1
|
Wang L, Zhang J, Ye S, Lu F. LncRNA H19 improves mesenchymal characteristics of buffalo (Bubalus bubalis) bone marrow-derived mesenchymal stem cells under hypoxic conditions. Res Vet Sci 2025; 182:105461. [PMID: 39612735 DOI: 10.1016/j.rvsc.2024.105461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/15/2024] [Accepted: 11/07/2024] [Indexed: 12/01/2024]
Abstract
As adult stem cells with various advantages, Bone marrow-derived mesenchymal stem cells (BMSCs) are valuable resources for veterinary treatment and animal reproduction. Previous studies have shown that hypoxia can induce epithelial-mesenchymal transition (EMT) and improve mesenchymal characteristics of BMSCs in vitro culture. However, the mechanism by which hypoxia improves the interstitial characteristics of buffalo BMSCs (bBMSCs) remains unclear. In this study, the effects of hypoxia on the mesenchymal characteristics of bBMSCs and the expression level of lncRNA H19 were examined, and then the effects of lncRNA H19 on maintaining the mesenchymal characteristics of bBMSCs under hypoxic culture conditions (5 % oxygen) as well as its mechanism also were explored, so as to further understand the molecular mechanism of mesenchymal characteristics maintenance of bBMSCs. The results showed that hypoxic culture conditions promoted EMT of bBMSCs, with lncRNA H19 expression up-regulated. When lncRNA H19 was knocked down in hypoxia, the expression level of Vimentin was down-regulated, the expression level of E-Cadherin was up-regulated, and EMT was inhibited. Meanwhile, the genes (p-PI3K and p-AKT1) involved in PI3K/AKT signaling pathway were inhibited by lncRNA H19 Knockdown. IGF-1 (10 ng/mL), an activator of PI3K/AKT signaling pathway, was added to rescued the inhibition of PI3K/AKT signaling pathway caused by lncRNA H19 Knockdown, with the effects of lncRNA H19 on EMT related genes also partially reversed. These findings not only provide theoretical guidance to elucidate the detailed regulation mechanism of hypoxia on mesenchymal nature maintenance of bBMSCs, but also provide positive support to further establish the stable in vitro culture system of bBMSCs.
Collapse
Affiliation(s)
- Lulu Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding and Diease Control, Guangxi University, Nanning 530005, China
| | - Jun Zhang
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China
| | - Sheng Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding and Diease Control, Guangxi University, Nanning 530005, China
| | - Fenghua Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding and Diease Control, Guangxi University, Nanning 530005, China.
| |
Collapse
|
2
|
Guha P, Chini A, Rishi A, Mandal SS. Long noncoding RNAs in ubiquitination, protein degradation, and human diseases. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195061. [PMID: 39341591 DOI: 10.1016/j.bbagrm.2024.195061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/07/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
Protein stability and turnover is critical in normal cellular and physiological process and their misregulation may contribute to accumulation of unwanted proteins causing cellular malfunction, neurodegeneration, mitochondrial malfunction, and disrupted metabolism. Signaling mechanism associated with protein degradation is complex and is extensively studied. Many protein and enzyme machineries have been implicated in regulation of protein degradation. Despite these insights, our understanding of protein degradation mechanisms remains limited. Emerging studies suggest that long non-coding RNAs (lncRNAs) play critical roles in various cellular and physiological processes including metabolism, cellular homeostasis, and protein turnover. LncRNAs, being large nucleic acids (>200 nt long) can interact with various proteins and other nucleic acids and modulate protein structure and function leading to regulation of cell signaling processes. LncRNAs are widely distributed across cell types and may exhibit tissue specific expression. They are detected in body fluids including blood and urine. Their expressions are also altered in various human diseases including cancer, neurological disorders, immune disorder, and others. LncRNAs are being recognized as novel biomarkers and therapeutic targets. This review article focuses on the emerging role of noncoding RNAs (ncRNAs), particularly long noncoding RNAs (lncRNAs), in the regulation of protein polyubiquitination and proteasomal degradation.
Collapse
Affiliation(s)
- Prarthana Guha
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Avisankar Chini
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Ashcharya Rishi
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Subhrangsu S Mandal
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States of America.
| |
Collapse
|
3
|
Zamanian MY, Golmohammadi M, Yumashev A, Hjazi A, Toama MA, AbdRabou MA, Gehlot A, Alwaily ER, Shirsalimi N, Yadav PK, Moriasi G. Effects of metformin on cancers in experimental and clinical studies: Focusing on autophagy and AMPK/mTOR signaling pathways. Cell Biochem Funct 2024; 42:e4071. [PMID: 38863255 DOI: 10.1002/cbf.4071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/25/2024] [Accepted: 06/02/2024] [Indexed: 06/13/2024]
Abstract
Metformin (MET) is a preferred drug for the treatment of type 2 diabetes mellitus. Recent studies show that apart from its blood glucose-lowering effects, it also inhibits the development of various tumours, by inducing autophagy. Various studies have confirmed the inhibitory effects of MET on cancer cell lines' propagation, migration, and invasion. The objective of the study was to comprehensively review the potential of MET as an anticancer agent, particularly focusing on its ability to induce autophagy and inhibit the development and progression of various tumors. The study aimed to explore the inhibitory effects of MET on cancer cell proliferation, migration, and invasion, and its impact on key signaling pathways such as adenosine monophosphate-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), and PI3K. This review noted that MET exerts its anticancer effects by regulating key signalling pathways such as phosphoinositide 3-kinase (PI3K), LC3-I and LC3-II, Beclin-1, p53, and the autophagy-related gene (ATG), inhibiting the mTOR protein, downregulating the expression of p62/SQSTM1, and blockage of the cell cycle at the G0/G1. Moreover, MET can stimulate autophagy through pathways associated with the 5' AMPK, thereby inhibiting he development and progression of various human cancers, including hepatocellular carcinoma, prostate cancer, pancreatic cancer, osteosarcoma, myeloma, and non-small cell lung cancer. In summary, this detailed review provides a framework for further investigations that may appraise the autophagy-induced anticancer potential of MET and its repurposing for cancer treatment.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mariam Alaa Toama
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | | | - Anita Gehlot
- Department of Electronics & Communication Engineering, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun, India
| | - Enas R Alwaily
- Microbiology Research Group, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Niyousha Shirsalimi
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Pankaj Kumar Yadav
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - Gervason Moriasi
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Mount Kenya University, Thika, Kenya
| |
Collapse
|
4
|
Ahmad I, Jasim SA, Sergeevna KN, Jyothi S R, Kumar A, Dusanov A, Shuhata Alubiady MH, Sinha A, Zain Al-Abdeen SH, Hjazi A. Emerging roles of long noncoding RNA H19 in human lung cancer. Cell Biochem Funct 2024; 42:e4072. [PMID: 39031589 DOI: 10.1002/cbf.4072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/14/2024] [Accepted: 06/02/2024] [Indexed: 07/22/2024]
Abstract
Lung cancer holds the position of being the primary cause of cancer-related fatalities on a global scale. Furthermore, it exhibits the highest mortality rate among all types of cancer. The survival rate within a span of 5 years is less than 20%, primarily due to the fact that the disease is often diagnosed at an advanced stage, resulting in less effective treatment options compared to earlier stages. There are two main types of primary lung cancer: nonsmall-cell lung cancer, which accounts for approximately 80%-85% of all cases, and small-cell lung cancer, which is categorized based on the specific type of cells in which the cancer originates. The understanding of the biology of this disease and the identification of oncogenic driver alterations have significantly transformed the landscape of therapeutic approaches. Long noncoding RNAs (lncRNAs) play a crucial role in regulating various physiological and pathological processes through diverse molecular mechanisms. Among these lncRNAs, lncRNA H19, initially identified as an oncofetal transcript, has garnered significant attention due to its elevated expression in numerous tumors. Extensive research has confirmed its involvement in tumorigenesis and malignant progression by promoting cell growth, invasion, migration, epithelial-mesenchymal transition, metastasis, and therapy resistance. This comprehensive review aims to provide an overview of the aberrant overexpression of lncRNA H19 and the molecular pathways through which it contributes to the advancement of lung cancer. The findings of this review highlight the potential for further investigation into the diagnosis and treatment of this disease, offering promising avenues for future research.
Collapse
Affiliation(s)
- Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Klunko Nataliya Sergeevna
- Department of Training of Scientific and Scientific-Pedagogical Personnel, Russian New University, Moscow, Russia
| | - Renuka Jyothi S
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Ashwani Kumar
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Abdigafur Dusanov
- Department of Internal Medicine Number 4, Samarkand State Medical University, Samarkand, Uzbekistan
| | | | - Aashna Sinha
- School of Applied and Life Sciences, Divison of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | | | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
5
|
Kzar Al-Shukri HH, Abdul-Jabbar Ali S, Al-Akkam KA, Hjazi A, Rasulova I, Mustafa YF, Al-Saidi DN, Alasheqi MQ, Alawadi A, Alsaalamy A. The role of exo-miRNA in diagnosis and treatment of cancers, focusing on effective miRNAs in colorectal cancer. Cell Biol Int 2024; 48:280-289. [PMID: 38225535 DOI: 10.1002/cbin.12122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/26/2023] [Accepted: 12/27/2023] [Indexed: 01/17/2024]
Abstract
Small extracellular (EV) particles known as exosomes are released by a variety of cell types, including immune system cells, stem cells, and tumor cells. They are regarded as a subgroup of EVs and have a diameter that ranges from 30 to 150 nm. Proteins, lipids, nucleic acids (including RNA and DNA), and different bioactive compounds are among the wide range of biomolecules that make up the cargo of exosomes. Exosomes are crucial for intercellular communication because they let cells share information and signaling chemicals. They are involved in various physiological and pathological processes, including immune responses, tissue regeneration, cancer progression, and neurodegenerative diseases. In conclusion, it is essential to continue research into exosome-based cancer medicines to advance understanding, improve treatment plans, create personalized tactics, ensure safety, and speed up clinical translation.
Collapse
Affiliation(s)
- Hamzah H Kzar Al-Shukri
- Department of Biochemistry, College of Veterinary Medicine, Al-Qasim Green University, Babylon, Iraq
| | | | | | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Irodakhon Rasulova
- School of Humanities, Natural & Social Sciences, New Uzbekistan University, Uzbekistan
- Department of Public Health, Samarkand State Medical University, Samarkand, Uzbekistan
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Dahlia N Al-Saidi
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | | | - Ahmed Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Kirkuk, Iraq
| |
Collapse
|
6
|
Zhan Q, Liu B, Situ X, Luo Y, Fu T, Wang Y, Xie Z, Ren L, Zhu Y, He W, Ke Z. New insights into the correlations between circulating tumor cells and target organ metastasis. Signal Transduct Target Ther 2023; 8:465. [PMID: 38129401 PMCID: PMC10739776 DOI: 10.1038/s41392-023-01725-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Organ-specific metastasis is the primary cause of cancer patient death. The distant metastasis of tumor cells to specific organs depends on both the intrinsic characteristics of the tumor cells and extrinsic factors in their microenvironment. During an intermediate stage of metastasis, circulating tumor cells (CTCs) are released into the bloodstream from primary and metastatic tumors. CTCs harboring aggressive or metastatic features can extravasate to remote sites for continuous colonizing growth, leading to further lesions. In the past decade, numerous studies demonstrated that CTCs exhibited huge clinical value including predicting distant metastasis, assessing prognosis and monitoring treatment response et al. Furthermore, increasingly numerous experiments are dedicated to identifying the key molecules on or inside CTCs and exploring how they mediate CTC-related organ-specific metastasis. Based on the above molecules, more and more inhibitors are being developed to target CTCs and being utilized to completely clean CTCs, which should provide promising prospects to administer advanced tumor. Recently, the application of various nanomaterials and microfluidic technologies in CTCs enrichment technology has assisted to improve our deep insights into the phenotypic characteristics and biological functions of CTCs as a potential therapy target, which may pave the way for us to make practical clinical strategies. In the present review, we mainly focus on the role of CTCs being involved in targeted organ metastasis, especially the latest molecular mechanism research and clinical intervention strategies related to CTCs.
Collapse
Affiliation(s)
- Qinru Zhan
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China
| | - Bixia Liu
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China
| | - Xiaohua Situ
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China
| | - Yuting Luo
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China
| | - Tongze Fu
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China
| | - Yanxia Wang
- Zhongshan School of Medicine, Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China
| | - Zhongpeng Xie
- Zhongshan School of Medicine, Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China
| | - Lijuan Ren
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China
| | - Ying Zhu
- Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China.
| | - Weiling He
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA.
- School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, 361000, Xiamen, Fujian, P.R. China.
| | - Zunfu Ke
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China.
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China.
| |
Collapse
|
7
|
Chowdhury PR, Salvamani S, Gunasekaran B, Peng HB, Ulaganathan V. H19: An Oncogenic Long Non-coding RNA in Colorectal Cancer. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2023; 96:495-509. [PMID: 38161577 PMCID: PMC10751868 DOI: 10.59249/tdbj7410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Colorectal cancer (CRC) has been recorded amongst the most common cancers in the world, with high morbidity and mortality rates, and relatively low survival rates. With risk factors such as chronic illness, age, and lifestyle associated with the development of CRC, the incidence of CRC is increasing each year. Thus, the discovery of novel biomarkers to improve the diagnosis and prognosis of CRC has become beneficial. Long non-coding RNAs (lncRNAs) have been emerging as potential players in several tumor types, one among them is the lncRNA H19. The paternally imprinted oncofetal gene is expressed in the embryo, downregulated at birth, and reappears in tumors. H19 aids in CRC cell growth, proliferation, invasion, and metastasis via various mechanisms of action, significantly through the lncRNA-microRNA (miRNA)-messenger RNA (mRNA)-competitive endogenous RNA (ceRNA) network, where H19 behaves as a miRNA sponge. The RNA transcript of H19 obtained from the first exon of the H19 gene, miRNA-675 also promotes CRC carcinogenesis. Overexpression of H19 in malignant tissues compared to adjacent non-malignant tissues marks H19 as an independent prognostic marker in CRC. Besides its prognostic value, H19 serves as a promising target for therapy in CRC treatment.
Collapse
Affiliation(s)
- Prerana R. Chowdhury
- Division of Applied Biomedical Sciences and
Biotechnology, School of Health Sciences, International Medical University,
Kuala Lumpur, Malaysia
| | - Shamala Salvamani
- Division of Applied Biomedical Sciences and
Biotechnology, School of Health Sciences, International Medical University,
Kuala Lumpur, Malaysia
| | - Baskaran Gunasekaran
- Department of Biotechnology, Faculty of Applied
Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Hoh B. Peng
- Division of Applied Biomedical Sciences and
Biotechnology, School of Health Sciences, International Medical University,
Kuala Lumpur, Malaysia
| | - Vaidehi Ulaganathan
- Department of Biotechnology, Faculty of Applied
Sciences, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Shabna A, Bindhya S, Sidhanth C, Garg M, Ganesan TS. Long non-coding RNAs: Fundamental regulators and emerging targets of cancer stem cells. Biochim Biophys Acta Rev Cancer 2023; 1878:188899. [PMID: 37105414 DOI: 10.1016/j.bbcan.2023.188899] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Cancer is one of the leading causes of death worldwide, primarily due to the dearth of efficient therapies that result in long-lasting remission. This is especially true in cases of metastatic cancer where drug resistance causes the disease to recur after treatment. One of the factors contributing to drug resistance, metastasis, and aggressiveness of the cancer is cancer stem cells (CSCs) or tumor-initiating cells. As a result, CSCs have emerged as a potential target for drug development. In the present review, we have examined and highlighted the lncRNAs with their regulatory functions specific to CSCs. Moreover, we have discussed the difficulties and various methods involved in identifying lncRNAs that can play a particular role in regulating and maintaining CSCs. Interestingly, this review only focuses on those lncRNAs with strong functional evidence for CSC specificity and the mechanistic role that allows them to be CSC regulators and be the focus of CSC-specific drug development.
Collapse
Affiliation(s)
- Aboo Shabna
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai 600020, India; Laboratory for Cancer Biology, Department of Medical Oncology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai 610016, India; Department of Endocrinology, Indian Council of Medical Research - National Institute of Nutrtion, Tarnaka, Hyderabad 50007, India
| | - Sadanadhan Bindhya
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai 600020, India
| | - Chirukandath Sidhanth
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai 600020, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Sector-125, Noida 201301, India
| | - Trivadi S Ganesan
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai 600020, India; Laboratory for Cancer Biology, Department of Medical Oncology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai 610016, India.
| |
Collapse
|
9
|
Wehida N, Abdel-Rehim W, El Mansy H, Karmouty A, Kamel MA. A Panel of Circulating Non-Coding RNAs in the Diagnosis and Monitoring of Therapy in Egyptian Patients with Breast Cancer. Biomedicines 2023; 11:biomedicines11020563. [PMID: 36831100 PMCID: PMC9953232 DOI: 10.3390/biomedicines11020563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Background: Non-coding RNAs (ncRNAs) have recently been identified to have a pivotal role in many diseases, including breast cancer (BC). This study aims to investigate the relative quantification of long non-coding RNA (lncRNA) H19, microRNA (miR) 675-5p, 675-3p, and miR-let 7 in breast cancer patients. Methods: The study was performed on three groups: Group 1: 30 non-intervened BC female patients about to undergo breast surgery; group 2: 30 postoperative female BC patients about to receive adjuvant anthracycline chemotherapy; and group 3: 30 apparently healthy female volunteers as the control group. Plasma samples were drawn before and after the intervention in groups 1 and 2, with a single sample drawn from group 3. The relative quantification levels were compared with healthy control subjects and were related with the clinicopathological statuses of these patients. Results: There was a statistically significant increase in H19, miR-675-5p, miR-675-3p, and miR-let 7 in the non-intervened BC patients when compared to the control group. Surgery resulted in a significant reduction in all four ncRNAs under investigation. Chemotherapy brought about a significant increase in the level of miR-let 7, with no significant effect on the remaining parameters measured. The assay discriminated normal from BC where a receiver operating characteristic for the area under the curve (ROCAUC) of miR-675-3p showed the maximal AUC of 1.000. The diagnostic sensitivity and specificity were also 100% when CA 15-3 and H19 were combined. Conclusion: The results strongly indicate that the panel of ncRNAs in this study can all potentially act as novel biomarkers whether alone or combined in the diagnosis of BC.
Collapse
Affiliation(s)
- Nadine Wehida
- Department of Biomolecular Sciences, Kingston University London, Kingston-upon-Thames KT1 2EE, UK
- Correspondence: ; Tel.: +44-776-781-7825
| | - Wafaa Abdel-Rehim
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt
| | - Hazem El Mansy
- Department of Cancer Management and Reseach, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt
| | - Ahmed Karmouty
- Department of Experimental and Clinical Surgery, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt
| | - Maher A. Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt
| |
Collapse
|
10
|
Abdelsattar S, Sweed D, Kamel HFM, Kasemy ZA, Gameel AM, Elzohry H, Ameen O, Elgizawy EI, Sallam A, Mosbeh A, Abdallah MS, Khalil FO, Al-Amodi HS, El-Hefnway SM. The Potential Utility of Circulating Oncofetal H19 Derived miR-675 Expression versus Tissue lncRNA-H19 Expression in Diagnosis and Prognosis of HCC in Egyptian Patients. Biomolecules 2022; 13:biom13010003. [PMID: 36671388 PMCID: PMC9856163 DOI: 10.3390/biom13010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Interestingly, lncRNA-H19 acts independently in HCC and influences miR-675 expressions. We aimed to assess the potential utility of tissue lncRNA-H19 versus miR-675 expressions as a non-invasive biomarker for HCC diagnosis and prognosis in Egyptian patients. Ninety-one HCC patients and 91 controls included in this study were investigated for expression of lncRNA-H19 and miR675 using RT-qPCR. Our results showed that the expression of lncRNA-H19 and microRNA-675 were higher in patients than in controls (p < 0.001 for both). Additionally, lncRNA-H19 expression was higher in tumorous than in non-tumorous tissue (p < 0.001). Linear regression revealed that miR-675 expression was a significantly higher positive predictor than lncRNA-H19 for tumor size, pathologic grade, and AFP level; similarly, for cyclin D1 and VEGF protein expression. By using the ROC curve, the sensitivity of miR-675 was higher than lncRNA-H19 for discriminating HCC from controls (95-89%, respectively) and the sensitivity of lncRNA-H19 was higher in tumorous than in non-tumorous tissues (76%). The high expressions of both were associated with low OS (p < 0.001, 0.001, respectively). Oncofetal H19-derived miR-675 expression could be considered a potential noninvasive diagnostic and prognostic biomarker, outstanding the performance of the expression of tissue lncRNA-H19 for HCC.
Collapse
Affiliation(s)
- Shimaa Abdelsattar
- Clinical Biochemistry and Molecular Diagnostics Department, National Liver Institute, Menofia University, Shebin El-Kom 32511, Egypt
- Correspondence:
| | - Dina Sweed
- Pathology Department, National Liver Institute, Menofia University, Shebin El-Kom 32511, Egypt
| | - Hala F. M. Kamel
- Department of Biochemistry, Faculty of Medicine, Umm Al Qura University, Makka 21955, Saudi Arabia
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Zeinab A. Kasemy
- Public Health and Community Medicine Department, Faculty of Medicine, Menofia University, Shebin El-Kom 32511, Egypt
| | - Abdallah M. Gameel
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Hassan Elzohry
- Hepatology and Gastroenterology Department, National Liver Institute, Menofia University, Shebin El-Kom 32511, Egypt
| | - Omnia Ameen
- Physiology Department, Faculty of Medicine, Menofia University, Shebin El-Kom 32511, Egypt
| | - Eman Ibrahim Elgizawy
- Physiology Department, Faculty of Medicine, Menofia University, Shebin El-Kom 32511, Egypt
| | - Ahmed Sallam
- Department of Hepatobiliary and Pancreatic Surgery, National Liver Institute, Menofia University, Shebin El-Kom 32511, Egypt
| | - Asmaa Mosbeh
- Pathology Department, National Liver Institute, Menofia University, Shebin El-Kom 32511, Egypt
| | - Mahmoud S. Abdallah
- Clinical Pharmacy Department, Faculty of Pharmacy, University of Sadat City (USC), Sadat City 32897, Egypt
| | - Fatma O. Khalil
- Clinical and Molecular Microbiology and Immunology Department, National Liver Institute, Menoufia University, Shebin El-Kom 32511, Egypt
| | - Hiba S. Al-Amodi
- Department of Biochemistry, Faculty of Medicine, Umm Al Qura University, Makka 21955, Saudi Arabia
| | - Sally M. El-Hefnway
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Menofia University, Shebin El-Kom 32511, Egypt
| |
Collapse
|
11
|
Intrachromosomal Looping and Histone K27 Methylation Coordinately Regulates the lncRNA H19-Fetal Mitogen IGF2 Imprinting Cluster in the Decidual Microenvironment of Early Pregnancy. Cells 2022; 11:cells11193130. [PMID: 36231092 PMCID: PMC9563431 DOI: 10.3390/cells11193130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 11/27/2022] Open
Abstract
Recurrent spontaneous abortion (RSA) is a highly heterogeneous complication of pregnancy with the underlying mechanisms remaining uncharacterized. Dysregulated decidualization is a critical contributor to the phenotypic alterations related to pregnancy complications. To understand the molecular factors underlying RSA, we explored the role of longnoncoding RNAs (lncRNAs) in the decidual microenvironment where the crosstalk at the fetal–maternal interface occurs. By exploring RNA-seq data from RSA patients, we identified H19, a noncoding RNA that exhibits maternal monoallelic expression, as one of the most upregulated lncRNAs associated with RSA. The paternally expressed fetal mitogen IGF2, which is reciprocally coregulated with H19 within the same imprinting cluster, was also upregulated. Notably, both genes underwent loss of imprinting, as H19 and IGF2 were actively transcribed from both parental alleles in some decidual tissues. This loss of imprinting in decidual tissues was associated with the loss of the H3K27m3 repressive histone marker in the IGF2 promoter, CpG hypomethylation at the central CTCF binding site in the imprinting control center (ICR), and the loss of CTCF-mediated intrachromosomal looping. These data suggest that dysregulation of the H19/IGF2 imprinting pathway may be an important epigenetic factor in the decidual microenvironment related to poor decidualization.
Collapse
|
12
|
Non-Coding RNAs and Prediction of Preeclampsia in the First Trimester of Pregnancy. Cells 2022; 11:cells11152428. [PMID: 35954272 PMCID: PMC9368389 DOI: 10.3390/cells11152428] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 12/13/2022] Open
Abstract
Preeclampsia (PE) is a major cause of maternal and perinatal morbidity and mortality. The only fundamental treatment for PE is the termination of pregnancy. Therefore, not only severe maternal complications but also perinatal complications due to immaturity of the infant associated with early delivery are serious issues. The treatment and prevention of preterm onset preeclampsia (POPE) are challenging. In 2017, the ASPRE trial showed that a low oral dose of aspirin administered to POPE high-risk women in early pregnancy reduced POPE by 62%. A prediction algorithm at 11–13 weeks of gestation identifies POPE with 75% sensitivity when the false positive rate is set at 10%. New biomarkers to increase the accuracy of the prediction model for POPE high-risk women in early pregnancy are needed. In this review, we focused on non-coding RNAs (ncRNAs) as potential biomarkers for the prediction of POPE. Highly expressed ncRNAs in the placenta in early pregnancy may play crucial roles in placentation. Furthermore, placenta-specific ncRNAs have been detected in maternal blood. In this review, we summarized ncRNAs that were highly expressed in the primary human placenta in early pregnancy. We also presented highly expressed ncRNAs in the placenta that were associated with or predictive of the development of PE in an expression analysis of maternal blood during the first trimester of pregnancy. These previous studies showed that the chromosome 19 microRNA (miRNA) -derived miRNAs (e.g., miR-517-5p, miR-518b, and miR-520h), the hypoxia-inducible miRNA (miR-210), and long non-coding RNA H19, were not only highly expressed in the early placenta but were also significantly up-regulated in the blood at early gestation in pregnant women who later developed PE. These maternal circulating ncRNAs in early pregnancy are expected to be possible biomarkers for POPE.
Collapse
|
13
|
Li L, Huang Q, Yan F, Wei W, Li Z, Liu L, Deng J. Association between long non-coding RNA H19 polymorphisms and breast cancer risk: a meta-analysis. Women Health 2022; 62:565-575. [PMID: 35818166 DOI: 10.1080/03630242.2022.2096748] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Common genes mutation was demonstrated associating with the risk of breast cancer (BC) recently, while the role of long non-coding RNA (lncRNA) polymorphism is still controversial. A meta-analysis was designed to discuss the association between lncRNA H19 polymorphisms and susceptibility to BC. The related databases were systematically reviewed up to April 13, 2021. Estimates were summarized as ORs and 95 percent CIs for each included study. The heterogeneity was assessed by the I2 test and subgroup analysis. Ten studies with 10354 BC patients and 11,177 control cases were included in our study. LncRNA H19 single nucleotide polymorphism (SNP) rs2839698 C/T significantly increases the susceptibility of BC (OR = 1.717 , 95 percent CI = 1.052-2.803, P = 0.031). LncRNA H19 polymorphism rs3741219 and rs217727 also increase the risk of ER-positive BC (OR = 1.128 , 95 percent CI = 1.010-1.259, P = 0.0032 for rs3741219, and OR = 1.297, 95 percent CI = 1.027-1.639, P = 0.029 for rs217727). Our results demonstrated that lncRNA H19 SNP rs2839698 C/T was significantly associated with the susceptibility of BC. LncRNA H19 SNP rs217727 and rs3741219 were associated with the risks of ER-positive BC. However, further studies are needed to reach a robust conclusion.
Collapse
Affiliation(s)
- Li Li
- Oncology Department, The Third People's Hospital of Hubei Province, Jianghan University, Wuhan, Hubei province, China
| | - Qin Huang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei province, China
| | - Fei Yan
- Oncology Department, The Third People's Hospital of Hubei Province, Jianghan University, Wuhan, Hubei province, China
| | - Wujie Wei
- Oncology Department, The Third People's Hospital of Hubei Province, Jianghan University, Wuhan, Hubei province, China
| | - Zihui Li
- Oncology Department, The Third People's Hospital of Hubei Province, Jianghan University, Wuhan, Hubei province, China
| | - Li Liu
- Oncology Department, The Third People's Hospital of Hubei Province, Jianghan University, Wuhan, Hubei province, China
| | - Jie Deng
- Oncology Department, The Third People's Hospital of Hubei Province, Jianghan University, Wuhan, Hubei province, China
| |
Collapse
|
14
|
Yu P, Guo J, Li J, Shi X, Xu N, Jiang Y, Chen W, Hu Q. lncRNA-H19 in Fibroblasts Promotes Wound Healing in Diabetes. Diabetes 2022; 71:1562-1578. [PMID: 35472819 DOI: 10.2337/db21-0724] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022]
Abstract
Cutaneous wound healing in diabetes is impaired and would develop into nonhealing ulcerations. However, the molecular mechanism underlying the wound-healing process remains largely obscure. Here, we found that cutaneous PDGFRα+ fibroblast-expressing lncRNA-H19 (lncH19) accelerates the wound-healing process via promoting dermal fibroblast proliferation and macrophage infiltration in injured skin. PDGFRα+ cell-derived lncH19, which is lower in contents in the wound-healing cutaneous tissue of patients and mice with type 2 diabetes, is required for wound healing through promoting proliferative capacity of dermis fibroblasts as well as macrophage recruitments. Mechanistically, lncH19 relieves the cell cycle arrest of fibroblasts and increases macrophage infiltration in injured tissues via inhibiting p53 activity and GDF15 releasement. Furthermore, exosomes derived from adipocyte progenitor cells efficiently restore the impaired diabetic wound healing via delivering lncH19 to injured tissue. Therefore, our study reveals a new role for lncRNA in regulating cutaneous tissue repair and provides a novel promising insight for developing clinical treatment of diabetes.
Collapse
Affiliation(s)
- Pijun Yu
- Department of Plastic and Cosmetic Surgery, Shanghai Eighth People's Hospital, Shanghai, China
| | - Jian Guo
- Department of Plastic and Cosmetic Surgery, Shanghai Eighth People's Hospital, Shanghai, China
| | - Junjie Li
- Department of Plastic and Cosmetic Surgery, Shanghai Eighth People's Hospital, Shanghai, China
| | - Xiao Shi
- Department of Plastic and Cosmetic Surgery, Shanghai Eighth People's Hospital, Shanghai, China
| | - Ning Xu
- Department of Plastic and Cosmetic Surgery, Shanghai Eighth People's Hospital, Shanghai, China
| | - Yongkang Jiang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Chen
- Department of Plastic and Cosmetic Surgery, Shanghai Eighth People's Hospital, Shanghai, China
| | - Qin Hu
- Department of Gynecology, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
15
|
The functional role of miRNAs in inflammatory pathways associated with intestinal epithelial tight junction barrier regulation in IBD. POSTEP HIG MED DOSW 2022. [DOI: 10.2478/ahem-2022-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Inflammatory bowel disease – Crohn's disease and ulcerative colitis – is an immune-mediated chronic disorder with still not fully elucidated complex mechanisms of pathogenesis and pathophysiology. Intestinal epithelial barrier (IEB) dysregulation is one of the major underlying mechanisms of inflammatory process induction in IBD. Proper IEB integrity is maintained to a large extent by intercellular tight junctions, the function of which can be modified by many molecules, including miRNAs. MiRNAs belong to noncoding and non-messenger RNAs, which can modulate gene expression by binding predicted mRNAs.
In this review, we summarize and discuss the potential role of miRNAs in the regulation of inflammatory signaling pathways affecting the function of the intestinal epithelial barrier in IBD, with particular emphasis on therapeutic potentials. The aim of the review is also to determine the further development directions of the studies on miRNA in the modulation of the intestinal epithelial barrier in IBD.
Collapse
|
16
|
Metastatic EMT Phenotype Is Governed by MicroRNA-200-Mediated Competing Endogenous RNA Networks. Cells 2021; 11:cells11010073. [PMID: 35011635 PMCID: PMC8749983 DOI: 10.3390/cells11010073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) is a fundamental physiologically relevant process that occurs during morphogenesis and organ development. In a pathological setting, the transition from epithelial toward mesenchymal cell phenotype is hijacked by cancer cells, allowing uncontrolled metastatic dissemination. The competing endogenous RNA (ceRNA) hypothesis proposes a competitive environment resembling a large-scale regulatory network of gene expression circuits where alterations in the expression of both protein-coding and non-coding genes can make relevant contributions to EMT progression in cancer. The complex regulatory diversity is exerted through an array of diverse epigenetic factors, reaching beyond the transcriptional control that was previously thought to single-handedly govern metastatic dissemination. The present review aims to unravel the competitive relationships between naturally occurring ceRNA transcripts for the shared pool of the miRNA-200 family, which play a pivotal role in EMT related to cancer dissemination. Upon acquiring more knowledge and clinical evidence on non-genetic factors affecting neoplasia, modulation of the expression levels of diverse ceRNAs may allow for the development of novel prognostic/diagnostic markers and reveal potential targets for the disruption of cancer-related EMT.
Collapse
|
17
|
Yao J, Du Y, Liu J, Gareev I, Yang G, Kang X, Wang X, Beylerli O, Chen X. Hypoxia related long non-coding RNAs in ischemic stroke. Noncoding RNA Res 2021; 6:153-158. [PMID: 34703955 PMCID: PMC8511691 DOI: 10.1016/j.ncrna.2021.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/02/2021] [Accepted: 10/02/2021] [Indexed: 12/22/2022] Open
Abstract
With high rates of mortality and disability, stroke has caused huge social burden, and 85% of which is ischemic stroke. In recent years, it is a progressive discovery of long non-coding RNA (lncRNA) playing an important regulatory role throughout ischemic stroke. Hypoxia, generated from reduction or interruption of cerebral blood flow, leads to changes in lncRNA expression, which then influence disease progression. Therefore, we reviewed studies on expression of hypoxia-related lncRNAs and relevant molecular mechanism in ischemic stroke. Considering that hypoxia-inducible factor (HIF) is a crucial regulator in hypoxic progress, we mainly focus on the HIF-related lncRNA which regulates the expression of HIF or is regulated by HIF, further reveal their pathogenesis and adaption after brain ischemia and hypoxia, so as to find effective biomarker and therapeutic targets.
Collapse
Affiliation(s)
- Jiawei Yao
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China.,Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Yiming Du
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China.,Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Junsi Liu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China.,Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Ilgiz Gareev
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Guang Yang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China.,Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Xiaohui Kang
- Department of Pharmacy, Rizhao People's Hospital, Rizhao, 276826, Shandong Province, China
| | - Xiaoxiong Wang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China.,Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Ozal Beylerli
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Xin Chen
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China.,Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| |
Collapse
|
18
|
Chen J, Qin C, Zhou Y, Chen Y, Mao M, Yang J. Metformin may induce ferroptosis by inhibiting autophagy via lncRNA H19 in breast cancer. FEBS Open Bio 2021; 12:146-153. [PMID: 34644456 PMCID: PMC8727937 DOI: 10.1002/2211-5463.13314] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/13/2021] [Accepted: 10/12/2021] [Indexed: 11/24/2022] Open
Abstract
Autophagy and ferroptosis have been major foci of biomedical research in recent years. Elucidation of their intrinsic molecular relationships is important for cancer prevention and treatment. Metformin can directly inhibit tumorigenesis, although the mechanism responsible for this is not fully understood. Here, we demonstrate that metformin and lncRNA‐H19 can regulate both autophagy and ferroptosis. Autophagy inducers and H19 can reverse the production of lipid reactive oxygen species and the inhibition of autophagy induced by metformin. The present study suggests that metformin may induce ferroptosis by inhibiting autophagy via H19, and this discovery may facilitate the development of novel therapies for the treatment of breast cancer.
Collapse
Affiliation(s)
- Jida Chen
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China.,Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Chuan Qin
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China.,Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yulu Zhou
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China.,Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yongxia Chen
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Misha Mao
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China.,Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jingjing Yang
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| |
Collapse
|
19
|
Park KS, Rahat B, Lee HC, Yu ZX, Noeker J, Mitra A, Kean CM, Knutsen RH, Springer D, Gebert CM, Kozel BA, Pfeifer K. Cardiac pathologies in mouse loss of imprinting models are due to misexpression of H19 long noncoding RNA. eLife 2021; 10:e67250. [PMID: 34402430 PMCID: PMC8425947 DOI: 10.7554/elife.67250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/04/2021] [Indexed: 12/24/2022] Open
Abstract
Maternal loss of imprinting (LOI) at the H19/IGF2 locus results in biallelic IGF2 and reduced H19 expression and is associated with Beckwith--Wiedemann syndrome (BWS). We use mouse models for LOI to understand the relative importance of Igf2 and H19 mis-expression in BWS phenotypes. Here we focus on cardiovascular phenotypes and show that neonatal cardiomegaly is exclusively dependent on increased Igf2. Circulating IGF2 binds cardiomyocyte receptors to hyperactivate mTOR signaling, resulting in cellular hyperplasia and hypertrophy. These Igf2-dependent phenotypes are transient: cardiac size returns to normal once Igf2 expression is suppressed postnatally. However, reduced H19 expression is sufficient to cause progressive heart pathologies including fibrosis and reduced ventricular function. In the heart, H19 expression is primarily in endothelial cells (ECs) and regulates EC differentiation both in vivo and in vitro. Finally, we establish novel mouse models to show that cardiac phenotypes depend on H19 lncRNA interactions with Mirlet7 microRNAs.
Collapse
Affiliation(s)
- Ki-Sun Park
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Beenish Rahat
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Hyung Chul Lee
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Zu-Xi Yu
- Pathology Core, National Heart Lung and Blood Institute, National Institutes of HealthBethesdaUnited States
| | - Jacob Noeker
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Apratim Mitra
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Connor M Kean
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Russell H Knutsen
- Laboratory of Vascular and Matrix Genetics, National Heart Lung and Blood Institute, National Institutes of HealthBethesdaUnited States
| | - Danielle Springer
- Murine Phenotyping Core, National Heart Lung and Blood Institute, National Institutes of HealthBethesdaUnited States
| | - Claudia M Gebert
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Beth A Kozel
- Laboratory of Vascular and Matrix Genetics, National Heart Lung and Blood Institute, National Institutes of HealthBethesdaUnited States
| | - Karl Pfeifer
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
20
|
Mechanism of TCONS_00147848 regulating apoptosis of nasal mucosa cells and alleviating allergic rhinitis through FOSL2-mediated JAK/STAT3 signaling pathway. Sci Rep 2021; 11:15991. [PMID: 34362948 PMCID: PMC8346477 DOI: 10.1038/s41598-021-94215-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/21/2021] [Indexed: 11/18/2022] Open
Abstract
This study was conducted to explore the roles and related mechanisms of lncRNA-TCONS_00147848 (TCONS_00147848) in nasal mucosa cell apoptosis and allergic rhinitis (AR). AR mice were sensitized with ovalbumin (OVA), with the TCONS_00147848 interference lentiviral vector (TCONS_00147848 shRNA) and FOSL2 overexpressing lentiviral vectors (pCDH-FOSL2) constructed respectively. NC shRNA, TCONS_00147848 shRNA and TCONS_00147848 shRNA + pCDH-FOSL2 were transfected into AR mice and mice with TNF-α induced nasal mucosa cells. The allergic reaction symptoms were evaluated by scoring. And in this study, we used Hematoxylin–Eosin (HE) staining and Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) to detect the histological changes of nasal mucosa and apoptosis of nasal mucosa epithelial cells in mice, cell counting kit-8 (CCK-8) assay, Transwell and annexin V/PI to detect proliferation, migration and apoptosis of nasal mucosa cells of mice, respectively, enzyme-linked immunosorbent assay (ELISA) to detect the expression of inflammatory factors, qRT-PCR to detect TCONS_00147848 expression, Western blot assay to detect the expressions of FOSL2, JAK-2, STAT3, p-STAT3, BAX and BCL-2, RNA-binding protein immunoprecipitation (RIP) assay, RNA pull down assay and Co-immunoprecipitation (CoIP) assay to identify TCONS_00147848 targeting FOSL2. All these findings above reveal that knocking down TCONS_00147848 can reduce the allergic reaction symptom score of AR mice and the inflammatory reaction. The expression of IgE, IL-4, IL-5, IL-10, IL-9, IFN-γ and TNF-α in serum decreased. The expression of FOSL2, JAK-2, p-STAT3 and BAX in nasal mucosa and nasal mucosa cells of mice decreased as well, but BCL-2 expression increased. In addition, koncking down TCONS_00147848 can also inhibit the apoptosis of TNF-α induced nasal mucosa cells in mice and promote cell proliferation and migration. However, FOSL2 overexpression neutralized the effect of TCONS_00147848 shRNA. In nasal mucosa cells of mice, TCONS_00147848 can target FOSL2, interacting with STAT3. Inhibition of TCONS_00147848 can regulate JAK/STAT3 signaling pathway and reduce inflammatory response in AR mice.
Collapse
|
21
|
Aljubran F, Nothnick WB. Long non-coding RNAs in endometrial physiology and pathophysiology. Mol Cell Endocrinol 2021; 525:111190. [PMID: 33549604 PMCID: PMC7946759 DOI: 10.1016/j.mce.2021.111190] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/29/2020] [Accepted: 01/24/2021] [Indexed: 12/12/2022]
Abstract
The endometrium is an essential component of the female uterus which provides the environment for pregnancy establishment and maintenance. Abnormalities of the endometrium not only lead to difficulties in establishing and maintaining pregnancy but also play a causative role in diseases of endometrial origin including endometriosis and endometrial cancer. Non-coding RNAs are proposed to play a role in regulating the genome in both normal endometrial physiology and pathophysiology. In this review, we first provide a general overview of non-coding RNAs and reproductive physiology of the endometrium. We then discuss the role on non-coding RNAs in normal endometrial physiology and pathophysiology of endometrial infertility. We then conclude with non-coding RNAs in the pathophysiology of endometriosis and endometrial cancer.
Collapse
Affiliation(s)
- Fatimah Aljubran
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Warren B Nothnick
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA; Department of Obstetrics & Gynecology, University of Kansas Medical Center, Kansas City, KS, USA; Institute for Reproduction and Perinatal Research, Center for Reproductive Sciences, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
22
|
Kumari A, Shonibare Z, Monavarian M, Arend RC, Lee NY, Inman GJ, Mythreye K. TGFβ signaling networks in ovarian cancer progression and plasticity. Clin Exp Metastasis 2021; 38:139-161. [PMID: 33590419 PMCID: PMC7987693 DOI: 10.1007/s10585-021-10077-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
Epithelial ovarian cancer (EOC) is a leading cause of cancer-related death in women. Late-stage diagnosis with significant tumor burden, accompanied by recurrence and chemotherapy resistance, contributes to this poor prognosis. These morbidities are known to be tied to events associated with epithelial-mesenchymal transition (EMT) in cancer. During EMT, localized tumor cells alter their polarity, cell-cell junctions, cell-matrix interactions, acquire motility and invasiveness and an exaggerated potential for metastatic spread. Key triggers for EMT include the Transforming Growth Factor-β (TGFβ) family of growth factors which are actively produced by a wide array of cell types within a specific tumor and metastatic environment. Although TGFβ can act as either a tumor suppressor or promoter in cancer, TGFβ exhibits its pro-tumorigenic functions at least in part via EMT. TGFβ regulates EMT both at the transcriptional and post-transcriptional levels as outlined here. Despite recent advances in TGFβ based therapeutics, limited progress has been seen for ovarian cancers that are in much need of new therapeutic strategies. Here, we summarize and discuss several recent insights into the underlying signaling mechanisms of the TGFβ isoforms in EMT in the unique metastatic environment of EOCs and the current therapeutic interventions that may be relevant.
Collapse
Affiliation(s)
- Asha Kumari
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, WTI 320B, 1824 Sixth Avenue South, Birmingham, AL, 35294, USA
| | - Zainab Shonibare
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, WTI 320B, 1824 Sixth Avenue South, Birmingham, AL, 35294, USA
| | - Mehri Monavarian
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, WTI 320B, 1824 Sixth Avenue South, Birmingham, AL, 35294, USA
| | - Rebecca C Arend
- Department of Obstetrics and Gynecology-Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Nam Y Lee
- Division of Pharmacology, Chemistry and Biochemistry, College of Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - Gareth J Inman
- Cancer Research UK Beatson Institute and Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Karthikeyan Mythreye
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, WTI 320B, 1824 Sixth Avenue South, Birmingham, AL, 35294, USA.
| |
Collapse
|
23
|
LncRNA SNHG12 contributes proliferation, invasion and epithelial-mesenchymal transition of pancreatic cancer cells by absorbing miRNA-320b. Biosci Rep 2021; 40:224896. [PMID: 32432698 PMCID: PMC7276652 DOI: 10.1042/bsr20200805] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 01/01/2023] Open
Abstract
Pancreatic cancer is a kind of malignant carcinoma with high mortality, which is devoid of early diagnostic biomarker and effective therapeutic methods. Recently, long non-coding RNAs (lncRNAs) have been reported as a crucial role in regulating the development of various kinds of tumors. Here, we found lncRNA small nuclear RNA host gene 12 (SNHG12) is highly expressed in pancreatic cancer tissues and cell lines through qRT-PCR, which suggested that SNHG12 possibly accelerates the progression of pancreatic cancer. Further study revealed that SNHG12 promoted cancer cells growth and invasion via absorbing miR-320b. Flow cytometry and transwell chamber assay were utilized to verify the promoting effects on proliferation and invasion that SNHG12 acts in pancreatic cancer cells. Evidence that SNHG12 increased cell invasive ability through up-regulated EMT process was lately obtained by Western blotting assay. Consequently, we extrapolated that SNHG12/miR-320b could be invoked as a promising early diagnostic hallmark and therapeutic strategy for pancreatic cancer.
Collapse
|
24
|
Mofidi M, Rahgozar S, Pouyanrad S. Increased level of long non coding RNA H19 is correlated with the downregulation of miR-326 and BCL-2 genes in pediatric acute lymphoblastic leukemia, a possible hallmark for leukemogenesis. Mol Biol Rep 2021; 48:1531-1538. [PMID: 33580459 DOI: 10.1007/s11033-021-06161-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022]
Abstract
Long non-coding RNAs (lncRNAs) and their role in competitive endogenous RNA (ceRNA) networks have emerged as fundamental debates in the biological processes of initiation and progression of cancer. This study aimed to identify and measure the expression levels of relevant ceRNA regulatory genes contributing to acute lymphoblastic leukemia (ALL). lncRNA H19 and BCL-2 mRNA were chosen based on in silico studies and their interactions with miR-326. Subsequently, the aforementioned coding/non-coding gene expression profiles were measured using qRT-PCR in 50 bone marrow samples, including 33 cases with pediatric ALL and 17 controls with no evidence of malignancy. lncRNA H19 was identified as an oncogenic factor which was noticeably increased in the newly diagnosed patients (P = 0.0019, AUC = 0.84) and negatively associated with miR-326 (r = -0.6, P = 0.02). Furthermore, a negative correlation was introduced between the transcriptional levels of miR-326 and the anti-apoptotic BCL-2 gene (r = -0.6, P = 0.028). The novel experimental and bioinformatic results achieved in this study may provide new insights into the molecular leukemogenesis of pediatric ALL.
Collapse
Affiliation(s)
- Mahtab Mofidi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Postal Code 81746-73441, Hazer Jarib Street, Isfahan, Iran
| | - Soheila Rahgozar
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Postal Code 81746-73441, Hazer Jarib Street, Isfahan, Iran.
| | - Shahrzad Pouyanrad
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Postal Code 81746-73441, Hazer Jarib Street, Isfahan, Iran
| |
Collapse
|
25
|
Toden S, Zumwalt TJ, Goel A. Non-coding RNAs and potential therapeutic targeting in cancer. Biochim Biophys Acta Rev Cancer 2021; 1875:188491. [PMID: 33316377 PMCID: PMC7856203 DOI: 10.1016/j.bbcan.2020.188491] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022]
Abstract
Recent advances have begun to clarify the physiological and pathological roles of non-coding RNAs (ncRNAs) in various diseases, including cancer. Among these, microRNAs (miRNAs) have been the most studied and have emerged as key players that are involved in the regulation of important growth regulatory pathways in cancer pathogenesis. The ability of a single ncRNA to modulate the expression of multiple downstream gene targets and associated pathways, have provided a rationale to pursue them for therapeutic drug development in cancer. In this context, early data from pre-clinical studies have demonstrated that synthetic miRNA-based therapeutic molecules, along with various protective coating approaches, has allowed for their efficient delivery and anti-tumor activity. In fact, some of the miRNA-based cancer therapeutic strategies have shown promising results even in early-phase human clinical trials. While the enthusiasm for ncRNA-based cancer therapeutics continue to evolve, the field is still in the midst of unraveling a more precise understanding of the molecular mechanisms and specific downstream therapeutic targets of other lesser studied ncRNAs such as the long-non-coding RNAs, transfer RNAs, circular RNAs, small nucleolar RNAs, and piwi-interacting RNAs. This review article provides the current state of knowledge and the evolving principles for ncRNA-based therapeutic approaches in cancer, and specifically highlights the importance of data to date and the approaches that are being developed to overcome the challenges associated with their delivery and mitigating the off-target effects in human cancers.
Collapse
Affiliation(s)
- Shusuke Toden
- Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA
| | - Timothy J Zumwalt
- Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA
| | - Ajay Goel
- Center for Gastrointestinal Research; Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA; Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| |
Collapse
|
26
|
Shermane Lim YW, Xiang X, Garg M, Le MT, Li-Ann Wong A, Wang L, Goh BC. The double-edged sword of H19 lncRNA: Insights into cancer therapy. Cancer Lett 2020; 500:253-262. [PMID: 33221454 DOI: 10.1016/j.canlet.2020.11.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/25/2020] [Accepted: 11/06/2020] [Indexed: 01/03/2023]
Abstract
H19 long non-coding RNA (lncRNA) has many functions in cancer. Some studies have reported that H19 acts as an oncogene and is involved in cancer progression by activating epithelial-mesenchymal transition (EMT), the cell cycle and angiogenesis via mechanisms like microRNA (miRNA) sponging - the binding to and inhibition of miRNA activity. This makes H19 lncRNA a potential target for cancer therapeutics. However, several conflicting studies have also found that H19 suppresses tumour development. In this review, we shed light on the possible reasons for these conflicting findings. We also summarise the current literature on the applications of H19 lncRNA in cancer therapy in many cancers and explore new avenues for future research. This includes the use of H19 in recombinant vectors, chemoresistance, epigenetic regulation, tumour microenvironment alteration and cancer immunotherapy. The relationship between H19 and the master tumour suppressor gene p53 is also explored. In most studies, H19 knockdown via RNA interference (RNAi) or epigenetic silencing inhibits cancer development. Thus, H19 lncRNA could be a promising target for the development of cancer therapeutics. This warrants further investigations into its translational research to improve cancer therapy outcomes.
Collapse
Affiliation(s)
- Yun Wei Shermane Lim
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore; Institute for Digital Medicine and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Xiaoqiang Xiang
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Manoj Garg
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida, 201313, India
| | - Minh Tn Le
- Institute for Digital Medicine and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Andrea Li-Ann Wong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore, 119228, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore; Institute for Digital Medicine and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Boon-Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore; Institute for Digital Medicine and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore, 119228, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
27
|
Wang B, Suen CW, Ma H, Wang Y, Kong L, Qin D, Lee YWW, Li G. The Roles of H19 in Regulating Inflammation and Aging. Front Immunol 2020; 11:579687. [PMID: 33193379 PMCID: PMC7653221 DOI: 10.3389/fimmu.2020.579687] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence suggests that long non-coding RNA H19 correlates with several aging processes. However, the role of H19 in aging remains unclear. Many studies have elucidated a close connection between H19 and inflammatory genes. Chronic systemic inflammation is an established factor associated with various diseases during aging. Thus, H19 might participate in the development of age-related diseases by interplay with inflammation and therefore provide a protective function against age-related diseases. We investigated the inflammatory gene network of H19 to understand its regulatory mechanisms. H19 usually controls gene expression by acting as a microRNA sponge, or through mir-675, or by leading various protein complexes to genes at the chromosome level. The regulatory gene network has been intensively studied, whereas the biogenesis of H19 remains largely unknown. This literature review found that the epithelial-mesenchymal transition (EMT) and an imprinting gene network (IGN) might link H19 with inflammation. Evidence indicates that EMT and IGN are also tightly controlled by environmental stress. We propose that H19 is a stress-induced long non-coding RNA. Because environmental stress is a recognized age-related factor, inflammation and H19 might serve as a therapeutic axis to fight against age-related diseases.
Collapse
Affiliation(s)
- Bin Wang
- The Chinese University of Hong Kong (CUHK)-Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GDL), Advanced Institute for Regenerative MedicineBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Innovation Center for Translational Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chun Wai Suen
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Haibin Ma
- The Chinese University of Hong Kong (CUHK)-Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GDL), Advanced Institute for Regenerative MedicineBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yan Wang
- Innovation Center for Translational Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ling Kong
- The Chinese University of Hong Kong (CUHK)-Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GDL), Advanced Institute for Regenerative MedicineBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Dajiang Qin
- The Chinese University of Hong Kong (CUHK)-Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GDL), Advanced Institute for Regenerative MedicineBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Innovation Center for Translational Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuk Wai Wayne Lee
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Gang Li
- The Chinese University of Hong Kong (CUHK)-Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GDL), Advanced Institute for Regenerative MedicineBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China.,Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Innovation Center for Translational Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
28
|
Liu X, Feng S, Zhang XD, Li J, Zhang K, Wu M, Thorne RF. Non-coding RNAs, metabolic stress and adaptive mechanisms in cancer. Cancer Lett 2020; 491:60-69. [PMID: 32726612 DOI: 10.1016/j.canlet.2020.06.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/12/2020] [Accepted: 06/28/2020] [Indexed: 12/18/2022]
Abstract
Metabolic reprogramming in cancer describes the multifaceted alterations in metabolism that contribute to tumorigenesis. Major determinants of metabolic phenotypes are the changes in signalling pathways associated with oncogenic activation together with cues from the tumor microenvironment. Therein, depleted oxygen and nutrient levels elicit metabolic stress, requiring cancer cells to engage adaptive mechanisms. Non-coding RNAs (ncRNAs) act as regulatory elements within metabolic pathways and their widespread dysregulation in cancer contributes to altered metabolic phenotypes. Indeed, ncRNAs are the regulatory accomplices of many prominent effectors of metabolic reprogramming including c-MYC and HIFs that are activated by metabolic stress. By example, this review illustrates the range of ncRNAs mechanisms impacting these effectors throughout their DNA-RNA-protein lifecycle along with presenting the mechanistic roles of ncRNAs in adaptive responses to glucose, glutamine and lipid deprivation. We also discuss the facultative activation of metabolic enzymes by ncRNAs, a phenomenon which may reflect a broad but currently invisible level of metabolic regulation. Finally, the translational challenges associated with ncRNA discoveries are discussed, emphasizing the gaps in knowledge together with importance of understanding the molecular basis of ncRNA regulatory mechanisms.
Collapse
Affiliation(s)
- Xiaoying Liu
- Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Molecular Pathology Centre, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450053, China; School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Shanshan Feng
- Key Laboratory of Regenerative Medicine, Ministry of Education, Department of Developmental & Regenerative Biology, School of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xu Dong Zhang
- Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Molecular Pathology Centre, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450053, China; School of Biomedical Sciences & Pharmacy, University of Newcastle, Newcastle, NSW, Australia
| | - Jinming Li
- Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Molecular Pathology Centre, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450053, China
| | - Kaiguang Zhang
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, 230027, China.
| | - Mian Wu
- Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Molecular Pathology Centre, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450053, China; The First Affiliated Hospital of University of Science and Technology of China, Hefei, 230027, China; Key Laboratory of Stem Cell Differentiation & Modification, School of Clinical Medicine, Henan University, Zhengzhou, China.
| | - Rick F Thorne
- Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Molecular Pathology Centre, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450053, China; School of Environmental & Life Sciences, University of Newcastle, NSW, Australia.
| |
Collapse
|
29
|
Peperstraete E, Lecerf C, Collette J, Vennin C, Raby L, Völkel P, Angrand PO, Winter M, Bertucci F, Finetti P, Lagadec C, Meignan S, Bourette RP, Bourhis XL, Adriaenssens E. Enhancement of Breast Cancer Cell Aggressiveness by lncRNA H19 and its Mir-675 Derivative: Insight into Shared and Different Actions. Cancers (Basel) 2020; 12:cancers12071730. [PMID: 32610610 PMCID: PMC7407157 DOI: 10.3390/cancers12071730] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/11/2020] [Accepted: 06/28/2020] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is a major public health problem and the leading world cause of women death by cancer. Both the recurrence and mortality of breast cancer are mainly caused by the formation of metastasis. The long non-coding RNA H19, the precursor of miR-675, is involved in breast cancer development. The aim of this work was to determine the implication but, also, the relative contribution of H19 and miR-675 to the enhancement of breast cancer metastatic potential. We showed that both H19 and miR-675 increase the invasive capacities of breast cancer cells in xenografted transgenic zebrafish models. In vitro, H19 and miR-675 enhance the cell migration and invasion, as well as colony formation. H19 seems to induce the epithelial-to-mesenchymal transition (EMT), with a decreased expression of epithelial markers and an increased expression of mesenchymal markers. Interestingly, miR-675 simultaneously increases the expression of both epithelial and mesenchymal markers, suggesting the induction of a hybrid phenotype or mesenchymal-to-epithelial transition (MET). Finally, we demonstrated for the first time that miR-675, like its precursor H19, increases the stemness properties of breast cancer cells. Altogether, our data suggest that H19 and miR-675 could enhance the aggressiveness of breast cancer cells through both common and different mechanisms.
Collapse
Affiliation(s)
- Evodie Peperstraete
- University Lille, CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020–UMR 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.P.); (C.L.); (J.C.); (C.V.); (L.R.); (P.V.); (P.-O.A.); (M.W.); (C.L.); (S.M.); (R.P.B.); (X.L.B.)
| | - Clément Lecerf
- University Lille, CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020–UMR 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.P.); (C.L.); (J.C.); (C.V.); (L.R.); (P.V.); (P.-O.A.); (M.W.); (C.L.); (S.M.); (R.P.B.); (X.L.B.)
| | - Jordan Collette
- University Lille, CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020–UMR 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.P.); (C.L.); (J.C.); (C.V.); (L.R.); (P.V.); (P.-O.A.); (M.W.); (C.L.); (S.M.); (R.P.B.); (X.L.B.)
| | - Constance Vennin
- University Lille, CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020–UMR 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.P.); (C.L.); (J.C.); (C.V.); (L.R.); (P.V.); (P.-O.A.); (M.W.); (C.L.); (S.M.); (R.P.B.); (X.L.B.)
| | - Ludivine Raby
- University Lille, CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020–UMR 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.P.); (C.L.); (J.C.); (C.V.); (L.R.); (P.V.); (P.-O.A.); (M.W.); (C.L.); (S.M.); (R.P.B.); (X.L.B.)
| | - Pamela Völkel
- University Lille, CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020–UMR 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.P.); (C.L.); (J.C.); (C.V.); (L.R.); (P.V.); (P.-O.A.); (M.W.); (C.L.); (S.M.); (R.P.B.); (X.L.B.)
| | - Pierre-Olivier Angrand
- University Lille, CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020–UMR 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.P.); (C.L.); (J.C.); (C.V.); (L.R.); (P.V.); (P.-O.A.); (M.W.); (C.L.); (S.M.); (R.P.B.); (X.L.B.)
| | - Marie Winter
- University Lille, CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020–UMR 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.P.); (C.L.); (J.C.); (C.V.); (L.R.); (P.V.); (P.-O.A.); (M.W.); (C.L.); (S.M.); (R.P.B.); (X.L.B.)
| | - François Bertucci
- Laboratoire d’Oncologie Prédictive, CRCM, Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR7258, Aix-Marseille Université, Département d’Oncologie Médicale, Institut Paoli-Calmettes, 13009 Marseille, France; (F.B.); (P.F.)
| | - Pascal Finetti
- Laboratoire d’Oncologie Prédictive, CRCM, Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR7258, Aix-Marseille Université, Département d’Oncologie Médicale, Institut Paoli-Calmettes, 13009 Marseille, France; (F.B.); (P.F.)
| | - Chann Lagadec
- University Lille, CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020–UMR 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.P.); (C.L.); (J.C.); (C.V.); (L.R.); (P.V.); (P.-O.A.); (M.W.); (C.L.); (S.M.); (R.P.B.); (X.L.B.)
| | - Samuel Meignan
- University Lille, CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020–UMR 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.P.); (C.L.); (J.C.); (C.V.); (L.R.); (P.V.); (P.-O.A.); (M.W.); (C.L.); (S.M.); (R.P.B.); (X.L.B.)
- Tumorigenesis and Resistance to Treatment Unit, Centre Oscar Lambret, F-59000 Lille, France
| | - Roland P. Bourette
- University Lille, CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020–UMR 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.P.); (C.L.); (J.C.); (C.V.); (L.R.); (P.V.); (P.-O.A.); (M.W.); (C.L.); (S.M.); (R.P.B.); (X.L.B.)
| | - Xuefen Le Bourhis
- University Lille, CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020–UMR 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.P.); (C.L.); (J.C.); (C.V.); (L.R.); (P.V.); (P.-O.A.); (M.W.); (C.L.); (S.M.); (R.P.B.); (X.L.B.)
| | - Eric Adriaenssens
- University Lille, CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020–UMR 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.P.); (C.L.); (J.C.); (C.V.); (L.R.); (P.V.); (P.-O.A.); (M.W.); (C.L.); (S.M.); (R.P.B.); (X.L.B.)
- Correspondence: ; Tel.: +33-(0)3-20-33-64-06
| |
Collapse
|
30
|
Ehrlich GD. LncRNAs H19 and MEG3 as Universal Indicators of Metabolic Derangements? Genet Test Mol Biomarkers 2020; 24:319-320. [PMID: 32511063 DOI: 10.1089/gtmb.2020.0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Garth D Ehrlich
- Department of Microbiology and Immunology and Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.,Department of Otolaryngology-Head and Neck Surgery, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.,Center for Genomic Sciences, Center for Advanced Microbial Processing, and Center for Surgical Infections and Biofilms, Philadelphia, Pennsylvania, USA.,Institute for Molecular Medicine and Infectious Disease, Philadelphia, Pennsylvania, USA.,Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.,Core Genomics Facility, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.,Meta-Omics Core Facility, Sidney Kimmel Cancer Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
31
|
Li Y, Ma HY, Hu XW, Qu YY, Wen X, Zhang Y, Xu QY. LncRNA H19 promotes triple-negative breast cancer cells invasion and metastasis through the p53/TNFAIP8 pathway. Cancer Cell Int 2020; 20:200. [PMID: 32514245 PMCID: PMC7257135 DOI: 10.1186/s12935-020-01261-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 05/12/2020] [Indexed: 12/15/2022] Open
Abstract
Background Long non-coding RNA H19 (lncRNA H19) has been implicated in tumorigenesis and metastasis of breast cancer through regulating epithelial to mesenchymal transition (EMT); however, the underlying mechanisms remain elusive. Methods LncRNA H19 and TNFAIP8 were identified by qRT-PCR and western blotting. CCK-8 assay, clone formation assay, transwell assay, and flow cytometry assay were performed to determine cell proliferation, migration, invasion and cell cycle of breast cancer respectively. Western blotting and immunohistochemistry (IHC) were utilized to evaluate the protein expression levels of p53, TNFAIP8, and marker proteins of EMT cascades in vivo. Dual luciferase reporter assay and RNA pull down assay were conducted to evaluate the interactions of lncRNA H19, p53 and TNFAIP8. Results The expression of lncRNA H19 and TNFAIP8 was up-regulated in breast cancer tissues and cell lines, especially in triple-negative breast cancer (TNBC). Functionally, knockdown of lncRNA H19 or TNFAIP8 coused the capacities of cell proliferation, migration, and invasion were suppressed, and cell cycle arrest was induced, as well as that the EMT markers were expressed abnormal. Mechanistically, lncRNA H19 antagonized p53 and increased expression of its target gene TNFAIP8 to promote EMT process. Furthermore, silencing of lncRNA H19 or TNFAIP8 also could inhibit tumorigenesis and lymph node metastases of MDA-MB-231 cells in xenograft nude mouse models. Conclusions Our findings provide insight into a novel mechanism of lncRNA H19 in tumorigenesis and metastases of breast cancer and demonstrate H19/p53/TNFAIP8 axis as a promising therapeutic target for breast cancer, especially for TNBC.
Collapse
Affiliation(s)
- Yang Li
- Department of Breast Radiotherapy, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150081 Heilongjiang People's Republic of China
| | - Hong-Yu Ma
- Department of Breast Radiotherapy, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150081 Heilongjiang People's Republic of China
| | - Xiao-Wei Hu
- Department of Head and Neck and Genito-Urinary Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081 People's Republic of China
| | - Yuan-Yuan Qu
- Department of Breast Radiotherapy, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150081 Heilongjiang People's Republic of China
| | - Xin Wen
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, 150081 People's Republic of China
| | - Yu Zhang
- Department of Breast Radiotherapy, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150081 Heilongjiang People's Republic of China
| | - Qing-Yong Xu
- Department of Breast Radiotherapy, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150081 Heilongjiang People's Republic of China
| |
Collapse
|
32
|
Catana CS, Crișan CA, Opre D, Berindan-Neagoe I. Implications of Long Non-Coding RNAs in Age-Altered Proteostasis. Aging Dis 2020; 11:692-704. [PMID: 32489713 PMCID: PMC7220293 DOI: 10.14336/ad.2019.0814] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/14/2019] [Indexed: 12/15/2022] Open
Abstract
This review aims to summarize the current knowledge on how lncRNAs are influencing aging and cancer metabolism. Recent research has shown that senescent cells re-enter cell-cycle depending on intrinsic or extrinsic factors, thus restoring tissue homeostasis in response to age-related diseases (ARDs). Furthermore, maintaining proteostasis or cellular protein homeostasis requires a correct quality control (QC) of protein synthesis, folding, conformational stability, and degradation. Long non-coding RNAs (lncRNAs), transcripts longer than 200 nucleotides, regulate gene expression through RNA-binding protein (RBP) interaction. Their association is linked to aging, an event of proteostasis collapse. The current review examines approaches that lead to recognition of senescence-associated lncRNAs, current methodologies, potential challenges that arise from studying these molecules, and their crucial implications in clinical practice.
Collapse
Affiliation(s)
- Cristina-Sorina Catana
- Department of Medical Biochemistry, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Catalina-Angela Crișan
- Department of Neurosciences, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Dana Opre
- Department of Psychology, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- MEDFUTURE - Research Center for Advanced Medicine, Cluj-Napoca, Romania
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Institute of Doctoral Studies, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Experimental Pathology, “Prof. Dr. Ion Chiricuta” Oncology Institute, Cluj-Napoca, Romania
| |
Collapse
|
33
|
Sharma S, Munger K. The Role of Long Noncoding RNAs in Human Papillomavirus-associated Pathogenesis. Pathogens 2020; 9:pathogens9040289. [PMID: 32326624 PMCID: PMC7238103 DOI: 10.3390/pathogens9040289] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
Infections with high-risk human papillomaviruses cause ~5% of all human cancers. E6 and E7 are the only viral genes that are consistently expressed in cancers, and they are necessary for tumor initiation, progression, and maintenance. E6 and E7 encode small proteins that lack intrinsic enzymatic activities and they function by binding to cellular regulatory molecules, thereby subverting normal cellular homeostasis. Much effort has focused on identifying protein targets of the E6 and E7 proteins, but it has been estimated that ~98% of the human transcriptome does not encode proteins. There is a growing interest in studying noncoding RNAs as biochemical targets and biological mediators of human papillomavirus (HPV) E6/E7 oncogenic activities. This review focuses on HPV E6/E7 targeting cellular long noncoding RNAs, a class of biologically versatile molecules that regulate almost every known biological process and how this may contribute to viral oncogenesis.
Collapse
|
34
|
585 nm light-emitting diodes inhibit melanogenesis through upregulating H19/miR-675 axis in LEDs-irradiated keratinocytes by paracrine effect. J Dermatol Sci 2020; 98:102-108. [PMID: 32278532 DOI: 10.1016/j.jdermsci.2020.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/01/2020] [Accepted: 03/07/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND 585 nm light-emitting diodes have been proven to suppress melanogenesis in melanocytes. However, whether LEDs will influence normal human epidermal keratinocytes (NHEKs) and paracrine effect of LEDs-irradiated NHEKs in melanogenesis remains unknown. OBJECTIVE To elucidate the possible mechanisms in vitro of anti-melanogenic activity of 585 nm LEDs on paracrine effect of NHEKs and its exosomes. METHODS NHEKs irradiated with different fluences of 585 nm LEDs were evaluated the cell viability by CCK8 assay. Irradiated medium of NHEKs was co-cultured with melanocytes. Melanin content, tyrosinase activity and melanogenic enzymes activities were detected. Exosomes from NHEKs medium were isolated and characterized by electron microscopy and nanoparticle tracking analysis. The expression changes of H19 and its encoded exosomal miR-675 were analyzed. RESULTS Irradiation with 585 nm LEDs from 0 J/cm2 to 20 J/cm2 had no cytotoxic effect on NHEKs. After co-cultured with irradiated medium of NHEKs, melanin content and tyrosinase activity were reduced and the melanogenic activities were downregulated on both mRNA and protein levels of microphthalmia-associated transcription factor (MITF), tyrosinase (TYR) and tyrosinase-related protein 1 (TRP-1). H19 and its derived exosomal miR-675 from NHEKs, which has been proven relevant to melanogenesis, were significantly upregulated after irradiation. Furthermore, H19 knockdown and miR-675 inhibition in NHEKs could attenuate the inhibition effect of 585 nm LEDs on melanogenesis. CONCLUSIONS This study demonstrated that 585 nm LEDs could inhibit melanogenesis via the up-regulation of H19 and its derived exosomal miR-675 from NHEKs, which was considered as a novel paracrine factor in regulating melanogenesis.
Collapse
|
35
|
Jasinska AJ, Rostamian D, Davis AT, Kavanagh K. Transcriptomic Analysis of Cell-free Fetal RNA in the Amniotic Fluid of Vervet Monkeys ( Chlorocebus sabaeus). Comp Med 2020; 70:67-74. [PMID: 31969210 PMCID: PMC7024774 DOI: 10.30802/aalas-cm-19-000037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/22/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022]
Abstract
NHP are important translational models for understanding the genomic underpinnings of growth, development, fetal programming, and predisposition to disease, with potential for the development of early health biomarkers. Understanding how prenatal gene expression is linked to pre- and postnatal health and development requires methods for assessing the fetal transcriptome. Here we used RNAseq methodology to analyze the expression of cell-free fetal RNA in the amniotic fluid supernatant (AFS) of vervet monkeys. Despite the naturally high level of degradation of free-floating RNA, we detected more than 10,000 gene transcripts in vervet AFS. The most highly expressed genes were H19, IGF2, and TPT1, which are involved in embryonic growth and glycemic health. We noted global similarities in expression profiles between vervets and humans, with genes involved in embryonic growth and glycemic health among the genes most highly expressed in AFS. Our study demonstrates both the feasibility and usefulness of prenatal transcriptomic profiles, by using amniocentesis procedures to obtain AFS and cell-free fetal RNA from pregnant vervets.
Collapse
Affiliation(s)
- Anna J Jasinska
- Center for Neurobehavioral Genetics, University of California-Los Angeles, Los Angeles, California; Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland;,
| | - Dalar Rostamian
- Center for Neurobehavioral Genetics, University of California-Los Angeles, Los Angeles, California
| | - Ashley T Davis
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Kylie Kavanagh
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina; Department of Biomedicine, University of Tasmania, Hobart, Australia
| |
Collapse
|
36
|
Jinesh GG, Brohl AS. The genetic script of metastasis. Biol Rev Camb Philos Soc 2020; 95:244-266. [PMID: 31663259 DOI: 10.1111/brv.12562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 01/24/2023]
Abstract
Metastasis is a pivotal event that changes the course of cancers from benign and treatable to malignant and difficult to treat, resulting in the demise of patients. Understanding the genetic control of metastasis is thus crucial to develop efficient and sustainable targeted therapies. Here we discuss the alterations in epigenetic mechanisms, transcription, chromosomal instability, chromosome imprinting, non-coding RNAs, coding RNAs, mutant RNAs, enhancers, G-quadruplexes, and copy number variation to dissect the genetic control of metastasis. We conclude that the genetic control of metastasis is predominantly executed through epithelial to mesenchymal transition and evasion of cell death. We discuss how genetic regulatory mechanisms can be harnessed for therapeutic purposes to achieve sustainable control over cancer metastasis.
Collapse
Affiliation(s)
- Goodwin G Jinesh
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A.,Sarcoma Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A
| | - Andrew S Brohl
- Sarcoma Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A.,Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A
| |
Collapse
|
37
|
Zhang Z, Liu J, Zeng Z, Fan J, Huang S, Zhang L, Zhang B, Wang X, Feng Y, Ye Z, Zhao L, Cao D, Yang L, Pakvasa M, Liu B, Wagstaff W, Wu X, Luo H, Zhang J, Zhang M, He F, Mao Y, Ding H, Zhang Y, Niu C, Haydon RC, Luu HH, Lee MJ, Wolf JM, Shao Z, He TC. lncRNA Rmst acts as an important mediator of BMP9-induced osteogenic differentiation of mesenchymal stem cells (MSCs) by antagonizing Notch-targeting microRNAs. Aging (Albany NY) 2019; 11:12476-12496. [PMID: 31825894 PMCID: PMC6949095 DOI: 10.18632/aging.102583] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/26/2019] [Indexed: 02/05/2023]
Abstract
Understanding the bone and musculoskeletal system is essential to maintain the health and quality of life of our aging society. Mesenchymal stem cells (MSCs) can undergo self-renewal and differentiate into multiple tissue types including bone. We demonstrated that BMP9 is the most potent osteogenic factors although molecular mechanism underlying BMP9 action is not fully understood. Long noncoding RNAs (lncRNAs) play important regulatory roles in many physiological and/or pathologic processes. Here, we investigated the role of lncRNA Rmst in BMP9-induced osteogenic differentiation of MSCs. We found that Rmst was induced by BMP9 through Smad signaling in MSCs. Rmst knockdown diminished BMP9-induced osteogenic, chondrogenic and adipogenic differentiation in vitro, and attenuated BMP9-induced ectopic bone formation. Silencing Rmst decreased the expression of Notch receptors and ligands. Bioinformatic analysis predicted Rmst could directly bind to eight Notch-targeting miRNAs, six of which were downregulated by BMP9. Silencing Rmst restored the expression of four microRNAs (miRNAs). Furthermore, an activating Notch mutant NICD1 effectively rescued the decreased ALP activity caused by Rmst silencing. Collectively, our results strongly suggest that the Rmst-miRNA-Notch regulatory axis may play an important role in mediating BMP9-induced osteogenic differentiation of MSCs.
Collapse
Affiliation(s)
- Zhicai Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jianxiang Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zongyue Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and the School of Laboratory Medicine; and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and the School of Laboratory Medicine; and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Shifeng Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and the School of Laboratory Medicine; and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Linghuan Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and the School of Laboratory Medicine; and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Bo Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Key Laboratory of Orthopaedic Surgery of Gansu Province, and the Departments of Orthopaedic Surgery and Obstetrics and Gynecology, The First and Second Hospitals of Lanzhou University, Lanzhou 730030, China
| | - Xi Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and the School of Laboratory Medicine; and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Yixiao Feng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and the School of Laboratory Medicine; and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Zhenyu Ye
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Ling Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and the School of Laboratory Medicine; and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Daigui Cao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and the School of Laboratory Medicine; and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
- Departments of Orthopaedic Surgery and Laboratory Medicine, Chongqing General Hospital, Chongqing 400013, China
| | - Lijuan Yang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Key Laboratory of Orthopaedic Surgery of Gansu Province, and the Departments of Orthopaedic Surgery and Obstetrics and Gynecology, The First and Second Hospitals of Lanzhou University, Lanzhou 730030, China
| | - Mikhail Pakvasa
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Bin Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Xiaoxing Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and the School of Laboratory Medicine; and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Huaxiu Luo
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jing Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and the School of Laboratory Medicine; and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Meng Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Fang He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine and the School of Laboratory Medicine; and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Yukun Mao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, The Affiliated Zhongnan Hospital of Wuhan University, Wuhan 430072, China
| | - Huimin Ding
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, BenQ Medical Center Affiliated with Nanjing Medical University, Nanjing 210000, China
| | - Yongtao Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266061, China
| | - Changchun Niu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Laboratory Medicine, Chongqing General Hospital, Chongqing 400013, China
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jennifer Moriatis Wolf
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
38
|
Zhang C, Huang D, Liu A, Xu Y, Na R, Xu D. Genome‐wide screening and cohorts validation identifying novel lncRNAs as prognostic biomarkers for clear cell renal cell carcinoma. J Cell Biochem 2019; 121:2559-2570. [PMID: 31646670 DOI: 10.1002/jcb.29478] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Chuanjie Zhang
- Department of Urology, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Da Huang
- Department of Urology, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Ao Liu
- Department of Urology, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yang Xu
- Department of Urology, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Rong Na
- Department of Urology, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Danfeng Xu
- Department of Urology, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| |
Collapse
|
39
|
Janaki Ramaiah M, Divyapriya K, Kartik Kumar S, Rajesh YBRD. Drug-induced modifications and modulations of microRNAs and long non-coding RNAs for future therapy against Glioblastoma Multiforme. Gene 2019; 723:144126. [PMID: 31589963 DOI: 10.1016/j.gene.2019.144126] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 02/07/2023]
Abstract
Non-coding RNAs are known to participate in cancer initiation, progression, and metastasis by regulating the status of chromatin epigenetics and gene expression. Although these non-coding RNAs do not possess defined protein-coding potential, they are involved in the expression and stability of messenger RNA (mRNA). The length of microRNAs (miRs) ranges between 20 and 22 nt, whereas, long non-coding RNAs (lncRNAs) length ranges between 200 nt to 1 Kb. In the case of circular RNAs (circRNAs), the size varies depending upon the length of the exon from where they were derived. Epigenetic regulations of miR and lncRNA genes will influence the gene expression by modulating histone acetylation and methylation patterns. Especially, lncRNAs will act as a scaffold for various epigenetic proteins, such as EZH2 and LSD1, and influence the chromatin epigenetic state at various genomic loci involved at silencing. Thus investigations on the expression of lncRNAs and designing drugs to modulate the expression of these genes will have a profound impact on future therapeutics against cancers such as Glioblastoma Multiforme (GBM) and also against various other diseases. With the recent advancements in genome-wide transcriptomic studies, scientists are focused on the non-coding RNAs and their regulations on various cellular processes involved in GBM and on other types of cancer as well as trying to understand possible epigenetic modulations that help in generating promising therapeutics for the future generations. In this review, the involvement of epigenetic proteins, enzymes that change chromatin architecture and epigenetic landscape and new roles of lncRNAs that are involved in GBM progression are elaborately discussed.
Collapse
Affiliation(s)
- M Janaki Ramaiah
- Laboratory of Functional Genomics and Disease Biology, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613401, Tamil Nadu, India.
| | - Karthikeyan Divyapriya
- Laboratory of Functional Genomics and Disease Biology, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613401, Tamil Nadu, India
| | - Sarwareddy Kartik Kumar
- Laboratory of Functional Genomics and Disease Biology, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613401, Tamil Nadu, India
| | - Y B R D Rajesh
- Organic Synthesis and Catalysis Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613401, Tamil Nadu, India
| |
Collapse
|
40
|
Li DY, Busch A, Jin H, Chernogubova E, Pelisek J, Karlsson J, Sennblad B, Liu S, Lao S, Hofmann P, Bäcklund A, Eken SM, Roy J, Eriksson P, Dacken B, Ramanujam D, Dueck A, Engelhardt S, Boon RA, Eckstein HH, Spin JM, Tsao PS, Maegdefessel L. H19 Induces Abdominal Aortic Aneurysm Development and Progression. Circulation 2019; 138:1551-1568. [PMID: 29669788 DOI: 10.1161/circulationaha.117.032184] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Long noncoding RNAs have emerged as critical molecular regulators in various biological processes and diseases. Here we sought to identify and functionally characterize long noncoding RNAs as potential mediators in abdominal aortic aneurysm development. METHODS We profiled RNA transcript expression in 2 murine abdominal aortic aneurysm models, Angiotensin II (ANGII) infusion in apolipoprotein E-deficient ( ApoE-/-) mice (n=8) and porcine pancreatic elastase instillation in C57BL/6 wild-type mice (n=12). The long noncoding RNA H19 was identified as 1 of the most highly upregulated transcripts in both mouse aneurysm models compared with sham-operated controls. This was confirmed by quantitative reverse transcription-polymerase chain reaction and in situ hybridization. RESULTS Experimental knock-down of H19, utilizing site-specific antisense oligonucleotides (LNA-GapmeRs) in vivo, significantly limited aneurysm growth in both models. Upregulated H19 correlated with smooth muscle cell (SMC) content and SMC apoptosis in progressing aneurysms. Importantly, a similar pattern could be observed in human abdominal aortic aneurysm tissue samples, and in a novel preclinical LDLR-/- (low-density lipoprotein receptor) Yucatan mini-pig aneurysm model. In vitro knock-down of H19 markedly decreased apoptotic rates of cultured human aortic SMCs, whereas overexpression of H19 had the opposite effect. Notably, H19-dependent apoptosis mechanisms in SMCs appeared to be independent of miR-675, which is embedded in the first exon of the H19 gene. A customized transcription factor array identified hypoxia-inducible factor 1α as the main downstream effector. Increased SMC apoptosis was associated with cytoplasmic interaction between H19 and hypoxia-inducible factor 1α and sequential p53 stabilization. Additionally, H19 induced transcription of hypoxia-inducible factor 1α via recruiting the transcription factor specificity protein 1 to the promoter region. CONCLUSIONS The long noncoding RNA H19 is a novel regulator of SMC survival in abdominal aortic aneurysm development and progression. Inhibition of H19 expression might serve as a novel molecular therapeutic target for aortic aneurysm disease.
Collapse
Affiliation(s)
- Daniel Y Li
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar (D.Y.L., A. Busch, J.P., S.L., H.-H.E., L.M.), Technical University Munich, and German Center for Cardiovascular Research (DZHK), partner site Munich, Germany
| | - Albert Busch
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar (D.Y.L., A. Busch, J.P., S.L., H.-H.E., L.M.), Technical University Munich, and German Center for Cardiovascular Research (DZHK), partner site Munich, Germany
| | - Hong Jin
- Department of Medicine (H.J., E.C., A. Bäcklund; S.M.E., P.E., L.M.), Karolinska Institutet, Stockholm, Sweden
| | - Ekaterina Chernogubova
- Department of Medicine (H.J., E.C., A. Bäcklund; S.M.E., P.E., L.M.), Karolinska Institutet, Stockholm, Sweden
| | - Jaroslav Pelisek
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar (D.Y.L., A. Busch, J.P., S.L., H.-H.E., L.M.), Technical University Munich, and German Center for Cardiovascular Research (DZHK), partner site Munich, Germany
| | - Joakim Karlsson
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden (J.K.)
| | - Bengt Sennblad
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Sweden (B.S.)
| | - Shengliang Liu
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar (D.Y.L., A. Busch, J.P., S.L., H.-H.E., L.M.), Technical University Munich, and German Center for Cardiovascular Research (DZHK), partner site Munich, Germany
| | - Shen Lao
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar (D.Y.L., A. Busch, J.P., S.L., H.-H.E., L.M.), Technical University Munich, and German Center for Cardiovascular Research (DZHK), partner site Munich, Germany
| | - Patrick Hofmann
- Institute of Cardiovascular Regeneration, University Hospital Frankfurt, and German Center for Cardiovascular Research (DZHK), partner site Rhein-Main, Frankfurt, Germany (P.H., R.A.B.)
| | - Alexandra Bäcklund
- Department of Medicine (H.J., E.C., A. Bäcklund; S.M.E., P.E., L.M.), Karolinska Institutet, Stockholm, Sweden
| | - Suzanne M Eken
- Department of Medicine (H.J., E.C., A. Bäcklund; S.M.E., P.E., L.M.), Karolinska Institutet, Stockholm, Sweden
| | - Joy Roy
- Department of Molecular Medicine and Surgery (J.R.), Karolinska Institutet, Stockholm, Sweden
| | - Per Eriksson
- Department of Medicine (H.J., E.C., A. Bäcklund; S.M.E., P.E., L.M.), Karolinska Institutet, Stockholm, Sweden
| | | | - Deepak Ramanujam
- Institute of Pharmacology and Toxicology (D.R., A.D., S.E.), Technical University Munich, and German Center for Cardiovascular Research (DZHK), partner site Munich, Germany
| | - Anne Dueck
- Institute of Pharmacology and Toxicology (D.R., A.D., S.E.), Technical University Munich, and German Center for Cardiovascular Research (DZHK), partner site Munich, Germany
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology (D.R., A.D., S.E.), Technical University Munich, and German Center for Cardiovascular Research (DZHK), partner site Munich, Germany
| | - Reinier A Boon
- Institute of Cardiovascular Regeneration, University Hospital Frankfurt, and German Center for Cardiovascular Research (DZHK), partner site Rhein-Main, Frankfurt, Germany (P.H., R.A.B.)
| | - Hans-Henning Eckstein
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar (D.Y.L., A. Busch, J.P., S.L., H.-H.E., L.M.), Technical University Munich, and German Center for Cardiovascular Research (DZHK), partner site Munich, Germany
| | - Joshua M Spin
- Division of Cardiovascular Medicine, Stanford University, CA (J.M.S., P.S.T.)
| | - Philip S Tsao
- Division of Cardiovascular Medicine, Stanford University, CA (J.M.S., P.S.T.)
| | - Lars Maegdefessel
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar (D.Y.L., A. Busch, J.P., S.L., H.-H.E., L.M.), Technical University Munich, and German Center for Cardiovascular Research (DZHK), partner site Munich, Germany.,Department of Medicine (H.J., E.C., A. Bäcklund; S.M.E., P.E., L.M.), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
41
|
Smith CM, Catchpoole D, Hutvagner G. Non-Coding RNAs in Pediatric Solid Tumors. Front Genet 2019; 10:798. [PMID: 31616462 PMCID: PMC6764412 DOI: 10.3389/fgene.2019.00798] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/30/2019] [Indexed: 12/15/2022] Open
Abstract
Pediatric solid tumors are a diverse group of extracranial solid tumors representing approximately 40% of childhood cancers. Pediatric solid tumors are believed to arise as a result of disruptions in the developmental process of precursor cells which lead them to accumulate cancerous phenotypes. In contrast to many adult tumors, pediatric tumors typically feature a low number of genetic mutations in protein-coding genes which could explain the emergence of these phenotypes. It is likely that oncogenesis occurs after a failure at many different levels of regulation. Non-coding RNAs (ncRNAs) comprise a group of functional RNA molecules that lack protein coding potential but are essential in the regulation and maintenance of many epigenetic and post-translational mechanisms. Indeed, research has accumulated a large body of evidence implicating many ncRNAs in the regulation of well-established oncogenic networks. In this review we cover a range of extracranial solid tumors which represent some of the rarer and enigmatic childhood cancers known. We focus on two major classes of ncRNAs, microRNAs and long non-coding RNAs, which are likely to play a key role in the development of these cancers and emphasize their functional contributions and molecular interactions during tumor formation.
Collapse
Affiliation(s)
- Christopher M Smith
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Daniel Catchpoole
- School of Software, University of Technology Sydney, Sydney, Australia.,The Tumour Bank-CCRU, Kids Research, The Children's Hospital at Westmead, Sydney, Australia
| | - Gyorgy Hutvagner
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
42
|
Suppression of Stromal Interferon Signaling by Human Papillomavirus 16. J Virol 2019; 93:JVI.00458-19. [PMID: 31292244 DOI: 10.1128/jvi.00458-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/29/2019] [Indexed: 01/09/2023] Open
Abstract
Human papillomaviruses (HPVs) infect squamous epithelia and cause several important cancers. Immune evasion is critical for viral persistence. Fibroblasts in the stromal microenvironment provide growth signals and cytokines that are required for proper epithelial differentiation, maintenance, and immune responses and are critical in the development of many cancers. In this study, we examined the role of epithelial-stromal interactions in the HPV16 life cycle using organotypic (raft) cultures as a model. Rafts were created using uninfected human foreskin keratinocytes (HFKs) and HFKs containing either wild-type HPV16 or HPV16 with a stop mutation to prevent the expression of the viral oncogene E5. Microarray analysis revealed significant changes in gene expression patterns in the stroma in response to HPV16, some of which were E5 dependent. Interferon (IFN)-stimulated genes (ISGs) and extracellular matrix remodeling genes were suppressed, the most prominent pathways affected. STAT1, IFNAR1, IRF3, and IRF7 were knocked down in stromal fibroblasts using lentiviral short hairpin RNA (shRNA) transduction. HPV late gene expression and viral copy number in the epithelium were increased when the stromal IFN pathway was disrupted, indicating that the stroma helps control the late phase of the HPV life cycle in the epithelium. Increased late gene expression correlated with increased late keratinocyte differentiation but not decreased IFN signaling in the epithelium. These studies show HPV16 has a paracrine effect on stromal innate immunity, reveal a new role for E5 as a stromal innate immune suppressor, and suggest that stromal IFN signaling may influence keratinocyte differentiation.IMPORTANCE The persistence of high-risk human papillomavirus (HPV) infections is the key risk factor for developing HPV-associated cancers. The ability of HPV to evade host immunity is a critical component of its ability to persist. The environment surrounding a tumor is increasingly understood to be critical in cancer development, including immune evasion. Our studies show that HPV can suppress the expression of immune-related genes in neighboring fibroblasts in a three-dimensional (3D) model of human epithelium. This finding is significant, because it indicates that HPV can control innate immunity not only in the infected cell but also in the microenvironment. In addition, the ability of HPV to regulate stromal gene expression depends in part on the viral oncogene E5, revealing a new function for this protein as an immune evasion factor.
Collapse
|
43
|
Kołat D, Hammouz R, Bednarek AK, Płuciennik E. Exosomes as carriers transporting long non‑coding RNAs: Molecular characteristics and their function in cancer (Review). Mol Med Rep 2019; 20:851-862. [PMID: 31173220 PMCID: PMC6625196 DOI: 10.3892/mmr.2019.10340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023] Open
Abstract
Long non‑coding RNAs (lncRNAs) comprise a sizeable class of non‑coding RNAs with a length of over 200 base pairs. Little is known about their biological function, although over 20,000 lncRNAs have been annotated in the human genome. Through a diverse range of mechanisms, their primary function is in the regulation of the transcription of protein‑coding genes. lncRNA transcriptional activation can result from a group of nucleus‑retained and chromatin‑associated lncRNAs, which function as scaffolds in the cis/trans recruitment of transcription factors, co‑activators or chromatin remodelers, and/or promoter enhancers. Exosomes are released as extracellular vesicles and they are produced by endocytic pathways. Their synthesis is initiated by various processes including ceramide synthesis, release of intracellular Ca2+ or acid‑base balance disorders. Prior to vesicle creation, selective cargo loading occurs in the Endosomal Sorting Complex Required for Transport. Participation of endosomal sorting proteins such as tetraspanins or specific sumoylated proteins required for transport has been indicated in research. The endosomal‑sorting complex consists of four components, these induce the formation of multivesicular bodies and the induction of membrane deformation to form exosomes. Nanovesicles could be formed inside multivesicular bodies to allow transport outside the cell or digestion in lysosomes. The molecular content of exosomes is more heterogenic than its synthesis process, with different cargoes being examined inside vesicles with regard to the type or stage of cancers. This paper will review the importance of lncRNAs as crucial molecular content of exosomes, indicating its involvement in tumour suppression, pro‑tumorigenic events and the development of novel therapeutic approaches in the near future. Further studies of their mechanisms of function are essential, as well as overcoming several challenges to gain a clearer insight to the approaches for the best clinical application.
Collapse
Affiliation(s)
- Damian Kołat
- Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Łódź, 90-752 Łódź, Poland
| | - Raneem Hammouz
- Department of Molecular Carcinogenesis, Medical University of Łódź, 90-752 Łódź, Poland
| | - Andrzej K. Bednarek
- Department of Molecular Carcinogenesis, Medical University of Łódź, 90-752 Łódź, Poland
| | - Elżbieta Płuciennik
- Department of Molecular Carcinogenesis, Medical University of Łódź, 90-752 Łódź, Poland
| |
Collapse
|
44
|
Leeper NJ, Maegdefessel L. Non-coding RNAs: key regulators of smooth muscle cell fate in vascular disease. Cardiovasc Res 2019; 114:611-621. [PMID: 29300828 DOI: 10.1093/cvr/cvx249] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/28/2017] [Indexed: 01/02/2023] Open
Abstract
The vascular smooth muscle cell (SMC) is one of the most plastic cells in the body. Understanding how non-coding RNAs (ncRNAs) regulate SMC cell-fate decision making in the vasculature has significantly enhanced our understanding of disease development, and opened up exciting new avenues for potential therapeutic applications. Recent studies on SMC physiology have in addition challenged our traditional view on their role and contribution to vascular disease, mainly in the setting of atherosclerosis as well as aneurysm disease, and restenosis after angioplasties. The impact of SMC behaviour on vascular disease is now recognized to be context dependent; SMC proliferation and migration can be harmful or beneficial, whereas their apoptosis, senescence, and switching into a more macrophage-like phenotype can promote inflammation and disease progression. This is in particular true for atherosclerosis-related diseases, where proliferation of SMCs was believed to promote lesion formation, but may also prevent plaque rupture by stabilizing the fibrous cap. Based on newer findings of genetic lineage tracing studies, it was revealed that SMC phenotypic switching can result in less-differentiated forms that lack classical SMC markers while exhibiting functions more related to macrophage-like cells. This switching can directly promote atherogenesis. The aim of this current review is to summarize and discuss how ncRNAs (mainly microRNAs and long ncRNAs) are involved in SMC plasticity, and how they directly affect vascular disease development and progression. Finally, we want to critically assess where potential future therapies could be useful to influence the burden of vascular diseases.
Collapse
Affiliation(s)
- Nicholas J Leeper
- Division of Vascular Surgery, Stanford University, Stanford, CA, USA
| | - Lars Maegdefessel
- Department of Vascular and Endovascular Surgery, Klinikum Rechts der Isar, Technical University Munich, and German Center for Cardiovascular Research Center (DZHK) Partner Site Munich, 81675 Munich, Germany.,Karolinska Institute, Center for Molecular Medicine, Stockholm, Sweden
| |
Collapse
|
45
|
Gao LM, Xu SF, Zheng Y, Wang P, Zhang L, Shi SS, Wu T, Li Y, Zhao J, Tian Q, Yin XB, Zheng L. Long non-coding RNA H19 is responsible for the progression of lung adenocarcinoma by mediating methylation-dependent repression of CDH1 promoter. J Cell Mol Med 2019; 23:6411-6428. [PMID: 31317666 PMCID: PMC6714219 DOI: 10.1111/jcmm.14533] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 04/22/2019] [Accepted: 06/24/2019] [Indexed: 12/14/2022] Open
Abstract
Lung adenocarcinoma is a common histologic type of lung cancer with a high death rate globally. Increasing evidence shows that long non-coding RNA H19 (lncRNA H19) and CDH1 methylation are involved in multiple tumours. Here, we tried to investigate whether lncRNA H19 or CDH1 methylation could affect the development of lung adenocarcinoma. First, lung adenocarcinoma tissues were collected to detect CDH1 methylation. Then, the regulatory mechanisms of lncRNA H19 were detected mainly in concert with the treatment of overexpression of lncRNA H19, siRNA against lncRNA H19, overexpression of CDH1 and demethylating agent A-5az in lung adenocarcinoma A549 cell. The expression of lncRNA H19 and epithelial-mesenchymal transition (EMT)-related factors as well as cell proliferation, sphere-forming ability, apoptosis, migration and invasion were detected. Finally, we observed xenograft tumour in nude mice so as to ascertain tumorigenicity of lung adenocarcinoma cells. LncRNA H19 and methylation of CDH1 were highly expressed in lung adenocarcinoma tissues. A549 cells with silencing of lncRNA H19, overexpression of CDH1 or reduced CDH1 methylation by demethylating agent 5-Az had suppressed cell proliferation, sphere-forming ability, apoptosis, migration and invasion, in addition to inhibited EMT process. Silencing lncRNA H19 could reduce methylation level of CDH1. In vivo, A549 cells with silencing lncRNA H19, overexpression of CDH1 or reduced CDH1 methylation exhibited low tumorigenicity, reflected by the smaller tumour size and lighter tumour weight. Taken together, this study demonstrates that silencing of lncRNA H19 inhibits EMT and proliferation while promoting apoptosis of lung adenocarcinoma cells by inhibiting methylation of CDH1 promoter.
Collapse
Affiliation(s)
- Li-Ming Gao
- Department of Oncology, the First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Shu-Feng Xu
- Department of Respiratory, the First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Yue Zheng
- Department of Oncology, the First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Ping Wang
- Department of Pulmonary, Chinese PLA General Hospital, Beijing, China
| | - Ling Zhang
- Department of Respiratory, Hebei Chest Hospital, Shijiazhuang, China
| | - Shan-Shan Shi
- School of Medicine, Hebei Medical University, Shijiazhuang, China
| | - Tong Wu
- School of Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yang Li
- Department of Respiratory, the First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Jing Zhao
- Department of Respiratory, the First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Qi Tian
- Department of Respiratory, the First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Xiao-Bo Yin
- Department of Respiratory, the First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Lei Zheng
- Department of Oncology, the First Hospital of Qinhuangdao, Qinhuangdao, China
| |
Collapse
|
46
|
LncRNA H19 promotes lung cancer proliferation and metastasis by inhibiting miR-200a function. Mol Cell Biochem 2019; 460:1-8. [PMID: 31187349 DOI: 10.1007/s11010-019-03564-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/27/2019] [Indexed: 12/24/2022]
Abstract
Lung cancer is the major cause leading to cancer mortality, and the 5-year survival rate for patients with lung cancer still remains low. It is urgent to fully understand the development and progression of lung cancer to discover new therapeutic targets and develop new therapeutic approaches. H19 was documented to be upregulated in lung cancer and related to cell proliferation. However, it is still unclear if H19 has other functions in lung cancer. The mRNA levels of genes were detected by qRT-PCR, and the cell proliferation rate and cell viability were measured through cell count assay and MTT assay. Transwell assays were applied to detect cell abilities to migration and invasion, while luciferase reporter assay and RNA pull-down assay were used to examine interaction between H19 and miR-200a. H19 expression was elevated in the lung cancer tissues and cell lines, while H19 overexpression promoted the lung cancer cell growth, cell migration and invasion, as well as the epithelial mesenchymal transition (EMT). Meantime, RNA pull-down assay showed that H19 interacted with miR-200a, and miR-200a inhibited the activity of H19-fused luciferase. Furthermore, H19 overexpression inhibited miR-200a function and thereby upregulated miR-200a target genes, ZEB1 and ZEB2.H19 sponged and inhibited miR-200a to de-repress expression of ZEB1 and ZEB2, and thereby enhanced lung cancer proliferation and metastasis.
Collapse
|
47
|
Liao S, Yu C, Liu H, Zhang C, Li Y, Zhong X. Long non-coding RNA H19 promotes the proliferation and invasion of lung cancer cells and regulates the expression of E-cadherin, N-cadherin, and vimentin. Onco Targets Ther 2019; 12:4099-4107. [PMID: 31190899 PMCID: PMC6535668 DOI: 10.2147/ott.s185156] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background This study aimed to explore the effect of long non-coding RNA (LncRNA) H19 on the proliferation and invasion of lung carcinoma cells A549, and to determine its molecular targets. Methods A549 cells were with either LncRNA H19 or LncRNA H19 shRNA, and the expression levels of LncRNA H19 were evaluated by quantitative real-time PCR (RT-PCR). We measured cell proliferation using the CCK-8 assay, cell counting assays, and colony formation assay in response to shLncRNA H19-2. Cell migration and invasion were assessed by wound healing assay and Transwell assay, respectively. The mRNA and protein expression levels of E-cadherin, N-cadherin, and vimentin were determined by RT-PCR and western blot, respectively. Results The three LncRNA H19 shRNAs used in our study significantly reduced the expression levels of LncRNA H19 in A549 cells (P<0.05). Moreover, LncRNA H19 shRNA 2 (shLncRNA-2) was the most potent inhibitor of LncRNA H19 expression, and was selected for further experimentation. Transfection with shLncRNA H19-2 significantly decreased the proliferation, migration, and invasion of A549 cells, while overexpression of LncRNA H19 had the opposite effect in these cells (P<0.05). In response to shLncRNA H19-2, the expression levels of E-cadherin were notably elevated (P<0.05), while the expression levels of N-cadherin and vimentin were decreased (P<0.05). In contrast, overexpression of LncRNA H19 induced the expression of E-cadherin, and blocked the expression of N-cadherin, and vimentin (P<0.05). Conclusion Our results suggest that LncRNA H19 mediates the proliferation and invasion of lung cancer cells via upregulation of N-cadherin and vimentin, and downregulation of E-cadherin.
Collapse
Affiliation(s)
- Shu Liao
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China,
| | - Chaxiu Yu
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Hucheng Liu
- Department of Osseous and Soft Tissue Oncology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Congkai Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China,
| | - Yong Li
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China,
| | - Xiaojun Zhong
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China,
| |
Collapse
|
48
|
Sai L, Yu G, Bo C, Zhang Y, Du Z, Li C, Zhang Z, Jia Q, Shao H, Peng C. Profiling long non-coding RNA changes in silica-induced pulmonary fibrosis in rat. Toxicol Lett 2019; 310:7-13. [PMID: 30978436 DOI: 10.1016/j.toxlet.2019.04.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/23/2019] [Accepted: 04/01/2019] [Indexed: 12/15/2022]
Abstract
Silicosis is a kind of chronic and incurable lung fibrotic disease with pathogenesis and molecular mechanisms largely unknown. Mounting evidence suggests that long non-coding RNAs (lncRNAs) are involved in the pathogenesis of silicosis. However, how many lncRNAs involved in the pulmonary fibrosis remains to be elucidated. In this study, Wistar rats were exposed to silicon dioxide by an improved tracheal intubation method. Rats in the control group were treated with normal saline solution. Results showed that 28 days after exposure, there were significant differences in body weight and lung coefficient of rats treated with silica compared with control rats. The formation of lung fibrosis in silica-induced rats was confirmed by histologic examination. We then investigated the lncRNAs expression changes in lung tissues of silica-exposed rats and compared that with the rats in the control group using microarray. The results indicated that silica exposure leads to altered expression profile in 682 lncRNAs (300 upregulated and 382 downregulated). Seventy-three ceRNA pairs were acquired by predicted analysis. Kyoto Encyclopedia of Genes and Genomes pathway and Gene Ontology analyses were used to predict the biological pathway and functional classification of lncRNAs. The results showed that silica exposure affected 13 lncRNAs pathways. The functional classification mainly involved in protein binding, cell shape and extracellular exosome. This study indicated that alteration of lncRNAs may play a role in silica-induced pulmonary fibrosis through regulation of expressions of functional genes in lungs of rat. Our results provide more insights into the mechanism of silicosis.
Collapse
Affiliation(s)
- Linlin Sai
- Shandong Academy of Occupational Health and Occupational Medicine, Ji'nan, Shandong, China
| | - Gongchang Yu
- Shandong Academy of Occupational Health and Occupational Medicine, Ji'nan, Shandong, China
| | - Cunxiang Bo
- Shandong Academy of Occupational Health and Occupational Medicine, Ji'nan, Shandong, China
| | - Yu Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Ji'nan, Shandong, China
| | - Zhongjun Du
- Shandong Academy of Occupational Health and Occupational Medicine, Ji'nan, Shandong, China
| | - Chao Li
- Shandong Academy of Occupational Health and Occupational Medicine, Ji'nan, Shandong, China
| | - Zhenling Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Ji'nan, Shandong, China
| | - Qiang Jia
- Shandong Academy of Occupational Health and Occupational Medicine, Ji'nan, Shandong, China.
| | - Hua Shao
- Shandong Academy of Occupational Health and Occupational Medicine, Ji'nan, Shandong, China.
| | - Cheng Peng
- Shandong Academy of Occupational Health and Occupational Medicine, Ji'nan, Shandong, China; The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), Brisbane, Queensland, Australia
| |
Collapse
|
49
|
Li X, Wang H, Zhang Y, Zhang J, Qi S, Zhang Y, Gao MQ. Overexpression of lncRNA H19 changes basic characteristics and affects immune response of bovine mammary epithelial cells. PeerJ 2019; 7:e6715. [PMID: 30984483 PMCID: PMC6452850 DOI: 10.7717/peerj.6715] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 03/05/2019] [Indexed: 12/14/2022] Open
Abstract
The function of long non-coding RNA H19 (H19) on cell proliferation has been observed in various cell types, and the increased expression of H19 was also found in the lipopolysaccharide (LPS)-induced inflammatory bovine mammary epithelial cells (MAC-T). However, the roles of H19 in the inflammatory response and physiological functions of bovine mammary epithelial cell are not clear. In the present study, we found that overexpression of H19 in MAC-T cells significantly promoted cell proliferation, increased the protein and mRNA level of β-casein, and enhanced the expression of tight junction (TJ)-related proteins while inhibited staphylococcus aureus adhesion to cells. In addition, results demonstrated that overexpression of H19 affected the LPS-induced immune response of MAC-T cells by promoting expressions of inflammatory factors, including TNF-α, IL-6, CXCL2 and CCL5, and activating the NF-κB signal pathway. Our findings indicate that H19 is likely to play an important role in maintaining normal functions and regulating immune response of bovine mammary epithelial cells.
Collapse
Affiliation(s)
- Xuezhong Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Hao Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yanfen Zhang
- Northwest A&F University hospital, Northwest A&F University, Yangling, China
| | - Jinjing Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Shaopei Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Ming-Qing Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
50
|
Abdollahzadeh S, Ghorbian S. Association of the study between LncRNA-H19 gene polymorphisms with the risk of breast cancer. J Clin Lab Anal 2019; 33:e22826. [PMID: 30485527 PMCID: PMC6818618 DOI: 10.1002/jcla.22826] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/08/2018] [Accepted: 11/04/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The H19 is a maternally expressed imprinted gene transcribing a long noncoding RNA (lncRNA), which has previously been reported to be involved in tumorigenesis and cancer progression. The aim of this study was to evaluate the associations between two lncRNA-H19 (rs3741219 T>C and rs217727 C>T) gene polymorphisms with the risk of breast cancer (BC). METHODS In a case-control investigation, we evaluated 150 BC patients and 100 cancer-free subjects in East Azerbaijan Province of Iran. To assess two gene polymorphisms, the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was used. RESULTS The genotype frequencies of two lncRNA-H19 (rs217727 C>T and rs3741219 T>C) gene polymorphisms TT + TC/CC and CC + CT/TT have not shown a statistically significant association with the risk of BC (P = 0.065; OR = 0.967; 95% CI, 0.938-0.996) and (P = 0.510; OR = 1.583; 95% CI, 0.399-6.726), respectively. In addition, our findings revealed a significant differences in allele frequencies in lncRNA-H19 rs217727 C>T polymorphism between groups (P = 0.033; OR = 1.985; 95% CI, 1.048-3.761). CONCLUSION Our findings suggested that rs217727 C>T polymorphism may be involved in the pathogenesis of BC, whereas rs3741219 T>C variation may not be involved in the genetic background of BC in Iranian.
Collapse
Affiliation(s)
- Safa Abdollahzadeh
- Department of Molecular Genetics, Ahar BranchIslamic Azad UniversityAharIran
| | - Saeid Ghorbian
- Department of Molecular Genetics, Ahar BranchIslamic Azad UniversityAharIran
| |
Collapse
|