, DiNome ML, Chang HR, Oseguera DK, Ribas A, Glaspy JA. A Pilot Study of Neoadjuvant Nivolumab, Ipilimumab, and Intralesional Oncolytic Virotherapy for HER2-negative Breast Cancer. CANCER RESEARCH COMMUNICATIONS 2023; 3:1628-1637. [PMID: 37621406 PMCID: PMC10445661 DOI: 10.1158/2767-9764.crc-23-0145] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/26/2023]
Abstract
Purpose Neoadjuvant combination immune checkpoint blockade and intralesional oncolytic virotherapy have the potential to activate antitumor responses in patients with breast cancer. Experimental Design Eligibility for this pilot phase I trial included patients with localized HER2-negative breast cancer who received systemic nivolumab and ipilimumab and intratumor talimogene laherparepvec (T-VEC; NCT04185311). The primary objective was to evaluate the safety and adverse event profile of immunotherapy combined with T-VEC in patients with localized, HER2-negative breast cancer. Results Six patients were enrolled, 4 having relapses after prior neoadjuvant chemotherapy and 2 who were previously untreated. Toxicities included 1 patient having grade 3 hypotension and type 1 diabetes mellitus, 3 patients with hypothyroidism, and all patients having constitutional symptoms known to be associated with the administration of T-VEC. One patient had a pathologic complete response, 3 patients had pathologic partial responses, 1 showed no significant response, and 1 had disease progression. Biopsies demonstrated increased immune cell infiltration in samples from patients who responded to therapy. Conclusions This triple immunotherapy regimen provided responses in patients with advanced or relapsed HER2-negative breast cancer, at the expense of long-term toxicities. Significance Systemic immune checkpoint blockade with a programmed death receptor 1 and a CTL antigen-4 blocking antibody, combined with intralesional oncolytic virotherapy, is a chemotherapy-free combination aimed at inducing an antitumor immune response locally and systemic immunity.
Collapse
Affiliation(s)
- Vina P. Nguyen
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, Los Angeles, California
| | - Katie M. Campbell
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
| | - Theodore S. Nowicki
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
- Parker Institute for Cancer Immunotherapy, San Francisco, California
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of California, Los Angeles, Los Angeles, California
- Department of Microbiology, Immunology and Genetics, University of California, Los Angeles, Los Angeles, California
| | - Nila Elumalai
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, Los Angeles, California
| | - Egmidio Medina
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, Los Angeles, California
| | - Ignacio Baselga-Carretero
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, Los Angeles, California
| | - Maggie L. DiNome
- Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles, Los Angeles, California
| | - Helena R. Chang
- Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles, Los Angeles, California
| | - Denise K. Oseguera
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, Los Angeles, California
| | - Antoni Ribas
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
- Department of Microbiology, Immunology and Genetics, University of California, Los Angeles, Los Angeles, California
- Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles, Los Angeles, California
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California
| | - John A. Glaspy
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
4
|
Ye F, Dewanjee S, Li Y, Jha NK, Chen ZS, Kumar A, Vishakha, Behl T, Jha SK, Tang H. Advancements in clinical aspects of targeted therapy and immunotherapy in breast cancer. Mol Cancer 2023; 22:105. [PMID: 37415164 PMCID: PMC10324146 DOI: 10.1186/s12943-023-01805-y] [Citation(s) in RCA: 229] [Impact Index Per Article: 114.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/08/2023] [Indexed: 07/08/2023] Open
Abstract
Breast cancer is the second leading cause of death for women worldwide. The heterogeneity of this disease presents a big challenge in its therapeutic management. However, recent advances in molecular biology and immunology enable to develop highly targeted therapies for many forms of breast cancer. The primary objective of targeted therapy is to inhibit a specific target/molecule that supports tumor progression. Ak strain transforming, cyclin-dependent kinases, poly (ADP-ribose) polymerase, and different growth factors have emerged as potential therapeutic targets for specific breast cancer subtypes. Many targeted drugs are currently undergoing clinical trials, and some have already received the FDA approval as monotherapy or in combination with other drugs for the treatment of different forms of breast cancer. However, the targeted drugs have yet to achieve therapeutic promise against triple-negative breast cancer (TNBC). In this aspect, immune therapy has come up as a promising therapeutic approach specifically for TNBC patients. Different immunotherapeutic modalities including immune-checkpoint blockade, vaccination, and adoptive cell transfer have been extensively studied in the clinical setting of breast cancer, especially in TNBC patients. The FDA has already approved some immune-checkpoint blockers in combination with chemotherapeutic drugs to treat TNBC and several trials are ongoing. This review provides an overview of clinical developments and recent advancements in targeted therapies and immunotherapies for breast cancer treatment. The successes, challenges, and prospects were critically discussed to portray their profound prospects.
Collapse
Affiliation(s)
- Feng Ye
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Yuehua Li
- Department of Medical Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, 11439, USA
| | - Ankush Kumar
- Pharmaceutical and Health Sciences, Career Point University, Hamirpur, Himachal Pradesh, India
| | - Vishakha
- Pharmaceutical and Health Sciences, Career Point University, Hamirpur, Himachal Pradesh, India
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun, Uttarakhand, India.
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India.
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India.
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India.
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
5
|
Debbi K, Grellier N, Loganadane G, Boukhobza C, Mahé M, Cherif MA, Rida H, Gligorov J, Belkacemi Y. Interaction between Radiation Therapy and Targeted Therapies in HER2-Positive Breast Cancer: Literature Review, Levels of Evidence for Safety and Recommendations for Optimal Treatment Sequence. Cancers (Basel) 2023; 15:cancers15082278. [PMID: 37190205 DOI: 10.3390/cancers15082278] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Purpose: Over the past twenty years, anti-HER2 targeted therapies have proven to be a revolution in the management of human epidermal growth receptor 2 (HER2)-positive breast cancers. Anti-HER2 therapies administered alone or in combination with chemotherapy have been specifically studied. Unfortunately, the safety of anti-HER2 therapies in combination with radiation remains largely unknown. Thus, we propose a literature review of the risks and safety of combining radiotherapy with anti-HER2 therapies. We will focus on the benefit/risk rationale and try to understand the risk of toxicity in early-stage and advanced breast cancer. Methods: Research was carried out on the following databases: PubMed, EMBASE, ClinicalTrial.gov, Medline, and Web of Science for the terms "radiotherapy", "radiation therapy", "radiosurgery", "local ablative therapy", and "stereotactic", combined with "trastuzumab", "pertuzumab", "trastuzumab emtansine", "TDM-1", "T-Dxd", "trastuzumab deruxtecan", "tucatinib", "lapatinib", "immune checkpoint inhibitors", "atezolizumab", "pembrolizumab", "nivolumab", "E75 vaccine", "interferon", "anti-IL-2", "anti-IL 12", and "ADC". Results: Association of radiation and monoclonal antibodies such as trastuzumab and pertuzumab (with limited data) seems to be safe, with no excess risk of toxicity. Preliminary data with radiation and of antibody-drug conjugate of trastuzumab combined cytotoxic (trastuzumab emtansine, trastuzumab deruxtecan), given the underlying mechanism of action, suggest that one must be particularly cautious with the association. The safety of the combination of a tyrosine kinase inhibitor (lapatinib, tucatinib) and radiation remains under-studied. The available evidence suggests that checkpoint inhibitors can be safely administrated with radiation. Conclusions: HER2-targeting monoclonal antibodies and checkpoint inhibitors can be combined with radiation, apparently with no excess toxicities. Caution is required when associating radiation with TKI and antibody drugs, considering the limited evidence.
Collapse
Affiliation(s)
- Kamel Debbi
- APHP-Radiation Oncology Department and Henri Mondor Breast Center, Henri Mondor University Hospital, 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
- Institut Mondor de Recherche Biomédicale (IMRB), INSERM U955, i-Biot, UPEC, 94000 Créteil, France
| | - Noémie Grellier
- APHP-Radiation Oncology Department and Henri Mondor Breast Center, Henri Mondor University Hospital, 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
| | - Gokoulakrichenane Loganadane
- APHP-Radiation Oncology Department and Henri Mondor Breast Center, Henri Mondor University Hospital, 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
- Institut Mondor de Recherche Biomédicale (IMRB), INSERM U955, i-Biot, UPEC, 94000 Créteil, France
| | - Chahrazed Boukhobza
- APHP-Radiation Oncology Department and Henri Mondor Breast Center, Henri Mondor University Hospital, 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
| | - Mathilde Mahé
- APHP-Radiation Oncology Department and Henri Mondor Breast Center, Henri Mondor University Hospital, 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
| | - Mohamed Aziz Cherif
- APHP-Radiation Oncology Department and Henri Mondor Breast Center, Henri Mondor University Hospital, 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
| | - Hanan Rida
- APHP-Radiation Oncology Department and Henri Mondor Breast Center, Henri Mondor University Hospital, 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
| | - Joseph Gligorov
- APHP-Medical Oncology Department, Institut Universitaire de Cancérologie, Sorbonne Université, 75013 Paris, France
| | - Yazid Belkacemi
- APHP-Radiation Oncology Department and Henri Mondor Breast Center, Henri Mondor University Hospital, 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
- Institut Mondor de Recherche Biomédicale (IMRB), INSERM U955, i-Biot, UPEC, 94000 Créteil, France
| |
Collapse
|
6
|
Montoyo-Pujol YG, García-Escolano M, Ponce JJ, Delgado-García S, Martín TA, Ballester H, Castellón-Molla E, Martínez-Peinado P, Pascual-García S, Sempere-Ortells JM, Peiró G. Variable Intrinsic Expression of Immunoregulatory Biomarkers in Breast Cancer Cell Lines, Mammospheres, and Co-Cultures. Int J Mol Sci 2023; 24:4478. [PMID: 36901916 PMCID: PMC10003642 DOI: 10.3390/ijms24054478] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Advances in immunotherapy have increased interest in knowing the role of the immune system in breast cancer (BC) pathogenesis. Therefore, immune checkpoints (IC) and other pathways related to immune regulation, such as JAK2 and FoXO1, have emerged as potential targets for BC treatment. However, their intrinsic gene expression in vitro has not been extensively studied in this neoplasia. Thus, we evaluated the mRNA expression of tumor-cell-intrinsic CTLA-4, PDCD1 (PD1), CD274 (PD-L1), PDCD1LG2 (PD-L2), CD276 (B7-H3), JAK2, and FoXO1 in different BC cell lines, derived mammospheres, and co-cultures with peripheral blood mononuclear cells (PBMCs) by real-time quantitative polymerase chain reaction (qRT-PCR). Our results showed that intrinsic CTLA-4, CD274 (PD-L1), and PDCD1LG2 (PD-L2) were highly expressed in triple-negative cell lines, while CD276 was predominantly overexpressed in luminal cell lines. In contrast, JAK2 and FoXO1 were under-expressed. Moreover, high levels of CTLA-4, PDCD1 (PD1), CD274 (PD-L1), PDCD1LG2 (PD-L2), and JAK2 were found after mammosphere formation. Finally, the interaction between BC cell lines and peripheral blood mononuclear cells (PBMCs) stimulates the intrinsic expression of CTLA-4, PCDC1 (PD1), CD274 (PD-L1), and PDCD1LG2 (PD-L2). In conclusion, the intrinsic expression of immunoregulatory genes seems very dynamic, depending on BC phenotype, culture conditions, and tumor-immune cell interactions.
Collapse
Affiliation(s)
- Yoel Genaro Montoyo-Pujol
- Research Unit, Dr. Balmis University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain
- Medical Oncology Department, Dr. Balmis University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain
| | - Marta García-Escolano
- Research Unit, Dr. Balmis University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain
| | - José J. Ponce
- Medical Oncology Department, Dr. Balmis University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain
| | - Silvia Delgado-García
- Gynecology and Obstetrics Department, Dr. Balmis University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain
| | - Tina Aurora Martín
- Gynecology and Obstetrics Department, Dr. Balmis University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain
| | - Hortensia Ballester
- Gynecology and Obstetrics Department, Dr. Balmis University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain
| | - Elena Castellón-Molla
- Pathology Department, Dr. Balmis University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain
| | - Pascual Martínez-Peinado
- Biotechnology Department, Immunology Division, University of Alicante, Ctra San Vicente s/n., 03080 San Vicente del Raspeig, Spain
| | - Sandra Pascual-García
- Biotechnology Department, Immunology Division, University of Alicante, Ctra San Vicente s/n., 03080 San Vicente del Raspeig, Spain
| | - José Miguel Sempere-Ortells
- Biotechnology Department, Immunology Division, University of Alicante, Ctra San Vicente s/n., 03080 San Vicente del Raspeig, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain
| | - Gloria Peiró
- Research Unit, Dr. Balmis University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain
- Pathology Department, Dr. Balmis University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain
- Biotechnology Department, Immunology Division, University of Alicante, Ctra San Vicente s/n., 03080 San Vicente del Raspeig, Spain
| |
Collapse
|
7
|
Pourhamzeh M, Asadian S, Mirzaei H, Minaei A, Shahriari E, Shpichka A, Es HA, Timashev P, Hassan M, Vosough M. Novel antigens for targeted radioimmunotherapy in hepatocellular carcinoma. Mol Cell Biochem 2023; 478:23-37. [PMID: 35708866 DOI: 10.1007/s11010-022-04483-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/18/2022] [Indexed: 01/17/2023]
Abstract
Liver cancer is the sixth common cancer and forth cause of cancer-related death worldwide. Based on usually advanced stages of hepatocellular carcinoma (HCC) at the time of diagnosis, therapeutic options are limited and, in many cases, not effective, and typically result in the tumor recurrence with a poor prognosis. Radioimmunotherapy (RIT) offers a selective internal radiation therapy approach using beta or alpha emitting radionuclides conjugated with tumor-specific monoclonal antibodies (mAbs), or specific selective peptides. When compared to chemotherapy or radiotherapy, radiolabeled mAbs against cancer-associated antigens could provide a high therapeutic and exclusive radiation dose for cancerous cells while decreasing the exposure-induced side effects to healthy tissues. The recent advances in cancer immunotherapy, such as blockade of immune-checkpoint inhibitors (ICIs), has changed the landscape of cancer therapy, and the efficacy of different classes of immunotherapy has been tested in many clinical trials. Taking into account the use of ICIs in the liver tumor microenvironment, combined therapies with different approaches may enhance the outcome in the future clinical studies. With the development of novel immunotherapy treatment options in the recent years, there has been a great deal of information about combining the diverse treatment modalities to boost the effectiveness of immunomodulatory drugs. In this opinion review, we will discuss the recent advancements in RIT. The current status of immunotherapy and internal radiotherapy will be updated, and we will propose novel approaches for the combination of both techniques. Potential target antigens for radioimmunotherapy in Hepatocellular carcinoma (HCC). HCC radioimmunotherapy target antigens are the most specific and commonly accessible antigens on the surface of HCC cells. CTLA-4 ligand and receptor, TAMs, PD-1/PD-L, TIM-3, specific IEXs/TEXs, ROBO1, and cluster of differentiation antigens CD105, CD147 could all be used in HCC radioimmunotherapy. Abbreviations: TAMs, tumor-associated macrophages; CTLA-4, cytotoxic T-lymphocyte associated antigen-4; PD-1, Programmed cell death protein 1; PD-L, programmed death-ligand1; TIM-3, T-cell immunoglobulin (Ig) and mucin-domain containing protein-3; IEXs, immune cell-derived exosomes; TEXs, tumor-derived exosomes.
Collapse
Affiliation(s)
- Mahsa Pourhamzeh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Departments of Pathology and Medicine, UC San Diego, La Jolla, CA, USA
| | - Samieh Asadian
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Azita Minaei
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Elahe Shahriari
- Departments of Pathology and Medicine, UC San Diego, La Jolla, CA, USA
| | - Anastasia Shpichka
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia.,Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia.,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | | | - Peter Timashev
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia. .,Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia. .,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia.
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. .,Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
8
|
Abdeladhim M, Karnell JL, Rieder SA. In or out of control: Modulating regulatory T cell homeostasis and function with immune checkpoint pathways. Front Immunol 2022; 13:1033705. [PMID: 36591244 PMCID: PMC9799097 DOI: 10.3389/fimmu.2022.1033705] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/16/2022] [Indexed: 12/16/2022] Open
Abstract
Regulatory T cells (Tregs) are the master regulators of immunity and they have been implicated in different disease states such as infection, autoimmunity and cancer. Since their discovery, many studies have focused on understanding Treg development, differentiation, and function. While there are many players in the generation and function of truly suppressive Tregs, the role of checkpoint pathways in these processes have been studied extensively. In this paper, we systematically review the role of different checkpoint pathways in Treg homeostasis and function. We describe how co-stimulatory and co-inhibitory pathways modulate Treg homeostasis and function and highlight data from mouse and human studies. Multiple checkpoint pathways are being targeted in cancer and autoimmunity; therefore, we share insights from the clinic and discuss the effect of experimental and approved therapeutics on Treg biology.
Collapse
|
9
|
Nicolini A, Ferrari P, Carpi A. Immune Checkpoint Inhibitors and Other Immune Therapies in Breast Cancer: A New Paradigm for Prolonged Adjuvant Immunotherapy. Biomedicines 2022; 10:biomedicines10102511. [PMID: 36289773 PMCID: PMC9599105 DOI: 10.3390/biomedicines10102511] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/25/2022] [Accepted: 10/02/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Breast cancer is the most common form of cancer in women worldwide. Advances in the early diagnosis and treatment of cancer in the last decade have progressively decreased the cancer mortality rate, and in recent years, immunotherapy has emerged as a relevant tool against cancer. HER2+ and triple-negative breast cancers (TNBCs) are considered more immunogenic and suitable for this kind of treatment due to the higher rate of tumor-infiltrating lymphocytes (TILs) and programmed death ligand 1 (PD-L1) expression. In TNBC, genetic aberrations further favor immunogenicity due to more neo-antigens in cancer cells. Methods: This review summarizes the principal ongoing conventional and investigational immunotherapies in breast cancer. Particularly, immune checkpoint inhibitors (ICIs) and their use alone or combined with DNA damage repair inhibitors (DDRis) are described. Then, the issue on immunotherapy with monoclonal antibodies against HER-2 family receptors is updated. Other investigational immunotherapies include a new schedule based on the interferon beta-interleukin-2 sequence that was given in ER+ metastatic breast cancer patients concomitant with anti-estrogen therapy, which surprisingly showed promising results. Results: Based on the scientific literature and our own findings, the current evaluation of tumor immunogenicity and the conventional model of adjuvant chemotherapy (CT) are questioned. Conclusions: A novel strategy based on additional prolonged adjuvant immunotherapy combined with hormone therapy or alternated with CT is proposed.
Collapse
Affiliation(s)
- Andrea Nicolini
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy
- Correspondence:
| | - Paola Ferrari
- Unit of Oncology, Department of Medical and Oncological Area, Azienda Ospedaliera-Universitaria Pisana, 56125 Pisa, Italy
| | - Angelo Carpi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
10
|
Wesolowski J, Tankiewicz-Kwedlo A, Pawlak D. Modern Immunotherapy in the Treatment of Triple-Negative Breast Cancer. Cancers (Basel) 2022; 14:cancers14163860. [PMID: 36010854 PMCID: PMC9406094 DOI: 10.3390/cancers14163860] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary This review summarizes reports from the latest clinical trials assessing the safety and clinical effectiveness of new biological drugs stimulating the immune system to fight cancer. The aim of this study is to show the enormous therapeutic potential of monoclonal antibodies in the treatment of cancer, in particular triple negative breast cancer (TNBC). Introduction of these innovative drugs to the standard clinical cancer therapies, including TNBC, allows for an increase in the response rate to the applied treatment, and consequently extending the lives of patients suffering from cancer. We hope to draw attention to the extremely difficult-to-treat TNBC, as well as the importance of the development of clinical trials evaluating drugs modulating the immune system in TNBC therapy. Abstract Triple-Negative Breast Cancer is a subtype of breast cancer characterized by the lack of expression of estrogen receptors, progesterone receptors, as well as human epidermal growth factor receptor 2. This cancer accounts for 15–20% of all breast cancers and is especially common in patients under 40 years of age, as well as with the occurring BRCA1 mutation. Its poor prognosis is reflected in the statistical life expectancy of 8–15 months after diagnosis of metastatic TNBC. So far, the lack of targeted therapy has narrowed therapeutic possibilities to classic chemotherapy. The idea behind the use of humanized monoclonal antibodies, as inhibitors of immunosuppressive checkpoints used by the tumor to escape from immune system control, is to reduce immunotolerance and direct an intensified anti-tumor immune response. An abundance of recent studies has provided numerous pieces of evidence about the safety and clinical benefits of immunotherapy using humanized monoclonal antibodies in the fight against many types of cancer, including TNBC. In particular, phase three clinical trials, such as the IMpassion 130, the KEYNOTE-355 and the KEYNOTE-522 resulted in the approval of immunotherapeutic agents, such as atezolizumab and pembrolizumab by the US Food and Drug Administration in TNBC therapy. This review aims to present the huge potential of immunotherapy using monoclonal antibodies directed against immunosuppressive checkpoints—such as atezolizumab, avelumab, durvalumab, pembrolizumab, nivolumab, cemiplimab, tremelimumab, ipilimumab—in the fight against difficult to treat TNBCs as monotherapy as well as in more advanced combination strategies.
Collapse
Affiliation(s)
- Jakub Wesolowski
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University in Bialystok, 15-089 Bialystok, Poland
- Correspondence:
| | - Anna Tankiewicz-Kwedlo
- Department of Monitored Pharmacotherapy, Faculty of Pharmacy, Medical University in Bialystok, 15-089 Bialystok, Poland
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University in Bialystok, 15-089 Bialystok, Poland
| |
Collapse
|
11
|
Santa-Maria CA, Dunn SA, Ho AY. Immunotherapy Combined with Radiation Therapy in Breast Cancer: A Rapidly Evolving Landscape. Semin Radiat Oncol 2022; 32:291-297. [DOI: 10.1016/j.semradonc.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Meattini I, Livi L, Lorito N, Becherini C, Bacci M, Visani L, Fozza A, Belgioia L, Loi M, Mangoni M, Lambertini M, Morandi A. Integrating radiation therapy with targeted treatments for breast cancer: From bench to bedside. Cancer Treat Rev 2022; 108:102417. [PMID: 35623219 DOI: 10.1016/j.ctrv.2022.102417] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 11/02/2022]
Abstract
Major advances have been made in precision medicine of breast cancer patients with a series of molecular targeted therapies now in clinical use or in late clinical development. These new therapeutic measures need to be integrated with local treatments, particularly with radiation therapy in both curative and advanced settings. Although a synergistic effect could be obtained between targeted therapies and irradiation, potential safety concerns should be carefully considered. At present, scarce evidence exists due to a lack of quality assurance on radiation therapy in pivotal trials of new drugs and missing reports on safety in case of concurrent radiation therapy, commonly administered with heterogenous doses and fractionations, especially in advanced disease. A major contribution for effectively combining radiation and targeted therapies in breast cancer could derive from clinically relevant preclinical studies. This review integrates preclinical and clinical evidence on how targeted agents and radiation therapy could be combined to help physicians in their daily clinical practice and to improve the clinical management of patients.
Collapse
Affiliation(s)
- Icro Meattini
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, Florence, Italy; Radiation Oncology Unit - Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy.
| | - Lorenzo Livi
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, Florence, Italy; Radiation Oncology Unit - Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Nicla Lorito
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, Florence, Italy
| | - Carlotta Becherini
- Radiation Oncology Unit - Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Marina Bacci
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, Florence, Italy
| | - Luca Visani
- Radiation Oncology Unit - Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Alessandra Fozza
- Department of Radiation Oncology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Liliana Belgioia
- Department of Radiation Oncology, IRCCS Ospedale Policlinico San Martino, Genova, Italy; Department of Health Science (DISSAL), University of Genoa, Genova, Italy
| | - Mauro Loi
- Radiation Oncology Unit - Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Monica Mangoni
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, Florence, Italy; Radiation Oncology Unit - Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Matteo Lambertini
- Department of Medical Oncology, U.O. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova, Italy; Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genova, Italy
| | - Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, Florence, Italy
| |
Collapse
|
13
|
Uchimiak K, Badowska-Kozakiewicz AM, Sobiborowicz-Sadowska A, Deptała A. Current State of Knowledge on the Immune Checkpoint Inhibitors in Triple-Negative Breast Cancer Treatment: Approaches, Efficacy, and Challenges. Clin Med Insights Oncol 2022; 16:11795549221099869. [PMID: 35721387 PMCID: PMC9201309 DOI: 10.1177/11795549221099869] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype with limited treatment options. Recently, there has been a growing interest in immunotherapy with immune checkpoint inhibitors (ICIs) in TNBC, leading to extensive preclinical and clinical research. This review summarizes the current state of knowledge on ICIs efficacy and their predictive markers in TNBC and highlights the areas where the data are still limited. Currently, the only approved ICI-based regimen for TNBC is pembrolizumab with chemotherapy. Its advantage over chemotherapy alone was confirmed for non-metastatic TNBC regardless of programmed death-ligand 1 (PD-L1) expression (KEYNOTE-522) and for metastatic, PD-L1-positive TNBC (KEYNOTE-355). Pembrolizumab's efficacy was also evaluated in monotherapy, or in combination with niraparib and radiation therapy, showing potential efficacy and acceptable safety profile in phase 2 clinical trials. Atezolizumab + nab-paclitaxel increased the overall survival (OS) over placebo + nab-paclitaxel in early TNBC, regardless of PD-L1 status (IMpassion031). In IMpassion130 (untreated, advanced TNBC), the OS improvement was not statistically significant in the intention-to-treat population but clinically meaningful in the PD-L1 positive cohort. The durvalumab-anthracycline combination showed an increased response durability over placebo anthracycline in early TNBC (GeparNuevo). Several phase 1 clinical trials also showed a potential efficacy of atezolizumab and avelumab monotherapy in metastatic TNBC. ICIs appear to be applicable in both neoadjuvant and adjuvant settings, and are both pretreated and previously untreated patients. Further research is necessary to determine the most beneficial drug combinations and optimize patient selection. It is essential to identify the predictive markers for ICIs and factors affecting their expression.
Collapse
Affiliation(s)
- Katarzyna Uchimiak
- Students’ Scientific Organization of
Cancer Cell Biology, Department of Cancer Prevention, Medical University of Warsaw,
Warsaw, Poland
| | | | - Aleksandra Sobiborowicz-Sadowska
- Students’ Scientific Organization of
Cancer Cell Biology, Department of Cancer Prevention, Medical University of Warsaw,
Warsaw, Poland
| | - Andrzej Deptała
- Department of Cancer Prevention,
Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
14
|
Tahir IM, Rauf A, Mehboob H, Sadaf S, Alam MS, Kalsoom F, Bouyahya A, El Allam A, El Omari N, Bakrim S, Akram M, Raza SK, Emran TB, Mabkhot YN, Zengin G, Derkho M, Natalya S, Shariati MA. Prognostic significance of programmed death-1 and programmed death ligand-1 proteins in breast cancer. Hum Antibodies 2022; 30:131-150. [PMID: 35938242 DOI: 10.3233/hab-220001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In numerous studies related to tumor prognosis, programmed death-ligand 1 (PD-L1) has been identified as a biomarker. This work aimed to determine the prognostic importance of PD-L1 in breast cancer. We searched electronic databases such as PubMed, Google scholar, home pages of publishing groups, medical, clinical, and pharmaceutical sciences journals, as well as other relevant sources to discover the importance of PD-1 and PD-L1 expression in breast cancer therapies and also recurrence. The keywords used in this search were autoimmunity, programmed cell death, PD-L1 or PD-1, and breast cancer. Our inclusion criteria included studies showing the synergy between the expression of PD-L1 and PD-1 in primary breast cancers as prognostic markers and this research was limited to humans only. We included review articles, original research, letters to the editor, case reports, and short communications in our study, published in English. We focused our work on PD-L1 mRNA expression in breast cancer cell lines. PD-L1 expression has been decisively demonstrated to be a high-risk factor for breast cancer with a bad prognosis.
Collapse
Affiliation(s)
- Imtiaz Mahmood Tahir
- College of Allied Health Professionals, Government College University, Faisalabad, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, KPK, Pakistan
| | - Huma Mehboob
- Department of Biochemistry, Government College Women University, Faisalabad, Pakistan
| | - Samia Sadaf
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chittagong, Bangladesh
| | - Muhammad Shaiful Alam
- Department of Pharmacy, University of Science and Technology Chittagong, Chittagong, Bangladesh
| | - Fadia Kalsoom
- College of Allied Health Professionals, Government College University, Faisalabad, Pakistan
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Aicha El Allam
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetics, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnologies and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir, Morocco
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad Pakistan, Faisalabad, Pakistan
| | - Syed Kashif Raza
- College of Allied Health Professionals, Government College University, Faisalabad, Pakistan
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Yahia N Mabkhot
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Marina Derkho
- South-Urals State Agrarian University, Troitsk, Chelyabinsk Region, Russia
| | - Suray Natalya
- K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), Moscow, Russia
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), Moscow, Russia
| |
Collapse
|
15
|
Akama-Garren EH, Morris ZS, Sikora AG, Weichselbaum R, Schoenfeld JD. Prospective Clinical Investigation of the Efficacy of Combination Radiation Therapy With Immune Checkpoint Inhibition. Int J Radiat Oncol Biol Phys 2021; 111:1165-1175. [PMID: 34411638 PMCID: PMC10960630 DOI: 10.1016/j.ijrobp.2021.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/19/2022]
Abstract
Immune checkpoint inhibitors (ICIs) lead to durable responses in a subset of patients with cancer, but most patients do not respond to ICI, prompting interest in combining immunotherapy with other therapeutic regimens. Preclinical evidence supports the potential for therapeutic synergy between immunotherapy and radiation therapy through modulation of the tumor microenvironment and antitumor immune responses. Local therapy also has the potential to overcome localized sites of relative immune suppression and resistance. Prospective clinical trials have been initiated to test these hypotheses in the clinic as well as to investigate the toxicities and adverse events associated with combination immunotherapy and radiation therapy. In this review, we discuss the emerging results from prospective clinical trials of combination immunotherapy and radiation therapy, the safety and efficacy of their combination, concordance with preclinical and retrospective data, and some of the remaining open questions to be addressed by future clinical trials.
Collapse
Affiliation(s)
- Elliot H Akama-Garren
- Harvard Medical School, Boston, Massachusetts; Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, Massachusetts
| | - Zachary S Morris
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Andrew G Sikora
- Department of Head and Neck Surgery, Division of Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ralph Weichselbaum
- Department of Radiation and Cellular Oncology, The University of Chicago Medical Center, Chicago, Illinois; The Ludwig Center for Metastasis Research, The University of Chicago Medical Center, Chicago, Illinois
| | - Jonathan D Schoenfeld
- Harvard Medical School, Boston, Massachusetts; Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, Massachusetts.
| |
Collapse
|
16
|
Kumar AR, Devan AR, Nair B, Vinod BS, Nath LR. Harnessing the immune system against cancer: current immunotherapy approaches and therapeutic targets. Mol Biol Rep 2021; 48:8075-8095. [PMID: 34671902 PMCID: PMC8605995 DOI: 10.1007/s11033-021-06752-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 09/15/2021] [Indexed: 02/08/2023]
Abstract
Cancer immunotherapy is a rapidly evolving concept that has been given the tag "fifth pillar" of cancer therapy while radiation therapy, chemotherapy, surgery and targeted therapy remain the other four pillars. This involves the stimulation of the immune system to control tumor growth and it specifically targets the neoplastic cells rather than the normal cells. Conventional chemotherapy has many limitations which include drug resistance, recurrence of cancer and severe adverse effects. Immunology has made major treatment breakthroughs for several cancers such as colorectal cancer, prostate cancer, breast cancer, lung cancer, liver cancer, kidney cancer, stomach cancer, acute lymphoblastic leukaemia etc. Currently, therapeutic strategies harnessing the immune system involve Checkpoint inhibitors, Chimeric antigen receptor T cells (CAR T cells), Monoclonal antibodies, Cancer vaccines, Cytokines, Radio-immunotherapy and Oncolytic virus therapy. The molecular characterization of several tumor antigens (TA) indicates that these TA can be utilized as promising candidates in cancer immunotherapy strategies. Here in this review, we highlight and summarize the different categories of emerging cancer immunotherapies along with the immunologically recognized tumor antigens involved in the tumor microenvironment.
Collapse
Affiliation(s)
- Ayana R Kumar
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - Aswathy R Devan
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - Balachandran S Vinod
- Department of Biochemistry, Sree Narayana College, Kollam, Kerala, 691001, India.
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India.
| |
Collapse
|
17
|
Masoumi E, Tahaghoghi-Hajghorbani S, Jafarzadeh L, Sanaei MJ, Pourbagheri-Sigaroodi A, Bashash D. The application of immune checkpoint blockade in breast cancer and the emerging role of nanoparticle. J Control Release 2021; 340:168-187. [PMID: 34743998 DOI: 10.1016/j.jconrel.2021.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022]
Abstract
Breast cancer is the most common malignancy in the female population with a high mortality rate. Despite the satisfying depth of studies evaluating the contributory role of immune checkpoints in this malignancy, few articles have reviewed the pros and cons of immune checkpoint blockades (ICBs). In the current review, we provide an overview of immune-related inhibitory molecules and also discuss the original data obtained from international research laboratories on the aberrant expression of T and non-T cell-associated immune checkpoints in breast cancer. Then, we especially focus on recent studies that utilized ICBs as the treatment strategy in breast cancer and provide their efficiency reports. As there are always costs and benefits, we discuss the limitations and challenges toward ICB therapy such as adverse events and drug resistance. In the last section, we allocate an overview of the recent data concerning the application of nanoparticle systems for cancer immunotherapy and propose that nano-based ICB approaches may overcome the challenges related to ICB therapy in breast cancer. In conclusion, it seems it is time for nanoscience to more rapidly move forward into clinical trials and illuminates the breast cancer treatment area with its potent features for the target delivery of ICBs.
Collapse
Affiliation(s)
- Elham Masoumi
- Department of Immunology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran; Student Research Committee, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Sahar Tahaghoghi-Hajghorbani
- Microbiology and Virology Research Center, Qaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Leila Jafarzadeh
- Department of Laboratory Science, Sirjan Faculty of Medical Science, Sirjan, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Zhang W, Kong X, Ai B, Wang Z, Wang X, Wang N, Zheng S, Fang Y, Wang J. Research Progresses in Immunological Checkpoint Inhibitors for Breast Cancer Immunotherapy. Front Oncol 2021; 11:582664. [PMID: 34631507 PMCID: PMC8495193 DOI: 10.3389/fonc.2021.582664] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor immune escape refers to the phenomenon in which tumor cells escape the recognition and attack of the body’s immune system through various mechanisms so that they can survive and proliferate in vivo. The imbalance of immune checkpoint protein expression is the primary mechanism for breast cancer to achieve immune escape. Cytotoxic T lymphocyte antigen 4 (CTLA4) and programmed cell death protein 1 (PD-1)/programmed cell death protein-ligand 1 (PD-L1) are critical immune checkpoints for breast cancer. Immune checkpoint inhibitors block the checkpoint and relieve its inhibition effect on immune cells, reactivate T-cells and destroy cancer cells and restore the body’s ability to resist tumors. At present, immunological checkpoint inhibitors have made significant progress in breast cancer immunotherapy, and it is expected to become a new treatment for breast cancer.
Collapse
Affiliation(s)
- Wenxiang Zhang
- Department of Breast Surgical Oncology, China National Cancer Center/Cancer Hospital, Chinese Academy of Medical and Peking Union Medical College, Beijing, China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, China National Cancer Center/Cancer Hospital, Chinese Academy of Medical and Peking Union Medical College, Beijing, China
| | - Bolun Ai
- Department of Breast Surgical Oncology, China National Cancer Center/Cancer Hospital, Chinese Academy of Medical and Peking Union Medical College, Beijing, China
| | - Zhongzhao Wang
- Department of Breast Surgical Oncology, China National Cancer Center/Cancer Hospital, Chinese Academy of Medical and Peking Union Medical College, Beijing, China
| | - Xiangyu Wang
- Department of Breast Surgical Oncology, China National Cancer Center/Cancer Hospital, Chinese Academy of Medical and Peking Union Medical College, Beijing, China
| | - Nianchang Wang
- Department of Cancer Prevention, China National Cancer Center/Cancer Hospital, Chinese Academy of Medical and Peking Union Medical College, Beijing, China
| | - Shan Zheng
- Department of Pathology, China National Cancer Center/Cancer Hospital, Chinese Academy of Medical and Peking Union Medical College, Beijing, China
| | - Yi Fang
- Department of Breast Surgical Oncology, China National Cancer Center/Cancer Hospital, Chinese Academy of Medical and Peking Union Medical College, Beijing, China
| | - Jing Wang
- Department of Breast Surgical Oncology, China National Cancer Center/Cancer Hospital, Chinese Academy of Medical and Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Burguin A, Diorio C, Durocher F. Breast Cancer Treatments: Updates and New Challenges. J Pers Med 2021; 11:808. [PMID: 34442452 PMCID: PMC8399130 DOI: 10.3390/jpm11080808] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 12/31/2022] Open
Abstract
Breast cancer (BC) is the most frequent cancer diagnosed in women worldwide. This heterogeneous disease can be classified into four molecular subtypes (luminal A, luminal B, HER2 and triple-negative breast cancer (TNBC)) according to the expression of the estrogen receptor (ER) and the progesterone receptor (PR), and the overexpression of the human epidermal growth factor receptor 2 (HER2). Current BC treatments target these receptors (endocrine and anti-HER2 therapies) as a personalized treatment. Along with chemotherapy and radiotherapy, these therapies can have severe adverse effects and patients can develop resistance to these agents. Moreover, TNBC do not have standardized treatments. Hence, a deeper understanding of the development of new treatments that are more specific and effective in treating each BC subgroup is key. New approaches have recently emerged such as immunotherapy, conjugated antibodies, and targeting other metabolic pathways. This review summarizes current BC treatments and explores the new treatment strategies from a personalized therapy perspective and the resulting challenges.
Collapse
Affiliation(s)
- Anna Burguin
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1T 1C2, Canada;
- Cancer Research Center, CHU de Québec-Université Laval, Quebec City, QC G1V 4G2, Canada;
| | - Caroline Diorio
- Cancer Research Center, CHU de Québec-Université Laval, Quebec City, QC G1V 4G2, Canada;
- Department of Preventive and Social Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1T 1C2, Canada
| | - Francine Durocher
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1T 1C2, Canada;
- Cancer Research Center, CHU de Québec-Université Laval, Quebec City, QC G1V 4G2, Canada;
| |
Collapse
|
20
|
Li Y, Miao W, He D, Wang S, Lou J, Jiang Y, Wang S. Recent Progress on Immunotherapy for Breast Cancer: Tumor Microenvironment, Nanotechnology and More. Front Bioeng Biotechnol 2021; 9:680315. [PMID: 34150736 PMCID: PMC8207056 DOI: 10.3389/fbioe.2021.680315] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
Immunotherapy is a major emerging treatment for breast cancer (BC). However, not all breast cancer patients derive benefit from immunotherapy. Predictive biomarkers of immunotherapy, such as tumor mutation burden and tumor-infiltrating lymphocytes, are promising to stratify the patients with BC and optimize the therapeutic effect. Various targets of the immune response pathway have also been explored to expand the modalities of immunotherapy. The use of nanotechnology for the imaging of predictive biomarkers and the combination with other therapeutic modalities presents a number of advantages for the immunotherapy of BC. In this review, we summary the emerging therapeutic modalities of immunotherapy, present prominent examples of immunotherapy in BC, and discuss the future opportunity of nanotechnology in the immunotherapy of BC.
Collapse
Affiliation(s)
- Yang Li
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenfang Miao
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Doudou He
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Siqi Wang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianjuan Lou
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanni Jiang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shouju Wang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
21
|
Emerging Trends for Radio-Immunotherapy in Rectal Cancer. Cancers (Basel) 2021; 13:cancers13061374. [PMID: 33803620 PMCID: PMC8003099 DOI: 10.3390/cancers13061374] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 02/06/2023] Open
Abstract
Rectal cancer is a heterogeneous disease at the genetic and molecular levels, both aspects having major repercussions on the tumor immune contexture. Whilst microsatellite status and tumor mutational load have been associated with response to immunotherapy, presence of tumor-infiltrating lymphocytes is one of the most powerful prognostic and predictive biomarkers. Yet, the majority of rectal cancers are characterized by microsatellite stability, low tumor mutational burden and poor T cell infiltration. Consequently, these tumors do not respond to immunotherapy and treatment largely relies on radiotherapy alone or in combination with chemotherapy followed by radical surgery. Importantly, pre-clinical and clinical studies suggest that radiotherapy can induce a complete reprograming of the tumor microenvironment, potentially sensitizing it for immune checkpoint inhibition. Nonetheless, growing evidence suggest that this synergistic effect strongly depends on radiotherapy dosing, fractionation and timing. Despite ongoing work, information about the radiotherapy regimen required to yield optimal clinical outcome when combined to checkpoint blockade remains largely unavailable. In this review, we describe the molecular and immune heterogeneity of rectal cancer and outline its prognostic value. In addition, we discuss the effect of radiotherapy on the tumor microenvironment, focusing on the mechanisms and benefits of its combination with immune checkpoint inhibitors.
Collapse
|
22
|
Cao K, Abbassi L, Romano E, Kirova Y. Radiation therapy and immunotherapy in breast cancer treatment: preliminary data and perspectives. Expert Rev Anticancer Ther 2020; 21:501-510. [PMID: 33355024 DOI: 10.1080/14737140.2021.1868993] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: The discovery of the major role of the immune system in the tumor process has led to the development of therapeutic strategies with immunotherapy. The potential systemic role of radiotherapy, (RT) used for a long time for its local action, based on its impact on immunity, is now better understood. The combination of immunotherapy and radiation therapy is currently a field of sustained research programs and has shown successful results, in non-small cell lung cancer, for example. Breast cancer (BC) was wrongly considered poorly immunogenic and put aside during accelerating progress in this new area of treatment.Areas covered: This review provides an overview of pre-clinical and clinical rationales to associate immunotherapy with radiation therapy in the management of breast cancer.Expert opinion: Immunotherapy has been used only recently in breast cancer, but clinical trials have yet to determine the place of this treatment. RT may be useful to enhance the response of breast tumors to immunotherapy. This new approach in breast cancer management is currently based on limited data but should be further investigated, especially in triple-negative breast cancer and in the neoadjuvant setting.
Collapse
Affiliation(s)
- Kim Cao
- Department of Radiation Oncology, Institut Curie, PSL Research University, Paris, France
| | - Louisa Abbassi
- Department of Radiation Oncology, Institut Curie, PSL Research University, Paris, France
| | - Emanuela Romano
- Department of Medical Oncology, Institut Curie, PSL Research University, Paris, France.,Center of Cancer Immunotherapy, Institut Curie, PSL Research University, Paris, France
| | - Youlia Kirova
- Department of Radiation Oncology, Institut Curie, PSL Research University, Paris, France
| |
Collapse
|
23
|
Zou Y, Zou X, Zheng S, Tang H, Zhang L, Liu P, Xie X. Efficacy and predictive factors of immune checkpoint inhibitors in metastatic breast cancer: a systematic review and meta-analysis. Ther Adv Med Oncol 2020; 12:1758835920940928. [PMID: 32874208 PMCID: PMC7436841 DOI: 10.1177/1758835920940928] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/12/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have shown encouraging treatment efficacy for metastatic breast cancer in several clinical trials. However, response only occurred in a small population. Evidence predicting response and survival of patients with metastatic breast cancer following ICI treatment with existing biomarkers has not been well summarized. This review aimed to summarize the efficacy and predictive factors of immune checkpoint therapy in metastatic breast cancer, which is critical for clinical practice. METHODS PubMed, Embase, Cochrane Library, Web of Science, www.clinicaltrials.gov, and meeting abstracts were comprehensively searched to identify clinical trials. The outcomes were objective response rate (ORR), treatment-related adverse events (trAEs), immune-related adverse events (irAEs), progression-free survival (PFS), and overall survival (OS). RESULTS In this review, 27 studies with 1746 patients were included for quantitative synthesis. The pooled ORR was 19% [95% confidence interval (CI) = 12-27%]. Programmed death-ligand 1 (PD-L1)-positive patients had a higher response rate [odds ratio (OR) = 1.44, p = 0.01]. First-line immunotherapy had a better ORR than second-line immunotherapy (OR = 2.00, p = 0.02). Tumor-infiltrating lymphocytes (TILs) ⩾5% (OR = 2.53, p = 0.002) and high infiltrated CD8+ T-cell level (OR = 4.33, p = 0.006) were ideal predictors of immune checkpoint therapy response. Liver metastasis indicated poor response (OR = 0.19, p = 0.009). However, the difference was non-significant in ORR based on age, performance status score, lymph node metastasis, and lactate dehydrogenase (LDH) level. In addition, the PD-L1-positive subgroup had a better 1-year PFS (OR = 1.55, p = 0.04) and 2-year OS (OR = 2.28, p = 0.02) following ICI treatment. The pooled incidence during ICI therapy of grade 3-4 trAEs was 25% (95% CI = 16-34%), whereas for grade 3-4 irAEs it was 15% (95% CI = 11-19%). CONCLUSIONS Metastatic breast cancer had modest response to ICI therapy. PD-L1-positive, first-line immunotherapy, non-liver metastasis, and high TIL and CD8+ T-cell infiltrating levels could predict better response to ICI treatment. Patients with PD-L1-positive tumor could gain more survival benefits from immune checkpoint therapy.
Collapse
Affiliation(s)
- Yutian Zou
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People’s Republic of China
| | - Xuxiazi Zou
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People’s Republic of China
| | - Shaoquan Zheng
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People’s Republic of China
| | - Hailin Tang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People’s Republic of China
| | - Lijuan Zhang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People’s Republic of China
| | - Peng Liu
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 East Dongfeng Road, Guangzhou 510060, People’s Republic of China
| | - Xiaoming Xie
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 East Dongfeng Road, Guangzhou 510060, People’s Republic of China
| |
Collapse
|
24
|
Therapeutic Development of Immune Checkpoint Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:619-649. [PMID: 32185726 DOI: 10.1007/978-981-15-3266-5_23] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Immune checkpoint blockade (ICB) has been proven to be an effective strategy for enhancing the effector activity of anti-tumor T cells, and checkpoint blockers targeting CTLA-4, PD-1, and PD-L1 have displayed strong and durable clinical responses in certain cancer patients. The new hope brought by ICB therapy has led to the boost in therapeutic development of ICBs in recent years. Nonetheless, the therapeutic efficacy of ICBs varies substantially among cancer types and patients, and only a proportion of cancer patients could benefit from ICBs. The emerging targets and molecules for enhancing anticancer immunity may bring additional therapeutic opportunities for cancer patients. The current challenges in the ICB therapy have been discussed, aimed to provide further strategies for maximizing the efficacy of ICB therapy.
Collapse
|
25
|
Liu ZB, Zhang L, Bian J, Jian J. Combination Strategies of Checkpoint Immunotherapy in Metastatic Breast Cancer. Onco Targets Ther 2020; 13:2657-2666. [PMID: 32308409 PMCID: PMC7133118 DOI: 10.2147/ott.s240655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
Checkpoint immunotherapy is emerging as a new therapeutic approach for metastatic breast cancer. Monotherapy of immunoagents against PD1/PD-L1 or CTLA-4 has shown little efficacy in these patients. Recently, to determine the optimal use of immunotherapy, there has been a rapid expansion in the number of clinical trials developing immunotherapy combinations. These combination therapeutic approaches can enhance various aspects of cancer immunity, such as tumor antigenicity or intratumor T cell infiltration, which provides a theoretical basis for combining them with checkpoint immunotherapy to achieve synergistic effects. Here, we review the available data and ongoing efforts to establish the safety and efficacy of immunoagents in combination with chemotherapy, radiotherapy, HER2-targeted therapy, CDK4/6 inhibitors, PARP inhibitors, and another checkpoint immunoagents.
Collapse
Affiliation(s)
- Zhi Bing Liu
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong Province 256600, People's Republic of China
| | - Luyan Zhang
- Department of Oncology, Binzhou People's Hospital, Binzhou, Shandong Province 256600, People's Republic of China
| | - Jia Bian
- Department of Radiology, Binzhou Medical University Hospital, Binzhou, Shandong Province 256600, People's Republic of China
| | - Jinbo Jian
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong Province 256600, People's Republic of China
| |
Collapse
|
26
|
Radiotherapy as a Backbone for Novel Concepts in Cancer Immunotherapy. Cancers (Basel) 2019; 12:cancers12010079. [PMID: 31905723 PMCID: PMC7017108 DOI: 10.3390/cancers12010079] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
Radiation-induced immunogenic cell death has been described to contribute to the efficacy of external beam radiotherapy in local treatment of solid tumors. It is well established that radiation therapy can induce immunogenic cell death in cancer cells under certain conditions. Initial clinical studies combining radiotherapy with immunotherapies suggest a synergistic potential of this approach. Improving our understanding of how radiation reconditions the tumor immune microenvironment should pave the way for designing rational and robust combinations with immunotherapeutic drugs that enhance both local and systemic anti-cancer immune effects. In this review, we summarize irradiation-induced types of immunogenic cell death and their effects on the tumor microenvironment. We discuss preclinical insights on mechanisms and benefits of combining radiotherapy with immunotherapy, focusing on immune checkpoint inhibitors. In addition, we elaborate how these observations were translated into clinical studies and which parameters may be optimized to achieve best results in future clinical trials.
Collapse
|
27
|
Tabrizi S, McDuff S, Ho AY. Combining Radiation Therapy with Immune Checkpoint Blockadein Breast Cancer. CURRENT BREAST CANCER REPORTS 2019. [DOI: 10.1007/s12609-019-00327-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|