1
|
Ceccon C, Borga C, Angerilli V, Bergamo F, Munari G, Sabbadin M, Gasparello J, Schiavi F, Zovato S, Scarpa M, Urso EDL, Dei Tos AP, Luchini C, Grillo F, Lonardi S, Parente P, Fassan M. MLH1 gene promoter methylation status partially overlaps with CpG methylator phenotype (CIMP) in colorectal adenocarcinoma. Pathol Res Pract 2025; 266:155786. [PMID: 39724851 DOI: 10.1016/j.prp.2024.155786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND RAS/BRAF mutations, mismatch DNA repair complex deficiency (MMRd)/microsatellite instability (MSI), and CpG methylator phenotype (CIMP) are key molecular actors in colorectal carcinogenesis. To date, conflicting evidence about the correlations between these molecular features has been reported. MATERIALS AND METHODS A retrospectively selected cohort of 123 CRCs was divided into 3 groups based on the molecular characteristics: MMR proficient (MMRp)/BRAF p.V600E mutated (BRAFmut), MMRd/BRAFmut, and MMRd/BRAF wild type (BRAFwt). MLH1 promoter (pMLH1) methylation status was assessed by pyrosequencing. For 82 samples the CIMP phenotype was evaluated using the EpiTect® MethyLight kit. RESULTS The MMRd/BRAFmut group showed a higher pMLH1 methylation rate compared to both the MMRd/BRAFwt and the MMRp/BRAFmut groups. Overall, the two MMRd groups had a higher methylation rate compared to the MMRp cases independently from the mutational status of BRAF (p-value <0.0001). The MMRd/BRAFmut group was characterized by a 90.0 % of CIMP high (CIMP-H) tumors of which 97.2 % were pMLH1 methylated. Instead, the MMRd/BRAFwt group presented 50.0 % of CIMP-H adenocarcinomas. CONCLUSIONS Our study demonstrates that pMLH1 hypermethylation, MMRd, BRAFmut and CIMP phenotype do not completely overlap in CRC. These findings further refine the knowledge on the molecular landscape of CRC and may have critical implications also for the clinical management of the disease.
Collapse
Affiliation(s)
- Carlotta Ceccon
- Department of Medicine - DIMED, University of Padova, Padova, Italy; Department of Pathology, Azienda ULSS2 Marca Trevigiana, Treviso, Italy
| | - Chiara Borga
- Department of Pathology, Azienda Ospedale-Università Padova, Padua, Italy
| | - Valentina Angerilli
- Department of Medicine - DIMED, University of Padova, Padova, Italy; Department of Pathology, Azienda ULSS2 Marca Trevigiana, Treviso, Italy
| | | | - Giada Munari
- Department of Pathology, Azienda Ospedale-Università Padova, Padua, Italy
| | - Marianna Sabbadin
- Department of Medicine - DIMED, University of Padova, Padova, Italy; Department of Pathology, Azienda ULSS2 Marca Trevigiana, Treviso, Italy
| | | | | | | | - Marco Scarpa
- General Surgery 3, Department of Surgical, Oncological and Gastroenterological Sciences (DiSCOG), Azienda Ospedale-Università Padova, Padua, Italy
| | - Emanuele Damiano Luca Urso
- General Surgery 3, Department of Surgical, Oncological and Gastroenterological Sciences (DiSCOG), Azienda Ospedale-Università Padova, Padua, Italy
| | - Angelo Paolo Dei Tos
- Department of Medicine - DIMED, University of Padova, Padova, Italy; Department of Pathology, Azienda Ospedale-Università Padova, Padua, Italy
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Federica Grillo
- Anatomic Pathology, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, Italy
| | - Sara Lonardi
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Paola Parente
- Unit of Pathology, Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Matteo Fassan
- Department of Medicine - DIMED, University of Padova, Padova, Italy; Department of Pathology, Azienda ULSS2 Marca Trevigiana, Treviso, Italy.
| |
Collapse
|
2
|
Li D, Jiang SF, Levin TR, Goel A, Corley DA. Distinct Clinical Characteristics and Predictors of Sporadic Mismatch Repair-Deficient Colorectal Cancer. GASTRO HEP ADVANCES 2024; 4:100558. [PMID: 39866716 PMCID: PMC11760291 DOI: 10.1016/j.gastha.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/23/2024] [Indexed: 01/28/2025]
Affiliation(s)
- Dan Li
- Division of Research, Kaiser Permanente Northern California, Oakland, California
- Department of Gastroenterology, Kaiser Permanente Northern California, Santa Clara, California
| | - Sheng-Fang Jiang
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Theodore R. Levin
- Division of Research, Kaiser Permanente Northern California, Oakland, California
- Department of Gastroenterology, Kaiser Permanente Northern California, Walnut Creek, California
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Duarte, California
| | - Douglas A. Corley
- Division of Research, Kaiser Permanente Northern California, Oakland, California
- Department of Gastroenterology, Kaiser Permanente Northern California, San Francisco, California
| |
Collapse
|
3
|
Kim JH, Hong J, Lee JA, Jung M, Choi E, Cho NY, Kang GH, Kim S. Immune microenvironmental heterogeneity according to tumor DNA methylation phenotypes in microsatellite instability-high colorectal cancers. Cancer Immunol Immunother 2024; 73:215. [PMID: 39235590 PMCID: PMC11377388 DOI: 10.1007/s00262-024-03805-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 08/08/2024] [Indexed: 09/06/2024]
Abstract
The detailed association between tumor DNA methylation, including CpG island methylation, and tumor immunity is poorly understood. CpG island methylator phenotype (CIMP) is observed typically in sporadic colorectal cancers (CRCs) with microsatellite instability-high (MSI-H). Here, we investigated the differential features of the tumor immune microenvironment according to CIMP status in MSI-H CRCs. CIMP-high (CIMP-H) or CIMP-low/negative (CIMP-L/0) status was determined using MethyLight assay in 133 MSI-H CRCs. All MSI-H CRCs were subjected to digital pathology-based quantification of CD3 + /CD8 + /CD4 + /FoxP3 + /CD68 + /CD204 + /CD177 + tumor-infiltrating immune cells using whole-slide immunohistochemistry. Programmed death-ligand 1 (PD-L1) immunohistochemistry was evaluated using the tumor proportion score (TPS) and combined positive score (CPS). Representative cases were analyzed using whole-exome and RNA-sequencing. In 133 MSI-H CRCs, significantly higher densities of CD8 + tumor-infiltrating lymphocytes (TILs) were observed in CIMP-H tumors compared with CIMP-L/0 tumors. PD-L1 TPS and CPS in CIMP-H tumors were higher than in CIMP-L/0 tumors. Next-generation sequencing revealed that, compared with CIMP-L/0 tumors, CIMP-H tumors had higher fractions of CD8 + T cells/cytotoxic lymphocytes, higher cytolytic activity scores, and activated immune-mediated cell killing pathways. In contrast to CIMP-L/0 tumors, most CIMP-H tumors were identified as consensus molecular subtype 1, an immunogenic transcriptomic subtype of CRC. However, there were no differences in tumor mutational burden (TMB) between CIMP-H and CIMP-L/0 tumors in MSI-H CRCs. In conclusion, CIMP-H is associated with abundant cytotoxic CD8 + TILs and PD-L1 overexpression independent of TMB in MSI-H CRCs, suggesting that CIMP-H tumors represent a typical immune-hot subtype and are optimal candidates for immunotherapy in MSI-H tumors.
Collapse
Affiliation(s)
- Jung Ho Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, South Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.
| | - Jiyun Hong
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
- Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji Ae Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Minsun Jung
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Eunwoo Choi
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
- Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Nam-Yun Cho
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Sangwoo Kim
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea.
- Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
4
|
Loomans-Kropp HA. The utility of liquid biopsy-based methylation biomarkers for colorectal cancer detection. Front Oncol 2024; 14:1351514. [PMID: 38595823 PMCID: PMC11002156 DOI: 10.3389/fonc.2024.1351514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent cancers and the second leading cause of cancer-related deaths in the United States. It is also one of the few cancers with established screening guidelines, however these methods have significant patient burden (e.g., time, invasive). In recent years, the development of liquid biopsy-based screening methods for biomarker detection have emerged as alternatives to traditional screening. Methylation biomarkers are of particular interest, and these markers can be identified and measured on circulating tumor and cell-free DNA. This perspective summarizes the current state of CRC screening and the potential integration of DNA methylation markers into liquid biopsy-based techniques. Finally, I discuss limitations to these methods and strategies for improvement. The continued development and implementation of liquid biopsy-based cancer screening approaches may provide an acceptable alternative to individuals unwilling to be screened by traditional methods.
Collapse
Affiliation(s)
- Holli A. Loomans-Kropp
- Cancer Control Program, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, United States
- Division of Cancer Prevention and Control, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
5
|
Dasanu CA, Alani M, Habibi S, Codreanu I. Immune checkpoint inhibition in advanced colorectal cancer with inherited and acquired microsatellite instability: Current state and future directions. J Oncol Pharm Pract 2023:10781552231178293. [PMID: 37246506 DOI: 10.1177/10781552231178293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
OBJECTIVE This paper reviews comprehensively the most relevant data on single-agent and combination therapies for advanced colorectal cancer with inherited and acquired microsatellite instability (MSI). DATA SOURCES We performed a systematic search on PubMed and MEDLINE articles published from inception to December 2022. We have also searched independent websites including U.S. Food and Drug Administration and ClinicalTrials.gov. DATA SUMMARY Performing microsatellite stability testing, tumor mutational burden (TMB), and germline mutation analysis could identify patients with metastatic colorectal cancer that benefit from immune checkpoint inhibitor (ICI) therapy. Single-agent pembrolizumab has proven superiority over traditional chemotherapy in these patients. The nivolumab-ipilimumab is the only combination ICI therapy approved in this space. Recently, the anti-PD-1 antibody dostarlimab was granted Food and Drug Administration approval in refractory tissue-agnostic advanced solid cancers with deficient mismatch repair (dMMR). ICIs are also being studied in the adjuvant/neoadjuvant setting in colon cancer patients with dMMR. Newer agents are being scrutinized in this space as well. More solid data on biomarkers predicting responses in patients with MSI-high or TMB-H to various therapies are needed. Given its both clinical and financial toxicity, it is imperative to determine the optimal duration of ICI therapy in individual patients. CONCLUSIONS Overall, the outlook in advanced colorectal cancer patients with MSI appears optimistic as new and efficacious ICI drugs and combinations are being added to the existing therapeutic armamentarium.
Collapse
Affiliation(s)
- Constantin A Dasanu
- Lucy Curci Cancer Center, Eisenhower Health, Rancho Mirage, CA, USA
- Department of Medical Oncology and Hematology, UC San Diego Health System, San Diego, CA, USA
| | - Mohammed Alani
- Department of Medicine, Eisenhower Health, Rancho Mirage, CA, USA
| | | | - Ion Codreanu
- Translational Imaging Center, Houston Methodist Research Institute, Houston, TX, USA
- Department of Radiology, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova
| |
Collapse
|
6
|
Huang W, Ho CL, Lee CT, Chen WL, Yang SC, Chow NH, Chen YL. High concordance rate of capillary electrophoresis workflow for microsatellite instability analysis and mismatch repair (MMR) immunostaining in colorectal carcinoma. PLoS One 2023; 18:e0284227. [PMID: 37098015 PMCID: PMC10128978 DOI: 10.1371/journal.pone.0284227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/27/2023] [Indexed: 04/26/2023] Open
Abstract
Microsatellite instability (MSI) is the primary predictive biomarker for therapeutic efficacies of cancer immunotherapies. Establishment of the MSI detection methods with high sensitivity and accessibility is important. Because MSI is mainly caused by defects in DNA mismatch repair (MMR), immunohistochemical (IHC) staining for the MMR proteins has been widely employed to predict the responses to immunotherapies. Thus, due to the high sensitivity of PCR, the MSI-PCR analysis has also been recommended as the primary approach as MMR IHC. This study aimed to develop a sensitive and convenient platform for daily MSI-PCR services. The routine workflow used a non-labeling QIAxcel capillary electrophoresis system which did not need the fluorescence labeling of the DNA products or usage of a multi-color fluorescence reader. Furthermore, the 15 and 1000 bp size alignment markers were used to precisely detect the size of the DNA product. A cohort of 336 CRC cases was examined by MSI-PCR on the five mononucleotide MSI markers recommended by ESMO. The PCR products were analyzed in the screening gels, followed by high-resolution gel electrophoresis for confirmation if needed. In the MSI-PCR tests, 90.1% (303/336) cases showed clear major shift patterns in the screening gels, and only 33 cases had to be re-examined using the high-resolution gels. The cohort was also analyzed by MMR IHC is, which revealed 98.5% (331/336) concordance with MSI-PCR. In the five discordant cases, 4 (3 MSI-L and 1 MSS) showed MSH6 loss. Besides, one case exhibited MSI-H but no loss in the MMR IHC. Further NGS analysis, in this case, found that missense and frameshift mutations in the PMS2 and MSH6 genes occurred, respectively. In conclusion, the non-labeling MSI-PCR capillary electrophoresis revealed high concordance with the MMR IHC analysis and is cost- and time-effective. Therefore, it shall be highly applicable in clinical laboratories.
Collapse
Affiliation(s)
- Wenya Huang
- Department of Pathology, Molecular Diagnosis Laboratory, National Cheng Kung University Hospital, Tainan, Taiwan
- Molecular Medicine Core Laboratory, Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Liang Ho
- Department of Pathology, Molecular Diagnosis Laboratory, National Cheng Kung University Hospital, Tainan, Taiwan
- Molecular Medicine Core Laboratory, Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Ta Lee
- Department of Pathology, Molecular Diagnosis Laboratory, National Cheng Kung University Hospital, Tainan, Taiwan
- Molecular Medicine Core Laboratory, Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wan-Li Chen
- Department of Pathology, Molecular Diagnosis Laboratory, National Cheng Kung University Hospital, Tainan, Taiwan
- Molecular Medicine Core Laboratory, Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Shu-Ching Yang
- Department of Pathology, Molecular Diagnosis Laboratory, National Cheng Kung University Hospital, Tainan, Taiwan
- Molecular Medicine Core Laboratory, Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Nan-Haw Chow
- Department of Pathology, Molecular Diagnosis Laboratory, National Cheng Kung University Hospital, Tainan, Taiwan
- Molecular Medicine Core Laboratory, Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Lin Chen
- Department of Pathology, Molecular Diagnosis Laboratory, National Cheng Kung University Hospital, Tainan, Taiwan
- Molecular Medicine Core Laboratory, Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
7
|
Vital M, Carusso F, Vergara C, Neffa F, Della Valle A, Esperón P. Genetic and epigenetic characteristics of patients with colorectal cancer from Uruguay. Pathol Res Pract 2023; 241:154264. [PMID: 36495761 DOI: 10.1016/j.prp.2022.154264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC), the 3rd most frequent cancer worldwide, affects both men and women. This pathology arises from the progressive accumulation of genetic and epigenetic alterations. In this study, KRAS, NRAS, PIK3CA, and BRAF gene mutations, mismatch repair (MMR) genes methylation profile, microsatellite instability (MSI) and CpG Island Methylator Phenotype (CIMP) status were assessed. The associations of these molecular features with clinicopathological data were also investigated. A hundred and eight unselected CRC samples and their histological and clinical data, were gathered between 2017 and 2020. The prevalence of KRAS, NRAS and BRAF gene mutations was similar to that described in other populations. 28.7% of tumors were KRAS-mutated, mostly in men, distal location, with a CIMP-negative status. BRAFV600E frequency was 6.5% and associated with MSI (p = 0.048), MLH1-methylated (p < 0.001) and CIMP-High (p < 0.001) status. We also confirmed that BRAFV600E tumors were more prevalent in older women and proximal location. A striking different result was the lack of most common variants in the PIK3CA gene. A complete absence of PIK3CA-mutated tumors in a population has not been previously reported. Among MMR genes, the only with an aberrant methylation pattern was MLH1 gene. Its frequency was 9.25%, lower than previously reported. Methylated tumors were most frequent in patients older than 70 years old and proximal tumor location. Finally, CIMP-High status was mainly observed in moderately differentiated tumors with a rate of 15.7%. Our findings were consistent with previous reports in other populations, but also showed some features unique to our cohort. This study is the first to report the analysis of a large number molecular biomarkers of CRC in Uruguay and one of the few performed in Latin-America.
Collapse
Affiliation(s)
- Marcelo Vital
- Molecular Genetic Unit, School of Chemistry, Universidad de la República, General Flores 2124, CP1800 Montevideo, Uruguay.
| | - Florencia Carusso
- Uruguayan Collaborative Group, Dirección Nacional de Sanidad de las Fuerzas Armadas, 8 de Octubre 3020, CP1600 Montevideo, Uruguay.
| | - Carolina Vergara
- Uruguayan Collaborative Group, Dirección Nacional de Sanidad de las Fuerzas Armadas, 8 de Octubre 3020, CP1600 Montevideo, Uruguay.
| | - Florencia Neffa
- Uruguayan Collaborative Group, Dirección Nacional de Sanidad de las Fuerzas Armadas, 8 de Octubre 3020, CP1600 Montevideo, Uruguay.
| | - Adriana Della Valle
- Uruguayan Collaborative Group, Dirección Nacional de Sanidad de las Fuerzas Armadas, 8 de Octubre 3020, CP1600 Montevideo, Uruguay.
| | - Patricia Esperón
- Molecular Genetic Unit, School of Chemistry, Universidad de la República, General Flores 2124, CP1800 Montevideo, Uruguay; Uruguayan Collaborative Group, Dirección Nacional de Sanidad de las Fuerzas Armadas, 8 de Octubre 3020, CP1600 Montevideo, Uruguay; Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain.
| |
Collapse
|
8
|
Mezzapesa M, Losurdo G, Celiberto F, Rizzi S, d’Amati A, Piscitelli D, Ierardi E, Di Leo A. Serrated Colorectal Lesions: An Up-to-Date Review from Histological Pattern to Molecular Pathogenesis. Int J Mol Sci 2022; 23:4461. [PMID: 35457279 PMCID: PMC9032676 DOI: 10.3390/ijms23084461] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 12/10/2022] Open
Abstract
Until 2010, colorectal serrated lesions were generally considered as harmless lesions and reported as hyperplastic polyps (HPs) by pathologists and gastroenterologists. However, recent evidence showed that they may bear the potential to develop into colorectal carcinoma (CRC). Therefore, the World Health Organization (WHO) classification has identified four categories of serrated lesions: hyperplastic polyps (HPs), sessile serrated lesions (SSLs), traditional serrated adenoma (TSAs) and unclassified serrated adenomas. SSLs with dysplasia and TSAs are the most common precursors of CRC. CRCs arising from serrated lesions originate via two different molecular pathways, namely sporadic microsatellite instability (MSI) and the CpG island methylator phenotype (CIMP), the latter being considered as the major mechanism that drives the serrated pathway towards CRC. Unlike CRCs arising through the adenoma-carcinoma pathway, APC-inactivating mutations are rarely shown in the serrated neoplasia pathway.
Collapse
Affiliation(s)
- Martino Mezzapesa
- Section of Gastroenterology, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (M.M.); (G.L.); (F.C.); (S.R.); (A.D.L.)
| | - Giuseppe Losurdo
- Section of Gastroenterology, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (M.M.); (G.L.); (F.C.); (S.R.); (A.D.L.)
- PhD Course in Organs and Tissues Transplantation and Cellular Therapies, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
| | - Francesca Celiberto
- Section of Gastroenterology, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (M.M.); (G.L.); (F.C.); (S.R.); (A.D.L.)
- PhD Course in Organs and Tissues Transplantation and Cellular Therapies, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
| | - Salvatore Rizzi
- Section of Gastroenterology, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (M.M.); (G.L.); (F.C.); (S.R.); (A.D.L.)
| | - Antonio d’Amati
- Section of Pathology, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (A.d.); (D.P.)
| | - Domenico Piscitelli
- Section of Pathology, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (A.d.); (D.P.)
| | - Enzo Ierardi
- Section of Gastroenterology, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (M.M.); (G.L.); (F.C.); (S.R.); (A.D.L.)
| | - Alfredo Di Leo
- Section of Gastroenterology, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (M.M.); (G.L.); (F.C.); (S.R.); (A.D.L.)
| |
Collapse
|
9
|
Mitra S, Paramaguru R, Das P, Katti SV. Preneoplastic Lesions and Polyps of the Gastrointestinal Tract. SURGICAL PATHOLOGY OF THE GASTROINTESTINAL SYSTEM 2022:593-698. [DOI: 10.1007/978-981-16-6395-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
10
|
Kim JH, Hong JH, Choi YL, Lee JA, Seo MK, Lee MS, An SB, Sung MJ, Cho NY, Kim SS, Shin YK, Kim S, Kang GH. NTRK oncogenic fusions are exclusively associated with the serrated neoplasia pathway in the colorectum and begin to occur in sessile serrated lesions. J Pathol 2021; 255:399-411. [PMID: 34402529 DOI: 10.1002/path.5779] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/28/2021] [Accepted: 08/13/2021] [Indexed: 01/16/2023]
Abstract
Neurotrophic tropomyosin receptor kinase (NTRK) gene fusions are emerging tissue-agnostic drug targets in malignancies including colorectal carcinomas (CRCs), but their detailed landscape in the context of various colorectal carcinogenesis pathways remains to be investigated. In this study, pan-tropomyosin receptor kinase (TRK) protein expression was assessed by immunohistochemistry (IHC) in retrospectively collected colorectal epithelial tumor tissues, including 441 CRCs [133 microsatellite instability-high (MSI-high) and 308 microsatellite stable (MSS)] and 595 premalignant colorectal lesions (330 serrated lesions and 265 conventional adenomas). TRK-positive cases were then subjected to next-generation sequencing and/or fluorescence in situ hybridization to confirm NTRK rearrangements. TRK IHC positivity was not observed in any of the MSS CRCs, conventional adenomas, traditional serrated adenomas, or hyperplastic polyps, whereas TRK positivity was observed in 11 of 58 (19%) MLH1-methylated MSI-high CRCs, 4 of 23 (17%) sessile serrated lesions with dysplasia (SSLDs), and 5 of 132 (4%) sessile serrated lesions (SSLs). The 11 TRK-positive MSI-high CRCs commonly harbored CpG island methylator phenotype-high (CIMP-high), MLH1 methylation, BRAF/KRAS wild-type, and NTRK1 or NTRK3 fusion (TPM3-NTRK1, TPR-NTRK1, LMNA-NTRK1, SFPQ-NTRK1, ETV6-NTRK3, or EML4-NTRK3). Both NTRK1 or NTRK3 rearrangement and BRAF/KRAS wild-type were detected in all nine TRK-positive SSL(D)s, seven of which demonstrated MSS and/or CIMP-low. TRK expression was selectively observed in distorted serrated crypts within SSLs and was occasionally localized at the base of serrated crypts. NTRK fusions were detected only in SSLs of patients aged ≥50 years, whereas BRAF mutation was found in younger age-onset SSLs. In conclusion, NTRK-rearranged colorectal tumors develop exclusively through the serrated neoplasia pathway and can be initiated from non-dysplastic SSLs without BRAF/KRAS mutations prior to full occurrence of MSI-high/CIMP-high. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jung Ho Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong Hoon Hong
- Central Laboratory, LOGONE Bio-Convergence Research Foundation, Seoul, Republic of Korea
| | - Yoon-La Choi
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea.,Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Pathology and Translational Genomics, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ji Ae Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Mi-Kyoung Seo
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mi-Sook Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea.,Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sung Bin An
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea.,Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Min Jung Sung
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea.,Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Nam-Yun Cho
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung-Su Kim
- Central Laboratory, LOGONE Bio-Convergence Research Foundation, Seoul, Republic of Korea
| | - Young Kee Shin
- Central Laboratory, LOGONE Bio-Convergence Research Foundation, Seoul, Republic of Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Sangwoo Kim
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
11
|
Chang SC, Li AFY, Lin PC, Lin CC, Lin HH, Huang SC, Lin CH, Liang WY, Chen WS, Jiang JK, Lin JK, Yang SH, Lan YT. Clinicopathological and Molecular Profiles of Sporadic Microsatellite Unstable Colorectal Cancer with or without the CpG Island Methylator Phenotype (CIMP). Cancers (Basel) 2020; 12:cancers12113487. [PMID: 33238621 PMCID: PMC7700556 DOI: 10.3390/cancers12113487] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/07/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The 5'-C-phosphate-G-3' island methylator phenotype (CIMP) is a specific phenotype of colorectal cancer (CRC) associated with microsatellite instability-high (MSI-high) tumors. METHODS In this study, we determined the CIMP status using eight methylation markers in 92 MSI-high CRC patients after excluding five germline mismatch repair (MMR) gene mutations analyzed by next-generation sequencing (NGS) and confirmed by Sanger sequencing. The mutation spectra of 22 common CRC-associated genes were analyzed by NGS. RESULTS Of the 92 sporadic MSI-high tumors, 23 (25%) were considered CIMP-high (expressed more than 5 of 8 markers). CIMP-high tumors showed proximal colon preponderance and female predominance. The mutation profiles of CIMP-high tumors were significantly different from those of CIMP-low or CIMP-0 tumors (i.e., higher frequencies of BRAF, POLD1, MSH3, and SMAD4 mutations but lower frequencies of APC, TP53, and KRAS mutations). Multivariate analysis demonstrated that tumor, node, metastasis (TNM) stage was the independent prognostic factor affecting overall survival (OS). Among the MSI-high cases, the CIMP status did not impact the outcome of patients with MSI-high tumors. CONCLUSIONS Only TNM stage was a statistically significant predictor of outcomes independent of CIMP profiles in MSI-high CRC patients. Sporadic MSI-high CRCs with different mechanisms of carcinogenesis have specific mutation profiles and clinicopathological features.
Collapse
Affiliation(s)
- Shih-Ching Chang
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (S.-C.C.); (C.-C.L.); (H.-H.L.); (S.-C.H.); (W.-S.C.); (J.-K.J.); (J.-K.L.); (S.-H.Y.)
- Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 11121, Taiwan
| | - Anna Fen-Yau Li
- Department of Pathology, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (A.F.-Y.L.); (W.-Y.L.)
| | - Pei-Ching Lin
- Department of Clinical Pathology, Yang-Ming Branch, Taipei City Hospital, Taipei 11146, Taiwan;
- Department of Health and Welfare, University of Taipei, Taipei 11153, Taiwan
| | - Chun-Chi Lin
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (S.-C.C.); (C.-C.L.); (H.-H.L.); (S.-C.H.); (W.-S.C.); (J.-K.J.); (J.-K.L.); (S.-H.Y.)
- Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 11121, Taiwan
| | - Hung-Hsin Lin
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (S.-C.C.); (C.-C.L.); (H.-H.L.); (S.-C.H.); (W.-S.C.); (J.-K.J.); (J.-K.L.); (S.-H.Y.)
- Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 11121, Taiwan
| | - Shen-Chieh Huang
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (S.-C.C.); (C.-C.L.); (H.-H.L.); (S.-C.H.); (W.-S.C.); (J.-K.J.); (J.-K.L.); (S.-H.Y.)
- Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 11121, Taiwan
| | - Chien-Hsing Lin
- Division of Genomic Medicine, National Health Research Institutes, Zhunan 35053, Taiwan;
| | - Wen-Yi Liang
- Department of Pathology, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (A.F.-Y.L.); (W.-Y.L.)
| | - Wei-Shone Chen
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (S.-C.C.); (C.-C.L.); (H.-H.L.); (S.-C.H.); (W.-S.C.); (J.-K.J.); (J.-K.L.); (S.-H.Y.)
- Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 11121, Taiwan
| | - Jeng-Kai Jiang
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (S.-C.C.); (C.-C.L.); (H.-H.L.); (S.-C.H.); (W.-S.C.); (J.-K.J.); (J.-K.L.); (S.-H.Y.)
- Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 11121, Taiwan
| | - Jen-Kou Lin
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (S.-C.C.); (C.-C.L.); (H.-H.L.); (S.-C.H.); (W.-S.C.); (J.-K.J.); (J.-K.L.); (S.-H.Y.)
- Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 11121, Taiwan
| | - Shung-Haur Yang
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (S.-C.C.); (C.-C.L.); (H.-H.L.); (S.-C.H.); (W.-S.C.); (J.-K.J.); (J.-K.L.); (S.-H.Y.)
- Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 11121, Taiwan
| | - Yuan-Tzu Lan
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (S.-C.C.); (C.-C.L.); (H.-H.L.); (S.-C.H.); (W.-S.C.); (J.-K.J.); (J.-K.L.); (S.-H.Y.)
- Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 11121, Taiwan
- Correspondence: ; Tel.: +886-2-28757544-110
| |
Collapse
|
12
|
Peruhova M, Peshevska-Sekulovska M, Krastev B, Panayotova G, Georgieva V, Konakchieva R, Nikolaev G, Velikova TV. What could microRNA expression tell us more about colorectal serrated pathway carcinogenesis? World J Gastroenterol 2020; 26:6556-6571. [PMID: 33268946 PMCID: PMC7673963 DOI: 10.3748/wjg.v26.i42.6556] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/24/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
In the last two decades, the vision of a unique carcinogenesis model for colorectal carcinoma (CRC) has completely changed. In addition to the adenoma to carcinoma transition, colorectal carcinogenesis can also occur via the serrated pathway. Small non-coding RNA, known as microRNAs (miRNAs), were also shown to be involved in progression towards malignancy. Furthermore, increased expression of certain miRNAs in premalignant sessile serrated lesions (SSLs) was found, emphasizing their role in the serrated pathway progression towards colon cancer. Since miRNAs function as post-transcriptional gene regulators, they have enormous potential to be used as useful biomarkers for CRC and screening in patients with SSLs particularly. In this review, we have summarized the most relevant information about the specific role of miRNAs and their relevant signaling pathways among different serrated lesions and polyps as well as in serrated adenocarcinoma. Additional focus is put on the correlation between gut immunity and miRNA expression in the serrated pathway, which remains unstudied.
Collapse
Affiliation(s)
- Milena Peruhova
- Department of Gastroenterology, University Hospital Lozenetz, Sofia 1407, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| | | | - Boris Krastev
- Department of Clinical Oncology, MHAT Hospital for Women Health Nadezhda, Sofia 1330, Bulgaria
| | - Gabriela Panayotova
- Department of Gastroenterology, University Hospital Lozenetz, Sofia 1407, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| | - Viktoriya Georgieva
- Department of Gastroenterology, University Hospital Lozenetz, Sofia 1407, Bulgaria
| | | | - Georgi Nikolaev
- Faculty of Biology, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| | - Tsvetelina Veselinova Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
- Department of Clinical Immunology, University Hospital Lozenetz, Sofia 1407, Bulgaria
| |
Collapse
|
13
|
Wielandt AM, Hurtado C, Moreno C M, Villarroel C, Castro M, Estay M, Simian D, Martinez M, Vial MT, Kronberg U, López-Köstner F. Characterization of Chilean patients with sporadic colorectal cancer according to the three main carcinogenic pathways: Microsatellite instability, CpG island methylator phenotype and Chromosomal instability. Tumour Biol 2020; 42:1010428320938492. [PMID: 32635826 DOI: 10.1177/1010428320938492] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Molecular classification of colorectal cancer is difficult to implement in clinical settings where hundreds of genes are involved, and resources are limited. This study aims to characterize the molecular subtypes of patients with sporadic colorectal cancer based on the three main carcinogenic pathways microsatellite instability (MSI), CpG island methylator phenotype (CIMP), and chromosomal instability (CIN) in a Chilean population. Although several reports have characterized colorectal cancer, most do not represent Latin-American populations. Our study includes 103 colorectal cancer patients who underwent surgery, without neoadjuvant treatment, in a private hospital between 2008 and 2017. MSI, CIN, and CIMP status were assessed. Frequent mutations in KRAS, BRAF, and PIK3CA genes were analyzed by Sanger sequencing, and statistical analysis was performed by Fisher's exact and/or chi-square test. Survival curves were estimated with Kaplan-Meier and log-rank test. Based on our observations, we can classify the tumors in four subgroups, Group 1: MSI-high tumors (15%) are located in the right colon, occur at older age, and 60% show a BRAF mutation; Group 2: CIN-high tumors (38%) are in the left colon, and 26% have KRAS mutations. Group 3: [MSI/CIN/CIMP]-low/negative tumors (30%) are left-sided, and 39% have KRAS mutations; Group 4: CIMP-high tumors (15%) were more frequent in men and left side colon, with 27% KRAS and 7% presented BRAF mutations. Three percent of patients could not be classified. We found that CIMP-high was associated with a worse prognosis, both in MSI-high and MSI stable patients (p = 0.0452). Group 3 (Low/negative tumors) tend to have better overall survival compared with MSI-high, CIMP-high, and CIN-high tumors. This study contributes to understanding the heterogeneity of tumors in the Chilean population being one of the few characterizations performed in Latin-America. Given the limited resources of these countries, these results allow to improve molecular characterization in Latin-American colorectal cancer populations and confirm the possibility of using the three main carcinogenic pathways to define therapeutic strategies.
Collapse
Affiliation(s)
- Ana María Wielandt
- Oncology and Molecular Genetics Laboratory, Coloproctology Unit, Clínica Las Condes, Santiago, Chile.,Coloproctology Unit, Clínica Las Condes, Santiago, Chile
| | - Claudia Hurtado
- Oncology and Molecular Genetics Laboratory, Coloproctology Unit, Clínica Las Condes, Santiago, Chile.,Coloproctology Unit, Clínica Las Condes, Santiago, Chile
| | - Mauricio Moreno C
- Oncology and Molecular Genetics Laboratory, Coloproctology Unit, Clínica Las Condes, Santiago, Chile.,Coloproctology Unit, Clínica Las Condes, Santiago, Chile
| | - Cynthia Villarroel
- Oncology and Molecular Genetics Laboratory, Coloproctology Unit, Clínica Las Condes, Santiago, Chile
| | - Magdalena Castro
- Academic Department Research Unit, Clínica Las Condes, Santiago, Chile
| | - Marlene Estay
- Coloproctology Unit, Clínica Las Condes, Santiago, Chile
| | - Daniela Simian
- Academic Department Research Unit, Clínica Las Condes, Santiago, Chile
| | - Maripaz Martinez
- Academic Department Research Unit, Clínica Las Condes, Santiago, Chile
| | | | - Udo Kronberg
- Coloproctology Unit, Clínica Las Condes, Santiago, Chile
| | | |
Collapse
|
14
|
Kim JH, Kang GH. Evolving pathologic concepts of serrated lesions of the colorectum. J Pathol Transl Med 2020; 54:276-289. [PMID: 32580537 PMCID: PMC7385269 DOI: 10.4132/jptm.2020.04.15] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Here, we provide an up-to-date review of the histopathology and molecular pathology of serrated colorectal lesions. First, we introduce the updated contents of the 2019 World Health Organization classification for serrated lesions. The sessile serrated lesion (SSL) is a new diagnostic terminology that replaces sessile serrated adenoma and sessile serrated polyp. The diagnostic criteria for SSL were revised to require only one unequivocal distorted serrated crypt, which is sufficient for diagnosis. Unclassified serrated adenomas have been included as a new category of serrated lesions. Second, we review ongoing issues concerning the morphology of serrated lesions. Minor morphologic variants with distinct molecular features were recently defined, including serrated tubulovillous adenoma, mucin-rich variant of traditional serrated adenoma (TSA), and superficially serrated adenoma. In addition to intestinal dysplasia and serrated dysplasia, minimal deviation dysplasia and not otherwise specified dysplasia were newly suggested as dysplasia subtypes of SSLs. Third, we summarize the molecular features of serrated lesions. The critical determinant of CpG island methylation development in SSLs is patient age. Interestingly, there may be ethnic differences in BRAF/KRAS mutation frequencies in SSLs. The molecular pathogenesis of TSAs is divided into KRAS and BRAF mutation pathways. SSLs with MLH1 methylation can progress into favorable prognostic microsatellite instability-positive (MSI+)/CpG island methylator phenotype-positive (CIMP+) carcinomas, whereas MLH1-unmethylated SSLs and BRAF-mutated TSAs can be precursors of poor-prognostic MSI-/CIMP+ carcinomas. Finally, based on our recent data, we propose an algorithm for stratifying risk subgroups of non-dysplastic SSLs.
Collapse
Affiliation(s)
- Jung Ho Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Marquet B, Marchal Bressenot A, Fichel C, Bouland N, Barbe C, Bouché O, Kianmanesh R, Diebold MD, Boulagnon-Rombi C. Expression of the Serrated Markers Annexin A10 or Gremlin1 in Colonic Adenocarcinomas: Morphology and Prognostic Values. Pathol Oncol Res 2020; 26:2509-2521. [PMID: 32583331 DOI: 10.1007/s12253-020-00857-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 06/15/2020] [Indexed: 12/24/2022]
Abstract
Describe clinical, histological and molecular charatcteristics and prognosis values of the serrated candidate markers AnnexinA10 and Gremlin1 in colon adenocarcinomas. Immunohistochemical expression of AnnexinA10 and Gremlin1 was evaluated on 346 colonic adenocarcinomas. Clinicopathological, molecular features and prognostic characteristics were then evaluated. A total of 40 colonic adenocarcinomas expressed AnnexinA10 (11.6%) and, 115 expressed Gremlin1 (40.4%). AnnexinA10 expression was significantly associated, on univariate analyses, with female gender (p = 0.03), right tumor location (p < 0.001), differentiation grade 3 (p < 0.001), serrated adenocarcinoma subtype (p < 0.001), serrated (p < 0.001), medullary (p = 0.005), and mucinous component (p = 0.004), cytoplasmic eosinophilia (p < 0.001), discernible nuclei (p = 0.001), preserved polarity (p < 0.001), lymphatic invasion (p = 0.01), BRAFV600E mutation (p < 0.001), MSI-H status (p < 0.001) and CIMP-H status (p = 0.019). Multivariate analyses revealed that mucinous component (p = 0.002), lymphatic invasion (p = 0.02) and BRAFV600E mutation (p < 0.001) were independently associated with AnnexinA10 expression. In addition, AnnexinA10 was an indicator of poorer overall survival (OS) in UICC stage IV adenocarcinomas (p = 0.01) only. Gremlin1 expression was neither associated with serrated adenocarcinoma subtype (p = 0.51) nor with AnnexinA10 expression (p = 0,31), but was significantly associated, in univariate analysis with male gender (p = 0.002), younger age (p = 0.002), left tumor location (p = 0.04), and MSS status (p = 0.03). Gremlin1 expression was associated with better OS only in UICC stage III colon adenocarcinomas (p = 0.006). Colon adenocarcinomas expressing AnnexinA10 have distinct clinico-pathological and molecular features. AnnexinA10 expression is an indicator of poorer OS in UICC stage IV patients. Gremlin1 expression is not associated with serrated adenocarcinomas subtype. Its expression was associated with better OS in UICC Stage III patients.
Collapse
Affiliation(s)
- Benjamin Marquet
- Department of Biopathology, Academic Hospital, rue du Général Koenig, 51100, Reims, France. .,Department of Pathology, Medicine University, Reims, France.
| | - Aude Marchal Bressenot
- Department of Biopathology, Academic Hospital, rue du Général Koenig, 51100, Reims, France.,Department of Pathology, Medicine University, Reims, France
| | | | - Nicole Bouland
- Department of Pathology, Medicine University, Reims, France
| | - Coralie Barbe
- Clinical Research Unit, Academic Hospital, Reims, France
| | - Olivier Bouché
- Gatroenterology and Digestive Oncology Department, Academic Hospital, Reims, France
| | - Reza Kianmanesh
- Digestive Surgery Department, Academic hospital, Reims, France
| | - Marie-Danièle Diebold
- Department of Biopathology, Academic Hospital, rue du Général Koenig, 51100, Reims, France.,Department of Pathology, Medicine University, Reims, France
| | - Camille Boulagnon-Rombi
- Department of Biopathology, Academic Hospital, rue du Général Koenig, 51100, Reims, France.,Department of Pathology, Medicine University, Reims, France.,UMR CNRS/URCA 7369 MEDyC, Medicine University, Reims, France
| |
Collapse
|
16
|
Puccini A, Battaglin F, Iaia ML, Lenz HJ, Salem ME. Overcoming resistance to anti-PD1 and anti-PD-L1 treatment in gastrointestinal malignancies. J Immunother Cancer 2020; 8:e000404. [PMID: 32393474 PMCID: PMC7223273 DOI: 10.1136/jitc-2019-000404] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2020] [Indexed: 12/14/2022] Open
Abstract
In the last few years, the unprecedented results of immune checkpoint inhibitors have led to a paradigm shift in clinical practice for the treatment of several cancer types. However, the vast majority of patients with gastrointestinal cancer do not benefit from immunotherapy. To date, microsatellite instability high and DNA mismatch repair deficiency are the only robust predictive biomarkers of response to immune checkpoint inhibitors. Unfortunately, these patients comprise only 5%-10% of all gastrointestinal cancers. Several mechanisms of both innate and adaptive resistance to immunotherapy have been recognized that may be at least in part responsible for the failure of immune checkpoint inhibitors in this population of patients. In the first part of this review article, we provide an overview of the main clinical trials with immune checkpoint inhibitors in patients with gastrointestinal cancer and the role of predictive biomarkers. In the second part, we discuss the actual body of knowledge in terms of mechanisms of resistance to immunotherapy and the most promising approach that are currently under investigation in order to expand the population of patients with gastrointestinal cancer who could benefit from immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Alberto Puccini
- University of Genoa, Medical Oncology Unit 1, Ospedale Policlinico San Martino IRCCS, Genova, Italy
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Francesca Battaglin
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Maria Laura Iaia
- University of Genoa, Medical Oncology Unit 1, Ospedale Policlinico San Martino IRCCS, Genova, Italy
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Mohamed E Salem
- Department of Medical Oncology, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina, USA
| |
Collapse
|
17
|
Crockett SD, Nagtegaal ID. Terminology, Molecular Features, Epidemiology, and Management of Serrated Colorectal Neoplasia. Gastroenterology 2019; 157:949-966.e4. [PMID: 31323292 DOI: 10.1053/j.gastro.2019.06.041] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 06/07/2019] [Accepted: 06/15/2019] [Indexed: 12/11/2022]
Abstract
In addition to the adenoma to carcinoma sequence, colorectal carcinogenesis can occur via the serrated pathway. Studies have focused on clarification of categories and molecular features of serrated polyps, as well as endoscopic detection and risk assessment. Guidelines from the World Health Organization propose assigning serrated polyps to categories of hyperplastic polyps, traditional serrated adenomas, and sessile serrated lesions (SSLs). Traditional serrated adenomas and SSLs are precursors to colorectal cancer. The serrated pathway is characterized by mutations in RAS and RAF, disruptions to the Wnt signaling pathway, and widespread methylation of CpG islands. Epidemiology studies of serrated polyps have been hampered by inconsistencies in terminology and reporting, but the prevalence of serrated class polyps is 20%-40% in average-risk individuals; most serrated polyps detected are hyperplastic. SSLs, the most common premalignant serrated subtype, and are found in up to 15% of average-risk patients by high-detecting endoscopists. Variations in rate of endoscopic detection of serrated polyps indicate the need for careful examination, with adequate bowel preparation and sufficient withdrawal times. Risk factors for SSLs include white race, family history of colorectal cancer, smoking, and alcohol intake. Patients with serrated polyps, particularly SSLs and traditional serrated adenomas, have an increased risk of synchronous and metachronous advanced neoplasia. Surveillance guidelines vary among countries, but SSLs and proximal hyperplastic polyps require special attention in assignment of surveillance interval-especially in light of concerns regarding incomplete detection and resection.
Collapse
Affiliation(s)
- Seth D Crockett
- Division of Gastroenterology and Hepatology, University of North Carolina School of Medicine, Chapel Hill, North Carolina.
| | - Iris D Nagtegaal
- Department of Pathology, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
18
|
Yozu M, Kem M, Cenaj O, Mino-Kenudson M, Odze RD, Misdraji J. Loss of expression of MLH1 in non-dysplastic crypts is a harbinger of neoplastic progression in sessile serrated adenomas/polyps. Histopathology 2019; 75:376-384. [PMID: 30974487 DOI: 10.1111/his.13874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/08/2019] [Indexed: 01/26/2023]
Abstract
AIMS Dysplasia in colonic sessile serrated adenomas (SSAs)/sessile serrated polyps often shows loss of MLH1 expression as determined with immunohistochemistry, but the significance of loss of MLH1 expression in non-dysplastic crypts in these polyps is less well studied. The purpose of this study was to evaluate the prevalence of loss of MLH1 expression in non-dysplastic crypts in SSAs, and to evaluate its significance with regard to progression of these polyps. METHODS AND RESULTS Four hundred SSAs, including 158 SSAs without dysplasia, 219 SSAs with dysplasia (SSAD), and 23 SSAs with invasive adenocarcinoma (SSAC), were evaluated immunohistochemically for loss of MLH1 expression in both non-dysplastic and dysplastic portions of the polyps. Seventy-one of 400 (18%) SSAs showed loss of MLH1 expression in non-dysplastic crypts. The prevalence of MLH1-deficient non-dysplastic crypts was higher in polyps with dysplasia or carcinoma (7%, 22%, and 52% in SSAs, SSADs, and SSACs, respectively; P < 0.0001). When SSAs with MLH1-deficient dysplasia and those with MLH-1-proficient dysplasia were compared, those with MLH1-deficient dysplasia were more likely to have MLH1-deficient non-dysplastic crypts (66% versus 8.1%, P < 0.0001) and a greater number of discrete foci (3.6 foci versus 1.1 foci, P = 0.008). Also, non-dysplastic crypts with loss of MLH1 expression were more likely to be contiguous with the dysplasia when the dysplasia also showed loss of MLH1 expression (26% versus 0%, P = 0.02). CONCLUSIONS Our results suggest that loss of MLH1 expression in non-dysplastic crypts in SSAs precedes the development of MLH1-deficient dysplasia and adenocarcinoma, and may be a biomarker of an advanced serrated polyp even in the absence of dysplasia.
Collapse
Affiliation(s)
- Masato Yozu
- Histopathology Department, Middlemore Hospital, Auckland, New Zealand
| | - Marina Kem
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Odise Cenaj
- Department of Pathology, New York University Langone Medical Center and New York University School of Medicine, New York, NY, USA
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Robert D Odze
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Joseph Misdraji
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Lee JA, Park HE, Yoo SY, Jeong S, Cho NY, Kang GH, Kim JH. CpG Island Methylation in Sessile Serrated Adenoma/Polyp of the Colorectum: Implications for Differential Diagnosis of Molecularly High-Risk Lesions among Non-dysplastic Sessile Serrated Adenomas/Polyps. J Pathol Transl Med 2019; 53:225-235. [PMID: 30887794 PMCID: PMC6639709 DOI: 10.4132/jptm.2019.03.12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 03/12/2019] [Indexed: 01/01/2023] Open
Abstract
Background Although colorectal sessile serrated adenomas/polyps (SSA/Ps) with morphologic dysplasia are regarded as definite high-risk premalignant lesions, no reliable grading or risk-stratifying system exists for non-dysplastic SSA/Ps. The accumulation of CpG island methylation is a molecular hallmark of progression of SSA/Ps. Thus, we decided to classify non-dysplastic SSA/Ps into risk subgroups based on the extent of CpG island methylation. Methods The CpG island methylator phenotype (CIMP) status of 132 non-dysplastic SSA/Ps was determined using eight CIMP-specific promoter markers. SSA/Ps with CIMP-high and/or MLH1 promoter methylation were regarded as a high-risk subgroup. Results Based on the CIMP analysis results, methylation frequency of each CIMP marker suggested a sequential pattern of CpG island methylation during progression of SSA/P, indicating MLH1 as a late-methylated marker. Among the 132 non-dysplastic SSA/Ps, 34 (26%) were determined to be high-risk lesions (33 CIMP-high and 8 MLH1-methylated cases; seven cases overlapped). All 34 high-risk SSA/Ps were located exclusively in the proximal colon (100%, p = .001) and were significantly associated with older age (≥ 50 years, 100%; p = .003) and a larger histologically measured lesion size (> 5 mm, 100%; p = .004). In addition, the high-risk SSA/Ps were characterized by a relatively higher number of typical base-dilated serrated crypts. Conclusions Both CIMP-high and MLH1 methylation are late-step molecular events during progression of SSA/Ps and rarely occur in SSA/Ps of young patients. Comprehensive consideration of age (≥ 50), location (proximal colon), and histologic size (> 5 mm) may be important for the prediction of high-risk lesions among non-dysplastic SSA/Ps.
Collapse
Affiliation(s)
- Ji Ae Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hye Eun Park
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Seung-Yeon Yoo
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Seorin Jeong
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Nam-Yun Cho
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Ho Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
20
|
Tanaka H, Kuwano Y, Nishikawa T, Rokutan K, Nishida K. ZNF350 promoter methylation accelerates colon cancer cell migration. Oncotarget 2018; 9:36750-36769. [PMID: 30613364 PMCID: PMC6298409 DOI: 10.18632/oncotarget.26353] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/24/2018] [Indexed: 12/21/2022] Open
Abstract
Diversification of transcriptomic and epigenomic states may occur during the expansion of colorectal cancers. Certain cancer cells lose their epithelial characters and gain mesenchymal properties, known as epithelial-mesenchymal transition (EMT), and they aggressively migrate into the non-tumorigenic extracellular matrix. In this study, we isolated a subpopulation with accelerated baseline motility (MG cells) and an immotile one (non-MG cells) from a colon cancer cell line (HCT116). Gene expression signatures of the MG cells indicated that this subpopulation was likely an EMT hybrid. The MG cells substantially lost their migratory properties after treatment with a methyltransferase inhibitor, 5-azacytidine, suggesting a role of DNA methylation in this process. Global transcriptome assays of both types of cells with or without 5-azacytidine treatment identified 640 genes, whose expression might be methylation-dependently down-regulated in the MG cells. Global methylation analysis revealed that 35 out of the 640 genes were hyper-methylated in the MG cells. Among them, we focused on the anti-oncogene ZNF350, which encodes a zinc-finger and BRCA1-interacting protein. Notably, ZNF350 knockdown accelerated migration of the non-MG cells, while overexpression of ZNF350 in the MG cells significantly impaired their migration. Finally, pyrosequence analysis together with dual luciferase assays of serially truncated fragments of the ZNF350 promoter (-268 to +49 bp) indicated that three hyper-methylated sites were possibly responsible for the basal promoter activity of ZNF350. Taken together, our results suggest that hyper-methylation of the ZNF350 proximal promoter may be one of the crucial determinants for acquiring increased migratory capabilities in colon cancer cells.
Collapse
Affiliation(s)
- Hiroki Tanaka
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Yuki Kuwano
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Tatsuya Nishikawa
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Kazuhito Rokutan
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Kensei Nishida
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| |
Collapse
|
21
|
Battaglin F, Naseem M, Lenz HJ, Salem ME. Microsatellite instability in colorectal cancer: overview of its clinical significance and novel perspectives. CLINICAL ADVANCES IN HEMATOLOGY & ONCOLOGY : H&O 2018; 16:735-745. [PMID: 30543589 PMCID: PMC7493692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Microsatellite instability (MSI) is a key biomarker in colorectal cancer (CRC), with crucial diagnostic, prognostic, and predictive implications. Testing for mismatch repair deficiency (MMR-D)/MSI is recommended during screening for Lynch syndrome, an autosomal-dominant hereditary disease that is characterized by germline mutations in the MMR genes and associated with an increased risk for several types of cancer. Additionally, MSI-high (MSI-H) status is associated with a better prognosis in early-stage CRC and a lack of benefit from adjuvant treatment with 5-fluorouracil in stage II disease. More recently, MSI has emerged as a predictor of sensitivity to immunotherapy-based treatments. The groundbreaking success of checkpoint inhibitors in MMR-D metastatic CRC has opened a new therapeutic scenario for patients with these tumors. MSI-H CRC, in both the sporadic and hereditary settings, is characterized by distinctive molecular and clinicopathologic features and represents a unique subset of CRC that is the object of growing interest and fervent research efforts. This article, an overview of the expanding role of MSI in CRC, covers its clinical significance, the available data on molecular profiling, novel perspectives on MSI testing, biomarkers in MSI-H CRC, immunotherapy resistance, and novel immunotherapy strategies.
Collapse
Affiliation(s)
- Francesca Battaglin
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California and Veneto Oncologic Institute IOV-IRCCS, Padua, Italy
| | - Madiha Naseem
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Heinz-Josef Lenz
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Mohamed E Salem
- Levine Cancer Institute of the Carolinas HealthCare System, Charlotte, North Carolina
| |
Collapse
|
22
|
Sun X, Tian Y, Zheng Q, Zheng R, Lin A, Chen T, Zhu Y, Lai M. A novel discriminating colorectal cancer model for differentiating normal and tumor tissues. Epigenomics 2018; 10:1463-1475. [DOI: 10.2217/epi-2018-0063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Xiaohui Sun
- Department of Epidemiology & Biostatistics, School of Public Health, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Yiping Tian
- Key Laboratory of Disease Proteomics of Zhejiang Province & Department of Pathology, School of Medicine, Zhejiang University, Hangzhou 310058, PR China
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou 310022, PR China
| | - Qianqian Zheng
- Department of Epidemiology & Biostatistics, School of Public Health, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Ruizhi Zheng
- Department of Epidemiology & Biostatistics, School of Public Health, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Aifen Lin
- Human Tissue Bank/Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, 317000, PR China
| | - Tianhui Chen
- Group of Molecular Epidemiology & Cancer Precision Prevention, Zhejiang Academy of Medical Sciences, Hangzhou, PR China
| | - Yimin Zhu
- Department of Epidemiology & Biostatistics, School of Public Health, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Maode Lai
- Key Laboratory of Disease Proteomics of Zhejiang Province & Department of Pathology, School of Medicine, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
23
|
Prognostic Values of EPDR1 Hypermethylation and Its Inhibitory Function on Tumor Invasion in Colorectal Cancer. Cancers (Basel) 2018; 10:cancers10100393. [PMID: 30360391 PMCID: PMC6211107 DOI: 10.3390/cancers10100393] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 01/05/2023] Open
Abstract
Aberrant DNA methylation is a potential mechanism underlying the development of colorectal cancer (CRC). Thus, identification of prognostic DNA methylation markers and understanding the related molecular functions may offer a new perspective on CRC pathogenesis. To that end, we explored DNA methylation profile changes in CRC subtypes based on the microsatellite instability (MSI) status through genome-wide DNA methylation profiling analysis. Of 34 altered genes, three hypermethylated (epidermal growth factor, EGF; carbohydrate sulfotransferase 10, CHST10; ependymin related 1, EPDR1) and two hypomethylated (bone marrow stromal antigen 2, BST2; Rac family small GTPase 3, RAC3) candidates were further validated in CRC patients. Based on quantitative methylation-specific polymerase chain reaction (Q-MSP), EGF, CHST10 and EPDR1 showed higher hypermethylated levels in CRC tissues than those in adjacent normal tissues, whereas BST2 showed hypomethylation in CRC tissues relative to adjacent normal tissues. Additionally, among 75 CRC patients, hypermethylation of CHST10 and EPDR1 was significantly correlated with the MSI status and a better prognosis. Moreover, EPDR1 hypermethylation was significantly correlated with node negativity and a lower tumor stage as well as with mutations in B-Raf proto-oncogene serine/threonine kinase (BRAF) and human transforming growth factor beta receptor 2 (TGFβR2). Conversely, a negative correlation between the mRNA expression and methylation levels of EPDR1 in CRC tissues and cell lines was observed, revealing that DNA methylation has a crucial function in modulating EPDR1 expression in CRC cells. EPDR1 knockdown by a transient small interfering RNA significantly suppressed invasion by CRC cells, suggesting that decreased EPDR1 levels may attenuate CRC cell invasion. These results suggest that DNA methylation-mediated EPDR1 epigenetic silencing may play an important role in preventing CRC progression.
Collapse
|
24
|
Gang W, Wang JJ, Guan R, Yan S, Shi F, Zhang JY, Li ZM, Gao J, Fu XL. Strategy to targeting the immune resistance and novel therapy in colorectal cancer. Cancer Med 2018; 7:1578-1603. [PMID: 29658188 PMCID: PMC5943429 DOI: 10.1002/cam4.1386] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 12/11/2022] Open
Abstract
Assessing the CRC subtypes that can predict the outcome of colorectal cancer (CRC) in patients with immunogenicity seems to be a promising strategy to develop new drugs that target the antitumoral immune response. In particular, the disinhibition of the antitumoral T‐cell response by immune checkpoint blockade has shown remarkable therapeutic promise for patients with mismatch repair (MMR) deficient CRC. In this review, the authors provide the update of the molecular features and immunogenicity of CRC, discuss the role of possible predictive biomarkers, illustrate the modern immunotherapeutic approaches, and introduce the most relevant ongoing preclinical study and clinical trials such as the use of the combination therapy with immunotherapy. Furthermore, this work is further to understand the complex interactions between the immune surveillance and develop resistance in tumor cells. As expected, if the promise of these developments is fulfilled, it could develop the effective therapeutic strategies and novel combinations to overcome immune resistance and enhance effector responses, which guide clinicians toward a more “personalized” treatment for advanced CRC patients.
Collapse
Affiliation(s)
- Wang Gang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, 200235, Shanghai, China
| | - Jun-Jie Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, 200235, Shanghai, China
| | - Rui Guan
- Hubei University of Medicine, NO. 30 People South Road, Shiyan City, Hubei Province, 442000, China
| | - Sun Yan
- Hubei University of Medicine, NO. 30 People South Road, Shiyan City, Hubei Province, 442000, China
| | - Feng Shi
- Department of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, 212001, China
| | - Jia-Yan Zhang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, 200235, Shanghai, China
| | - Zi-Meng Li
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, 200235, Shanghai, China
| | - Jing Gao
- Department of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, 212001, China
| | - Xing-Li Fu
- Department of Medicine, Jiangsu University, Zhenjiang City, Jiangsu Province, 212001, China
| |
Collapse
|
25
|
Oh HJ, Kim JH, Lee TH, Park HE, Bae JM, Lee HS, Kang GH. Dominant high expression of wild-type HSP110 defines a poor prognostic subgroup of colorectal carcinomas with microsatellite instability: a whole-section immunohistochemical analysis. APMIS 2017; 125:1076-1083. [PMID: 28971530 DOI: 10.1111/apm.12770] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/10/2017] [Indexed: 01/03/2023]
Abstract
The aim of this study is to establish heat shock protein 110 (HSP110) as a prognostic biomarker of colorectal carcinomas (CRCs) with microsatellite instability-high (MSI-H) by considering the intratumoral heterogeneity of HSP110 expression. We performed whole-section immunohistochemistry (IHC) for wild-type HSP110 (HSP110wt) in 164 MSI-H CRCs. The intensity of the HSP110wt expression in tumor cells was semiquantitatively scored (0/1/2/3), and the HSP110wt expression status of each tumor was classified as low or high using the following four scoring criteria: H-score, dominant intensity score, lowest intensity score, and highest intensity score. Among the four criteria, only the dominant intensity score-based dichotomous classification of HSP110wt expression was significantly associated with a difference in disease-free survival (log-rank p = 0.035) in 164 MSI-H CRCs. The HSP110wt-low MSI-H CRCs were significantly correlated with larger deletions in the HSP110 T17 mononucleotide repeat (≥4 bp; p < 0.001). In conclusion, the dominant intensity score-based assessment of HSP110wt IHC can be a simple and useful method for the prognostic stratification of MSI-H CRCs. It is expected that HSP110wt IHC may be used to identify a subgroup of MSI-H CRCs with poor prognosis and/or candidates for further treatment, such as immunotherapy using immune checkpoint inhibitors in MSI-H CRCs.
Collapse
Affiliation(s)
- Hyeon Jeong Oh
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Ho Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Tae Hun Lee
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hye Eun Park
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Mo Bae
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
26
|
De Maio G, Zama E, Rengucci C, Calistri D. What influences preneoplastic colorectal lesion recurrence? Oncotarget 2017; 8:12406-12416. [PMID: 27902488 PMCID: PMC5355354 DOI: 10.18632/oncotarget.13628] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/15/2016] [Indexed: 12/16/2022] Open
Abstract
The hypothesis of the local recurrence of preneoplastic lesions was first put forward in the 1950s. Disease recurrence may result from an inherent imbalance in cell proliferation that promotes carcinogenesis in apparently normal mucosa. Our review sheds light on how early preneoplastic lesions could be used to diagnose relapsed preneoplastic and, developing neoplastic lesions. We focus in detail on the clinical-pathological and molecular features of adenoma subtypes and their role in relapsed adenoma and their development into colorectal carcinoma. Moreover, we include the data available on microbiota and its metabolites and their role in recurrence. We strongly believe that a significant improvement could be achieved in colorectal screening by introducing personalized endoscopic surveillance for polyp-bearing patients on the basis of the presence of molecular markers that are predictive of recurrence.
Collapse
Affiliation(s)
- Giulia De Maio
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola (FC), Italy
| | - Elisa Zama
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola (FC), Italy
| | - Claudia Rengucci
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola (FC), Italy
| | - Daniele Calistri
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola (FC), Italy
| |
Collapse
|
27
|
Oh HJ, Bae JM, Wen XY, Cho NY, Kim JH, Kang GH. Overexpression of POSTN in Tumor Stroma Is a Poor Prognostic Indicator of Colorectal Cancer. J Pathol Transl Med 2017; 51:306-313. [PMID: 28407462 PMCID: PMC5445202 DOI: 10.4132/jptm.2017.01.19] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/30/2016] [Accepted: 01/19/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Tumor microenvironment has recently drawn attention in that it is related with tumor prognosis. Cancer-associated fibroblast also plays a critical role in cancer invasiveness and progression in colorectal cancers. Periostin (POSTN), originally identified to be expressed in osteoblasts and osteoblast-derived cells, is expressed in cancer-associated fibroblasts in several tissue types of cancer. Recent studies suggest an association between stromal overexpression of POSTN and poor prognosis of cancer patients. METHODS We analyzed colorectal cancer cases for their expression status of POSTN in tumor stroma using immunohistochemistry and correlated the expression status with clinicopathological and molecular features. RESULTS High level of POSTN expression in tumor stroma was closely associated with tumor location in proximal colon, infiltrative growth pattern, undifferentiated histology, tumor budding, luminal necrosis, and higher TNM stage. High expression status of POSTN in tumor stroma was found to be an independent prognostic parameter implicating poor 5-year cancer-specific survival and 5-year progression-free survival. CONCLUSIONS Our findings suggest that POSTN overexpression in tumor stroma of colorectal cancers could be a possible candidate marker for predicting poor prognosis in patients with colorectal cancers.
Collapse
Affiliation(s)
- Hyeon Jeong Oh
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Mo Bae
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Pathology, SMG-SNU Boramae Medical Center, Seoul, Korea
| | - Xian-Yu Wen
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Nam-Yun Cho
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
28
|
Zhu X, Liu W, Qiu X, Wang Z, Tan C, Bei C, Qin L, Ren Y, Tan S. Single nucleotide polymorphisms in MLH1 predict poor prognosis of hepatocellular carcinoma in a Chinese population. Oncotarget 2017; 8:80039-80049. [PMID: 29108386 PMCID: PMC5668119 DOI: 10.18632/oncotarget.16899] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/27/2017] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant cancer causing deleterious health effect worldwide, especially in China. So far clinical cure rate and long-term survival rate of HCC remains low. Most HCC patients after cancer resection have recurrence or metastasis within 5 years. This study aims to explore the genetic association of mutL homolog 1 (MLH1) polymorphisms with HCC risk and prognosis. Four candidate MLH1 polymorphisms, rs1800734, rs10849, rs3774343 and rs1540354 were studied from a hospital-based case-control study including 1,036 cases (HCC patients) and 1,036 controls (non-HCC patients) in Guangxi, China. All these SNPs interacted with environmental risk factors, such as HBV infection, alcohol intake and smoking in the pathogenesis of HCC. However, only rs1800734 had significant difference between cases and controls. Compared to the AA genotype, patients with AG, GG and AG/GG genotype of rs1800734 had an increased risk of HCC [ORs (95% CI) = 1.217 (1.074∼1.536), 1.745 (1.301∼2.591) and 1.291 (1.126∼1.687)] and a decreased survival time [co-dominant, HR (95% CI) = 1.553 (1.257∼1.920); dominant, HR (95% CI) = 2.207 (1.572∼3.100)]. Furthermore, we found that tumor number, tumor staging, metastasis and rs1800734 were associated with the overall survival of HCC patients by multivariate COX regression analysis. No significant difference was found between the other three MLH1 polymorphisms with HCC risk and prognosis. Our study suggests MLH1 SNP, rs1800734 as a new predictor for poor prognosis of HCC patients.
Collapse
Affiliation(s)
- Xiaonian Zhu
- Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin 541004, Guangxi, People's Republic of China
| | - Wei Liu
- Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin 541004, Guangxi, People's Republic of China
| | - Xiaoqiang Qiu
- Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Zhigang Wang
- Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin 541004, Guangxi, People's Republic of China
| | - Chao Tan
- Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin 541004, Guangxi, People's Republic of China
| | - Chunhua Bei
- Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin 541004, Guangxi, People's Republic of China
| | - Linyuan Qin
- Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin 541004, Guangxi, People's Republic of China
| | - Yuan Ren
- Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin 541004, Guangxi, People's Republic of China
| | - Shengkui Tan
- Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin 541004, Guangxi, People's Republic of China
| |
Collapse
|
29
|
Distinct clinical outcomes of two CIMP-positive colorectal cancer subtypes based on a revised CIMP classification system. Br J Cancer 2017; 116:1012-1020. [PMID: 28278514 PMCID: PMC5396110 DOI: 10.1038/bjc.2017.52] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 02/06/2017] [Accepted: 02/08/2017] [Indexed: 12/22/2022] Open
Abstract
Background: Colorectal cancer (CRC) is a heterogeneous disease in terms of molecular carcinogenic pathways. Based on recent findings regarding the multiple serrated neoplasia pathway, we revised an eight-marker panel for a new CIMP classification system. Methods: 1370 patients who received surgical resection for CRCs were classified into three CIMP subtypes (CIMP-N: 0–4 methylated markers, CIMP-P1: 5–6 methylated markers and CIMP-P2: 7–8 methylated markers). Our findings were validated in a separate set of high-risk stage II or stage III CRCs receiving adjuvant fluoropyrimidine plus oxaliplatin (n=950). Results: A total of 1287/62/21 CRCs cases were classified as CIMP-N/CIMP-P1/CIMP-P2, respectively. CIMP-N showed male predominance, distal location, lower T, N category and devoid of BRAF mutation, microsatellite instability (MSI) and MLH1 methylation. CIMP-P1 showed female predominance, proximal location, advanced TNM stage, mild decrease of CK20 and CDX2 expression, mild increase of CK7 expression, BRAF mutation, MSI and MLH1 methylation. CIMP-P2 showed older age, female predominance, proximal location, advanced T category, markedly reduced CK20 and CDX2 expression, rare KRAS mutation, high frequency of CK7 expression, BRAF mutation, MSI and MLH1 methylation. CIMP-N showed better 5-year cancer-specific survival (CSS; HR=0.47; 95% CI: 0.28–0.78) in discovery set and better 5-year relapse-free survival (RFS; HR=0.50; 95% CI: 0.29–0.88) in validation set compared with CIMP-P1. CIMP-P2 showed marginally better 5-year CSS (HR=0.28, 95% CI: 0.07–1.22) in discovery set and marginally better 5-year RFS (HR=0.21, 95% CI: 0.05–0.92) in validation set compared with CIMP-P1. Conclusions: CIMP subtypes classified using our revised system showed different clinical outcomes, demonstrating the heterogeneity of multiple serrated precursors of CIMP-positive CRCs.
Collapse
|
30
|
Hyper-Methylated Loci Persisting from Sessile Serrated Polyps to Serrated Cancers. Int J Mol Sci 2017; 18:ijms18030535. [PMID: 28257124 PMCID: PMC5372551 DOI: 10.3390/ijms18030535] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/22/2017] [Indexed: 12/13/2022] Open
Abstract
Although serrated polyps were historically considered to pose little risk, it is now understood that progression down the serrated pathway could account for as many as 15%-35% of colorectal cancers. The sessile serrated adenoma/polyp (SSA/P) is the most prevalent pre-invasive serrated lesion. Our objective was to identify the CpG loci that are persistently hyper-methylated during serrated carcinogenesis, from the early SSA/P lesion through the later cancer phases of neoplasia development. We queried the loci hyper-methylated in serrated cancers within our rightsided SSA/Ps from the New Hampshire Colonoscopy Registry, using the Illumina Infinium Human Methylation 450 k panel to comprehensively assess the DNA methylation status. We identified CpG loci and regions consistently hyper-methylated throughout the serrated carcinogenesis spectrum, in both our SSA/P specimens and in serrated cancers. Hyper-methylated CpG loci included the known the tumor suppressor gene RET (p = 5.72 x 10-10), as well as loci in differentially methylated regions for GSG1L, MIR4493, NTNG1, MCIDAS, ZNF568, and RERG. The hyper-methylated loci that we identified help characterize the biology of SSA/P development, and could be useful as therapeutic targets, or for future identification of patients who may benefit from shorter surveillance intervals.
Collapse
|
31
|
Fu T, Liu Y, Li K, Wan W, Pappou EP, Iacobuzio-Donahue CA, Kerner Z, Baylin SB, Wolfgang CL, Ahuja N. Tumors with unmethylated MLH1 and the CpG island methylator phenotype are associated with a poor prognosis in stage II colorectal cancer patients. Oncotarget 2016; 7:86480-86489. [PMID: 27880934 PMCID: PMC5349928 DOI: 10.18632/oncotarget.13441] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/09/2016] [Indexed: 01/17/2023] Open
Abstract
We previously developed a novel tumor subtype classification model for duodenal adenocarcinomas based on a combination of the CpG island methylator phenotype (CIMP) and MLH1 methylation status. Here, we tested the prognostic value of this model in stage II colorectal cancer (CRC) patients. Tumors were assigned to CIMP+/MLH1-unmethylated (MLH1-U), CIMP+/MLH1-methylated (MLH1-M), CIMP-/MLH1-U, or CIMP-/MLH1-M groups. Age, tumor location, lymphovascular invasion, and mucin production differed among the four patient subgroups, and CIMP+/MLH1-U tumors were more likely to have lymphovascular invasion and mucin production. Kaplan-Meier analyses revealed differences in both disease-free survival (DFS) and overall survival (OS) among the four groups. In a multivariate analysis, CIMP/MLH1 methylation status was predictive of both DFS and OS, and DFS and OS were shortest in CIMP+/MLH1-U stage II CRC patients. These results suggest that tumor subtype classification based on the combination of CIMP and MLH1 methylation status is informative in stage II CRC patients, and that CIMP+/MLH1-U tumors exhibit aggressive features and are associated with poor clinical outcomes.
Collapse
Affiliation(s)
- Tao Fu
- Department of Gastrointestinal Surgery II, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Yanliang Liu
- Department of Gastrointestinal Surgery II, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Kai Li
- Department of Gastrointestinal Surgery II, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Weiwei Wan
- Department of Gastrointestinal Surgery II, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Emmanouil P. Pappou
- Department of Colon and Rectal Surgery, Columbia University Medical Center, New York, NY 10032, USA
| | - Christine A. Iacobuzio-Donahue
- Department of Pathology and David Rubenstein Pancreatic Cancer Research Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zachary Kerner
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Stephen B. Baylin
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Christopher L. Wolfgang
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Nita Ahuja
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
32
|
DNA Methylation Identifies Loci Distinguishing Hereditary Nonpolyposis Colorectal Cancer Without Germ-Line MLH1/MSH2 Mutation from Sporadic Colorectal Cancer. Clin Transl Gastroenterol 2016; 7:e208. [PMID: 27977020 PMCID: PMC5288582 DOI: 10.1038/ctg.2016.59] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 10/26/2016] [Indexed: 12/26/2022] Open
Abstract
Objectives: Roughly half of hereditary nonpolyposis colorectal cancer (HNPCC) cases are Lynch syndrome and exhibit germ-line mutations in DNA mismatch repair (MMR) genes; the other half are familial colorectal cancer (CRC) type X (FCCTX) and are MMR proficient. About 70% of Lynch syndrome tumors have germ-line MLH1 or MSH2 mutations. The clinical presentation, histopathological features, and carcinogenesis of FCCTX resemble those of sporadic MMR-proficient colorectal tumors. It is of interest to obtain biomarkers that distinguish FCCTX from sporadic microsatellite stable (MSS) CRC, to develop preventive strategies. Methods: The tumors and adjacent normal tissues of 40 patients with HNPCC were assayed using the Illumina Infinium HumanMethylation27 (HM27) BeadChip to assess the DNA methylation level at about 27,000 loci. The germ-line mutation status of MLH1 and MSH2 and the microsatellite instability status in these patients were obtained. Genome-wide DNA methylation measurements of three groups of patients with general CRC were downloaded from public domain databases. Probes with DNA methylation levels that differed significantly between patients with sporadic MSS CRC and FCCTX were examined, to explore their potential as biomarkers. Results: We found that MSS HNPCC tumors were overwhelmingly hypomethylated compared with those from patient groups with other types of CRC, including germ-line MLH1/MSH2-mutated HNPCC and sporadic MSS CRC. Five gene-marker panels that exhibited a sensitivity of 100% and a specificity higher than 90% in both discovery and validation cohorts were proposed to distinguish MSS HNPCC tumors from sporadic MSS CRC. Conclusions: Our results warrant further investigation and validation. The loci identified here may become useful biomarkers for distinguishing between FCCTX and sporadic MSS CRC tumors.
Collapse
|
33
|
Verma M. Genome-wide association studies and epigenome-wide association studies go together in cancer control. Future Oncol 2016; 12:1645-64. [PMID: 27079684 PMCID: PMC5551540 DOI: 10.2217/fon-2015-0035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/22/2016] [Indexed: 02/07/2023] Open
Abstract
Completion of the human genome a decade ago laid the foundation for: using genetic information in assessing risk to identify individuals and populations that are likely to develop cancer, and designing treatments based on a person's genetic profiling (precision medicine). Genome-wide association studies (GWAS) completed during the past few years have identified risk-associated single nucleotide polymorphisms that can be used as screening tools in epidemiologic studies of a variety of tumor types. This led to the conduct of epigenome-wide association studies (EWAS). This article discusses the current status, challenges and research opportunities in GWAS and EWAS. Information gained from GWAS and EWAS has potential applications in cancer control and treatment.
Collapse
Affiliation(s)
- Mukesh Verma
- Methods & Technologies Branch, Epidemiology & Genomics Research Program, Division of Cancer Control & Population Sciences, National Cancer Institute (NCI), NIH, 9609 Medical Center Drive, Suite 4E102, Rockville, MD 20850, USA
| |
Collapse
|
34
|
Minarikova P, Benesova L, Halkova T, Belsanova B, Suchanek S, Cyrany J, Tuckova I, Bures J, Zavoral M, Minarik M. Longitudinal molecular characterization of endoscopic specimens from colorectal lesions. World J Gastroenterol 2016; 22:4936-4945. [PMID: 27239120 PMCID: PMC4873886 DOI: 10.3748/wjg.v22.i20.4936] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/09/2016] [Accepted: 05/04/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To compare molecular profiles of proximal colon, distal colon and rectum in large adenomas, early and late carcinomas. To assess feasibility of testing directed at molecular markers from this study in routine clinical practice.
METHODS: A prospective 3-year study has resulted in the acquisition of samples from 159 large adenomas and 138 carcinomas along with associated clinical parameters including localization, grade and histological type for adenomas and localization and stage for carcinomas. A complex molecular phenotyping has been performed using multiplex ligation-dependent probe amplification technique for the evaluation of CpG-island methylator phenotype (CIMP), PCR fragment analysis for detection of microsatellite instability and denaturing capillary electrophoresis for sensitive detection of somatic mutations in KRAS, BRAF, TP53 and APC genes.
RESULTS: Molecular types according to previously introduced Jass classification have been evaluated for large adenomas and early and late carcinomas. An increase in CIMP+ type, eventually accompanied with KRAS mutations, was notable between large adenomas and early carcinomas. As expected, the longitudinal observations revealed a correlation of the CIMP+/BRAF+ type with proximal location.
CONCLUSION: Prospective molecular classification of tissue specimens is feasible in routine endoscopy practice. Increased frequency of some molecular types corresponds to the developmental stages of colorectal tumors. As expected, a clear distinction is notable for tumors located in proximal colon supposedly arising from the serrated (methylation) pathway.
Collapse
|
35
|
Kenyon J, Nickel-Meester G, Qing Y, Santos-Guasch G, Drake E, PingfuFu, Sun S, Bai X, Wald D, Arts E, Gerson SL. Epigenetic Loss of MLH1 Expression in Normal Human Hematopoietic Stem Cell Clones is Defined by the Promoter CpG Methylation Pattern Observed by High-Throughput Methylation Specific Sequencing. ACTA ACUST UNITED AC 2016; 3. [PMID: 27570841 PMCID: PMC4996274 DOI: 10.23937/2469-570x/1410031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Normal human hematopoietic stem and progenitor cells (HPC) lose expression of MLH1, an important mismatch repair (MMR) pathway gene, with age. Loss of MMR leads to replication dependent mutational events and microsatellite instability observed in secondary acute myelogenous leukemia and other hematologic malignancies. Epigenetic CpG methylation upstream of the MLH1 promoter is a contributing factor to acquired loss of MLH1 expression in tumors of the epithelia and proximal mucosa. Using single molecule high-throughput bisulfite sequencing we have characterized the CpG methylation landscape from −938 to −337 bp upstream of the MLH1 transcriptional start site (position +0), from 30 hematopoietic colony forming cell clones (CFC) either expressing or not expressing MLH1. We identify a correlation between MLH1 promoter methylation and loss of MLH1 expression. Additionally, using the CpG site methylation frequencies obtained in this study we were able to generate a classification algorithm capable of sorting the expressing and non-expressing CFC. Thus, as has been previously described for many tumor cell types, we report for the first time a correlation between the loss of MLH1 expression and increased MLH1 promoter methylation in CFC derived from CD34+ selected hematopoietic stem and progenitor cells.
Collapse
Affiliation(s)
- Jonathan Kenyon
- Department of Pathology, Case Western Reserve University, Cleveland, OH, 44106, USA; Division of Hematology and Oncology, Case Western Reserve University, Cleveland, OH, 44106, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Gabrielle Nickel-Meester
- Division of Infectious Disease, Department of Medicine, Case School of Medicine and the Center for AIDS Research, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Yulan Qing
- Division of Hematology and Oncology, Case Western Reserve University, Cleveland, OH, 44106, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Gabriela Santos-Guasch
- Division of Hematology and Oncology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ellen Drake
- Division of Hematology and Oncology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - PingfuFu
- Department of Epidemiology & Biostatistics, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Shuying Sun
- Department of Mathematics, Texas State University, San Marcos, TX, 78666, USA
| | - Xiaodong Bai
- RNA Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - David Wald
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA; Center for Stem Cell and Regenerative Medicine, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH, 44106, USA
| | - Eric Arts
- Division of Infectious Disease, Department of Medicine, Case School of Medicine and the Center for AIDS Research, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Stanton L Gerson
- Department of Pathology, Case Western Reserve University, Cleveland, OH, 44106, USA; Division of Hematology and Oncology, Case Western Reserve University, Cleveland, OH, 44106, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA; Center for Stem Cell and Regenerative Medicine, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH, 44106, USA; Seidman Cancer Center, University Hospitals of Cleveland, Cleveland, OH, 44106, USA
| |
Collapse
|