1
|
Akbayir E, Kizilay T, Erol R, Ozkan-Yasargun D, Tuzun E, Yilmaz V, Turkoglu R. B-Cell and T-Cell Populations in Peripheral Blood Linked to Ocrelizumab Treatment Efficacy in Multiple Sclerosis. In Vivo 2025; 39:1162-1172. [PMID: 40010950 PMCID: PMC11884471 DOI: 10.21873/invivo.13920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 02/28/2025]
Abstract
BACKGROUND/AIM Ocrelizumab, a CD20-targeting monoclonal antibody, is used for treatment of multiple sclerosis. The aim of this study was to explore the utility of peripheral blood cell subsets in prediction of treatment response to ocrelizumab in relapsing remitting multiple sclerosis (RRMS). PATIENTS AND METHODS Thirty-one patients with RRMS resistant to first-line immunomodulating agents were enrolled and followed-up for 12 months under ocrelizumab treatment. Disease activity was monitored by 6-monthly assessments of Expanded Disability Status Scale and cranial-spinal magnetic resonance imaging. No evidence of disease activity (NEDA-3) status was determined, and peripheral blood mononuclear cells were immunophenotyped by flow cytometry. RESULTS Peripheral blood populations of CD19+ B-cells, plasma cells and CD3+ CD20+ T-cells decreased under ocrelizumab therapy, whereas populations of switched memory B-cells, CD4+ T-cells, naïve T-cells and regulatory B-1a and CD49d+ T-cells were increased. NEDA-3 status was achieved by 19 patients, who exhibited elevated baseline populations of regulatory CD49d+ T- and B-1a-cells, reduced post-treatment (month 6 or 12) populations of switched memory B-cells, and increased post-treatment populations of naïve T-cells. Month 12 Expanded Disability Status Scale scores correlated positively with plasmablast and naïve T-cell populations. CONCLUSION Response to ocrelizumab is linked to baseline regulatory and post-treatment effector B- and T-cell subset populations. Memory B-cells appear to be a marker of treatment efficacy for ocrelizumab.
Collapse
Affiliation(s)
- Ece Akbayir
- Department of Neuroscience, Aziz Sancar Institute for Experimental Medical Research, Istanbul University, Istanbul, Turkiye;
- Department of Language and Speech Therapy, Faculty of Health Sciences, Istanbul Atlas University, Istanbul, Turkiye
| | - Tugce Kizilay
- Department of Neurology, Istanbul Haydarpasa Numune Training and Research Hospital, Istanbul, Turkiye
| | - Ruziye Erol
- Department of Neurology, Istanbul Haydarpasa Numune Training and Research Hospital, Istanbul, Turkiye
| | - Duygu Ozkan-Yasargun
- Department of Neurology, Istanbul Haydarpasa Numune Training and Research Hospital, Istanbul, Turkiye
| | - Erdem Tuzun
- Department of Neuroscience, Aziz Sancar Institute for Experimental Medical Research, Istanbul University, Istanbul, Turkiye
| | - Vuslat Yilmaz
- Department of Neuroscience, Aziz Sancar Institute for Experimental Medical Research, Istanbul University, Istanbul, Turkiye
| | - Recai Turkoglu
- Department of Neurology, Istanbul Haydarpasa Numune Training and Research Hospital, Istanbul, Turkiye
| |
Collapse
|
2
|
Su S, Bao W, Liu Y, Shi PA, Manwani D, Murakhovskaya I, Campbell-Lee S, Lobo CA, Mendelson A, An X, Zhong H, Yi W, Yazdanbakhsh K. IFN-I promotes T-cell-independent immunity and RBC autoantibodies via modulation of B-1 cell subsets in murine SCD. Blood 2025; 145:334-347. [PMID: 39656114 PMCID: PMC11775509 DOI: 10.1182/blood.2024025175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/11/2024] [Indexed: 01/18/2025] Open
Abstract
ABSTRACT The pathophysiology of sickle cell disease (SCD) is characterized by hemolytic anemia and vaso-occlusion, although its impact on the adaptive immune responses remains incompletely understood. To comprehensibly profile the humoral immune responses, we immunized SCD mice with T-cell-independent (TI) and T-cell-dependent (TD) antigens (Ags). Our study showed that SCD mice have significantly enhanced type 2 TI (TI-2) immune responses in a manner dependent on the level of type I interferons (IFN-I), while maintaining similar or decreased TD immune responses depending on the route of Ag administration. Consistent with the enhanced TI-2 immune responses in SCD mice, the frequencies of B-1b cells (B-1 cells in humans), a major cell type responding to TI-2 Ags, were significantly increased in both the peritoneal cavity and spleens of SCD mice and in the blood of patients with SCD. In support of expanded B-1 cells, elevated levels of anti-red blood cell (anti-RBC) autoantibodies were detected in both SCD mice and patients. Both the levels of TI-2 immune responses and anti-RBC autoantibodies were significantly reduced after IFN-I receptor (IFNAR) antibody blockades and in IFNAR1-deficient SCD mice. Moreover, the alterations of B-1 cell subsets were reversed in IFNAR1-deficient SCD mice, uncovering a critical role for IFN-I in the enhanced TI-2 immune responses and the increased production of anti-RBC autoantibodies by modulating the innate B-1 cell subsets in SCD. Overall, our study provides experimental evidence that the modulation of B-1 cells and IFN-I can regulate TI immune responses and the levels of anti-RBC autoantibodies in SCD.
Collapse
Affiliation(s)
- Shan Su
- Laboratory of Complement Biology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Weili Bao
- Laboratory of Complement Biology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Yunfeng Liu
- Laboratory of Complement Biology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Patricia A. Shi
- Clinical Research in Sickle Cell Disease, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Deepa Manwani
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Albert Einstein College of Medicine, Children's Hospital at Montefiore, Bronx, NY
| | - Irina Murakhovskaya
- Department of Hematology and Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY
| | | | - Cheryl A. Lobo
- Laboratory of Blood-Borne Parasites, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Avital Mendelson
- Laboratory of Stem Cell Biology and Engineering, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Xiuli An
- Laboratory of Membrane Biology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Hui Zhong
- Laboratory of Immune Regulation, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Woelsung Yi
- Laboratory of Complement Biology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Karina Yazdanbakhsh
- Laboratory of Complement Biology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| |
Collapse
|
3
|
de Winter N, Ji J, Sintou A, Forte E, Lee M, Noseda M, Li A, Koenig AL, Lavine KJ, Hayat S, Rosenthal N, Emanueli C, Srivastava PK, Sattler S. Persistent transcriptional changes in cardiac adaptive immune cells following myocardial infarction: New evidence from the re-analysis of publicly available single cell and nuclei RNA-sequencing data sets. J Mol Cell Cardiol 2024; 192:48-64. [PMID: 38734060 DOI: 10.1016/j.yjmcc.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 03/17/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
INTRODUCTION Chronic immunopathology contributes to the development of heart failure after a myocardial infarction. Both T and B cells of the adaptive immune system are present in the myocardium and have been suggested to be involved in post-MI immunopathology. METHODS We analyzed the B and T cell populations isolated from previously published single cell RNA-sequencing data sets (PMID: 32130914, PMID: 35948637, PMID: 32971526 and PMID: 35926050), of the mouse and human heart, using differential expression analysis, functional enrichment analysis, gene regulatory inferences, and integration with autoimmune and cardiovascular GWAS. RESULTS Already at baseline, mature effector B and T cells are present in the human and mouse heart, having increased activity in transcription factors maintaining tolerance (e.g. DEAF1, JDP2, SPI-B). Following MI, T cells upregulate pro-inflammatory transcript levels (e.g. Cd11, Gzmk, Prf1), while B cells upregulate activation markers (e.g. Il6, Il1rn, Ccl6) and collagen (e.g. Col5a2, Col4a1, Col1a2). Importantly, pro-inflammatory and fibrotic transcription factors (e.g. NFKB1, CREM, REL) remain active in T cells, while B cells maintain elevated activity in transcription factors related to immunoglobulin production (e.g. ERG, REL) in both mouse and human post-MI hearts. Notably, genes differentially expressed in post-MI T and B cells are associated with cardiovascular and autoimmune disease. CONCLUSION These findings highlight the varied and time-dependent dynamic roles of post-MI T and B cells. They appear ready-to-go and are activated immediately after MI, thus participate in the acute wound healing response. However, they subsequently remain in a state of pro-inflammatory activation contributing to persistent immunopathology.
Collapse
Affiliation(s)
- Natasha de Winter
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom
| | - Jiahui Ji
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom
| | - Amalia Sintou
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom
| | - Elvira Forte
- The Jackson Laboratory, Bar Harbor, United States
| | - Michael Lee
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom
| | - Michela Noseda
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom; British Heart Foundation Centre For Research Excellence, Imperial College London, United Kingdom
| | - Aoxue Li
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom; Department of Medicine Solna, Division of Cardiovascular Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Andrew L Koenig
- Center for Cardiovascular Research, Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, United States
| | - Kory J Lavine
- Center for Cardiovascular Research, Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, United States
| | | | - Nadia Rosenthal
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom; The Jackson Laboratory, Bar Harbor, United States
| | - Costanza Emanueli
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom; British Heart Foundation Centre For Research Excellence, Imperial College London, United Kingdom
| | - Prashant K Srivastava
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom
| | - Susanne Sattler
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom; Department of Cardiology, Medical University of Graz, Austria; Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Austria.
| |
Collapse
|
4
|
Kim JEJ, Tung LT, Jiang RR, Yousefi M, Liang Y, Malo D, Vidal SM, Nijnik A. Dysregulation of B lymphocyte development in the SKG mouse model of rheumatoid arthritis. Immunology 2023; 170:553-566. [PMID: 37688495 DOI: 10.1111/imm.13691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/22/2023] [Indexed: 09/11/2023] Open
Abstract
Rheumatoid arthritis is a chronic and systemic inflammatory disease that affects approximately 1% of the world's population and is characterised by joint inflammation, the destruction of articular cartilage and bone, and many potentially life-threatening extraarticular manifestations. B lymphocytes play a central role in the pathology of rheumatoid arthritis as the precursors of autoantibody secreting plasma cells, as highly potent antigen-presenting cells, and as a source of various inflammatory cytokines, however, the effects of rheumatoid arthritis on B lymphocyte development remain poorly understood. Here, we analyse B lymphocyte development in murine models of rheumatoid arthritis, quantifying all the subsets of B cell precursors in the bone marrow and splenic B cells using flow cytometry. We demonstrate a severe reduction in pre-B cells and immature B cells in the bone marrow of mice with active disease, despite no major effects on the mature naïve B cell numbers. The loss of B cell precursors in the bone marrow of the affected mice was associated with a highly significant reduction in the proportion of Ki67+ cells, indicating impaired cell proliferation, while the viability of the B cell precursors was not significantly affected. We also observed some mobilisation of the B cell precursor cells into the mouse spleen, demonstrated with flow cytometry and pre-B colony forming units assays. In summary, the current work demonstrates a severe dysregulation in B lymphocyte development in murine rheumatoid arthritis, with possible implications for B cell repertoire formation, tolerance induction, and disease mechanisms.
Collapse
Affiliation(s)
- Joo Eun June Kim
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec, Canada
| | - Lin Tze Tung
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec, Canada
| | - Roselyn R Jiang
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec, Canada
| | - Mitra Yousefi
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Yue Liang
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec, Canada
| | - Danielle Malo
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Silvia M Vidal
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Nandakumar KS, Fang Q, Wingbro Ågren I, Bejmo ZF. Aberrant Activation of Immune and Non-Immune Cells Contributes to Joint Inflammation and Bone Degradation in Rheumatoid Arthritis. Int J Mol Sci 2023; 24:15883. [PMID: 37958864 PMCID: PMC10648236 DOI: 10.3390/ijms242115883] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Abnormal activation of multiple immune and non-immune cells and proinflammatory factors mediate the development of joint inflammation in genetically susceptible individuals. Although specific environmental factors like smoking and infections are associated with disease pathogenesis, until now, we did not know the autoantigens and arthritogenic factors that trigger the initiation of the clinical disease. Autoantibodies recognizing specific post-translationally modified and unmodified antigens are generated and in circulation before the onset of the joint disease, and could serve as diagnostic and prognostic markers. The characteristic features of autoantibodies change regarding sub-class, affinity, glycosylation pattern, and epitope spreading before the disease onset. Some of these antibodies were proven to be pathogenic using animal and cell-culture models. However, not all of them can induce disease in animals. This review discusses the aberrant activation of major immune and non-immune cells contributing to joint inflammation. Recent studies explored the protective effects of extracellular vesicles from mesenchymal stem cells and bacteria on joints by targeting specific cells and pathways. Current therapeutics in clinics target cells and inflammatory pathways to attenuate joint inflammation and protect the cartilage and bones from degradation, but none cure the disease. Hence, more basic research is needed to investigate the triggers and mechanisms involved in initiating the disease and relapses to prevent chronic inflammation from damaging joint architecture.
Collapse
Affiliation(s)
- Kutty Selva Nandakumar
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
- Department of Environmental and Biosciences, Halmstad University, 30118 Halmstad, Sweden; (I.W.Å.); (Z.F.B.)
| | - Qinghua Fang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA;
| | - Isabella Wingbro Ågren
- Department of Environmental and Biosciences, Halmstad University, 30118 Halmstad, Sweden; (I.W.Å.); (Z.F.B.)
| | - Zoe Fuwen Bejmo
- Department of Environmental and Biosciences, Halmstad University, 30118 Halmstad, Sweden; (I.W.Å.); (Z.F.B.)
| |
Collapse
|
6
|
Xiang Y, Liu L, Hou Y, Du S, Xu S, Zhou H, Shao L, Li G, Yu T, Liu Q, Xue M, Yang J, Peng J, Hou M, Shi Y. The mTORC1 pathway participate in hyper-function of B cells in immune thrombocytopenia. Ann Hematol 2023; 102:2317-2327. [PMID: 37421506 DOI: 10.1007/s00277-023-05348-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023]
Abstract
B cell hyper-function plays an important role in the pathogenesis of immune thrombocytopenia (ITP), but the molecular mechanisms underlying such changes remain unclear. We sought to identify regulators of B cell dysfunction in ITP patients through transcriptome sequencing and the use of inhibitors. B cells were isolated from PBMC of 25 ITP patients for B cell function test and transcriptome sequencing. For the potential regulatory factors identified by transcriptome sequencing, the corresponding protein inhibitors were used to explore the regulatory effect of the regulatory factors on B cell dysfunction in vitro. In this study, increased antibody production, enhanced terminal differentiation and highly expressed costimulatory molecules CD80 and CD86 were found in B cells of patients with ITP. In addition, RNA sequencing revealed highly activated mTOR pathway in these pathogenic B cells, indicating that the mTOR pathway may be involved in B cell hyper-function. Furthermore, mTOR inhibitors rapamycin or Torin1 effectively blocked the activation of mTORC1 in B cells, resulting in reduce antibody secretion, impaired differentiation of B cells into plasmablasts and downregulation of costimulatory molecules. Interestingly, as an unspecific inhibitor of mTORC2 besides mTORC1, Torin1 did not show a stronger capacity to modulate B cell function than rapamycin, suggesting that the regulation of B cells by Torin1 may depend on blockade of mTORC1 rather than mTORC2 pathway. These results indicated that the activation of mTORC1 pathway is involved in B cell dysfunction in patients with ITP, and inhibition of mTORC1 pathway might be a potential therapeutic approach for ITP.
Collapse
Affiliation(s)
- Yujiao Xiang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Lu Liu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
- Department of Hematology, Qilu Hospital (Qingdao) of Shandong University, Qingdao, China
| | - Yu Hou
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, China
- Department of Hematology, Qilu Hospital (Qingdao) of Shandong University, Qingdao, China
| | - Shenghong Du
- Department of Hematology, Taian Central Hospital, Taian, China
| | - Shuqian Xu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Hai Zhou
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Linlin Shao
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Guosheng Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Tianshu Yu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Qiang Liu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Meijuan Xue
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Junhui Yang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center in Hematological Diseases, Jinan, China
- Leading Research Group of Scientific Innovation, Department of Science and Technology of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Yan Shi
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
7
|
Ma K, Du W, Wang S, Xiao F, Li J, Tian J, Xing Y, Kong X, Rui K, Qin R, Zhu X, Wang J, Luo C, Wu H, Zhang Y, Wen C, He L, Liu D, Zou H, Lu Q, Wu L, Lu L. B1-cell-produced anti-phosphatidylserine antibodies contribute to lupus nephritis development via TLR-mediated Syk activation. Cell Mol Immunol 2023; 20:881-894. [PMID: 37291237 PMCID: PMC10250184 DOI: 10.1038/s41423-023-01049-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023] Open
Abstract
Autoantibodies produced by B cells play a pivotal role in the pathogenesis of systemic lupus erythematosus (SLE). However, both the cellular source of antiphospholipid antibodies and their contributions to the development of lupus nephritis (LN) remain largely unclear. Here, we report a pathogenic role of anti-phosphatidylserine (PS) autoantibodies in the development of LN. Elevated serum PS-specific IgG levels were measured in model mice and SLE patients, especially in those with LN. PS-specific IgG accumulation was found in the kidney biopsies of LN patients. Both transfer of SLE PS-specific IgG and PS immunization triggered lupus-like glomerular immune complex deposition in recipient mice. ELISPOT analysis identified B1a cells as the main cell type that secretes PS-specific IgG in both lupus model mice and patients. Adoptive transfer of PS-specific B1a cells accelerated the PS-specific autoimmune response and renal damage in recipient lupus model mice, whereas depletion of B1a cells attenuated lupus progression. In culture, PS-specific B1a cells were significantly expanded upon treatment with chromatin components, while blockade of TLR signal cascades by DNase I digestion and inhibitory ODN 2088 or R406 treatment profoundly abrogated chromatin-induced PS-specific IgG secretion by lupus B1a cells. Thus, our study has demonstrated that the anti-PS autoantibodies produced by B1 cells contribute to lupus nephritis development. Our findings that blockade of the TLR/Syk signaling cascade inhibits PS-specific B1-cell expansion provide new insights into lupus pathogenesis and may facilitate the development of novel therapeutic targets for the treatment of LN in SLE.
Collapse
Affiliation(s)
- Kongyang Ma
- Centre for Infection and Immunity Studies, School of Medicine, The Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, 999077, China
- Department of Rheumatology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Wenhan Du
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, 999077, China
- Chongqing International Institute for Immunology, Chongqing, 400038, China
| | - Shiyun Wang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, 999077, China
| | - Fan Xiao
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, 999077, China
| | - Jingyi Li
- Department of Rheumatology and Immunology, Southwest Hospital, The First Hospital Affiliated to Army Medical University, Chongqing, 400038, China
| | - Jie Tian
- Department of Laboratory Medicine, Affiliated Hospital and Institute of Medical Immunology, Jiangsu University, Zhenjiang, China
| | - Yida Xing
- Department of Rheumatology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaodan Kong
- Department of Rheumatology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ke Rui
- Department of Laboratory Medicine, Affiliated Hospital and Institute of Medical Immunology, Jiangsu University, Zhenjiang, China
| | - Rencai Qin
- Centre for Infection and Immunity Studies, School of Medicine, The Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Xiaoxia Zhu
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Cainan Luo
- Department of Rheumatology and Immunology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yun Zhang
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chengping Wen
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lan He
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Dongzhou Liu
- Department of Rheumatology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Hejian Zou
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Lijun Wu
- Department of Rheumatology and Immunology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China.
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, 999077, China.
- Chongqing International Institute for Immunology, Chongqing, 400038, China.
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong, China.
| |
Collapse
|
8
|
Bous M, Schmitt C, Hans MC, Weber R, Nourkami-Tutdibi N, Tenbruck S, Haj Hamoud B, Wagenpfeil G, Kaiser E, Solomayer EF, Zemlin M, Goedicke-Fritz S. Sex Differences in the Frequencies of B and T Cell Subpopulations of Human Cord Blood. Int J Mol Sci 2023; 24:11511. [PMID: 37511278 PMCID: PMC10380850 DOI: 10.3390/ijms241411511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Cord blood represents a link between intrauterine and early extrauterine development. Cord blood cells map an important time frame in human immune imprinting processes. It is unknown whether the sex of the newborn affects the lymphocyte subpopulations in the cord blood. Nine B and twenty-one T cell subpopulations were characterized using flow cytometry in human cord blood from sixteen male and twenty-one female newborns, respectively. Except for transitional B cells and naïve B cells, frequencies of B cell counts across all subsets was higher in the cord blood of male newborns than in female newborns. The frequency of naïve thymus-negative Th cells was significantly higher in male cord blood, whereas the remaining T cell subpopulations showed a higher count in the cord blood of female newborns. Our study is the first revealing sex differences in the B and T cell subpopulations of human cord blood. These results indicate that sex might have a higher impact for the developing immune system, urging the need to expand research in this area.
Collapse
Affiliation(s)
- Michelle Bous
- Department of General Pediatrics and Neonatology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Charline Schmitt
- Department of General Pediatrics and Neonatology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Muriel Charlotte Hans
- Department of General Pediatrics and Neonatology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Regine Weber
- Department of General Pediatrics and Neonatology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Nasenien Nourkami-Tutdibi
- Department of General Pediatrics and Neonatology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Sebastian Tenbruck
- Department of Gynaecology and Obstetrics, Saarland University Medical Center, 66421 Homburg, Germany
| | - Bashar Haj Hamoud
- Department of Gynaecology and Obstetrics, Saarland University Medical Center, 66421 Homburg, Germany
| | - Gudrun Wagenpfeil
- Institute for Medical Biometry, Epidemiology and Medical Informatics (IMBEI), Saarland University, Campus Homburg, 66421 Homburg, Germany
| | - Elisabeth Kaiser
- Department of General Pediatrics and Neonatology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Erich-Franz Solomayer
- Department of Gynaecology and Obstetrics, Saarland University Medical Center, 66421 Homburg, Germany
| | - Michael Zemlin
- Department of General Pediatrics and Neonatology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Sybelle Goedicke-Fritz
- Department of General Pediatrics and Neonatology, Saarland University Medical Center, 66421 Homburg, Germany
| |
Collapse
|
9
|
Matskevych AM, Mukvich OM, Zabara DV. EXPRESSION OF TOLL-LIKE RECEPTORS 4 ON CD14 + MONOCYTES IN JUVENILE IDIOPATHIC ARTHRITIS. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2022; 75:2759-2764. [PMID: 36591765 DOI: 10.36740/wlek202211208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The aim: The work is aimed at determining the relationship between TLR4 expression on CD14+monocytes in whole heparinized blood and B1a lymphocyte synthesis in various subtypes of JIA. PATIENTS AND METHODS Materials and methods: 64children aged3to17years were examined, including42children with different subtypes of JIA and22healthy children. The intensity of TLR4 expression onCD14+monocytes was determined in whole heparinized blood incubated with a CD14-FITC/TLR4-PE monoclonal antibody cocktail(Biolegend, USA)using flow cytometry. Monoclonal antibodies (BD Bioscience) were used to determine the main subpopulations of lymphocytes. RESULTS Results: A statistically significant increase in TLR4 expression has been determined in JIA compared to the control group. The most prominent TLR4 expression was detected in children with oligoarthritis, while in systemic arthritis, there was no statistical difference compared to healthy children. High TLR4 expression on peripheral CD14+monocytes inversely depends on the activity of the autoimmune process, which may have a protective effect against the aseptic inflammation.Increased TLR4 expression involves a statis¬tically significant increase in the percentage and quantity of В1а lymphocytes(p≤0.05). CONCLUSION Conclusions: A statistically significant increase in TLR4 expression on CD14+monocytes in whole heparinized blood was detected in patients with JIA compared to healthy children. Children with oligoarthritis had the highest rates, which indicates possible differences in the development of pathogenetic processes in different subtypes of arthritis. Determining the degree of TLR4 activation on CD14+monocytes is reasonable for predicting JIA activity.
Collapse
Affiliation(s)
- Anna M Matskevych
- INSTITUTE OF PEDIATRICS, OBSTETRICS, AND GYNECOLOGY NAMED AFTER ACAD. O.M. LUKYANOVA OF THE NATIONAL ACADEMY OF MEDICAL SCIENCES OF UKRAINE, KYIV, UKRAINE
| | - Olena M Mukvich
- INSTITUTE OF PEDIATRICS, OBSTETRICS, AND GYNECOLOGY NAMED AFTER ACAD. O.M. LUKYANOVA OF THE NATIONAL ACADEMY OF MEDICAL SCIENCES OF UKRAINE, KYIV, UKRAINE
| | - Dariia V Zabara
- INSTITUTE OF PEDIATRICS, OBSTETRICS, AND GYNECOLOGY NAMED AFTER ACAD. O.M. LUKYANOVA OF THE NATIONAL ACADEMY OF MEDICAL SCIENCES OF UKRAINE, KYIV, UKRAINE
| |
Collapse
|
10
|
Identification and Validation of Hub Genes for Predicting Treatment Targets and Immune Landscape in Rheumatoid Arthritis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8023779. [PMID: 36317112 PMCID: PMC9617710 DOI: 10.1155/2022/8023779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022]
Abstract
Background Rheumatoid arthritis (RA) is recognized as a chronic inflammatory disease featured by pathological synovial inflammation. Currently, the underlying pathophysiological mechanisms of RA remain unclear. In the study, we attempted to explore the underlying mechanisms of RA and provide potential targets for the therapy of RA via bioinformatics analysis. Methods We downloaded four microarray datasets (GSE77298, GSE55235, GSE12021, and GSE55457) from the GEO database. Firstly, GSE77298 and GSE55457 were identified DEGs by the “limma” and “sva” packages of R software. Then, we performed GO, KEGG, and GSEA enrichment analyses to further analyze the function of DEGs. Hub genes were screened using LASSO analysis and SVM-RFE analysis. To further explore the differences of the expression of hub genes in healthy control and RA patient synovial tissues, we calculated the ROC curves and AUC. The expression levels of hub genes were verified in synovial tissues of normal and RA rats by qRT-PCR and western blot. Furthermore, the CIBERSORTx was implemented to assess the differences of infiltration in 22 immune cells between normal and RA synovial tissues. We explored the association between hub genes and infiltrating immune cells. Results CRTAM, CXCL13, and LRRC15 were identified as RA's potential hub genes by machine learning and LASSO algorithms. In addition, we verified the expression levels of three hub genes in the synovial tissue of normal and RA rats by PCR and western blot. Moreover, immune cell infiltration analysis showed that plasma cells, T follicular helper cells, M0 macrophages, M1 macrophages, and gamma delta T cells may be engaged in the development and progression of RA. Conclusions In brief, our study identified and validated that three hub genes CRTAM, CXCL13, and LRRC15 might involve in the pathological development of RA, which could provide novel perspectives for the diagnosis and treatment with RA.
Collapse
|
11
|
Smirnova NF, Riemondy K, Bueno M, Collins S, Suresh P, Wang X, Patel KN, Cool C, Königshoff M, Sharma NS, Eickelberg O. Single-cell transcriptome mapping identifies a local, innate B cell population driving chronic rejection after lung transplantation. JCI Insight 2022; 7:156648. [PMID: 36134664 PMCID: PMC9675462 DOI: 10.1172/jci.insight.156648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Bronchiolitis obliterans syndrome (BOS) is the main reason for poor outcomes after lung transplantation (LTx). We and others have recently identified B cells as major contributors to BOS after LTx. The extent of B cell heterogeneity and the relative contributions of B cell subpopulations to BOS, however, remain unclear. Here, we provide a comprehensive analysis of cell population changes and their gene expression patterns during chronic rejection after orthotopic LTx in mice. Of 11 major cell types, Mzb1-expressing plasma cells (PCs) were the most prominently increased population in BOS lungs. These findings were validated in 2 different cohorts of human BOS after LTx. A Bhlhe41, Cxcr3, and Itgb1 triple-positive B cell subset, also expressing classical markers of the innate-like B-1 B cell population, served as the progenitor pool for Mzb1+ PCs. This subset accounted for the increase in IgG2c production within BOS lung grafts. A genetic lack of Igs decreased BOS severity after LTx. In summary, we provide a detailed analysis of cell population changes during BOS. IgG+ PCs and their progenitors — an innate B cell subpopulation — are the major source of local Ab production and a significant contributor to BOS after LTx.
Collapse
Affiliation(s)
- Natalia F Smirnova
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Institut des Maladies Métaboliques et Cardiovasculaires (I2MC) - INSERM U1297, University of Toulouse III, Toulouse, France
| | - Kent Riemondy
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Marta Bueno
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Susan Collins
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Pavan Suresh
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xingan Wang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kapil N Patel
- Center for Advanced Lung Disease and Lung Transplantation, University of South Florida/Tampa General Hospital, Tampa, Florida, USA
| | - Carlyne Cool
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Melanie Königshoff
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nirmal S Sharma
- Center for Advanced Lung Disease and Lung Transplantation, University of South Florida/Tampa General Hospital, Tampa, Florida, USA.,Division of Pulmonary & Critical Care, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Oliver Eickelberg
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
12
|
Halperin ST, ’t Hart BA, Luchicchi A, Schenk GJ. The Forgotten Brother: The Innate-like B1 Cell in Multiple Sclerosis. Biomedicines 2022; 10:606. [PMID: 35327408 PMCID: PMC8945227 DOI: 10.3390/biomedicines10030606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease of the central nervous system (CNS), traditionally considered a chronic autoimmune attack against the insulating myelin sheaths around axons. However, the exact etiology has not been identified and is likely multi-factorial. Recently, evidence has been accumulating that implies that autoimmune processes underlying MS may, in fact, be triggered by pathological processes initiated within the CNS. This review focuses on a relatively unexplored immune cell-the "innate-like" B1 lymphocyte. The B1 cell is a primary-natural-antibody- and anti-inflammatory-cytokine-producing cell present in the healthy brain. It has been recently shown that its frequency and function may differ between MS patients and healthy controls, but its exact involvement in the MS pathogenic process remains obscure. In this review, we propose that this enigmatic cell may play a more prominent role in MS pathology than ever imagined. We aim to shed light on the human B1 cell in health and disease, and how dysregulation in its delicate homeostatic role could impact MS. Furthermore, novel therapeutic avenues to restore B1 cells' beneficial functions will be proposed.
Collapse
Affiliation(s)
| | | | - Antonio Luchicchi
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HZ Amsterdam, The Netherlands; (S.T.H.); (B.A.’t.H.)
| | - Geert J. Schenk
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HZ Amsterdam, The Netherlands; (S.T.H.); (B.A.’t.H.)
| |
Collapse
|
13
|
Tang Q, Cen Z, Lu J, Dong J, Qin L, Lu F, Wu W. The abnormal distribution of peripheral B1 cells and transition B cells in patients with idiopathic dilated cardiomyopathy: a pilot study. BMC Cardiovasc Disord 2022; 22:78. [PMID: 35246021 PMCID: PMC8895850 DOI: 10.1186/s12872-022-02461-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 01/13/2022] [Indexed: 11/10/2022] Open
Abstract
Background The aberrant distribution of peripheral B cell subsets is associated with the pathogenesis of a variety of inflammatory and autoimmune diseases. However, the distribution of peripheral B cell subsets in patients with idiopathic dilated cardiomyopathy (DCM) remains to be elucidated.
Methods Twenty-seven patients with idiopathic DCM (DCM group), 18 control patients with heart failure (HF group) and 21 healthy individuals (HC group) were included in this study. Peripheral B cell subsets were analysed using multicolour flow cytometry. The plasma β1 adrenergic receptor (β1-AR) autoantibody titre was determined using ELISA. Additionally, clinical features were also collected. Results Compared with the HF and HC groups, the percentage of B1 cells was significantly decreased, whereas the percentage of transitional B cells (Tr) was significantly increased in the DCM group. Notably, the percentage of B1 cells was significantly lower in patients with β1-AR autoantibody-positive DCM than in β1-AR autoantibody-negative patients. The correlation analysis showed that the percentage of B1 cells was negatively correlated with N-terminal pro-brain natriuretic peptide (NT-proBNP) levels and positively correlated with the left ventricular ejection fraction in patients with DCM. Conclusion As shown in the present study, the percentage of B1 cells in the peripheral blood of patients with idiopathic DCM is abnormally decreased, especially in β1-AR autoantibody-positive patients, while the percentage of Tr cells is significantly increased, indicating that B1 cells and Tr cells may be implicated in the pathogenesis of idiopathic DCM. The decrease in the percentage of B1 cells is directly related to the severity of DCM. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-022-02461-8.
Collapse
Affiliation(s)
- Quan Tang
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, Guangxi Cardiovascular Institute, Shuangyong Road 6, Nanning, 530021, Guangxi, People's Republic of China
| | - Zhihong Cen
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, Guangxi Cardiovascular Institute, Shuangyong Road 6, Nanning, 530021, Guangxi, People's Republic of China
| | - Jing Lu
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, Guangxi Cardiovascular Institute, Shuangyong Road 6, Nanning, 530021, Guangxi, People's Republic of China
| | - Jingwei Dong
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, Guangxi Cardiovascular Institute, Shuangyong Road 6, Nanning, 530021, Guangxi, People's Republic of China
| | - Lin Qin
- Department of Cardiology, Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, People's Republic of China
| | - Feiyu Lu
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, Guangxi Cardiovascular Institute, Shuangyong Road 6, Nanning, 530021, Guangxi, People's Republic of China
| | - Weifeng Wu
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, Guangxi Cardiovascular Institute, Shuangyong Road 6, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
14
|
Srivastava RK, Sapra L. The Rising Era of “Immunoporosis”: Role of Immune System in the Pathophysiology of Osteoporosis. J Inflamm Res 2022; 15:1667-1698. [PMID: 35282271 PMCID: PMC8906861 DOI: 10.2147/jir.s351918] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/10/2022] [Indexed: 12/21/2022] Open
Abstract
Discoveries in the last few years have emphasized the existence of an enormous breadth of communication between bone and the immune system in maintaining skeletal homeostasis. Originally, the discovery of various factors was assigned to the immune system viz. interleukin (IL)-6, IL-10, IL-17, tumor necrosis factor (TNF)-α, receptor activator of nuclear factor kappa B ligand (RANKL), nuclear factor of activated T cells (NFATc1), etc., but now these factors have also been shown to have a significant impact on osteoblasts (OBs) and osteoclasts (OCs) biology. These discoveries led to an alteration in the approach for the treatment of several bone pathologies including osteoporosis. Osteoporosis is an inflammatory bone anomaly affecting more than 500 million people globally. In 2018, to highlight the importance of the immune system in the pathophysiology of osteoporosis, our group coined the term “immunoporosis”. In the present review, we exhaustively revisit the characteristics, mechanism of action, and function of both innate and adaptive immune cells with the goal of understanding the potential of immune cells in osteoporosis. We also highlight the Immunoporotic role of gut microbiota (GM) for the treatment and management of osteoporosis. Importantly, we further discuss whether an immune cell-based strategy to treat and manage osteoporosis is feasible and relevant in clinical settings.
Collapse
Affiliation(s)
- Rupesh K Srivastava
- Immunoporosis Lab, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
- Correspondence: Rupesh K Srivastava, Tel +91 11-26593548, Email ;
| | - Leena Sapra
- Immunoporosis Lab, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| |
Collapse
|
15
|
Single-cell RNA sequencing uncovers the individual alteration of intestinal mucosal immunocytes in Dusp6 knockout mice. iScience 2022; 25:103738. [PMID: 35128351 PMCID: PMC8800014 DOI: 10.1016/j.isci.2022.103738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/05/2021] [Accepted: 01/04/2022] [Indexed: 12/01/2022] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) approach can broadly and specifically evaluate the individual cells with minimum detection bias. To explore the individual compositional and transcriptional alteration of intestinal leukocytes in the Dual Specificity Phosphatase six knockout (D6KO) mice, we performed a scRNA-seq followed by the cell type annotation based on ImmGen database. Composition assessments found that D6KO-derived intestinal leukocytes tend to stay inactivate or immature status. The enrichment analysis showed that D6KO-derived intestinal leukocytes are less sensitive to microbes. The mod PhEA phenotypic analysis showed that the D6KO leukocytes may link to not only immune-associated but also diverse previously non-immune-related diseases. Integrating our dataset with the published dataset GSE124880 generated a comprehensive dataset for exploring intestinal immunity. Down-regulation of Ccl17 gene was found in the D6KO-derived dendritic cells. Our results demonstrated the advantage of applying scRNA-seq for dissecting the individual alteration of intestinal leukocytes, particularly in the D6KO mice at a naive state. An scRNA-seq dataset includes CD45+ cells of epithelium and lamina propria from mice The D6KO-derived intestinal leukocytes tend to stay inactivate or immature status D6KO in leukocytes may link to certain previously non-immune-related diseases Down-regulation of CCL17 gene was found in D6KO-derived dendritic cells
Collapse
|
16
|
Update on B Cell Response in Periodontitis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1373:175-193. [DOI: 10.1007/978-3-030-96881-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Abstract
B cells are central to the pathogenesis of multiple autoimmune diseases, through antigen presentation, cytokine secretion, and the production of autoantibodies. During development and differentiation, B cells undergo drastic changes in their physiology. It is emerging that these are accompanied by equally significant shifts in metabolic phenotype, which may themselves also drive and enforce the functional properties of the cell. The dysfunction of B cells during autoimmunity is characterised by the breaching of tolerogenic checkpoints, and there is developing evidence that the metabolic state of B cells may contribute to this. Determining the metabolic phenotype of B cells in autoimmunity is an area of active study, and is important because intervention by metabolism-altering therapeutic approaches may represent an attractive treatment target.
Collapse
Affiliation(s)
- Iwan G. A. Raza
- Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Alexander J. Clarke
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Cheung MB, Enyindah-Asonye G, Matsui K, Kosik I, Dvorina N, Baldwin WM, Yewdell JW, Gupta N. Cutting Edge: Myosin 18A Is a Novel Checkpoint Regulator in B Cell Differentiation and Antibody-Mediated Immunity. THE JOURNAL OF IMMUNOLOGY 2021; 206:2521-2526. [PMID: 34001658 DOI: 10.4049/jimmunol.2100084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/04/2021] [Indexed: 01/28/2023]
Abstract
We investigated the function of the newly discovered myosin family protein myosin 18A (Myo18A) in Ab-mediated immunity by generating B cell-conditional Myo18A-deficient mice. Myo18A deficiency led to expansion of bone marrow progenitor B cells and mature B cells in secondary lymphoid organs. Myo18A-deficient mice displayed serum IgM hyperglobulinemia and increased splenic IgM-secreting cells, with older mice switching to IgG1 hyperglobulinemia and autoantibody development. Immunization of Myo18A-deficient mice with inactivated influenza virus led to development of more potent neutralizing Abs against the major Ag hemagglutinin, associated with persistent accumulation of Ag-specific germinal center B cells and more Ag-specific bone marrow plasma cells. In vitro stimulation with TLR7 and BCR ligands revealed a greater ability of Myo18A-deficient B cells to differentiate into Ab-secreting cells, associated with higher AID and Blimp-1 expression. Overall, our study demonstrates that Myo18A is a novel negative regulator of B cell homeostasis, differentiation, and humoral immunity.
Collapse
Affiliation(s)
- Michael B Cheung
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; and
| | - Gospel Enyindah-Asonye
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; and
| | - Ken Matsui
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; and
| | - Ivan Kosik
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Nina Dvorina
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; and
| | - William M Baldwin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; and
| | - Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Neetu Gupta
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; and
| |
Collapse
|
19
|
Royster W, Wang P, Aziz M. The Role of Siglec-G on Immune Cells in Sepsis. Front Immunol 2021; 12:621627. [PMID: 33708213 PMCID: PMC7940683 DOI: 10.3389/fimmu.2021.621627] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/13/2021] [Indexed: 12/30/2022] Open
Abstract
Sepsis is a life-threatening clinical syndrome that results from an overwhelming immune response to infection. During sepsis, immune cells are activated by sensing pathogen-associated molecular patterns and damage-associated molecular patterns (DAMPs) through pattern recognizing receptors (PRRs). Regulation of the immune response is essential to preventing or managing sepsis. Sialic acid-binding immunoglobulin-type lectin-G (Siglec-G), a CD33 group of Siglec expressed in B-1a cells and other hematopoietic cells, plays an important immunoregulatory role. B-1a cells, a subtype of B lymphocytes, spontaneously produce natural IgM which confers protection against infection. B-1a cells also produce IL-10, GM-CSF, and IL-35 to control inflammation. Sialic acids are present on cell membranes, receptors, and glycoproteins. Siglec-G binds to the sialic acid residues on the B cell receptor (BCR) and controls BCR-mediated signal transduction, thereby maintaining homeostasis of Ca++ influx and NFATc1 expression. Siglec-G inhibits NF-κB activation in B-1a cells and regulates B-1a cell proliferation. In myeloid cells, Siglec-G inhibits DAMP-mediated inflammation by forming a ternary complex with DAMP and CD24. Thus, preserving Siglec-G’s function could be a novel therapeutic approach in sepsis. Here, we review the immunoregulatory functions of Siglec-G in B-1a cells and myeloid cells in sepsis. A clear understanding of Siglec-G is important to developing novel therapeutics in treating sepsis.
Collapse
Affiliation(s)
- William Royster
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States.,Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States.,Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
| |
Collapse
|
20
|
Choi SW, Woo J, Park KS, Ko J, Jeon YK, Choi SW, Yoo HY, Kho I, Kim TJ, Kim SJ. Higher expression of KCNK10 (TREK-2) K + channels and their functional upregulation by lipopolysaccharide treatment in mouse peritoneal B1a cells. Pflugers Arch 2021; 473:659-671. [PMID: 33586023 DOI: 10.1007/s00424-021-02526-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/10/2021] [Accepted: 01/28/2021] [Indexed: 11/24/2022]
Abstract
Innate-like CD5+ B1a cells localized in serous cavities are activated by innate stimuli, such as lipopolysaccharide (LPS), leading to T cell-independent antibody responses. Although ion channels play crucial roles in the homeostasis and activation of immune cells, the electrophysiological properties of B1a cells have not been investigated to date. Previously, in the mouse B cell lymphoma cells, we found that the voltage-independent two-pore-domain potassium (K2P) channels generate a negative membrane potential and drive Ca2+ influx. Here, we newly compared the expression and activities of K2P channels in mouse splenic follicular B (FoB), marginal zone B (MZB), and peritoneal B1a cells. Next-generation sequencing analysis showed higher levels of transcripts for TREK-2 and TWIK-2 in B1a cells than those in FoB or MZB cells. Electrophysiological analysis, using patch clamp technique, revealed higher activity of TREK-2 with the characteristic large unitary conductance (~ 250 pS) in B1a than that in FoB or MZB cells. TREK-2 activity was further increased by LPS treatment (>2 h), which was more prominent in B1a than that in MZB or FoB cells. The cytosolic Ca2+ concentration of B cells was decreased by high-K+-induced depolarization (ΔRKCl (%)), suggesting the basal Ca2+ influx to be driven by negative membrane potential. The LPS treatment significantly increased the ΔRKCl (%) in B1a, though not in FoB and MZB cells. Our study was the first to compare the K2P channels in mouse primary B cell subsets, elucidating the functional upregulation of TREK-2 and augmentation of Ca2+ influx by the stimulation of Toll-like receptor 4 in B1a cells.
Collapse
Affiliation(s)
- Si Won Choi
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Joohan Woo
- Department of Physiology and Ion Channel Disease Research Center, Dongguk University College of Medicine, Seoul, Republic of Korea
| | - Kyung Sun Park
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, Republic of Korea
| | - Juyeon Ko
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Keul Jeon
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seong Woo Choi
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Physiology and Ion Channel Disease Research Center, Dongguk University College of Medicine, Seoul, Republic of Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hae Young Yoo
- Department of Nursing, Chung-Ang University, Seoul, Republic of Korea
| | - Inseong Kho
- Department of Immunology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Tae Jin Kim
- Department of Immunology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Sung Joon Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, Republic of Korea. .,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
21
|
Ma Q, Didonna A. The novel multiple sclerosis susceptibility gene ATXN1 regulates B cell receptor signaling in B-1a cells. Mol Brain 2021; 14:19. [PMID: 33478569 PMCID: PMC7819313 DOI: 10.1186/s13041-020-00715-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/11/2020] [Indexed: 11/17/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating disease of the central nervous system (CNS) caused by complex gene-environment interactions. ATXN1 maps to 6p22.3, within the 233 loci associated with an increased risk of developing MS. Toxic gain-of-function mutations in ATXN1 cause the neurodegenerative disorder spinocerebellar ataxia type 1 (SCA1). Conversely, ATXN1 loss-of-function is involved in Alzheimer's disease (AD) and tumorigenesis. We have recently shown that ATXN1 exerts a protective immunomodulatory activity in the MS model experimental autoimmune encephalomyelitis (EAE). Specifically, we demonstrated that mice lacking Atxn1 experience aggravated EAE due to aberrant B cell functions. Atxn1-null mice exhibit increased B cell proliferation with the concomitant expansion of specific B cell subsets including B-1a cells. This population of B cells is responsible for the production of natural immunoglobulins and has been associated with the etiology of multiple autoimmune diseases. To understand the role played by Atxn1 in these cells, we performed comprehensive transcriptomic profiling of Atxn1-null B-1a cells before and after stimulation with an encephalitogenic antigen. Importantly, we show that in this sub-population Atxn1 regulates immunoglobulin gene transcription and signaling through the B cell receptor (BCR).
Collapse
Affiliation(s)
- Qin Ma
- Department of Neurology, Weill Institute for Neurosciences, University of California, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Alessandro Didonna
- Department of Neurology, Weill Institute for Neurosciences, University of California, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA.
| |
Collapse
|
22
|
Li S, Liu Q, Wu D, He T, Yuan J, Qiu H, Tickner J, Zheng SG, Li X, Xu J, Rong L. PKC-δ deficiency in B cells displays osteopenia accompanied with upregulation of RANKL expression and osteoclast-osteoblast uncoupling. Cell Death Dis 2020; 11:762. [PMID: 32938907 PMCID: PMC7494897 DOI: 10.1038/s41419-020-02947-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 12/27/2022]
Abstract
PKC-δ is an important molecule for B-cell proliferation and tolerance. B cells have long been recognized to play a part in osteoimmunology and pathological bone loss. However, the role of B cells with PKC-δ deficiency in bone homeostasis and the underlying mechanisms are unknown. We generated mice with PKC-δ deletion selectively in B cells by crossing PKC-δ-loxP mice with CD19-Cre mice. We studied their bone phenotype using micro-CT and histology. Next, immune organs were obtained and analyzed. Western blotting was used to determine the RANKL/OPG ratio in vitro in B-cell cultures, ELISA assay and immunohistochemistry were used to analyze in vivo RANKL/OPG balance in serum and bone sections respectively. Finally, we utilized osteoclastogenesis to study osteoclast function via hydroxyapatite resorption assay, and isolated primary calvaria osteoblasts to investigate osteoblast proliferation and differentiation. We also investigated osteoclast and osteoblast biology in co-culture with B-cell supernatants. We found that mice with PKC-δ deficiency in B cells displayed an osteopenia phenotype in the trabecular and cortical compartment of long bones. In addition, PKC-δ deletion resulted in changes of trabecular bone structure in association with activation of osteoclast bone resorption and decrease in osteoblast parameters. As expected, inactivation of PKC-δ in B cells resulted in changes in spleen B-cell number, function, and distribution. Consistently, the RANKL/OPG ratio was elevated remarkably in B-cell culture, in the serum and in bone specimens after loss of PKC-δ in B cells. Finally, in vitro analysis revealed that PKC-δ ablation suppressed osteoclast differentiation and function but co-culture with B-cell supernatant reversed the suppression effect, as well as impaired osteoblast proliferation and function, indicative of osteoclast–osteoblast uncoupling. In conclusion, PKC-δ plays an important role in the interplay between B cells in the immune system and bone cells in the pathogenesis of bone lytic diseases.
Collapse
Affiliation(s)
- Shangfu Li
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou Guangdong, China. .,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China. .,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China.
| | - Qiuli Liu
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou Guangdong, China
| | - Depeng Wu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou Guangdong, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Tianwei He
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou Guangdong, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Jinbo Yuan
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Heng Qiu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jennifer Tickner
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Song Guo Zheng
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Xiaojuan Li
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Southern Medical University, Guangzhou Guangdong, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia.
| | - Limin Rong
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou Guangdong, China. .,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China. .,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China.
| |
Collapse
|
23
|
Gruber R. Osteoimmunology: Inflammatory osteolysis and regeneration of the alveolar bone. J Clin Periodontol 2019; 46 Suppl 21:52-69. [PMID: 30623453 DOI: 10.1111/jcpe.13056] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/09/2018] [Accepted: 12/06/2018] [Indexed: 02/06/2023]
Abstract
AIM Osteoimmunology covers the cellular and molecular mechanisms responsible for inflammatory osteolysis that culminates in the degradation of alveolar bone. Osteoimmunology also focuses on the interplay of immune cells with bone cells during bone remodelling and regeneration. The aim of this review was to provide insights into how osteoimmunology affects alveolar bone health and disease. METHOD This review is based on a narrative approach to assemble mouse models that provide insights into the cellular and molecular mechanisms causing inflammatory osteolysis and on the impact of immune cells on alveolar bone regeneration. RESULTS Mouse models have revealed the molecular pathways by which microbial and other factors activate immune cells that initiate an inflammatory response. The inflammation-induced alveolar bone loss occurs with the concomitant suppression of bone formation. Mouse models also showed that immune cells contribute to the resolution of inflammation and bone regeneration, even though studies with a focus on alveolar socket healing are rare. CONCLUSIONS Considering that osteoimmunology is evolutionarily conserved, osteolysis removes the cause of inflammation by provoking tooth loss. The impact of immune cells on bone regeneration is presumably a way to reinitiate the developmental mechanisms of intramembranous and endochondral bone formation.
Collapse
Affiliation(s)
- Reinhard Gruber
- Department of Oral Biology, Medical University of Vienna, Vienna, Austria.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
24
|
Emerging role of innate B1 cells in the pathophysiology of autoimmune and neuroimmune diseases: Association with inflammation, oxidative and nitrosative stress and autoimmune responses. Pharmacol Res 2019; 148:104408. [PMID: 31454534 DOI: 10.1016/j.phrs.2019.104408] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/16/2022]
|
25
|
Chen J, Liu H, Li L, Wang H, Li Y, Wang Y, Ding K, Hao S, Shao Y, Li L, Song J, Wang G, Shao Z, Fu R. Abnormal numbers of CD4+ T lymphocytes and abnormal expression of CD4+ T lymphocyte‑secreted cytokines in patients with immune‑related haemocytopenia. Mol Med Rep 2019; 20:3979-3990. [PMID: 31545490 PMCID: PMC6797981 DOI: 10.3892/mmr.2019.10663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 06/12/2019] [Indexed: 12/24/2022] Open
Abstract
In the past decade, a group of cases with persisting haemocytopenia were separated from those with idiopathic cytopenia of undetermined significance due to the optimal response of these patients to immunosuppression therapy and due to the detection of autoantibodies in the bone marrow of haemopoietic cells. This condition was termed immune-related haemocytopenia (IRH). However, the quantity of T lymphocytes remained unknown. In the present study, the percentage of CD4+ T-cell subsets and related cytokines was measured using flow cytometry and an enzyme-linked immunosorbent assay. An abnormal number of CD4+ T cell subsets was found, including increased percentages of T helper (Th)2, Th9 and Th17 cells and a decreased number of regulatory T (Treg) cells. In addition, the results showed downregulation in the levels of interleukin (IL)-2, transforming growth factor-β and IL-35, and upregulation in the levels of IL-4, IL-6, IL-17, IL-23 and interferon-γ in patients who did not receive therapy (untreated patients). These levels were significantly associated with the number of peripheral blood cells and were recovered following treatment. In conclusion, an abnormal number of CD4+ T cell subsets and corresponding abnormal levels of regulatory cytokines resulted in the stimulation of B1 lymphocytes to produce autoantibodies in IRH, which may be considered as markers to evaluate disease prognosis and treatment strategies.
Collapse
Affiliation(s)
- Jin Chen
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Hui Liu
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Liyan Li
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Honglei Wang
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yi Li
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yihao Wang
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Kai Ding
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Shanfeng Hao
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yuanyuan Shao
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Lijuan Li
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jia Song
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Guojin Wang
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Zonghong Shao
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Rong Fu
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
26
|
Wang X, Ye C, Lin X, Ma K, Xiao F, Dong L, Lu L. New insights into the significance of the BCR repertoire in B-1 cell development and function. Cell Mol Immunol 2019; 16:772-773. [PMID: 31197257 DOI: 10.1038/s41423-019-0249-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 01/06/2023] Open
Affiliation(s)
- Xiaohui Wang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Cong Ye
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiang Lin
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Kongyang Ma
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Fan Xiao
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
27
|
Christofidou-Solomidou M, Pietrofesa RA, Park K, Albelda SM, Serve KM, Keil DE, Pfau JC. Synthetic secoisolariciresinol diglucoside (LGM2605) inhibits Libby amphibole fiber-induced acute inflammation in mice. Toxicol Appl Pharmacol 2019; 375:81-93. [PMID: 31022494 DOI: 10.1016/j.taap.2019.04.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/16/2019] [Accepted: 04/21/2019] [Indexed: 11/15/2022]
Abstract
BACKGROUND Exposure to the Libby amphibole (LA) asbestos-like fibers found in Libby, Montana, is associated with inflammatory responses in mice and humans, and an increased risk of developing mesothelioma, asbestosis, pleural disease, and systemic autoimmune disease. Flaxseed-derived secoisolariciresinol diglucoside (SDG) has anti-inflammatory, anti-fibrotic, and antioxidant properties. We have previously identified potent protective properties of SDG against crocidolite asbestos exposure modeled in mice. The current studies aimed to extend those findings by evaluating the immunomodulatory effects of synthetic SDG (LGM2605) on LA-exposed mice. METHODS Male and female C57BL/6 mice were given LGM2605 via gavage initiated 3 days prior to and continued for 3 days after a single intraperitoneal dose of LA fibers (200 μg) and evaluated on day 3 for inflammatory cell influx in the peritoneal cavity using flow cytometry. RESULTS LA exposure induced a significant increase (p < 0.0001) in spleen weight and peritoneal influx of white blood cells, all of which were reduced with LGM2605 with similar trends among males and females. Levels of peritoneal PMN cells were significantly (p < 0.0001) elevated post LA exposure, and were significantly (p < 0.0001) blunted by LGM2605. Importantly, LGM2605 significantly ameliorated the LA-induced mobilization of peritoneal B1a B cells. CONCLUSIONS LGM2605 reduced LA-induced acute inflammation and WBC trafficking supporting its possible use in mitigating downstream LA fiber-associated diseases. SUMMARY Following acute exposure to Libby amphibole (LA) asbestos-like fibers, synthetic SDG (LGM2605), a small synthetic molecule, significantly reduced the LA-induced increase in spleen weight and peritoneal inflammation in C57BL/6 male and female mice. Our findings highlight that LGM2605 has immunomodulatory properties and may, thus, likely be a chemopreventive agent for LA-induced diseases.
Collapse
Affiliation(s)
- Melpo Christofidou-Solomidou
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Pennsylvania Perelman School of Medicine, 3450 Hamilton Walk, Stemmler Hall, Office Suite 227, Philadelphia, PA 19104, United States of America.
| | - Ralph A Pietrofesa
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Pennsylvania Perelman School of Medicine, 3450 Hamilton Walk, Stemmler Hall, Office Suite 227, Philadelphia, PA 19104, United States of America.
| | - Kyewon Park
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Pennsylvania Perelman School of Medicine, 3450 Hamilton Walk, Stemmler Hall, Office Suite 227, Philadelphia, PA 19104, United States of America.
| | - Steven M Albelda
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Pennsylvania Perelman School of Medicine, 3450 Hamilton Walk, Stemmler Hall, Office Suite 227, Philadelphia, PA 19104, United States of America.
| | - Kinta M Serve
- Department of Biological Sciences, Life Sciences 207, Idaho State University, Pocatello, ID 83209, United States of America.
| | - Deborah E Keil
- Department of Microbiology and Immunology, Montana State University, Health Sciences Building Rm 133, PO Box 173610, Bozeman, MT 59717, United States of America.
| | - Jean C Pfau
- Department of Microbiology and Immunology, Montana State University, Health Sciences Building Rm 133, PO Box 173610, Bozeman, MT 59717, United States of America.
| |
Collapse
|
28
|
Kijimoto-Ochiai S, Kamimura K, Koda T. Neu-medullocytes, sialidase-positive B cells in the thymus, express autoimmune regulator (AIRE). Sci Rep 2019; 9:858. [PMID: 30696872 PMCID: PMC6351566 DOI: 10.1038/s41598-018-37225-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/04/2018] [Indexed: 01/18/2023] Open
Abstract
Neu-medullocytes, which were previously identified and named by our group, are sialidase (neuraminidase)-positive B cells that express immunoglobulin and Mac-1 in the mouse thymus. Recently, B cells that migrated into the thymus were reported to express autoimmune regulator (AIRE) and to contribute to self-tolerance. We sought to determine whether Neu-medullocytes also express AIRE. We obtained positive results by triple staining Neu-medullocytes for in situ sialidase activity, anti-AIRE, and either anti-IgG or anti-IgM antibodies and observing the staining with confocal microscopy. Additional molecules including CD5, IgM, major histocompatibility complex (MHC) Class II, and neuraminidase 1 (NEU1) were found in sialidase-positive cells independently. The real-time PCR results suggest that the primary sialidase in AIRE-positive cells is neuraminidase 2 (NEU2). Furthermore, some of the AIRE-positive medullary thymic epithelial cells also clearly showed sialidase activity when a triple staining of sialidase activity, anti-AIRE, and Ulex europaeus agglutinin-1 (UEA-1) was performed. Neu-medullocytes may present Aire-dependent antigens for negative selection. We discuss the negative selection steps in consideration of sialidases and sialic acids.
Collapse
Affiliation(s)
- Shigeko Kijimoto-Ochiai
- Faculty of Advanced Life Science, Hokkaido University, N21 W11, Kitaku, Sapporo, 001-0021, Japan.
- Life Space COSMOS, Hirosaki, 036-8222, Japan.
| | - Keiko Kamimura
- Faculty of Advanced Life Science, Hokkaido University, N21 W11, Kitaku, Sapporo, 001-0021, Japan
| | - Toshiaki Koda
- Faculty of Advanced Life Science, Hokkaido University, N21 W11, Kitaku, Sapporo, 001-0021, Japan.
| |
Collapse
|
29
|
Ursini F, Russo E, Pellino G, D’Angelo S, Chiaravalloti A, De Sarro G, Manfredini R, De Giorgio R. Metformin and Autoimmunity: A "New Deal" of an Old Drug. Front Immunol 2018; 9:1236. [PMID: 29915588 PMCID: PMC5994909 DOI: 10.3389/fimmu.2018.01236] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022] Open
Abstract
Metformin (dimethyl biguanide) is a synthetic derivative of guanidine, isolated from the extracts of Galega officinalis, a plant with a prominent antidiabetic effect. Since its discovery more than 50 years ago, metformin represents a worldwide milestone in treatment of patients with type 2 diabetes (T2D). Recent evidence in humans indicates novel pleiotropic actions of metformin which span from its consolidated role in T2D management up to various regulatory properties, including cardio- and nephro-protection, as well as antiproliferative, antifibrotic, and antioxidant effects. These findings, together with ground-breaking studies demonstrating its ability to prolong healthspan and lifespan in mice, provided the basis for defining metformin as a potential antiaging molecule. Moreover, emerging in vivo and in vitro evidence support the novel hypothesis that metformin can exhibit immune-modulatory features. Studies suggest that metformin interferes with key immunopathological mechanisms involved in systemic autoimmune diseases, such as the T helper 17/regulatory T cell balance, germinal centers formation, autoantibodies production, macrophage polarization, cytokine synthesis, neutrophil extracellular traps release, and bone or extracellular matrix remodeling. These effects may represent a powerful contributor to antiaging and anticancer properties exerted by metformin and, from another standpoint, may open the way to assess whether metformin can be a candidate molecule for clinical trials involving patients with immune-mediated diseases. In this article, we will review the available preclinical and clinical evidence regarding the effect of metformin on individual cells of the immune system, with emphasis on immunological mechanisms related to the development and maintenance of autoimmunity and its potential relevance in treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Francesco Ursini
- Department of Health Sciences, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | - Emilio Russo
- Department of Health Sciences, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | - Gianluca Pellino
- Colorectal Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- Department of Medical, Surgical, Neurological, Metabolic and Ageing Sciences, Università della Campania “Luigi Vanvitelli”, Naples, Italy
| | - Salvatore D’Angelo
- Rheumatology Institute of Lucania (IReL) – Rheumatology Department of Lucania, “San Carlo” Hospital of Potenza and “Madonna delle Grazie” Hospital of Matera, Potenza, Italy
- Basilicata Ricerca Biomedica (BRB) Foundation, Potenza, Italy
| | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy
- Department of Nuclear Medicine, IRCCS Neuromed, Pozzilli, Italy
| | | | - Roberto Manfredini
- Department of Medical Sciences, Clinica Medica Unit, University of Ferrara, Ferrara, Italy
| | - Roberto De Giorgio
- Department of Medical Sciences, Clinica Medica Unit, University of Ferrara, Ferrara, Italy
| |
Collapse
|