1
|
Kim Y, Ghil S. Negative regulation of cannabinoid receptor 2‑induced tumorigenic effect by sphingosine‑1‑phosphate receptor 5 activation. Oncol Rep 2025; 53:41. [PMID: 39918009 DOI: 10.3892/or.2025.8874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/21/2024] [Indexed: 05/08/2025] Open
Abstract
G protein‑coupled receptors (GPCR), also known as seven‑transmembrane proteins, serve a role in transmitting extracellular information into the cellular environment. Type 2 cannabinoid receptors (CB2) and type 5 sphingosine‑1‑phosphate receptor (S1P5) are GPCRs that are activated by biolipids and involved in tumor progression in various cancer types. At present, effects of crosstalk between CB2 and S1P5 receptors on tumor cell proliferation and migration in gliomas are not fully understood. The present study screened S1Ps for potential interactions with CB2 using bioluminescence resonance energy transfer analysis. S1P5 interacted strongly and specifically with CB2. 293T cells were transfected with CB2 tagged with Venus and S1P5 tagged with mCherry to investigate the cellular localization of both receptors. After 24 h, Confocal microscopy analysis revealed that, in the absence of agonists, both receptors were predominantly localized at the plasma membrane. Notably, both receptors were co‑internalized from the membrane to the cytoplasm upon individual and combined activation. The effects of co‑activation of both receptors on tumor progression were investigated using U‑87 MG, the human glioblastoma cell line. Activation of CB2 induced an increase in cell migration and proliferation, which were downregulated following the co‑activation of S1P5. Furthermore, activation of S1P5 significantly attenuated the upregulation of tumor progression‑related genes, including zinc finger protein 91, activating transcription factor 3, Ki67, basic transcription factor 3, and p21, induced by CB2 activation. This suggests that S1P5 exerts a negative regulatory effect on CB2‑mediated tumor progression. The present findings provide evidence of the crosstalk between CB2 and S1P5.
Collapse
MESH Headings
- Humans
- Receptor, Cannabinoid, CB2/metabolism
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/agonists
- Cell Proliferation
- Cell Movement/drug effects
- Sphingosine-1-Phosphate Receptors/metabolism
- Cell Line, Tumor
- HEK293 Cells
- Glioblastoma/pathology
- Glioblastoma/metabolism
- Glioblastoma/genetics
- Gene Expression Regulation, Neoplastic
- Receptors, Lysosphingolipid/metabolism
- Receptors, Lysosphingolipid/genetics
- Carcinogenesis/genetics
Collapse
Affiliation(s)
- Yuna Kim
- Department of Life Science, Kyonggi University, Suwon, Gyeonggi 16227, Republic of Korea
| | - Sungho Ghil
- Department of Life Science, Kyonggi University, Suwon, Gyeonggi 16227, Republic of Korea
| |
Collapse
|
2
|
Stefanović M, Jovanović I, Živković M, Stanković A. Pathway analysis of peripheral blood CD8+ T cell transcriptome shows differential regulation of sphingolipid signaling in multiple sclerosis and glioblastoma. PLoS One 2024; 19:e0305042. [PMID: 38861512 PMCID: PMC11166308 DOI: 10.1371/journal.pone.0305042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/22/2024] [Indexed: 06/13/2024] Open
Abstract
Multiple sclerosis (MS) and glioblastoma (GBM) are CNS diseases in whose development and progression immune privilege is intimately important, but in a relatively opposite manner. Maintenance and strengthening of immune privilege have been shown to be an important mechanism in glioblastoma immune evasion, while the breakdown of immune privilege leads to MS initiation and exacerbation. We hypothesize that molecular signaling pathways can be oppositely regulated in peripheral blood CD8+ T cells of MS and glioblastoma patients at a transcriptional level. We analyzed publicly available data of the peripheral blood CD8+ T cell MS vs. control (MSvsCTRL) and GBM vs. control (GBMvsCTRL) differentially expressed gene (DEG) contrasts with Qiagen's Ingenuity pathway analysis software (IPA). We have identified sphingolipid signaling pathway which was significantly downregulated in the GBMvsCTRL and upregulated in the MSvsCTRL. As the pathway is important for the CD8+ T lymphocytes CNS infiltration, this result is in line with our previously stated hypothesis. Comparing publicly available lists of differentially expressed serum exosomal miRNAs from MSvsCTRL and GBMvsCTRL contrasts, we have identified that hsa-miR-182-5p has the greatest potential effect on sphingolipid signaling regarding the number of regulated DEGs in the GBMvsCTRL contrast, while not being able to find any relevant potential sphingolipid signaling target transcripts in the MSvsCTRL contrast. We conclude that the sphingolipid signaling pathway is a top oppositely regulated pathway in peripheral blood CD8+ T cells from GBM and MS, and might be crucial for the differences in CNS immune privilege maintenance of investigated diseases, but further experimental research is necessary.
Collapse
Affiliation(s)
- Milan Stefanović
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Ivan Jovanović
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Maja Živković
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Stanković
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Janneh AH. Sphingolipid Signaling and Complement Activation in Glioblastoma: A Promising Avenue for Therapeutic Intervention. BIOCHEM 2024; 4:126-143. [PMID: 38894892 PMCID: PMC11185840 DOI: 10.3390/biochem4020007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Glioblastoma is the most common and aggressive type of malignant brain tumor with a poor prognosis due to the lack of effective treatment options. Therefore, new treatment options are required. Sphingolipids are essential components of the cell membrane, while complement components are integral to innate immunity, and both play a critical role in regulating glioblastoma survival signaling. This review focuses on recent studies investigating the functional roles of sphingolipid metabolism and complement activation signaling in glioblastoma. It also discusses how targeting these two systems together may emerge as a novel therapeutic approach.
Collapse
Affiliation(s)
- Alhaji H Janneh
- Hollings Cancer Center, Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
4
|
Kim KM, Shin EJ, Yang JH, Ki SH. Integrative roles of sphingosine kinase in liver pathophysiology. Toxicol Res 2023; 39:549-564. [PMID: 37779595 PMCID: PMC10541397 DOI: 10.1007/s43188-023-00193-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 10/03/2023] Open
Abstract
Bioactive sphingolipids and enzymes that metabolize sphingolipid-related substances have been considered as critical messengers in various signaling pathways. One such enzyme is the crucial lipid kinase, sphingosine kinase (SphK), which mediates the conversion of sphingosine to the potent signaling substance, sphingosine-1-phosphate. Several studies have demonstrated that SphK metabolism is strictly regulated to maintain the homeostatic balance of cells. Here, we summarize the role of SphK in the course of liver disease and illustrate its effects on both physiological and pathological conditions of the liver. SphK has been implicated in a variety of liver diseases, such as steatosis, liver fibrosis, hepatocellular carcinoma, and hepatic failure. This study may advance the understanding of the cellular and molecular foundations of liver disease and establish therapeutic approaches via SphK modulation.
Collapse
Affiliation(s)
- Kyu Min Kim
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452 Republic of Korea
| | - Eun Jin Shin
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452 Republic of Korea
| | - Ji Hye Yang
- College of Korean Medicine, Dongshin University, Naju, Jeollanam-Do 58245 Republic of Korea
| | - Sung Hwan Ki
- College of Pharmacy, Chosun University, 309 Pilmun-Daero, Dong-Gu, Gwangju, 61452 Republic of Korea
| |
Collapse
|
5
|
Davy M, Genest L, Legrand C, Pelouin O, Froget G, Castagné V, Rupp T. Evaluation of Temozolomide and Fingolimod Treatments in Glioblastoma Preclinical Models. Cancers (Basel) 2023; 15:4478. [PMID: 37760448 PMCID: PMC10527257 DOI: 10.3390/cancers15184478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Glioblastomas are malignant brain tumors which remain lethal due to their aggressive and invasive nature. The standard treatment combines surgical resection, radiotherapy, and chemotherapy using Temozolomide, albeit with a minor impact on patient prognosis (15 months median survival). New therapies evaluated in preclinical translational models are therefore still required to improve patient survival and quality of life. In this preclinical study, we evaluated the effect of Temozolomide in different models of glioblastoma. We also aimed to investigate the efficacy of Fingolimod, an immunomodulatory drug for multiple sclerosis also described as an inhibitor of the sphingosine-1-phosphate (S1P)/S1P receptor axis. The effects of Fingolimod and Temozolomide were analyzed with in vitro 2D and 3D cellular assay and in vivo models using mouse and human glioblastoma cells implanted in immunocompetent or immunodeficient mice, respectively. We demonstrated both in in vitro and in vivo models that Temozolomide has a varied effect depending on the tumor type (i.e., U87MG, U118MG, U138MG, and GL261), demonstrating sensitivity, acquired resistance, and purely resistant tumor phenotypes, as observed in patients. Conversely, Fingolimod only reduced in vitro 2D tumor cell growth and increased cytotoxicity. Indeed, Fingolimod had little or no effect on 3D spheroid cytotoxicity and was devoid of effect on in vivo tumor progression in Temozolomide-sensitive models. These results suggest that the efficacy of Fingolimod is dependent on the glioblastoma tumor microenvironment. Globally, our data suggest that the response to Temozolomide varies depending on the cancer model, consistent with its clinical activity, whereas the potential activity of Fingolimod may merit further evaluation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tristan Rupp
- Porsolt SAS, ZA de Glatigné, 53940 Le Genest-Saint-Isle, France
| |
Collapse
|
6
|
Bien-Möller S, Chen F, Xiao Y, Köppe H, Jedlitschky G, Meyer U, Tolksdorf C, Grube M, Marx S, Tzvetkov MV, Schroeder HWS, Rauch BH. The Putative S1PR1 Modulator ACT-209905 Impairs Growth and Migration of Glioblastoma Cells In Vitro. Cancers (Basel) 2023; 15:4273. [PMID: 37686550 PMCID: PMC10486705 DOI: 10.3390/cancers15174273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Glioblastoma (GBM) is still a deadly tumor due to its highly infiltrative growth behavior and its resistance to therapy. Evidence is accumulating that sphingosine-1-phosphate (S1P) acts as an important tumor-promoting molecule that is involved in the activation of the S1P receptor subtype 1 (S1PR1). Therefore, we investigated the effect of ACT-209905 (a putative S1PR1 modulator) on the growth of human (primary cells, LN-18) and murine (GL261) GBM cells. The viability and migration of GBM cells were both reduced by ACT-209905. Furthermore, co-culture with monocytic THP-1 cells or conditioned medium enhanced the viability and migration of GBM cells, suggesting that THP-1 cells secrete factors which stimulate GBM cell growth. ACT-209905 inhibited the THP-1-induced enhancement of GBM cell growth and migration. Immunoblot analyses showed that ACT-209905 reduced the activation of growth-promoting kinases (p38, AKT1 and ERK1/2), whereas THP-1 cells and conditioned medium caused an activation of these kinases. In addition, ACT-209905 diminished the surface expression of pro-migratory molecules and reduced CD62P-positive GBM cells. In contrast, THP-1 cells increased the ICAM-1 and P-Selectin content of GBM cells which was reversed by ACT-209905. In conclusion, our study suggests the role of S1PR1 signaling in the growth of GBM cells and gives a partial explanation for the pro-tumorigenic effects that macrophages might have on GBM cells.
Collapse
Affiliation(s)
- Sandra Bien-Möller
- Department of General Pharmacology, University Medicine Greifswald, 17475 Greifswald, Germany; (S.B.-M.)
- Department of Neurosurgery, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Fan Chen
- Department of General Pharmacology, University Medicine Greifswald, 17475 Greifswald, Germany; (S.B.-M.)
- Department of Neurosurgery, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Yong Xiao
- Department of General Pharmacology, University Medicine Greifswald, 17475 Greifswald, Germany; (S.B.-M.)
- Department of Neurosurgery, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Hanjo Köppe
- Department of General Pharmacology, University Medicine Greifswald, 17475 Greifswald, Germany; (S.B.-M.)
- Department of Neurosurgery, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Gabriele Jedlitschky
- Department of General Pharmacology, University Medicine Greifswald, 17475 Greifswald, Germany; (S.B.-M.)
| | - Ulrike Meyer
- Division of Pharmacology and Toxicology, School of Medicine and Health Sciences, Carl von Ossietzky, Universität Oldenburg, 26129 Oldenburg, Germany
| | - Céline Tolksdorf
- Division of Pharmacology and Toxicology, School of Medicine and Health Sciences, Carl von Ossietzky, Universität Oldenburg, 26129 Oldenburg, Germany
| | - Markus Grube
- Department of General Pharmacology, University Medicine Greifswald, 17475 Greifswald, Germany; (S.B.-M.)
| | - Sascha Marx
- Department of Neurosurgery, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Mladen V. Tzvetkov
- Department of General Pharmacology, University Medicine Greifswald, 17475 Greifswald, Germany; (S.B.-M.)
| | - Henry W. S. Schroeder
- Department of Neurosurgery, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Bernhard H. Rauch
- Division of Pharmacology and Toxicology, School of Medicine and Health Sciences, Carl von Ossietzky, Universität Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
7
|
Arseni L, Sharma R, Mack N, Nagalla D, Ohl S, Hielscher T, Singhal M, Pilz R, Augustin H, Sandhoff R, Herold-Mende C, Tews B, Lichter P, Seiffert M. Sphingosine-1-Phosphate Recruits Macrophages and Microglia and Induces a Pro-Tumorigenic Phenotype That Favors Glioma Progression. Cancers (Basel) 2023; 15:cancers15020479. [PMID: 36672428 PMCID: PMC9856301 DOI: 10.3390/cancers15020479] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Glioblastoma is the most aggressive brain tumor in adults. Treatment failure is predominantly caused by its high invasiveness and its ability to induce a supportive microenvironment. As part of this, a major role for tumor-associated macrophages/microglia (TAMs) in glioblastoma development was recognized. Phospholipids are important players in various fundamental biological processes, including tumor-stroma crosstalk, and the bioactive lipid sphingosine-1-phosphate (S1P) has been linked to glioblastoma cell proliferation, invasion, and survival. Despite the urgent need for better therapeutic approaches, novel strategies targeting sphingolipids in glioblastoma are still poorly explored. Here, we showed that higher amounts of S1P secreted by glioma cells are responsible for an active recruitment of TAMs, mediated by S1P receptor (S1PR) signaling through the modulation of Rac1/RhoA. This resulted in increased infiltration of TAMs in the tumor, which, in turn, triggered their pro-tumorigenic phenotype through the inhibition of NFkB-mediated inflammation. Gene set enrichment analyses showed that such an anti-inflammatory microenvironment correlated with shorter survival of glioblastoma patients. Inhibition of S1P restored a pro-inflammatory phenotype in TAMs and resulted in increased survival of tumor-bearing mice. Taken together, our results establish a crucial role for S1P in fine-tuning the crosstalk between glioma and infiltrating TAMs, thus pointing to the S1P-S1PR axis as an attractive target for glioma treatment.
Collapse
Affiliation(s)
- Lavinia Arseni
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence: (L.A.); (M.S.)
| | - Rakesh Sharma
- Schaller Research Group at the University of Heidelberg and the German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Molecular Mechanisms of Tumor Invasion, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Norman Mack
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Deepthi Nagalla
- Schaller Research Group at the University of Heidelberg and the German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Molecular Mechanisms of Tumor Invasion, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sibylle Ohl
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Thomas Hielscher
- Division of Biostatistics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mahak Singhal
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ)-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Robert Pilz
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
- Lipid Pathobiochemistry, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Hellmut Augustin
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ)-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Roger Sandhoff
- Lipid Pathobiochemistry, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Christel Herold-Mende
- Department of Neurosurgery, Division of Experimental Neurosurgery, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Björn Tews
- Schaller Research Group at the University of Heidelberg and the German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Molecular Mechanisms of Tumor Invasion, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Martina Seiffert
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence: (L.A.); (M.S.)
| |
Collapse
|
8
|
Abdul Rashid K, Ibrahim K, Wong JHD, Mohd Ramli N. Lipid Alterations in Glioma: A Systematic Review. Metabolites 2022; 12:metabo12121280. [PMID: 36557318 PMCID: PMC9783089 DOI: 10.3390/metabo12121280] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/08/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Gliomas are highly lethal tumours characterised by heterogeneous molecular features, producing various metabolic phenotypes leading to therapeutic resistance. Lipid metabolism reprogramming is predominant and has contributed to the metabolic plasticity in glioma. This systematic review aims to discover lipids alteration and their biological roles in glioma and the identification of potential lipids biomarker. This systematic review was conducted using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. Extensive research articles search for the last 10 years, from 2011 to 2021, were conducted using four electronic databases, including PubMed, Web of Science, CINAHL and ScienceDirect. A total of 158 research articles were included in this study. All studies reported significant lipid alteration between glioma and control groups, impacting glioma cell growth, proliferation, drug resistance, patients' survival and metastasis. Different lipids demonstrated different biological roles, either beneficial or detrimental effects on glioma. Notably, prostaglandin (PGE2), triacylglycerol (TG), phosphatidylcholine (PC), and sphingosine-1-phosphate play significant roles in glioma development. Conversely, the most prominent anti-carcinogenic lipids include docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and vitamin D3 have been reported to have detrimental effects on glioma cells. Furthermore, high lipid signals were detected at 0.9 and 1.3 ppm in high-grade glioma relative to low-grade glioma. This evidence shows that lipid metabolisms were significantly dysregulated in glioma. Concurrent with this knowledge, the discovery of specific lipid classes altered in glioma will accelerate the development of potential lipid biomarkers and enhance future glioma therapeutics.
Collapse
Affiliation(s)
- Khairunnisa Abdul Rashid
- Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Kamariah Ibrahim
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Jeannie Hsiu Ding Wong
- Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Norlisah Mohd Ramli
- Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: ; Tel.: +60-379673238
| |
Collapse
|
9
|
Olesch C, Brüne B, Weigert A. Keep a Little Fire Burning-The Delicate Balance of Targeting Sphingosine-1-Phosphate in Cancer Immunity. Int J Mol Sci 2022; 23:ijms23031289. [PMID: 35163211 PMCID: PMC8836181 DOI: 10.3390/ijms23031289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022] Open
Abstract
The sphingolipid sphingosine-1-phosphate (S1P) promotes tumor development through a variety of mechanisms including promoting proliferation, survival, and migration of cancer cells. Moreover, S1P emerged as an important regulator of tumor microenvironmental cell function by modulating, among other mechanisms, tumor angiogenesis. Therefore, S1P was proposed as a target for anti-tumor therapy. The clinical success of current cancer immunotherapy suggests that future anti-tumor therapy needs to consider its impact on the tumor-associated immune system. Hereby, S1P may have divergent effects. On the one hand, S1P gradients control leukocyte trafficking throughout the body, which is clinically exploited to suppress auto-immune reactions. On the other hand, S1P promotes pro-tumor activation of a diverse range of immune cells. In this review, we summarize the current literature describing the role of S1P in tumor-associated immunity, and we discuss strategies for how to target S1P for anti-tumor therapy without causing immune paralysis.
Collapse
Affiliation(s)
- Catherine Olesch
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (C.O.); (B.B.)
- Bayer Joint Immunotherapeutics Laboratory, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (C.O.); (B.B.)
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60596 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (C.O.); (B.B.)
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60596 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
- Correspondence:
| |
Collapse
|
10
|
Hernández A, Domènech M, Muñoz-Mármol AM, Carrato C, Balana C. Glioblastoma: Relationship between Metabolism and Immunosuppressive Microenvironment. Cells 2021; 10:cells10123529. [PMID: 34944036 PMCID: PMC8700075 DOI: 10.3390/cells10123529] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive brain tumor in adults and is characterized by an immunosuppressive microenvironment. Different factors shaping this tumor microenvironment (TME) regulate tumor initiation, progression, and treatment response. Genetic alterations and metabolism pathways are two main elements that influence tumor immune cells and TME. In this manuscript, we review how both factors can contribute to an immunosuppressive state and overview the strategies being tested.
Collapse
Affiliation(s)
- Ainhoa Hernández
- B·ARGO (Badalona Applied Research Group of Oncology) Medical Oncology Department, Catalan Institute of Oncology Badalona, 08916 Badalona, Spain; (A.H.); (M.D.)
| | - Marta Domènech
- B·ARGO (Badalona Applied Research Group of Oncology) Medical Oncology Department, Catalan Institute of Oncology Badalona, 08916 Badalona, Spain; (A.H.); (M.D.)
| | - Ana M. Muñoz-Mármol
- Pathology Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain; (A.M.M.-M.); (C.C.)
| | - Cristina Carrato
- Pathology Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain; (A.M.M.-M.); (C.C.)
| | - Carmen Balana
- B·ARGO (Badalona Applied Research Group of Oncology) Medical Oncology Department, Catalan Institute of Oncology Badalona, 08916 Badalona, Spain; (A.H.); (M.D.)
- Correspondence: ; Tel.: +34-4978925
| |
Collapse
|
11
|
Bu Y, Wu H, Deng R, Wang Y. Therapeutic Potential of SphK1 Inhibitors Based on Abnormal Expression of SphK1 in Inflammatory Immune Related-Diseases. Front Pharmacol 2021; 12:733387. [PMID: 34737701 PMCID: PMC8560647 DOI: 10.3389/fphar.2021.733387] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/04/2021] [Indexed: 01/12/2023] Open
Abstract
Sphingosine kinase 1(SphK1) a key enzyme that catalyzes the conversion of sphingosine (Sph) to sphingosine 1-phosphate (S1P), so as to maintain the dynamic balance of sphingolipid-rheostat in cells and participate in cell growth and death, proliferation and migration, vasoconstriction and remodeling, inflammation and metabolism. The normal expression of SphK1 maintains the balance of physiological and pathological states, which is reflected in the regulation of inflammatory factor secretion, immune response in traditional immune cells and non-traditional immune cells, and complex signal transduction. However, abnormal SphK1 expression and activity are found in various inflammatory and immune related-diseases, such as hypertension, atherosclerosis, Alzheimer’s disease, inflammatory bowel disease and rheumatoid arthritis. In view of the therapeutic potential of regulating SphK1 and its signal, the current research is aimed at SphK1 inhibitors, such as SphK1 selective inhibitors and dual SphK1/2 inhibitor, and other compounds with inhibitory potency. This review explores the regulatory role of over-expressed SphK1 in inflammatory and immune related-diseases, and investigate the latest progress of SphK1 inhibitors and the improvement of disease or pathological state.
Collapse
Affiliation(s)
- Yanhong Bu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| | - Hong Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| | - Ran Deng
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| | - Yan Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| |
Collapse
|
12
|
Chernov AN, Alaverdian DA, Galimova ES, Renieri A, Frullanti E, Meloni I, Shamova OV. The phenomenon of multidrug resistance in glioblastomas. Hematol Oncol Stem Cell Ther 2021; 15:1-7. [PMID: 34216549 DOI: 10.1016/j.hemonc.2021.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/30/2021] [Indexed: 12/21/2022] Open
Abstract
The most common and aggressive brain tumor in the adult population is glioblastoma (GBM). The lifespan of patients does not exceed 22 months. One of the reasons for the low effectiveness of GBM treatment is its radioresistance and chemoresistance. In the current review, we discuss the phenomenon of multidrug resistance of GBM in the context of the expression of ABC family transporter proteins and the mechanisms of proliferation, angiogenesis, and recurrence. We focused on the search of molecular targets among growth factors, receptors, signal transduction proteins, microRNAs, transcription factors, proto-oncogenes, tumor suppressor genes, and their single-nucleotide polymorphisms.
Collapse
Affiliation(s)
- Alexandr N Chernov
- Institute of Experimental Medicine, Russian Academy of Medical Sciences, Saint-Petersburg, Russia.
| | - Diana A Alaverdian
- MedicalGenetics, Department of Medical Biotechnologies, University of Siena, Siena, Italy; MedBiotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elvira S Galimova
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Alessandra Renieri
- MedicalGenetics, Department of Medical Biotechnologies, University of Siena, Siena, Italy; MedBiotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy; Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Elisa Frullanti
- MedicalGenetics, Department of Medical Biotechnologies, University of Siena, Siena, Italy; MedBiotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Ilaria Meloni
- MedicalGenetics, Department of Medical Biotechnologies, University of Siena, Siena, Italy; MedBiotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Olga V Shamova
- Institute of Experimental Medicine, Russian Academy of Medical Sciences, Saint-Petersburg, Russia
| |
Collapse
|
13
|
Anu B, Namitha NN, Harikumar KB. S1PR1 signaling in cancer: A current perspective. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 125:259-274. [PMID: 33931142 DOI: 10.1016/bs.apcsb.2020.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Sphingosine-1-phosphate receptor 1 (S1PR1) is a G-protein coupled receptor for the bioactive lysosphingolipid sphingosine 1-phosphate (S1P). S1PR1 belongs to the sphingosine-1-phosphate receptor subfamily comprising five members (S1PR1-5). It has prominent roles in regulating endothelial cell cytoskeletal structure, cell migration, immunomodulation, vasculogenesis during embryogenesis, T cell egress and Multiple sclerosis. This review is addressing the role of S1PR1 in tumorigenesis and therapeutic opportunities to target S1PR1 in cancer.
Collapse
Affiliation(s)
- B Anu
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, KL, India
| | - N N Namitha
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, KL, India
| | - K B Harikumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, KL, India.
| |
Collapse
|
14
|
Hawkins CC, Ali T, Ramanadham S, Hjelmeland AB. Sphingolipid Metabolism in Glioblastoma and Metastatic Brain Tumors: A Review of Sphingomyelinases and Sphingosine-1-Phosphate. Biomolecules 2020; 10:E1357. [PMID: 32977496 PMCID: PMC7598277 DOI: 10.3390/biom10101357] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma (GBM) is a primary malignant brain tumor with a dismal prognosis, partially due to our inability to completely remove and kill all GBM cells. Rapid tumor recurrence contributes to a median survival of only 15 months with the current standard of care which includes maximal surgical resection, radiation, and temozolomide (TMZ), a blood-brain barrier (BBB) penetrant chemotherapy. Radiation and TMZ cause sphingomyelinases (SMase) to hydrolyze sphingomyelins to generate ceramides, which induce apoptosis. However, cells can evade apoptosis by converting ceramides to sphingosine-1-phosphate (S1P). S1P has been implicated in a wide range of cancers including GBM. Upregulation of S1P has been linked to the proliferation and invasion of GBM and other cancers that display a propensity for brain metastasis. To mediate their biological effects, SMases and S1P modulate signaling via phospholipase C (PLC) and phospholipase D (PLD). In addition, both SMase and S1P may alter the integrity of the BBB leading to infiltration of tumor-promoting immune populations. SMase activity has been associated with tumor evasion of the immune system, while S1P creates a gradient for trafficking of innate and adaptive immune cells. This review will explore the role of sphingolipid metabolism and pharmacological interventions in GBM and metastatic brain tumors with a focus on SMase and S1P.
Collapse
Affiliation(s)
- Cyntanna C. Hawkins
- Department of Cell, Developmental, and Integrative Biology, University of Birmingham at Alabama, Birmingham, AL 35233, USA; (C.C.H.); (S.R.)
| | - Tomader Ali
- Research Department, Imperial College London Diabetes Centre, Abu Dhabi P.O. Box 48338, UAE;
| | - Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology, University of Birmingham at Alabama, Birmingham, AL 35233, USA; (C.C.H.); (S.R.)
- Comprehensive Diabetes Center, University of Birmingham at Alabama, Birmingham, AL 35294, USA
| | - Anita B. Hjelmeland
- Department of Cell, Developmental, and Integrative Biology, University of Birmingham at Alabama, Birmingham, AL 35233, USA; (C.C.H.); (S.R.)
| |
Collapse
|
15
|
Kipp M. Does Siponimod Exert Direct Effects in the Central Nervous System? Cells 2020; 9:cells9081771. [PMID: 32722245 PMCID: PMC7463861 DOI: 10.3390/cells9081771] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
The modulation of the sphingosine 1-phosphate receptor is an approved treatment for relapsing multiple sclerosis because of its anti-inflammatory effect of retaining lymphocytes in lymph nodes. Different sphingosine 1-phosphate receptor subtypes are expressed in the brain and spinal cord, and their pharmacological effects may improve disease development and neuropathology. Siponimod (BAF312) is a novel sphingosine 1-phosphate receptor modulator that has recently been approved for the treatment of active secondary progressive multiple sclerosis (MS). In this review article, we summarize recent evidence suggesting that the active role of siponimod in patients with progressive MS may be due to direct interaction with central nervous system cells. Additionally, we tried to summarize our current understanding of the function of siponimod and discuss the effects observed in the case of MS.
Collapse
Affiliation(s)
- Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, 18057 Rostock, Germany
| |
Collapse
|
16
|
Fan X, Liu L, Shi Y, Guo F, He X, Zhao X, Zhong D, Li G. Recent advances of the function of sphingosine 1-phosphate (S1P) receptor S1P3. J Cell Physiol 2020; 236:1564-1578. [PMID: 33410533 DOI: 10.1002/jcp.29958] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/18/2022]
Abstract
Known as a variety of sphingolipid metabolites capable of performing various biological activities, sphingosine 1-phosphate (S1P) is commonly found in platelets, red blood cells, neutrophils, lymph fluid, and blood, as well as other cells and body fluids. S1P comprises five receptors, namely, S1P1-S1P5, with the distribution of S1P receptors exhibiting tissue selectivity to some degree. S1P1, S1P2, and S1P3 are extensively expressed in a wide variety of different tissues. The expression of S1P4 is restricted to lymphoid and hematopoietic tissues, while S1P5 is primarily expressed in the nervous system. S1P3 plays an essential role in the pathophysiological processes related to inflammation, cell proliferation, cell migration, tumor invasion and metastasis, ischemia-reperfusion, tissue fibrosis, and vascular tone. In this paper, the relevant mechanism in the role of S1P3 is summarized.
Collapse
Affiliation(s)
- Xuehui Fan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lili Liu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yue Shi
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Fanghan Guo
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiao He
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiuli Zhao
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Di Zhong
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Guozhong Li
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
17
|
Abstract
Sphingosine-1-phosphate (S1P) can regulate several physiological and pathological processes. S1P signaling via its cell surface receptor S1PR1 has been shown to enhance tumorigenesis and stimulate growth, expansion, angiogenesis, metastasis, and survival of cancer cells. S1PR1-mediated tumorigenesis is supported and amplified by activation of downstream effectors including STAT3, interleukin-6, and NF-κB networks. S1PR1 signaling can also trigger various other signaling pathways involved in carcinogenesis including activation of PI3K/AKT, MAPK/ERK1/2, Rac, and PKC/Ca, as well as suppression of cyclic adenosine monophosphate (cAMP). It also induces immunological tolerance in the tumor microenvironment, while the immunosuppressive function of S1PR1 can also lead to the generation of pre-metastatic niches. Some tumor cells upregulate S1PR1 signaling pathways, which leads to drug resistant cancer cells, mainly through activation of STAT3. This signaling pathway is also implicated in some inflammatory conditions leading to the instigation of inflammation-driven cancers. Furthermore, it can also increase survival via induction of anti-apoptotic pathways, for instance, in breast cancer cells. Therefore, S1PR1 and its signaling pathways can be considered as potential anti-tumor therapeutic targets, alone or in combination therapies. Given the oncogenic nature of S1PR1 and its distribution in a variety of cancer cell types along with its targeting advantages over other molecules of this family, S1PR1 should be considered a favorable target in therapeutic approaches to cancer. This review describes the role of S1PR1 in cancer development and progression, specifically addressing breast cancer, glioma, and hematopoietic malignancies. We also discuss the potential use of S1P signaling modulators as therapeutic targets in cancer therapy.
Collapse
|
18
|
Riboni L, Abdel Hadi L, Navone SE, Guarnaccia L, Campanella R, Marfia G. Sphingosine-1-Phosphate in the Tumor Microenvironment: A Signaling Hub Regulating Cancer Hallmarks. Cells 2020; 9:E337. [PMID: 32024090 PMCID: PMC7072483 DOI: 10.3390/cells9020337] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
As a key hub of malignant properties, the cancer microenvironment plays a crucial role intimately connected to tumor properties. Accumulating evidence supports that the lysophospholipid sphingosine-1-phosphate acts as a key signal in the cancer extracellular milieu. In this review, we have a particular focus on glioblastoma, representative of a highly aggressive and deleterious neoplasm in humans. First, we highlight recent advances and emerging concepts for how tumor cells and different recruited normal cells contribute to the sphingosine-1-phosphate enrichment in the cancer microenvironment. Then, we describe and discuss how sphingosine-1-phosphate signaling contributes to favor cancer hallmarks including enhancement of proliferation, stemness, invasion, death resistance, angiogenesis, immune evasion and, possibly, aberrant metabolism. We also discuss the potential of how sphingosine-1-phosphate control mechanisms are coordinated across distinct cancer microenvironments. Further progress in understanding the role of S1P signaling in cancer will depend crucially on increasing knowledge of its participation in the tumor microenvironment.
Collapse
Affiliation(s)
- Laura Riboni
- Department of Medical Biotechnology and Translational Medicine, LITA-Segrate, University of Milan, via Fratelli Cervi, 93, 20090 Segrate, Milan, Italy
| | - Loubna Abdel Hadi
- Department of Medical Biotechnology and Translational Medicine, LITA-Segrate, University of Milan, via Fratelli Cervi, 93, 20090 Segrate, Milan, Italy
| | - Stefania Elena Navone
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy (L.G.)
| | - Laura Guarnaccia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy (L.G.)
- Department of Clinical Sciences and Community Health, University of Milan, 20100 Milan, Italy
| | - Rolando Campanella
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy (L.G.)
| | - Giovanni Marfia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy (L.G.)
| |
Collapse
|
19
|
Tea MN, Poonnoose SI, Pitson SM. Targeting the Sphingolipid System as a Therapeutic Direction for Glioblastoma. Cancers (Basel) 2020; 12:cancers12010111. [PMID: 31906280 PMCID: PMC7017054 DOI: 10.3390/cancers12010111] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/28/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is the most commonly diagnosed malignant brain tumor in adults. The prognosis for patients with GBM remains poor and largely unchanged over the last 30 years, due to the limitations of existing therapies. Thus, new therapeutic approaches are desperately required. Sphingolipids are highly enriched in the brain, forming the structural components of cell membranes, and are major lipid constituents of the myelin sheaths of nerve axons, as well as playing critical roles in cell signaling. Indeed, a number of sphingolipids elicit a variety of cellular responses involved in the development and progression of GBM. Here, we discuss the role of sphingolipids in the pathobiology of GBM, and how targeting sphingolipid metabolism has emerged as a promising approach for the treatment of GBM.
Collapse
Affiliation(s)
- Melinda N. Tea
- Centre for Cancer Biology, University of South Australia and SA Pathology, UniSA CRI Building, North Tce, Adelaide, SA 5001, Australia;
| | - Santosh I. Poonnoose
- Department of Neurosurgery, Flinders Medical Centre, Adelaide, SA 5042, Australia;
| | - Stuart M. Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, UniSA CRI Building, North Tce, Adelaide, SA 5001, Australia;
- Adelaide Medical School and School of Biological Sciences, University of Adelaide, SA 5001, Australia
- Correspondence: ; Tel.: +61-8-8302-7832; Fax: +61-8-8302-9246
| |
Collapse
|
20
|
The Role of Platelets in Cancer Pathophysiology: Focus on Malignant Glioma. Cancers (Basel) 2019; 11:cancers11040569. [PMID: 31013620 PMCID: PMC6521321 DOI: 10.3390/cancers11040569] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/11/2019] [Accepted: 04/18/2019] [Indexed: 12/22/2022] Open
Abstract
The link between thrombocytosis and malignancy has been well known for many years and its associations with worse outcomes have been reported mainly for solid tumors. Besides measuring platelet count, it has become popular to assess platelet function in the context of malignant diseases during the last decade. Malignant gliomas differ tremendously from malignancies outside the central nervous system because they virtually never form distant metastases. This review summarizes the current understanding of the platelet-immune cell communication and its potential role in glioma resistance and progression. Particularly, we focus on platelet-derived proinflammatory modulators, such as sphingosine-1-phosphate (S1P). The multifaceted interaction with immune cells puts the platelet into an interesting perspective regarding the recent advances in immunotherapeutic approaches in malignant glioma.
Collapse
|
21
|
Fink MA, Paland H, Herzog S, Grube M, Vogelgesang S, Weitmann K, Bialke A, Hoffmann W, Rauch BH, Schroeder HWS, Bien-Möller S. L-Carnitine-Mediated Tumor Cell Protection and Poor Patient Survival Associated with OCTN2 Overexpression in Glioblastoma Multiforme. Clin Cancer Res 2019; 25:2874-2886. [PMID: 30670496 DOI: 10.1158/1078-0432.ccr-18-2380] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/04/2018] [Accepted: 01/10/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Apoptotic dysregulation, redox adaptive mechanisms, and resilience to hypoxia are major causes of glioblastoma (GBM) resistance to therapy. Commonly known as crucial factors in energy metabolism, OCTN2 (SLC22A5) and its substrate L-carnitine (LC) are increasingly recognized as actors in cytoprotection. This study provides a comprehensive expression and survival analysis of the OCTN2/LC system in GBM and clarifies the system's impact on GBM progression. EXPERIMENTAL DESIGN OCTN2 expression and LC content were measured in 121 resected human GBM specimens and 10 healthy brain samples and analyzed for prognostic significance. Depending on LC administration, the effects of hypoxic, metabolic, and cytotoxic stress on survival and migration of LN18 GBM cells were further studied in vitro. Finally, an orthotopic mouse model was employed to investigate inhibition of the OCTN2/LC system on in vivo GBM growth. RESULTS Compared with healthy brain, OCTN2 expression was increased in primary and even more so in recurrent GBM on mRNA and protein level. High OCTN2 expression was associated with a poor overall patient survival; the unadjusted HR for death was 2.7 (95% CI, 1.47-4.91; P < 0.001). LC administration to GBM cells increased their tolerance toward cytotoxicity, whereas siRNA-mediated OCTN2 silencing led to a loss of tumor cell viability. In line herewith, OCTN2/LC inhibition by meldonium resulted in reduced tumor growth in an orthotopic GBM mouse model. CONCLUSIONS Our data indicate a potential role of the OCTN2/LC system in GBM progression and resistance to therapy, and suggests OCTN2 as a prognostic marker in patients with primary GBM.
Collapse
Affiliation(s)
- Matthias A Fink
- Department of Pharmacology/C_DAT, University Medicine Greifswald, Greifswald, Germany.,Department of Neurosurgery, University Medicine Greifswald, Greifswald, Germany
| | - Heiko Paland
- Department of Pharmacology/C_DAT, University Medicine Greifswald, Greifswald, Germany.,Department of Neurosurgery, University Medicine Greifswald, Greifswald, Germany
| | - Susann Herzog
- Department of Pharmacology/C_DAT, University Medicine Greifswald, Greifswald, Germany
| | - Markus Grube
- Department of Pharmacology/C_DAT, University Medicine Greifswald, Greifswald, Germany
| | - Silke Vogelgesang
- Institute of Pathology, Department of Neuropathology, University Medicine Greifswald, Greifswald, Germany
| | - Kerstin Weitmann
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Angela Bialke
- Independent Trusted Third Party, University Medicine Greifswald, Greifswald, Germany
| | - Wolfgang Hoffmann
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Bernhard H Rauch
- Department of Pharmacology/C_DAT, University Medicine Greifswald, Greifswald, Germany
| | - Henry W S Schroeder
- Department of Neurosurgery, University Medicine Greifswald, Greifswald, Germany
| | - Sandra Bien-Möller
- Department of Pharmacology/C_DAT, University Medicine Greifswald, Greifswald, Germany. .,Department of Neurosurgery, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
22
|
Yu OM, Benitez JA, Plouffe SW, Ryback D, Klein A, Smith J, Greenbaum J, Delatte B, Rao A, Guan KL, Furnari FB, Chaim OM, Miyamoto S, Brown JH. YAP and MRTF-A, transcriptional co-activators of RhoA-mediated gene expression, are critical for glioblastoma tumorigenicity. Oncogene 2018; 37:5492-5507. [PMID: 29887596 PMCID: PMC6195840 DOI: 10.1038/s41388-018-0301-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 02/28/2018] [Accepted: 04/13/2018] [Indexed: 11/12/2022]
Abstract
The role of YAP (Yes-associated protein 1) and MRTF-A (myocardin-related transcription factor A), two transcriptional co-activators regulated downstream of GPCRs (G protein-coupled receptors) and RhoA, in the growth of glioblastoma cells and in vivo glioblastoma multiforme (GBM) tumor development was explored using human glioblastoma cell lines and tumor-initiating cells derived from patient-derived xenografts (PDX). Knockdown of these co-activators in GSC-23 PDX cells using short hairpin RNA significantly attenuated in vitro self-renewal capability assessed by limiting dilution, oncogene expression, and neurosphere formation. Orthotopic xenografts of the MRTF-A and YAP knockdown PDX cells formed significantly smaller tumors and were of lower morbidity than wild-type cells. In vitro studies used PDX and 1321N1 glioblastoma cells to examine functional responses to sphingosine 1-phosphate (S1P), a GPCR agonist that activates RhoA signaling, demonstrated that YAP signaling was required for cell migration and invasion, whereas MRTF-A was required for cell adhesion; both YAP and MRTF-A were required for proliferation. Gene expression analysis by RNA-sequencing of S1P-treated MRTF-A or YAP knockout cells identified 44 genes that were induced through RhoA and highly dependent on YAP, MRTF-A, or both. Knockdown of F3 (tissue factor (TF)), a target gene regulated selectively through YAP, blocked cell invasion and migration, whereas knockdown of HBEGF (heparin-binding epidermal growth factor-like growth factor), a gene selectively induced through MRTF-A, prevented cell adhesion in response to S1P. Proliferation was sensitive to knockdown of target genes regulated through either or both YAP and MRTF-A. Expression of TF and HBEGF was also selectively decreased in tumors from PDX cells lacking YAP or MRTF-A, indicating that these transcriptional pathways are regulated in preclinical GBM models and suggesting that their activation through GPCRs and RhoA contributes to growth and maintenance of human GBM.
Collapse
Affiliation(s)
- Olivia M Yu
- Department of Pharmacology, University of California, La Jolla, San Diego, CA, USA
- Biomedical Sciences Graduate Program, University of California, La Jolla, San Diego, CA, USA
| | - Jorge A Benitez
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, San Diego, CA, USA
| | - Steven W Plouffe
- Department of Pharmacology, University of California, La Jolla, San Diego, CA, USA
- Biomedical Sciences Graduate Program, University of California, La Jolla, San Diego, CA, USA
| | - Daniel Ryback
- Department of Pharmacology, University of California, La Jolla, San Diego, CA, USA
| | - Andrea Klein
- Department of Pharmacology, University of California, La Jolla, San Diego, CA, USA
| | - Jeff Smith
- Department of Pharmacology, University of California, La Jolla, San Diego, CA, USA
| | - Jason Greenbaum
- Division of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Benjamin Delatte
- Division of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Anjana Rao
- Division of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, San Diego, CA, USA
- Department of Pathology, School of Medicine, University of California, La Jolla, San Diego, CA, USA
| | - Kun-Liang Guan
- Department of Pharmacology, University of California, La Jolla, San Diego, CA, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, San Diego, CA, USA
| | - Frank B Furnari
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, San Diego, CA, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, San Diego, CA, USA
- Department of Pathology, School of Medicine, University of California, La Jolla, San Diego, CA, USA
| | - Olga Meiri Chaim
- Department of Pharmacology, University of California, La Jolla, San Diego, CA, USA
- Department of Cell Biology, Federal University of Paraná, Curitiba, Brazil
| | - Shigeki Miyamoto
- Department of Pharmacology, University of California, La Jolla, San Diego, CA, USA
| | - Joan Heller Brown
- Department of Pharmacology, University of California, La Jolla, San Diego, CA, USA.
- Moores Cancer Center, University of California at San Diego, La Jolla, San Diego, CA, USA.
| |
Collapse
|
23
|
Cytoplasmic dynein regulates the subcellular localization of sphingosine kinase 2 to elicit tumor-suppressive functions in glioblastoma. Oncogene 2018; 38:1151-1165. [PMID: 30250299 PMCID: PMC6363647 DOI: 10.1038/s41388-018-0504-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 07/10/2018] [Accepted: 08/24/2018] [Indexed: 11/09/2022]
Abstract
While the two mammalian sphingosine kinases, SK1 and SK2, both catalyze the generation of pro-survival sphingosine 1-phosphate (S1P), their roles vary dependent on their different subcellular localization. SK1 is generally found in the cytoplasm or at the plasma membrane where it can promote cell proliferation and survival. SK2 can be present at the plasma membrane where it appears to have a similar function to SK1, but can also be localized to the nucleus, endoplasmic reticulum or mitochondria where it mediates cell death. Although SK2 has been implicated in cancer initiation and progression, the mechanisms regulating SK2 subcellular localization are undefined. Here, we report that SK2 interacts with the intermediate chain subunits of the retrograde-directed transport motor complex, cytoplasmic dynein 1 (DYNC1I1 and -2), and we show that this interaction, particularly with DYNC1I1, facilitates the transport of SK2 away from the plasma membrane. DYNC1I1 is dramatically downregulated in patient samples of glioblastoma (GBM), where lower expression of DYNC1I1 correlates with poorer patient survival. Notably, low DYNC1I1 expression in GBM cells coincided with more SK2 localized to the plasma membrane, where it has been recently implicated in oncogenesis. Re-expression of DYNC1I1 reduced plasma membrane-localized SK2 and extracellular S1P formation, and decreased GBM tumor growth and tumor-associated angiogenesis in vivo. Consistent with this, chemical inhibition of SK2 reduced the viability of patient-derived GBM cells in vitro and decreased GBM tumor growth in vivo. Thus, these findings demonstrate a tumor-suppressive function of DYNC1I1, and uncover new mechanistic insights into SK2 regulation which may have implications in targeting this enzyme as a therapeutic strategy in GBM.
Collapse
|
24
|
Abdel Hadi L, Anelli V, Guarnaccia L, Navone S, Beretta M, Moccia F, Tringali C, Urechie V, Campanella R, Marfia G, Riboni L. A bidirectional crosstalk between glioblastoma and brain endothelial cells potentiates the angiogenic and proliferative signaling of sphingosine-1-phosphate in the glioblastoma microenvironment. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1179-1192. [PMID: 30056170 DOI: 10.1016/j.bbalip.2018.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 06/21/2018] [Accepted: 07/21/2018] [Indexed: 12/24/2022]
Abstract
Glioblastoma is one of the most malignant, angiogenic, and incurable tumors in humans. The aberrant communication between glioblastoma cells and tumor microenvironment represents one of the major factors regulating glioblastoma malignancy and angiogenic properties. Emerging evidence implicates sphingosine-1-phosphate signaling in the pathobiology of glioblastoma and angiogenesis, but its role in glioblastoma-endothelial crosstalk remains largely unknown. In this study, we sought to determine whether the crosstalk between glioblastoma cells and brain endothelial cells regulates sphingosine-1-phosphate signaling in the tumor microenvironment. Using human glioblastoma and brain endothelial cell lines, as well as primary brain endothelial cells derived from human glioblastoma, we report that glioblastoma-co-culture promotes the expression, activity, and plasma membrane enrichment of sphingosine kinase 2 in brain endothelial cells, leading to increased cellular level of sphingosine-1-phosphate, and significant potentiation of its secretion. In turn, extracellular sphingosine-1-phosphate stimulates glioblastoma cell proliferation, and brain endothelial cells migration and angiogenesis. We also show that, after co-culture, glioblastoma cells exhibit enhanced expression of S1P1 and S1P3, the sphingosine-1-phosphate receptors that are of paramount importance for cell growth and invasivity. Collectively, our results envision glioblastoma-endothelial crosstalk as a multi-compartmental strategy to enforce pro-tumoral sphingosine-1-phosphate signaling in the glioblastoma microenvironment.
Collapse
Affiliation(s)
- Loubna Abdel Hadi
- Department of Medical Biotechnology and Translational Medicine, LITA-Segrate, University of Milan, Italy
| | - Viviana Anelli
- Department of Medical Biotechnology and Translational Medicine, LITA-Segrate, University of Milan, Italy
| | - Laura Guarnaccia
- Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico Milan, Laboratory of Experimental Neurosurgery and Cell Therapy, University of Milan, Italy
| | - Stefania Navone
- Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico Milan, Laboratory of Experimental Neurosurgery and Cell Therapy, University of Milan, Italy
| | - Matteo Beretta
- Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico Milan, Laboratory of Experimental Neurosurgery and Cell Therapy, University of Milan, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Cristina Tringali
- Department of Medical Biotechnology and Translational Medicine, LITA-Segrate, University of Milan, Italy
| | - Vasile Urechie
- Department of Medical Biotechnology and Translational Medicine, LITA-Segrate, University of Milan, Italy
| | - Rolando Campanella
- Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico Milan, Laboratory of Experimental Neurosurgery and Cell Therapy, University of Milan, Italy
| | - Giovanni Marfia
- Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico Milan, Laboratory of Experimental Neurosurgery and Cell Therapy, University of Milan, Italy
| | - Laura Riboni
- Department of Medical Biotechnology and Translational Medicine, LITA-Segrate, University of Milan, Italy.
| |
Collapse
|
25
|
Marx S, Splittstöhser M, Kinnen F, Moritz E, Joseph C, Paul S, Paland H, Seifert C, Marx M, Böhm A, Schwedhelm E, Holzer K, Singer S, Ritter CA, Bien-Möller S, Schroeder HW, Rauch BH. Platelet activation parameters and platelet-leucocyte-conjugate formation in glioblastoma multiforme patients. Oncotarget 2018; 9:25860-25876. [PMID: 29899827 PMCID: PMC5995223 DOI: 10.18632/oncotarget.25395] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 04/28/2018] [Indexed: 01/15/2023] Open
Abstract
Patients with glioblastoma multiforme (GBM) suffer from an increased incidence of vascular thrombotic events. However, key influencing factors of the primary hemostasis have not been characterized in GBM patients to date. Thus, the present study determines the activation level of circulating platelets in GBM patients, in-vitro reactivity to agonist-induced platelet stimulation and the formation of circulating platelet-leucocyte conjugates as well as the plasma levels of the proinflammatory lipid mediator sphingosine-1-phosphate (S1P). The endogenous thrombin potential (ETP) was determined as global marker for hemostasis. The 21 GBM patients and 21 gender and age matched healthy individuals enrolled in this study did not differ in mean total platelet count. Basal surface expression of platelet CD63 determined by flow cytometry was significantly increased in GBM patients compared to controls as was observed for the concentration of soluble P-selectin in the plasma of GBM patients. While the ETP was not affected, the immunomodulatory lipid S1P was significantly decreased in peripheral blood in GBM. Interestingly, monocyte expression of PSGL-1 (CD162) was decreased in GBM patient blood, possibly explaining the rather decreased formation of platelet-monocyte conjugates. Our study reveals an increased CD63 expression and P-selectin expression/ secretion of circulating platelets in GBM patients. In parallel a down-modulated PSGL-1 expression in circulating monocytes and a trend towards a decreased formation of heterotypic platelet-monocyte conjugates in GBM patients was seen. Whether this and the observed decreased plasma level of the immunomodulatory S1P reflects a systemic anti-inflammatory status needs to be addressed in future studies.
Collapse
Affiliation(s)
- Sascha Marx
- Department of Neurosurgery, University Medicine Greifswald, Greifswald, Germany
| | - Maximilian Splittstöhser
- Department of Neurosurgery, University Medicine Greifswald, Greifswald, Germany
- Department of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University of Medicine Greifswald, Greifswald, Germany
| | - Frederik Kinnen
- Department of Neurosurgery, University Medicine Greifswald, Greifswald, Germany
| | - Eileen Moritz
- Department of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University of Medicine Greifswald, Greifswald, Germany
| | - Christy Joseph
- Department of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University of Medicine Greifswald, Greifswald, Germany
| | - Sebastian Paul
- Department of Ophthalmology, University Medicine Greifswald, Greifswald, Germany
| | - Heiko Paland
- Department of Neurosurgery, University Medicine Greifswald, Greifswald, Germany
- Department of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University of Medicine Greifswald, Greifswald, Germany
| | - Carolin Seifert
- Department of Neurosurgery, University Medicine Greifswald, Greifswald, Germany
- Department of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University of Medicine Greifswald, Greifswald, Germany
| | - Madlen Marx
- Department of Paediatric Oncology and Haematology, University Medicine Greifswald, Greifswald, Germany
| | - Andreas Böhm
- Department of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University of Medicine Greifswald, Greifswald, Germany
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Center, Hamburg, Germany
| | - Kerstin Holzer
- Institute of Pathology, University Medicine Greifswald, Greifswald, Germany
| | - Stephan Singer
- Institute of Pathology, University Medicine Greifswald, Greifswald, Germany
| | - Christoph A. Ritter
- Clinical Pharmacy, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Sandra Bien-Möller
- Department of Neurosurgery, University Medicine Greifswald, Greifswald, Germany
- Department of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University of Medicine Greifswald, Greifswald, Germany
| | | | - Bernhard H. Rauch
- Department of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University of Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
26
|
Cattaneo MG, Vanetti C, Samarani M, Aureli M, Bassi R, Sonnino S, Giussani P. Cross-talk between sphingosine-1-phosphate and EGFR signaling pathways enhances human glioblastoma cell invasiveness. FEBS Lett 2018; 592:949-961. [PMID: 29427528 DOI: 10.1002/1873-3468.13000] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/26/2018] [Accepted: 02/01/2018] [Indexed: 11/07/2022]
Abstract
We show that glioblastoma multiform (GBM) cells overexpressing the constitutively active form of the epidermal growth factor receptor [epidermal growth factor receptor variant III (EGFRvIII) and U87MG human GBM cell line overexpressing EGFRvIII (EGFR+) cells] possess greater invasive properties and have higher levels of extracellular sphingosine-1-phosphate (S1P) and increased sphingosine kinase-1 (SK1) activity than the empty vector-expressing cells. Notably, the inhibition of SK1 or S1P receptors decreases the invasiveness of EGFR+ cells. Moreover, EGFR and MEK1 inhibitors reduce both SK1 activation and cell invasion, suggesting that the enhanced invasiveness observed in the EGFR+ cells depends on the increased S1P secretion, downstream of the EGFRvIII-ERK-SK1-S1P pathway. Altogether, the results of the present study indicate that, in GBM cells, EGFRvIII is connected with the S1P signaling pathway to enhance cell invasiveness and tumor progression.
Collapse
Affiliation(s)
- Maria Grazia Cattaneo
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Italy
| | - Claudia Vanetti
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Italy
| | - Maura Samarani
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Milano, Italy
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Milano, Italy
| | - Rosaria Bassi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Milano, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Milano, Italy
| | - Paola Giussani
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, Milano, Italy
| |
Collapse
|
27
|
Korbecki J, Gutowska I, Kojder I, Jeżewski D, Goschorska M, Łukomska A, Lubkowska A, Chlubek D, Baranowska-Bosiacka I. New extracellular factors in glioblastoma multiforme development: neurotensin, growth differentiation factor-15, sphingosine-1-phosphate and cytomegalovirus infection. Oncotarget 2018; 9:7219-7270. [PMID: 29467963 PMCID: PMC5805549 DOI: 10.18632/oncotarget.24102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 01/02/2018] [Indexed: 11/25/2022] Open
Abstract
Recent years have seen considerable progress in understanding the biochemistry of cancer. For example, more significance is now assigned to the tumor microenvironment, especially with regard to intercellular signaling in the tumor niche which depends on many factors secreted by tumor cells. In addition, great progress has been made in understanding the influence of factors such as neurotensin, growth differentiation factor-15 (GDF-15), sphingosine-1-phosphate (S1P), and infection with cytomegalovirus (CMV) on the 'hallmarks of cancer' in glioblastoma multiforme. Therefore, in the present work we describe the influence of these factors on the proliferation and apoptosis of neoplastic cells, cancer stem cells, angiogenesis, migration and invasion, and cancer immune evasion in a glioblastoma multiforme tumor. In particular, we discuss the effect of neurotensin, GDF-15, S1P (including the drug FTY720), and infection with CMV on tumor-associated macrophages (TAM), microglial cells, neutrophil and regulatory T cells (Treg), on the tumor microenvironment. In order to better understand the role of the aforementioned factors in tumoral processes, we outline the latest models of intratumoral heterogeneity in glioblastoma multiforme. Based on the most recent reports, we discuss the problems of multi-drug therapy in treating glioblastoma multiforme.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland.,Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biała, 43-309 Bielsko-Biała, Poland
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Ireneusz Kojder
- Department of Applied Neurocognitivistics, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland.,Department of Neurosurgery, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Dariusz Jeżewski
- Department of Applied Neurocognitivistics, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland.,Department of Neurosurgery, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Marta Goschorska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Agnieszka Łukomska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Anna Lubkowska
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, 71-210 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| |
Collapse
|
28
|
Mahajan-Thakur S, Bien-Möller S, Marx S, Schroeder H, Rauch BH. Sphingosine 1-phosphate (S1P) signaling in glioblastoma multiforme-A systematic review. Int J Mol Sci 2017; 18:E2448. [PMID: 29149079 PMCID: PMC5713415 DOI: 10.3390/ijms18112448] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/09/2017] [Accepted: 11/14/2017] [Indexed: 12/22/2022] Open
Abstract
The multifunctional sphingosine-1-phosphate (S1P) is a lipid signaling molecule and central regulator in the development of several cancer types. In recent years, intriguing information has become available regarding the role of S1P in the progression of Glioblastoma multiforme (GBM), the most aggressive and common brain tumor in adults. S1P modulates numerous cellular processes in GBM, such as oncogenesis, proliferation and survival, invasion, migration, metastasis and stem cell behavior. These processes are regulated via a family of five G-protein-coupled S1P receptors (S1PR1-5) and may involve mainly unknown intracellular targets. Distinct expression patterns and multiple intracellular signaling pathways of each S1PR subtype enable S1P to exert its pleiotropic cellular actions. Several studies have demonstrated alterations in S1P levels, the involvement of S1PRs and S1P metabolizing enzymes in GBM pathophysiology. While the tumorigenic actions of S1P involve the activation of several kinases and transcription factors, the specific G-protein (Gi, Gq, and G12/13)-coupled signaling pathways and downstream mediated effects in GBM remain to be elucidated in detail. This review summarizes the recent findings concerning the role of S1P and its receptors in GBM. We further highlight the current insights into the signaling pathways considered fundamental for regulating the cellular processes in GMB and ultimately patient prognosis.
Collapse
Affiliation(s)
| | - Sandra Bien-Möller
- Department of Pharmacology, University Medicine Greifswald, 17487 Greifswald, Germany.
- Clinic of Neurosurgery, University Medicine Greifswald, 17487 Greifswald, Germany.
| | - Sascha Marx
- Clinic of Neurosurgery, University Medicine Greifswald, 17487 Greifswald, Germany.
| | - Henry Schroeder
- Clinic of Neurosurgery, University Medicine Greifswald, 17487 Greifswald, Germany.
| | - Bernhard H Rauch
- Department of Pharmacology, University Medicine Greifswald, 17487 Greifswald, Germany.
| |
Collapse
|
29
|
Li Q, Zhang D, Zhu H, Wang C, Li L, Li Z, Yang X, Hu W. Overexpression of cytoplasmic sphingosine 1-phosphate receptor 1 promotes cell cycle progression and migration in human esophageal squamous cell carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:10293-10303. [PMID: 31966364 PMCID: PMC6965810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/08/2017] [Indexed: 06/10/2023]
Abstract
Sphingosine-1-phosphate receptor 1 (S1PR1) is abnormally expressed in a variety of tumors. However, the clinical implications and biological roles of S1PR1 in esophageal squamous cell carcinoma (ESCC) remain unknown. In this study, we have focused on ESCC, and analyzed the expression of S1PR1 in human specimens at various histological grades of ESCC and the role of S1PR1 in Eca109 cells. Using human ESCC tissue microarray and immunohistochemistry, we found S1PR1 protein mainly located in the cytoplasm of cancer cells and normal esophageal mucosal epithelial cells, and small amounts in the plasma membrane. The levels of cytoplasmic S1PR1 in ESCC tissues were significantly higher than those in adjacent non-cancerous tissues. Cytoplasmic S1PR1 exhibited higher expression in ESCC tissues with poor differentiation than those with well differentiation. Conversely, the positive expression of plasma membrane S1PR1 was correlated with well differentiation. Kaplan-Meier survival analysis showed that patients with positive membrane S1PR1 expression tended to have longer survival time. Univariate and multivariate Cox regression analysis revealed that membrane S1PR1 expression was an independent prognostic factor for ESCC patients. Furthermore, overexpression of cytoplasmic S1PR1 promoted Eca109 cells from G1 phase to S phase and plasma membrane S1PR1 as the opposite, which may be associated with p21. Cytoplasmic S1PR1 signaling also promoted Eca109 cells migration. Our findings demonstrate that cytoplasmic S1PR1 plays an important role in the malignant behavior of human ESCC and may serve as a new target for ESCC therapy.
Collapse
Affiliation(s)
- Qianqian Li
- Department of Microbiology and Immunology, North Sichuan Medical CollegeNanchong, Sichuan, China
| | - Dingding Zhang
- Sichuan Key Laboratory for Disease Gene Study, Sichuan Academy of Medical Science and Sichuan Provincial People’s HospitalChengdu, Sichuan, China
| | - Hong Zhu
- Department of Microbiology and Immunology, North Sichuan Medical CollegeNanchong, Sichuan, China
| | - Chaoli Wang
- Institute of Immunology and Molecular Biology, North Sichuan Medical CollegeNanchong, Sichuan, China
| | - Li Li
- Department of Pathology, North Sichuan Medical CollegeNanchong, Sichuan, China
| | - Zumao Li
- Department of Pathology, North Sichuan Medical CollegeNanchong, Sichuan, China
| | - Xiaohong Yang
- Department of Microbiology and Immunology, North Sichuan Medical CollegeNanchong, Sichuan, China
| | - Weimin Hu
- Department of Microbiology and Immunology, North Sichuan Medical CollegeNanchong, Sichuan, China
- Institute of Immunology and Molecular Biology, North Sichuan Medical CollegeNanchong, Sichuan, China
| |
Collapse
|
30
|
"Dicing and Splicing" Sphingosine Kinase and Relevance to Cancer. Int J Mol Sci 2017; 18:ijms18091891. [PMID: 28869494 PMCID: PMC5618540 DOI: 10.3390/ijms18091891] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/29/2017] [Accepted: 08/29/2017] [Indexed: 02/06/2023] Open
Abstract
Sphingosine kinase (SphK) is a lipid enzyme that maintains cellular lipid homeostasis. Two SphK isozymes, SphK1 and SphK2, are expressed from different chromosomes and several variant isoforms are expressed from each of the isozymes, allowing for the multi-faceted biological diversity of SphK activity. Historically, SphK1 is mainly associated with oncogenicity, however in reality, both SphK1 and SphK2 isozymes possess oncogenic properties and are recognized therapeutic targets. The absence of mutations of SphK in various cancer types has led to the theory that cancer cells develop a dependency on SphK signaling (hyper-SphK signaling) or “non-oncogenic addiction”. Here we discuss additional theories of SphK cellular mislocation and aberrant “dicing and splicing” as contributors to cancer cell biology and as key determinants of the success or failure of SphK/S1P (sphingosine 1 phosphate) based therapeutics.
Collapse
|
31
|
Hatoum D, Haddadi N, Lin Y, Nassif NT, McGowan EM. Mammalian sphingosine kinase (SphK) isoenzymes and isoform expression: challenges for SphK as an oncotarget. Oncotarget 2017; 8:36898-36929. [PMID: 28415564 PMCID: PMC5482707 DOI: 10.18632/oncotarget.16370] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/02/2017] [Indexed: 12/16/2022] Open
Abstract
The various sphingosine kinase (SphK) isoenzymes (isozymes) and isoforms, key players in normal cellular physiology, are strongly implicated in cancer and other diseases. Mutations in SphKs, that may justify abnormal physiological function, have not been recorded. Nonetheless, there is a large and growing body of evidence demonstrating the contribution of gain or loss of function and the imbalance in the SphK/S1P rheostat to a plethora of pathological conditions including cancer, diabetes and inflammatory diseases. SphK is expressed as two isozymes SphK1 and SphK2, transcribed from genes located on different chromosomes and both isozymes catalyze the phosphorylation of sphingosine to S1P. Expression of each SphK isozyme produces alternately spliced isoforms. In recent years the importance of the contribution of SpK1 expression to treatment resistance in cancer has been highlighted and, additionally, differences in treatment outcome appear to also be dependent upon SphK isoform expression. This review focuses on an exciting emerging area of research involving SphKs functions, expression and subcellular localization, highlighting the complexity of targeting SphK in cancer and also comorbid diseases. This review also covers the SphK isoenzymes and isoforms from a historical perspective, from their first discovery in murine species and then in humans, their role(s) in normal cellular function and in disease processes, to advancement of SphK as an oncotarget.
Collapse
Affiliation(s)
- Diana Hatoum
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Nahal Haddadi
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Yiguang Lin
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Najah T. Nassif
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | - Eileen M. McGowan
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| |
Collapse
|
32
|
Oancea-Castillo LR, Klein C, Abdollahi A, Weber KJ, Régnier-Vigouroux A, Dokic I. Comparative analysis of the effects of a sphingosine kinase inhibitor to temozolomide and radiation treatment on glioblastoma cell lines. Cancer Biol Ther 2017; 18:400-406. [PMID: 28494176 PMCID: PMC5536935 DOI: 10.1080/15384047.2017.1323583] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Glioblastoma multiforme (GBM) exhibits high resistance to the standard treatment of temozolomide (TMZ) combined with radiotherapy, due to its remarkable cell heterogeneity. Accordingly, there is a need to target alternative molecules enhancing specific GBM autocrine or paracrine mechanisms and amplifying the effect of standard treatment. Sphingosine 1-phosphate (S1P) is such a lipid target molecule with an important role in cell invasion and proliferation. Sphingosine kinase inhibitors (SKI) prevent S1P formation and induce increased production of reactive oxygen species (ROS), which may potentiate radiation cytotoxicity. We analyzed the effect of SKI singular versus combined treatments with TMZ and radiation on 2 human GBM cell lines characterized by a lack of MGMT expression and low or high expression of the anti-oxidant enzyme, glutathione peroxidase 1 (GPx1). Effects were drug concentration-, cell line-dependent and partly ROS-mediated. Clonogenic survival assay demonstrates that SKI was more effective than TMZ in increasing the sensitivity of U87 cells, which express low GPx1 amount, to a 2 Gy X-ray dose. Addition of both SKI and TMZ drastically decreased U87 cells survival compared with the combination temozolomide/radiation. SKI less effectively than TMZ sensitized LN229 cells to the 2 Gy X-ray dose. Its combination to TMZ in absence of irradiation was as efficient as TMZ combination with X-ray. We provide first evidence for SKI as an alternative or complementary treatment to TMZ, and for efficient combinations of low doses of drugs and X-ray. These may help as novel bi-modal and tri-modal therapies to contend with GBM heterogeneity.
Collapse
Affiliation(s)
- Liliana R Oancea-Castillo
- a Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University of Mainz , Mainz , Germany
| | - Carmen Klein
- b German Cancer Consortium (DKTK), Translational Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ) , Heidelberg , Germany.,c Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO) , Heidelberg , Germany.,d Heidelberg Ion-Beam Therapy Center (HIT) , Heidelberg , Germany.,e Department of Radiation Oncology , Heidelberg University Hospital , Heidelberg , Germany
| | - Amir Abdollahi
- b German Cancer Consortium (DKTK), Translational Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ) , Heidelberg , Germany.,c Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO) , Heidelberg , Germany.,d Heidelberg Ion-Beam Therapy Center (HIT) , Heidelberg , Germany.,e Department of Radiation Oncology , Heidelberg University Hospital , Heidelberg , Germany
| | - Klaus-Josef Weber
- c Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO) , Heidelberg , Germany.,e Department of Radiation Oncology , Heidelberg University Hospital , Heidelberg , Germany
| | - Anne Régnier-Vigouroux
- a Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University of Mainz , Mainz , Germany
| | - Ivana Dokic
- b German Cancer Consortium (DKTK), Translational Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ) , Heidelberg , Germany.,c Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO) , Heidelberg , Germany.,d Heidelberg Ion-Beam Therapy Center (HIT) , Heidelberg , Germany.,e Department of Radiation Oncology , Heidelberg University Hospital , Heidelberg , Germany
| |
Collapse
|
33
|
Rodriguez YI, Campos LE, Castro MG, Aladhami A, Oskeritzian CA, Alvarez SE. Sphingosine-1 Phosphate: A New Modulator of Immune Plasticity in the Tumor Microenvironment. Front Oncol 2016; 6:218. [PMID: 27800303 PMCID: PMC5066089 DOI: 10.3389/fonc.2016.00218] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/30/2016] [Indexed: 01/01/2023] Open
Abstract
In the last 15 years, increasing evidences demonstrate a strong link between sphingosine-1-phosphate (S1P) and both normal physiology and progression of different diseases, including cancer and inflammation. Indeed, numerous studies show that tissue levels of this sphingolipid metabolite are augmented in many cancers, affecting survival, proliferation, angiogenesis, and metastatic spread. Recent insights into the possible role of S1P as a therapeutic target has attracted enormous attention and opened new opportunities in this evolving field. In this review, we will focus on the role of S1P in cancer, with particular emphasis in new developments that highlight the many functions of this sphingolipid in the tumor microenvironment. We will discuss how S1P modulates phenotypic plasticity of macrophages and mast cells, tumor-induced immune evasion, differentiation and survival of immune cells in the tumor milieu, interaction between cancer and stromal cells, and hypoxic response.
Collapse
Affiliation(s)
- Yamila I Rodriguez
- Instituto Multidisciplinario de Investigaciones Biológicas San Luis (IMIBIO-SL) CONICET , San Luis , Argentina
| | - Ludmila E Campos
- Instituto Multidisciplinario de Investigaciones Biológicas San Luis (IMIBIO-SL) CONICET , San Luis , Argentina
| | - Melina G Castro
- Instituto Multidisciplinario de Investigaciones Biológicas San Luis (IMIBIO-SL) CONICET , San Luis , Argentina
| | - Ahmed Aladhami
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine , Columbia, SC , USA
| | - Carole A Oskeritzian
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine , Columbia, SC , USA
| | - Sergio E Alvarez
- Instituto Multidisciplinario de Investigaciones Biológicas San Luis (IMIBIO-SL) CONICET, San Luis, Argentina; Universidad Nacional de San Luis, San Luis, Argentina
| |
Collapse
|