1
|
Cheng L, Zhang F. The Molecular Mechanism by which LINC00461 Regulates Carfilzomib Resistance in Multiple Myeloma. TOHOKU J EXP MED 2025; 265:99-111. [PMID: 39231730 DOI: 10.1620/tjem.2024.j082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Multiple myeloma (MM) is a frequent haematological malignancy of the bone marrow. Carfilzomib, a first-line treatment for MM, has excellent antitumour effects, but its efficacy eventually decreases due to primary or acquired chemoresistance. Therefore, the regulatory mechanism of carfilzomib resistance has attracted much attention for improving the survival outcomes of patients with MM. By using database analysis combined with quantitative real-time polymerase chain reaction (qRT‒PCR), aberrant lncRNAs in MM were screened in carfilzomib-resistant cells versus carfilzomib-sensitive cells, and the resistance index of cultured carfilzomib-resistant cells was analysed compared to that of parental cells. Furthermore, cell viability, proliferation, and apoptosis in response to treatment with carfilzomib were measured after treatment with LINC00461 by the cell counting kit-8 (CCK-8) method and flow cytometry. The expression of LINC00461 was also verified through qRT‒PCR. Then, the possible miRNA molecules on which LINC00461 may act were investigated by RNA immunoprecipitation (RIP) and dual-luciferase reporter assays. Next, tumorigenesis in mice was evaluated to verify the effect of LINC00461 on carfilzomib-resistant cells. Increased expression of LINC00461 was related to drug resistance in MM patients. Mechanistically, LINC00461 overexpression attenuated the effect of miR-539-3p overexpression and decreased the expression of the downstream protein RAB5A. Moreover, compared with the control group, the LINC00461 knockdown group treated with carfilzomib exhibited decreases in tumour volume and weight. Furthermore, LINC00461 sensitized carfilzomib-sensitive cells by promoting the release of exosomes. These data suggest that LINC00461 plays an important role in the development of carfilzomib resistance.
Collapse
Affiliation(s)
- Lifang Cheng
- Department of Haematology, Shenshan Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University
| | - Fanjuan Zhang
- Department of Emergency, Shenzhen Samii Medical Center
| |
Collapse
|
2
|
Elshazly AM, Hosseini N, Shen S, Neely V, Harada H, Grant S, Radhakrishnan SK. Proteasome Inhibition Enhances Lysosome-mediated Targeted Protein Degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.31.634950. [PMID: 39974947 PMCID: PMC11838415 DOI: 10.1101/2025.01.31.634950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Proteasome inhibitor drugs are currently used in the clinic to treat multiple myeloma and mantle cell lymphoma. These inhibitors cause accumulation of undegraded proteins, thus inducing proteotoxic stress and consequent cell death. However, cancer cells counteract this effect by activating an adaptive response through the transcription factor Nuclear factor erythroid 2-related factor 1 (NRF1, also known as NFE2L1). NRF1 induces transcriptional upregulation of proteasome and autophagy/lysosomal genes, thereby reducing proteotoxic stress and diminishing the effectiveness of proteasome inhibition. While suppressing this protective autophagy response is one potential strategy, here we investigated whether this heightened autophagy could instead be leveraged therapeutically. To this end, we designed an autophagy-targeting chimera (AUTAC) compound to selectively degrade the anti-apoptotic protein Mcl1 via the lysosome. Our results show that this lysosome-mediated targeted degradation is significantly amplified in the presence of proteasome inhibition, in a NRF1-dependent manner. The combination of the proteasome inhibitor carfilzomib and Mcl1 AUTAC synergistically promoted cell death in both wild-type and proteasome inhibitor-resistant multiple myeloma and lung cancer cells. Thus, our work offers a novel strategy for enhancing proteasome inhibitor efficacy by exploiting the adaptive autophagy response. More broadly, our study establishes a framework for amplifying lysosome-mediated targeted protein degradation, with potential applications in cancer therapeutics and beyond.
Collapse
|
3
|
Dabour MS, George MY, Grant MKO, Zordoky BN. Canagliflozin differentially modulates carfilzomib-induced endoplasmic reticulum stress in multiple myeloma and endothelial cells. Arch Toxicol 2025; 99:729-744. [PMID: 39645617 DOI: 10.1007/s00204-024-03913-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/20/2024] [Indexed: 12/09/2024]
Abstract
Carfilzomib (CFZ), a second-generation proteasome inhibitor, is a key treatment for multiple myeloma (MM), but its use is associated with significant cardiovascular adverse events (CVAEs), including heart failure and hypertension. Endothelial dysfunction is believed to contribute to these CVAEs. Building on our previous findings that CFZ induces endothelial toxicity and that canagliflozin protects against CFZ-induced endothelial apoptosis, this study aimed to evaluate CFZ-induced endoplasmic reticulum (ER) stress and autophagy in endothelial and MM cells, as well as the impact of canagliflozin on these processes and its impact on the anticancer effects of CFZ in MM cells. Endothelial cells (HUVECs and EA.hy926) and multiple myeloma cells (RPMI8226) were treated with 0.5 µM CFZ, either alone or in combination with canagliflozin (5-20 µM), to assess the effects on ER stress and autophagy in both cell types. CFZ induced ER stress in endothelial and MM cells. In endothelial cells, canagliflozin mitigated CFZ-induced markers of ER stress, while unexpectedly upregulating CFZ-induced CHOP. Whereas, in MM cells, canagliflozin did not alter CFZ-induced ER stress, but instead further upregulated CFZ-induced ATF-4. In addition, CFZ induced autophagy in endothelial cells while inhibiting it in MM cells. Canagliflozin abrogated CFZ-induced autophagy in endothelial cells. In striking contrast to its effects in endothelial cells, canagliflozin enhanced the cytotoxic effects of CFZ in MM cells. Intriguingly, in an innovative co-culture system, canagliflozin enhanced CFZ-induced apoptosis in MM cells while protecting endothelial cells. These findings underscore the dual role of canagliflozin in reducing CFZ-induced endothelial toxicity, while enhancing its cytotoxic effect in MM.
Collapse
Affiliation(s)
- Mohamed S Dabour
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, 55455, USA
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Mina Y George
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, 55455, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Marianne K O Grant
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, 55455, USA
| | - Beshay N Zordoky
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, 55455, USA.
| |
Collapse
|
4
|
Zeng C, Li Z, Wei Z, Chen T, Wang J, Huang J, Sun F, Zhu J, Lu S, Zhen Z. Mechanism of Drug Resistance to First-Line Chemotherapeutics Mediated by TXNDC17 in Neuroblastomas. Cancer Rep (Hoboken) 2024; 7:e70033. [PMID: 39411839 PMCID: PMC11480999 DOI: 10.1002/cnr2.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/17/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND The prognosis of high-risk neuroblastomas (NB) that are resistant to first-line induction chemotherapy is relatively poor. This study explored the mechanism of resistance to first-line chemotherapeutics mediated by TXNDC17 and its potential solutions in NB. METHODS The genetic and clinical data of patients with NB were obtained from the Therapeutically Applicable Research to Generate Effective Treatments dataset. TXNDC17 and BECN1 expressions in NB cells were up- and downregulated by transfection with plasmids and shRNA, respectively. Autophagy-related proteins were detected by western blot. Cell viability was determined using cell proliferation and toxicity experiments. Apoptotic cells were detected using flow cytometry. RESULTS Overall, 1076 pediatric and adolescent patients with NB were enrolled in this study. The 10-year overall survival (OS) rates and event-free survival (EFS) rates for the patients with a mutation of BECN1 were 37.4 ± 9.1% and 34.5 ± 8.8%, respectively. For patients with a mutation of TXNDC17, the 10-year OS and EFS were 41.4 ± 5.9% and 24.3 ± 5.1%, respectively, which were significantly lower than those in the unaltered group. The overexpression of BECN1 and TXNDC17 reduced NB sensitivity to cisplatin (DDP), etoposide (VP16), and cyclophosphamide (CTX). Autophagy mediated by BECN1 was regulated by TXNDC17, and this process was involved in the resistance to DDP, VP16, and CTX in NB. Suberoylanilide hydroxamic acid (SAHA) can enhance the sensitivity and apoptosis of NB cells to chemotherapeutics by inhibiting TXNDC17, ultimately decreasing autophagy-mediated chemoresistance. CONCLUSIONS Acquired resistance to first-line chemotherapeutics was associated with autophagy mediated by BECN1 and regulated by TXNDC17, which can be reversed by SAHA.
Collapse
Affiliation(s)
- Chenggong Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouPR China
- Collaborative Innovation Center of Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhouPR China
- Department of Pediatric OncologySun Yat‐Sen University Cancer CenterGuangzhouPR China
| | - Zhuoran Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouPR China
- Collaborative Innovation Center of Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhouPR China
- Department of Pediatric OncologySun Yat‐Sen University Cancer CenterGuangzhouPR China
| | - Zhiqing Wei
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouPR China
- Collaborative Innovation Center of Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhouPR China
- Department of Pediatric OncologySun Yat‐Sen University Cancer CenterGuangzhouPR China
| | - Tingting Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouPR China
- Collaborative Innovation Center of Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhouPR China
- Department of Pediatric OncologySun Yat‐Sen University Cancer CenterGuangzhouPR China
| | - Juan Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouPR China
- Collaborative Innovation Center of Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhouPR China
- Department of Pediatric OncologySun Yat‐Sen University Cancer CenterGuangzhouPR China
| | - Junting Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouPR China
- Collaborative Innovation Center of Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhouPR China
- Department of Pediatric OncologySun Yat‐Sen University Cancer CenterGuangzhouPR China
| | - Feifei Sun
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouPR China
- Collaborative Innovation Center of Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhouPR China
- Department of Pediatric OncologySun Yat‐Sen University Cancer CenterGuangzhouPR China
| | - Jia Zhu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouPR China
- Collaborative Innovation Center of Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhouPR China
- Department of Pediatric OncologySun Yat‐Sen University Cancer CenterGuangzhouPR China
| | - Suying Lu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouPR China
- Collaborative Innovation Center of Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhouPR China
- Department of Pediatric OncologySun Yat‐Sen University Cancer CenterGuangzhouPR China
| | - Zijun Zhen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouPR China
- Collaborative Innovation Center of Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhouPR China
- Department of Pediatric OncologySun Yat‐Sen University Cancer CenterGuangzhouPR China
| |
Collapse
|
5
|
Pfeuffer L, Siegert V, Frede J, Rieger L, Trozzo R, de Andrade Krätzig N, Ring S, Sarhadi S, Beck N, Niedermeier S, Abril-Gil M, Elbahloul M, Remke M, Steiger K, Eichner R, Jellusova J, Rad R, Bassermann F, Winter C, Ruland J, Buchner M. B-cell intrinsic RANK signaling cooperates with TCL1 to induce lineage-dependent B-cell transformation. Blood Cancer J 2024; 14:151. [PMID: 39198400 PMCID: PMC11358282 DOI: 10.1038/s41408-024-01123-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
B-cell malignancies, such as chronic lymphocytic leukemia (CLL) and multiple myeloma (MM), remain incurable, with MM particularly prone to relapse. Our study introduces a novel mouse model with active RANK signaling and the TCL1 oncogene, displaying both CLL and MM phenotypes. In younger mice, TCL1 and RANK expression expands CLL-like B1-lymphocytes, while MM originates from B2-cells, becoming predominant in later stages and leading to severe disease progression and mortality. The induced MM mimics human disease, exhibiting features like clonal plasma cell expansion, paraproteinemia, anemia, and kidney and bone failure, as well as critical immunosurveillance strategies that promote a tumor-supportive microenvironment. This research elucidates the differential impacts of RANK activation in B1- and B2-cells and underscores the distinct roles of single versus combined oncogenes in B-cell malignancies. We also demonstrate that human MM cells express RANK and that inhibiting RANK signaling can reduce MM progression in a xenotransplantation model. Our study provides a rationale for further investigating the effects of RANK signaling in B-cell transformation and the shaping of a tumor-promoting microenvironment.
Collapse
Affiliation(s)
- Lisa Pfeuffer
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Viola Siegert
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Julia Frede
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Leonie Rieger
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
- Department of Medicine III, TUM School of Medicine and Health, Technical University Munich, Munich, Germany
| | - Riccardo Trozzo
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine and Health, Technical University of Munich, 81675, Munich, Germany
| | - Niklas de Andrade Krätzig
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine and Health, Technical University of Munich, 81675, Munich, Germany
| | - Sandra Ring
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Shamim Sarhadi
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Nicole Beck
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Stefan Niedermeier
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Mar Abril-Gil
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Mohamed Elbahloul
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
- Department of Medicine III, TUM School of Medicine and Health, Technical University Munich, Munich, Germany
| | - Marianne Remke
- Institute of Pathology, Technical University Munich, Munich, Germany
| | - Katja Steiger
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
- Institute of Pathology, Technical University Munich, Munich, Germany
| | - Ruth Eichner
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
- Department of Medicine III, TUM School of Medicine and Health, Technical University Munich, Munich, Germany
| | - Julia Jellusova
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Roland Rad
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine and Health, Technical University of Munich, 81675, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Florian Bassermann
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
- Department of Medicine III, TUM School of Medicine and Health, Technical University Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Bavarian Center for Cancer Research (BZKF), Munich, Germany
| | - Christof Winter
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Munich, 81675, Munich, Germany
| | - Maike Buchner
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany.
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany.
| |
Collapse
|
6
|
Dan Z, Shi X, Shu C, Zhu R, Wang Y, Zhu H. 4-amino-2-trifluoromethyl-phenyl retinate alleviates lipopolysaccharide-induced acute myocardial injury through activation of the KLF4/p62 axis. Cell Signal 2024; 114:111001. [PMID: 38048858 DOI: 10.1016/j.cellsig.2023.111001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/15/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
Ferroptosis plays a pivotal role in the pathological process of sepsis-induced cardiomyopathy (SIC). All-trans retinoic acid (ATRA) enhances the host immune response to lipopolysaccharides (LPS). This study investigated the role of 4-amino-2-trifluoromethyl-phenyl retinate (ATPR), a derivative of ATRA, in myocardial injury caused by sepsis. Male C57BL/6 mice were intraperitoneally injected with LPS to establish a sepsis model. H9c2 cells were stimulated by LPS to establish an injury model. We observed that ATPR improved myocardial injury in mice, which was presented in terms of an increased glutathione (GSH) level and reduced production of malondialdehyde (MDA), as well as an increased number of mitochondrial cristae and maintenance of the mitochondrial membrane integrity. ATPR improved cardiac function in the LPS-injured mice. It inhibited the inflammatory response as evidenced by the decreasing mRNA levels of TNF-α and IL-6. The elevated protein expression levels of Nrf2, SLC7A11, GPX4, and FTH1 in mice and H9c2 cells showed that ATPR inhibited ferroptosis. Immunoprecipitation of LPS-stimulated H9c2 cells demonstrated that ATPR increased the interaction between p62 and Keap1. ATPR upregulated the KLF4 and p62 protein expression. However, the inhibition of Nrf2 by ML385 reduced the protective effect of ATPR in LPS-treated H9c2 cells. Furthermore, we used siRNA to knock down KLF4 in H9c2 cells and found that the KLF4 knockdown eliminated the inhibition of ferroptosis by ATPR in H9c2 cells. Therefore, ATPR alleviates LPS-induced myocardial injury by inhibiting ferroptosis via the KLF4/p62 axis.
Collapse
Affiliation(s)
- Zhangyong Dan
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, China
| | - Xiaorui Shi
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, China
| | - Chuanlin Shu
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, China
| | - Rumeng Zhu
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, China
| | - Yi Wang
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, China; Department of Biological Engineering, School of Life Sciences, Anhui Medical University, Hefei 230032, China.
| | - Huaqing Zhu
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, China.
| |
Collapse
|
7
|
Kozalak G, Koşar A. Autophagy-related mechanisms for treatment of multiple myeloma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:838-857. [PMID: 38239705 PMCID: PMC10792488 DOI: 10.20517/cdr.2023.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/22/2024]
Abstract
Multiple myeloma (MM) is a type of hematological cancer that occurs when B cells become malignant. Various drugs such as proteasome inhibitors, immunomodulators, and compounds that cause DNA damage can be used in the treatment of MM. Autophagy, a type 2 cell death mechanism, plays a crucial role in determining the fate of B cells, either promoting their survival or inducing cell death. Therefore, autophagy can either facilitate the progression or hinder the treatment of MM disease. In this review, autophagy mechanisms that may be effective in MM cells were covered and evaluated within the contexts of unfolded protein response (UPR), bone marrow microenvironment (BMME), drug resistance, hypoxia, DNA repair and transcriptional regulation, and apoptosis. The genes that are effective in each mechanism and research efforts on this subject were discussed in detail. Signaling pathways targeted by new drugs to benefit from autophagy in MM disease were covered. The efficacy of drugs that regulate autophagy in MM was examined, and clinical trials on this subject were included. Consequently, among the autophagy mechanisms that are effective in MM, the most suitable ones to be used in the treatment were expressed. The importance of 3D models and microfluidic systems for the discovery of new drugs for autophagy and personalized treatment was emphasized. Ultimately, this review aims to provide a comprehensive overview of MM disease, encompassing autophagy mechanisms, drugs, clinical studies, and further studies.
Collapse
Affiliation(s)
- Gül Kozalak
- Faculty of Engineering and Natural Science, Sabancı University, Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabancı University, Istanbul 34956, Turkey
| | - Ali Koşar
- Faculty of Engineering and Natural Science, Sabancı University, Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabancı University, Istanbul 34956, Turkey
- Turkish Academy of Sciences (TÜBA), Çankaya, Ankara 06700, Turkey
| |
Collapse
|
8
|
El-Deeb AM, Mohamed AF, El-Yamany MF, El-Tanbouly DM. Novel trajectories of the NK1R antagonist aprepitant in rotenone-induced Parkinsonism-like symptoms in rats: Involvement of ERK5/KLF4/p62/Nrf2 signaling axis. Chem Biol Interact 2023; 380:110562. [PMID: 37224993 DOI: 10.1016/j.cbi.2023.110562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/09/2023] [Accepted: 05/22/2023] [Indexed: 05/26/2023]
Abstract
Regulation of the interplay between autophagy and oxidative stress is vital in maintaining neuronal homeostasis during neurotoxicity. The interesting involvement of NK1 receptor (NK1R) in neurodegeneration has highlighted the value of investigating the neuroprotective effect of aprepitant (Aprep), an NK1R antagonist in Parkinson's disease (PD). This study was conducted to disclose Aprep's ability to modulate extracellular signal-regulated kinase 5/Krüppel-like factor 4 (ERK5/KLF4) cue as molecular signaling implicated in regulating autophagy and redox signaling in response to rotenone neurotoxicity. Rotenone (1.5 mg/kg) was administered on alternate days, and rats were given Aprep simultaneously with or without PD98059, an ERK inhibitor, for 21 days. Aprep ameliorated motor deficits as verified by restored histological features, and intact neurons count in SN and striata along with tyrosine hydroxylase immunoreactivity in SN. The molecular signaling of Aprep was illustrated by the expression of KLF4 following the phosphorylation of its upstream target, ERK5. Nuclear factor erythroid 2-related factor 2 (Nrf2) was up-regulated, shifting the oxidant/antioxidant balance towards the antioxidant side, as evidenced by elevated GSH and suppressed MDA levels. In parallel, Aprep noticeably reduced phosphorylated α-synuclein aggregates due to autophagy induction as emphasized by marked LC3II/LC3I elevation and p62 level reduction. These effects were diminished upon PD98059 pre-administration. In conclusion, Aprep showed neuroprotective effects against rotenone-induced PD, which may be partially attributed to the activation of the ERK5/KLF4 signaling pathway. It modulated p62-mediated autophagy and Nrf2 axis which act cooperatively to counter rotenone-associated neurotoxicity pointing to Aprep's prospect as a curious candidate in PD research.
Collapse
Affiliation(s)
- Asmaa M El-Deeb
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, 11562, Egypt
| | - Ahmed F Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, 11562, Egypt.
| | - Mohammed F El-Yamany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, 11562, Egypt
| | - Dalia M El-Tanbouly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, 11562, Egypt
| |
Collapse
|
9
|
Bashiri H, Tabatabaeian H. Autophagy: A Potential Therapeutic Target to Tackle Drug Resistance in Multiple Myeloma. Int J Mol Sci 2023; 24:ijms24076019. [PMID: 37046991 PMCID: PMC10094562 DOI: 10.3390/ijms24076019] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Multiple myeloma (MM) is the second most prevalent hematologic malignancy. In the past few years, the survival of MM patients has increased due to the emergence of novel drugs and combination therapies. Nevertheless, one of the significant obstacles in treating most MM patients is drug resistance, especially for individuals who have experienced relapses or developed resistance to such cutting-edge treatments. One of the critical processes in developing drug resistance in MM is autophagic activity, an intracellular self-digestive process. Several possible strategies of autophagy involvement in the induction of MM-drug resistance have been demonstrated thus far. In multiple myeloma, it has been shown that High mobility group box protein 1 (HMGB1)-dependent autophagy can contribute to drug resistance. Moreover, activation of autophagy via proteasome suppression induces drug resistance. Additionally, the effectiveness of clarithromycin as a supplemental drug in treating MM has been reported recently, in which autophagy blockage is proposed as one of the potential action mechanisms of CAM. Thus, a promising therapeutic approach that targets autophagy to trigger the death of MM cells and improve drug susceptibility could be considered. In this review, autophagy has been addressed as a survival strategy crucial for drug resistance in MM.
Collapse
Affiliation(s)
- Hamed Bashiri
- Institute of Molecular and Cell Biology (IMCB), Agency of Science, Technology and Research (A*STAR), Singapore 138673, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | | |
Collapse
|
10
|
Yin Y, Zhou Y, Yang X, Xu Z, Yang B, Luo P, Yan H, He Q. The participation of non-canonical autophagic proteins in the autophagy process and their potential as therapeutic targets. Expert Opin Ther Targets 2023; 27:71-86. [PMID: 36735300 DOI: 10.1080/14728222.2023.2177151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Autophagy is a conserved catabolic process that helps recycle intracellular components to maintain homeostasis. The completion of autophagy requires the synergistic effect of multiple canonical autophagic proteins. Defects in autophagy machinery have been reported to promote diseases, rendering autophagy a bone fide health-modifying agent. However, the clinical implication of canonical pan-autophagic activators or inhibitors has often led to undesirable side effects, making it urgent to find a safer autophagy-related therapeutic target. The discovery of non-canonical autophagic proteins has been found to specifically affect the development of diseases without causing a universal impact on autophagy and has shed light on finding a safer way to utilize autophagy in the therapeutic context. AREAS COVERED This review summarizes recently discovered non-canonical autophagic proteins, how these proteins influence autophagy, and their potential therapeutic role in the disease due to their interaction with autophagy. EXPERT OPINION Several therapies have been studied thus far and continued research is needed to identify the potential that non-canonical autophagic proteins have for treating certain diseases. In the meantime, continue to uncover new non-canonical autophagic proteins and examine which are likely to have therapeutic implications.
Collapse
Affiliation(s)
- Yiming Yin
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yourong Zhou
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaochun Yang
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhifei Xu
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Peihua Luo
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Pharmacology and Toxicology, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hao Yan
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiaojun He
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
He Z, Du J, Zhang Y, Xu Y, Huang Q, Zhou Q, Wu M, Li Y, Zhang X, Zhang H, Cai Y, Ye K, Wang X, Zhang Y, Han Q, Xiao J. Kruppel-like factor 2 contributes to blood-spinal cord barrier integrity and functional recovery from spinal cord injury by augmenting autophagic flux. Theranostics 2023; 13:849-866. [PMID: 36632224 PMCID: PMC9830435 DOI: 10.7150/thno.74324] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 01/06/2023] Open
Abstract
Background: Increasing evidence suggests that acute traumatic spinal cord injury (SCI)-induced defects in autophagy and autophagy-lysosomal pathway (ALP) may contribute to endothelial barrier disruption following injury. Recently, Kruppel-like factor 2 (KLF2) was reported as a key molecular switch on regulating autophagy. Whether KLF2 coordinates endothelial endothelial ALP in SCI is not known. Methods: Genetic manipulations of KLF2 were performed in bEnd.3 cells and SCI model. Western blot, qRT-PCR, immunofluorescence staining and Lyso-Tracker Red staining, Evans blue dye extravasation, behavioral assessment via Basso mouse scale (BMS), electrophysiology and footprint analysis were performed. Results: In SCI, autophagy flux disruption in endothelial cells contributes to TJ proteins degradation, leading to blood-spinal cord barrier (BSCB) impairment. Furthermore, the KLF2 level was decreased in SCI, overexpression of which alleviated TJ proteins loss and BSCB damage, which improve motor function recovery in SCI mice, while knockdown of KLF2 displayed the opposite effects. At the molecular level, KLF2 overexpression alleviated the TJ proteins degradation and the endothelial permeability by tuning the ALP dysfunction caused by SCI and oxygen glucose deprivation (OGD). Conclusions: Endothelial KLF2 as one of the key contributors to SCI-mediated ALP dysfunction and BSCB disruption. KLF2 could be a promising pharmacological target for the management and treatment of SCI.
Collapse
Affiliation(s)
- Zili He
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325035, China.,Department of Orthopaedics, Affiliated Pingyang Hospital and School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Jiqing Du
- Department of Orthopaedics, Affiliated Pingyang Hospital and School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yu Zhang
- Department of Orthopaedics, Affiliated Pingyang Hospital and School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yitie Xu
- Department of Orthopaedics, Affiliated Pingyang Hospital and School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Qian Huang
- Department of Orthopaedics, Affiliated Pingyang Hospital and School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Qingwei Zhou
- Department of Orthopaedics, Affiliated Pingyang Hospital and School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Min Wu
- Department of Orthopaedics, Affiliated Pingyang Hospital and School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yao Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Xie Zhang
- Department of Pharmacy, Ningbo Medical Treatment Center Li Huili Hospital, Ningbo, 315040, China
| | - Hongyu Zhang
- Department of Orthopaedics, Affiliated Pingyang Hospital and School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yuepiao Cai
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325035, China.,Department of Orthopaedics, Affiliated Pingyang Hospital and School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Keyong Ye
- Department of Orthopaedics, Affiliated Pingyang Hospital and School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiangyang Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Yingze Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325035, China.,Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051 China
| | - Qi Han
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jian Xiao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325035, China.,Department of Orthopaedics, Affiliated Pingyang Hospital and School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| |
Collapse
|
12
|
Ghosal S, Banerjee S. Investigating the potential molecular players and therapeutic drug molecules in carfilzomib resistant multiple myeloma by comprehensive bioinformatics analysis. Leuk Lymphoma 2022; 63:2545-2556. [DOI: 10.1080/10428194.2022.2087064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Somnath Ghosal
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| | - Subrata Banerjee
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI), Kolkata, India
| |
Collapse
|
13
|
Schwestermann J, Besse A, Driessen C, Besse L. Contribution of the Tumor Microenvironment to Metabolic Changes Triggering Resistance of Multiple Myeloma to Proteasome Inhibitors. Front Oncol 2022; 12:899272. [PMID: 35692781 PMCID: PMC9178120 DOI: 10.3389/fonc.2022.899272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Virtually all patients with multiple myeloma become unresponsive to treatment with proteasome inhibitors over time. Relapsed/refractory multiple myeloma is accompanied by the clonal evolution of myeloma cells with heterogeneous genomic aberrations, diverse proteomic and metabolic alterations, and profound changes of the bone marrow microenvironment. However, the molecular mechanisms that drive resistance to proteasome inhibitors within the context of the bone marrow microenvironment remain elusive. In this review article, we summarize the latest knowledge about the complex interaction of malignant plasma cells with its surrounding microenvironment. We discuss the pivotal role of metabolic reprograming of malignant plasma cells within the tumor microenvironment with a subsequent focus on metabolic rewiring in plasma cells upon treatment with proteasome inhibitors, driving multiple ways of adaptation to the treatment. At the same time, mutual interaction of plasma cells with the surrounding tumor microenvironment drives multiple metabolic alterations in the bone marrow. This provides a tumor-promoting environment, but at the same time may offer novel therapeutic options for the treatment of relapsed/refractory myeloma patients.
Collapse
Affiliation(s)
| | | | | | - Lenka Besse
- Laboratory of Experimental Oncology, Clinics for Medical Hematology and Oncology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
14
|
Tong J, Ji B, Gao YH, Lin H, Ping F, Chen F, Liu XB. Sirt6 regulates autophagy in AGE-treated endothelial cells via KLF4. Nutr Metab Cardiovasc Dis 2022; 32:755-764. [PMID: 35123854 DOI: 10.1016/j.numecd.2021.12.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS High glucose and its byproducts are important factors causing dysfunction of endothelial cells. Autophagy is critical for endothelial cellular homeostasis. However, the specific molecular mechanism of how autophagy is regulated in endothelial cells under high-glucose condition remains unknown. We aim to explore the role Sirt6 plays in regulating autophagy in AGE-treated endothelial cells and how this function is exerted via KLF4. METHODS AND RESULTS Our results indicate that autophagy level increased in AGE-treated endothelial cells alongside with higher Sirt6 and KLF4 expression level. What's more, knock-in of Sirt6 by adenovirus led to augmented autophagy level while knockdown of Sirt6 led to the opposite. We also verified that Sirt6 affected KLF4 expression positively but KLF4 didn't influence Sirt6 expression level while knocking out of KLF4 impaired Sirt6-enhanced autophagy. Finally we found that STZ-induced diabetic mice showed more autophagosomes in endothelium and Sirt6 knockdown by adeno-associated virus reduced the number of autophagosomes. Knockdown of Sirt6 also caused impaired endothelium integrity but echocardiography indicated there were no significant functional differences. CONCLUSION Our research reveals more about how Sirt6 regulates autophagy in endothelial cells under high-glucose simulated condition and provides further insight into the relationships between Sirt6 and KLF4.
Collapse
Affiliation(s)
- Jing Tong
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bing Ji
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yan-Hua Gao
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hao Lin
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fan Ping
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fei Chen
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Xue-Bo Liu
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
15
|
Merz M, Merz AMA, Wang J, Wei L, Hu Q, Hutson N, Rondeau C, Celotto K, Belal A, Alberico R, Block AW, Mohammadpour H, Wallace PK, Tario J, Luce J, Glenn ST, Singh P, Herr MM, Hahn T, Samur M, Munshi N, Liu S, McCarthy PL, Hillengass J. Deciphering spatial genomic heterogeneity at a single cell resolution in multiple myeloma. Nat Commun 2022; 13:807. [PMID: 35145077 PMCID: PMC8831582 DOI: 10.1038/s41467-022-28266-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 01/14/2022] [Indexed: 12/22/2022] Open
Abstract
Osteolytic lesions (OL) characterize symptomatic multiple myeloma. The mechanisms of how malignant plasma cells (PC) cause OL in one region while others show no signs of bone destruction despite subtotal infiltration remain unknown. We report on a single-cell RNA sequencing (scRNA-seq) study of PC obtained prospectively from random bone marrow aspirates (BM) and paired imaging-guided biopsies of OL. We analyze 148,630 PC from 24 different locations in 10 patients and observe vast inter- and intra-patient heterogeneity based on scRNA-seq analyses. Beyond the limited evidence for spatial heterogeneity from whole-exome sequencing, we find an additional layer of complexity by integrated analysis of anchored scRNA-seq datasets from the BM and OL. PC from OL are characterized by differentially expressed genes compared to PC from BM, including upregulation of genes associated with myeloma bone disease like DKK1, HGF and TIMP-1 as well as recurrent downregulation of JUN/FOS, DUSP1 and HBB. Assessment of PC from longitudinally collected samples reveals transcriptional changes after induction therapy. Our study contributes to the understanding of destructive myeloma bone disease.
Collapse
Affiliation(s)
- Maximilian Merz
- Department of Medicine, Roswell Park Comprehensive Cancer Center (Roswell Park), Buffalo, NY, USA.
- Department of Hematology, Cell therapy and Hemostaseology, University Hospital Leipzig, Leipzig, Germany.
| | - Almuth Maria Anni Merz
- Department of Medicine, Roswell Park Comprehensive Cancer Center (Roswell Park), Buffalo, NY, USA
| | - Jie Wang
- Department of Biostatistics and Bioinformatics, Roswell Park, Buffalo, USA
| | - Lei Wei
- Department of Biostatistics and Bioinformatics, Roswell Park, Buffalo, USA
| | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park, Buffalo, USA
| | - Nicholas Hutson
- Department of Biostatistics and Bioinformatics, Roswell Park, Buffalo, USA
| | - Cherie Rondeau
- Department of Medicine, Roswell Park Comprehensive Cancer Center (Roswell Park), Buffalo, NY, USA
| | - Kimberly Celotto
- Department of Medicine, Roswell Park Comprehensive Cancer Center (Roswell Park), Buffalo, NY, USA
| | - Ahmed Belal
- Department of Diagnostic Radiology, Roswell Park, Buffalo, USA
| | - Ronald Alberico
- Department of Diagnostic Radiology, Roswell Park, Buffalo, USA
| | - AnneMarie W Block
- Clinical Cytogenetics Laboratory, Department of Pathology and Laboratory Medicine, Roswell Park, Buffalo, USA
| | | | - Paul K Wallace
- Flow and Image Cytometry, Department of Pathology and Laboratory Medicine, Roswell Park, Buffalo, USA
| | - Joseph Tario
- Flow and Image Cytometry, Department of Pathology and Laboratory Medicine, Roswell Park, Buffalo, USA
| | - Jesse Luce
- Genomics Shared Resources, Roswell Park, Buffalo, USA
| | - Sean T Glenn
- Genomics Shared Resources, Roswell Park, Buffalo, USA
| | | | - Megan M Herr
- Transplant and Cellular Therapy Program, Department of Medicine, Roswell Park, Buffalo, USA
| | - Theresa Hahn
- Transplant and Cellular Therapy Program, Department of Medicine, Roswell Park, Buffalo, USA
| | - Mehmet Samur
- Department of Data Sciences, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Nikhil Munshi
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park, Buffalo, USA
| | - Philip L McCarthy
- Transplant and Cellular Therapy Program, Department of Medicine, Roswell Park, Buffalo, USA
| | - Jens Hillengass
- Department of Medicine, Roswell Park Comprehensive Cancer Center (Roswell Park), Buffalo, NY, USA.
| |
Collapse
|
16
|
Haney SL, Varney ML, Williams JT, Smith LM, Talmon G, Holstein SA. Geranylgeranyl diphosphate synthase inhibitor and proteasome inhibitor combination therapy in multiple myeloma. Exp Hematol Oncol 2022; 11:5. [PMID: 35139925 PMCID: PMC8827146 DOI: 10.1186/s40164-022-00261-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/25/2022] [Indexed: 11/11/2022] Open
Abstract
Background Multiple myeloma (MM) remains an incurable malignancy, despite the advent of therapies such as proteosome inhibitors (PIs) that disrupt protein homeostasis and induce ER stress. We have pursued inhibition of geranylgeranyl diphosphate synthase (GGDPS) as a novel mechanism by which to target protein homeostasis in MM cells. GGDPS inhibitors (GGSI) disrupt Rab geranylgeranylation, which in turn results in perturbation of Rab-mediated protein trafficking, leading to accumulation of intracellular monoclonal protein, induction of ER stress and apoptosis. Our lead GGSI, RAM2061, has demonstrated favorable pharmacokinetic properties and in vivo efficacy. Here we sought to evaluate if combination therapy with GGSI and PI would result in enhanced disruption of the unfolded protein response (UPR) and increase anti-MM efficacy. Methods MTT assays were conducted to evaluate the cytotoxic effects of combining RAM2061 with bortezomib in human MM cells. The effects of RAM2061 and/or PI (bortezomib or carfilzomib) on markers of UPR and apoptosis were evaluated by a combination of immunoblot (ATF4, IRE1, p-eIF2a, cleaved caspases and PARP), RT-PCR (ATF4, ATF6, CHOP, PERK, IRE1) and flow cytometry (Annexin-V). Induction of immunogenic cell death (ICD) was assessed by immunoblot (HMGB1 release) and flow cytometry (calreticulin translocation). Cell assays were performed using both concurrent and sequential incubation with PIs. To evaluate the in vivo activity of GGSI/PI, a flank xenograft using MM.1S cells was performed. Results Isobologram analysis of cytotoxicity data revealed that sequential treatment of bortezomib with RAM2061 has a synergistic effect in MM cells, while concurrent treatment was primarily additive or mildly antagonistic. The effect of PIs on augmenting RAM2061-induced upregulation of UPR and apoptotic markers was dependent on timing of the PI exposure. Combination treatment with RAM2061 and bortezomib enhanced activation of ICD pathway markers. Lastly, combination treatment slowed MM tumor growth and lengthened survival in a MM xenograft model without evidence of off-target toxicity. Conclusion We demonstrate that GGSI/PI treatment can potentiate activation of the UPR and apoptotic pathway, as well as induce upregulation of markers associated with the ICD pathway. Collectively, these findings lay the groundwork for future clinical studies evaluating combination GGSI and PI therapy in patients with MM. Supplementary Information The online version contains supplementary material available at 10.1186/s40164-022-00261-6.
Collapse
Affiliation(s)
- Staci L Haney
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Michelle L Varney
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jacob T Williams
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Lynette M Smith
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Geoffrey Talmon
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sarah A Holstein
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
17
|
Wang Q, Lin Z, Wang Z, Ye L, Xian M, Xiao L, Su P, Bi E, Huang YH, Qian J, Liu L, Ma X, Yang M, Xiong W, Zu Y, Pingali SR, Xu B, Yi Q. RARγ activation sensitizes human myeloma cells to carfilzomib treatment through the OAS-RNase L innate immune pathway. Blood 2022; 139:59-72. [PMID: 34411225 DOI: 10.1182/blood.2020009856] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 07/23/2021] [Indexed: 11/20/2022] Open
Abstract
Proteasome inhibitors (PIs) such as bortezomib (Btz) and carfilzomib (Cfz) are highly efficacious for patients with multiple myeloma (MM). However, relapses are frequent, and acquired resistance to PI treatment emerges in most patients. Here, we performed a high-throughput screen of 1855 Food and Drug Administration (FDA)-approved drugs and identified all-trans retinoic acid (ATRA), which alone has no antimyeloma effect, as a potent drug that enhanced MM sensitivity to Cfz-induced cytotoxicity and resensitized Cfz-resistant MM cells to Cfz in vitro. ATRA activated retinoic acid receptor (RAR)γ and interferon-β response pathway, leading to upregulated expression of IRF1. IRF1 in turn initiated the transcription of OAS1, which synthesized 2-5A upon binding to double-stranded RNA (dsRNA) induced by Cfz and resulted in cellular RNA degradation by RNase L and cell death. Similar to ATRA, BMS961, a selective RARγ agonist, could also (re)sensitize MM cells to Cfz in vitro, and both ATRA and BMS961 significantly enhanced the therapeutic effects of Cfz in established MM in vivo. In support of these findings, analyses of large datasets of patients' gene profiling showed a strong and positive correlation between RARγ and OAS1 expression and patient's response to PI treatment. Thus, this study highlights the potential for RARγ agonists to sensitize and overcome MM resistance to Cfz treatment in patients.
Collapse
Affiliation(s)
- Qiang Wang
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, Texas
| | - Zhijuan Lin
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, Texas
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Zhuo Wang
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, Texas
| | - Lingqun Ye
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, Texas
| | - Miao Xian
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, Texas
| | - Liuling Xiao
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, Texas
| | - Pan Su
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, Texas
| | - Enguang Bi
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, Texas
| | - Yung-Hsing Huang
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, Texas
| | - Jianfei Qian
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, Texas
| | - Lintao Liu
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, Texas
| | - Xingzhe Ma
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, Texas
| | - Maojie Yang
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, Texas
| | - Wei Xiong
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, Texas
| | - Youli Zu
- Department of Pathology and Genomic Medicine, Institute for Academic Medicine, Houston Methodist Research Institute, Houston, Texas; and
| | - Sai Ravi Pingali
- Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, Texas
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Qing Yi
- Center for Translational Research in Hematological Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston, Texas
| |
Collapse
|
18
|
Tang J, Li Y, Xia S, Li J, Yang Q, Ding K, Zhang H. Sequestosome 1/p62: A multitasker in the regulation of malignant tumor aggression (Review). Int J Oncol 2021; 59:77. [PMID: 34414460 PMCID: PMC8425587 DOI: 10.3892/ijo.2021.5257] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 07/12/2021] [Indexed: 02/06/2023] Open
Abstract
Sequestosome 1 (SQSTM1)/p62 is an adapter protein mainly involved in the transportation, degradation and destruction of various proteins that cooperates with components of autophagy and the ubiquitin‑proteasome degradation pathway. Numerous studies have shown that SQSTM1/p62 functions at multiple levels, including involvement in genetic stability or modification, post‑transcriptional regulation and protein function. As a result, SQSTM1/p62 is a versatile protein that is a critical core regulator of tumor cell genetic stability, autophagy, apoptosis and other forms of cell death, malignant growth, proliferation, migration, invasion, metastasis and chemoradiotherapeutic response, and an indicator of patient prognosis. SQSTM1/p62 regulates these processes via its distinct molecular structure, through which it participates in a variety of activating or inactivating tumor‑related and tumor microenvironment‑related signaling pathways, particularly positive feedback loops and epithelial‑mesenchymal transition‑related pathways. Therefore, functioning as a proto‑oncogene or tumor suppressor gene in various types of cancer and tumor‑associated microenvironments, SQSTM1/p62 is capable of promoting or retarding malignant tumor aggression, giving rise to immeasurable effects on tumor occurrence and development, and on patient treatment and prognosis.
Collapse
Affiliation(s)
- Jinlong Tang
- Department of Pathology and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yuan Li
- Department of Pediatrics, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310000, P.R. China
| | - Shuli Xia
- Department of Pathology, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang 310058, P.R. China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, Zhejiang 310058, P.R. China
| | - Jinfan Li
- Department of Pathology and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Qi Yang
- Department of Pathology and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Kefeng Ding
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
- Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Honghe Zhang
- Department of Pathology, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang 310058, P.R. China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, Zhejiang 310058, P.R. China
| |
Collapse
|
19
|
Wu J, Liu J. Research progress in proteasome inhibitor resistance to multiple myeloma. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:900-908. [PMID: 34565737 PMCID: PMC10929973 DOI: 10.11817/j.issn.1672-7347.2021.200430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Indexed: 11/03/2022]
Abstract
Multiple myeloma (MM) is a highly heterogeneous malignant plasma cell disease. Proteasome inhibitors (PIs) are the first line of medicine for MM. Bortezomib, ixazomib, and carfilzomib are also widely used for MM. Marizomib, oprozomib, and KZR-616 are in clinical trials. However, the drug resistance of PIs in MM is still a problem. The mechanisms for PIs resistance to MM include ubiquitin-proteasome pathway, autophagy lysosome pathway, endoplasmic reticulum stress pathway, cell survival signal pathway, exosome-mediated resistance, and bone marrow microenvironment-mediated resistance.
Collapse
Affiliation(s)
- Jiao Wu
- Department of Hematology, Loudi Gereral Hospital, Loudi Hunan 417000.
| | - Jing Liu
- Department of Hematology, Third Xiangya Hospital, Central South University, Changsha 410013, China.
| |
Collapse
|
20
|
Novel Peptide-drug Conjugate Melflufen Efficiently Eradicates Bortezomib-resistant Multiple Myeloma Cells Including Tumor-initiating Myeloma Progenitor Cells. Hemasphere 2021; 5:e602. [PMID: 34136753 PMCID: PMC8202573 DOI: 10.1097/hs9.0000000000000602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/18/2021] [Indexed: 11/26/2022] Open
Abstract
Introduction of the proteasome inhibitor bortezomib has dramatically improved clinical outcomes in multiple myeloma. However, most patients become refractory to bortezomib-based therapies. On the molecular level, development of resistance to bortezomib in myeloma cells is accompanied by complex metabolic changes resulting in increased protein folding capacity, and less dependency on the proteasome. In this study, we show that aminopeptidase B, encoded by the RNPEP gene, is upregulated in bortezomib-resistant myeloma cell lines, and in a murine in vivo model. Moreover, increased RNPEP expression is associated with shorter survival in multiple myeloma patients previously treated with bortezomib-containing regimens. Additionally, expression is increased in plasma cell precursors, a B-lymphoid compartment previously associated with myeloma stem cells. We hypothesized that increased aminopeptidase B expression in aggressive myeloma clones may be used therapeutically toward elimination of the cells via the use of a novel peptide-drug conjugate, melphalan flufenamide (melflufen). Melflufen, a substrate of aminopeptidase B, efficiently eliminates bortezomib-resistant myeloma cells in vitro and in vivo, and completely suppresses clonogenic myeloma growth in vitro at subphysiological concentrations. Thus, melflufen represents a novel treatment option that is able to eradicate drug-resistant myeloma clones characterized by elevated aminopeptidase B expression.
Collapse
|
21
|
MIF as a biomarker and therapeutic target for overcoming resistance to proteasome inhibitors in human myeloma. Blood 2021; 136:2557-2573. [PMID: 32582913 DOI: 10.1182/blood.2020005795] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) remains largely incurable despite significant advances in biotherapy and chemotherapy. The development of drug resistance is a major problem in MM management. Macrophage migration inhibitory factor (MIF) expression was significantly higher in purified MM cells from relapsed patients than those with sustained response, and MM patients with high MIF had significantly shorter progression-free survival (PFS) and overall survival (OS). MM cell lines also express high levels of MIF, and knocking out MIF made them more sensitive to proteasome inhibitor (PI)-induced apoptosis not observed with other chemotherapy drugs. Mechanistic studies showed that MIF protects MM cells from PI-induced apoptosis by maintaining mitochondrial function via suppression of superoxide production in response to PIs. Specifically, MIF, in the form of a homotrimer, acts as a chaperone for superoxide dismutase 1 (SOD1) to suppress PI-induced SOD1 misfolding and to maintain SOD1 activity. MIF inhibitor 4-iodo-6-phenylpyrimidine and homotrimer disrupter ebselen, which do not kill MM cells, enhanced PI-induced SOD1 misfolding and loss of function, resulting in significantly more cell death in both cell lines and primary MM cells. More importantly, inhibiting MIF activity in vivo displayed synergistic antitumor activity with PIs and resensitized PI-resistant MM cells to treatment. In support of these findings, gene-profiling data showed a significantly negative correlation between MIF and SOD1 expression and response to PI treatment in patients with MM. This study shows that MIF plays a crucial role in MM sensitivity to PIs and suggests that targeting MIF may be a promising strategy to (re)sensitize MM to the treatment.
Collapse
|
22
|
Emerging Therapeutic Strategies to Overcome Drug Resistance in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13071686. [PMID: 33918370 PMCID: PMC8038312 DOI: 10.3390/cancers13071686] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Multiple myeloma is a deadly blood cancer, but fortunately drug development has substantially prolonged the lifespan of patients to average more than a decade after diagnosis with optimal therapy. As a result, the population of patients living with multiple myeloma has grown considerably. Through its course, patients suffer repeated relapses for which they require new lines of treatment. Currently, the key drug classes for treatment are immunomodulatory drugs, proteasome inhibitors, and monoclonal antibodies. The goal of this review is to summarize the understanding of the problem of resistance to these drugs, which is ultimately responsible for patient fatality. In addition, we will focus on how new agents that are promising in clinical trials overcome resistance. Abstract Multiple myeloma is a malignant plasma cell neoplasm that remains incurable and is ultimately fatal when patients acquire multi-drug resistance. Thus, advancing our understanding of the mechanisms behind drug resistance in multi-relapsed patients is critical for developing better strategies to extend their lifespan. Here, we review the understanding of resistance to the three key drug classes approved for multiple myeloma treatment: immunomodulatory drugs, proteasome inhibitors, and monoclonal antibodies. We consider how the complex, heterogenous biology of multiple myeloma may influence the acquisition of drug resistance and reflect on the gaps in knowledge where additional research is needed to improve our treatment approaches. Fortunately, many agents are currently being evaluated preclinically and in clinical trials that have the potential to overcome or delay drug resistance, including next-generation immunomodulatory drugs and proteasome inhibitors, novel small molecule drugs, chimeric antigen receptor T cells, antibody-drug conjugates, and bispecific antibodies. For each class, we discuss the potential of these strategies to overcome resistance through modifying agents within each class or new classes without cross-resistance to currently available drugs.
Collapse
|
23
|
Up-regulation of multidrug resistance protein MDR1/ABCB1 in carfilzomib-resistant multiple myeloma differentially affects efficacy of anti-myeloma drugs. Leuk Res 2020; 101:106499. [PMID: 33422770 DOI: 10.1016/j.leukres.2020.106499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/16/2020] [Accepted: 12/24/2020] [Indexed: 11/23/2022]
|
24
|
Reale A, Khong T, Mithraprabhu S, Savvidou I, Hocking J, Bergin K, Ramachandran M, Chen M, Dammacco F, Ria R, Silvestris F, Vacca A, Reynolds J, Spencer A. TOP2A expression predicts responsiveness to carfilzomib in myeloma and informs novel combinatorial strategies for enhanced proteasome inhibitor cell killing. Leuk Lymphoma 2020; 62:337-347. [PMID: 33131357 DOI: 10.1080/10428194.2020.1832659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Microarray was utilized to determine if a genetic signature associated with resistance to carfilzomib (CFZ) could be identified. Twelve human myeloma (MM) cell lines (HMCLs) were treated with CFZ and a cell-viability profile was assessed categorizing HMCLs as sensitive or resistant to CFZ. The gene expression profiles (GEP) of untreated resistant versus sensitive HMCLs revealed 29 differentially expressed genes. TOP2A, an enzyme involved in cell cycle and proliferation, was overexpressed in carfilzomib-resistant HMCLs. TOP2A protein expression levels, evaluated utilizing trephine biopsy specimens acquired prior to treatment with proteasome inhibitors, were higher in patients failing to achieve a response when compared to responding patients. Logistic-regression analysis confirmed that TOP2A protein expression was a highly significant predictor of response to PIs (AUC 0.738). Further, the combination of CFZ with TOP2A inhibitors, demonstrated synergistic cytotoxic effects in vitro, providing a rationale for combining topoisomerase inhibitors with CFZ to overcome resistance in MM.
Collapse
Affiliation(s)
- Antonia Reale
- Myeloma Research Group, Australian Centre for Blood Diseases, The Alfred Hospital/Monash University, Melbourne, Australia
| | - Tiffany Khong
- Myeloma Research Group, Australian Centre for Blood Diseases, The Alfred Hospital/Monash University, Melbourne, Australia
| | - Sridurga Mithraprabhu
- Myeloma Research Group, Australian Centre for Blood Diseases, The Alfred Hospital/Monash University, Melbourne, Australia
| | - Ioanna Savvidou
- Myeloma Research Group, Australian Centre for Blood Diseases, The Alfred Hospital/Monash University, Melbourne, Australia
| | - Jay Hocking
- Myeloma Research Group, Australian Centre for Blood Diseases, The Alfred Hospital/Monash University, Melbourne, Australia.,Department of Clinical Haematology, Box Hill, Melbourne, Australia.,Myeloma Clinic, The Alfred Centre, Melbourne, Australia
| | - Krystal Bergin
- Myeloma Research Group, Australian Centre for Blood Diseases, The Alfred Hospital/Monash University, Melbourne, Australia
| | - Malarmathy Ramachandran
- Myeloma Research Group, Australian Centre for Blood Diseases, The Alfred Hospital/Monash University, Melbourne, Australia
| | - Maoshan Chen
- Myeloma Research Group, Australian Centre for Blood Diseases, The Alfred Hospital/Monash University, Melbourne, Australia
| | - Francesco Dammacco
- Department of Internal Medicine and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy
| | - Roberto Ria
- Department of Internal Medicine and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy
| | - Francesco Silvestris
- Department of Internal Medicine and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy
| | - Angelo Vacca
- Department of Internal Medicine and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy
| | - John Reynolds
- Biostatistics Consulting Platform, Faculty of Medicine, Nursing and Health Sciences, Monash University, The Alfred Centre, Melbourne, Australia
| | - Andrew Spencer
- Myeloma Research Group, Australian Centre for Blood Diseases, The Alfred Hospital/Monash University, Melbourne, Australia.,Malignant Haematology and Stem Cell Transplantation, The Alfred Hospital, Melbourne, Australia.,Department of Clinical Haematology, Monash University, Melbourne, Australia
| |
Collapse
|
25
|
Agbana P, Lee MJ, Rychahou P, Kim KB, Bae Y. Ternary Polypeptide Nanoparticles with Improved Encapsulation, Sustained Release, and Enhanced In Vitro Efficacy of Carfilzomib. Pharm Res 2020; 37:213. [PMID: 33025286 DOI: 10.1007/s11095-020-02922-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/01/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE To develop a new nanoparticle formulation for a proteasome inhibitor Carfilzomib (CFZ) to improve its stability and efficacy for future in vivo applications. METHODS CFZ-loaded ternary polypeptide nanoparticles (CFZ/tPNPs) were prepared by using heptakis(6-amino-6-deoxy)-β-cyclodextrin(hepta-hydrochloride) (HaβCD) and azido-poly(ethylene glycol)-block-poly(L-glutamic acid sodium salt) (N3-PEG-PLE). The process involved ternary (hydrophobic/ionic/supramolecular) interactions in three steps: 1) CFZ was entrapped in the cavity of HaβCD by hydrophobic interaction, 2) the drug-cyclodextrin inclusion complexes were mixed with N3-PEG-PLE to form polyion complex nanoparticles, and 3) the nanoparticles were modified with fluorescent dyes (AFDye 647) for imaging and/or epithelial cell adhesion molecule (EpCAM) antibodies for cancer cell targeting. CFZ/tPNPs were characterized for particle size, surface charge, drug release, stability, intracellular uptake, proteasome inhibition, and in vitro cytotoxicity. RESULTS tPNPs maintained an average particle size of 50 nm after CFZ entrapment, EpCAM conjugation, and freeze drying. tPNPs achieved high aqueous solubility of CFZ (>1 mg/mL), sustained drug release (t1/2 = 6.46 h), and EpCAM-mediated cell targeting, which resulted in increased intracellular drug accumulation, prolonged proteasome inhibition, and enhanced cytotoxicity of CFZ in drug-resistant DLD-1 colorectal cancer cells. CONCLUSIONS tPNPs improved stability and efficacy of CFZ in vitro, and these results potentiate effective cancer treatment using CFZ/tPNPs in future vivo studies.
Collapse
Affiliation(s)
- Preye Agbana
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone, Lexington, Kentucky, 40536-0596, USA
| | - Min Jae Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone, Lexington, Kentucky, 40536-0596, USA
| | - Piotr Rychahou
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, 40536, USA
| | - Kyung-Bo Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone, Lexington, Kentucky, 40536-0596, USA
| | - Younsoo Bae
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone, Lexington, Kentucky, 40536-0596, USA.
| |
Collapse
|
26
|
Bai Y, Su X. Updates to the drug-resistant mechanism of proteasome inhibitors in multiple myeloma. Asia Pac J Clin Oncol 2020; 17:29-35. [PMID: 32920949 DOI: 10.1111/ajco.13459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022]
Abstract
Proteasome inhibitors (PIs) have been a kind of backbone therapies for newly diagnosed as well as relapsed or refractory myeloma patients in the last two decades. Bortezomib, the first-in-class PI, was approved by the United States Food and Drug Administration in 2003. The key roles of this class of agents are targeting at the overstressed 26S proteasome, which are involved in the pathogenesis of the disease. Despite recent advancements in clinical antimyeloma treatment, the acquisition of resistance is a major limitation in PI therapy. This review aims at a better understanding of the pathways and biomarkers involved in MM drug resistance.
Collapse
Affiliation(s)
- Yang Bai
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, 130021, P. R. China
| | - Xing Su
- The Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, 130021, P. R. China
| |
Collapse
|
27
|
Targeting the ubiquitin-proteasome pathway to overcome anti-cancer drug resistance. Drug Resist Updat 2020; 48:100663. [DOI: 10.1016/j.drup.2019.100663] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/01/2019] [Accepted: 11/03/2019] [Indexed: 02/07/2023]
|
28
|
Rabiee Motmaen S, Tavakol S, Joghataei MT, Barati M. Acidic pH derived from cancer cells as a double-edged knife modulates wound healing through DNA repair genes and autophagy. Int Wound J 2019; 17:137-148. [PMID: 31714008 DOI: 10.1111/iwj.13248] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/18/2019] [Accepted: 09/22/2019] [Indexed: 12/16/2022] Open
Abstract
Wound healing is a sequester program that involves diverse cell signalling cascades. Notwithstanding, complete signal transduction pathways underpinning acidic milieu derived from cancer cells is not clear, yet. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, fluorescein diacetate/propidium iodide staining, and cell cycle flow cytometry revealed that acidic media decreased cell viability and cell number along with enhanced dead cells and S-phase arrest in normal fibroblasts. Notably, the trends of intracellular reactive oxygen species production and lactate dehydrogenase release significantly increased with time. It seems the downregulation of Klf4 is in part due to acidosis-induced DNA damage. It promoted cells towards S-phase arrest and diminished cell proliferation. Klf4 downregulation had a direct correlation with the P53 level while acidic microenvironment promotes cells towards cell death mechanisms including apoptosis and autophagy. Noteworthily, the unchanged levels of Rb and Mlh1 indicated in those genes had no dominant role in the repairing of DNA damage in fibroblasts treated with the acidic microenvironment. Therefore, cells owing to not entering to mitosis and accumulation of DNA damage were undergone cell death to preserve cell homeostasis. Since acidic media decreased the level of tumour suppressor and DNA repair genes and altered the normal survival pathways in fibroblasts, caution should be exercised to not lead to cancer rather than wound healing.
Collapse
Affiliation(s)
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad T Joghataei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Barati
- Department of Medical Biotechnology, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Ho CJ, Gorski SM. Molecular Mechanisms Underlying Autophagy-Mediated Treatment Resistance in Cancer. Cancers (Basel) 2019; 11:E1775. [PMID: 31717997 PMCID: PMC6896088 DOI: 10.3390/cancers11111775] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
Despite advances in diagnostic tools and therapeutic options, treatment resistance remains a challenge for many cancer patients. Recent studies have found evidence that autophagy, a cellular pathway that delivers cytoplasmic components to lysosomes for degradation and recycling, contributes to treatment resistance in different cancer types. A role for autophagy in resistance to chemotherapies and targeted therapies has been described based largely on associations with various signaling pathways, including MAPK and PI3K/AKT signaling. However, our current understanding of the molecular mechanisms underlying the role of autophagy in facilitating treatment resistance remains limited. Here we provide a comprehensive summary of the evidence linking autophagy to major signaling pathways in the context of treatment resistance and tumor progression, and then highlight recently emerged molecular mechanisms underlying autophagy and the p62/KEAP1/NRF2 and FOXO3A/PUMA axes in chemoresistance.
Collapse
Affiliation(s)
- Cally J. Ho
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada;
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Sharon M. Gorski
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada;
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
30
|
Gong J, Zhan H, Li Y, Zhang W, Jin J, He Q. Krüppel‑like factor 4 ameliorates diabetic kidney disease by activating autophagy via the mTOR pathway. Mol Med Rep 2019; 20:3240-3248. [PMID: 31432191 PMCID: PMC6755248 DOI: 10.3892/mmr.2019.10585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/05/2019] [Indexed: 12/15/2022] Open
Abstract
Diabetic kidney disease (DKD) is diagnosed increasingly frequently and represents a serious threat to human health. Krüppel‑like factor 4 (KLF4) has aroused attention due to its potential effect on podocytes and in ameliorating proteinuria associated with glomerulopathy. The purpose of the present study was to investigate the potential role of KLF4 in DKD. It was hypothesized that KLF4 impacts diabetic nephropathy by mediating the podocyte autophagic process. A KLF4 plasmid vector was constructed, and podocytes were transfected and incubated with DKD mice serum for in vitro experiments. A db/db spontaneous DKD mouse model was also established for in vivo study. After treatment, the level of serum creatinine (Scr), blood urea nitrogen (BUN), and 24‑h urinary protein was determined. Immunofluorescence and periodic acid‑Schiff staining, western blotting, flow cytometry and a TUNEL assay were performed to observe changes in glomerular morphology and the level of apoptosis, cytoskeleton proteins, epithelial‑mesenchymal transition (EMT) biomarkers, autophagic proteins and mTOR pathway proteins in each group. KLF4 overexpression significantly reduced the level of urinary albumin, Scr, BUN and attenuated mesangial matrix expansion, as well as mesangial cell proliferation in DKD mice. KLF4 overexpression also inhibited podocyte apoptosis and downregulated vimentin and α‑smooth muscle actin, and upregulated E‑cadherin and nephrin, both in vivo and in vitro. Moreover, the microtubule associated protein 1 light chain 3α (LC3)‑II/LC3‑I ratio and LC3‑II fluorescence was significantly increased in the vector‑KLF4 group compared to the negative control vector group both in vivo and in vitro. Finally, a decrease in the level of phosphorylated (p)‑mTOR and p‑S6K protein expression was observed following KLF4 overexpression in vitro. The present findings suggested that KLF4 plays a renoprotective role in DKD, which is associated with the activation of podocyte autophagy, and may be involved in the mTOR signaling pathway.
Collapse
Affiliation(s)
- Jianguang Gong
- Department of Nephrology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
- People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
- Chinese Medical Nephrology Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang 310014, P.R. China
| | - Huifang Zhan
- Department of Emergency, Zhejiang University Hospital, Hangzhou, Zhejiang 310058, P.R. China
| | - Yiwen Li
- Department of Nephrology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
- People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
- Chinese Medical Nephrology Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang 310014, P.R. China
| | - Wei Zhang
- Department of Nephrology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
- People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
- Chinese Medical Nephrology Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang 310014, P.R. China
| | - Juan Jin
- Department of Nephrology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
- People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
- Chinese Medical Nephrology Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang 310014, P.R. China
| | - Qiang He
- Department of Nephrology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
- People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
- Chinese Medical Nephrology Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
31
|
Wang F, Zhang Z, Leung WT, Chen J, Yi J, Ying C, Yuan M, Wang M, Zhang N, Qiu X, Wang L, Wei H. Hydroxychloroquine reverses the drug resistance of leukemic K562/ADM cells by inhibiting autophagy. Mol Med Rep 2019; 20:3883-3892. [PMID: 31485616 DOI: 10.3892/mmr.2019.10621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/18/2019] [Indexed: 11/06/2022] Open
Abstract
Autophagy is an essential metabolic pathway mediated by lysosomal degradation, which is involved in scavenging and recycling senescent or damaged organelles and biological macromolecules in eukaryotic cells. The present study explored the association between the autophagic activity and chemotherapy resistance of leukaemia cells, and the possibility of using autophagy inhibitors to combat leukemic drug resistance. It was found that the levels of basic autophagy in multidrug‑resistant leukaemia cells (K562/ADM) were significantly higher compared with sensitive cells (K562), and that Adriamycin (ADM) was capable of inducing autophagic activity in K562 and K562/ADM cells. K562 and K562/ADM cells were treated with a series of hydroxychloroquine (HCQ) concentrations to inhibit cellular autophagy and detect cell sensitivity to ADM. The results demonstrated that the sensitivity of K562 cells to ADM was mildly enhanced by HCQ, and that the sensitivity of K562/ADM cells to ADM was markedly strengthened by HCQ. In addition, more typical morphological changes associated with apoptosis emerged, and the ratio of Bax/Bcl‑2 and activity of caspase‑3 were markedly increased in K562/ADM cells treated with HCQ. Notably, the expression of mdr1 mRNA and P‑glycoprotein (P‑gp) in drug‑resistant K562/ADM cells was upregulated along with increasing autophagic activity induced by ADM. Furthermore, HCQ significantly reduced the increase in P‑gp expression by inhibiting autophagic activity. Collectively, these findings indicated that the inhibition of autophagy significantly promoted the sensitivity of K562/ADM cells to ADM by facilitating apoptosis. Furthermore, inhibition of autophagy attenuated the expression of P‑gp; therefore, P‑gp may be involved in autophagic regulation in drug‑resistant cells.
Collapse
Affiliation(s)
- Feifei Wang
- Department of Laboratory Medicine, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, P.R. China
| | - Zhewen Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Wing Ting Leung
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| | - Jing Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Juan Yi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Chunmei Ying
- Department of Laboratory Medicine, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, P.R. China
| | - Minmin Yuan
- Department of Laboratory Medicine, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, P.R. China
| | - Mingyan Wang
- Department of Laboratory Medicine, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, P.R. China
| | - Na Zhang
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| | - Xuemin Qiu
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| | - Ling Wang
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| | - Hulai Wei
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
32
|
Kim M, Park Y, Kwon Y, Kim Y, Byun J, Jeong MS, Kim HU, Jung HS, Mun JY, Jeoung D. MiR-135-5p-p62 Axis Regulates Autophagic Flux, Tumorigenic Potential, and Cellular Interactions Mediated by Extracellular Vesicles During Allergic Inflammation. Front Immunol 2019; 10:738. [PMID: 31024564 PMCID: PMC6460569 DOI: 10.3389/fimmu.2019.00738] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/19/2019] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to investigate the relationship between autophagy and allergic inflammation. In vitro allergic inflammation was accompanied by an increased autophagic flux in rat basophilic leukemia (RBL2H3) cells. 3-MA, an inhibitor of autophagic processes, negatively regulated allergic inflammation both in vitro and in vivo. The role of p62, a selective receptor of autophagy, in allergic inflammation was investigated. P62, increased by antigen stimulation, mediated in vitro allergic inflammation, passive cutaneous anaphylaxis (PCA), and passive systemic anaphylaxis (PSA). P62 mediated cellular interactions during allergic inflammation. It also mediated tumorigenic and metastatic potential of cancer cells enhanced by PSA. TargetScan analysis predicted that miR-135-5p was a negative regulator of p62. Luciferase activity assay showed that miR-135-5p directly regulated p62. MiR-135-5p mimic negatively regulated features of allergic inflammation and inhibited tumorigenic and metastatic potential of cancer cells enhanced by PSA. MiR-135-5p mimic also inhibited cellular interactions during allergic inflammation. Extracellular vesicles mediated allergic inflammation both in vitro and in vivo. Extracellular vesicles were also necessary for cellular interactions during allergic inflammation. Transmission electron microscopy showed p62 within extracellular vesicles of antigen-stimulated rat basophilic leukemia cells (RBL2H3). Extracellular vesicles isolated from antigen-stimulated RBL2H3 cells induced activation of macrophages and enhanced invasion and migration potential of B16F1 mouse melanoma cells in a p62-dependent manner. Extracellular vesicles isolated from PSA-activated BALB/C mouse enhanced invasion and migration potential of B16F1 cells, and induced features of allergic inflammation in RBL2H3 cells. Thus, miR-135-5p-p62 axis might serve as a target for developing anti-allergy drugs.
Collapse
Affiliation(s)
- Misun Kim
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea
| | - Yeongseo Park
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea
| | - Yoojung Kwon
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea
| | - Youngmi Kim
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea
| | - Jaehwan Byun
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea
| | - Myeong Seon Jeong
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea.,Chuncheon Center, Korean Basic Science Institute, Chuncheon, South Korea
| | - Han-Ul Kim
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea
| | - Hyun Suk Jung
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea
| | - Ji Young Mun
- Department of Structure and Function of Neural Network, Korea Brain Research Institute, Daegu, South Korea
| | - Dooil Jeoung
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
33
|
Lee MJ, Miller Z, Park JE, Bhattarai D, Lee W, Kim KB. H727 cells are inherently resistant to the proteasome inhibitor carfilzomib, yet require proteasome activity for cell survival and growth. Sci Rep 2019; 9:4089. [PMID: 30858500 PMCID: PMC6411724 DOI: 10.1038/s41598-019-40635-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/20/2019] [Indexed: 01/06/2023] Open
Abstract
The second-in-class proteasome inhibitor (PI) carfilzomib (Kyprolis, Cfz) has contributed to a substantial advancement in multiple myeloma treatment by improving patient survival and quality of life. A considerable portion of patients however display intrinsic resistance to Cfz. Our mechanistic understanding of intrinsic Cfz resistance is limited due to a lack of suitable cell-based models. We report that H727 human bronchial carcinoid cells are inherently resistant to Cfz, yet susceptible to other PIs and inhibitors targeting upstream components of the ubiquitin-proteasome system (UPS). These results indicate that H727 cells remain dependent on the UPS for cell survival and growth despite harboring intrinsic resistance to Cfz. Alterations in the composition of proteasome catalytic subunits via interferon-γ treatment or siRNA knockdown results in sensitization of H727 cells to Cfz. We postulate that a potential link may exist between the composition of proteasome catalytic subunits and the cellular response to Cfz. Overall, H727 cells may serve as a useful cell-based model for de novo Cfz resistance and our results suggest previously unexplored mechanisms of de novo PI resistance.
Collapse
Affiliation(s)
- Min Jae Lee
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Zachary Miller
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Ji Eun Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Deepak Bhattarai
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Kyung Bo Kim
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
34
|
Chen H, Zhao C, He R, Zhou M, Liu Y, Guo X, Wang M, Zhu F, Qin R, Li X. Danthron suppresses autophagy and sensitizes pancreatic cancer cells to doxorubicin. Toxicol In Vitro 2018; 54:345-353. [PMID: 30389604 DOI: 10.1016/j.tiv.2018.10.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/28/2018] [Accepted: 10/29/2018] [Indexed: 12/21/2022]
Abstract
In contrast to the steady increase in survival observed for most cancer types, advances have been slow for pancreatic cancers. Current chemotherapy has limited benefits for patients with pancreatic cancer. Therefore, there is an urgent need for effective pancreatic cancer treatment strategies. At present, targeting the autophagic pathway is regarded as a promising new strategy for cancer treatment. Danthron (1,8-dihydroxyanthrquinone), a component from Rheum palmatum L. (polygonaceae), has several biological activities. However, the inhibition of autophagy by danthron has never been recognized, previously.Here we find that danthron may prevent autophagy, inhibit proliferation and induce apoptosis in pancreatic cancer cells in vitro. Autophagy induced by doxorubicin plays a protective role in pancreatic cancer cells and inhibition of autophagy by chloroquine or silencing autophagy protein 5 (Atg5) may chemosensitize pancreatic cancer cell lines to doxorubicin. Similarly, inhibition of autophagy by danthron also enhances toxicity of doxorubicin to pancreatic cancer cells. These results indicate that danthron has an anticancer effect and can sensitize the chemotherapeutic effect of doxorubicin on pancreatic cancer cells. These findings also suggest that inhibition of autophagy may be an effective way to promote the chemotherapy of pancreatic cancer.
Collapse
Affiliation(s)
- Hua Chen
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chunle Zhao
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ruizhi He
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Min Zhou
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuhui Liu
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xingjun Guo
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Min Wang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Feng Zhu
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Renyi Qin
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Xu Li
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
35
|
Desantis V, Saltarella I, Lamanuzzi A, Mariggiò MA, Racanelli V, Vacca A, Frassanito MA. Autophagy: A New Mechanism of Prosurvival and Drug Resistance in Multiple Myeloma. Transl Oncol 2018; 11:1350-1357. [PMID: 30196237 PMCID: PMC6132177 DOI: 10.1016/j.tranon.2018.08.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 12/25/2022] Open
Abstract
Autophagy is an intracellular self-degradative process that balances cell energy source and regulates tissue homeostasis. In physiological condition, autophagy funnels cytoplasmic constituents to autophagolysosomes for degradation and is an alternative way for cell-death behavior. Here, we inspected autophagy as a prosurvival mechanism essential for drug resistance in multiple myeloma (MM). Accordingly, autophagy inhibitors used in association to conventional anti-MM drugs might enforce the effect against resistant MM plasma cells and render autophagy a new therapeutic target.
Collapse
Affiliation(s)
- V Desantis
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro Medical School, Bari, Italy
| | - I Saltarella
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro Medical School, Bari, Italy
| | - A Lamanuzzi
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro Medical School, Bari, Italy
| | - M A Mariggiò
- Department of Biomedical Sciences and Human Oncology, Unit of General Pathology, University of Bari Aldo Moro Medical School, Bari, Italy
| | - V Racanelli
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro Medical School, Bari, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro Medical School, Bari, Italy.
| | - M A Frassanito
- Department of Biomedical Sciences and Human Oncology, Unit of General Pathology, University of Bari Aldo Moro Medical School, Bari, Italy
| |
Collapse
|
36
|
Hanke NT, Imler E, Marron MT, Seligmann BE, Garland LL, Baker AF. Characterization of carfilzomib-resistant non-small cell lung cancer cell lines. J Cancer Res Clin Oncol 2018; 144:1317-1327. [PMID: 29766327 DOI: 10.1007/s00432-018-2662-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/08/2018] [Indexed: 01/12/2023]
Abstract
PURPOSE We previously showed that carfilzomib (CFZ) has potent anti-proliferative and cytotoxic activity in a broad range of lung cancer cell lines. Here we investigate possible mechanisms of CFZ acquired resistance in lung cancer cell lines. METHODS CFZ-resistant non-small cell lung cancer (NSCLC) cell lines were developed by exposing A549 and H520 cells to stepwise increasing concentrations of CFZ. Resistance to CFZ and cross-resistance to bortezomib and other chemotherapy drugs was measured using the MTT assay. Cytotoxicity to CFZ was determined using a CytoTox assay. Western blot was used to measure apoptosis, autophagy, and drug efflux transporter-related proteins. Quantitative targeted whole transcriptome sequencing and quantitative RT-PCR was used to measure gene expression. Flow cytometry was used to analyze intracellular accumulation of doxorubicin. RESULTS The CFZ IC50 value of the resistant cells increased versus parental lines (2.5-fold for A549, 122-fold for H520). Resistant lines showed reduced expression of apoptosis and autophagy markers and reduced death versus parental lines following CFZ treatment. Both resistant lines exhibited higher P-glycoprotein (Pgp) gene (TempO-Seq® analysis, increased 1.2-fold in A549, > 9000-fold in H520) and protein expression levels versus parental lines. TempO-Seq® analysis indicated other drug resistance pathways were upregulated. The resistant cell lines demonstrated less accumulation of intracellular doxorubicin, and were cross-resistant to other Pgp client drugs: bortezomib, doxorubicin, and paclitaxel, but not cisplatin. CONCLUSIONS Upregulation of Pgp appears to be an important, but not the only, mechanism of CFZ resistance in NSCLC cell lines.
Collapse
Affiliation(s)
- Neale T Hanke
- College of Medicine, University of Arizona Cancer Center, Tucson, AZ, USA
| | | | | | | | - Linda L Garland
- College of Medicine, University of Arizona Cancer Center, Tucson, AZ, USA
| | - Amanda F Baker
- College of Medicine, University of Arizona Cancer Center, Tucson, AZ, USA.
- Ventana Medical Systems, Inc., A Member of the Roche Group, 1910 East Innovation Park Drive, Tucson, AZ, 85755, USA.
| |
Collapse
|
37
|
Cytokeratin 19 (KRT19) has a Role in the Reprogramming of Cancer Stem Cell-Like Cells to Less Aggressive and More Drug-Sensitive Cells. Int J Mol Sci 2018; 19:ijms19051423. [PMID: 29747452 PMCID: PMC5983664 DOI: 10.3390/ijms19051423] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 02/08/2023] Open
Abstract
Cytokeratin 19 (KRT19) is a cytoplasmic intermediate filament protein, which is responsible for structural rigidity and multipurpose scaffolds. In several cancers, KRT19 is overexpressed and may play a crucial role in tumorigenic transformation. In our previous study, we revealed the role of KRT19 as signaling component which mediated Wnt/NOTCH crosstalk through NUMB transcription in breast cancer. Here, we investigated the function of KRT19 in cancer reprogramming and drug resistance in breast cancer cells. We found that expression of KRT19 was attenuated in several patients-derived breast cancer tissues and patients with a low expression of KRT19 were significantly correlated with poor prognosis in breast cancer patients. Consistently, highly aggressive and drug-resistant breast cancer patient-derived cancer stem cell-like cells (konkuk university-cancer stem cell-like cell (KU-CSLCs)) displayed higher expression of cancer stem cell (CSC) markers, including ALDH1, CXCR4, and CD133, but a much lower expression of KRT19 than that is seen in highly aggressive triple negative breast cancer MDA-MB231 cells. Moreover, we revealed that the knockdown of KRT19 in MDA-MB231 cells led to an enhancement of cancer properties, such as cell proliferation, sphere formation, migration, and drug resistance, while the overexpression of KRT19 in KU-CSLCs resulted in the significant attenuation of cancer properties. KRT19 regulated cancer stem cell reprogramming by modulating the expression of cancer stem cell markers (ALDH1, CXCR4, and CD133), as well as the phosphorylation of Src and GSK3β (Tyr216). Therefore, our data may imply that the modulation of KRT19 expression could be involved in cancer stem cell reprogramming and drug sensitivity, which might have clinical implications for cancer or cancer stem cell treatment.
Collapse
|
38
|
Yong K, Gonzalez-McQuire S, Szabo Z, Schoen P, Hajek R. The start of a new wave: Developments in proteasome inhibition in multiple myeloma. Eur J Haematol 2018; 101:220-236. [PMID: 29603798 DOI: 10.1111/ejh.13071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2018] [Indexed: 12/14/2022]
Abstract
Multiple myeloma (MM) accounts for 10% of hematological cancers. Stem cell transplantation remains the cornerstone of first-line treatment for eligible patients, but historically, pharmaceutical treatment options for MM have been limited. The proteasome was identified as a target for MM therapy in the early 2000s and, in 2004, the boronic acid proteasome inhibitor bortezomib gained European approval. Bortezomib now plays a major role in MM treatment, but the duration of its use can be limited by toxicities such as peripheral neuropathy and the development of resistance. A new generation of proteasome inhibitors has since entered the treatment landscape: carfilzomib, an epoxyketone-based agent with a distinct mode of action, high clinical efficacy, and lower levels of peripheral neuropathy compared with bortezomib, received approval in 2015 for use in patients with relapsed and/or refractory MM (RRMM). Ixazomib, a second-generation, orally administered, boronic acid proteasome inhibitor, has also been approved for use in patients with RRMM. In just over a decade, proteasome inhibitor-based regimens have become an integral component of MM treatment; with more proteasome inhibitors in development, this remains a vibrant research area with potential to improve the lives of patients with MM in the years to come.
Collapse
Affiliation(s)
- Kwee Yong
- Department of Haematology, University College Hospital, London, UK
| | | | | | | | - Roman Hajek
- University Hospital Ostrava, Ostrava, Czech Republic
- Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
39
|
Sha Z, Schnell HM, Ruoff K, Goldberg A. Rapid induction of p62 and GABARAPL1 upon proteasome inhibition promotes survival before autophagy activation. J Cell Biol 2018. [PMID: 29535191 PMCID: PMC5940303 DOI: 10.1083/jcb.201708168] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cells are thought to adapt to proteasome inhibition by using alternative pathways for degradation such as autophagy. Sha et al. now report that cells rapidly induce GABARAPL1 and p62 upon proteasome inhibition, but this promotes cell survival by sequestering ubiquitinated and sumoylated proteins long before the cells induce other Atg genes and activate autophagy. Proteasome inhibitors are used as research tools and to treat multiple myeloma, and proteasome activity is diminished in several neurodegenerative diseases. We therefore studied how cells compensate for proteasome inhibition. In 4 h, proteasome inhibitor treatment caused dramatic and selective induction of GABARAPL1 (but not other autophagy genes) and p62, which binds ubiquitinated proteins and GABARAPL1 on autophagosomes. Knockdown of p62 or GABARAPL1 reduced cell survival upon proteasome inhibition. p62 induction requires the transcription factor nuclear factor (erythroid-derived 2)-like 1 (Nrf1), which simultaneously induces proteasome genes. After 20-h exposure to proteasome inhibitors, cells activated autophagy and expression of most autophagy genes by an Nrf1-independent mechanism. Although p62 facilitates the association of ubiquitinated proteins with autophagosomes, its knockdown in neuroblastoma cells blocked the buildup of ubiquitin conjugates in perinuclear aggresomes and of sumoylated proteins in nuclear inclusions but did not reduce the degradation of ubiquitinated proteins. Thus, upon proteasome inhibition, cells rapidly induce p62 expression, which enhances survival primarily by sequestering ubiquitinated proteins in inclusions.
Collapse
Affiliation(s)
- Zhe Sha
- Harvard Medical School, Boston, MA
| | | | | | | |
Collapse
|
40
|
Riz I, Hawley TS, Marsal JW, Hawley RG. Noncanonical SQSTM1/p62-Nrf2 pathway activation mediates proteasome inhibitor resistance in multiple myeloma cells via redox, metabolic and translational reprogramming. Oncotarget 2018; 7:66360-66385. [PMID: 27626179 PMCID: PMC5340085 DOI: 10.18632/oncotarget.11960] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/03/2016] [Indexed: 11/25/2022] Open
Abstract
Multiple Myeloma (MM) is a B-cell malignancy characterized by the accumulation of clonal plasma cells in the bone marrow, with drug resistance being a major cause of therapeutic failure. We established a carfilzomib-resistant derivative of the LP-1 MM cell line (LP-1/Cfz) and found that the transcription factor NF-E2 p45-related factor 2 (Nrf2; gene symbol NFE2L2) contributes to carfilzomib resistance. The mechanism of Nrf2 activation involved enhanced translation of Nrf2 as well as its positive regulator, the autophagy receptor sequestosome 1 (SQSTM1)/p62. The eukaryotic translation initiation factor gene EIF4E3 was among the Nrf2 target genes upregulated in LP-1/Cfz cells, suggesting existence of a positive feedback loop. In line with this, we found that siRNA knockdown of eIF4E3 decreased Nrf2 protein levels. On the other hand, elevated SQSTM1/p62 levels were due at least in part to activation of the PERK-eIF2α pathway. LP-1/Cfz cells had decreased levels of reactive oxygen species as well as elevated levels of fatty acid oxidation and prosurvival autophagy. Genetic and pharmacologic inhibition of the Nrf2-EIF4E3 axis or the PERK-eIF2α pathway, disruption of redox homeostasis or inhibition of fatty acid oxidation or autophagy conferred sensitivity to carfilzomib. Our findings were supported by clinical data where increased EIF4E3 expression was predictive of Nrf2 target gene upregulation in a subgroup of patients with chemoresistant minimal residual disease and relapsed/refractory MM. Thus, our data offer a preclinical rationale for including inhibitors of the SQSTM1/p62-Nrf2 pathway to the treatment regimens for certain advanced stage MM patients.
Collapse
Affiliation(s)
- Irene Riz
- Department of Anatomy and Regenerative Biology, George Washington University, Washington, DC, USA
| | - Teresa S Hawley
- Flow Cytometry Core Facility, George Washington University, Washington, DC, USA.,Flow Cytometry Core, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey W Marsal
- Department of Anatomy and Regenerative Biology, George Washington University, Washington, DC, USA
| | - Robert G Hawley
- Department of Anatomy and Regenerative Biology, George Washington University, Washington, DC, USA
| |
Collapse
|
41
|
Enhancer-associated long non-coding RNA LEENE regulates endothelial nitric oxide synthase and endothelial function. Nat Commun 2018; 9:292. [PMID: 29348663 PMCID: PMC5773557 DOI: 10.1038/s41467-017-02113-y] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 11/08/2017] [Indexed: 12/21/2022] Open
Abstract
The optimal expression of endothelial nitric oxide synthase (eNOS), the hallmark of endothelial homeostasis, is vital to vascular function. Dynamically regulated by various stimuli, eNOS expression is modulated at transcriptional, post-transcriptional, and post-translational levels. However, epigenetic modulations of eNOS, particularly through long non-coding RNAs (lncRNAs) and chromatin remodeling, remain to be explored. Here we identify an enhancer-associated lncRNA that enhances eNOS expression (LEENE). Combining RNA-sequencing and chromatin conformation capture methods, we demonstrate that LEENE is co-regulated with eNOS and that its enhancer resides in proximity to eNOS promoter in endothelial cells (ECs). Gain- and Loss-of-function of LEENE differentially regulate eNOS expression and EC function. Mechanistically, LEENE facilitates the recruitment of RNA Pol II to the eNOS promoter to enhance eNOS nascent RNA transcription. Our findings unravel a new layer in eNOS regulation and provide novel insights into cardiovascular regulation involving endothelial function. eNOS expression is dynamically regulated both transcriptionally and post-transcriptionally by various stimuli. Here the authors identify an enhancer-associated lncRNA (LEENE) that is co-regulated with, and enhances eNOS expression.
Collapse
|
42
|
Adamik J, Silbermann R, Marino S, Sun Q, Anderson JL, Zhou D, Xie XQ, Roodman GD, Galson DL. XRK3F2 Inhibition of p62-ZZ Domain Signaling Rescues Myeloma-Induced GFI1-Driven Epigenetic Repression of the Runx2 Gene in Pre-osteoblasts to Overcome Differentiation Suppression. Front Endocrinol (Lausanne) 2018; 9:344. [PMID: 30008697 PMCID: PMC6033965 DOI: 10.3389/fendo.2018.00344] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/07/2018] [Indexed: 01/05/2023] Open
Abstract
Multiple myeloma bone disease (MMBD) is characterized by non-healing lytic bone lesions that persist even after a patient has achieved a hematologic remission. We previously reported that p62 (sequestosome-1) in bone marrow stromal cells (BMSC) is critical for the formation of MM-induced signaling complexes that mediate OB suppression. Importantly, XRK3F2, an inhibitor of the p62-ZZ domain, blunted MM-induced Runx2 suppression in vitro, and induced new bone formation and remodeling in the presence of tumor in vivo. Additionally, we reported that MM cells induce the formation of repressive chromatin on the Runx2 gene in BMSC via direct binding of the transcriptional repressor GFI1, which recruits the histone modifiers, histone deacetylase 1 (HDAC1) and Enhancer of zeste homolog 2 (EZH2). In this study we investigated the mechanism by which blocking p62-ZZ domain-dependent signaling prevents MM-induced suppression of Runx2 in BMSC. XRK3F2 prevented MM-induced upregulation of Gfi1 and repression of the Runx2 gene when present in MM-preOB co-cultures. We also show that p62-ZZ-domain blocking by XRK3F2 also prevented MM conditioned media and TNF plus IL7-mediated Gfi1 mRNA upregulation and the concomitant Runx2 repression, indicating that XRK3F2's prevention of p62-ZZ domain signaling within preOB is involved in the response. Chromatin immunoprecipitation (ChIP) analyses revealed that XRK3F2 decreased MM-induced GFI1 occupancy at the Runx2-P1 promoter and prevented recruitment of HDAC1, thus preserving the transcriptionally permissive chromatin mark H3K9ac on Runx2 and allowing osteogenic differentiation. Furthermore, treatment of MM-exposed preOB with XRK3F2 after MM removal decreased GFI1 enrichment at Runx2-P1 and rescued MM-induced suppression of Runx2 mRNA and its downstream osteogenic gene targets together with increased osteogenic differentiation. Further, primary BMSC (hBMSC) from MM patients (MM-hBMSC) had little ability to increase H3K9ac on the Runx2 promoter in osteogenic conditions when compared to hBMSC from healthy donors (HD). XRK3F2 treatment enriched Runx2 gene H3K9ac levels in MM-hBMSC to the level observed in HD-hBMSC, but did not alter HD-hBMSC H3K9ac. Importantly, XRK3F2 treatment of long-term MM-hBMSC cultures rescued osteogenic differentiation and mineralization. Our data show that blocking p62-ZZ domain-dependent signaling with XRK3F2 can reverse epigenetic-based mechanisms of MM-induced Runx2 suppression and promote osteogenic differentiation.
Collapse
Affiliation(s)
- Juraj Adamik
- Division of Hematology/Oncology, Department of Medicine, UPMC Hillman Cancer Center, The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rebecca Silbermann
- Division of Hematology-Oncology, Department of Medicine, Indiana University, Indianapolis, IN, United States
- Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Silvia Marino
- Division of Hematology-Oncology, Department of Medicine, Indiana University, Indianapolis, IN, United States
| | - Quanhong Sun
- Division of Hematology/Oncology, Department of Medicine, UPMC Hillman Cancer Center, The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Judith L. Anderson
- Division of Hematology-Oncology, Department of Medicine, Indiana University, Indianapolis, IN, United States
| | - Dan Zhou
- Division of Hematology-Oncology, Department of Medicine, Indiana University, Indianapolis, IN, United States
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - G. David Roodman
- Division of Hematology-Oncology, Department of Medicine, Indiana University, Indianapolis, IN, United States
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States
| | - Deborah L. Galson
- Division of Hematology/Oncology, Department of Medicine, UPMC Hillman Cancer Center, The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- *Correspondence: Deborah L. Galson ;
| |
Collapse
|
43
|
Li B, Wang W, Li Z, Chen Z, Zhi X, Xu J, Li Q, Wang L, Huang X, Wang L, Wei S, Sun G, Zhang X, He Z, Zhang L, Zhang D, Xu H, El-Rifai W, Xu Z. MicroRNA-148a-3p enhances cisplatin cytotoxicity in gastric cancer through mitochondrial fission induction and cyto-protective autophagy suppression. Cancer Lett 2017; 410:212-227. [PMID: 28965855 PMCID: PMC5675767 DOI: 10.1016/j.canlet.2017.09.035] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/18/2017] [Accepted: 09/21/2017] [Indexed: 12/17/2022]
Abstract
Cisplatin (CDDP) resistance is a major clinical problem associated with poor prognosis in gastric cancer (GC) patients. In this study, we performed integrated analysis of TCGA data from microRNAs (miRNAs) expression matrix of GC patients who received CDDP-based chemotherapy with GEO dataset which contains differential miRNAs expression profiles in CDDP-resistant and -sensitive cell lines. We identified miR-148a-3p downregulation as a key step involved in CDDP resistance. Using a cohort consisting 105 GC patients who received CDDP-based therapy, we found that miR-148a-3p downregulation was associated with a decrease in patients' disease-free survival (DFS, P = 0.0077). A series of experiment data demonstrated that: 1) miR-148a-3p was downregulated in CDDP-resistant GC cell lines; 2) miR-148a-3p reconstitution sensitized CDDP-resistant cells to CDDP treatment through promoting mitochondrial fission and decreasing AKAP1 expression level; 3) AKAP1 played a novel role in CDDP resistance by inhibiting P53-mediated DRP1 dephosphorylation; 4) miR-148a-3p reconstitution in CDDP-resistant cells inhibits the cyto-protective autophagy by suppressing RAB12 expression and mTOR1 activation. Taken together, our study demonstrates that miR-148a-3p could be a promising prognostic marker or therapeutic candidate for overcoming CDDP resistance in GC.
Collapse
Affiliation(s)
- Bowen Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Weizhi Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Zheng Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Zheng Chen
- Department of Surgery and Cancer Biology, Vanderbilt University Medical Center, Nashville, 37232, TN, USA
| | - Xiaofei Zhi
- Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu province, China
| | - Jianghao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Qing Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Lu Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Xiaoxu Huang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Linjun Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Song Wei
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Guangli Sun
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Xuan Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Zhongyuan He
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Lu Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Diancai Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Hao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Wael El-Rifai
- Department of Surgery and Cancer Biology, Vanderbilt University Medical Center, Nashville, 37232, TN, USA; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, 37232, TN, USA.
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China.
| |
Collapse
|
44
|
Soave CL, Guerin T, Liu J, Dou QP. Targeting the ubiquitin-proteasome system for cancer treatment: discovering novel inhibitors from nature and drug repurposing. Cancer Metastasis Rev 2017; 36:717-736. [PMID: 29047025 PMCID: PMC5722705 DOI: 10.1007/s10555-017-9705-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the past 15 years, the proteasome has been validated as an anti-cancer drug target and 20S proteasome inhibitors (such as bortezomib and carfilzomib) have been approved by the FDA for the treatment of multiple myeloma and some other liquid tumors. However, there are shortcomings of clinical proteasome inhibitors, including severe toxicity, drug resistance, and no effect in solid tumors. At the same time, extensive research has been conducted in the areas of natural compounds and old drug repositioning towards the goal of discovering effective, economical, low toxicity proteasome-inhibitory anti-cancer drugs. A variety of dietary polyphenols, medicinal molecules, metallic complexes, and metal-binding compounds have been found to be able to selectively inhibit tumor cellular proteasomes and induce apoptotic cell death in vitro and in vivo, supporting the clinical success of specific 20S proteasome inhibitors bortezomib and carfilzomib. Therefore, the discovery of natural proteasome inhibitors and researching old drugs with proteasome-inhibitory properties may provide an alternative strategy for improving the current status of cancer treatment and even prevention.
Collapse
Affiliation(s)
- Claire L Soave
- Barbara Ann Karmanos Cancer Institute, and Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, 540.1 HWCRC, 4100 John R Road, Detroit, MI, 48201-2013, USA
| | - Tracey Guerin
- Barbara Ann Karmanos Cancer Institute, and Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, 540.1 HWCRC, 4100 John R Road, Detroit, MI, 48201-2013, USA
| | - Jinbao Liu
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Q Ping Dou
- Barbara Ann Karmanos Cancer Institute, and Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, 540.1 HWCRC, 4100 John R Road, Detroit, MI, 48201-2013, USA.
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.
| |
Collapse
|
45
|
Hsieh PN, Zhou G, Yuan Y, Zhang R, Prosdocimo DA, Sangwung P, Borton AH, Boriushkin E, Hamik A, Fujioka H, Fealy CE, Kirwan JP, Peters M, Lu Y, Liao X, Ramírez-Bergeron D, Feng Z, Jain MK. A conserved KLF-autophagy pathway modulates nematode lifespan and mammalian age-associated vascular dysfunction. Nat Commun 2017; 8:914. [PMID: 29030550 PMCID: PMC5640649 DOI: 10.1038/s41467-017-00899-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 08/04/2017] [Indexed: 01/02/2023] Open
Abstract
Loss of protein and organelle quality control secondary to reduced autophagy is a hallmark of aging. However, the physiologic and molecular regulation of autophagy in long-lived organisms remains incompletely understood. Here we show that the Kruppel-like family of transcription factors are important regulators of autophagy and healthspan in C. elegans, and also modulate mammalian vascular age-associated phenotypes. Kruppel-like family of transcription factor deficiency attenuates autophagy and lifespan extension across mechanistically distinct longevity nematode models. Conversely, Kruppel-like family of transcription factor overexpression extends nematode lifespan in an autophagy-dependent manner. Furthermore, we show the mammalian vascular factor Kruppel-like family of transcription factor 4 has a conserved role in augmenting autophagy and improving vessel function in aged mice. Kruppel-like family of transcription factor 4 expression also decreases with age in human vascular endothelium. Thus, Kruppel-like family of transcription factors constitute a transcriptional regulatory point for the modulation of autophagy and longevity in C. elegans with conserved effects in the murine vasculature and potential implications for mammalian vascular aging.KLF family transcription factors (KLFs) regulate many cellular processes, including proliferation, survival and stress responses. Here, the authors position KLFs as important regulators of autophagy and lifespan in C. elegans, a role that may extend to the modulation of age-associated vascular phenotypes in mammals.
Collapse
Affiliation(s)
- Paishiun N Hsieh
- Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.,Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, 2103 Cornell Road, Cleveland, OH, 44106, USA.,Department of Pathology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Guangjin Zhou
- Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.,Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Yiyuan Yuan
- Department of Pharmacology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Rongli Zhang
- Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.,Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Domenick A Prosdocimo
- Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.,Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Panjamaporn Sangwung
- Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.,Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, 2103 Cornell Road, Cleveland, OH, 44106, USA.,Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Anna H Borton
- Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.,Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, 2103 Cornell Road, Cleveland, OH, 44106, USA.,Department of Pathology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Evgenii Boriushkin
- Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.,Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Anne Hamik
- Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.,Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Hisashi Fujioka
- Electron Microscopy Facility, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.,Department of Pharmacology, Center for Mitochondrial Diseases, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Ciaran E Fealy
- Department of Biomedical Sciences, Kent State University, Cunningham Hall, Kent, OH, 44242, USA
| | - John P Kirwan
- Department of Pathobiology, Lerner Research Institute, 9500 Euclid Avenue, Cleveland Clinic, Cleveland, OH, 44195, USA.,Metabolic Translational Research Center, Cleveland Clinic Foundation, 9500 Euclid Avenue/ M83-02, Cleveland, OH, 44195, USA
| | - Maureen Peters
- Department of Biology, Oberlin College, 119 Woodland Street, Oberlin, OH, 44074, USA
| | - Yuan Lu
- Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.,Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Xudong Liao
- Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.,Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Diana Ramírez-Bergeron
- Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.,Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Zhaoyang Feng
- Department of Pharmacology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
| | - Mukesh K Jain
- Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA. .,Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, 2103 Cornell Road, Cleveland, OH, 44106, USA.
| |
Collapse
|
46
|
TG02 inhibits proteasome inhibitor-induced HSF1 serine 326 phosphorylation and heat shock response in multiple myeloma. Blood Adv 2017; 1:1848-1853. [PMID: 29296831 DOI: 10.1182/bloodadvances.2017006122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 08/21/2017] [Indexed: 11/20/2022] Open
Abstract
Proteasome inhibition activates multiple kinases in myeloma cells resulting in the phosphorylation of p53, HSP27, c-JUN, and HSF1.TG02 inhibits proteasome inhibitor (PI)-induced HSF1 pS326, representing a novel mechanism for a TG02 and PI combination.
Collapse
|
47
|
Ettari R, Zappalà M, Grasso S, Musolino C, Innao V, Allegra A. Immunoproteasome-selective and non-selective inhibitors: A promising approach for the treatment of multiple myeloma. Pharmacol Ther 2017; 182:176-192. [PMID: 28911826 DOI: 10.1016/j.pharmthera.2017.09.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ubiquitin-proteasome system (UPS) is the major non-lysosomal proteolytic system for the degradation of abnormal or damaged proteins no longer required. The proteasome is involved in degradation of numerous proteins which regulate the cell cycle, indicating a role in controlling cell proliferation and maintaining cell survival. Defects in the UPS can lead to anarchic cell proliferation and to tumor development. For these reasons UPS inhibition has become a significant new strategy for drug development in cancer treatment. In addition to the constitutive proteasome, which is expressed in all cells and tissues, higher organisms such as vertebrates possess two immune-type proteasomes, the thymoproteasome and the immunoproteasome. The thymoproteasome is specifically expressed by thymic cortical epithelial cells and has a role in positive selection of CD8+ T cells, whereas the immunoproteasome is predominantly expressed in monocytes and lymphocytes and is responsible for the generation of antigenic peptides for cell-mediated immunity. Recent studies demonstrated that the immunoproteasome has a preservative role during oxidative stress and is up-regulated in a number of pathological disorders including cancer, inflammatory and autoimmune diseases. As a consequence, immunoproteasome-selective inhibitors are currently the focus of anticancer drug design. At present, the commercially available proteasome inhibitors bortezomib and carfilzomib which have been validated in multiple myeloma and other model systems, appear to target both the constitutive and immunoproteasomes, indiscriminately. This lack of specificity may, in part, explain some of the side effects of these agents, such as peripheral neuropathy and gastrointestinal effects, which may be due to targeting of the constitutive proteasome in these tissues. In contrast, by selectively inhibiting the immunoproteasome, it may be possible to maintain the antimyeloma and antilymphoma efficacy while reducing these toxicities, thereby increasing the therapeutic index. This review article will be focused on the discussion of the most promising immunoproteasome specific inhibitors which have been developed in recent years. Particular attention will be devoted to the description of their mechanism of action, their structure-activity relationship, and their potential application in therapy.
Collapse
Affiliation(s)
- Roberta Ettari
- Dipartimento di Scienze del Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, Viale Annunziata, 98168 Messina, Italy
| | - Maria Zappalà
- Dipartimento di Scienze del Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, Viale Annunziata, 98168 Messina, Italy
| | - Silvana Grasso
- Dipartimento di Scienze del Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, Viale Annunziata, 98168 Messina, Italy
| | - Caterina Musolino
- Division of Hematology, Department of Patologia Umana dell'Adulto e dell'Età Evolutiva, University of Messina, Via Consolare Valeria, 90100 Messina, Italy
| | - Vanessa Innao
- Division of Hematology, Department of Patologia Umana dell'Adulto e dell'Età Evolutiva, University of Messina, Via Consolare Valeria, 90100 Messina, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Patologia Umana dell'Adulto e dell'Età Evolutiva, University of Messina, Via Consolare Valeria, 90100 Messina, Italy.
| |
Collapse
|
48
|
Riz I, Hawley RG. Increased expression of the tight junction protein TJP1/ZO-1 is associated with upregulation of TAZ-TEAD activity and an adult tissue stem cell signature in carfilzomib-resistant multiple myeloma cells and high-risk multiple myeloma patients. Oncoscience 2017; 4:79-94. [PMID: 28966941 PMCID: PMC5616201 DOI: 10.18632/oncoscience.356] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/23/2017] [Indexed: 02/07/2023] Open
Abstract
Tight junction protein 1 (TJP1) has recently been proposed as a biomarker to identify multiple myeloma (MM) patients most likely to respond to bortezomib- and carfilzomib-based proteasome inhibitor regimens. Herein we report increased expression of TJP1 during the adaptive response mediating carfilzomib resistance in the LP-1/Cfz MM cell line. Moreover, increased TJP1 expression delineated a subset of relapsed/refractory MM patients on bortezomib-based therapy sharing an LP-1/Cfz-like phenotype characterized by activation of interacting transcriptional effectors of the Hippo signaling cascade (TAZ and TEAD1) and an adult tissue stem cell signature. siRNA-mediated knockdown of TJP1 or TAZ/TEAD1 partially sensitized LP-1/Cfz cells to carfilzomib. Connectivity Map analysis identified translation inhibitors as candidate therapeutic agents targeting this molecular phenotype. We confirmed this prediction by showing that homoharringtonine (omacetaxine mepesuccinate) — the first translation inhibitor to be approved by the U.S. Food and Drug Administration — displayed potent cytotoxic activity on LP-1/Cfz cells. Homoharringtonine treatment reduced the levels of TAZ and TEAD1 as well as the MM-protective proteins Nrf2 and MCL1. Thus, our data suggest the importance of further studies evaluating translation inhibitors in relapsed/refractory MM. On the other hand, use of TJP1 as a MM biomarker for proteasome inhibitor sensitivity requires careful consideration.
Collapse
Affiliation(s)
- Irene Riz
- Department of Anatomy and Regenerative Biology, George Washington University, Washington, DC, USA
| | - Robert G Hawley
- Department of Anatomy and Regenerative Biology, George Washington University, Washington, DC, USA
| |
Collapse
|
49
|
Füllgrabe J, Ghislat G, Cho DH, Rubinsztein DC. Transcriptional regulation of mammalian autophagy at a glance. J Cell Sci 2017; 129:3059-66. [PMID: 27528206 DOI: 10.1242/jcs.188920] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Macroautophagy, hereafter referred to as autophagy, is a catabolic process that results in the lysosomal degradation of cytoplasmic contents ranging from abnormal proteins to damaged cell organelles. It is activated under diverse conditions, including nutrient deprivation and hypoxia. During autophagy, members of the core autophagy-related (ATG) family of proteins mediate membrane rearrangements, which lead to the engulfment and degradation of cytoplasmic cargo. Recently, the nuclear regulation of autophagy, especially by transcription factors and histone modifiers, has gained increased attention. These factors are not only involved in rapid responses to autophagic stimuli, but also regulate the long-term outcome of autophagy. Now there are more than 20 transcription factors that have been shown to be linked to the autophagic process. However, their interplay and timing appear enigmatic as several have been individually shown to act as major regulators of autophagy. This Cell Science at a Glance article and the accompanying poster highlights the main cellular regulators of transcription involved in mammalian autophagy and their target genes.
Collapse
Affiliation(s)
- Jens Füllgrabe
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Wellcome/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - Ghita Ghislat
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Wellcome/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| | - Dong-Hyung Cho
- Department of Gerontology, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, South Korea
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Wellcome/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
50
|
Zhen Z, Yang K, Ye L, You Z, Chen R, Liu Y, He Y. Suberoylanilide hydroxamic acid sensitizes neuroblastoma to paclitaxel by inhibiting thioredoxin-related protein 14-mediated autophagy. Cancer Sci 2017; 108:1485-1492. [PMID: 28498513 PMCID: PMC5497723 DOI: 10.1111/cas.13279] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/01/2017] [Accepted: 05/08/2017] [Indexed: 12/21/2022] Open
Abstract
Paclitaxel is not as effective for neuroblastoma as most of the front‐line chemotherapeutics due to drug resistance. This study explored the regulatory mechanism of paclitaxel‐associated autophagy and potential solutions to paclitaxel resistance in neuroblastoma. The formation of autophagic vesicles was detected by scanning transmission electron microscopy and flow cytometry. The autophagy‐associated proteins were assessed by western blot. Autophagy was induced and the autophagy‐associated proteins LC3‐I, LC3‐II, Beclin 1, and thioredoxin‐related protein 14 (TRP14), were found to be upregulated in neuroblastoma cells that were exposed to paclitaxel. The inhibition of Beclin 1 or TRP14 by siRNA increased the sensitivity of the tumor cells to paclitaxel. In addition, Beclin 1‐mediated autophagy was regulated by TRP14. Furthermore, the TRP14 inhibitor suberoylanilide hydroxamic acid (SAHA) downregulated paclitaxel‐induced autophagy and enhanced the anticancer effects of paclitaxel in normal control cancer cells but not in cells with upregulated Beclin 1 and TRP14 expression. Our findings showed that paclitaxel‐induced autophagy in neuroblastoma cells was regulated by TRP14 and that SAHA could sensitize neuroblastoma cells to paclitaxel by specifically inhibiting TRP14.
Collapse
Affiliation(s)
- Zijun Zhen
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Kaibin Yang
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, China
| | - Litong Ye
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, China
| | - Zhiyao You
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, China
| | - Rirong Chen
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, China
| | - Ying Liu
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, China
| | - Youjian He
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|