1
|
Xuanyuan X, Liu W, Jiang M, Zhang X, Wen B, Zheng R, Yao N, Zhang T, Feng Y, Qiao C, Zhang H, Luo D, Feng S, Li M, Gao J, Lu Z. Harnessing prazosin for tumors: Liposome hybrid nanovesicles activate tumor immunotherapy via autophagy inhibition. Biomaterials 2025; 319:123184. [PMID: 39985978 DOI: 10.1016/j.biomaterials.2025.123184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/01/2025] [Accepted: 02/09/2025] [Indexed: 02/24/2025]
Abstract
Prazosin (Prz), an antagonist of alpha-1 adrenergic receptors, is conventionally employed in the treatment of hypertension. Our study pioneers the exploration of Prz in oncology, examining its impact on cellular autophagy and its potential to trigger antitumor immune responses. We have developed a novel Prz-loaded liposome hybrid nanovesicle (Prz@LINV) system, integrating tumor-derived nanovesicles (TNV) with liposomes (LIP) to facilitate targeted Prz delivery to tumor sites. This formulation enhances Prz bioavailability and markedly inhibits tumor cell autophagy, leading to immunogenic cell death (ICD) and the activation of antitumor immune responses. Furthermore, Prz@LINV modulates dendritic cells (DCs), augmenting their antigen cross-presentation capacity and thereby potentiating antitumor immunity. These effects were validated in a colorectal cancer mouse model, demonstrating the good biocompatibility of Prz@LINV and its significant inhibition in tumor growth, along with the enhancement of antitumor immune responses. Our findings elucidate a novel mechanism by which Prz inhibits autophagy and enhances the antitumor immune response, providing a foundation for the development of innovative immunotherapeutic strategies. The efficacy of Prz@LINV suggests that Prz may emerge as a pivotal component in future immunotherapeutic regimens, offering patients more potent therapeutic options.
Collapse
Affiliation(s)
- Xinyang Xuanyuan
- Department of Dermatology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Wenshang Liu
- Department of Dermatology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Min Jiang
- The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Xin Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - BeiBei Wen
- School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Rui Zheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Ning Yao
- Department of General Surgery, Joint Support Force 903rd Hospital, Hangzhou, 310013, China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Yu Feng
- School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Chaofeng Qiao
- School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Huiqi Zhang
- School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Dong Luo
- School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Sa Feng
- School of Pharmacy, Henan University, Kaifeng, 475004, China.
| | - Meng Li
- Department of Dermatology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Jie Gao
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, 200433, China.
| | - Zhengmao Lu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
2
|
Pu Y, Xu F, He A, Li R, Wang X, Zhou L, Sun H, Zhang Y, Xia Y. Repurposing chlorpromazine for the treatment of triple-negative breast cancer growth and metastasis based on modulation of mitochondria-mediated apoptosis and autophagy/mitophagy. Br J Cancer 2025; 132:997-1009. [PMID: 40217096 PMCID: PMC12119927 DOI: 10.1038/s41416-025-02992-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/23/2025] [Accepted: 03/18/2025] [Indexed: 06/01/2025] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) presents significant challenges due to its aggressive nature and high propensity for brain metastasis, often exhibiting resistance to standard treatments. In this study, we conducted a preliminary screening of potential therapeutic agents and identified chlorpromazine (CPZ) as a promising candidate for treating TNBC and its brain metastases. METHODS The inhibitory activities of CPZ and its combination with several standard treatment drugs were evaluated in preclinical TNBC models. The mechanism of CPZ on TNBC was elucidated using TMT-labeled quantitative proteomics analysis. RESULTS In vivo experiments demonstrated that CPZ robustly suppressed tumor growth and metastasis, particularly in lung and brain models. Importantly, CPZ enhanced the efficacy of standard therapeutic agents such as vinorelbine (NVB) and anti-PD-1 antibody. Mechanistically, CPZ induced G2/M phase arrest and triggered mitochondria-mediated intrinsic apoptosis in TNBC cells. Furthermore, CPZ triggered incomplete autophagy and activated PINK1-Parkin-mediated mitophagy. Inhibiting autophagy/mitophagy augmented CPZ's anticancer effects, indicating these processes may have cell protective roles. CONCLUSIONS Our study highlights the dual function of CPZ in suppressing TNBC growth and metastasis, positioning it as a promising candidate for treating this aggressive cancer. Additionally, targeting autophagy/mitophagy may serve as an effective strategy to enhance anticancer therapies against TNBC.
Collapse
Affiliation(s)
- Yamin Pu
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fuyan Xu
- Joint Lab of Reproductive Medicine of SCU-CUHK, Lab of Reproductive Genetics and Epigenetics, Department of Obstetrics/Gynecology, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Anqi He
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ru Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Xiangxiu Wang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liang Zhou
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongbao Sun
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yiwen Zhang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yong Xia
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Tsolaki E, Healy AM, Ferguson S. Development of polymer-encapsulated microparticles of a lipophilic API-IL and its lipid based formulations for enhanced solubilisation. Int J Pharm 2024; 667:124878. [PMID: 39491654 DOI: 10.1016/j.ijpharm.2024.124878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Active Pharmaceutical Ingredient-Ionic liquids (API-ILs) have the potential to improve the bioavailability of BCS Class IV Drugs. However, the problematic physical handling properties of room temperature API-ILs have impaired clinical and commercial exploitation to date. Lipid-based formulations (LBFs) are used to improve the absorption of drugs with limited bioavailability. Nonetheless, LBFs face limitations such as low drug loading capacity and sub-par physical stability. A platform for transforming API-ILs into solid forms at high loadings via spray encapsulation with polymers has been developed and previously demonstrated for hydrophilic API-ILs. The current work demonstrates that this platform technology can be applied to a lipophilic API-IL of the BCS Class IV API, chlorpromazine, and to multi-component solutions comprising API-IL and a LBF. Furthermore, solidification of a type IIIB, liquid LBF was achieved via spray encapsulation with cellulose- and methacrylate- based polymers for the first time. The spray-encapsulated formulations had excellent physical handling properties, and successfully eluted the API-IL in aqueous media. The chlorpromazine release profiles from the API-IL, the API-IL containing LBF, and the solidified formulations, were evaluated in vitro using phosphate buffer (pH 6.8) and fasted state simulated intestinal fluid (FaSSIF). Spray-encapsulated formulations exhibited improved release profiles compared to the liquid formulations. Overall, these findings indicate that phase-separated, polymeric, solid formulations of liquid API forms represent a promising platform technology for developing oral solid dosage forms of poorly bioavailable drugs.
Collapse
Affiliation(s)
- Evangelia Tsolaki
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland; SSPC, The SFI Research Centre for Pharmaceuticals, School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland; EPSRC-SFI Centre for Doctoral Training in Transformative Pharmaceutical Technologies, Ireland.
| | - Anne Marie Healy
- EPSRC-SFI Centre for Doctoral Training in Transformative Pharmaceutical Technologies, Ireland; SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, Dublin 2, Ireland.
| | - Steven Ferguson
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland; SSPC, The SFI Research Centre for Pharmaceuticals, School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland; EPSRC-SFI Centre for Doctoral Training in Transformative Pharmaceutical Technologies, Ireland; National Institute for Bioprocessing Research and Training, 24 Foster's Ave, Belfield, Blackrock, Co. Dublin A94 X099, Ireland.
| |
Collapse
|
4
|
Kandasamy T, Sarkar S, Ghosh SS. Harnessing Drug Repurposing to Combat Breast Cancer by Targeting Altered Metabolism and Epithelial-to-Mesenchymal Transition Pathways. ACS Pharmacol Transl Sci 2024; 7:3780-3794. [PMID: 39698277 PMCID: PMC11650739 DOI: 10.1021/acsptsci.4c00545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 12/20/2024]
Abstract
Breast cancer remains one of the most prevalent and challenging cancers to treat due to its complexity and heterogenicity. Cellular processes such as metabolic reprogramming and epithelial-to-mesenchymal transition (EMT) contribute to the complexity of breast cancer by driving uncontrolled cell division, metastasis, and resistance to therapies. Strategically targeting these intricate pathways can effectively impede breast cancer progression, thereby revealing significant potential for therapeutic interventions. Among various emerging therapeutic approaches, drug repurposing offers a promising avenue for enhancing clinical outcomes. In recent years, high-throughput screening, QSAR, and network pharmacology have been widely employed to identify promising repurposed drugs. As an outcome, several drugs, such as Metformin, Itraconazole, Pimozide, and Disulfiram, were repurposed to regulate metabolic and EMT pathways. Moreover, strategies such as combination therapy, targeted delivery, and personalized medicine were utilized to enhance the efficacy and specificity of the repurposed drugs. This review focuses on the potential of targeting altered metabolism and EMT in breast cancer through drug repurposing. It also highlights recent advancements in drug screening techniques, associated limitations, and strategies to overcome these challenges.
Collapse
Affiliation(s)
- Thirukumaran Kandasamy
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati-39, Assam India
| | - Shilpi Sarkar
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati-39, Assam India
| | - Siddhartha Sankar Ghosh
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati-39, Assam India
- Centre
for Nanotechnology, Indian Institute of
Technology Guwahati, Guwahati-39, Assam India
| |
Collapse
|
5
|
Shaik R, Malik MS, Basavaraju S, Qurban J, Al-Subhi FMM, Badampudi S, Peddapaka J, Shaik A, Abd-El-Aziz A, Moussa Z, Ahmed SA. Cellular and molecular aspects of drug resistance in cancers. Daru 2024; 33:4. [PMID: 39652186 PMCID: PMC11628481 DOI: 10.1007/s40199-024-00545-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/09/2024] [Indexed: 12/12/2024] Open
Abstract
OBJECTIVES Cancer drug resistance is a multifaceted phenomenon. The present review article aims to comprehensively analyze the cellular and molecular aspects of drug resistance in cancer and the strategies employed to overcome it. EVIDENCE ACQUISITION A systematic search of relevant literature was conducted using electronic databases such as PubMed, Scopus, and Web of Science using appropriate key words. Original research articles and secondary literature were taken into consideration in reviewing the development in the field. RESULTS AND CONCLUSIONS Cancer drug resistance is a pervasive challenge that causes many treatments to fail therapeutically. Despite notable advances in cancer treatment, resistance to traditional chemotherapeutic agents and novel targeted medications remains a formidable hurdle in cancer therapy leading to cancer relapse and mortality. Indeed, a majority of patients with metastatic cancer experience are compromised on treatment efficacy because of drug resistance. The multifaceted nature of drug resistance encompasses various factors, such as tumor heterogeneity, growth kinetics, immune system, microenvironment, physical barriers, and the emergence of undruggable cancer drivers. Additionally, alterations in drug influx/efflux transporters, DNA repair mechanisms, and apoptotic pathways further contribute to resistance, which may manifest as either innate or acquired traits, occurring prior to or following therapeutic intervention. Several strategies such as combination therapy, targeted therapy, development of P-gp inhibitors, PROTACs and epigenetic modulators are developed to overcome cancer drug resistance. The management of drug resistance is compounded by the patient and tumor heterogeneity coupled with cancer's ability to evade treatment. Gaining further insight into the mechanisms underlying medication resistance is imperative for the development of effective therapeutic interventions and improved patient outcomes.
Collapse
Affiliation(s)
- Rahaman Shaik
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - M Shaheer Malik
- Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia.
| | | | - Jihan Qurban
- Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Fatimah M M Al-Subhi
- Department of Environmental and Occupational Health, College of Public Health and Health Informatics, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Sathvika Badampudi
- Department of Pharmacology, St.Pauls College of Pharmacy, Turkayamjal, Hyderabad, India
| | - Jagruthi Peddapaka
- Department of Pharmaceutical Chemistry, St.Paul's College of Pharmacy, Turkayamjal, Hyderabad, India
| | - Azeeza Shaik
- Research&Development Department, KVB Asta Life sciences, Hyderabad, India
| | - Ahmad Abd-El-Aziz
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266400, China
| | - Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia.
- Department of Chemistry, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| |
Collapse
|
6
|
Udrea AM, Staicu A, Smarandache A, Andrei IR, Badea MA, Avram S, Pascu ML, Pirvulescu RA, Balas M. Enhancement of chlorpromazine efficacy in breast cancer treatment by 266 nm laser irradiation. Sci Rep 2024; 14:30329. [PMID: 39639119 PMCID: PMC11621703 DOI: 10.1038/s41598-024-82088-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024] Open
Abstract
Breast cancer remains a global health challenge, prompting interest in the anticancer properties of other drugs, including chlorpromazine (CPZ). This study presents a novel approach in breast cancer treatment using laser irradiated CPZ. CPZ dissolved in distilled water, was exposed to 266 nm laser irradiation for varying durations, characterized by UV-Vis and FTIR spectroscopy, followed by drug-likeness and ADME-Tox predictions. In vitro assays evaluated the cytotoxicity and cellular effects on MCF-7 breast cancer cells, and compared with MCF-12 A healthy cell line. Laser irradiation altered CPZ molecular structure resulting in photoproducts with favourable drug-like properties and ADME-Tox profiles. In vitro evaluations demonstrate dose and irradiation time-dependent cytotoxicity against breast cancer cells, and reduced toxicity on healthy cell line. Significant alterations in F-actin organization, and excessive ROS generation were also proved, suggesting the potential of laser-modified CPZ for breast cancer therapy. This study introduces a novel approach to breast cancer treatment through laser irradiated CPZ, highlighting promising advancements in therapy and emphasizing the role of laser-generated compounds.
Collapse
Affiliation(s)
- Ana Maria Udrea
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, Magurele, 077125, Romania
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 90-92 Sos. Panduri, Bucharest, 050663, Romania
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest, 050095, Romania
| | - Angela Staicu
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, Magurele, 077125, Romania.
| | - Adriana Smarandache
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, Magurele, 077125, Romania
| | - Ionut Relu Andrei
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, Magurele, 077125, Romania
| | - Madalina Andreea Badea
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest, 050095, Romania
| | - Speranta Avram
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest, 050095, Romania
| | - Mihail Lucian Pascu
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor Street, Magurele, 077125, Romania
- Academy of Romanian Scientists, 3 Ilfov, Bucharest, 050044, Romania
| | | | - Mihaela Balas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest, 050095, Romania.
| |
Collapse
|
7
|
Zhang C, Lu X, Ni T, Wang Q, Gao X, Sun X, Li J, Mao F, Hou J, Wang Y. Developing patient-derived organoids to demonstrate JX24120 inhibits SAMe synthesis in endometrial cancer by targeting MAT2B. Pharmacol Res 2024; 209:107420. [PMID: 39293586 DOI: 10.1016/j.phrs.2024.107420] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
Endometrial cancer (EC) is one of the most common gynecologic malignancies, which lacking effective drugs for intractable conditions or patients unsuitable for surgeries. Recently, the patient-derived organoids (PDOs) are found feasible for cancer research and drug discoveries. Here, we have successfully established a panel of PDOs from EC and conducted drug repurposing screening and mechanism analysis for cancer treatment. We confirmed that the regulatory β subunit of methionine adenosyltransferase (MAT2B) is highly correlated with malignant progression in endometrial cancer. Through drug screening on PDOs, we identify JX24120, chlorpromazine derivative, as a specific inhibitor for MAT2B, which directly binds to MAT2B (Kd = 4.724 μM) and inhibits the viability of EC PDOs and canonical cell lines. Correspondingly, gene editing assessment demonstrates that JX24120 suppresses tumor growth depending on the presence of MAT2B in vivo and in vitro. Mechanistically, JX24120 induces inhibition of S-adenosylmethionine (SAMe) synthesis, leading to suppressed mTORC1 signaling, abnormal energy metabolism and protein synthesis, and eventually apoptosis. Taken together, our study offers a novel approach for drug discovery and efficacy assessment by using the PDOs models. These findings suggest that JX24120 may be a potent MAT2B inhibitor and will hopefully serve as a prospective compound for endometrial cancer therapy.
Collapse
Affiliation(s)
- Chunxue Zhang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| | - Xiaojing Lu
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| | - Ting Ni
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| | - Qi Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoyan Gao
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| | - Xiao Sun
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Fei Mao
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Jin Hou
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai 200433, China.
| | - Yudong Wang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China.
| |
Collapse
|
8
|
Oćwieja M, Barbasz A, Kowalska O, Maciejewska-Prończuk J, Lada A. The Adsorption of Chlorpromazine on the Surface of Gold Nanoparticles and Its Effect on the Toxicity to Selected Mammalian Cells. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4774. [PMID: 39410344 PMCID: PMC11477946 DOI: 10.3390/ma17194774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024]
Abstract
Chlorpromazine (CPZ) is a first-generation neuroleptic with well-established antitumor and antiviral properties. Currently, numerous studies are focused on developing new methods for CPZ delivery; however, the knowledge regarding its conjugates with metal nanoparticles remains limited. The aim of this study was to prepare CPZ conjugates with gold nanoparticles (AuNPs) and evaluate their biological activity on human lymphocytes (HUT-78 and COLO 720L), as well as human (COLO 679) and murine (B16-F0) melanoma cells, in comparison to the effects induced by unconjugated CPZ molecules and AuNPs with well-defined properties. During the treatment of cells with CPZ, AuNPs, and CPZ-AuNP conjugates, changes in mitochondrial activity, membrane integrity, and the secretion of lipid peroxidation mediators were studied using standard biological assays such as MTT, LDH, and MDA assays. It was found that positively charged CPZ-AuNP conjugates more effectively reduced cell viability compared to AuNPs alone. The dose-dependent membrane damage was correlated with oxidative stress resulting from exposure to CPZ-AuNP conjugates. The activity of the conjugates depended on their composition and the size of the AuNPs. It was concluded that conjugating CPZ to AuNPs reduced its biological activity, while the cellular response to the treatment varied depending on the specific cell type.
Collapse
Affiliation(s)
- Magdalena Oćwieja
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland;
| | - Anna Barbasz
- Department of Biochemistry and Biophysics, Institute of Biology and Earth Sciences, University of the National Education Commission, Podchorazych 2, PL-30084 Krakow, Poland;
| | - Oliwia Kowalska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland;
| | - Julia Maciejewska-Prończuk
- Department of Chemical and Process Engineering, Cracow University of Technology, Warszawska 24, PL-31155 Krakow, Poland;
| | - Agata Lada
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Applied Sciences in Tarnow, Mickiewicza 8, PL-33100 Tarnow, Poland;
| |
Collapse
|
9
|
Kofman K, Levin M. Bioelectric pharmacology of cancer: A systematic review of ion channel drugs affecting the cancer phenotype. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 191:25-39. [PMID: 38971325 DOI: 10.1016/j.pbiomolbio.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
Cancer is a pernicious and pressing medical problem; moreover, it is a failure of multicellular morphogenesis that sheds much light on evolutionary developmental biology. Numerous classes of pharmacological agents have been considered as cancer therapeutics and evaluated as potential carcinogenic agents; however, these are spread throughout the primary literature. Here, we briefly review recent work on ion channel drugs as promising anti-cancer treatments and present a systematic review of the known cancer-relevant effects of 109 drugs targeting ion channels. The roles of ion channels in cancer are consistent with the importance of bioelectrical parameters in cell regulation and with the functions of bioelectric signaling in morphogenetic signals that act as cancer suppressors. We find that compounds that are well-known for having targets in the nervous system, such as voltage-gated ion channels, ligand-gated ion channels, proton pumps, and gap junctions are especially relevant to cancer. Our review suggests further opportunities for the repurposing of numerous promising candidates in the field of cancer electroceuticals.
Collapse
Affiliation(s)
- Karina Kofman
- Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Michael Levin
- Allen Discovery Center at Tufts University, USA; Wyss Institute for Biologically Inspired Engineering at Harvard University, USA.
| |
Collapse
|
10
|
Kucinska M, Pospieszna J, Tang J, Lisiak N, Toton E, Rubis B, Murias M. The combination therapy using tyrosine kinase receptors inhibitors and repurposed drugs to target patient-derived glioblastoma stem cells. Biomed Pharmacother 2024; 176:116892. [PMID: 38876048 DOI: 10.1016/j.biopha.2024.116892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/20/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024] Open
Abstract
The lesson from many studies investigating the efficacy of targeted therapy in glioblastoma (GBM) showed that a future perspective should be focused on combining multiple target treatments. Our research aimed to assess the efficacy of drug combinations against glioblastoma stem cells (GSCs). Patient-derived cells U3042, U3009, and U3039 were obtained from the Human Glioblastoma Cell Culture resource. Additionally, the study was conducted on a GBM commercial U251 cell line. Gene expression analysis related to receptor tyrosine kinases (RTKs), stem cell markers and genes associated with significant molecular targets was performed, and selected proteins encoded by these genes were assessed using the immunofluorescence and flow cytometry methods. The cytotoxicity studies were preceded by analyzing the expression of specific proteins that serve as targets for selected drugs. The cytotoxicity study using the MTS assay was conducted to evaluate the effects of selected drugs/candidates in monotherapy and combinations. The most cytotoxic compounds for U3042 cells were Disulfiram combined with Copper gluconate (DSF/Cu), Dacomitinib, and Foretinib with IC50 values of 52.37 nM, 4.38 µM, and 4.54 µM after 24 h incubation, respectively. Interactions were assessed using SynergyFinder Plus software. The analysis enabled the identification of the most effective drug combinations against patient-derived GSCs. Our findings indicate that the most promising drug combinations are Dacomitinib and Foretinib, Dacomitinib and DSF/Cu, and Foretinib and AZD3759. Since most tested combinations have not been previously examined against glioblastoma stem-like cells, these results can shed new light on designing the therapeutic approach to target the GSC population.
Collapse
Affiliation(s)
- Malgorzata Kucinska
- Department of Toxicology, Poznan University of Medical Sciences 3 Rokietnicka Street, Poznan 60-806, Poland.
| | - Julia Pospieszna
- Department of Toxicology, Poznan University of Medical Sciences 3 Rokietnicka Street, Poznan 60-806, Poland.
| | - Jing Tang
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland.
| | - Natalia Lisiak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 3 Rokietnicka Street, Poznan 60-806, Poland.
| | - Ewa Toton
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 3 Rokietnicka Street, Poznan 60-806, Poland.
| | - Blazej Rubis
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 3 Rokietnicka Street, Poznan 60-806, Poland.
| | - Marek Murias
- Department of Toxicology, Poznan University of Medical Sciences 3 Rokietnicka Street, Poznan 60-806, Poland.
| |
Collapse
|
11
|
Kunachowicz D, Król-Kulikowska M, Raczycka W, Sleziak J, Błażejewska M, Kulbacka J. Heat Shock Proteins, a Double-Edged Sword: Significance in Cancer Progression, Chemotherapy Resistance and Novel Therapeutic Perspectives. Cancers (Basel) 2024; 16:1500. [PMID: 38672583 PMCID: PMC11048091 DOI: 10.3390/cancers16081500] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Heat shock proteins (Hsps) are involved in one of the adaptive mechanisms protecting cells against environmental and metabolic stress. Moreover, the large role of these proteins in the carcinogenesis process, as well as in chemoresistance, was noticed. This review aims to draw attention to the possibilities of using Hsps in developing new cancer therapy methods, as well as to indicate directions for future research on this topic. In order to discuss this matter, a thorough review of the latest scientific literature was carried out, taking into account the importance of selected proteins from the Hsp family, including Hsp27, Hsp40, Hsp60, Hsp70, Hsp90 and Hsp110. One of the more characteristic features of all Hsps is that they play a multifaceted role in cancer progression, which makes them an obvious target for modern anticancer therapy. Some researchers emphasize the importance of directly inhibiting the action of these proteins. In turn, others point to their possible use in the design of cancer vaccines, which would work by inducing an immune response in various types of cancer. Due to these possibilities, it is believed that the use of Hsps may contribute to the progress of oncoimmunology, and thus help in the development of modern anticancer therapies, which would be characterized by higher effectiveness and lower toxicity to the patients.
Collapse
Affiliation(s)
- Dominika Kunachowicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (D.K.); (M.K.-K.)
| | - Magdalena Król-Kulikowska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (D.K.); (M.K.-K.)
| | - Wiktoria Raczycka
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (W.R.); (J.S.); (M.B.)
| | - Jakub Sleziak
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (W.R.); (J.S.); (M.B.)
| | - Marta Błażejewska
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (W.R.); (J.S.); (M.B.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine Santariškių g. 5, LT-08406 Vilnius, Lithuania
- DIVE IN AI, 53-307 Wroclaw, Poland
| |
Collapse
|
12
|
Jeleń M, Otto-Ślusarczyk D, Morak-Młodawska B, Struga M. Novel Tetracyclic Azaphenothiazines with the Quinoline Ring as New Anticancer and Antibacterial Derivatives of Chlorpromazine. Int J Mol Sci 2024; 25:4148. [PMID: 38673734 PMCID: PMC11050599 DOI: 10.3390/ijms25084148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Phenothiazine derivatives are widely studied in various fields such as biology, chemistry, and medicine research because of their pharmaceutical effects. The first compound used successfully in the treatment of psychosis was a phenthiazine derivative, chlorpromazine. Apart from its activity in neurons, chlorpromazine has also been reported to display anticancer and antibacterial properties. In this study, we present the synthesis and research on the activity of A549, MDA, MiaPaCa, PC3, and HCT116 cancer cell lines and of S. aureus, S. epidermidis, E. coli, and P. aeruginosa bacterial strains against a series of new tetracyclic chlorpromazine analogues containing a quinoline scaffold in their structure instead of the benzene ring and various substituents at the thiazine nitrogen. The structure of these novel molecules has been determined by 1H NMR, 13C NMR, and HRMS spectral techniques. The seven most active of the twenty-four new chlorpromazine analogues tested were selected to study the mechanism of cytotoxic action. Their ability to induce apoptosis or necrosis in cancer cells was assessed by flow cytometry analysis. The results obtained confirmed the proapoptotic activity of selected compounds, especially in terms of inducing late apoptosis or necrosis in cancer cell lines A549, MiaPaCa-2, and HCT-116. Furthermore, studies on the induction of cell cycle arrest suggest that the new chlorpromazine analogues exert antiproliferative effects by inducing cell cycle arrest in the S phase and, consequently, apoptosis.
Collapse
Affiliation(s)
- Małgorzata Jeleń
- Department of Organic Chemistry, The Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland;
| | - Dagmara Otto-Ślusarczyk
- Chair and Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland; (D.O.-Ś.); (M.S.)
| | - Beata Morak-Młodawska
- Department of Organic Chemistry, The Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland;
| | - Marta Struga
- Chair and Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland; (D.O.-Ś.); (M.S.)
| |
Collapse
|
13
|
Harris S, Nagarajan P, Kim K. The cytotoxic effects of prazosin, chlorpromazine, and haloperidol on hepatocellular carcinoma and immortalized non-tumor liver cells. Med Oncol 2024; 41:87. [PMID: 38472423 DOI: 10.1007/s12032-024-02323-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/01/2024] [Indexed: 03/14/2024]
Abstract
Liver cancer annually accounts for over 800,000 cases and 700,000 deaths worldwide. Hepatocellular carcinoma is responsible for over 80% of liver cancer cases. Due to ineffective treatment options and limited surgical interventions, hepatocellular carcinoma is notoriously difficult to treat. Nonetheless, drugs utilized for other medical conditions, such as the antihypertensive medication prazosin, the neuroleptic medication chlorpromazine, and the neuroleptic medication haloperidol, have gained attention for their potential anti-cancer effects. Therefore, this study used these medications for investigating toxicity to hepatocellular carcinoma while testing the adverse effects on a noncancerous liver cell line model THLE-2. After treatment, an XTT cell viability assay, cell apoptosis assay, reactive oxygen species (ROS) assay, apoptotic proteome profile, and western blot were performed. We calculated IC50 values for chlorpromazine and prazosin to have a molar range of 35-65 µM. Our main findings suggest the capability of both of these treatments to reduce cell viability and generate oxidative stress in HepG2 and THLE-2 cells (p value < 0.05). Haloperidol, however, failed to demonstrate any reduction in cell viability revealing no antitumor effect up to 100 µM. Based on our findings, a mechanism of cell death was not able to be established due to lack of cleaved caspase-3 expression. Capable of bypassing many aspects of the lengthy, costly, and difficult cancer drug approval process, chlorpromazine and prazosin deserve further investigation for use in conjunction with traditional chemotherapeutics.
Collapse
Affiliation(s)
- Seth Harris
- Department of Biology, Missouri State University, Springfield, MO, USA
| | | | - Kyoungtae Kim
- Thomas Jefferson Independent Day School, Joplin, MO, USA.
| |
Collapse
|
14
|
Davis AE, Kennelley GE, Amaye-Obu T, Jowdy PF, Ghadersohi S, Nasir-Moin M, Paragh G, Berman HA, Huss WJ. The phenomenon of phototoxicity and long-term risks of commonly prescribed and structurally diverse drugs. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2024; 19:100221. [PMID: 38389933 PMCID: PMC10883358 DOI: 10.1016/j.jpap.2023.100221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Photosensitivity to structurally diverse drugs is a common but under-reported adverse cutaneous reaction and can be classified as phototoxic or photoallergic. Phototoxic reactions occur when the skin is exposed to sunlight after administering topical or systemic medications that exhibit photosensitizing activity. These reactions depend on the dose of medication, degree of exposure to ultraviolet light, type of ultraviolet light, and sufficient skin distribution volume. Accurate prediction of the incidence and phototoxic response severity is challenging due to a paucity of literature, suggesting that phototoxicity may be more frequent than reported. This paper reports an extensive literature review on phototoxic drugs; the review employed pre-determined search criteria that included meta-analyses, systematic reviews, literature reviews, and case reports freely available in full text. Additional reports were identified from reference sections that contributed to the understanding of phototoxicity. The following drugs and/or drug classes are discussed: amiodarone, voriconazole, chlorpromazine, doxycycline, fluoroquinolones, hydrochlorothiazide, nonsteroidal anti-inflammatory drugs, and vemurafenib. In reviewing phototoxic skin reactions, this review highlights drug molecular structures, their reactive pathways, and, as there is a growing association between photosensitizing drugs and the increasing incidence of skin cancer, the consequential long-term implications of photocarcinogenesis.
Collapse
Affiliation(s)
- Anna E Davis
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Gabrielle E Kennelley
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- College of Medicine, Central Michigan University, Mt. Pleasant, MI 48858, USA
| | - Tatiana Amaye-Obu
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Peter F Jowdy
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Sarah Ghadersohi
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Mehr Nasir-Moin
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Gyorgy Paragh
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Harvey A Berman
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Romanell Center for the Philosophy of Medicine and Bioethics, Park Hall University at Buffalo, Buffalo, NY 14260, USA
| | - Wendy J Huss
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
15
|
Gouveia MJ, Ribeiro E, Vale N. A Surprising Repurposing of Central Nervous System Drugs against Squamous Cell Carcinoma of the Bladder, UM-UC-5. Pharmaceutics 2024; 16:212. [PMID: 38399266 PMCID: PMC10892655 DOI: 10.3390/pharmaceutics16020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
The potential benefits of drug repurposing have gained attention as an alternative to developing de novo drugs. The potential of using central nervous system (CNS) drugs as anticancer drugs has been explored in several types of human cancers, such as breast and colon cancer, among others. Here, we examine the effect of the CNS drugs sertraline, paroxetine, and chlorpromazine on human squamous carcinoma cells of the bladder (UM-UC-5). After exposing UM-UC-5 cells to increased concentrations of each drug for 48 h, we assessed their metabolic activity using an MTT assay. Based on those results, we calculated cell viability and the half-maximal inhibitory concentration (IC50) values. The results suggest that the CNS drugs were effective against UM-UC-5 in the order of potency of sertraline > chlorpromazine > paroxetine. Interestingly, sertraline was more potent than 5-fluorouracil (5-FU), a widely used anticancer drug. This study demonstrated, for the first time, the promising anticancer activity of CNS drugs on human bladder cancer cells in vitro and supports the repurposing of CNS drugs to improve cancer treatment. Nevertheless, further studies are necessary to understand their mechanism of action and in vivo activity.
Collapse
Affiliation(s)
- Maria João Gouveia
- Center for the Study in Animal Science (CECA/ICETA), University of Porto, Rua de D. Manuel II, Apt 55142, 4051-401 Porto, Portugal;
- Centre for Parasite Biology and Immunology, Department of Infectious Diseases, National Health Institute Dr. Ricardo Jorge, Rua Alexandre Herculano 321, 4000-055 Porto, Portugal
| | - Eduarda Ribeiro
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- ICBAS—School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
16
|
Wang ZJ, Ghorbani M, Chen X, Tiwari PB, Klauda JB, Brelidze TI. Molecular mechanism of EAG1 channel inhibition by imipramine binding to the PAS domain. J Biol Chem 2023; 299:105391. [PMID: 37898402 PMCID: PMC10687071 DOI: 10.1016/j.jbc.2023.105391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023] Open
Abstract
Ether-a-go-go (EAG) channels are key regulators of neuronal excitability and tumorigenesis. EAG channels contain an N-terminal Per-Arnt-Sim (PAS) domain that can regulate currents from EAG channels by binding small molecules. The molecular mechanism of this regulation is not clear. Using surface plasmon resonance and electrophysiology we show that a small molecule ligand imipramine can bind to the PAS domain of EAG1 channels and inhibit EAG1 currents via this binding. We further used a combination of molecular dynamics (MD) simulations, electrophysiology, and mutagenesis to investigate the molecular mechanism of EAG1 current inhibition by imipramine binding to the PAS domain. We found that Tyr71, located at the entrance to the PAS domain cavity, serves as a "gatekeeper" limiting access of imipramine to the cavity. MD simulations indicate that the hydrophobic electrostatic profile of the cavity facilitates imipramine binding and in silico mutations of hydrophobic cavity-lining residues to negatively charged glutamates decreased imipramine binding. Probing the PAS domain cavity-lining residues with site-directed mutagenesis, guided by MD simulations, identified D39 and R84 as residues essential for the EAG1 channel inhibition by imipramine binding to the PAS domain. Taken together, our study identified specific residues in the PAS domain that could increase or decrease EAG1 current inhibition by imipramine binding to the PAS domain. These findings should further the understanding of molecular mechanisms of EAG1 channel regulation by ligands and facilitate the development of therapeutic agents targeting these channels.
Collapse
Affiliation(s)
- Ze-Jun Wang
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Mahdi Ghorbani
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland, USA
| | - Xi Chen
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Purushottam B Tiwari
- Department of Oncology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland, USA; Institute for Physical Science and Technology and Biophysics Graduate Program, University of Maryland, College Park, Maryland, USA.
| | - Tinatin I Brelidze
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, USA.
| |
Collapse
|
17
|
Moura C, Vale N. The Role of Dopamine in Repurposing Drugs for Oncology. Biomedicines 2023; 11:1917. [PMID: 37509555 PMCID: PMC10377204 DOI: 10.3390/biomedicines11071917] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Dopamine is a neurotransmitter that plays an important role within the brain by regulating a wide variety of cognitive and emotional processes. In cancer, its role is distinct and uncertain, but it is characterized by the interaction with its receptors that may be in the tumor cells; we have examples of different types of cancer with this characteristic, of which breast and colon cancer stand out. It is believed that dopamine and some of its receptors also influence other cellular processes such as cell proliferation, survival, migration, and invasion. The potential of these receptors has allowed the exploration of existing drugs, originally developed for non-oncological purposes, for the possible treatment of cancer. However, regarding the repurposing of drugs for cancer treatment, the role of dopamine is not so straightforward and needs to be clarified. For this reason, this review intends to present concepts associated with twelve drugs reused for oncology based on dopamine and its receptors. Some of them can behave as antagonists and inhibit tumor cell growth leading to cell death. Attention to this group of drugs may enhance the study of other pharmacological conditions such as signaling pathways related to cell proliferation and migration. Modulation of these pathways using drugs originally developed for other conditions may offer potential therapeutic opportunities in oncology. It is important to note that while the repurposing of oncology drugs based on dopamine signaling is promising, further studies are still needed to fully understand the mechanisms involved and determine the clinical efficacy and safety of these approaches.
Collapse
Affiliation(s)
- Catarina Moura
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
18
|
Fujiwara R, Taniguchi Y, Rai S, Iwata Y, Fujii A, Fujimoto K, Kumode T, Serizawa K, Morita Y, Espinoza JL, Tanaka H, Hanamoto H, Matsumura I. Chlorpromazine cooperatively induces apoptosis with tyrosine kinase inhibitors in EGFR-mutated lung cancer cell lines and restores the sensitivity to gefitinib in T790M-harboring resistant cells. Biochem Biophys Res Commun 2022; 626:156-166. [PMID: 35994825 DOI: 10.1016/j.bbrc.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 07/22/2022] [Accepted: 08/04/2022] [Indexed: 11/02/2022]
Abstract
We previously reported that the antipsychotic drug chlorpromazine (CPZ), which inhibits the formation of clathrin-coated vesicles (CCVs) essential for endocytosis and intracellular transport of receptor tyrosine kinase (RTK), inhibits the growth/survival of acute myeloid leukemia cells with mutated RTK (KIT D816V or FLT3-ITD) by perturbing the intracellular localization of these molecules. Here, we examined whether these findings are applicable to epidermal growth factor receptor (EGFR). CPZ dose-dependently inhibited the growth/survival of the non-small cell lung cancer (NSCLC) cell line, PC9 harboring an EGFR-activating (EGFR exon 19 deletion). In addition, CPZ not only suppressed the growth/survival of gefitinib (GEF)-resistant PC9ZD cells harboring T790 M, but also restored their sensitivities to GEF. Furthermore, CPZ overcame GEF resistance caused by Met amplification in HCC827GR cells. As for the mechanism of CPZ-induced growth suppression, we found that although CPZ hardly influenced the phosphorylation of EGFR, it effectively reduced the phosphorylation of ERK and AKT. When utilized in combination with trametinib (a MEK inhibitor), dabrafenib (an RAF inhibitor), and everolimus (an mTOR inhibitor), CPZ suppressed the growth of PC9ZD cells cooperatively with everolimus but not with trametinib or dabrafenib. Immunofluorescent staining revealed that EGFR shows a perinuclear pattern and was intensely colocalized with the late endosome marker, Rab11. However, after CPZ treatment, EGFR was unevenly distributed in the cells, and colocalization with the early endosome marker Rab5 and EEA1 became more apparent, indicating that CPZ disrupted the intracellular transport of EGFR. These results suggest that CPZ has therapeutic potential for NSCLC with mutated EGFR by a novel mechanism different from conventional TKIs alone or in combination with other agents.
Collapse
Affiliation(s)
- Ryosuke Fujiwara
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan
| | - Yasuhiro Taniguchi
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan
| | - Shinya Rai
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan
| | - Yoshio Iwata
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan
| | - Aki Fujii
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan
| | - Ko Fujimoto
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan
| | - Takahiro Kumode
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan
| | - Kentaro Serizawa
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan
| | - Yasuyoshi Morita
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan
| | - J Luis Espinoza
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan
| | - Hirokazu Tanaka
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan.
| | - Hitoshi Hanamoto
- Department of Hematology, Kindai University Nara Hospital, Ikoma, Nara, Japan
| | - Itaru Matsumura
- Department of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, Japan
| |
Collapse
|
19
|
Li L, Liu X, Cui Y, Chen Y, Wu H, Wang J, Gong X, Gao X, Yang L, Li J, Sun X, Mao F, Wang Y. Novel chlorpromazine derivatives as anti-endometrial carcinoma agents with reduced extrapyramidal side effects. Bioorg Chem 2022; 127:106008. [PMID: 35868106 DOI: 10.1016/j.bioorg.2022.106008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/10/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022]
Abstract
As the traditional conservative remedy for endometrial carcinoma (EC), progesterone has great limitations due to its poor performance, and a new strategy is urgently needed. Our previous work revealed that the antipsychotic drug chlorpromazine (CPZ) has stronger antitumor activity on EC than progesterone does, which may provide a promising conservative alternative for EC patients. Unfortunately, the severe extrapyramidal symptoms (EPSs) at concentrations (>5 mg/kg) that are required for anticarcinoma activity limited its repurposing. Therefore, a series of novel CPZ derivatives were designed and synthesized to avoid EPS and retain its antitumor activity. Among them, 11·2HCl and 18 displayed greater inhibitory activity by modulating SOS1. Notably, even at a dose of 100 mg/kg, 11·2HCl/18 had little effect on the extrapyramidal system. In conclusion, 11·2HCl and 18 greatly repressed the malignant features of endometrial carcinoma and decreased extrapyramidal side effects compared with the original drug CPZ.
Collapse
Affiliation(s)
- Lijuan Li
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohu Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yunxia Cui
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Huiwen Wu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jing Wang
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaodi Gong
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyan Gao
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Linlin Yang
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from West Yunnan, College of Pharmacy, Dali University, Dali 671000, China; Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China; Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Pharmacy, Hainan University, Haikou 570228, Hainan, China
| | - Xiao Sun
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Fei Mao
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Yudong Wang
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai, China.
| |
Collapse
|
20
|
Gupta R, Kumar G, Gupta R. Encapsulation-Led Adsorption of Neutral Dyes and Complete Photodegradation of Cationic Dyes and Antipsychotic Drugs by Lanthanide-Based Macrocycles. Inorg Chem 2022; 61:7682-7699. [PMID: 35543424 DOI: 10.1021/acs.inorgchem.2c00688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Molecular architectures offering large cavities can accommodate guest molecules, while their compositional engineering allows tunability of the band gap to support photocatalysis using visible light. In this work, two lanthanide (Ln)-based macrocycles, synthesized using a cobalt-based metalloligand and offering large rectangular cavities, exhibited selective adsorption of neutral dyes over both anionic and cationic dyes. Both Ln macrocycles illustrated complete photodegradation of cationic dyes using visible light without the use of any oxidant. Both Ln macrocycles exhibited complete photodegradation of not only cationic dyes but also a few phenothiazine-based antipsychotic drugs. Photocatalysis involved the generation of reactive oxygen species (ROS), which was corroborated with the band gap of two Ln macrocycles. These results were supported by radical scavenger studies and the quantitative estimation of superoxide and hydroxyl radicals. Complete photodegradation of both dyes and drugs was confirmed by spectral studies, while the generation of CO2 and N2 gases was established by gas chromatography. Importantly, Ln macrocycles were able to distinguish between the neutral dyes that were quantitatively adsorbed and the cationic dyes/drugs that were completely photodegraded.
Collapse
Affiliation(s)
- Ruchika Gupta
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Gulshan Kumar
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Rajeev Gupta
- Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
21
|
Facile synthesis and biological evaluation of chrysin derivatives. JOURNAL OF CHEMICAL RESEARCH 2021. [DOI: 10.1177/17475198211057467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this paper, novel synthetic methods, including microwave O-alkylation, were used to produce several chrysin derivatives. These compounds were purified, characterised and tested on different cell lines and bacterial strains. From this family, 7-(2,4-dinitrophenoxy)-5-hydroxy-3-phenyl-4H-chromen-4-one (C3) was shown to be extremely active on bacterial strains methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa and Klebsiella pneumoniae as well as having anticancer activity on a range of cancer cell lines with IC50 values less than 30 µM. Chrysin has been known for their anticancer and antimicrobial properties, and this study not only corroborates this but also shows that it is possible to synthesise new improved derivatives with therapeutic possibilities.
Collapse
|
22
|
Repurposing Antipsychotics for Cancer Treatment. Biomedicines 2021; 9:biomedicines9121785. [PMID: 34944601 PMCID: PMC8698939 DOI: 10.3390/biomedicines9121785] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 11/25/2022] Open
Abstract
Cancer is a leading cause of death worldwide, with approximately 19 million new cases each year. Lately, several novel chemotherapeutic drugs have been introduced, efficiently inhibiting tumor growth and proliferation. However, developing a new drug is a time- and money-consuming process, requiring around 1 billion dollars and nearly ten years, with only a minority of the initially effective anti-cancer drugs experimentally finally being efficient in human clinical trials. Drug repurposing for cancer treatment is an optimal alternative as the safety of these drugs has been previously tested, and thus, in case of successful preclinical studies, can be introduced faster and with a lower cost into phase 3 clinical trials. Antipsychotic drugs are associated with anti-cancer properties and, lately, there has been an increasing interest in their role in cancer treatment. In the present review, we discussed in detail the in-vitro and in-vivo properties of the most common typical and atypical antipsychotics, along with their mechanism of action.
Collapse
|
23
|
Bellman V, Russell N, Depala K, Dellenbaugh A, Desai S, Vadukapuram R, Patel S, Srinivas S. Challenges in Treating Cancer Patients With Unstable Psychiatric Disorder. World J Oncol 2021; 12:137-148. [PMID: 34804276 PMCID: PMC8577605 DOI: 10.14740/wjon1402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/17/2021] [Indexed: 11/14/2022] Open
Abstract
In this review, we first present a case of chronic myeloid leukemia with acute psychosis, and then we will discuss the incidence of cancer in patients with psychotic disorders, the manifestations of new-onset psychosis, and the prevalence of preexisting psychosis in cancer patients, coupled with their impact on the treatment, diagnosis, and prognosis of cancer. This was a case that presented with acute psychosis and was found to have an elevated white blood cell count upon admission to an inpatient psychiatric unit. He was diagnosed with chronic myeloid leukemia and successfully managed with imatinib/dasatinib therapy. Psychiatrically, he was stabilized on two long-acting injectable medications to help maintain adherence. We were able to eliminate his active psychotic symptoms and return him to normal functioning in affect and thinking, achieving sustained compliance with treatment. We identified multiple inconsistencies in screening for cancer of all types in these patients, masking of signs and symptoms that would typically clue physicians to the presence of cancers, underreporting of symptoms, and disparate access to healthcare resources in patients with mental disorders when compared to the general population. Treatment of cancer in these patients as compared to the general population has also been shown to be incongruent, which will be elaborated upon. Psychiatric interventions, as well as supportive measures, for treating patients who are facing challenges during active cancer treatment will be discussed.
Collapse
Affiliation(s)
- Val Bellman
- Department of Psychiatry, University of Missouri Kansas City School of Medicine, 1000 E. 24th Street, Kansas City, MO 64108, USA
| | - Nina Russell
- University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
| | - Kartik Depala
- University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
| | | | - Saral Desai
- Department of Psychiatry, Brookdale University Hospital Medical Center, Brooklyn, NY, USA
| | - Ramu Vadukapuram
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Sushma Srinivas
- A.J. Institute of Medical Sciences and Research Centre, NH66, Kuntikan, Mangalore, Karnataka, India
| |
Collapse
|