1
|
Peng L, Yang R, Wang Z, Jian H, Tan X, Li J, He Z, Huang R, Zeng P, Gao W. Polyphyllin II (PPII) Enhances the Sensitivity of Multidrug-resistant A549/DDP Cells to Cisplatin by Modulating Mitochondrial Energy Metabolism. In Vivo 2024; 38:213-225. [PMID: 38148070 PMCID: PMC10756451 DOI: 10.21873/invivo.13428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND/AIM Cisplatin resistance often leads to treatment futility and elevated mortality rates in patients with lung cancer. One promising strategy to address this challenge involves the integration of traditional Chinese medicine (TCM) with chemotherapeutic drugs. Currently, the potential synergistic effect and underlying mechanism of polyphyllin II (PPII) and cisplatin combination in combating cisplatin (DDP) resistance in lung cancer remain unexplored. MATERIALS AND METHODS In this study, we established a cisplatin resistance model using A549 cells and explored the underlying mechanisms of PPII in combination with cisplatin in A549/DDP resistant cells. Specifically, we assessed the impact of PPII combined with cisplatin on A549/DDP cell proliferation, viability, and the expression of apoptosis-related proteins. To gain deeper insights into the underlying mechanism, we examined the effects of PPII and cisplatin on mitochondrial function in A549/DDP cells. RESULTS This combination induced cell cycle arrest at both the S phase and G2/M phase in A549/DDP cells, thereby promoting apoptosis. Western blotting confirmed that DDP acted synergistically with PPII to enhance the expression of apoptotic proteins, diminish the expression of anti-apoptotic proteins, and promote the expression of anti-proliferation proteins in the mitochondrial pathway of A549/DDP cells. CONCLUSION The combination of PPII and cisplatin effectively modulated the mitochondrial function, thereby reversing drug resistance in A549/DDP cells. This innovative combination therapy shows significant promise as a novel strategy for overcoming cisplatin resistance in lung cancer.
Collapse
Affiliation(s)
- Lian Peng
- Hunan University of Chinese Medicine, Changsha, Hunan, P.R. China
| | - Renyi Yang
- Hunan University of Chinese Medicine, Changsha, Hunan, P.R. China
| | - Zhibing Wang
- Hunan University of Chinese Medicine, Changsha, Hunan, P.R. China
- Key Laboratory of TCM Formula and Syndrome Transformation Medicine, Changsha, Hunan, P.R. China
| | - Huiying Jian
- Key Laboratory of TCM Formula and Syndrome Transformation Medicine, Changsha, Hunan, P.R. China
| | - Xiaoning Tan
- Hunan University of Chinese Medicine, Changsha, Hunan, P.R. China
- Cancer Research Institute of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan, P.R. China
| | - Jian Li
- Key Laboratory of TCM Formula and Syndrome Transformation Medicine, Changsha, Hunan, P.R. China
- Cancer Research Institute of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan, P.R. China
| | - Zuomei He
- Cancer Research Institute of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan, P.R. China
| | - Rui Huang
- Cancer Research Institute of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan, P.R. China
| | - Puhua Zeng
- Key Laboratory of TCM Formula and Syndrome Transformation Medicine, Changsha, Hunan, P.R. China;
| | - Wenhui Gao
- Hunan University of Chinese Medicine, Changsha, Hunan, P.R. China;
| |
Collapse
|
2
|
Toledo-Stuardo K, Ribeiro CH, Campos I, Tello S, Latorre Y, Altamirano C, Dubois-Camacho K, Molina MC. Impact of MICA 3'UTR allelic variability on miRNA binding prediction, a bioinformatic approach. Front Genet 2023; 14:1273296. [PMID: 38146340 PMCID: PMC10749337 DOI: 10.3389/fgene.2023.1273296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/13/2023] [Indexed: 12/27/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that participate as powerful genetic regulators. MiRNAs can interfere with cellular processes by interacting with a broad spectrum of target genes under physiological and pathological states, including cancer development and progression. Major histocompatibility complex major histocompatibility complex class I-related chain A (MICA) belongs to a family of proteins that bind the natural-killer group 2, member D (NKG2D) receptor on Natural Killer cells and other cytotoxic lymphocytes. MICA plays a crucial role in the host's innate immune response to several disease settings, including cancer. MICA harbors various single nucleotide polymorphisms (SNPs) located in its 3'-untranslated region (3'UTR), a characteristic that increases the complexity of MICA regulation, favoring its post-transcriptional modulation by miRNAs under physiological and pathological conditions. Here, we conducted an in-depth analysis of MICA 3'UTR sequences according to each MICA allele described to date using NCBI database. We also systematically evaluated interactions between miRNAs and their putative targets on MICA 3'UTR containing SNPs using in silico analysis. Our in silico results showed that MICA SNPs rs9266829, rs 1880, and rs9266825, located in the target sequence of miRNAs hsa-miR-106a-5p, hsa-miR-17-5p, hsa-miR-20a-5p, hsa-miR-20b-5p, hsa-miR-93, hsa-miR-1207.5p, and hsa-miR-711 could modify the binding free energy between -8.62 and -18.14 kcal/mol, which may affect the regulation of MICA expression. We believe that our results may provide a starting point for further exploration of miRNA regulatory effects depending on MICA allelic variability; they may also be a guide to conduct miRNA in silico analysis for other highly polymorphic genes.
Collapse
Affiliation(s)
- Karen Toledo-Stuardo
- Faculty of Medicine, Immunology Program, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| | - Carolina H. Ribeiro
- Faculty of Medicine, Immunology Program, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| | - Ivo Campos
- Faculty of Medicine, Immunology Program, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| | - Samantha Tello
- Faculty of Medicine, Immunology Program, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| | - Yesenia Latorre
- Faculty of Medicine, Immunology Program, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Claudia Altamirano
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Karen Dubois-Camacho
- Faculty of Medicine, Immunology Program, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
- Faculty of Medicine, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
- Gastroenterology and Hepatology Department, University Medical Center Groningen, Groningen, Netherlands
| | - Maria Carmen Molina
- Faculty of Medicine, Immunology Program, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| |
Collapse
|
3
|
Wang Z, Zheng Y, Zhong C, Ou Y, Feng Y, Lin Y, Zhao Y. Circular RNA as new serum metabolic biomarkers in patients with premature ovarian insufficiency. Arch Gynecol Obstet 2023; 308:1871-1879. [PMID: 37740794 DOI: 10.1007/s00404-023-07219-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/05/2023] [Indexed: 09/25/2023]
Abstract
OBJECTIVE Quantitative real-time PCR (qPCR) is used to detect the differential expression of circular RNAs in patients of premature ovarian insufficiency (POI), to explore the new biomarkers of POI that can be detected from blood as soon as possible. METHODS The study collected plasma samples from 30 patients in POI group and 30 normal people group who meet the inclusion criteria, who visited the gynecology clinic of The First Affiliated Hospital of Guangzhou University of Chinese Medicine from July 2019 to December 2020. Then, circRNAs in plasma were extracted for qPCR validation. RESULTS 1. qPCR technology was performed on hsa_circRNA_008901 and hsa_circRNA_403959, and it was found that the levels of both were considerably downregulated in POI group. Clinical evaluation showed that both hsa_circRNA_008901 and hsa_circRNA_403959 have good diagnostic value for POI. 2. According to miRNA Regulatory Element (MRE) analysis, the predicted target miRNAs of hsa_circRNA_008901 are: hsa-miR-548c-3p, hsa-miR-924, hsa-miR-4677-5p, hsa-miR-6786-3p and hsa-miR-7974; the predicted target miRNAs of hsa_circRNA_403959 are: hsa-miR-1207-5p, hsa-miR-4691-5p, hsa-miR-4763-3p, hsa-miR-6807-5p and hsa-miR-7160-5p. CONCLUSION Compared with the normal group, the expression levels of hsa_circRNA_008901 and hsa_circRNA_403959 in the POI group were downregulated, suggesting that these two circRNAs may be potential biomarkers of POI. Bioinformatics analysis indicated that hsa_circRNA_008901 and hsa_circRNA_403959 may regulate their binding miRNA through the action form of "molecular sponge", and then regulate the signaling pathway regulated by miRNA, and ultimately affect the disease progression of POI.
Collapse
Affiliation(s)
- Zhuoya Wang
- Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Department of Traditional Chinese Medicine, Yuzhou People's Hospital, Xuchang, 461670, China
| | - Yuqi Zheng
- Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Caiting Zhong
- Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Yuyang Ou
- Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Yihui Feng
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Yu Lin
- Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
- Nanfang Hospital, Southern Medical University, Guangzhou, 510006, China.
| | - Ying Zhao
- Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| |
Collapse
|
4
|
Zmarzły N, Januszyk S, Mieszczański P, Czarniecka J, Bednarska-Czerwińska A, Boroń D, Oplawski M, Grabarek BO. The influence of selected microRNAs on the expression profile of genes and proteins related to the tumor necrosis factor-alpha signaling pathways in endometrioid endometrial cancer. J Cancer Res Clin Oncol 2023; 149:9679-9689. [PMID: 37233761 PMCID: PMC10423110 DOI: 10.1007/s00432-023-04863-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
PURPOSE Tumor necrosis factor exerts many adverse biological effects, from cell proliferation to cell death. Accurate diagnosis and treatment are therefore difficult due to many factors influencing tumor necrosis factor-alpha (TNF-α) signaling, including microRNAs (miRNAs), especially in tumors. The aim of the study was to determine the influence of miRNAs on the expression profile of genes and proteins related to TNF-α signaling in endometrial cancer. METHODS The material consisted of 45 endometrioid endometrial cancer and 45 normal endometrium tissue samples. Gene expression was determined with microarrays and then validated for TNF-α, tumor necrosis factor receptor 1 (TNFR1) and 2 (TNFR2), caveolin 1 (CAV1), nuclear factor kappa B subunit 1 (NFKB1), and TGF-beta activated kinase 1 (MAP3K7)-binding protein 2 (TAB2) using real-time quantitative reverse transcription reaction (RT-qPCR). The protein concentration was assessed by enzyme-linked immunosorbent assay (ELISA). In addition, differentiating miRNAs were identified using miRNA microarrays and their relationships with TNF-α signaling genes were evaluated using the mirDIP tool. RESULTS TNF-α, TNFR1, TNFR2, CAV1, NFKB1, and TAB2 were upregulated both on the mRNA and protein levels. The decrease in the activity of miR-1207-5p, miR-1910-3p, and miR-940 may be related to CAV1 overexpression. Similarly for miR-572 and NFKB1 as well as miR-939-5p and TNF-α. In turn, miR-3178 may partially inhibit TNFR1 activity up to grade 2 cancer. CONCLUSION TNF-α signaling, especially the TNF-α/NF-κB axis, is disrupted in endometrial cancer and worsens with disease progression. The observed changes may be the result of miRNAs' activity in the initial stage of endometrial cancer and its gradual loss in later grades.
Collapse
Affiliation(s)
- Nikola Zmarzły
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, 41-800, Zabrze, Poland.
- Department of Gynecology and Obstetrics, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, 41-800, Zabrze, Poland.
| | | | - Paweł Mieszczański
- Hospital of Ministry of Interior and Administration, 40-052, Katowice, Poland
| | - Justyna Czarniecka
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, 41-800, Zabrze, Poland
| | - Anna Bednarska-Czerwińska
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, 41-800, Zabrze, Poland
- Gyncentrum, Laboratory of Molecular Biology and Virology, 40-851, Katowice, Poland
- American Medical Clinic, 40-600, Katowice, Poland
| | - Dariusz Boroń
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, 41-800, Zabrze, Poland
- Department of Gynecology and Obstetrics, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, 41-800, Zabrze, Poland
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, 31-826, Kraków, Poland
- Department of Gynecology and Obstetrics, TOMMED Specjalisci od Zdrowia, 40-662, Katowice, Poland
| | - Marcin Oplawski
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, 31-826, Kraków, Poland
- Department of Gynecology and Obstetrics, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski University in Cracow, 30-705, Cracow, Poland
| | - Beniamin Oskar Grabarek
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, 41-800, Zabrze, Poland
- Department of Gynecology and Obstetrics, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, 41-800, Zabrze, Poland
- Gyncentrum, Laboratory of Molecular Biology and Virology, 40-851, Katowice, Poland
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, 31-826, Kraków, Poland
- Department of Gynecology and Obstetrics, TOMMED Specjalisci od Zdrowia, 40-662, Katowice, Poland
| |
Collapse
|
5
|
Baljon KJ, Ramaiah P, Saleh EAM, Al-Dolaimy F, Al-Dami FH, Gandla K, Alkhafaji AT, Abbas AHR, Alsaalamy AH, Bisht YS. LncRNA PVT1: as a therapeutic target for breast cancer. Pathol Res Pract 2023; 248:154675. [PMID: 37531833 DOI: 10.1016/j.prp.2023.154675] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 08/04/2023]
Abstract
A significant number of women are identified with breast cancer (BC) every year, making it among the most prevalent malignancies and one of the leading causes of mortality globally. Despite significant progress in understanding BC pathogenesis and treatment options, there is still a need to identify new therapeutic targets and develop more effective treatments. LncRNAs have been discovered as biomarkers and a promising target for various cancers, including BC. PVT1 is a particular one of these lncRNAs, and research has indicated that it has a significant impact on the appearance and progression of BC.PVT1 is an attractive therapeutic target for BC due to its role in promoting cancer cell growth, metastasis and invasion. In addition to its potential as a treatment strategy, PVT1 may also have diagnostic value in BC. In this article, we will discuss targeting PVT1 as a treatment strategy for BC.
Collapse
Affiliation(s)
| | | | - Ebraheem Abdu Musad Saleh
- Department of Chemistry,College of Arts and Science, Prince Sattam Bin Abdulaziz University, Wadi Al-Dawasir 11991, Saudi Arabia.
| | | | - Farqad Hassan Al-Dami
- Department of Medical Laboratory Techniques, Altoosi University College, Najaf, Iraq
| | - Kumaraswamy Gandla
- Department of Pharmaceutical Analysis, Chaitanya Deemed to be University, Hanamkonda, India.
| | | | - Ahmed Hussien R Abbas
- College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, the Islamic University of Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Iraq
| | - Ali Hashiem Alsaalamy
- College of technical engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Yashwant Singh Bisht
- Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India
| |
Collapse
|
6
|
Wang Y, Wang X, Xu Q, Yin J, Wang H, Zhang L. CircRNA, lncRNA, and mRNA profiles of umbilical cord blood exosomes from preterm newborns showing bronchopulmonary dysplasia. Eur J Pediatr 2022; 181:3345-3365. [PMID: 35790551 PMCID: PMC9395505 DOI: 10.1007/s00431-022-04544-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 02/07/2023]
Abstract
Bronchopulmonary dysplasia (BPD) represents a multifactorial chronic pulmonary pathology and a major factor causing premature illness and death. The therapeutic role of exosomes in BPD has been feverishly investigated. Meanwhile, the potential roles of exosomal circRNAs, lncRNAs, and mRNAs in umbilical cord blood (UCB) serum have not been studied. This study aimed to detect the expression profiles of circRNAs, lncRNAs, and mRNAs in UCB-derived exosomes of infants with BPD. Microarray analysis was performed to compare the RNA profiles of UCB-derived exosomes of a preterm newborn with (BPD group) and without (non-BPD, NBPD group) BPD. Then, circRNA/lncRNA-miRNA-mRNA co-expression networks were built to determine their association with BPD. In addition, cell counting kit-8 (CCK-8) assay was used to evaluate the proliferation of lipopolysaccharide (LPS)-induced human bronchial epithelial cells (BEAS-2B cells) and human umbilical vein endothelial cells (HUVECs). The levels of tumor necrosis factor (TNF)-α and interleukin (IL)-1β in LPS-induced BEAS-2B cells and HUVECs were assessed through Western blot analysis. Then, quantitative reverse transcription-polymerase chain reaction assay was used to evaluate the expression levels of four differentially expressed circRNAs (hsa_circ_0086913, hsa_circ_0049170, hsa_circ_0087059, and hsa_circ_0065188) and two lncRNAs (small nucleolar RNA host gene 20 (SNHG20) and LINC00582) detected in LPS-induced BEAS-2B cells or HUVECs. A total of 317 circRNAs, 104 lncRNAs, and 135 mRNAs showed significant differential expression in UCB-derived exosomes of preterm infants with BPD compared with those with NBPD. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted to examine differentially expressed exosomal circRNAs, lncRNAs, and mRNAs. The results showed that the GO terms and KEGG pathways mostly involving differentially expressed exosomal RNAs were closely associated with endothelial or epithelial cell development. In vitro, CCK-8 and Western blot assays revealed that LPS remarkably inhibited the viability and promoted inflammatory responses (TNF-α and IL-1β) of BEAS-2B cells or HUVECs. The expression levels of circRNAs hsa_circ_0049170 and hsa_circ_0087059 were upregulated in LPS-induced BEAS-2B cells; the expression level of hsa_circ_0086913 was upregulated and that of hsa_circ_0065188 was downregulated in LPS-induced HUVECs. Moreover, the expression level of lncRNA SNHG20 was upregulated and that of LINC00582 was downregulated in LPS-induced BEAS-2B cells. Further, 455 circRNA/lncRNA-miRNA-mRNA interaction networks were predicted, including hsa_circ_0086913/hsa-miR-103a-3p/transmembrane 4 L six family member 1 (TM4SF1) and lncRNA-SNHG20/hsa-miR-6720-5p/spermine synthase (SMS) networks, which may take part in BPD. CONCLUSION This study provided a systematic perspective on UCB-derived exosomal circRNAs and lncRNAs and laid an important foundation for further investigating the potential biological functions of exosomal circRNAs and lncRNAs in BPD. WHAT IS KNOWN • BPD represents a multifactorial chronic pulmonary pathology and a major factor causing premature illness and death. • The therapeutic role of exosomes in BPD has been feverishly investigated, and exosomal RNAs were ignored. WHAT IS NEW • The profiles of UCB-derived exosomal circRNAs, lncRNAs, and mRNAs were performed. • Several differentially expressed circRNAs and lncRNAs were identified in LPS-induced BEAS-2B cells and HUVECs.
Collapse
Affiliation(s)
- Yu Wang
- Department of Neonatology, Changzhou Maternal and Child Health Care Hospital, Changzhou, China
| | - Xuan Wang
- Department of Neonatology, Changzhou Maternal and Child Health Care Hospital, Changzhou, China
| | - Qiushi Xu
- Department of Neonatology, Changzhou Maternal and Child Health Care Hospital, Changzhou, China
| | - Jiao Yin
- Department of Neonatology, Changzhou Maternal and Child Health Care Hospital, Changzhou, China
| | - Huaiyan Wang
- Department of Neonatology, Changzhou Maternal and Child Health Care Hospital, Changzhou, China
| | - Lin Zhang
- Department of Neonatology, Changzhou Maternal and Child Health Care Hospital, Changzhou, China
| |
Collapse
|
7
|
Ahmad S, Manzoor S, Siddiqui S, Mariappan N, Zafar I, Ahmad A, Ahmad A. Epigenetic underpinnings of inflammation: Connecting the dots between pulmonary diseases, lung cancer and COVID-19. Semin Cancer Biol 2022; 83:384-398. [PMID: 33484868 PMCID: PMC8046427 DOI: 10.1016/j.semcancer.2021.01.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/08/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022]
Abstract
Inflammation is an essential component of several respiratory diseases, such as chronic obstructive pulmonary disease (COPD), asthma and acute respiratory distress syndrome (ARDS). It is central to lung cancer, the leading cancer in terms of associated mortality that has affected millions of individuals worldwide. Inflammation and pulmonary manifestations are also the major causes of COVID-19 related deaths. Acute hyperinflammation plays an important role in the COVID-19 disease progression and severity, and development of protective immunity against the virus is greatly sought. Further, the severity of COVID-19 is greatly enhanced in lung cancer patients, probably due to the genes such as ACE2, TMPRSS2, PAI-1 and furin that are commonly involved in cancer progression as well as SAR-CoV-2 infection. The importance of inflammation in pulmonary manifestations, cancer and COVID-19 calls for a closer look at the underlying processes, particularly the associated increase in IL-6 and other cytokines, the dysregulation of immune cells and the coagulation pathway. Towards this end, several reports have identified epigenetic regulation of inflammation at different levels. Expression of several key inflammation-related cytokines, chemokines and other genes is affected by methylation and acetylation while non-coding RNAs, including microRNAs as well as long non-coding RNAs, also affect the overall inflammatory responses. Select miRNAs can regulate inflammation in COVID-19 infection, lung cancer as well as other inflammatory lung diseases, and can serve as epigenetic links that can be therapeutically targeted. Furthermore, epigenetic changes also mediate the environmental factors-induced inflammation. Therefore, a better understanding of epigenetic regulation of inflammation can potentially help develop novel strategies to prevent, diagnose and treat chronic pulmonary diseases, lung cancer and COVID-19.
Collapse
Affiliation(s)
- Shama Ahmad
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shajer Manzoor
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Simmone Siddiqui
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nithya Mariappan
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Iram Zafar
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aamir Ahmad
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aftab Ahmad
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
8
|
Entezari M, Sadrkhanloo M, Rashidi M, Asnaf SE, Taheriazam A, Hashemi M, Ashrafizadeh M, Zarrabi A, Rabiee N, Hushmandi K, Mirzaei S, Sethi G. Non-coding RNAs and macrophage interaction in tumor progression. Crit Rev Oncol Hematol 2022; 173:103680. [PMID: 35405273 DOI: 10.1016/j.critrevonc.2022.103680] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
The macrophages are abundantly found in TME and their M2 polarization is in favor of tumor malignancy. On the other hand, non-coding RNAs (ncRNAs) can modulate macrophage polarization in TME to affect cancer progression. The miRNAs can dually induce/suppress M2 polarization of macrophages and by affecting various molecular pathways, they modulate tumor progression and therapy response. The lncRNAs can affect miRNAs via sponging and other molecular pathways to modulate macrophage polarization. A few experiments have also examined role of circRNAs in targeting signaling networks and affecting macrophages. The therapeutic targeting of these ncRNAs can mediate TME remodeling and affect macrophage polarization. Furthermore, exosomal ncRNAs derived from tumor cells or macrophages can modulate polarization and TME remodeling. Suppressing biogenesis and secretion of exosomes can inhibit ncRNA-mediated M2 polarization of macrophages and prevent tumor progression. The ncRNAs, especially exosomal ncRNAs can be considered as non-invasive biomarkers for tumor diagnosis.
Collapse
Affiliation(s)
- Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sholeh Etehad Asnaf
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
9
|
Hassani B, Mollanoori H, Pouresmaeili F, Asgari Y, Ghafouri-Fard S. Constructing mRNA, miRNA, circRNA and lncRNA regulatory network by Analysis of microarray data in breast cancer. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
10
|
Zhang Q, Zheng J, Liu L. Down-regulation of lncRNA LUADT1 suppresses cervical cancer cell growth by sequestering microRNA-1207-5p. Acta Biochim Biophys Sin (Shanghai) 2022; 54:321-331. [PMID: 35538030 PMCID: PMC9828286 DOI: 10.3724/abbs.2022016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Emerging evidence has proved the essential roles of long non-coding RNAs (lncRNAs) in cervical carcinoma (CC). LncRNA lung adenocarcinoma-associated transcript 1 (LUADT1) is overexpressed and plays an oncogenic role in various cancers; however, the function and clinical values of LUADT1 in CC remain unclear. In this study we found that LUADT1 is highly expressed in CC tissues and cells. Up-regulated LUADT1 is significantly correlated with the more aggressive status and poorer survival of CC patients. studies show that LUADT1 depletion suppresses CC proliferation, and leads to cell apoptosis and cell cycle arrest. Furthermore, the xenograft mouse assay demonstrates that LUADT1 knockdown remarkably suppresses tumor growth. Mechanistically, LUADT1 binds to miR-1207-5p and inhibits miR-1207-5p expression in CC cells. Septin 9 (SEPT9) is identified as a miR-1207-5p target which is negatively regulated by LUADT1. Overexpression of SEPT9 abrogates the suppressed proliferation of CC cells induced by LUADT1 knockdown. These results demonstrate that LUADT1 sponges miR-1207-5p and consequently modulates SEPT9 expression in CC. Our study suggests the possible application of LUADT1 as a prognostic and therapeutic target to inhibit CC.
Collapse
Affiliation(s)
| | | | - Lili Liu
- Correspondence address. Tel: +86-416-4197634; E-mail:
| |
Collapse
|
11
|
Alwani A, Andreasik A, Szatanek R, Siedlar M, Baj-Krzyworzeka M. The Role of miRNA in Regulating the Fate of Monocytes in Health and Cancer. Biomolecules 2022; 12:100. [PMID: 35053248 PMCID: PMC8773712 DOI: 10.3390/biom12010100] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/27/2021] [Accepted: 01/01/2022] [Indexed: 12/23/2022] Open
Abstract
Monocytes represent a heterogeneous population of blood cells that provide a link between innate and adaptive immunity. The unique potential of monocytes as both precursors (e.g., of macrophages) and effector cells (as phagocytes or cytotoxic cells) makes them an interesting research and therapeutic target. At the site of a tumor, monocytes/macrophages constitute a major population of infiltrating leukocytes and, depending on the type of tumor, may play a dual role as either a bad or good indicator for cancer recovery. The functional activity of monocytes and macrophages derived from them is tightly regulated at the transcriptional and post-transcriptional level. This review summarizes the current understanding of the role of small regulatory miRNA in monocyte formation, maturation and function in health and cancer development. Additionally, signatures of miRNA-based monocyte subsets and the influence of exogenous miRNA generated in the tumor environment on the function of monocytes are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Monika Baj-Krzyworzeka
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, 30-663 Kraków, Poland; (A.A.); (A.A.); (R.S.); (M.S.)
| |
Collapse
|
12
|
Ordentlich P. Clinical evaluation of colony-stimulating factor 1 receptor inhibitors. Semin Immunol 2021; 54:101514. [PMID: 34776301 DOI: 10.1016/j.smim.2021.101514] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/23/2021] [Indexed: 02/08/2023]
Abstract
Signaling through colony-stimulating factor 1 receptor (CSF1R) regulates the development, differentiation, and activation of mononuclear phagocytic cells. Inhibition of this pathway provides an opportunity for therapeutic intervention in diseases in which these cells play a pathogenic role, including cancers, inflammation, fibrosis, and others. Multiple monoclonal antibodies and small molecule inhibitors targeting CSF1R or its known ligands CSF1 and IL-34 have been clinically tested and are generally well tolerated with side effects associated with on-target macrophage inhibition or depletion. To date, clinical activity of CSF1R inhibitors has been primarily observed in diffuse-type tenosynovial giant cell tumors, a disease characterized by genetic alterations in CSF1 leading to dysregulated CSF1R signaling. Expanded development into novel indications such as chronic graft vs host disease may provide new opportunities to further explore areas where a role for CSF1R dependent monocytes and macrophages has been established. This review presents key findings from the clinical development of 12 CSF1/CSF1R targeted therapies as monotherapy or in combination with immune checkpoint inhibitors and chemotherapy.
Collapse
|
13
|
Xu H, He Y, Lin L, Li M, Zhou Z, Yang Y. MiR-1207-5p targets PYCR1 to inhibit the progression of prostate cancer. Biochem Biophys Res Commun 2021; 575:56-64. [PMID: 34461437 DOI: 10.1016/j.bbrc.2021.08.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/28/2021] [Accepted: 08/13/2021] [Indexed: 01/02/2023]
Abstract
Prostate cancer, the most common non-cutaneous male cancer, is a public health problem with a third prevalence worldwide. PYCR1 and miR-1207-5p dysregulations were found in cancer progression. Our study aims to reveal the biological role of miR-1207-5p-PYCR1 axis in prostate cancer progression. First, we investigated the expression of miR-1207-5p in prostate cancer tissues and cell lines by RT-qPCR. Next, we confirmed miR-1207-5p targeting PYCR1 by luciferase assay. CCK-8 assay, BrdU assay, flow cytometry, and tanswell assay were applied for examining cell proliferation, apoptosis, and invasion in prostate cancer cells, respectively. In the present study, decreased miR-1207-5p expression was obviously observed in prostate cancer tissues and cells. Upregulation of miR-1207-5p hampered cellular proliferation and invasion, while enhanced cellular apoptosis. In addition, upregulation of PYCR1 elevated cell proliferation and invasion, but repressed apoptosis of prostate cancer cells. Moreover, miR-1207-5p inhibited the expression of PYCR1 to repress prostate cancer tumorigenesis. MiR-1207-5p inhibited the expression of PYCR1 to repress the progression of prostate cancer by inhibiting cell growth and elevating cell apoptosis. Overall, our study clarifies the biological role of miR-1207-5p-PYCR1 axis in prostate cancer progression, which might be effective biomarkers for clinical treatment of prostate cancer.
Collapse
Affiliation(s)
- Haixia Xu
- Department of Oncology, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518000, Guangdong, China
| | - Yan He
- Department of Oncology, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518000, Guangdong, China
| | - Lin Lin
- Department of Oncology, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518000, Guangdong, China
| | - Meixiang Li
- Department of Oncology, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518000, Guangdong, China
| | - Zeqiang Zhou
- Department of Oncology, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518000, Guangdong, China
| | - Yi Yang
- Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|
14
|
Dai X, Chen X, Chen W, Chen Y, Zhao J, Zhang Q, Lu J. A Pan-cancer Analysis Reveals the Abnormal Expression and Drug Sensitivity of CSF1. Anticancer Agents Med Chem 2021; 22:1296-1312. [PMID: 34102987 DOI: 10.2174/1871520621666210608105357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/17/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Colony-stimulating factor-1 (CSF1) is a cytokine that is closely related to normal organ growth and development as well as tumor progression. OBJECTIVE We aimed to summarize and clarify the reasons for the abnormal expression of CSF1 in tumors and explore the role of CSF1 in tumor progression. Furthermore, drug response analysis may provide a reference for clinical medication. METHODS The expression of CSF1 was analyzed by TCGA and CCLE. Besides, cBioPortal and MethSurv databases were used to conduct mutation and DNA methylation analyses. Further, correlations between CSF1 expression and tumor stage, survival, immune infiltration, drug sensitivity and enrichment analyses were validated via UALCAN, Kaplan-Meier plotter, TIMER, CTRP and Coexperia databases. RESULTS CSF1 is expressed in a variety of tissues, meaningfully, it can be detected in blood. Compared with normal tissues, CSF1 expression was significantly decreased in most tumors. The missense mutation and DNA methylation of CSF1 may cause the downregulated expression. Moreover, decreased CSF1 expression was related with higher tumor stage and worse survival. Further, the promoter DNA methylation level of CSF1 was prognostically significant in most tumors. Besides, CSF1 was closely related to immune infiltration, especially macrophages. Importantly, CSF1 expression was associated with a good response to VEGFRs inhibitors, which may be due to the possible involvement of CSF1 in tumor angiogenesis and metastasis processes. CONCLUSION The abnormal expression of CSF1 could serve as a promising biomarker of tumor progression and prognosis in pan-cancer. Significantly, angiogenesis and metastasis inhibitors may show a good response to CSF1-related tumors.
Collapse
Affiliation(s)
- Xiaoshuo Dai
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Xinhuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Wei Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Yihuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Jun Zhao
- Department of Oncology, Changzhi People's Hospital, Changzhi 046000, Shanxi, China
| | - Qiushuang Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| |
Collapse
|
15
|
Tan HW, Xu YM, Qin SH, Chen GF, Lau ATY. Epigenetic regulation of angiogenesis in lung cancer. J Cell Physiol 2021; 236:3194-3206. [PMID: 33078404 DOI: 10.1002/jcp.30104] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/08/2020] [Accepted: 09/30/2020] [Indexed: 02/05/2023]
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide, in which angiogenesis is highly required for lung cancer cell growth and metastasis. Genetic regulation of this multistep process is being studied extensively, however, relatively less is known about the epigenetic regulation of angiogenesis in lung cancer. Several epigenetic alterations contribute to regulating angiogenesis, such as epimodifications of DNA, posttranslational modification of histones, and expression of noncoding RNAs. Here, we review the current knowledge of the epigenetic regulation of angiogenesis and discuss the potential clinical applications of epigenetic-based anticancer therapy in lung cancer. Overall, epigenetic-based therapy will likely emerge as a prominent approach to treat lung cancer in the future.
Collapse
Affiliation(s)
- Heng Wee Tan
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - San-Hai Qin
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Guo-Feng Chen
- Department of Hepatobiliary Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, People's Republic of China
| | - Andy T Y Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| |
Collapse
|
16
|
Li Q, Xie H, Jin Z, Huang J, Wang S, Zhang Z. Overexpression of Long Noncoding RNA LBX2-AS1 Promotes the Proliferation of Colorectal Cancer. Technol Cancer Res Treat 2021; 20:1533033821997829. [PMID: 33733923 PMCID: PMC7983235 DOI: 10.1177/1533033821997829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background: LBX2 antisense RNA 1 (LBX2-AS1), a long noncoding RNA, has been identified to
be closely associated with the progression of various cancers. However, the
role of LBX2-AS1 in colorectal cancer (CRC) is still poorly understood. In
this study, we aimed to investigate the expression and function of LBX2-AS1
in CRC. Material and Methods: Expression data from the Gene Expression Omnibus (GEO) and Gene Expression
Profiling Interactive Analysis (GEPIA) databases and results obtained from
clinical samples/patients were used to determine the correlation between
LBX2-AS1 expression and pathological stages, overall survival (OS).
Furthermore, knockdown of LBX2-AS1 in CRC cells using the short interfering
RNA (siRNA) technique, and observed its biological functions using western
blotting, quantitative reverse transcription-polymerase chain reaction
(qRT-PCR), cell counting kit-8 (CCK-8) and flow cytometry assay in the CRC
cell line. Results: Our study demonstrated that the expression levels of LBX2-AS1 were higher in
CRC cell lines than in normal colon mucosal cell lines. Bioinformatics
analysis revealed that CRC patients with high LBX2-AS1 expression levels had
poor OS. Furthermore, knockdown of LBX2-AS1 in CRC cells could attenuate the
proliferative ability of CRC cells in vitro, which is
associated with decreased expression of cyclin-dependent kinase (CDK) 3,
CDK6, and CCND1 and enhanced expression of cyclin-dependent kinase inhibitor
1A. Conclusions: LBX2-AS1 plays a crucial role in the tumorigenesis of CRC, providing a
potential therapeutic target for CRC patients.
Collapse
Affiliation(s)
- Qing Li
- Department of Radiation Oncology, Affiliated Hospital of Xiangnan University, Chenzhou, People's Republic of China.,Key Laboratory of Medical Imaging and Artifical Intelligence of Hunan Province
| | - Hui Xie
- Department of Radiation Oncology, Affiliated Hospital of Xiangnan University, Chenzhou, People's Republic of China.,Key Laboratory of Medical Imaging and Artifical Intelligence of Hunan Province
| | - Zefu Jin
- Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Jing Huang
- Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Shuting Wang
- Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Zijian Zhang
- Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
17
|
Pulmonary administration of a CSF-1R inhibitor alters the balance of tumor-associated macrophages and supports first-line chemotherapy in a lung cancer model. Int J Pharm 2021; 598:120350. [PMID: 33545279 DOI: 10.1016/j.ijpharm.2021.120350] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/28/2021] [Accepted: 01/31/2021] [Indexed: 12/14/2022]
Abstract
Lung cancers remain the leading cause of cancer-related death in both men and women. Infiltrating immune cells in the tumor microenvironment (TME) play a critical role in the formation, progression, and the response of solid tumors to therapy, including in lung cancers. Clinical studies have established that tumor-associated macrophages (TAMs) and their phenotypical composition are critical immune infiltrates in the lung TME, with the abundance of the M2-like phenotype negatively correlating with patient survival. Colony-Stimulating Factor 1 (CSF-1) receptor (CSF-1R) is a type III protein tyrosine kinase receptor that plays an important role in the recruitment and differentiation of monocytes into tumor-promoting M2-like TAMs and their survival. In this work we evaluated the therapeutic potential of PLX 3397 (PLX), a small molecule CSF-1R inhibitor (CSF-1Ri), upon local lung administration in an immune-competent mouse model of lung cancer. The efficacy of local lung delivered PLX as single therapy was investigated first. As assessed by immunofluorescence of sections of lung tumor nodules, a statistically significant reduction in M2-like TAMs and an increase in M1-like TAMs was observed, thus leading to a shift in the (M1/M2) balance. Those changes in abundance of immune infiltrates correlated with a significant decrease in tumor burden when compared to control. When combined with systemically administered cisplatin (CIS) PLX treatment provided further benefits, leading to a significant decrease in tumor burden when compared to either PLX or CIS treatments alone, as measured by bioluminescence intensity (BLI) in vivo (thoracic area) and ex vivo (lung tissue). This combination therapy led to the most pronounced increase in M1/M2 ratio, followed by a significant decrease in M2-like TAMs with the CIS therapy. This work is clinically relevant as it demonstrates the potential of local lung administration of PLX to support standard of care chemotherapy for lung cancer management. This is important as the pulmonary route of administration is a plausible strategy for reducing the total dose of CSF-1Ris as the tissue of interest (lungs) can be locally targeted. Because the major off-target effect of CSF-1Ris is liver toxicity, reducing systemic concentration will support translation of those therapies, especially in combination with standard of care chemotherapy that has significant off-target toxicity and patient attrition itself. This work is scientifically relevant as we demonstrate for the first time that local administration of a CSF-1Ri to the lungs leads to a shift in the balance of TAMs in the TME of a model of lung tumor, adding to the sparse literature of CSF-1Ris related to lung cancers.
Collapse
|
18
|
Pirlog R, Cismaru A, Nutu A, Berindan-Neagoe I. Field Cancerization in NSCLC: A New Perspective on MicroRNAs in Macrophage Polarization. Int J Mol Sci 2021; 22:ijms22020746. [PMID: 33451052 PMCID: PMC7828565 DOI: 10.3390/ijms22020746] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is currently the first cause of cancer-related death. The major lung cancer subtype is non-small cell lung cancers (NSCLC), which accounts for approximatively 85% of cases. The major carcinogenic associated with lung cancer is tobacco smoke, which produces long-lasting and progressive damage to the respiratory tract. The progressive and diffuse alterations that occur in the respiratory tract of patients with cancer and premalignant lesions have been described as field cancerization. At the level of tumor cells, adjacent tumor microenvironment (TME) and cancerized field are taking place dynamic interactions through direct cell-to-cell communication or through extracellular vesicles. These molecular messages exchanged between tumor and nontumor cells are represented by proteins, noncoding RNAs (ncRNAs) and microRNAs (miRNAs). In this paper, we analyze the miRNA roles in the macrophage polarization at the level of TME and cancerized field in NSCLC. Identifying molecular players that can influence the phenotypic states at the level of malignant cells, tumor microenvironment and cancerized field can provide us new insights into tumor regulatory mechanisms that can be further modulated to restore the immunogenic capacity of the TME. This approach could revert alterations in the cancerized field and could enhance currently available therapy approaches.
Collapse
Affiliation(s)
- Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, The “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.P.); (A.C.); (A.N.)
- Department of Morphological Sciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Andrei Cismaru
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, The “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.P.); (A.C.); (A.N.)
- Department of Functional Sciences, Immunology and Allergology, The “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Andreea Nutu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, The “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.P.); (A.C.); (A.N.)
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, The “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.P.); (A.C.); (A.N.)
- The Functional Genomics Department, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania
- Correspondence: ; Tel.: +40-743-111-800
| |
Collapse
|
19
|
He X, Yu B, Kuang G, Wu Y, Zhang M, Cao P, Ou C. Long noncoding RNA DLEU2 affects the proliferative and invasive ability of colorectal cancer cells. J Cancer 2021; 12:428-437. [PMID: 33391439 PMCID: PMC7738996 DOI: 10.7150/jca.48423] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/24/2020] [Indexed: 12/17/2022] Open
Abstract
Emerging evidence indicates that long noncoding RNAs (lncRNAs) are closely associated with colorectal cancer (CRC) tumorigenesis. One example is lncRNA Deleted in Lymphocytic Leukemia 2 (DLEU2). However, how DLEU2 contributes to CRC is still poorly understood. This study sought to investigate the effects of DLEU2 on CRC pathogenesis, and the underlying mechanism involved. Using a quantitative real-time polymerase chain reaction (qRT-PCR) assay, we demonstrated that the expression levels of DLEU2 in 45 pairs of CRC tissues were higher than those in the corresponding normal colon mucosal tissues. In addition, CRC patients with high DLEU2 expression levels exhibited poor overall survival (OS) and recurrence-free survival (RFS), as determined by analyses and measurements from the GEO and GEPIA databases. When DLEU2 was silenced using short interfering RNA (siRNA) in CRC cell line, the results demonstrated that DLEU2 silencing suppressed CRC cell tumorigenesis in vitro, which was associated with decreased expression of cyclin dependent kinase 6(CDK6), ZEB1, and ZEB2 as well as enhancing the expression of Cyclin-dependent kinase inhibitor 1A (CDKN1A). Taken together, the results of this study suggested that DLEU2 may play critical roles in the progression of CRC and may serve as a prognostic biomarker for CRC.
Collapse
Affiliation(s)
- Xiaoyun He
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Bingbing Yu
- Department of Pathology, Dezhou People's Hospital, Dezhou 253056, Shandong, China
| | - Gaoyan Kuang
- Department of Orthopedics, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan, China
| | - Yongrong Wu
- Department of Orthopedics, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan, China
| | - Meili Zhang
- Department of Pathology, Dezhou People's Hospital, Dezhou 253056, Shandong, China
| | - Pengfei Cao
- Department of Hematology, Xiangya hospital, Central South University, Changsha 410008, Hunan, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
20
|
Qiu W, Fang M, Magnuson JT, Greer JB, Chen Q, Zheng Y, Xiong Y, Luo S, Zheng C, Schlenk D. Maternal exposure to environmental antibiotic mixture during gravid period predicts gastrointestinal effects in zebrafish offspring. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123009. [PMID: 32526431 DOI: 10.1016/j.jhazmat.2020.123009] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/09/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Due to overuse, misuse, and poor absorption during treatment, antibiotics are consistently released into the environment, raising concerns about their impacts on ecological sustainability and health. In this study we performed transcriptome profiling to assess potential reproductive effects of an antibiotic mixture in gravid female zebrafish. Gravid fish (150 dpf) were exposed to a mixture of 15 commonly detected antibiotics at 0, 1, and 100 μg/L for 4 weeks. Concentrations of all the 15 antibiotics, especially chlortetracycline, were detected in the F0 ovary and F1 eggs after treatment, indicating maternal transfer of antibiotics. Impaired F0 growth (average 2.2 % and 24.3 % inductions in body length and ovary weight, respectively), and reduced F1 offspring survival (average 4.2 % reductions in survival at 120 hpf) was observed after maternal exposure to the 100 μg/L treatment. Pathway analyses of whole-transcriptome expression profiles from F0 ovaries predicted colorectal disorders. Similarly, pathways of F1 larval transcriptomes from treated females also predicted colorectal disorders along with intestinal apoptosis and oxidative stress, which may be related to growth impairment. These results show that maternal transfer of antibiotics occurs in zebrafish, resulting in transgenerational changes in F1 offspring survival and transcription that predict adverse gastrointestinal effects in offspring.
Collapse
Affiliation(s)
- Wenhui Qiu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Meijuan Fang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jason T Magnuson
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, United States
| | - Justin B Greer
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, United States
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China
| | - Yi Zheng
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ying Xiong
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shusheng Luo
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chunmiao Zheng
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, United States.
| |
Collapse
|
21
|
Wang YD, Li Z, Li FS. Differences in key genes in human alveolar macrophages between phenotypically normal smokers and nonsmokers: diagnostic and prognostic value in lung cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:2788-2805. [PMID: 33284895 PMCID: PMC7716130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/02/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To explore the effect of smoking on gene expression in human alveolar macrophages and the value of identified key genes in the early diagnosis and prognosis of lung cancers. METHODS We downloaded three data sets (GSE8823, GSE2125, and GSE3212) from the Gene Expression Omnibus (GEO) database, including 31 non-smoking and 33 smoking human alveolar macrophage samples. We identified common differentially expressed genes (DEGs), from which we obtained module genes and hub genes by using STRING and Cytoscape. Then we analyzed the protein-protein interaction (PPI) network of DEGs, hub genes, and module genes and used David online analysis tool to carry out functional enrichment analysis of DEGs and module genes. RESULTS A total of 85 differentially expressed genes was obtained, including 42 up-regulated genes and 43 down-regulated genes. The Human Protein Atlas and Survival analysis showed that GBP1, ITGAM, CSF1, SPP1, COL1A1, LAMB1 and THBS1 may be closely associated with the carcinogenesis and prognosis of lung cancer. CONCLUSION DEGs, module, and hub genes identified in the present study help explain the effects of smoking on human alveolar macrophages and provide candidate targets for diagnosis and treatment of smoking-related lung cancer.
Collapse
Affiliation(s)
- Yi-De Wang
- Department of Integrated Pulmonology, Fourth Affiliated Hospital of Xinjiang Medical UniversityUrumqi 830000, China
| | - Zheng Li
- Xinjiang National Clinical Research Base of Traditional Chinese Medicine, Xinjiang Medical UniversityUrumqi 830000, China
| | - Feng-Sen Li
- Xinjiang National Clinical Research Base of Traditional Chinese Medicine, Xinjiang Medical UniversityUrumqi 830000, China
| |
Collapse
|
22
|
Bertolazzi G, Cipollina C, Benos PV, Tumminello M, Coronnello C. miR-1207-5p Can Contribute to Dysregulation of Inflammatory Response in COVID-19 via Targeting SARS-CoV-2 RNA. Front Cell Infect Microbiol 2020; 10:586592. [PMID: 33194826 PMCID: PMC7658538 DOI: 10.3389/fcimb.2020.586592] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
The present study focuses on the role of human miRNAs in SARS-CoV-2 infection. An extensive analysis of human miRNA binding sites on the viral genome led to the identification of miR-1207-5p as potential regulator of the viral Spike protein. It is known that exogenous RNA can compete for miRNA targets of endogenous mRNAs leading to their overexpression. Our results suggest that SARS-CoV-2 virus can act as an exogenous competing RNA, facilitating the over-expression of its endogenous targets. Transcriptomic analysis of human alveolar and bronchial epithelial cells confirmed that the CSF1 gene, a known target of miR-1207-5p, is over-expressed following SARS-CoV-2 infection. CSF1 enhances macrophage recruitment and activation and its overexpression may contribute to the acute inflammatory response observed in severe COVID-19. In summary, our results indicate that dysregulation of miR-1207-5p-target genes during SARS-CoV-2 infection may contribute to uncontrolled inflammation in most severe COVID-19 cases.
Collapse
Affiliation(s)
- Giorgio Bertolazzi
- Department of Economics, Business and Statistics, University of Palermo, Palermo, Italy
- Fondazione Ri.MED, Palermo, Italy
| | - Chiara Cipollina
- Fondazione Ri.MED, Palermo, Italy
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Panayiotis V. Benos
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Michele Tumminello
- Department of Economics, Business and Statistics, University of Palermo, Palermo, Italy
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | | |
Collapse
|
23
|
Xu G, Zhu Y, Liu H, Liu Y, Zhang X. LncRNA MIR194-2HG Promotes Cell Proliferation and Metastasis via Regulation of miR-1207-5p/TCF19/Wnt/β-Catenin Signaling in Liver Cancer. Onco Targets Ther 2020; 13:9887-9899. [PMID: 33116574 PMCID: PMC7547811 DOI: 10.2147/ott.s264614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/05/2020] [Indexed: 01/05/2023] Open
Abstract
Purpose LncRNAs play an important role in tumorigenesis and cancer progression in liver cancer. Although many lncRNAs have been reported, the role of MIR194-2HG and the underlying mechanism mediated by it are still largely unknown in HCC. This study aimed to investigate the biological role and mechanism of MIR194-2HG in liver cancer. Materials and Methods The expression of MIR194-2HG was determined in liver cancer tissues and cells by RT-qPCR. The overall survival rate of MIR194-2HG was analyzed by Kaplan–Meier survival analysis. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), colony formation, and Transwell assays were carried out to detect cell migration and invasion. Western blotting was used to quantify the levels of all proteins. The regulatory mechanism of the MIR194-2HG/miR-1207-5p/TCF19 axis in liver cancer was investigated by dual-luciferase activity reporter assay, Kaplan-Meier survival analysis, and Western blotting. Results MIR194-2HG was upregulated in liver cancer tissues and cell lines. Liver cancer patients with higher expression of MIR194-2HG revealed poor overall survival compared with those who had lower expression of MIR194-2HG. MIR194-2HG promoted the proliferation, migration, and invasion of HepG2 and Huh7 cells by acting as a ceRNA mechanism for the miR-1207-5p/TCF19 axis to activate the Wnt/β-catenin signaling pathway. Conclusion MIR194-2HG acts in an oncogenic role and activates the Wnt/β-catenin signaling pathway via a miR-1207-5p/TCF19 axis-mediated mechanism, which provides a novel avenue for diagnostic or therapeutic interventions in liver cancer.
Collapse
Affiliation(s)
- Guoping Xu
- Department of Medical Imaging, The Second Hospital of Tianjin Medical University, Tianjin 300211, People's Republic of China
| | - Yungang Zhu
- Graduate School of Tianjin Medical University, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Huijia Liu
- Department of Medical Imaging, The Second Hospital of Tianjin Medical University, Tianjin 300211, People's Republic of China
| | - Yingying Liu
- Department of Medical Imaging, The Second Hospital of Tianjin Medical University, Tianjin 300211, People's Republic of China
| | - Xuening Zhang
- Department of Medical Imaging, The Second Hospital of Tianjin Medical University, Tianjin 300211, People's Republic of China
| |
Collapse
|
24
|
Liu XC, Xu L, Cai YL, Zheng ZY, Dai EN, Sun S. MiR-1207-5p/CX3CR1 axis regulates the progression of osteoarthritis via the modulation of the activity of NF-κB pathway. Int J Rheum Dis 2020; 23:1057-1065. [PMID: 32597559 DOI: 10.1111/1756-185x.13898] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/29/2020] [Accepted: 06/01/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Osteoarthritis (OA) is a prevalent chronic diseases characterized by formation of osteophytes and degradation of articular cartilage. Previous evidence has identified the regulatory effects of microRNAs (miRNAs) in OA. The goal of this study is to clearly explore the biological function of miR-1207-5p in OA. METHODS MiR-1207-5p and C-X3-C motif chemokine receptor 1 (CX3CR1) expression in OA cartilages were revealed by accessing to Gene Expression Omnibus database. In vitro OA model was established by lipopolysaccharide (LPS) stimulation. Western blot and quantitative real-time polymerase chain reaction were conducted to detect the expression level of genes. Cell counting kit-8 (CCK-8) and flow cytometric experiments were performed to investigate the proliferation and apoptosis capacities of CHON-001 cells. Bioinformatics analysis was applied to predict the binding site of miR-1207-5p and CX3CR1, the connections of which were ascertained using luciferase reporter assay. RESULTS MiR-1207-5p expression was decreased while CX3CR1 was increased in OA cartilages. Up-regulation of miR-1207-5p alleviated the LPS-induced damage in the view of cell proliferation, apoptosis and extracellular matrix (ECM) degradation. A target of miR-1207-5p CX3CR1, its down-regulation intensified the impacts of miR-1207-5p mimic, promoted proliferation and mitigated apoptosis. LPS exposure increased the protein expression of the phosphorylated IκBα and P65, and this phenomena was reversed due to miR-1207-5p up-regulation and CX3CR1 knockdown. The treatment of Betulinic acid (BA; an activator of nuclear factor-κB pathway) reversed the miR-1207-5p mimic-induced inhibitory effect on apoptosis in LPS-treated CHON-001. CONCLUSION Our results highlight that miR-1207-5p can prevent CHON-001 from LPS-stimulated injury, providing a novel biomarker for OA progression and further advancing treatment of OA.
Collapse
Affiliation(s)
- Xiao-Chen Liu
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Liang Xu
- Department of Orthopedic Surgery, Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan, Shandong, China.,Department of Orthopedics, Shandong Chest Hospital, Jinan, Shandong, China
| | - Yu-Li Cai
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhi-Yong Zheng
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - E-Nuo Dai
- Department of Orthopedic Surgery, Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
25
|
Iurca I, Tirpe A, Zimta AA, Moldovan C, Gulei D, Slabý O, Condorelli G, Berindan-Neagoe I. Macrophages Interaction and MicroRNA Interplay in the Modulation of Cancer Development and Metastasis. Front Immunol 2020; 11:870. [PMID: 32477352 PMCID: PMC7235377 DOI: 10.3389/fimmu.2020.00870] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/15/2020] [Indexed: 12/24/2022] Open
Abstract
Advancement in cancer research has shown that the tumor microenvironment plays a crucial role in the installation, progression, and dissemination of cancer cells. Among the heterogeneous panel of cells within the malignant microenvironment are tumor-associated macrophages that are sustaining the malignant cells through strict feedback mechanisms and spatial distribution. Considering that the presence of metastasis is one of the main feature associated with decreased survival rates among patients, in the present article we briefly present the involvement of tumor-associated macrophages in the hallmarks of metastasis and their microRNA-related regulation with a focus on lung cancer in order to coordinate the vast information under one pathology. As shown, these cells have emerged as coordinators of immunosuppression, angiogenesis and lymphangiogenesis, vessel intravasation and extravasation of cancer cells, and premetastatic niche formation, transforming the macrophages in potential therapeutic targets and also prognostic markers according to their density within the tumor and polarization phenotype. An indirect therapeutic approach on tumor-associated macrophages can be also represented by regulation of microRNAs involved in their polarization and implicit oncogenic features. Examples of these microRNAs consist in the highly studied miR-21 and miR-155, but also other microRNA with less feedback in the literature: miR-1207-5p, miR-193b, miR-320a, and others.
Collapse
Affiliation(s)
- Ioana Iurca
- Tumor Biology Department, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania.,Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alexandru Tirpe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alina-Andreea Zimta
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristian Moldovan
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gulei
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ondřej Slabý
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk Memorial Cancer Institute, Masaryk University, Brno, Czech Republic
| | - Gerolama Condorelli
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Naples, Italy
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta," Cluj-Napoca, Romania
| |
Collapse
|
26
|
Wang X, Chen K, Zhao Z. LncRNA OR3A4 Regulated the Growth of Osteosarcoma Cells by Modulating the miR-1207-5p/G6PD Signaling. Onco Targets Ther 2020; 13:3117-3128. [PMID: 32346295 PMCID: PMC7167273 DOI: 10.2147/ott.s234514] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/20/2020] [Indexed: 01/12/2023] Open
Abstract
Background Increasing evidence has demonstrated the importance of non-coding RNAs including long non-coding RNA (lncRNA) and microRNAs (miRNAs) in the tumorigenesis of osteosarcoma (OS). Abnormal expression of lncRNA olfactory receptor family 3 subfamily A member 4 (OR3A4) was found in multiple human cancers; however, the function of OR3A4 in OS remains largely unknown. Materials and Methods The expression level of OR3A4 in OS tissues and cell lines was detected by RT-qPCR. Cell counting kit-8 assay, colony formation and flow cytometry analysis were performed to determine the growth of OS cells. The targets of OR3A4 were predicted using the miRDB database. The binding between OR3A4 and miRNAs was confirmed by dual-luciferase reporter assay. Results OR3A4 was overexpressed in OS tissues and correlated with the advanced progression of OS patients. Down-regulation of OR3A4 significantly inhibited the proliferation and colony formation of OS cells. Mechanistically, OR3A4 acted as a sponge of miR-1207-5p. Glucose-6-phosphate dehydrogenase (G6PD) was identified as a target of miR-1207-5p. Knockdown of OR3A4 increased the expression of miR-1207-5p and consequently, suppressed the level of G6PD in OS cells. Due to the essential role of G6PD in the pentose phosphate pathway (PPP), depletion of OR3A4 inhibited NADPH production, glucose consumption and lactate generation. Decreased level of NADPH by depletion of OR3A4 up-regulated the redox state (ROS) content and resulted in endoplasmic reticulum (ER) stress in OS cells. Restoration of G6PD significantly attenuated the cell growth inhibition induced by OR3A4 knockdown. Conclusion Our finding suggested the critical role of OR3A4 in the proliferation of OS cells via targeting the miR-1207-5p/G6PD axis.
Collapse
Affiliation(s)
- Xiaole Wang
- Department of Traumatology, The First People's Hospital of Shangqiu, Shangqiu, Henan Province 476000, People's Republic of China
| | - Kunfeng Chen
- Department of Traumatology, The First People's Hospital of Shangqiu, Shangqiu, Henan Province 476000, People's Republic of China
| | - Zhijian Zhao
- Department of Traumatology, The First People's Hospital of Shangqiu, Shangqiu, Henan Province 476000, People's Republic of China
| |
Collapse
|
27
|
Shi X, Kaller M, Rokavec M, Kirchner T, Horst D, Hermeking H. Characterization of a p53/miR-34a/CSF1R/STAT3 Feedback Loop in Colorectal Cancer. Cell Mol Gastroenterol Hepatol 2020; 10:391-418. [PMID: 32304779 PMCID: PMC7423584 DOI: 10.1016/j.jcmgh.2020.04.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS The miR-34a gene is a direct target of p53 and is commonly silenced in colorectal cancer (CRC). Here we identified the receptor tyrosine kinase CSF1R as a direct miR-34a target and characterized CSF1R as an effector of p53/miR-34a-mediated CRC suppression. METHODS Analyses of TCGA-COAD and three other CRC cohorts for association of mRNA expression and signatures with patient survival and molecular subtypes. Bioinformatics identification and experimental validation of miRNA and transcription factor targets. Functional analysis of factors/pathways in the regulation of epithelial-mesenchymal transition (EMT), invasion, migration, acquired chemo-resistance and metastasis. Analyses of protein expression and CpG methylation within primary human colon cancer samples. RESULTS In primary CRCs increased CSF1R, CSF1 and IL34 expression was associated with poor patient survival and a mesenchymal-like subtype. CSF1R displayed an inverse correlation with miR-34a expression. This was explained by direct inhibition of CSF1R by miR-34a. Furthermore, p53 repressed CSF1R via inducing miR-34a, whereas SNAIL induced CSF1R both directly and indirectly via repressing miR-34a in a coherent feed-forward loop. Activation of CSF1R induced EMT, migration, invasion and metastasis of CRC cells via STAT3-mediated down-regulation of miR-34a. 5-FU resistance of CRC cells was mediated by CpG-methylation of miR-34a and the resulting elevated expression of CSF1R. In primary CRCs elevated expression of CSF1R was detected at the tumor invasion front and was associated with CpG methylation of the miR-34a promoter as well as distant metastasis. CONCLUSIONS The reciprocal inhibition between miR-34a and CSF1R and its loss in tumor cells may be relevant for therapeutic and prognostic approaches towards CRC management.
Collapse
Affiliation(s)
- Xiaolong Shi
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Markus Kaller
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Matjaz Rokavec
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Thomas Kirchner
- Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany,German Cancer Consortium, Partner site Munich, Munich, Germany,German Cancer Research Center, Heidelberg, Germany
| | - David Horst
- Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany,German Cancer Research Center, Heidelberg, Germany,Institute of Pathology, Charité-Universitätsmedizin Berlin, Berlin, Germany,German Cancer Consortium, Partner site Berlin, Berlin, Germany
| | - Heiko Hermeking
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany,German Cancer Consortium, Partner site Munich, Munich, Germany,German Cancer Research Center, Heidelberg, Germany,Correspondence Address requests for reprints to: Heiko Hermeking, Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-Universität München, Thalkirchner Strasse 36, D-80337 Munich, Germany; fax: +49-89-2180-73697.
| |
Collapse
|
28
|
Xie S, Zhang Q, Zhao J, Hao J, Fu J, Li Y. MiR-423-5p may regulate ovarian response to ovulation induction via CSF1. Reprod Biol Endocrinol 2020; 18:26. [PMID: 32264887 PMCID: PMC7137414 DOI: 10.1186/s12958-020-00585-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/27/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND We have previously shown that hsa-miR-423-5p expression in ovarian granulosa cells is decreased in high ovarian response populations. The objective of the present study was to find the target gene and mechanism for miR-423-5p involved in ovarian response regulation. METHODS (a) TargetScan was used to predict the target gene of hsa-miR-423-5p. (b) A model for hsa-miR-423-5p overexpression or inhibition was constructed by transfecting KGN cells with lentivirus. CSF1 mRNA and protein expression and luciferase activity were measured. (c) The cell cycles of control and lentivirus treated KGN cells were analyzed. Western blot was used to measure the expression of CDKN1A in KGN cells. (d) The concentration of E2 in KGN cell culture medium were measured. RESULTS (a) TargetScan revealed that the 3' un-translated region of CSF1 matched 11 bases at the 5' end of miR-423-5p, making it a likely target gene. (b) Overexpression or inhibition of miR-423-5p were associated with respective decreases or increases in CSF1 expression (both mRNA and protein) (p < 0.05) and luciferase activity (p < 0.05). (c) When miR-423-5p expression increased, the number of G0/G1 phase cells and the expression of CDKN1A protein increased while estradiol concentrations in the cell culture solution decreased (p < 0.05). However, when miR-423-5p expression decreased, the number of S phase cells increased and E2 concentrations increased while the expression of CDKN1A protein decreased (p < 0.05). CONCLUSIONS Colony stimulating factor 1 is a target gene of miR-423-5p and that it may regulate ovarian response to ovulation induction by affecting granulosa cells proliferation and estrogen secretion.
Collapse
Affiliation(s)
- Shi Xie
- Reproductive Medicine Center, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
- Clinical Research Center For Women's Reproductive Health In Human Province, Changsha, Hunan, China
| | - Qiong Zhang
- Reproductive Medicine Center, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
- Clinical Research Center For Women's Reproductive Health In Human Province, Changsha, Hunan, China
| | - Jing Zhao
- Reproductive Medicine Center, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
- Clinical Research Center For Women's Reproductive Health In Human Province, Changsha, Hunan, China
| | - Jie Hao
- Reproductive Medicine Center, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
- Clinical Research Center For Women's Reproductive Health In Human Province, Changsha, Hunan, China
| | - Jing Fu
- Reproductive Medicine Center, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
- Clinical Research Center For Women's Reproductive Health In Human Province, Changsha, Hunan, China
| | - Yanping Li
- Reproductive Medicine Center, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China.
- Clinical Research Center For Women's Reproductive Health In Human Province, Changsha, Hunan, China.
| |
Collapse
|
29
|
Yan Y, Su M, Qin B. CircHIPK3 promotes colorectal cancer cells proliferation and metastasis via modulating of miR-1207-5p/FMNL2 signal. Biochem Biophys Res Commun 2020; 524:839-846. [PMID: 32046858 DOI: 10.1016/j.bbrc.2020.01.055] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/11/2020] [Indexed: 12/14/2022]
Abstract
Increasing evidences demonstrate that circular RNAs (circRNAs) are extensively implicated in various cancers including colorectal cancer (CRC). In the present study, we found that circRNA HIPK3 (circPIK3) was upregulated in CRC. We identified that circHIPK3 was closely related with unfavorable clinicopathological features in patients with CRC. Functional transwell assay and proliferation assay indicated that circHIPK3 served as an oncogene and promoted CRC cells migration, invasion and proliferation. Meanwhile, we found that formin like 2 (FMNL2) was a key downstream molecule in circHIPK3-induced metastasis and proliferation in CRC cells. We further verified that circHIPK3 was mainly located at cytoplasm through an immunofluorescence assay. An online bioinformatics screening and a GEO datasets analysis showed that microRNA 1207-5p (miR-1207-5p) was downregulated in CRC. Also, we found that miR-1207-5p shared a similar miR-1207-5p response elements (MREs-1207-5p). Meanwhile, we showed that miR-1207-5p suppressed CRC cells migration, invasion and proliferation via directly targeting of FMNL2. Even further, via a constructed luciferase assay, we indicated that circHIPK3 was another target of miR-1207-5p. Functionally, we proved that circHIPK3 enhanced FMNL2 mediated promotion of migration, invasion and proliferation by sponging of miR-1207-5p in CRC cells. In summary, the outcomes of this study illustrated that circHIPK3 promoted CRC cells migration, invasion and proliferation modulating of FMNL2 by sponging of miR-1207-5p. Our findings indicated that circHIPK3/miR-1207-5p/FMNL2 axis might be a new strategy in molecular treatment of CRC.
Collapse
Affiliation(s)
- Yan Yan
- Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, PR China.
| | - Meng Su
- Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, PR China.
| | - Baoli Qin
- Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, PR China.
| |
Collapse
|
30
|
Role of JAK/STAT3 Signaling in the Regulation of Metastasis, the Transition of Cancer Stem Cells, and Chemoresistance of Cancer by Epithelial-Mesenchymal Transition. Cells 2020; 9:cells9010217. [PMID: 31952344 PMCID: PMC7017057 DOI: 10.3390/cells9010217] [Citation(s) in RCA: 299] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 12/23/2022] Open
Abstract
The JAK/STAT3 signaling pathway plays an essential role in various types of cancers. Activation of this pathway leads to increased tumorigenic and metastatic ability, the transition of cancer stem cells (CSCs), and chemoresistance in cancer via enhancing the epithelial–mesenchymal transition (EMT). EMT acts as a critical regulator in the progression of cancer and is involved in regulating invasion, spread, and survival. Furthermore, accumulating evidence indicates the failure of conventional therapies due to the acquisition of CSC properties. In this review, we summarize the effects of JAK/STAT3 activation on EMT and the generation of CSCs. Moreover, we discuss cutting-edge data on the link between EMT and CSCs in the tumor microenvironment that involves a previously unknown function of miRNAs, and also discuss new regulators of the JAK/STAT3 signaling pathway.
Collapse
|
31
|
Carter KP, Segall JE, Cox D. Microscopic Methods for Analysis of Macrophage-Induced Tunneling Nanotubes. Methods Mol Biol 2020; 2108:273-279. [PMID: 31939188 PMCID: PMC7594733 DOI: 10.1007/978-1-0716-0247-8_23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Macrophages are known to play multiple roles in the breast cancer microenvironment including the promotion of tumor cell invasion that is dependent on soluble factors or through direct contact. Macrophages can also enhance the production of Tunneling Nanotubes (TNTs) in tumor cells which can be mimicked using macrophage-conditioned medium. TNTs are long thin F-actin structures that connect two or more cells together that have been found in many different cell types including macrophages and tumor cells and have been implicated in enhancing tumor cells functions, such as invasion. Here we describe basic procedures used to stimulate tumor cell TNT formation through macrophage-conditioned medium along with methods for quantifying TNTs.
Collapse
Affiliation(s)
- Kiersten P Carter
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jeffrey E Segall
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dianne Cox
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Molecular and Developmental Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
32
|
Wang Y, Zhang D. Tanshinol inhibits growth of malignant melanoma cells via regulating miR-1207-5p/CHPF pathway. Arch Dermatol Res 2019; 312:373-383. [PMID: 31828417 DOI: 10.1007/s00403-019-01992-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 09/22/2019] [Accepted: 10/03/2019] [Indexed: 12/19/2022]
Abstract
Tanshinol possesses anti-tumor activity in melanoma both in vitro and in vivo, and miR-1207-5p is involved in tumor progression in melanoma. However, whether miR-1207-5p can be affected by tanshinol treatment in melanoma is not clear. The expression levels of miR-1207-5p were detected by RT-qPCR. The validation of the direct target of miR-1207-5p was through dual-luciferase reporter assay and western blotting assay. The cell viability rate was determined using MTT assay and colony formation assay. The cell mobility was assessed using Transwell migration/invasion assay. Downregulation of miR-1207-5p was found in melanoma cell lines and tissues and was associated with tumor stages, presence of ulceration, lymph node metastasis, and poor overall survival rate of melanoma patients. Tanshinol treatment and miR-1207-5p overexpression suppressed melanoma cell growth and cell mobility. Chondroitin polymerizing factor (CHPF) is a direct target of miR-1207-5p. Tanshinol exerted anti-tumor activity to melanoma through the regulation of miR-1207-5p/CHPF signaling. Our study highlighted the potential therapeutic application of tanshinol and miR-1207-5p as a supplement to enhance the effect of the traditional cancer treatment methods against melanoma.
Collapse
Affiliation(s)
- Yujie Wang
- Yidu Central Hospital of Weifang, No. 4138 Linglongshan South Road, Qingzhou, 262500, Shandong, China
| | - Diancai Zhang
- Yidu Central Hospital of Weifang, No. 4138 Linglongshan South Road, Qingzhou, 262500, Shandong, China.
| |
Collapse
|
33
|
Boloix A, Masanas M, Jiménez C, Antonelli R, Soriano A, Roma J, Sánchez de Toledo J, Gallego S, Segura MF. Long Non-coding RNA PVT1 as a Prognostic and Therapeutic Target in Pediatric Cancer. Front Oncol 2019; 9:1173. [PMID: 31781490 PMCID: PMC6853055 DOI: 10.3389/fonc.2019.01173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 10/18/2019] [Indexed: 12/27/2022] Open
Abstract
In recent decades, biomedical research has focused on understanding the functionality of the human translated genome, which represents a minor part of all genetic information transcribed from the human genome. However, researchers have become aware of the importance of non-coding RNA species that constitute the vast majority of the transcriptome. In addition to their crucial role in tissue development and homeostasis, mounting evidence shows non-coding RNA to be deregulated and functionally contributing to the development and progression of different types of human disease including cancer both in adults and children. Small non-coding RNAs (i.e., microRNA) are in the vanguard of clinical research which revealed that RNA could be used as disease biomarkers or new therapeutic targets. Furthermore, many more expectations have been raised for long non-coding RNAs, by far the largest fraction of non-coding transcripts, and still fewer findings have been translated into clinical applications. In this review, we center on PVT1, a large and complex long non-coding RNA that usually confers oncogenic properties on different tumor types. We focus on the compilation of early advances in the field of pediatric tumors which often lags behind clinical improvements in adult tumors, and provide a rationale to continue studying PVT1 as a possible functional contributor to pediatric malignancies and as a potential prognostic marker or therapeutic target.
Collapse
Affiliation(s)
- Ariadna Boloix
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Esfera UAB, Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Marc Masanas
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Carlos Jiménez
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Roberta Antonelli
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Aroa Soriano
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Josep Roma
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Josep Sánchez de Toledo
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Soledad Gallego
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Miguel F Segura
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
34
|
He X, Li S, Yu B, Kuang G, Wu Y, Zhang M, He Y, Ou C, Cao P. Up-regulation of LINC00467 promotes the tumourigenesis in colorectal cancer. J Cancer 2019; 10:6405-6413. [PMID: 31772673 PMCID: PMC6856745 DOI: 10.7150/jca.32216] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
Recent studies have reported that long non-coding RNAs (lncRNAs) are associated with the tumourigenesis of colorectal cancer (CRC); however, several of these are yet to be identified and characterised. In this study, we report a novel lncRNA, LINC00467, which was significantly up-regulated in CRC; we investigated its function and mechanism in CRC. Our study demonstrated that LINC00467 levels in 45 pairs of CRC tissues were higher than those in the corresponding normal colon mucosal tissues. We used the Gene Expression Omnibus (GEO) and Gene Expression Profiling Interactive Analysis (GEPIA) databases for the analysis and measurement of clinical samples, and observed that the CRC patients with high LINC00467 expression levels showed poor overall survival (OS) and recurrent-free survival (RFS) rates. Furthermore, following the short interfering RNA (siRNA) knockdown of LINC00467 in the CRC cell line, the results demonstrated that LINC00467 suppresses the proliferation, invasion and metastasis of CRC cells in vitro. Moreover, its molecular mechanism of LINC00467 decreased the expression of Cyclin D1, Cyclin A1, CDK2, CDK4 and Twist1 as well as enhanced the expression of E‑cadherin. Collectively, these findings suggest that LINC00467 may be crucial in the progression and development of CRC, and may serve as a potential therapeutic target for CRC patients.
Collapse
Affiliation(s)
- Xiaoyun He
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shen Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Bingbing Yu
- Department of Pathology, Dezhou People's Hospital, Dezhou, Shandong 253056, China
| | - Gaoyan Kuang
- Department of Orthopedics, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China
| | - Yongrong Wu
- Department of Orthopedics, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China
| | - Meili Zhang
- Department of Pathology, Dezhou People's Hospital, Dezhou, Shandong 253056, China
| | - Yuxiang He
- Department of Oncology, Xiangya Hospital, Central South University,Changsha, Hunan 410008, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Pengfei Cao
- Department of Hematology, Xiangya hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
35
|
Wang W, Zhou R, Wu Y, Liu Y, Su W, Xiong W, Zeng Z. PVT1 Promotes Cancer Progression via MicroRNAs. Front Oncol 2019; 9:609. [PMID: 31380270 PMCID: PMC6644598 DOI: 10.3389/fonc.2019.00609] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022] Open
Abstract
Non-coding RNA (ncRNA) plays a regulatory role in a variety of cellular activities. And long non-coding RNA (lncRNA) is one of the important kinds of ncRNA. Previous studies have shown that various lncRNAs are involved in the progression of cancer. LncRNA plasmacytoma variant translocation 1 (PVT1) is a newly discovered oncogenic factor that has been confirmed to be overexpressed in many cancer cells. Moreover, the role of PVT1 in cancer development is closely linked to microRNAs (miRNAs). PVT1 can act as a "sponge" for miRNAs to inhibit their activities, thereby affecting proliferation, invasion, and angiogenesis of cancer. In addition, PVT1 itself can be spliced and processed into several miRNAs such as miR-1204 and miR-1207, which can also regulate the development of cancer. This review summarizes various pathways through which PVT1 regulates the progression of cancer via miRNAs. We also propose additional regulatory mechanisms of PVT1 and their potential clinical applications.
Collapse
Affiliation(s)
- Wenxi Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Ruoyu Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Yuwei Wu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Yicong Liu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Wenjia Su
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
36
|
Irimie AI, Braicu C, Pasca S, Magdo L, Gulei D, Cojocneanu R, Ciocan C, Olariu A, Coza O, Berindan-Neagoe I. Role of Key Micronutrients from Nutrigenetic and Nutrigenomic Perspectives in Cancer Prevention. ACTA ACUST UNITED AC 2019; 55:medicina55060283. [PMID: 31216637 PMCID: PMC6630934 DOI: 10.3390/medicina55060283] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/28/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023]
Abstract
Regarding cancer as a genetic multi-factorial disease, a number of aspects need to be investigated and analyzed in terms of cancer's predisposition, development and prognosis. One of these multi-dimensional factors, which has gained increased attention in the oncological field due to its unelucidated role in risk assessment for cancer, is diet. Moreover, as studies advance, a clearer connection between diet and the molecular alteration of patients is becoming identifiable and quantifiable, thereby replacing the old general view associating specific phenotypical changes with the differential intake of nutrients. Respectively, there are two major fields concentrated on the interrelation between genome and diet: nutrigenetics and nutrigenomics. Nutrigenetics studies the effects of nutrition at the gene level, whereas nutrigenomics studies the effect of nutrients on genome and transcriptome patterns. By precisely evaluating the interaction between the genomic profile of patients and their nutrient intake, it is possible to envision a concept of personalized medicine encompassing nutrition and health care. The list of nutrients that could have an inhibitory effect on cancer development is quite extensive, with evidence in the scientific literature. The administration of these nutrients showed significant results in vitro and in vivo regarding cancer inhibition, although more studies regarding administration in effective doses in actual patients need to be done.
Collapse
Affiliation(s)
- Alexandra Iulia Irimie
- Department of Prosthetic Dentistry and Dental Materials, Division Dental Propaedeutics, Aesthetic, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Cornelia Braicu
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Sergiu Pasca
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Lorand Magdo
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Diana Gulei
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu Hatieganu, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Roxana Cojocneanu
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Cristina Ciocan
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu Hatieganu, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Andrei Olariu
- Nordlogic Software, 10-12, Rene Descartes Street 400486 Cluj-Napoca, Romania.
| | - Ovidiu Coza
- Department of Radiotherapy with High Energies and Brachytherapy, Oncology Institute "Prof. Dr. Ion Chiricuta", Street Republicii, No. 34-36, 400015 Cluj-Napoca, Romania.
- Department of Radiotherapy and Medical Oncology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Street Louis Pasteur, No. 4, 400349 Cluj-Napoca, Romania.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu Hatieganu, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
- Department of Functional Genomics and Experimental Pathology, "Prof. Dr. Ion Chiricuta" The Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania.
| |
Collapse
|
37
|
Weidle UH, Birzele F, Nopora A. MicroRNAs as Potential Targets for Therapeutic Intervention With Metastasis of Non-small Cell Lung Cancer. Cancer Genomics Proteomics 2019; 16:99-119. [PMID: 30850362 PMCID: PMC6489690 DOI: 10.21873/cgp.20116] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 02/08/2023] Open
Abstract
The death toll of non-small cell lung cancer (NSCLC) patients is primarily due to metastases, which are poorly amenable to therapeutic intervention. In this review we focus on miRs associated with metastasis of NSCLC as potential new targets for anti-metastatic therapy. We discuss miRs validated as therapeutic targets by in vitro data, identification of target(s) and pathway(s) and in vivo efficacy data in at least one clinically-relevant metastasis-related model. A few of the discussed miRs correlate with the clinical status of NSCLC patients. Using miRs as therapeutic agents has the advantage that targeting a single miR can potentially interfere with several metastatic pathways. Depending on their mode of action, the corresponding miRs can be up- or down-regulated compared to normal matching tissues. Here, we describe therapeutic approaches for reconstitution therapy and miR inhibition, general principles of anti-metastatic therapy as well as current technical pitfalls.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| | - Fabian Birzele
- Roche Innovation Center Basel, F. Hofman La Roche, Basel, Switzerland
| | - Adam Nopora
- Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| |
Collapse
|
38
|
The Interplay between MicroRNAs and Cellular Components of Tumour Microenvironment (TME) on Non-Small-Cell Lung Cancer (NSCLC) Progression. J Immunol Res 2019; 2019:3046379. [PMID: 30944831 PMCID: PMC6421779 DOI: 10.1155/2019/3046379] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/26/2018] [Accepted: 01/06/2019] [Indexed: 12/30/2022] Open
Abstract
Cellular components of the tumour microenvironment (TME) are recognized to regulate the hallmarks of cancers including tumour proliferation, angiogenesis, invasion, and metastasis, as well as chemotherapeutic resistance. The linkage between miRNA, TME, and the development of the hallmarks of cancer makes miRNA-mediated regulation of TME a potential therapeutic strategy to complement current cancer therapies. Despite significant advances in cancer therapy, lung cancer remains the deadliest form of cancer among males in the world and has overtaken breast cancer as the most fatal cancer among females in more developed countries. Therefore, there is an urgent need to develop more effective treatments for NSCLC, which is the most common type of lung cancer. Hence, this review will focus on current literature pertaining to antitumour or protumourigenic effects elicited by nonmalignant stromal cells of TME in NSCLC through miRNA regulation as well as current status and future prospects of miRNAs as therapeutic agents or targets to regulate TME in NSCLC.
Collapse
|
39
|
Farmahin R, Gannon AM, Gagné R, Rowan-Carroll A, Kuo B, Williams A, Curran I, Yauk CL. Hepatic transcriptional dose-response analysis of male and female Fischer rats exposed to hexabromocyclododecane. Food Chem Toxicol 2018; 133:110262. [PMID: 30594549 DOI: 10.1016/j.fct.2018.12.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/13/2018] [Accepted: 12/20/2018] [Indexed: 12/14/2022]
Abstract
Hexabromocyclododecane (HBCD) is a brominated flame retardant found in the environment and human tissues. The toxicological effects of HBCD exposure are not clearly understood. We employed whole-genome RNA-sequencing on liver samples from male and female Fischer rats exposed to 0, 250, 1250, and 5000 mg technical mixture of HBCD/kg diet for 28 days to gain further insight into HBCD toxicity. HBCD altered 428 and 250 gene transcripts in males and females, respectively, which were involved in metabolism of xenobiotics, oxidative stress, immune response, metabolism of glucose and lipids, circadian regulation, cell cycle, fibrotic activity, and hormonal balance. Signature analysis supported that HBCD operates through the constitutive androstane and pregnane X receptors. The median transcriptomic benchmark dose (BMD) for the lowest statistically significant pathway was within 1.5-fold of the BMD for increased liver weight, while the BMD for the lowest pathway with at least three modeled genes (minimum 5% of pathway) was similar to the lowest apical endpoint BMD. The results show how transcriptional analyses can inform mechanisms underlying chemical toxicity and the doses at which potentially adverse effects occur. This experiment is part of a larger study exploring the use of toxicogenomics and high-throughput screening for human health risk assessment.
Collapse
Affiliation(s)
- Reza Farmahin
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Anne Marie Gannon
- Regulatory Toxicology Research Division, Health Products and Food Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Rémi Gagné
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Andrea Rowan-Carroll
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Byron Kuo
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Ivan Curran
- Regulatory Toxicology Research Division, Health Products and Food Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada.
| |
Collapse
|
40
|
Retracted
: Ailanthone exerts an antitumor function on the development of human lung cancer by upregulating microRNA‐195. J Cell Biochem 2018; 120:10444-10451. [DOI: 10.1002/jcb.28329] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/28/2018] [Indexed: 12/29/2022]
|
41
|
Li F, Liao J, Duan X, He Y, Liao Y. Upregulation of LINC00319 indicates a poor prognosis and promotes cell proliferation and invasion in cutaneous squamous cell carcinoma. J Cell Biochem 2018; 119:10393-10405. [PMID: 30145798 DOI: 10.1002/jcb.27388] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/09/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Fumin Li
- Department of Dermatology Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital Chengdu China
| | - Jinfeng Liao
- Department of Dermatology Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital Chengdu China
| | - Xiling Duan
- Department of Dermatology Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital Chengdu China
| | - Yuanmin He
- Department of Dermatology Affiliated Hospital of Southwest Medical University Luzhou China
| | - Yongmei Liao
- Department of Dermatology Affiliated Hospital of Southwest Medical University Luzhou China
| |
Collapse
|
42
|
Li X, Qin Z, Xue J, Zhang J, Zheng Y, Xu W, Xu T, Zou Q. Genetic variants in macrophage colony-stimulating factor are associated with risk of renal cell carcinoma in a Chinese population. Int J Biol Markers 2018; 33:321-328. [PMID: 29734839 DOI: 10.1177/1724600817748879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE This study was performed to investigate whether CSF-1 polymorphisms influenced the risk of renal cell carcinoma in a Chinese population. METHODS The potentially functional polymorphisms in CSF-1 (rs333951 and rs2050462) were genotyped in this hospital-based case-control study, comprising 1512 renal cell carcinoma patients and 1691 controls in a Chinese population using the TaqMan assay. Furthermore, odds ratios (ORs) and 95% confidence intervals (CI) were used to estimate such an association. The logistic regression was used to assess the association between these genetic polymorphisms and the risk of renal cell carcinoma. RESULTS We found the genotype and allele frequency distribution of rs2050462 were significantly associated with the increasing risk of renal cell carcinoma ( P = 0.007). However, no statistical significance was found in the association between CSF-1 rs333951 polymorphism and the susceptibility of renal cell carcinoma ( P = 0.589). The analysis of combined risk alleles revealed that patients with two to four risk alleles showed no elevated risk of renal cell carcinoma compared to those with zero to one risk alleles (adjusted OR 1.09; 95% CI 0.95, 1.26; P = 0.226). Furthermore, compared with the genotypes containing A allele (AC and AA), the patients carrying the CC genotype in rs2050462 had a significantly greater prevalence of clinical stage II and IV (adjusted OR 0.67; 95% CI 0.47, 0.94; P = 0.021; adjusted OR 0.50; 95% CI 0.29, 0.88; P = 0.015, respectively). CONCLUSIONS The functional rs2050462 in CSF-1 might have a substantial influence on the renal cell carcinoma susceptibility and evolution in the Chinese population.
Collapse
Affiliation(s)
- Xiao Li
- 1 Department of Urology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Zhiqiang Qin
- 2 Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianxin Xue
- 2 Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,3 Department of Urology, The Second Affiliated Hospital of Southeast University, Nanjing, China
| | - Jianzhong Zhang
- 2 Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuxiao Zheng
- 2 Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weizhang Xu
- 4 Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Ting Xu
- 1 Department of Urology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Qing Zou
- 1 Department of Urology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| |
Collapse
|
43
|
El-Gamal MI, Al-Ameen SK, Al-Koumi DM, Hamad MG, Jalal NA, Oh CH. Recent Advances of Colony-Stimulating Factor-1 Receptor (CSF-1R) Kinase and Its Inhibitors. J Med Chem 2018; 61:5450-5466. [PMID: 29293000 DOI: 10.1021/acs.jmedchem.7b00873] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Colony stimulation factor-1 receptor (CSF-1R), which is also known as FMS kinase, plays an important role in initiating inflammatory, cancer, and bone disorders when it is overstimulated by its ligand, CSF-1. Innate immunity, as well as macrophage differentiation and survival, are regulated by the stimulation of the CSF-1R. Another ligand, interlukin-34 (IL-34), was recently reported to activate the CSF-1R receptor in a different manner. The relationship between CSF-1R and microglia has been reviewed. Both CSF-1 antibodies and small molecule CSF-1R kinase inhibitors have now been tested in animal models and in humans. In this Perspective, we discuss the role of CSF-1 and IL-34 in producing cancer, bone disorders, and inflammation. We also review the newly discovered and improved small molecule kinase inhibitors and monoclonal antibodies that have shown potent activity toward CSF-1R, reported from 2012 until 2017.
Collapse
Affiliation(s)
- Mohammed I El-Gamal
- College of Pharmacy , University of Sharjah , Sharjah 27272 , United Arab Emirates.,Department of Medicinal Chemistry, Faculty of Pharmacy , University of Mansoura , Mansoura 35516 , Egypt
| | - Shahad K Al-Ameen
- College of Pharmacy , University of Sharjah , Sharjah 27272 , United Arab Emirates
| | - Dania M Al-Koumi
- College of Pharmacy , University of Sharjah , Sharjah 27272 , United Arab Emirates
| | - Mawadda G Hamad
- College of Pharmacy , University of Sharjah , Sharjah 27272 , United Arab Emirates
| | - Nouran A Jalal
- College of Pharmacy , University of Sharjah , Sharjah 27272 , United Arab Emirates
| | - Chang-Hyun Oh
- Center for Biomaterials , Korea Institute of Science and Technology , P.O. Box 131, Cheongryang , Seoul 130-650 , Republic of Korea.,Department of Biomolecular Science , University of Science and Technology , 113 Gwahangno, Yuseong-gu , Daejeon 305-333 , Republic of Korea
| |
Collapse
|
44
|
Zhang L, Li J, Wang Q, Meng G, Lv X, Zhou H, Li W, Zhang J. The relationship between microRNAs and the STAT3-related signaling pathway in cancer. Tumour Biol 2017; 39:1010428317719869. [PMID: 28859543 DOI: 10.1177/1010428317719869] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs are non-coding RNAs that regulate gene expression by targeting messenger RNA molecules in 3' untranslated region. Mounting evidence indicates that microRNAs regulate several factors to influence various biological activities that are related to carcinogenesis, including signal transducer and activator of transcription 3, which is a transcription factor that also acts as an oncogene. MicroRNAs influence signal transducer and activator of transcription 3 either by directly targeting or via other pathway components upstream or downstream of signal transducer and activator of transcription 3 such as Janus kinases, members of the suppressor of cytokine signaling family, and other genes that regulate cell proliferation, apoptosis, migration, invasion, and epithelial-mesenchymal transition. However, signal transducer and activator of transcription 3 activation changes the pattern of expression of microRNAs and mediates tumorigenesis. Moreover, the relationship between signal transducer and activator of transcription 3 and microRNAs varies among different kinds of cancers. A specific microRNA may act as an oncogene or tumor suppressor in different cancers, and microRNAs also directly or indirectly regulate signal transducer and activator of transcription 3 via pathways in the same cancers. In this review, we focus on the reciprocal regulation and roles of microRNAs and signal transducer and activator of transcription 3 in cancer, as well as describe current research progress on this relationship. A better understanding of this relationship may facilitate in the identification of targets for clinical therapeutics.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jilin University, Changchun, P.R. China
| | - Junyao Li
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jilin University, Changchun, P.R. China
| | - Qi Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jilin University, Changchun, P.R. China
| | - Guangping Meng
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jilin University, Changchun, P.R. China
| | - Xuejiao Lv
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jilin University, Changchun, P.R. China
| | - Hong Zhou
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jilin University, Changchun, P.R. China
| | - Wei Li
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jilin University, Changchun, P.R. China
| | - Jie Zhang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
45
|
Sun Y, Liu S, Qiao Z, Shang Z, Xia Z, Niu X, Qian L, Zhang Y, Fan L, Cao CX, Xiao H. Systematic comparison of exosomal proteomes from human saliva and serum for the detection of lung cancer. Anal Chim Acta 2017; 982:84-95. [DOI: 10.1016/j.aca.2017.06.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 06/09/2017] [Accepted: 06/10/2017] [Indexed: 12/22/2022]
|
46
|
Cao Y, Shi H, Ren F, Jia Y, Zhang R. Long non-coding RNA CCAT1 promotes metastasis and poor prognosis in epithelial ovarian cancer. Exp Cell Res 2017; 359:185-194. [PMID: 28754469 DOI: 10.1016/j.yexcr.2017.07.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/11/2017] [Accepted: 07/24/2017] [Indexed: 01/17/2023]
Abstract
In this study, we reported that long non-coding RNA (lncRNA) CCAT1 was upregulated in epithelial ovarian cancer (EOC) tissues, and was associated with FIGO stage, histological grade, lymph node metastasis and poor survival of EOC patients. Multivariate Cox regression analysis showed that CCAT1 was an independent prognostic indicator. While CCAT1 downregulation inhibited EOC cell epithelial-mesenchymal transition (EMT), migration and invasion, CCAT1 upregulation promoted EOC cell EMT, migration and invasion. We further identified and confirmed that miR-152 and miR-130b were the targets of CCAT1, and CCAT1 functioned by targeting miR-152 and miR-130b. Subsequently, ADAM17 and WNT1, and STAT3 and ZEB1 were confirmed to be the targets of miR-152 and miR-130b, respectively, and could be regulated by CCAT1 in EOC cells. Knockdown of anyone of these four proteins inhibited EOC cell EMT, migration and invasion. Taken together, our study first revealed a critical role of CCAT1-miR-152/miR-130b-ADAM17/WNT1/STAT3/ZEB1 regulatory network in EOC cell metastasis. These findings provide great insights into EOC initiation and progression, and novel potential therapeutic targets and biomarkers for diagnosis and prognosis for EOC.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Gynaecology, the First Affiliated Hospital of Zhengzhou University, China
| | - Huirong Shi
- Department of Gynaecology, the First Affiliated Hospital of Zhengzhou University, China.
| | - Fang Ren
- Department of Gynaecology, the First Affiliated Hospital of Zhengzhou University, China
| | - Yanyan Jia
- Department of Gynaecology, the First Affiliated Hospital of Zhengzhou University, China
| | - Ruitao Zhang
- Department of Gynaecology, the First Affiliated Hospital of Zhengzhou University, China
| |
Collapse
|
47
|
Zhao L, Zhao Y, He Y, Mao Y. miR-19b promotes breast cancer metastasis through targeting MYLIP and its related cell adhesion molecules. Oncotarget 2017; 8:64330-64343. [PMID: 28969074 PMCID: PMC5610006 DOI: 10.18632/oncotarget.19278] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/19/2017] [Indexed: 01/28/2023] Open
Abstract
miR-19b is a key molecule for cancer development, however its crucial roles in breast cancer metastasis are rarely studied right now. In this study, using several bioinformatics databases to predict the downstream targets for miR-19b, we verified that a novel target gene, myosin regulatory light chain interacting protein (MYLIP), could be directly down-regulated by miR-19b through its 3′-UTR region. MYLIP belongs to the cytoskeletal protein clusters and is involved in the regulation of cell movement and migration. We further explored that miR-19b was highly expressed and negatively correlated with MYLIP expression in breast cancer patient samples from the TCGA database. And the over-expression of miR-19b or inhibition of MYLIP facilitated the migration and metastasis of breast cancer cells, through conducting the wound healing assay and transwell invasion assay. Additionally, miR-19b could obviously promote breast tumor growth in mouse models and affect the expressions of cell adhesion molecules (including E-Cadherin, ICAM-1 and Integrin β1) by down-regulating E-Cadherin expression and up-regulating ICAM-1 and Integrin β1 expressions in vitro and in vivo. Meanwhile, miR-19b effectively activated the Integrin β downstream signaling pathways (such as the Ras-MAPK pathway and the PI3K-AKT pathway) and elevated the expression levels of essential genes in these two pathways. Taken together, these findings comprehensively illustrate the regulatory mechanisms ofmiR-19b in breast cancer metastasis, and provide us new insights for exploring MYLIP and its related cell adhesion molecules as promising therapeutic targets to interfere breast cancer development.
Collapse
Affiliation(s)
- Luqing Zhao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Yuelong Zhao
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Yanong He
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Yitao Mao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
48
|
Intersecting transcriptomic profiling technologies and long non-coding RNA function in lung adenocarcinoma: discovery, mechanisms, and therapeutic applications. Oncotarget 2017; 8:81538-81557. [PMID: 29113413 PMCID: PMC5655308 DOI: 10.18632/oncotarget.18432] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/13/2017] [Indexed: 02/07/2023] Open
Abstract
Previously thought of as junk transcripts and pseudogene remnants, long non-coding RNAs (lncRNAs) have come into their own over the last decade as an essential component of cellular activity, regulating a plethora of functions within multicellular organisms. lncRNAs are now known to participate in development, cellular homeostasis, immunological processes, and the development of disease. With the advent of next generation sequencing technology, hundreds of thousands of lncRNAs have been identified. However, movement beyond mere discovery to the understanding of molecular processes has been stymied by the complicated genomic structure, tissue-restricted expression, and diverse regulatory roles lncRNAs play. In this review, we will focus on lncRNAs involved in lung cancer, the most common cause of cancer-related death in the United States and worldwide. We will summarize their various methods of discovery, provide consensus rankings of deregulated lncRNAs in lung cancer, and describe in detail the limited functional analysis that has been undertaken so far.
Collapse
|
49
|
Geng F, Liu J, Guo Y, Li C, Wang H, Wang H, Zhao H, Pan Y. Persistent Exposure to Porphyromonas gingivalis Promotes Proliferative and Invasion Capabilities, and Tumorigenic Properties of Human Immortalized Oral Epithelial Cells. Front Cell Infect Microbiol 2017; 7:57. [PMID: 28286742 PMCID: PMC5323389 DOI: 10.3389/fcimb.2017.00057] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 02/13/2017] [Indexed: 01/17/2023] Open
Abstract
Recent epidemiological studies revealed a significant association between oral squamous cell carcinoma (OSCC) and Porphyromonas gingivalis, a major pathogen of periodontal disease. As a keystone pathogen of periodontitis, P. gingivalis is known not only to damage local periodontal tissues, but also to evade the host immune system and eventually affect systemic health. However, its role in OSCC has yet to be defined. To explore the underlying effect of chronic P. gingivalis infection on OSCC and to identify relevant biomarkers as promising targets for therapy and prevention, we established a novel model by exposing human immortalized oral epithelial cells (HIOECs) to P. gingivalis at a low multiplicity of infection (MOI) for 5–23 weeks. The P. gingivalis infected HIOECs were monitored for tumor biological alteration by proliferation, wound healing, transwell invasion, and gelatin zymography assays. Microarray and proteomic analyses were performed on HIOECs infected with P. gingivalis for 15 weeks, and some selected data were validated by quantitative real-time PCR and (or) western blot on cells infected for 15 and 23 weeks. Persistent exposure to P. gingivalis caused cell morphological changes, increased proliferation ability with higher S phase fraction in the cell cycle, and promoted cell migratory and invasive properties. In combining results of bioinformatics analyses and validation assays, tumor-related genes such as NNMT, FLI1, GAS6, lncRNA CCAT1, PDCD1LG2, and CD274 may be considered as the key regulators in tumor-like transformation in response to long-time exposure of P. gingivalis. In addition, some useful clinical biomarkers and novel proteins were also presented. In conclusion, P. gingivalis could promote tumorigenic properties of HIOECs, indicating that chronic P. gingivalis infection may be considered as a potential risk factor for oral cancer. The key regulators detected from the present model might be used in monitoring the development of OSCC with chronic periodontal infection.
Collapse
Affiliation(s)
- Fengxue Geng
- Department of Periodontics, School of Stomatology, China Medical University Shenyang, China
| | - Junchao Liu
- Department of Periodontics, School of Stomatology, China Medical University Shenyang, China
| | - Yan Guo
- Key laboratory of Liaoning Province Oral Disease, School of Stomatology, China Medical UniversityShenyang, China; Department of Oral Biology, School of Stomatology, China Medical UniversityShenyang, China
| | - Chen Li
- Department of Periodontics, School of Stomatology, China Medical University Shenyang, China
| | - Hongyang Wang
- Department of Medicine, the Center for Immunity, Inflammation & Regenerative Medicine, University of Virginia Charlottesville, VA, USA
| | - Hongyan Wang
- Department of Periodontics, School of Stomatology, China Medical University Shenyang, China
| | - Haijiao Zhao
- Department of Periodontics, School of Stomatology, China Medical University Shenyang, China
| | - Yaping Pan
- Department of Periodontics, School of Stomatology, China Medical UniversityShenyang, China; Department of Oral Biology, School of Stomatology, China Medical UniversityShenyang, China
| |
Collapse
|
50
|
Raggi C, Correnti M, Sica A, Andersen JB, Cardinale V, Alvaro D, Chiorino G, Forti E, Glaser S, Alpini G, Destro A, Sozio F, Di Tommaso L, Roncalli M, Banales JM, Coulouarn C, Bujanda L, Torzilli G, Invernizzi P. Cholangiocarcinoma stem-like subset shapes tumor-initiating niche by educating associated macrophages. J Hepatol 2017; 66:102-115. [PMID: 27593106 PMCID: PMC5522599 DOI: 10.1016/j.jhep.2016.08.012] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/17/2016] [Accepted: 08/18/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS A therapeutically challenging subset of cells, termed cancer stem cells (CSCs) are responsible for cholangiocarcinoma (CCA) clinical severity. Presence of tumor-associated macrophages (TAMs) has prognostic significance in CCA and other malignancies. Thus, we hypothesized that CSCs may actively shape their tumor-supportive immune niche. METHODS CCA cells were cultured in 3D conditions to generate spheres. CCA sphere analysis of in vivo tumorigenic-engraftment in immune-deficient mice and molecular characterization was performed. The in vitro and in vivo effect of CCA spheres on macrophage precursors was tested after culturing healthy donor cluster of differentiation (CD)14+ with CCA-sphere conditioned medium. RESULTS CCA spheres engrafted in 100% of transplanted mice and revealed a significant 20.3-fold increase in tumor-initiating fraction (p=0.0011) and a sustained tumorigenic potential through diverse xenograft-generations. Moreover, CCA spheres were highly enriched for CSC, liver cancer and embryonic stem cell markers both at gene and protein levels. Next, fluorescence-activated cell sorting analysis showed that in the presence of CCA sphere conditioned medium, CD14+ macrophages expressed key markers (CD68, CD115, human leukocyte antigen-D related, CD206) indicating that CCA sphere conditioned medium was a strong macrophage-activator. Gene expression profile of CCA sphere activated macrophages revealed unique molecular TAM-like features confirmed by high invasion capacity. Also, freshly isolated macrophages from CCA resections recapitulated a similar molecular phenotype of in vitro-educated macrophages. Consistent with invasive features, the largest CD163+ set was found in the tumor front of human CCA specimens (n=23) and correlated with a high level of serum cancer antigen 19.9 (n=17). Among mediators released by CCA spheres, only interleukin (IL)13, IL34 and osteoactivin were detected and further confirmed in CCA patient sera (n=12). Surprisingly, a significant association of IL13, IL34 and osteoactivin with sphere stem-like genes was provided by a CCA database (n=104). In vitro combination of IL13, IL34, osteoactivin was responsible for macrophage-differentiation and invasion, as well as for in vivo tumor-promoting effect. CONCLUSION CCA-CSCs molded a specific subset of stem-like associated macrophages thus providing a rationale for a synergistic therapeutic strategy for CCA-disease. LAY SUMMARY Immune plasticity represents an important hallmark of tumor outcome. Since cancer stem cells are able to manipulate stromal cells to their needs, a better definition of the key dysregulated immune subtypes responsible for cooperating in supporting tumor initiation may facilitate the development of new therapeutic approaches. Considering that human cholangiocarcinoma represents a clinical emergency, it is essential to move to predictive models in order to understand the adaptive process of macrophage component (imprinting, polarization and maintenance) engaged by tumor stem-like compartment.
Collapse
Affiliation(s)
- Chiara Raggi
- Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy.
| | - Margherita Correnti
- Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Antonio Sica
- Laboratory of Molecular Immunology, Humanitas Clinical and Research Center, Rozzano, Italy; Department of Pharmaceutical Sciences, University of Piemonte Orientale "Amedeo Avogadro" Novara, Italy
| | - Jesper B Andersen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Domenico Alvaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Giovanna Chiorino
- Cancer Genomics Laboratory, Fondazione Edo ed Elvo Tempia, Biella, Italy
| | - Elisa Forti
- Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Shannon Glaser
- Research, Central Texas Veterans Health Care System, Scott & White Digestive Disease Research Center, Scott & White, Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX, United States
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Scott & White Digestive Disease Research Center, Scott & White, Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX, United States
| | | | - Francesca Sozio
- Leukocyte Migration Laboratory, Humanitas Clinical and Research Center, Rozzano, Italy; Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luca Di Tommaso
- Pathology Unit, Humanitas Research Hospital, Rozzano, Italy; University of Milan Medical School, Milan, Italy
| | - Massimo Roncalli
- Pathology Unit, Humanitas Research Hospital, Rozzano, Italy; University of Milan Medical School, Milan, Italy
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), CIBERehd, Ikerbasque, San Sebastián, Spain
| | | | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), CIBERehd, Ikerbasque, San Sebastián, Spain
| | - Guido Torzilli
- Department of Hepatobiliary and General Surgery, Humanitas Research Hospital, Rozzano, Italy
| | - Pietro Invernizzi
- Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy; Program for Autoimmune Liver Diseases, International Center for Digestive Health, Department of Medicine and Surgery, University of Milan-Bicocca, Italy.
| |
Collapse
|