1
|
Arimitsu NN, Witkowska A, Ohashi A, Miyabe C, Miyabe Y. Chemokines as therapeutic targets for multiple sclerosis: a spatial and chronological perspective. Front Immunol 2025; 16:1547256. [PMID: 40191184 PMCID: PMC11968728 DOI: 10.3389/fimmu.2025.1547256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/04/2025] [Indexed: 04/09/2025] Open
Abstract
Multiple sclerosis (MS) is a chronic autoinflammatory disease of unknown origin, involving characterized by immune cell infiltration into the target tissue, central nervous system (CNS), resulting in local and/or systemic inflammation. The symptoms vary from gait disturbance, visual impairment and learning and memory impairment and are being managed with corticosteroid and/or immunosuppressive agents. However, several patients do not respond to these treatments, which can also elevate the risk of severe infections. Therefore, there remains an ongoing need to identify new therapeutic targets. MS exhibits distinctive pathology, clinical course, and treatment responses, suggesting the importance of targeting disease site-specific immune cells to mitigate immune system-induced inflammation, rather than employing broad immunosuppression. Chemokines and chemokine receptors play a crucial role in the pathogenesis of MS by recruiting immune cells to the CNS, leading to inflammation and demyelination. Therapies targeting chemokines have shown promising results in preclinical studies and clinical trials, but more research is needed to fully understand their mechanisms and optimize their efficacy.
Collapse
Affiliation(s)
- Nagisa Nakata Arimitsu
- Department of Immunology and Parasitology, St. Marianna University of School of Medicine, Kawasaki, Japan
| | - Alicja Witkowska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| | - Ayaka Ohashi
- Department of Immunology and Parasitology, St. Marianna University of School of Medicine, Kawasaki, Japan
| | - Chie Miyabe
- Department of Frontier Medicine, Institute of Medical Science, St. Marianna University of School of Medicine, Kawasaki, Japan
| | - Yoshishige Miyabe
- Department of Immunology and Parasitology, St. Marianna University of School of Medicine, Kawasaki, Japan
| |
Collapse
|
2
|
Madan U, Verma B, Awasthi A. Cenicriviroc, a CCR2/CCR5 antagonist, promotes the generation of type 1 regulatory T cells. Eur J Immunol 2024; 54:e2350847. [PMID: 38643381 DOI: 10.1002/eji.202350847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/22/2024]
Abstract
Cenicriviroc, a dual CCR2/CCR5 antagonist, initially developed as an anti-HIV drug, has shown promising results in nonalcoholic steatohepatitis phase 2 clinical trials. It inhibits the infiltration and activation of CCR2+/CCR5+ monocytes and macrophages to the site of liver injury, preventing liver fibrosis. However, the role of Cenicriviroc in the modulation of helper T cell differentiation and functions remains to be explored. In inflamed colons of Crohn's disease patients, CCR2+ and CCR5+ CD4+ T cells are enriched. Considering the role of CCR2+ and CCR5+ T cells in IBD pathogenesis, we investigated the potential role of Cenicriviroc in colitis. Our in vitro studies revealed that Cenicriviroc inhibits Th1-, Th2-, and Th17-cell differentiation while promoting the generation of type 1 regulatory T cells (Tr1), known for preventing inflammation through induction of IL-10. This study is the first to report that Cenicriviroc promotes Tr1 cell generation by up-regulating the signature of Tr1 cell transcription factors such as c-Maf, Prdm1, Irf-1, Batf, and EGR-2. Cenicriviroc displayed a protective effect in experimental colitis models by preventing body weight loss and intestinal inflammation and preserving epithelial barrier integrity. We show that Cenicriviroc induced IL-10 and inhibited the generation of pro-inflammatory cytokines IFN-γ, IL-17, IL-6, and IL-1β during colitis. Based on our data, we propose Cenicriviroc as a potential therapeutic in controlling tissue inflammation by inhibiting the generation and functions of effector T cells and promoting the induction of anti-inflammatory Tr1 cells.
Collapse
Affiliation(s)
- Upasna Madan
- Centre for Immuno-biology and Immunotherapy, NCR-Biotech Science Cluster, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Bhawna Verma
- Centre for Immuno-biology and Immunotherapy, NCR-Biotech Science Cluster, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Amit Awasthi
- Centre for Immuno-biology and Immunotherapy, NCR-Biotech Science Cluster, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Immunology-Core Lab, NCR Biotech Science Cluster, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| |
Collapse
|
3
|
Yun HM, Cho MH, Jeong H, Kim SH, Jeong YH, Park KR. Osteogenic Activities of Trifolirhizin as a Bioactive Compound for the Differentiation of Osteogenic Cells. Int J Mol Sci 2023; 24:17103. [PMID: 38069425 PMCID: PMC10706948 DOI: 10.3390/ijms242317103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
Plant extracts are widely used as traditional medicines. Sophora flavescens Aiton-derived natural compounds exert various beneficial effects, such as anti-inflammatory, anticancer, antioxidant, and antiregenerative activities, through their bioactive compounds, including flavonoids and alkaloids. In the present study, we investigated the biological effects of an S. flavescens-derived flavonoid, trifolirhizin (trifol), on the stimulation of osteogenic processes during osteoblast differentiation. Trifol (>98% purity) was successfully isolated from the root of S. flavescens and characterized. Trifol did not exhibit cellular toxicity in osteogenic cells, but promoted alkaline phosphatase (ALP) staining and activity, with enhanced expression of the osteoblast differentiation markers, including Alp, ColI, and Bsp. Trifol induced nuclear runt-related transcription factor 2 (RUNX2) expression during the differentiation of osteogenic cells, and concomitantly stimulated the major osteogenic signaling proteins, including GSK3β, β-catenin, and Smad1/5/8. Among the mitogen-activated protein kinases (MAPKs), Trifol activated JNK, but not ERK1/2 and p38. Trifol also increased the osteoblast-mediated bone-forming phenotypes, including transmigration, F-actin polymerization, and mineral apposition, during osteoblast differentiation. Overall, trifol exhibits bioactive activities related to osteogenic processes via differentiation, migration, and mineralization. Collectively, these results suggest that trifol may serve as an effective phytomedicine for bone diseases such as osteoporosis.
Collapse
Affiliation(s)
- Hyung-Mun Yun
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Mi Hyeon Cho
- Korea Basic Science Institute (KBSI), Seoul 02841, Republic of Korea; (M.H.C.); (H.J.)
| | - Hoibin Jeong
- Korea Basic Science Institute (KBSI), Seoul 02841, Republic of Korea; (M.H.C.); (H.J.)
| | - Soo Hyun Kim
- National Development Institute for Korean Medicine, Gyeongsan 38540, Republic of Korea; (S.H.K.); (Y.H.J.)
| | - Yun Hee Jeong
- National Development Institute for Korean Medicine, Gyeongsan 38540, Republic of Korea; (S.H.K.); (Y.H.J.)
| | - Kyung-Ran Park
- Korea Basic Science Institute (KBSI), Gwangju 61751, Republic of Korea
| |
Collapse
|
4
|
Wang X, Chen C, Sun H, Mao K, Yao J, Zhang W, Zhan M, Li HB, Zhang Z, Zhu S, Lu L. m 6A mRNA modification potentiates Th17 functions to inflame autoimmunity. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2543-2552. [PMID: 37405565 DOI: 10.1007/s11427-022-2323-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/08/2023] [Indexed: 07/06/2023]
Abstract
N6-methyladenosine (m6A), the most common and abundant epigenetic RNA modification, governs mRNA metabolism to determine cell differentiation, proliferation and response to stimulation. m6A methyltransferase METTL3 has been reported to control T cell homeostasis and sustain the suppressive function of regulatory T cells (Tregs). However, the role of m6A methyltransferase in other subtypes of T cells remains unknown. T helper cells 17 (Th17) play a pivotal role in host defense and autoimmunity. Here, we found that the loss of METTL3 in T cells caused serious defect of Th17 cell differentiation, and impeded the development of experimental autoimmune encephalomyelitis (EAE). We generated Mettl3f/fIl17aCre mice and observed that METTL3 deficiency in Th17 cells significantly suppressed the development of EAE and displayed less Th17 cell infiltration into central nervous system (CNS). Importantly, we demonstrated that depletion of METTL3 attenuated IL-17A and CCR5 expression by facilitating SOCS3 mRNA stability in Th17 cells, leading to disrupted Th17 cell differentiation and infiltration, and eventually attenuating the process of EAE. Collectively, our results highlight that m6A modification sustains Th17 cell function, which provides new insights into the regulatory network of Th17 cells, and also implies a potential therapeutic target for Th17 cell mediated autoimmune disease.
Collapse
Affiliation(s)
- Xuefei Wang
- Department of Geriatrics, Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Chen Chen
- Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230601, China
| | - Hongwei Sun
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Interventional Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519000, China
| | - Kaiqiong Mao
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiameng Yao
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Weiqiao Zhang
- Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Meixiao Zhan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Interventional Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519000, China
| | - Hua-Bing Li
- Department of Geriatrics, Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhiren Zhang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Interventional Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519000, China.
| | - Shu Zhu
- Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230601, China.
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Interventional Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519000, China.
| |
Collapse
|
5
|
Mohammadi-Kordkhayli M, Sahraian MA, Ghorbani S, Mansouri F, Talebi F, Noorbakhsh F, Saboor-Yaraghi AA. Vitamins A and D Enhance the Expression of Ror-γ-Targeting miRNAs in a Mouse Model of Multiple Sclerosis. Mol Neurobiol 2023; 60:5853-5865. [PMID: 37353624 DOI: 10.1007/s12035-023-03427-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/05/2023] [Indexed: 06/25/2023]
Abstract
Autoreactive T cells, particularly those characterized by a Th17 phenotype, exert significant influence on the pathogenesis of multiple sclerosis (MS). The present study aimed to elucidate the impact of individual and combined administration of vitamin A and D on neuroinflammation, and microRNAs (miRNAs) involved in T helper (Th)17 development, utilizing a murine model of experimental autoimmune encephalomyelitis (EAE). EAE was induced in C57BL/6 mice, and 3 days prior to immunization, intraperitoneal injections of vitamins A and D or their combination were administered. Th17 cell percentages were determined in splenocytes utilizing intracellular staining and flow cytometry. Furthermore, the expression of Ror γ-t, miR-98-5p and Let-7a-5p, was measured in both splenocytes and spinal cord tissues using RT-PCR. Treatment with vitamin A and D resulted in a reduction in both disease severity in EAE mice. Treated mice showed a decreased frequency of Th17 cells and lower expression levels of IL17 and Ror γ-t in splenocytes and spinal cord. The spinal cord tissues and splenocytes of mice treated with vitamins A, D, and combined A+D showed a significant upregulation of miR-98-5p and Let-7a-5p compared to the EAE group. Statistical analysis indicated a strong negative correlation between miR-98-5p and Let-7a-5p levels in splenocytes and Ror-t expression. Our findings indicate that the administration of vitamins A and D exerts a suppressive effect on neuroinflammation in EAE that is associated with a reduction in the differentiation of T cells into the Th17 phenotype and is mediated by the upregulation of miR-98-5p and Let-7a-5p, which target the Ror γ-t.
Collapse
Affiliation(s)
- Marziyeh Mohammadi-Kordkhayli
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Alberta, Canada
| | - Mohammad Ali Sahraian
- Sina MS Research Center, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Ghorbani
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Alberta, Canada
| | - Fatemeh Mansouri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Talebi
- Immunoregulation Research Center, Shahed University, Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ali Akbar Saboor-Yaraghi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Sun W, Wang Q, Zhang R, Zhang N. Ketogenic diet attenuates neuroinflammation and induces conversion of M1 microglia to M2 in an EAE model of multiple sclerosis by regulating the NF-κB/NLRP3 pathway and inhibiting HDAC3 and P2X7R activation. Food Funct 2023; 14:7247-7269. [PMID: 37466915 DOI: 10.1039/d3fo00122a] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune disorder characterized by demyelination and neurodegeneration in the central nervous system (CNS); severe symptoms lead MS patients to use complementary treatments. Ketogenic diet (KD) shows wide neuroprotective effects, but the precise mechanisms underlying the therapeutic activity of KD in MS are unclear. The present study established a continuous 24 days experimental autoimmune encephalomyelitis (EAE) mouse model with or without KD. The changes in motor function, pathological hallmarks of EAE, the status of microglia, neuroinflammatory response and intracellular signaling pathways in mice were detected by the rotarod test, histological analysis, real-time PCR (RT-PCR) and western blotting. Our results showed that KD could prevent motor deficiency, reduce clinical scores, inhibit demyelination, improve pathological lesions and suppress microglial activation in the spinal cord of EAE mice. Meanwhile, KD shifted microglial polarization toward the protective M2 phenotype and modified the inflammatory milieu by downregulating the production of pro-inflammatory cytokines, including TNF-α, IL-1β and IL-6, as well as upregulating the release of anti-inflammatory cytokines such as TGF-β. Furthermore, KD decreased the expression levels of CCL2, CCR2, CCL3, CCR1, CCR5, CXCL10 and CXCR3 in the spinal cord and spleen with reduced monocyte/macrophage infiltration in the CNS. In addition, KD inhibits NLRP3 activation in the microglia, as revealed by the significantly decreased co-expression of NLRP3+ and Iba-1+ in the KD + EAE group. Further studies demonstrated that KD suppresses inflammatory response and M1 microglial polarization by inhibiting the TLR4/MyD88/NF-κB/NLRP3 pathway, the JAK1/STAT1 pathway, HDAC3 and P2X7R activation, as well as up-regulation of JAK3/STAT6.
Collapse
Affiliation(s)
- Wei Sun
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Ruiyan Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| |
Collapse
|
7
|
Alghibiwi H, Ansari MA, Nadeem A, Algonaiah MA, Attia SM, Bakheet SA, Albekairi TH, Almudimeegh S, Alhamed AS, Shahid M, Alwetaid MY, Alassmrry YA, Ahmad SF. DAPTA, a C-C Chemokine Receptor 5 (CCR5), Leads to the Downregulation of Notch/NF-κB Signaling and Proinflammatory Mediators in CD40 + Cells in Experimental Autoimmune Encephalomyelitis Model in SJL/J Mice. Biomedicines 2023; 11:1511. [PMID: 37371605 DOI: 10.3390/biomedicines11061511] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system characterized by motor deficits, cognitive impairment, fatigue, pain, and sensory and visual dysfunction. CD40, highly expressed in B cells, plays a significant role in MS pathogenesis. The experimental autoimmune encephalomyelitis (EAE) mouse model of MS has been well established, as well as its relevance in MS patients. This study aimed to evaluate the therapeutic potential of DAPTA, a selective C-C chemokine receptor 5 (CCR5) antagonist in the murine model of MS, and to expand the knowledge of its mechanism of action. Following the induction of EAE, DAPTA was administrated (0.01 mg/kg, i.p.) daily from day 14 to day 42. We investigated the effects of DAPTA on NF-κB p65, IκBα, Notch-1, Notch-3, GM-CSF, MCP-1, iNOS, and TNF-α in CD40+ spleen B cells using flow cytometry. Furthermore, we also analyzed the effect of DAPTA on NF-κB p65, IκBα, Notch-1, Notch-3, GM-CSF, MCP-1, iNOS, and TNF-α mRNA expression levels using qRT-PCR in brain tissue. EAE mice treated with DAPTA showed substantial reductions in NF-κB p65, Notch-1, Notch-3, GM-CSF, MCP-1, iNOS, and TNF-α but an increase in the IκBα of CD40+ B lymphocytes. Moreover, EAE mice treated with DAPTA displayed decreased NF-κB p65, Notch-1, Notch-3, GM-CSF, MCP-1, iNOS, and TNF-α and but showed increased IκBα mRNA expression levels. This study showed that DAPTA has significant neuroprotective potential in EAE via the downregulation of inflammatory mediators and NF-κB/Notch signaling. Collectively, DAPTA might have potential therapeutic targets for use in MS treatment.
Collapse
Affiliation(s)
- Hanan Alghibiwi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Majed Ali Algonaiah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Thamer H Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Almudimeegh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah S Alhamed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Y Alwetaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yasseen A Alassmrry
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
8
|
Schropp V, Chunder R, Dietel B, Tacke S, Kuerten S. The presence of cerebellar B cell aggregates is associated with a specific chemokine profile in the cerebrospinal fluid in a mouse model of multiple sclerosis. J Neuroinflammation 2023; 20:18. [PMID: 36717913 PMCID: PMC9885581 DOI: 10.1186/s12974-023-02695-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/11/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The presence of meningeal ectopic lymphoid structures (ELS) in a subgroup of patients diagnosed with secondary progressive multiple sclerosis (SPMS) corresponds to a pronounced cortical inflammation and an aggravated disease course. In MP4-induced experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS), B cell aggregates develop in the central nervous system (CNS) in the chronic stage of the disease. Therefore, the model is suitable for studying key molecules of ELS development and maintenance. Here, we investigated whether there is a specific cytokine and chemokine signature in paired cerebrospinal fluid (CSF) and serum samples associated with the presence of cerebellar B cell and T cell pathology and B cell aggregates of MP4-immunized mice. METHODS Paired CSF and serum samples were collected from the cisterna magna and periphery of MP4-immunized mice at the chronic stage of disease. A control group with mice immunized only with the adjuvant (vehicle) was included in the study. A selected panel of 34 cytokines and chemokines were measured by MAGPIX® for both cohorts. For the assessment of B cell and T cell infiltration, immunohistochemical staining was performed and analyzed using light microscopy. To detect specific chemokine receptors additional staining was conducted. RESULTS While we detected several upregulated cytokines and chemokines in the CSF of MP4-immunized mice independent of the extent of B cell and T cell pathology compared to vehicle-immunized mice, C-C motif chemokine ligand (CCL)-1 was associated with high B cell and T cell infiltration. Furthermore, the level of certain chemokines, including CCL1, CCL5, CCL7, CCL12, CCL22 and C-X-C motif chemokine ligand (CXCL)-13, was significantly increased (p < 0.05) in MP4-immunized mice showing a high number of B cell aggregates. While C-C motif chemokine receptor (CCR)5 had a ubiquitous expression independent of the extent of B cell and T cell pathology, C-X-C motif chemokine receptor (CXCR)-5 and CXCR6 expression was specifically associated with high B cell and T cell pathology. CONCLUSION Our data suggest that multiple cytokines and chemokines are involved in the pathophysiology of MP4-induced EAE. Furthermore, the presence of B cell aggregates was associated with a specific chemokine profile in the CSF, which might be useful for predicting the presence of these aggregates without the necessity to histologically screen the CNS tissue.
Collapse
Affiliation(s)
- Verena Schropp
- grid.10388.320000 0001 2240 3300Medical Faculty, Institute of Neuroanatomy, University of Bonn, 53115 Bonn, Germany ,grid.5330.50000 0001 2107 3311Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Rittika Chunder
- grid.10388.320000 0001 2240 3300Medical Faculty, Institute of Neuroanatomy, University of Bonn, 53115 Bonn, Germany ,grid.5330.50000 0001 2107 3311Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Barbara Dietel
- grid.5330.50000 0001 2107 3311Department of Cardiology and Angiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen University Hospital, 91054 Erlangen, Germany
| | - Sabine Tacke
- grid.5330.50000 0001 2107 3311Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Stefanie Kuerten
- grid.10388.320000 0001 2240 3300Medical Faculty, Institute of Neuroanatomy, University of Bonn, 53115 Bonn, Germany ,grid.5330.50000 0001 2107 3311Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
9
|
Wang Q, Chen YY, Yang ZC, Yuan HJ, Dong YW, Miao Q, Li YQ, Wang J, Yu JZ, Xiao BG, Ma CG. Grape Seed Extract Attenuates Demyelination in Experimental Autoimmune Encephalomyelitis Mice by Inhibiting Inflammatory Response of Immune Cells. Chin J Integr Med 2023; 29:394-404. [PMID: 36607588 DOI: 10.1007/s11655-022-3587-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2022] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To examine the anti-inflammatory effect of grape seed extract (GSE) in animal and cellular models and explore its mechanism of action. METHODS This study determined the inhibitory effect of GSE on macrophage inflammation and Th1 and Th17 polarization in vitro. Based on the in vitro results, the effects and mechanisms of GSE on multiple sclerosis (MS)-experimental autoimmune encephalomyelitis (EAE) mice model were further explored. The C57BL/6 mice were intragastrically administered with 50 mg/kg of GSE once a day from the 3rd day to the 27th day after immunization. The activation of microglia, the polarization of Th1 and Th17 and the inflammatory factors such as tumor necrosis factor- α (TNF- α), interleukin-1 β (IL-1 β), IL-6, IL-12, IL-17 and interferon-γ (IFN-γ) secreted by them were detected in vitro and in vivo by flow cytometry, enzyme linked immunosorbent assay (ELISA), immunofluorescence staining and Western blot, respectively. RESULTS GSE reduced the secretion of TNF-α, IL-1 β and IL-6 in bone marrow-derived macrophages stimulated by lipopolysaccharide (P<0.01), inhibited the secretion of TNF-α, IL-1 β, IL-6, IL-12, IL-17 and IFN-γ in spleen cells of EAE mice immunized for 9 days (P<0.05 or P<0.01), and reduced the differentiation of Th1 and Th17 mediated by CD3 and CD28 factors (P<0.01). GSE significantly improved the clinical symptoms of EAE mice, and inhibited spinal cord demyelination and inflammatory cell infiltration. Peripherally, GSE downregulated the expression of toll-like-receptor 4 (TLR4) and Rho-associated kinase (ROCKII, P<0.05 or P<0.01), and inhibited the secretion of inflammatory factors (P<0.01 or P<0.05). In the central nervous system, GSE inhibited the infiltration of CD45+CD11b+ and CD45+CD4+ cells, and weakened the differentiation of Th1 and Th17 (P<0.05). Moreover, it reduced the secretion of inflammatory factors (P<0.01), and prevented the activation of microglia (P<0.05). CONCLUSION GSE had a beneficial effect on the pathogenesis and progression of EAE by inhibiting inflammatory response as a potential drug and strategy for the treatment of MS.
Collapse
Affiliation(s)
- Qing Wang
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Yang-Yang Chen
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Zhi-Chao Yang
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Hai-Jun Yuan
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Yi-Wei Dong
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Qiang Miao
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Yan-Qing Li
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Jing Wang
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China.,Department of Neurology, the First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Jie-Zhong Yu
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China.,Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University, Datong, Shanxi Province, 037009, China.,Department of Neurology, Datong Fifth People's Hospital, Datong, Shanxi Province, 037009, China
| | - Bao-Guo Xiao
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China.,Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200000, China
| | - Cun-Gen Ma
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China. .,Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University, Datong, Shanxi Province, 037009, China.
| |
Collapse
|
10
|
Yun HM, Lee JY, Kim B, Park KR. Suffruticosol B Is an Osteogenic Inducer through Osteoblast Differentiation, Autophagy, Adhesion, and Migration. Int J Mol Sci 2022; 23:ijms232113559. [PMID: 36362346 PMCID: PMC9658763 DOI: 10.3390/ijms232113559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Suffruticosol B (Suf-B) is a stilbene found in Paeonia suffruticosa ANDR., which has been traditionally used in medicine. Stilbenes and their derivatives possess various pharmacological effects, such as anticancer, anti-inflammatory, and anti-osteoporotic activities. This study aimed to explore the bone-forming activities and mechanisms of Suf-B in pre-osteoblasts. Herein, >99.9% pure Suf-B was isolated from P. suffruticosa methanolic extracts. High concentrations of Suf-B were cytotoxic, whereas low concentrations did not affect cytotoxicity in pre-osteoblasts. Under zero levels of cytotoxicity, Suf-B exhibited bone-forming abilities by enhancing alkaline phosphatase enzyme activities, bone matrix calcification, and expression levels with non-collagenous proteins. Suf-B induces intracellular signal transduction, leading to nuclear RUNX2 expression. Suf-B-stimulated differentiation showed increases in autophagy proteins and autophagosomes, as well as enhancement of osteoblast adhesion and transmigration on the ECM. These results indicate that Suf-B has osteogenic qualities related to differentiation, autophagy, adhesion, and migration. This also suggests that Suf-B could have a therapeutic effect as a phytomedicine in skeletal disorders.
Collapse
Affiliation(s)
- Hyung-Mun Yun
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul 02447, Korea
| | - Joon Yeop Lee
- National Development Institute for Korean Medicine, Gyeongsan 38540, Korea
| | - Bomi Kim
- National Development Institute for Korean Medicine, Gyeongsan 38540, Korea
| | - Kyung-Ran Park
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju 61751, Korea
- Correspondence: ; Tel.: +82-62-712-4412; Fax: +82-62-372-4102
| |
Collapse
|
11
|
Goode-Romero G, Dominguez L. Computational study of the structural ensemble of CC chemokine receptor type 5 (CCR5) and its interactions with different ligands. PLoS One 2022; 17:e0275269. [PMID: 36251708 PMCID: PMC9576088 DOI: 10.1371/journal.pone.0275269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
CC Chemokine receptor 5 (CCR5), a member of the Superfamily of G Protein-Coupled Receptors (GPCRs), is an important effector in multiple physiopathological processes such as inflammatory and infectious entities, including central nervous system neuroinflammatory diseases such as Alzheimer's disease, recovery from nervous injuries, and in the HIV-AIDS infective processes. Thus, CCR5 is an attractive target for pharmacological modulation. Since maraviroc was described as a CCR5 ligand that modifies the HIV-AIDS progression, multiple efforts have been developed to describe the functionality of the receptor. In this work, we characterized key structural features of the CCR5 receptor employing extensive atomistic molecular dynamics (MD) in its apo form and in complex with an endogenous agonist, the chemokine CCL5/RANTES, an HIV entry inhibitor, the partial inverse agonist maraviroc, and the experimental antagonists Compound 21 and 34, aiming to elucidate the structural features and mechanistic processes that constitute its functional states, contributing with structural details and a general understanding of this relevant system.
Collapse
Affiliation(s)
- Guillermo Goode-Romero
- Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Laura Dominguez
- Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
12
|
Hamdi L, Nabat H, Goldberg Y, Fainstein N, Segal S, Mediouni E, Asis Y, Touloumi O, Grigoriadis N, Katz A, Ben-Hur T, Einstein O. Exercise training alters autoimmune cell invasion into the brain in autoimmune encephalomyelitis. Ann Clin Transl Neurol 2022; 9:1792-1806. [PMID: 36217574 DOI: 10.1002/acn3.51677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/01/2022] [Accepted: 09/23/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The mechanisms by which exercise training (ET) elicits beneficial effects on the systemic immune system and the central nervous system (CNS) in autoimmune neuroinflammation are not fully understood. OBJECTIVES To investigate (1) the systemic effects of high-intensity continuous training (HICT) on the migratory potential of autoimmune cells; (2) the direct effects of HICT on blood-brain-barrier (BBB) properties. METHODS Healthy mice were subjected to high-intensity continuous training (HICT) by treadmill running. The proteolipid protein (PLP) transfer EAE model was utilized to examine the immunomodulatory effects of training, where PLP-reactive lymph-node cells (LNCs) from HICT and sedentary donor mice were analyzed in vitro and transferred to naïve recipients that developed EAE. To examine neuroprotection, encephalitogenic LNCs from donor mice were transferred into HICT or sedentary recipient mice and the BBB was analyzed. RESULTS Transfer of PLP-reactive LNCs obtained from HICT donor mice attenuated EAE severity and inflammation in recipient mice. HICT markedly inhibited very late antigen (VLA)-4 and lymphocyte function-associated antigen (LFA)-1 expression in LNCs. Transfer of encephalitogenic LNCs into HICT recipients resulted in milder EAE and attenuated CNS inflammation. HICT reduced BBB permeability and the expression of intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 in CNS blood vessels. INTERPRETATION HICT attenuates EAE development by both immunomodulatory and neuroprotective effects. The reduction in destructive CNS inflammation in EAE is attributed to systemic inhibition of autoreactive cell migratory potential, as well as reduction in BBB permeability, which are associated with reduced VLA-4/VCAM-1 and LFA-1/ICAM-1 interactions.
Collapse
Affiliation(s)
- Liel Hamdi
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Hanan Nabat
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Yehuda Goldberg
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Nina Fainstein
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Shir Segal
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Efrat Mediouni
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Yarden Asis
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Olga Touloumi
- B' Department of Neurology, AHEPA University Hospital of Thessaloniki, Greece
| | | | - Abram Katz
- Åstrand Laboratory, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Tamir Ben-Hur
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Ofira Einstein
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| |
Collapse
|
13
|
A CCR5 antagonist, maraviroc, alleviates neural circuit dysfunction and behavioral disorders induced by prenatal valproate exposure. J Neuroinflammation 2022; 19:195. [PMID: 35906621 PMCID: PMC9335995 DOI: 10.1186/s12974-022-02559-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/22/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Valproic acid (VPA) is a clinically used antiepileptic drug, but it is associated with a significant risk of a low verbal intelligence quotient (IQ) score, attention-deficit hyperactivity disorder and autism spectrum disorder in children when it is administered during pregnancy. Prenatal VPA exposure has been reported to affect neurogenesis and neuronal migration and differentiation. In addition, growing evidence has shown that microglia and brain immune cells are activated by VPA treatment. However, the role of VPA-activated microglia remains unclear. METHODS Pregnant female mice received sodium valproate on E11.5. A microglial activation inhibitor, minocycline or a CCR5 antagonist, maraviroc was dissolved in drinking water and administered to dams from P1 to P21. Measurement of microglial activity, evaluation of neural circuit function and expression analysis were performed on P10. Behavioral tests were performed in the order of open field test, Y-maze test, social affiliation test and marble burying test from the age of 6 weeks. RESULTS Prenatal exposure of mice to VPA induced microglial activation and neural circuit dysfunction in the CA1 region of the hippocampus during the early postnatal periods and post-developmental defects in working memory and social interaction and repetitive behaviors. Minocycline, a microglial activation inhibitor, clearly suppressed the above effects, suggesting that microglia elicit neural dysfunction and behavioral disorders. Next-generation sequencing analysis revealed that the expression of a chemokine, C-C motif chemokine ligand 3 (CCL3), was upregulated in the hippocampi of VPA-treated mice. CCL3 expression increased in microglia during the early postnatal periods via an epigenetic mechanism. The CCR5 antagonist maraviroc significantly suppressed neural circuit dysfunction and post-developmental behavioral disorders induced by prenatal VPA exposure. CONCLUSION These findings suggest that microglial CCL3 might act during development to contribute to VPA-induced post-developmental behavioral abnormalities. CCR5-targeting compounds such as maraviroc might alleviate behavioral disorders when administered early.
Collapse
|
14
|
Riviere-Cazaux C, Cornell J, Shen Y, Zhou M. The role of CCR5 in HIV-associated neurocognitive disorders. Heliyon 2022; 8:e09950. [PMID: 35865985 PMCID: PMC9294194 DOI: 10.1016/j.heliyon.2022.e09950] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/24/2022] [Accepted: 07/09/2022] [Indexed: 11/18/2022] Open
Abstract
While combination antiretroviral therapy (cART) has successfully increased the lifespan of individuals infected with HIV, a significant portion of this population remains affected by HIV-associated neurocognitive disorder (HAND). C-C chemokine receptor 5 (CCR5) has been well studied in immune response and as a co-receptor for HIV infection. HIV-infected (HIV+) patients experienced mild to significant amelioration of cognitive function when treated with different CCR5 antagonists, including maraviroc and cenicriviroc. Consistent with clinical results, Ccr5 knockout or knockdown rescued cognitive deficits in HIV animal models, with mechanisms of reduced microgliosis and neuroinflammation. Pharmacologic inhibition of CCR5 directly improved cerebral and hippocampal neuronal plasticity and cognitive function. By summarizing the animal and human studies of CCR5 in HIV-associated cognitive deficits, this review aims to provide an overview of the mechanistic role of CCR5 in HAND pathophysiology. This review also discusses the addition of CCR5 antagonists, such as maraviroc, to cART for targeted prevention and treatment of cognitive impairments in patients infected with HIV.
Collapse
Affiliation(s)
- Cecile Riviere-Cazaux
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
- Mayo Clinic Alix School of Medicine, Rochester, MN, USA
| | - Jessica Cornell
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Yang Shen
- Neurobiology, Psychiatry and Psychology Departments & Integrative Center for Learning and Memory, UCLA, Los Angeles, CA, USA
| | - Miou Zhou
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
- Corresponding author.
| |
Collapse
|
15
|
Heng AHS, Han CW, Abbott C, McColl SR, Comerford I. Chemokine-Driven Migration of Pro-Inflammatory CD4 + T Cells in CNS Autoimmune Disease. Front Immunol 2022; 13:817473. [PMID: 35250997 PMCID: PMC8889115 DOI: 10.3389/fimmu.2022.817473] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/25/2022] [Indexed: 12/13/2022] Open
Abstract
Pro-inflammatory CD4+ T helper (Th) cells drive the pathogenesis of many autoimmune conditions. Recent advances have modified views of the phenotype of pro-inflammatory Th cells in autoimmunity, extending the breadth of known Th cell subsets that operate as drivers of these responses. Heterogeneity and plasticity within Th1 and Th17 cells, and the discovery of subsets of Th cells dedicated to production of other pro-inflammatory cytokines such as GM-CSF have led to these advances. Here, we review recent progress in this area and focus specifically upon evidence for chemokine receptors that drive recruitment of these various pro-inflammatory Th cell subsets to sites of autoimmune inflammation in the CNS. We discuss expression of specific chemokine receptors by subsets of pro-inflammatory Th cells and highlight which receptors may be tractable targets of therapeutic interventions to limit pathogenic Th cell recruitment in autoimmunity.
Collapse
Affiliation(s)
- Aaron H S Heng
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| | - Caleb W Han
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| | - Caitlin Abbott
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| | - Shaun R McColl
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| | - Iain Comerford
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
16
|
Holm Hansen R, Højsgaard Chow H, Talbot J, Buhelt S, Nickelsen Hellem MN, Nielsen JE, Sellebjerg FT, von Essen MR. Peripheral helper T cells in the pathogenesis of multiple sclerosis. Mult Scler 2022; 28:1340-1350. [PMID: 35112578 DOI: 10.1177/13524585211067696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Peripheral helper T cells (Tph) are likely implicated in the pathogenesis of various inflammatory diseases. Tph cells share functions with follicular helper T cells, including plasma cell differentiation and antibody production. OBJECTIVE AND METHODS To investigate a possible role of Tph cells in the pathogenesis of multiple sclerosis (MS), we used flow cytometry to analyze the function, phenotype, and central nervous system (CNS)-recruitment of Tph cells in the blood and cerebrospinal fluid (CSF) from controls and patients with relapsing-remitting (RR) and primary progressive (PP) MS. RESULT This study identified two functionally distinct Tph cell populations and a regulatory counterpart, Tpr cells. No differences in blood frequencies, cytokine production, or potential to interact with B cells were found between controls and patients with MS. Along with an equal CNS-migration potential, we found both Tph cell populations enriched in the CSF; and surprisingly, an increased frequency of intrathecal Tph cells in the control group compared to patients with MS. CONCLUSION Altogether, we did not find an increased frequency of CSF Tph cells in patients with RRMS or PPMS. Our findings indicate that rather than being involved in MS pathogenesis, Tph cells may be implicated in normal CNS immunosurveillance.
Collapse
Affiliation(s)
- Rikke Holm Hansen
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark
| | - Helene Højsgaard Chow
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark
| | - Jacob Talbot
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark
| | - Sophie Buhelt
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark
| | | | - Jørgen Erik Nielsen
- Danish Dementia Research Center, Neurogenetics Clinic, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark/Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Finn Thorup Sellebjerg
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark/Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Marina Rode von Essen
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark
| |
Collapse
|
17
|
Tang S, Su B, Tao T, Yan W, Zhang R, Qin X, Feng J. RGMa regulates CCL5 expression via the BMP receptor in experimental autoimmune encephalomyelitis mice and endothelial cells. Mol Med Rep 2022; 25:85. [PMID: 35029290 PMCID: PMC8809120 DOI: 10.3892/mmr.2022.12601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/17/2021] [Indexed: 12/04/2022] Open
Abstract
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS). Repulsive guidance molecule a (RGMa) has been indicated to act as a bone morphogenetic protein (BMP) co-receptor, enhancing BMP signalling activity. However, the role and downstream pathways of the BMP signalling pathway mediated by RGMa have yet to be fully elucidated. A recent study revealed that C-C motif chemokine ligand 5 (CCL5) has a major role in the pathogenesis of MS via the recruitment of macrophages and T-lymphocytes into the CNS. The present study aimed to evaluate whether RGMa regulates CCL5 via the BMP pathway in MS. The results demonstrated that RGMa regulated CCL5 expression in a BMP ligand-dependent manner in experimental autoimmune encephalomyelitis (EAE) mice in vivo and in endothelial cells in vitro. First, specific inhibition of the expression of RGMa via RNA interference led to a significant reduction of the expression of RGMa and this was associated with a significant delay of EAE, an alleviated disease course and downregulation of CCL5 expression at both the protein and mRNA levels. Furthermore, exogenous noggin, an extracellular antagonist of BMP ligand, abolished the induction effect of RGMa on CCL5 in endothelial cells. Taken together, these results suggested that RGMa is an important regulator of MS and inflammatory mediators such as CCL5, and the present results should prove to be useful in terms of further elucidating the RGMa-BMP receptor signalling pathway and the pathogenesis of RGMa on MS as far as the involvement of blood-brain barrier permeability is concerned.
Collapse
Affiliation(s)
- Shi Tang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Bao Su
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Tao Tao
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Weiping Yan
- Department of Neurology, Guangrao District People's Hospital, Dongying, Shandong 257300, P.R. China
| | - Rongrong Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xinyue Qin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jinzhou Feng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
18
|
Bauss J, Morris M, Shankar R, Olivero R, Buck LN, Stenger CL, Hinds D, Mills J, Eby A, Zagorski JW, Smith C, Cline S, Hartog NL, Chen B, Huss J, Carcillo JA, Rajasekaran S, Bupp CP, Prokop JW. CCR5 and Biological Complexity: The Need for Data Integration and Educational Materials to Address Genetic/Biological Reductionism at the Interface of Ethical, Legal, and Social Implications. Front Immunol 2021; 12:790041. [PMID: 34925370 PMCID: PMC8674737 DOI: 10.3389/fimmu.2021.790041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/18/2021] [Indexed: 01/02/2023] Open
Abstract
In the age of genomics, public understanding of complex scientific knowledge is critical. To combat reductionistic views, it is necessary to generate and organize educational material and data that keep pace with advances in genomics. The view that CCR5 is solely the receptor for HIV gave rise to demand to remove the gene in patients to create host HIV resistance, underestimating the broader roles and complex genetic inheritance of CCR5. A program aimed at providing research projects to undergraduates, known as CODE, has been expanded to build educational material for genes such as CCR5 in a rapid approach, exposing students and trainees to large bioinformatics databases and previous experiments for broader data to challenge commitment to biological reductionism. Our students organize expression databases, query environmental responses, assess genetic factors, generate protein models/dynamics, and profile evolutionary insights into a protein such as CCR5. The knowledgebase generated in the initiative opens the door for public educational information and tools (molecular videos, 3D printed models, and handouts), classroom materials, and strategy for future genetic ideas that can be distributed in formal, semiformal, and informal educational environments. This work highlights that many factors are missing from the reductionist view of CCR5, including the role of missense variants or expression of CCR5 with neurological phenotypes and the role of CCR5 and the delta32 variant in complex critical care patients with sepsis. When connected to genomic stories in the news, these tools offer critically needed Ethical, Legal, and Social Implication (ELSI) education to combat biological reductionism.
Collapse
Affiliation(s)
- Jacob Bauss
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Michele Morris
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Rama Shankar
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Rosemary Olivero
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States.,Infectious Disease, Helen DeVos Children's Hospital, Grand Rapids, MI, United States
| | - Leah N Buck
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States.,Department of Mathematics, University of North Alabama, Florence, AL, United States
| | - Cynthia L Stenger
- Department of Mathematics, University of North Alabama, Florence, AL, United States
| | - David Hinds
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States.,HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Joshua Mills
- Department of Biology, Grand Valley State University, Allendale, MI, United States
| | - Alexandra Eby
- Department of Science, Davenport University, Grand Rapids, MI, United States
| | - Joseph W Zagorski
- Office of Research, Spectrum Health, Grand Rapids, MI, United States
| | - Caitlin Smith
- Department of Biology, Athens State University, Athens, AL, United States
| | - Sara Cline
- Department of Biology, Athens State University, Athens, AL, United States
| | - Nicholas L Hartog
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States.,Allergy & Immunology, Spectrum Health, Grand Rapids, MI, United States
| | - Bin Chen
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States.,Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - John Huss
- Department of Philosophy, The University of Akron, Akron, OH, United States
| | - Joseph A Carcillo
- Department of Critical Care Medicine and Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Surender Rajasekaran
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States.,Office of Research, Spectrum Health, Grand Rapids, MI, United States.,Pediatric Intensive Care Unit, Helen DeVos Children's Hospital, Grand Rapids, MI, United States
| | - Caleb P Bupp
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States.,Medical Genetics, Spectrum Health, Grand Rapids, MI, United States
| | - Jeremy W Prokop
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States.,Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
19
|
Park KR, Park JE, Kim B, Kwon IK, Hong JT, Yun HM. Calycosin-7-O-β-Glucoside Isolated from Astragalus membranaceus Promotes Osteogenesis and Mineralization in Human Mesenchymal Stem Cells. Int J Mol Sci 2021; 22:ijms222111362. [PMID: 34768792 PMCID: PMC8583672 DOI: 10.3390/ijms222111362] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/21/2022] Open
Abstract
Stem cells have received attention in various diseases, such as inflammatory, cancer, and bone diseases. Mesenchymal stem cells (MSCs) are multipotent stem cells that are critical for forming and repairing bone tissues. Herein, we isolated calycosin-7-O-β-glucoside (Caly) from the roots of Astragalus membranaceus, which is one of the most famous medicinal herbs, and investigated the osteogenic activities of Caly in MSCs. Caly did not affect cytotoxicity against MSCs, whereas Caly enhanced cell migration during the osteogenesis of MSCs. Caly increased the expression and enzymatic activities of ALP and the formation of mineralized nodules during the osteogenesis of MSCs. The osteogenesis and bone-forming activities of Caly are mediated by bone morphogenetic protein 2 (BMP2), phospho-Smad1/5/8, Wnt3a, phospho-GSK3β, and phospho-AKT, inducing the expression of runt-related transcription factor 2 (RUNX2). In addition, Caly-mediated osteogenesis and RUNX2 expression were attenuated by noggin and wortmannin. Moreover, the effects were validated in pre-osteoblasts committed to the osteoblast lineages from MSCs. Overall, our results provide novel evidence that Caly stimulates osteoblast lineage commitment of MSCs by triggering RUNX2 expression, suggesting Caly as a potential anabolic drug to prevent bone diseases.
Collapse
Affiliation(s)
- Kyung-Ran Park
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul 02447, Korea;
- Medical Device Research Center, Medical Science Research Institute, Kyung Hee University Medical Center, Seoul 02447, Korea;
| | - Ji Eun Park
- National Institute for Korean Medicine Development, Gyeongsan 38540, Korea; (J.E.P.); (B.K.)
| | - Bomi Kim
- National Institute for Korean Medicine Development, Gyeongsan 38540, Korea; (J.E.P.); (B.K.)
| | - Il Keun Kwon
- Medical Device Research Center, Medical Science Research Institute, Kyung Hee University Medical Center, Seoul 02447, Korea;
- Department of Dental Materials, School of Dentistry, Kyung Hee University, Seoul 02447, Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si 28160, Korea
- Correspondence: (J.T.H.); (H.-M.Y.); Tel.: +82-02-961-0691 (H.-M.Y.); Fax: +82-02-960-1457 (H.-M.Y.)
| | - Hyung-Mun Yun
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul 02447, Korea;
- Correspondence: (J.T.H.); (H.-M.Y.); Tel.: +82-02-961-0691 (H.-M.Y.); Fax: +82-02-960-1457 (H.-M.Y.)
| |
Collapse
|
20
|
Jie Z, Ko CJ, Wang H, Xie X, Li Y, Gu M, Zhu L, Yang JY, Gao T, Ru W, Tang SJ, Cheng X, Sun SC. Microglia promote autoimmune inflammation via the noncanonical NF-κB pathway. SCIENCE ADVANCES 2021; 7:eabh0609. [PMID: 34516909 PMCID: PMC8442891 DOI: 10.1126/sciadv.abh0609] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Microglia have been implicated in neuroinflammatory diseases, including multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE). We demonstrate that microglia mediate EAE disease progression via a mechanism relying on the noncanonical nuclear factor kB (NF-κB) pathway. Microglia-specific deletion of the noncanonical NF-κB-inducing kinase (NIK) impairs EAE disease progression. Although microglial NIK is dispensable for the initial phase of T cell infiltration into the central nervous system (CNS) and EAE disease onset, it is critical for the subsequent CNS recruitment of inflammatory T cells and monocytes. Our data suggest that following their initial CNS infiltration, T cells activate the microglial noncanonical NF-κB pathway, which synergizes with the T cell-derived cytokine granulocyte-macrophage colony-stimulating factor to induce expression of chemokines involved in the second-wave of T cell recruitment and disease progression. These findings highlight a mechanism of microglial function that is dependent on NIK signaling and required for EAE disease progression.
Collapse
Affiliation(s)
- Zuliang Jie
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston TX, USA
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Chun-Jung Ko
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston TX, USA
| | - Hui Wang
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston TX, USA
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Xiaoping Xie
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston TX, USA
| | - Yanchuan Li
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston TX, USA
| | - Meidi Gu
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston TX, USA
| | - Lele Zhu
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston TX, USA
| | - Jin-Young Yang
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston TX, USA
- Department of Biological Sciences, Pusan National University, Busan, South Korea
| | - Tianxiao Gao
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston TX, USA
| | - Wenjuan Ru
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Shao-Jun Tang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Xuhong Cheng
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston TX, USA
| | - Shao-Cong Sun
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston TX, USA
- MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
- Corresponding author.
| |
Collapse
|
21
|
Mizrachi T, Marsha O, Brusin K, Ben-David Y, Thakur GA, Vaknin-Dembinsky A, Treinin M, Brenner T. Suppression of neuroinflammation by an allosteric agonist and positive allosteric modulator of the α7 nicotinic acetylcholine receptor GAT107. J Neuroinflammation 2021; 18:99. [PMID: 33902624 PMCID: PMC8077754 DOI: 10.1186/s12974-021-02149-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/03/2021] [Indexed: 02/07/2023] Open
Abstract
Background The α7 nicotinic acetylcholine receptor (α7 nAChR) negatively regulates the synthesis and release of pro-inflammatory cytokines by immune cells. Our previous studies showed that in encephalitogenic T cells, α7 nAChR expression is upregulated and that activation of the cholinergic system can attenuate experimental autoimmune encephalomyelitis (EAE). GAT107 is an allosteric agonist and positive allosteric modulator (ago-PAM) of α7 nAChR that can produce persistent activation of this receptor. Therefore, in the present study, we investigated the effect of GAT107 on neuroinflammation in EAE, the animal model used for the study of multiple sclerosis (MS) via α7 nAChR, and the inflammatory pathways involved. Methods EAE was induced by administration of myelin oligodendrocyte glycoprotein (MOG35–55) in C57BL/6 mice. EAE mice were treated with the ago-PAM GAT107 or a placebo for 9 days, starting from the day of EAE induction. Clinical assessment and immunological evaluation of immune cells and cytokine production was performed. Results Following activation of the α7 nAChR by GAT107 during EAE, disease severity was significantly reduced by 70% and was correlated with a reduction in the extent of neuroinflammation in the CNS. The treatment reduced encephalitogenic T cell proliferation and the production of pro-inflammatory cytokines, as well as increased the production of the anti-inflammatory cytokine IL-10. Furthermore, the expression of immune cell markers was altered by GAT107 treatment, which induced a significant reduction in macrophages, dendritic cells, and B cells, as well as a reduction in anti-MOG35–55 antibodies. Additionally, GAT107 was found to directly activate α7 nAChR in murine macrophage RAW264.7 cells and in human PBMCs derived from MS patients and healthy donors. Conclusions Our results show that GAT107 can be a useful molecule for harnessing the cholinergic anti-inflammatory pathway for long-lasting and wide-ranging modulation and downregulation of neuroinflammation in EAE.
Collapse
Affiliation(s)
- Tehila Mizrachi
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital and Hebrew University Medical School, Jerusalem, Israel
| | - Oshrit Marsha
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital and Hebrew University Medical School, Jerusalem, Israel
| | - Karen Brusin
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital and Hebrew University Medical School, Jerusalem, Israel
| | - Yael Ben-David
- Department of Medical Neurobiology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ganesh A Thakur
- Pharmaceutical Science, Bouve College of Health Science, Northeastern University, Boston, USA
| | - Adi Vaknin-Dembinsky
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital and Hebrew University Medical School, Jerusalem, Israel
| | - Millet Treinin
- Department of Medical Neurobiology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Talma Brenner
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital and Hebrew University Medical School, Jerusalem, Israel.
| |
Collapse
|
22
|
Ping S, Qiu X, Kyle M, Zhao LR. Brain-derived CCR5 Contributes to Neuroprotection and Brain Repair after Experimental Stroke. Aging Dis 2021; 12:72-92. [PMID: 33532129 PMCID: PMC7801286 DOI: 10.14336/ad.2020.0406] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/06/2020] [Indexed: 02/04/2023] Open
Abstract
Chemokine (C-C motif) receptor 5 (CCR5) is expressed not only in the immune cells but also in cerebral cells such as neurons, glia, and vascular cells. Stroke triggers high expression of CCR5 in the brain. However, the role of CCR5 in stroke remains unclear. In this study, using bone marrow chimeras we have determined the involvement of brain-derived or bone marrow-derived CCR5 in neuroprotection and brain repair after experimental stroke. CCR5-/- mice that received either wild-type (WT) or CCR5-/- bone marrow transplantation showed larger infarction sizes than the WT mice that received either WT or CCR5-/- bone marrow transplantation in both the acute (48h) and subacute (2 months) phases after cerebral cortical ischemia, suggesting that the lack of CCR5 in the brain leads to severe brain damage after stroke. However, the lack of CCR5 in the bone marrow-derived cells did not affect infarction size. The impairments of somatosensory-motor function and motor coordination were exacerbated in the mice lacking CCR5 in the brain. At 2 months post-stroke, increased degenerative neurons, decreased dendrites and synapses, decreased Iba1+ microglia/ macrophages, reduced myelination and CNPase+ oligodendrocytes in the peri-infarct cortex were observed in the mice lacking CCR5 in the brain. These pathological changes are significantly correlated with the increased infarction size and exacerbated neurological deficits. These data suggest that brain-derived CCR5 plays a key role in neuroprotection and brain repair in the subacute phase of stroke. This study reveals a novel role of CCR5 in stroke, which sheds new light on post-stroke pathomechanism.
Collapse
Affiliation(s)
- Suning Ping
- Department of Neurosurgery, State University of New York Upstate Medical University, New York, USA
| | - Xuecheng Qiu
- Department of Neurosurgery, State University of New York Upstate Medical University, New York, USA
| | - Michele Kyle
- Department of Neurosurgery, State University of New York Upstate Medical University, New York, USA
| | - Li-Ru Zhao
- Department of Neurosurgery, State University of New York Upstate Medical University, New York, USA
| |
Collapse
|
23
|
Necula D, Riviere-Cazaux C, Shen Y, Zhou M. Insight into the roles of CCR5 in learning and memory in normal and disordered states. Brain Behav Immun 2021; 92:1-9. [PMID: 33276089 DOI: 10.1016/j.bbi.2020.11.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/25/2020] [Accepted: 11/28/2020] [Indexed: 12/21/2022] Open
Abstract
As cognitive impairments continue to rise in prevalence, there is an urgent need to understand the mechanisms of learning and memory in normal and disordered states. C-C chemokine receptor 5 (CCR5) has been implicated in the regulation of multiple forms of learning and memory via its regulation on learning-related cell signaling and neuronal plasticity. As a chemokine receptor and a co-receptor for HIV, CCR5's role in immune response and HIV-associated neurocognitive disorder (HAND) has been widely studied. In contrast, CCR5 is less understood in cognitive deficits associated with other disorders, including Alzheimer's disease (AD), stroke and certain psychiatric disorders. A broad overview of the present literature shows that CCR5 acts as a potent suppressor of synaptic plasticity and learning and memory, although a few studies have reported the opposite effect of CCR5 in stroke or AD animal models. By summarizing the current literature of CCR5 in animal and human studies of cognition, this review aims to provide a comprehensive overview of the role of CCR5 in learning and memory in both normal and disordered states and to discuss the possibility of CCR5 suppression as an effective therapeutic to alleviate cognitive deficits in HAND, AD, and stroke.
Collapse
Affiliation(s)
- Deanna Necula
- Department of Neuroscience, UCSF, San Francisco, CA, USA
| | - Cecile Riviere-Cazaux
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Yang Shen
- Neurobiology, Psychiatry and Psychology Departments & Integrative Center for Learning and Memory, UCLA, Los Angeles, CA, USA
| | - Miou Zhou
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA.
| |
Collapse
|
24
|
Lind L, Svensson A, Thörn K, Krzyzowska M, Eriksson K. CD8 + T cells in the central nervous system of mice with herpes simplex infection are highly activated and express high levels of CCR5 and CXCR3. J Neurovirol 2021; 27:145-153. [PMID: 33492607 PMCID: PMC7831625 DOI: 10.1007/s13365-020-00940-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/09/2020] [Accepted: 12/27/2020] [Indexed: 12/25/2022]
Abstract
Herpes simplex virus type 2 (HSV-2) is a neurotropic virus that can cause meningitis, an inflammation of the meninges in the central nervous system. T cells are key players in viral clearance, and these cells migrate from peripheral blood into the central nervous system upon infection. Several factors contribute to T cell migration, including the expression of chemokines in the inflamed tissue that attract T cells through their expression of chemokine receptors. Here we investigated CD8+ T cell profile in the spinal cord in a mouse model of herpes simplex virus type 2 neuroinflammation. Mice were infected with HSV-2 and sacrificed when showing signs of neuroinflammation. Cells and/or tissue from spinal cord, spleen, and blood were analyzed for expression of activation markers, chemokine receptors, and chemokines. High numbers of CD8+ T cells were present in the spinal cord following genital HSV-2-infection. CD8+ T cells were highly activated and HSV-2 glycoprotein B -specific effector cells, some of which showed signs of recent degranulation. They also expressed high levels of many chemokine receptors, in particular CCR2, CCR4, CCR5, and CXCR3. Investigating corresponding receptor ligands in spinal cord tissue revealed markedly increased expression of the cognate ligands CCL2, CCL5, CCL8, CCL12, and CXCL10. This study shows that during herpesvirus neuroinflammation anti-viral CD8+ T cells accumulate in the CNS. CD8+ T cells in the CNS also express chemotactic receptors cognate to the chemotactic gradients in the spinal cord. This indicates that anti-viral CD8+ T cells may migrate to infected areas in the spinal cord during herpesvirus neuroinflammation in response to chemotactic gradients.
Collapse
Affiliation(s)
- Liza Lind
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alexandra Svensson
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Karolina Thörn
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Malgorzata Krzyzowska
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163, Warsaw, Poland
| | - Kristina Eriksson
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
25
|
da Silva LC, Lima IVDA, da Silva MCM, Corrêa TA, de Souza VP, de Almeida MV, de Oliveira ACP, Ferreira AP. A new lipophilic amino alcohol, chemically similar to compound FTY720, attenuates the pathogenesis of experimental autoimmune encephalomyelitis by PI3K/Akt pathway inhibition. Int Immunopharmacol 2020; 88:106919. [PMID: 32871475 DOI: 10.1016/j.intimp.2020.106919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 01/11/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is one of the main animal models used for the study of Multiple Sclerosis (MS). Long-chain lipophilic amino alcohols with immunoregulatory activities have already been studied in some models of inflammatory diseases, but the action of these compounds in EAE and MS is still unknown. In this study, we investigated whether the lipophilic amino alcohol 4b would act to improve the clinical signs of EAE and reduce the demyelination process and the neuroinflammatory parameters in the spinal cord, as well as the inflammatory process in the inguinal lymph nodes, of C57Bl/6 mice induced with EAE after stimulation with MOG35-55 and pertussis toxin. The 4b treatment (1.0 mg/kg/day) was orally administered, starting on the day of onset of clinical signs of the disease (10th) and ending on the 20th day after immunization. This treatment was able to reduce the cell count on the inguinal lymph nodes, the migration of inflammatory cells into the central nervous system (CNS), as well as the processes of microgliosis, astrogliosis, and the production of chemokines and pro-inflammatory cytokines, thus increasing the IL-10 anti-inflammatory cytokine levels in EAE mice. The inhibition of Akt phosphorylation in the CNS of EAE mice after treatment with 4b indicates that the immunoregulatory action of 4b is related to the PI3K/Akt signaling pathway. Our results indicate the immunoregulatory efficacy of the new compound 4b in the control of some inflammatory parameters and in the glial proliferation. In addition, 4b was able to reduce the demyelination of neurons and the worsening of clinical signs of EAE as effectively as the compound FTY720, the first oral drug approved by the FDA for the treatment of MS.
Collapse
Affiliation(s)
- Luan Cristian da Silva
- Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil.
| | - Isabel Vieira de Assis Lima
- Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | | | - Taís Arthur Corrêa
- Department of Exact and Earth Sciences, State University of Minas Gerais, Frutal 38200-000, Brazil
| | - Viviane Passos de Souza
- Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | | | | | - Ana Paula Ferreira
- Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| |
Collapse
|
26
|
Moser T, Akgün K, Proschmann U, Sellner J, Ziemssen T. The role of TH17 cells in multiple sclerosis: Therapeutic implications. Autoimmun Rev 2020; 19:102647. [PMID: 32801039 DOI: 10.1016/j.autrev.2020.102647] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/08/2020] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) where immunopathology is thought to be mediated by myelin-reactive CD4+ T helper (TH) cells. The TH cells most commonly implicated in the pathogenesis of the disease are of TH1 and TH17 lineage, which are defined by the production of interferon-γ and interleukin-17, respectively. Moreover, there is emerging evidence for the involvement of TH17.1 cells, which share the hallmarks of TH1 and TH17 subsets. In this review, we summarise current knowledge about the potential role of TH17 subsets in the initiation and progression of the disease and put a focus on their response to approved immunomodulatory MS drugs. In this regard, TH17 cells are abundant in peripheral blood, cerebrospinal fluid and brain lesions of MS patients, and their counts and inflammatory mediators are further increased during relapses. Fingolimod and alemtuzumab induce a paramount decrease in central memory T cells, which harbour the majority of peripheral TH17 cells, while the efficacy of natalizumab, dimethyl fumarate and importantly hematopoietic stem cell therapy correlates with TH17.1 cell inhibition. Interestingly, also CD20 antibodies target highly inflammatory TH cells and hamper TH17 differentiation by IL-6 reductions. Moreover, recovery rates of TH cells best correlate with long-term efficacy after therapeutical immunodepletion. We conclude that central memory TH17.1 cells play a pivotal role in MS pathogenesis and they represent a major target of MS therapeutics.
Collapse
Affiliation(s)
- Tobias Moser
- Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technical, Fetscherstrasse 74, 01307 Dresden, Germany; Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Ignaz-Harrer-Straße 79, 5020 Salzburg, Austria
| | - Katja Akgün
- Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technical, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Undine Proschmann
- Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technical, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Johann Sellner
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Ignaz-Harrer-Straße 79, 5020 Salzburg, Austria; Department of Neurology, Landesklinikum Mistelbach-Gänserndorf, Liechtensteinstrasse 67, 3120 Mistelbach, Austria; Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, 81675 München, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technical, Fetscherstrasse 74, 01307 Dresden, Germany.
| |
Collapse
|
27
|
Hossain FMA, Park SO, Kim HJ, Eo JC, Choi JY, Uyangaa E, Kim B, Kim K, Eo SK. CCR5 attenuates neutrophilic airway inflammation exacerbated by infection with rhinovirus. Cell Immunol 2020; 351:104066. [PMID: 32089258 DOI: 10.1016/j.cellimm.2020.104066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 01/13/2020] [Accepted: 02/14/2020] [Indexed: 12/15/2022]
Abstract
Human rhinovirus (hRV) is the most common cause of asthma exacerbation characterized by clinical and pathophysiological heterogeneity. Steroid-sensitive, Th2 type-eosinophilic asthma has been somewhat studied, but hRV-induced neutrophilic asthma exacerbation is poorly understood. Here, CCR5 was found to play a role in attenuating neutrophilic airway inflammation in hRV-induced asthma exacerbation using chicken ovalbumin (OVA)-based model. CCR5 deficiency resulted in exacerbated neutrophilic asthmatic responses in airways following hRV infection. CCR5-deficient mice showed enhanced mucus expression and altered expression of tight junction proteins in lung tissues. CCR5-deficient mice were also manifested with influx of CD45+CD11b+Siglec-F+Gr-1+ neutrophils, along with enhanced production of IL-17A, IFN-γ, IL-6, IL-1β cytokines in inflamed tissues. In contrast, CCR5-deficient mice elicited down-regulation of Th2-related cytokine proteins following hRV infection. More interestingly, the lack of CCR5 altered the equilibrium of CD4+FoxP3+ Tregs and IL-17+CD4+ Th17 in inflamed tissues. CCR5-deficient mice showed increased frequency and absolute number of IL-17-producing CD4+ Th17 cells in lung tissues compared to wild-type mice, whereas the reduced infiltration of CD4+FoxP3+ Treg cells was observed. CCR5 deficiency resulted in the skewed production of Th17 and Th1 cytokines in lymph nodes and lungs upon OVA stimulation. Likewise, CCR5-deficient mice showed enhanced expression of Th17-inducing cytokines (IL-1β, IL-6, and TNF-α) in lung tissues. These results imply that CCR5 deficiency facilitates Th17 airway inflammation during hRV-induced asthma exacerbation, along with suppressing Th2 responses. Furthermore, our results suggest that CCR5 attenuates hRV-induced neutrophilic airway inflammation through conserving the equilibrium of CD4+Foxp3+ Treg cells and IL-17+CD4+ Th17 cells in hRV-induced asthma exacerbation.
Collapse
Affiliation(s)
- Ferdaus Mohd Altaf Hossain
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Republic of Korea; Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Seong Ok Park
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Hyo Jin Kim
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Jun Cheol Eo
- Division of Biotechnology, College of Environmental & Biosource Science, Jeonbuk National University, Iksan 54596, South Korea
| | - Jin Young Choi
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Erdenebelig Uyangaa
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Bumseok Kim
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Koanhoi Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Seong Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Republic of Korea.
| |
Collapse
|
28
|
Robichon K, Patel V, Connor B, La Flamme AC. Clozapine reduces infiltration into the CNS by targeting migration in experimental autoimmune encephalomyelitis. J Neuroinflammation 2020; 17:53. [PMID: 32050980 PMCID: PMC7014621 DOI: 10.1186/s12974-020-01733-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/03/2020] [Indexed: 12/21/2022] Open
Abstract
Background Atypical antipsychotic agents, such as clozapine, are used to treat schizophrenia and other psychiatric disorders by a mechanism that is believed to involve modulating the immune system. Multiple sclerosis is an immune-mediated neurological disease, and recently, clozapine was shown to reduce disease severity in an animal model of MS, experimental autoimmune encephalomyelitis (EAE). However, the mode of action by which clozapine reduces disease in this model is poorly understood. Methods Because the mode of action by which clozapine reduces neuroinflammation is poorly understood, we used the EAE model to elucidate the in vivo and in vitro effects of clozapine. Results In this study, we report that clozapine treatment reduced the infiltration of peripheral immune cells into the central nervous system (CNS) and that this correlated with reduced expression of the chemokines CCL2 and CCL5 transcripts in the brain and spinal cord. We assessed to what extent immune cell populations were affected by clozapine treatment and we found that clozapine targets the expression of chemokines by macrophages and primary microglia. Furthermore, in addition to decreasing CNS infiltration by reducing chemokine expression, we found that clozapine directly inhibits chemokine-induced migration of immune cells. This direct target on the immune cells was not mediated by a change in receptor expression on the immune cell surface but by decreasing downstream signaling via these receptors leading to a reduced migration. Conclusions Taken together, our study indicates that clozapine protects against EAE by two different mechanisms; first, by reducing the chemoattractant proteins in the CNS; and second, by direct targeting the migration potential of peripheral immune cells.
Collapse
Affiliation(s)
- Katharina Robichon
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.,Centre for Biodiscovery Wellington Victoria University of Wellington, Wellington, New Zealand
| | - Vimal Patel
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.,Centre for Biodiscovery Wellington Victoria University of Wellington, Wellington, New Zealand
| | - Bronwen Connor
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Anne Camille La Flamme
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand. .,Centre for Biodiscovery Wellington Victoria University of Wellington, Wellington, New Zealand. .,Malaghan Institute of Medical Research, Wellington, New Zealand.
| |
Collapse
|
29
|
Karampoor S, Zahednasab H, Amini R, Esghaei M, Sholeh M, Keyvani H. Maraviroc attenuates the pathogenesis of experimental autoimmune encephalitis. Int Immunopharmacol 2020; 80:106138. [PMID: 32007705 DOI: 10.1016/j.intimp.2019.106138] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/06/2019] [Accepted: 12/18/2019] [Indexed: 12/26/2022]
Abstract
It has been shown that the blockade of chemokine receptor type 5 can dampen inflammatory reaction within the central nervous system (CNS). In the present study, we utilized maraviroc, a potent antagonist o CCR5, to examine whether this drug can mitigate neuroinflammation in the spinal cord of mice induced by experimental autoimmune encephalitis (EAE), considered a murine model of multiple sclerosis (MS). For this aim, mice were immunized with myelin oligodendrocyte glycoprotein 35-55 (MOG35-55), followed by pertussis toxin to induce paralysis in EAE mice. The animals intraperitoneally received various doses of maraviroc (5, 25, and 50 mg/kg body weight) when the early clinical signs of EAE appeared. The results demonstrated that the administration of maraviroc led to a marked decrease in the clinical score and improvement in behavioral motor functions. Moreover, our finding indicated that the administration of maraviroc significantly attenuates the infiltration of inflammatory cells to the spinal cord, microgliosis, astrogliosis, pro-inflammatory cytokines, and cell death in EAE mice. The flow cytometry data indicated that a decreased number of CD4+ and CD8+ T cells in the peripheral blood of mice with EAE without affecting the number of T regulatory cells (CD4 + CD25+ forkhead box protein 3+). Finally, it seems that maraviroc is well-tolerated, and targeting CCR5 could open up a new horizon in the treatment of MS.
Collapse
Affiliation(s)
- Sajad Karampoor
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Zahednasab
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Razieh Amini
- Department of Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Esghaei
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sholeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Keyvani
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Angelou CC, Wells AC, Vijayaraghavan J, Dougan CE, Lawlor R, Iverson E, Lazarevic V, Kimura MY, Peyton SR, Minter LM, Osborne BA, Pobezinskaya EL, Pobezinsky LA. Differentiation of Pathogenic Th17 Cells Is Negatively Regulated by Let-7 MicroRNAs in a Mouse Model of Multiple Sclerosis. Front Immunol 2020; 10:3125. [PMID: 32010153 PMCID: PMC6978752 DOI: 10.3389/fimmu.2019.03125] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is a disabling demyelinating autoimmune disorder of the central nervous system (CNS) which is driven by IL-23- and IL-1β-induced autoreactive Th17 cells that traffic to the CNS and secrete proinflammatory cytokines. Th17 pathogenicity in MS has been correlated with the dysregulation of microRNA (miRNA) expression, and specific miRNAs have been shown to promote the pathogenic Th17 phenotype. In the present study, we demonstrate, using the animal model of MS, experimental autoimmune encephalomyelitis (EAE), that let-7 miRNAs confer protection against EAE by negatively regulating the proliferation, differentiation and chemokine-mediated migration of pathogenic Th17 cells to the CNS. Specifically, we found that let-7 miRNAs may directly target the cytokine receptors Il1r1 and Il23r, as well as the chemokine receptors Ccr2 and Ccr5. Therefore, our results identify a novel regulatory role for let-7 miRNAs in pathogenic Th17 differentiation during EAE development, suggesting a promising therapeutic application for disease treatment.
Collapse
Affiliation(s)
- Constance C. Angelou
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Alexandria C. Wells
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Jyothi Vijayaraghavan
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Carey E. Dougan
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, United States
| | - Rebecca Lawlor
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Elizabeth Iverson
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Vanja Lazarevic
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Motoko Y. Kimura
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shelly R. Peyton
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, United States
| | - Lisa M. Minter
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Barbara A. Osborne
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Elena L. Pobezinskaya
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Leonid A. Pobezinsky
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
31
|
Mizrachi T, Gur-Wahnon D, Al-Roof Higazi A, Brenner T. Role of tissue plasminogen activator in clinical aggravation of experimental autoimmune encephalomyelitis and its therapeutic potential. Cell Immunol 2020; 348:104040. [PMID: 31955841 DOI: 10.1016/j.cellimm.2020.104040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/05/2020] [Accepted: 01/09/2020] [Indexed: 10/25/2022]
Abstract
Tissue plasminogen activator (tPA), a component of the plasminogen activator (PA) system, is elevated in inflammatory neurological disorders. In the present study, we explored the immunomodulatory activity of tPA in experimental autoimmune encephalomyelitis (EAE). The EAE was treated with two catalytic inactive tPA variant proteins: S(481)A and S(481)A + KHRR(296-299)AAAA. EAE-induced tPA-/- mice presented with markedly more severe disease than wt EAE mice. Further, treatment with tPA variants, demonstrated a significant suppression of disease severity in tPA-/- and wt mice. Immunological evaluation showed that specific T-cell reactivity was markedly reduced in the tPA-/- animals, as indicated by decreased T-cell reactivity and reduction in T-regulatory cells. The current findings indicate that tPA plays a role in the pathogenesis of EAE. Moreover, successful amelioration of EAE was achieved by administration of tPA variant proteins. This might mean that these proteins have potential for the immunomodulation of neuroinflammation.
Collapse
Affiliation(s)
- Tehila Mizrachi
- Laboratory of Neuroimmunology, Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, PO Box 12000, Jerusalem, Israel
| | - Devorah Gur-Wahnon
- Laboratory of Neuroimmunology, Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, PO Box 12000, Jerusalem, Israel
| | - Abd Al-Roof Higazi
- Department of Biochemistry, Hadassah-Hebrew University Medical Center, PO Box 12000, Jerusalem, Israel
| | - Talma Brenner
- Laboratory of Neuroimmunology, Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, PO Box 12000, Jerusalem, Israel.
| |
Collapse
|
32
|
Watson AES, Goodkey K, Footz T, Voronova A. Regulation of CNS precursor function by neuronal chemokines. Neurosci Lett 2020; 715:134533. [DOI: 10.1016/j.neulet.2019.134533] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/16/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023]
|
33
|
Holm Hansen R, Højsgaard Chow H, Christensen JR, Sellebjerg F, von Essen MR. Dimethyl fumarate therapy reduces memory T cells and the CNS migration potential in patients with multiple sclerosis. Mult Scler Relat Disord 2019; 37:101451. [PMID: 31675639 DOI: 10.1016/j.msard.2019.101451] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND Dimethyl fumarate (DMF) is a disease-modifying therapy for patients with relapsing-remitting multiple sclerosis (RRMS). T cells are major contributors to the pathogenesis of RRMS, where they regulate the pathogenic immune response and participate in CNS lesion development. OBJECTIVES In this study we evaluate the therapeutic effects of DMF on T cell subpopulations, their CNS migration potential and effector functions. METHODS Blood and CSF from untreated and DMF-treated patients with RRMS and healthy donors were analyzed by flow cytometry. RESULTS DMF reduced the prevalence of circulating proinflammatory CD4+ and CD8+ memory T cells, whereas regulatory T cells were unaffected. Furthermore, DMF reduced the frequency of CD4+ T cells expressing CNS-homing markers. In coherence, we found a reduced recruitment of CD4+ but not CD8+ T cells to CSF. We also found that monomethyl fumarate dampened T cell proliferation and reduced the frequency of TNF-α, IL-17 and IFN-γ producing T cells. CONCLUSION DMF influences the balance between proinflammatory and regulatory T cells, presumably favoring a less proinflammatory environment. DMF also reduces the CNS migratory potential of CD4+ T cells whereas CD8+ T cells are less affected. Altogether, our study suggests an anti-inflammatory effect of DMF mainly on the CD4+ T cell compartment.
Collapse
Affiliation(s)
- Rikke Holm Hansen
- The Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Valdemar Hansens Vej 17, 2600 Glostrup, Denmark.
| | - Helene Højsgaard Chow
- The Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Valdemar Hansens Vej 17, 2600 Glostrup, Denmark
| | - Jeppe Romme Christensen
- The Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Valdemar Hansens Vej 17, 2600 Glostrup, Denmark
| | - Finn Sellebjerg
- The Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Valdemar Hansens Vej 17, 2600 Glostrup, Denmark
| | - Marina Rode von Essen
- The Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Valdemar Hansens Vej 17, 2600 Glostrup, Denmark
| |
Collapse
|
34
|
Geraci F, Ragonese P, Barreca MM, Aliotta E, Mazzola MA, Realmuto S, Vazzoler G, Savettieri G, Sconzo G, Salemi G. Differences in Intercellular Communication During Clinical Relapse and Gadolinium-Enhanced MRI in Patients With Relapsing Remitting Multiple Sclerosis: A Study of the Composition of Extracellular Vesicles in Cerebrospinal Fluid. Front Cell Neurosci 2018; 12:418. [PMID: 30498433 PMCID: PMC6249419 DOI: 10.3389/fncel.2018.00418] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/25/2018] [Indexed: 12/13/2022] Open
Abstract
This study was designed based on the hypothesis that changes in both the levels and surface marker expression of extracellular vesicles (EVs) isolated from the cerebrospinal fluid (CSF) may be associated with the clinical form, disease activity, and severity of multiple sclerosis (MS). The analyzes were performed on subjects affected by MS or other neurological disorders. EVs, which were isolated by ultracentrifugation of CSF samples, were characterized by flow cytometry. A panel of fluorescent antibodies was used to identify the EV origin: CD4, CCR3, CCR5, CD19, and CD200, as well as isolectin IB4. The Mann-Whitney U-test and Kruskal-Wallis test were used for statistical analyzes. EVs isolated from the CSF were more abundant in patients with progressive MS and in those with a clinically isolated syndrome than in all the other groups examined. Furthermore, an important change in the number of EVs and in their surface marker expression occurred during active phases of MS [i.e., clinical relapses and the presence of enhancing lesions on magnetic resonance imaging (MRI)]. In particular, the number of CSF-EVs increased in patients affected by MS during clinical relapse; this finding was associated with a decrease in the number of CD19+/CD200+ (naïve B cells) EVs. These markers are expressed by immature and naïve B lymphocytes, and to the best of our knowledge, this double staining has never been associated with MS, but their reduction has been observed in patients with another type of Th1 cell-mediated autoimmune disease. In contrast, the presence of lesions in the brain and spine on gadolinium-enhanced MRI was associated with an increase in the numbers of CCR3+/CCR5+ (subset of CD8 memory T cells), CD4+/CCR3+ (Th2 cells), and CD4+/CCR5+ (Th1 cells) CSF-EVs. Two points are worth emphasizing: (i) the data obtained in this study confirm that CSF-EVs represent a potentially promising tool to identify biomarkers specific for different phases of MS; and (ii) Considering the role of EVs in intercellular communication, our results provide some insights that improve our understanding of the relationships among some of the cell types that are mainly involved in MS pathogenesis (e.g., lymphocytes, glia, and neurons).
Collapse
Affiliation(s)
- Fabiana Geraci
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| | - Paolo Ragonese
- Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Palermo, Italy
| | - Maria Magdalena Barreca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Emanuele Aliotta
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Maria Antonietta Mazzola
- Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Palermo, Italy
| | - Sabrina Realmuto
- Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Palermo, Italy
| | - Giulia Vazzoler
- Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Palermo, Italy
| | - Giovanni Savettieri
- Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Palermo, Italy
| | - Gabriella Sconzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Giuseppe Salemi
- Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Palermo, Italy
| |
Collapse
|
35
|
Kim KC, Yun J, Son DJ, Kim JY, Jung JK, Choi JS, Kim YR, Song JK, Kim SY, Kang SK, Shin DH, Roh YS, Han SB, Hong JT. Suppression of metastasis through inhibition of chitinase 3-like 1 expression by miR-125a-3p-mediated up-regulation of USF1. Am J Cancer Res 2018; 8:4409-4428. [PMID: 30214629 PMCID: PMC6134921 DOI: 10.7150/thno.26467] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/15/2018] [Indexed: 12/30/2022] Open
Abstract
Rationale: Chitinase 3-like 1 (Chi3L1) protein is up-regulated in various diseases including solid cancers. According to Genome-Wide Association Study (GWAS)/Online Mendelian Inheritance in Man (OMIM)/Differentially Expressed Gene (DEG) analyses, Chi3L1 is associated with 38 cancers, and more highly associated with cancer compared to other oncogenes such as EGFR, TNFα, etc. However, the mechanisms and pathways by which Chi3L1 is associated with cancer are not clear. In current study, we investigated the role of Chi3L1 in lung metastasis. Methods: We performed the differentially expressed gene analysis to explore the genes which are associated with Chi3L1 using the web-based platform from Biomart. We investigated the metastases in lung tissues of C57BL/6 mice injected with B16F10 melanoma following treatment with Ad-shChi3L1. We also investigated the expression of USF1 and Chi3L1 in Chi3L1 KD mice lung tissues by Western blotting and IHC. We also analyzed lung cancer cells metastases induced by Chi3L1 using migration and cell proliferation assay in human lung cancer cell lines. The involvement of miR-125a-3p in Chi3L1 regulation was determined by miRNA qPCR and luciferase reporter assay. Results: We showed that melanoma metastasis in lung tissues was significantly reduced in Chi3L1 knock-down mice, accompanied by down-regulation of MMP-9, MMP-13, VEGF, and PCNA in Chi3L1 knock-down mice lung tissue, as well as in human lung cancer cell lines. We also found that USF1 was conversely expressed against Chi3L1. USF1 was increased by knock-down of Chi3L1 in mice lung tissues, as well as in human lung cancer cell lines. In addition, knock-down of USF1 increased Chi3L1 levels in addition to augmenting metastasis cell migration and proliferation in mice model, as well as in human cancer cell lines. Moreover, in human lung tumor tissues, the expression of Chi3L1 was increased but USF1 was decreased in a stage-dependent manner. Finally, Chi3L1 expression was strongly regulated by the indirect translational suppressing activity of USF1 through induction of miR-125a-3p, a target of Chi3L1. Conclusion: Metastases in mice lung tissues and human lung cancer cell lines were decreased by KD of Chi3L1. USF1 bound to the Chi3L1 promoter, however, Chi3L1 expression was decreased by USF1, despite USF1 enhancing the transcriptional activity of Chi3L1. We found that USF1 induced miR-125a-3p levels which suppressed Chi3L1 expression. Ultimately, our results suggest that lung metastasis is suppressed by knock-down of Chi3L1 through miR-125a-3p-mediated up-regulation of USF1.
Collapse
|
36
|
Troncoso LL, Pontillo A, Oliveira EMLD, Finkelszteijn A, Schneider S, Chies JAB. CCR5Δ32 - A piece of protection in the inflammatory puzzle of multiple sclerosis susceptibility. Hum Immunol 2018; 79:621-626. [PMID: 29729320 DOI: 10.1016/j.humimm.2018.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND Leucocyte infiltration and activation in the central nervous system (CNS) is an important step in the pathogenesis of multiple sclerosis (MS). The Chemokine receptor 5 (CCR5) is implicated in immune cell migration and cytokine release in the CNS, and it was demonstrated to strongly contribute to CNS inflammation and damage in several models of sterile and pathogen-mediated CNS diseases. Although the inhibition of CCR5 results in a beneficial effect in experimental models of MS, conflicting results have been found about the loss-of-function variant CCR5Δ32 (rs333) in MS patients. The aim of this study was to evaluate the association of CCR5Δ32 and MS in a Brazilian case/control cohort. PATIENTS AND METHODS 261 MS patients and 435 healthy controls were genotyped for CCR5Δ32. Allelic and genotypic frequencies were compared between patients and controls (case/control analysis), and among patients classified according to the MS clinical form (relapsing remitting versus progressive) and severity (EDSS, MSSS and progression index). RESULTS AND DISCUSSION The CCR5Δ32 variant frequency was statistically higher in controls as compared to patients presenting European-derived ethnic background. The variant was more frequent in progressive MS as compared to RR-MS patients, and, although not statistically significant, a higher frequency of the truncated allele was observed among patients with less severe forms of MS. These findings emphasize the potential involvement of CCR5 signaling in CNS inflammation and damage in MS. CONCLUSION The CCR5Δ32 deletion is a protective factor against the development and progression of MS in European-derived Brazilian patients.
Collapse
Affiliation(s)
- Lian Lopes Troncoso
- Laboratório de Imunobiologia e Imunogenética, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Alessandra Pontillo
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Imunologia, São Paulo, SP, Brazil
| | - Enedina Maria Lobato de Oliveira
- Ambulatório de Doenças Desmielinizantes da disciplina de Neurologia, Escola, Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | | | - José Artur Bogo Chies
- Laboratório de Imunobiologia e Imunogenética, Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
37
|
Pittaluga A. CCL5-Glutamate Cross-Talk in Astrocyte-Neuron Communication in Multiple Sclerosis. Front Immunol 2017; 8:1079. [PMID: 28928746 PMCID: PMC5591427 DOI: 10.3389/fimmu.2017.01079] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/18/2017] [Indexed: 12/17/2022] Open
Abstract
The immune system (IS) and the central nervous system (CNS) are functionally coupled, and a large number of endogenous molecules (i.e., the chemokines for the IS and the classic neurotransmitters for the CNS) are shared in common between the two systems. These interactions are key elements for the elucidation of the pathogenesis of central inflammatory diseases. In recent years, evidence has been provided supporting the role of chemokines as modulators of central neurotransmission. It is the case of the chemokines CCL2 and CXCL12 that control pre- and/or post-synaptically the chemical transmission. This article aims to review the functional cross-talk linking another endogenous pro-inflammatory factor released by glial cells, i.e., the chemokine Regulated upon Activation Normal T-cell Expressed and Secreted (CCL5) and the principal neurotransmitter in CNS (i.e., glutamate) in physiological and pathological conditions. In particular, the review discusses preclinical data concerning the role of CCL5 as a modulator of central glutamatergic transmission in healthy and demyelinating disorders. The CCL5-mediated control of glutamate release at chemical synapses could be relevant either to the onset of psychiatric symptoms that often accompany the development of multiple sclerosis (MS), but also it might indirectly give a rationale for the progression of inflammation and demyelination. The impact of disease-modifying therapies for the cure of MS on the endogenous availability of CCL5 in CNS will be also summarized. We apologize in advance for omission in our coverage of the existing literature.
Collapse
Affiliation(s)
- Anna Pittaluga
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
- Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| |
Collapse
|
38
|
Shi Y, Li Z, Chen R, Zhang J, Hu X, He C, Su Q, Ma H, Ren H, Qian M, Cui S, Jiang W. Immethridine, histamine H 3-receptor (H 3R) agonist, alleviated experimental autoimmune encephalomyelitis via inhibiting the function of dendritic cells. Oncotarget 2017; 8:75038-75049. [PMID: 29088843 PMCID: PMC5650398 DOI: 10.18632/oncotarget.20500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 07/29/2017] [Indexed: 11/25/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory disease that is characterized by immune-mediated demyelination and degeneration of the central nervous system (CNS). Experimental autoimmune encephalomyelitis (EAE) is the preferential experimental rodent model for MS. Previous study demonstrated histamine H3 receptor (H3R) was an important factor in pathophysiology of EAE and immethridine was the most selective agonist of H3R. However, whether immethridine has therapeutic effect on EAE and its mechanism remained to be defined. Here we constructed EAE mouse model by immunization of MOG35-55 peptides with complete Freund’s adjuvant, immethridine was used to treat EAE and its therapeutic effect was evaluated. The results showed that the treatment of immethridine could alleviate EAE. The percentage of Th1 and Th17 in the spleen from the treated EAE mice decreased and the surface molecules such as CD40, CD86 or MHCII on dendritic cells (DCs) were also down-regulated. To understand the effect of immethridine on DCs, bone marrow-derived DCs were prepared and the immunological functions were analyzed. The data demonstrated that immethridine could change the expression profiles of cytokines in DCs and inhibit the expression of the co-stimulatory molecules such as CD40 and CD86. Furthermore, immethridine also inhibited the antigen-presenting function of DCs and T cell differentiation induced by DCs. Signaling pathway analysis demonstrated that the phosphorylation of NF-κB p65 but not ERK1/2 in DCs was inhibited after the treatment of immethridine. These data strongly suggested that immethridine could inhibit the function of DCs and indicated the therapeutic potential on EAE.
Collapse
Affiliation(s)
- Yaru Shi
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhenlong Li
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Ran Chen
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiang Zhang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xuefei Hu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Cong He
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Qiong Su
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Hongdou Ma
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Hua Ren
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Min Qian
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Shufang Cui
- Laboratory Animal Center, Second Military Medical University, Shanghai, China
| | - Wenzheng Jiang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|