1
|
Hill CS, Parkinson R, Jaffee EM, Sugar E, Zheng L, Onners B, Weiss MJ, Wolfgang CL, Cameron JL, Pawlik TM, Rosati L, Le DT, Hacker-Prietz A, Lutz ER, Schulick R, Narang AK, Laheru DA, Herman JM. Phase 1 Study of Adjuvant Allogeneic Granulocyte-Macrophage Colony-Stimulating Factor-Transduced Pancreatic Tumor Cell Vaccine, Low-Dose Cyclophosphamide, and Stereotactic Body Radiation Therapy Followed by FOLFIRINOX in High-Risk Resected Pancreatic Ductal Adenocarcinoma. Int J Radiat Oncol Biol Phys 2025; 121:930-941. [PMID: 39547453 DOI: 10.1016/j.ijrobp.2024.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/06/2024] [Accepted: 10/06/2024] [Indexed: 11/17/2024]
Abstract
PURPOSE Local and distant progression remains common following resection of resectable pancreatic ductal adenocarcinoma (PDAC) despite adjuvant multiagent chemotherapy. We report a prospective institutional phase 1 trial incorporating adjuvant GVAX vaccine, low-dose cyclophosphamide (Cy), and stereotactic body radiation therapy (SBRT) followed by FOLFIRINOX (FFX) among patients who underwent resection of high-risk PDAC. PATIENTS AND METHODS The study design was a modified 3+3. Cohort 1 received 5-fraction SBRT to 33 Gy to the tumor bed and 25 Gy to elective nodes followed by 6 cycles of full-dose FFX. After toxicity review, cohort 2 had SBRT and was switched to modified FFX (mFFX). Cohort 3 had 1 cycle of Cy/GVAX followed by SBRT, mFFX, and 4 cycles of maintenance Cy/GVAX with 6-month Cy/GVAX boosts until progression. RESULTS Nineteen patients were enrolled with a median follow-up of 36.2 months. To be eligible, patients were required to have close/positive margins (within ≤1 mm) (71%) and/or lymph node metastasis (79%). Overall, 63% of patients had both. In cohort 1, 67% of patients received 6 cycles of FFX; in cohort 2, 75% received 6 cycles of modified FFX. In cohort 3, 12 patients received the first dose of Cy/GVAX and SBRT with 10 individuals (83%) receiving 6 cycles of mFFX. Cohort 3 had acceptable levels of grade ≥3 thrombocytopenia, neutropenia, and diarrhea after 2 cycles of mFFX. Median overall survival (OS)/disease-free survival (DFS) for the overall cohort and cohort 3 was 36.2/18.2 months and 61.3/24.1 months, respectively. One- and 2-year OS for cohort 3 was 83%/75%, respectively. At the last follow-up (median = x), 5 patients were alive (42%) in cohort 3. CONCLUSIONS This is the first prospective trial to evaluate adjuvant GVAX, Cy, SBRT, and mFFX in resected PDAC patients with high-risk features. This combination regimen was well tolerated with limited toxicity and promising survival outcomes, warranting future studies to validate this regimen in the adjuvant setting.
Collapse
Affiliation(s)
- Colin S Hill
- Laura and Issac Perlmutter Cancer Center at New York University, Department of Radiation Oncology, New York University Grossman School of Medicine, New York, New York
| | - Rose Parkinson
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth M Jaffee
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth Sugar
- Division of Biostatistics and Bioinformatics, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Lei Zheng
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Beth Onners
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Matthew J Weiss
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Lake Success, New York, New York
| | - Christopher L Wolfgang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, New York, University Grossman School of Medicine, New York, New York
| | - John L Cameron
- Department of Surgery, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Timothy M Pawlik
- Department of Surgery, The Urban Meyer III and Shelley Meyer Chair for Cancer Research, The Ohio State University, Wexner Medical Center, Columbus, Ohio
| | - Lauren Rosati
- Department of Pediatrics, Heersink School of Medicine, University of Alabama, Birmingham, Alabama
| | - Dung T Le
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Amy Hacker-Prietz
- Department of Radiation Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Richard Schulick
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado; University of Colorado Cancer Center, Aurora, Colorado
| | - Amol K Narang
- Department of Radiation Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daniel A Laheru
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Cancer Convergence Institute and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Joseph M Herman
- Radiation Medicine, Zucker School of Medicine at Hofstra/Northwell, Lake Success, New York, New York..
| |
Collapse
|
2
|
Yu J, Yin L, Guo W, Wang Q, Liu J, Zhang L, Ye H, Xia J, Xia Y, Wu J, Wang W, Yang Y, Zong D, He X, Wang L, Jiang H. Hypofractionated radiotherapy combined with a PD-1 inhibitor, granulocyte macrophage-colony stimulating factor, and thymosin-α1 in advanced metastatic solid tumors: a multicenter Phase II clinical trial. Cancer Immunol Immunother 2025; 74:98. [PMID: 39904914 PMCID: PMC11794727 DOI: 10.1007/s00262-024-03934-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/27/2024] [Indexed: 02/06/2025]
Abstract
PURPOSE This multicenter Phase II clinical study assessed the efficacy and safety of hypofractionated radiotherapy (HFRT) in combination with a PD-1 inhibitor, granulocyte macrophage-colony stimulating factor (GM-CSF), and thymosin-α1 in patients with heavily treated metastatic solid tumors. METHODS Patients were enrolled between September 2022 and May 2024. HFRT was administered to targeted tumors, and GM-CSF was administered for 14 days from day 1 of radiotherapy. Thymosin-α1 was injected concurrently twice weekly until disease progression. Immunotherapy with camrelizumab was started following HFRT and repeated every 3 weeks. GM-CSF was administered daily for 7 days before each cycle of immunotherapy. RESULTS By June 15, 2024, there were 37 study participants. The median follow-up duration was 5.97 months (range 0.40-20.9). Median progression-free survival was 3.5 months (95% confidence interval 2.73-4.23) in the intention-to-treat population. The objective response rate was 23.08%, and the disease control rate was 65.38%. Overall survival data are not yet mature. Abscopal effects were observed in 6 patients (23.08%); four of whom achieved a partial response. Patients who achieved a partial response were significantly more likely to have an abscopal effect( P = 0.025). The group with a lower baseline neutrophil-lymphocyte ratio had a significantly lower risks of distant metastasis and death( P = 0.024). Seventeen adverse reactions were reported, including six grade 3 or 4 adverse events. There were no grade 5 adverse events. CONCLUSION In conclusion, the trends in efficacy observed in our study are promising; however, well-designed protocols are essential to validate these findings.
Collapse
Affiliation(s)
- Jiamin Yu
- Department of Radiation Oncology, Affiliated Cancer Hospital of Nanjing Medical University, &Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 210009, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Li Yin
- Department of Radiation Oncology, Affiliated Cancer Hospital of Nanjing Medical University, &Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 210009, China
| | - Wenjie Guo
- Department of Radiation Oncology, Affiliated Cancer Hospital of Nanjing Medical University, &Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 210009, China
| | - Qiang Wang
- Department of Radiation Oncology, Xuzhou Cancer Hospital, Xuzhou, 221005, China
| | - Juying Liu
- Department of Radiation Oncology, Affiliated Cancer Hospital of Nanjing Medical University, &Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 210009, China
| | - Lansheng Zhang
- Department of Radiation Oncology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China
| | - Hongxun Ye
- Department of Radiation Oncology, Taixing People's Hospital Affiliated With Medical College of Yangzhou University, Taizhou, 225400, China
| | - Jianhong Xia
- Department of Radiation Oncology, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002, China
| | - Youyou Xia
- Department of Radiation Oncology, The First People's Hospital of Lianyungang, Lianyungang, 222061, China
| | - Jianfeng Wu
- Department of Radiation Oncology, Affiliated Cancer Hospital of Nanjing Medical University, &Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 210009, China
| | - Wanwei Wang
- Department of Radiation Oncology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, China
| | - Yanguang Yang
- Department of Radiation Oncology, Nantong Cancer Hospital, Nantong, 226361, China
| | - Dan Zong
- Department of Radiation Oncology, Affiliated Cancer Hospital of Nanjing Medical University, &Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 210009, China
| | - Xia He
- Department of Radiation Oncology, Affiliated Cancer Hospital of Nanjing Medical University, &Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 210009, China.
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| | - Lijun Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital of Nanjing Medical University, &Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 210009, China.
| | - Hong Jiang
- Department of Radiation Oncology, The People's Hospital of Jiawang District of Xuzhou City, Xuzhou, 221011, China.
| |
Collapse
|
3
|
Rafiq Z, Kang M, Barsoumian HB, Manzar GS, Hu Y, Leuschner C, Huang A, Masrorpour F, Lu W, Puebla-Osorio N, Welsh JW. Enhancing immunotherapy efficacy with synergistic low-dose radiation in metastatic melanoma: current insights and prospects. J Exp Clin Cancer Res 2025; 44:31. [PMID: 39881333 PMCID: PMC11781074 DOI: 10.1186/s13046-025-03281-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/09/2025] [Indexed: 01/31/2025] Open
Abstract
Recent advances in oncology research have highlighted the promising synergy between low-dose radiation therapy (LDRT) and immunotherapies, with growing evidence highlighting the unique benefits of the combination. LDRT has emerged as a potent tool for stimulating the immune system, triggering systemic antitumor effects by remodeling the tumor microenvironment. Notably, LDRT demonstrates remarkable efficacy even in challenging metastatic sites such as the liver (uveal) and brain (cutaneous), particularly in advanced melanoma stages. The increasing interest in utilizing LDRT for secondary metastatic sites of uveal, mucosal, or cutaneous melanomas underscores its potential efficacy in combination with various immunotherapies. This comprehensive review traverses the journey from laboratory research to clinical applications, elucidating LDRT's immunomodulatory role on the tumor immune microenvironment (TIME) and systemic immune responses. We meticulously examine the preclinical evidence and ongoing clinical trials, throwing light on the promising prospects of LDRT as a complementary therapy in melanoma treatment. Furthermore, we explore the challenges associated with LDRT's integration into combination therapies, addressing crucial factors such as optimal dosage, fractionation, treatment frequency, and synergy with other pharmacological agents. Considering its low toxicity profile, LDRT presents a compelling case for application across multiple lesions, augmenting the antitumor immune response in poly-metastatic disease scenarios. The convergence of LDRT with other disciplines holds immense potential for developing novel radiotherapy-combined modalities, paving the way for more effective and personalized treatment strategies in melanoma and beyond. Moreover, the dose-related toxicities of immunotherapies may be reduced by synergistic amplification of antitumor efficacy with LDRT.
Collapse
Affiliation(s)
- Zahid Rafiq
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, 500 W. University Ave, El Paso, TX, 79968, USA
| | - Mingyo Kang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hampartsoum B Barsoumian
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Gohar S Manzar
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yun Hu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Carola Leuschner
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ailing Huang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Fatemeh Masrorpour
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Weiqin Lu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, 500 W. University Ave, El Paso, TX, 79968, USA
| | - Nahum Puebla-Osorio
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - James W Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Salomon N, Helm A, Selmi A, Fournier C, Diken M, Schrörs B, Scholz M, Kreiter S, Durante M, Vascotto F. Carbon Ion and Photon Radiation Therapy Show Enhanced Antitumoral Therapeutic Efficacy With Neoantigen RNA-LPX Vaccines in Preclinical Colon Carcinoma Models. Int J Radiat Oncol Biol Phys 2024; 119:936-945. [PMID: 38163521 DOI: 10.1016/j.ijrobp.2023.12.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/07/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE Personalized liposome-formulated mRNA vaccines (RNA-LPX) are a powerful new tool in cancer immunotherapy. In preclinical tumor models, RNA-LPX vaccines are known to achieve potent results when combined with conventional X-ray radiation therapy (XRT). Densely ionizing radiation used in carbon ion radiation therapy (CIRT) may induce distinct effects in combination with immunotherapy compared with sparsely ionizing X-rays. METHODS AND MATERIALS Within this study, we investigate the potential of CIRT and isoeffective doses of XRT to mediate tumor growth inhibition and survival in murine colon adenocarcinoma models in conjunction with neoantigen (neoAg)-specific RNA-LPX vaccines encoding both major histocompatibility complex (MHC) class I- and class II-restricted tumor-specific neoantigens. We characterize tumor immune infiltrates and antigen-specific T cell responses by flow cytometry and interferon-γ enzyme-linked immunosorbent spot (ELISpot) analyses, respectively. RESULTS NeoAg RNA-LPX vaccines significantly potentiate radiation therapy-mediated tumor growth inhibition. CIRT and XRT alone marginally prime neoAg-specific T cell responses detected in the tumors but not in the blood or spleens of mice. Infiltration and cytotoxicity of neoAg-specific T cells is strongly driven by RNA-LPX vaccines and is accompanied by reduced expression of the inhibitory markers PD-1 and Tim-3 on these cells. The neoAg RNA-LPX vaccine shows similar overall therapeutic efficacy in combination with both CIRT and XRT, even if the physical radiation dose is lower for carbon ions than for X-rays. CONCLUSIONS We hence conclude that the combination of CIRT and neoAg RNA-LPX vaccines is a promising strategy for the treatment of radioresistant tumors.
Collapse
Affiliation(s)
- Nadja Salomon
- TRON gGmbH, Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Alexander Helm
- GSI Helmholtzzentrum for Heavy Ion Research GmbH, Darmstadt, Germany
| | - Abderaouf Selmi
- TRON gGmbH, Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Claudia Fournier
- GSI Helmholtzzentrum for Heavy Ion Research GmbH, Darmstadt, Germany
| | - Mustafa Diken
- TRON gGmbH, Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Barbara Schrörs
- TRON gGmbH, Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Michael Scholz
- GSI Helmholtzzentrum for Heavy Ion Research GmbH, Darmstadt, Germany
| | - Sebastian Kreiter
- TRON gGmbH, Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Marco Durante
- GSI Helmholtzzentrum for Heavy Ion Research GmbH, Darmstadt, Germany; Technical University Darmstadt, Institute of Condensed Matter Physics, Darmstadt, Germany; University Federico II, Department of Physics "Ettore Pancini", Naples, Italy
| | - Fulvia Vascotto
- TRON gGmbH, Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
5
|
Li C, Zhang Q, Luo H, Liu R, Feng S, Geng Y, Wang L, Yang Z, Zhang Y, Wang X. Carbon Ions Suppress Angiogenesis and Lung Metastases in Melanoma by Targeting CXCL10. Radiat Res 2023; 200:307-319. [PMID: 37527364 DOI: 10.1667/rade-22-0086.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 07/13/2023] [Indexed: 08/03/2023]
Abstract
Carbon-ion radiotherapy (CIRT) enhanced local control in patients with malignant melanoma. In several in vitro studies, carbon ions (C ions) have been also shown to decrease the metastatic potential of melanoma cells. CXC motif 10 (CXCL10) has been shown to play a crucial role in regulating tumor metastasis and it significantly increase in human embryonic kidney cells after heavy ion irradiations. This study sought to explore the regulatory effect of C ions on melanoma metastasis, emphasizing the role of CXCL10 in this process. To explore the potential regulatory effect of C ions on tumor metastasis in vivo, we developed a lung metastasis mouse model by injecting B16F10 cells into the footpad and subjected all mice to treatment with X rays and C ions. Subsequently, a series of assays, including histopathological analysis, enzyme-linked immunosorbent assay, real-time PCR, and western blotting, were conducted to assess the regulatory effects of C ions on melanoma. Our results showed that mice treated with C ions exhibited significantly less tumor vascularity, enhanced tumor necrosis, alleviated lung metastasis, and experienced longer survival than X-ray irradiated mice. Moreover, VEGF expression in B16F10 cells was significantly reduced by C-ion treatment, which could be alleviated by CXCL10 knockdown in vitro. Further investigations revealed that co-culturing with HUVECs resulted in a significant inhibition of proliferation, migration, and tube formation ability in the C-ion treated group, while the opposite effect was observed in the C-ion treated with si-CXCL10 group. In conclusion, our findings demonstrate that treatment with carbon-ion radiation can suppress angiogenesis and lung metastases in melanoma by specifically targeting CXCL10. These results suggest the potential utility of carbon ions in treating melanoma.
Collapse
Affiliation(s)
- Chengcheng Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Qiuning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Department of Oncology, Lanzhou Heavy Ions Hospital, Lanzhou, China
| | - Hongtao Luo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Ruifeng Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Shuangwu Feng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yichao Geng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Lina Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Zhen Yang
- School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yanying Zhang
- Laboratory Animal Center of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiaohu Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Department of Oncology, Lanzhou Heavy Ions Hospital, Lanzhou, China
- School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
6
|
Medler TR, Blair TC, Alice AF, Dowdell AK, Piening BD, Crittenden MR, Gough MJ. Myeloid MyD88 restricts CD8 + T cell response to radiation therapy in pancreatic cancer. Sci Rep 2023; 13:8634. [PMID: 37244938 PMCID: PMC10224952 DOI: 10.1038/s41598-023-35834-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/24/2023] [Indexed: 05/29/2023] Open
Abstract
Radiation therapy induces immunogenic cell death in cancer cells, whereby released endogenous adjuvants are sensed by immune cells to direct adaptive immune responses. TLRs expressed on several immune subtypes recognize innate adjuvants to direct downstream inflammatory responses in part via the adapter protein MyD88. We generated Myd88 conditional knockout mice to interrogate its contribution to the immune response to radiation therapy in distinct immune populations in pancreatic cancer. Surprisingly, Myd88 deletion in Itgax (CD11c)-expressing dendritic cells had little discernable effects on response to RT in pancreatic cancer and elicited normal T cell responses using a prime/boost vaccination strategy. Myd88 deletion in Lck-expressing T cells resulted in similar or worsened responses to radiation therapy compared to wild-type mice and lacked antigen-specific CD8+ T cell responses from vaccination, similar to observations in Myd88-/- mice. Lyz2-specific loss of Myd88 in myeloid populations rendered tumors more susceptible to radiation therapy and elicited normal CD8+ T cell responses to vaccination. scRNAseq in Lyz2-Cre/Myd88fl/fl mice revealed gene signatures in macrophages and monocytes indicative of enhanced type I and II interferon responses, and improved responses to RT were dependent on CD8+ T cells and IFNAR1. Together, these data implicate MyD88 signaling in myeloid cells as a critical source of immunosuppression that hinders adaptive immune tumor control following radiation therapy.
Collapse
Affiliation(s)
- Terry R Medler
- Earle A. Chiles Research Institute, Providence Cancer Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan Street, Suite 2N100, Portland, OR, 97213, USA
| | - Tiffany C Blair
- Earle A. Chiles Research Institute, Providence Cancer Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan Street, Suite 2N100, Portland, OR, 97213, USA
| | - Alejandro F Alice
- Earle A. Chiles Research Institute, Providence Cancer Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan Street, Suite 2N100, Portland, OR, 97213, USA
| | - Alexa K Dowdell
- Earle A. Chiles Research Institute, Providence Cancer Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan Street, Suite 2N100, Portland, OR, 97213, USA
| | - Brian D Piening
- Earle A. Chiles Research Institute, Providence Cancer Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan Street, Suite 2N100, Portland, OR, 97213, USA
| | - Marka R Crittenden
- Earle A. Chiles Research Institute, Providence Cancer Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan Street, Suite 2N100, Portland, OR, 97213, USA
- The Oregon Clinic, Portland, OR, USA
| | - Michael J Gough
- Earle A. Chiles Research Institute, Providence Cancer Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan Street, Suite 2N100, Portland, OR, 97213, USA.
| |
Collapse
|
7
|
Medler TR, Kramer G, Bambina S, Gunderson AJ, Alice A, Blair T, Zebertavage L, Duhen T, Duhen R, Young K, Crittenden MR, Gough MJ. Tumor resident memory CD8 T cells and concomitant tumor immunity develop independently of CD4 help. Sci Rep 2023; 13:6277. [PMID: 37072485 PMCID: PMC10113239 DOI: 10.1038/s41598-023-33508-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 04/13/2023] [Indexed: 05/03/2023] Open
Abstract
Tissue resident memory (Trm) CD8 T cells infiltrating tumors represent an enriched population of tumor antigen-specific T cells, and their presence is associated with improved outcomes in patients. Using genetically engineered mouse pancreatic tumor models we demonstrate that tumor implantation generates a Trm niche that is dependent on direct antigen presentation by cancer cells. However, we observe that initial CCR7-mediated localization of CD8 T cells to tumor draining lymph nodes is required to subsequently generate CD103+ CD8 T cells in tumors. We observe that the formation of CD103+ CD8 T cells in tumors is dependent on CD40L but independent of CD4 T cells, and using mixed chimeras we show that CD8 T cells can provide their own CD40L to permit CD103+ CD8 T cell differentiation. Finally, we show that CD40L is required to provide systemic protection against secondary tumors. These data suggest that CD103+ CD8 T cell formation in tumors can occur independent of the two-factor authentication provided by CD4 T cells and highlight CD103+ CD8 T cells as a distinct differentiation decision from CD4-dependent central memory.
Collapse
Affiliation(s)
- Terry R Medler
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR, 480597213, USA
| | - Gwen Kramer
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR, 480597213, USA
| | - Shelly Bambina
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR, 480597213, USA
| | - Andrew J Gunderson
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR, 480597213, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The OH State University, Columbus, OH, 43210, USA
| | - Alejandro Alice
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR, 480597213, USA
| | - Tiffany Blair
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR, 480597213, USA
| | - Lauren Zebertavage
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR, 480597213, USA
| | - Thomas Duhen
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR, 480597213, USA
| | - Rebekka Duhen
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR, 480597213, USA
| | - Kristina Young
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR, 480597213, USA
- The Oregon Clinic, Portland, OR, 97213, USA
| | - Marka R Crittenden
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR, 480597213, USA
- The Oregon Clinic, Portland, OR, 97213, USA
| | - Michael J Gough
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR, 480597213, USA.
| |
Collapse
|
8
|
Yazaki S, Salgado R, Shimoi T, Yoshida M, Shiino S, Kaneda T, Kojima Y, Sumiyoshi-Okuma H, Nishikawa T, Sudo K, Noguchi E, Murata T, Takayama S, Suto A, Ohe Y, Yonemori K. Impact of adjuvant chemotherapy and radiotherapy on tumour-infiltrating lymphocytes and PD-L1 expression in metastatic breast cancer. Br J Cancer 2023; 128:568-575. [PMID: 36522476 PMCID: PMC9938235 DOI: 10.1038/s41416-022-02072-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Chemotherapy and radiotherapy were postulated to induce an inflamed tumour microenvironment. We aimed to evaluate the effects of adjuvant chemotherapy/radiotherapy on tumour-infiltrating lymphocytes (TILs) and programmed death-ligand 1 (PD-L1) expression in metastatic breast cancer. METHODS We identified paired primary and metastatic tumours in 85 patients with breast cancer. Stromal TILs were assessed according to international guidelines. PD-L1 expression was evaluated using the VENTANA SP142 assay. RESULTS TILs were significantly lower in metastatic tumours than in primary tumours (12.2 vs. 8.3%, p = 0.049). PD-L1 positivity was similar between primary and metastatic tumours (21.2 vs. 14.1%, p = 0.23). TILs were significantly lower in patients who received adjuvant chemotherapy than in those who did not (-9.07 vs. 1.19%, p = 0.01). However, radiotherapy had no significant effect on TILs (p = 0.44). Decreased TILs predicted worse post-recurrence survival (hazard ratio, 2.94; 95% confidence interval [CI]: 1.41-6.13, p = 0.003), while increased TILs was associated with a better prognosis (HR, 0.12; 95% CI: 0.02-0.08, p = 0.04). CONCLUSIONS TILs decreased in metastatic tumours, particularly in patients who relapsed after adjuvant chemotherapy. Changes in TILs from primary to metastatic sites could be a prognostic factor after recurrence.
Collapse
Affiliation(s)
- Shu Yazaki
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
- Cancer Medicine, Jikei University Graduate School of Medicine, Tokyo, Japan
| | - Roberto Salgado
- Department of Pathology, GZA-ZNA Hospitals, Antwerp, Belgium
- Division of Research, Peter Mac Callum Cancer Centre, Melbourne, Australia
| | - Tatsunori Shimoi
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan.
| | - Masayuki Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Sho Shiino
- Department of Breast Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Tomoya Kaneda
- Department of Radiation Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yuki Kojima
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | | | - Tadaaki Nishikawa
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Kazuki Sudo
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Emi Noguchi
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Takeshi Murata
- Department of Breast Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Shin Takayama
- Department of Breast Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Akihiko Suto
- Department of Breast Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Yuichiro Ohe
- Cancer Medicine, Jikei University Graduate School of Medicine, Tokyo, Japan
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Kan Yonemori
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
9
|
San-Román-Gil M, Torres-Jiménez J, Pozas J, Esteban-Villarrubia J, Albarrán-Fernández V, Álvarez-Ballesteros P, Chamorro-Pérez J, Rosero-Rodríguez D, Orejana-Martín I, Martínez-Delfrade Í, Reguera-Puertas P, Fuentes-Mateos R, Ferreiro-Monteagudo R. Current Landscape and Potential Challenges of Immune Checkpoint Inhibitors in Microsatellite Stable Metastatic Colorectal Carcinoma. Cancers (Basel) 2023; 15:863. [PMID: 36765821 PMCID: PMC9913409 DOI: 10.3390/cancers15030863] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Colorectal cancer (CRC) is the third most frequent cancer and the second most common cause of cancer-related death in Europe. High microsatellite instability (MSI-H) due to a deficient DNA mismatch repair (dMMR) system can be found in 5% of metastatic CRC (mCRC) and has been established as a biomarker of response to immunotherapy in these tumors. Therefore, immune checkpoint inhibitors (ICIs) in mCRC with these characteristics were evaluated with results showing remarkable response rates and durations of response. The majority of mCRC cases have high levels of DNA mismatch repair proteins (pMMR) with consequent microsatellite stability or low instability (MSS or MSI-low), associated with an inherent resistance to ICIs. This review aims to provide a comprehensive analysis of the possible approaches to overcome the mechanisms of resistance and evaluates potential biomarkers to establish the role of ICIs in pMMR/MSS/MSI-L (MSS) mCRC.
Collapse
Affiliation(s)
- María San-Román-Gil
- Medical Oncology Department, Ramón y Cajal University Hospital, 28034 Madrid, Spain
| | - Javier Torres-Jiménez
- Medical Oncology Department, Clínico San Carlos University Hospital, 28040 Madrid, Spain
| | - Javier Pozas
- Medical Oncology Department, Ramón y Cajal University Hospital, 28034 Madrid, Spain
| | | | | | | | - Jesús Chamorro-Pérez
- Medical Oncology Department, Ramón y Cajal University Hospital, 28034 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
10
|
Yang K, Han W, Jiang X, Piffko A, Bugno J, Han C, Li S, Liang H, Xu Z, Zheng W, Wang L, Wang J, Huang X, Ting JPY, Fu YX, Lin W, Weichselbaum RR. Zinc cyclic di-AMP nanoparticles target and suppress tumours via endothelial STING activation and tumour-associated macrophage reinvigoration. NATURE NANOTECHNOLOGY 2022; 17:1322-1331. [PMID: 36302963 DOI: 10.1038/s41565-022-01225-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 09/05/2022] [Indexed: 05/26/2023]
Abstract
The clinical utility of stimulator of interferon genes (STING) agonists has been limited due to poor tumour-targeting and unwanted toxicity following systemic delivery. Here we describe a robust tumour-targeted STING agonist, ZnCDA, formed by the encapsulation of bacterial-derived cyclic dimeric adenosine monophosphate (CDA) in nanoscale coordination polymers. Intravenously injected ZnCDA prolongs CDA circulation and efficiently targets tumours, mediating robust anti-tumour effects in a diverse set of preclinical cancer models at a single dose. Our findings reveal that ZnCDA enhances tumour accumulation by disrupting endothelial cells in the tumour vasculature. ZnCDA preferentially targets tumour-associated macrophages to modulate antigen processing and presentation and subsequent priming of an anti-tumour T-cell response. ZnCDA reinvigorates the anti-tumour activity of both radiotherapy and immune checkpoint inhibitors in immunologically 'cold' pancreatic and glioma tumour models, offering a promising combination strategy for the treatment of intractable human cancers.
Collapse
Affiliation(s)
- Kaiting Yang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Wenbo Han
- Department of Chemistry, University of Chicago, Chicago, IL, USA
- Taiji Group, Chongqing, China
| | - Xiaomin Jiang
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Andras Piffko
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jason Bugno
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
- Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, IL, USA
| | - Chuanhui Han
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Peking University, Beijing, China
| | - Sirui Li
- Lineberger Comprehensive Cancer Center, Department of Genetics, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hua Liang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Ziwan Xu
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Wenxin Zheng
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Liangliang Wang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Jiaai Wang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Xiaona Huang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Jenny P Y Ting
- Lineberger Comprehensive Cancer Center, Department of Genetics, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yang-Xin Fu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Wenbin Lin
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA.
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA.
- Department of Chemistry, University of Chicago, Chicago, IL, USA.
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA.
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
11
|
Gough MJ, Crittenden MR. The paradox of radiation and T cells in tumors. Neoplasia 2022; 31:100808. [PMID: 35691060 PMCID: PMC9194456 DOI: 10.1016/j.neo.2022.100808] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/05/2022] [Accepted: 05/13/2022] [Indexed: 10/27/2022]
Abstract
In this review we consider what appears to be a paradox in immunotherapies based around radiation therapy. The paradox is based on three main points. 1. That T cells are needed for radiation's efficacy; 2. That tumor-specific T cells are enriched in the field of treatment; and 3. That radiation kills T cells in the treatment field. We discuss evidence of the effect of radiation on T cells in the field given their ongoing movement in and out of tissues and the tumor, and how the movement of T cells impacts the treated primary tumor and untreated distant metastases. Given this evidence, we revisit the paradox to understand how the extraordinary efficacy of radiation and immunity in preclinical models is dependent on this radiation sensitive cell.
Collapse
Affiliation(s)
- Michael J Gough
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan St., Portland, OR 97213, USA.
| | - Marka R Crittenden
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan St., Portland, OR 97213, USA; The Oregon Clinic, Portland, OR, 97213, USA
| |
Collapse
|
12
|
Dendritic Cell-Based Immunotherapy in Hot and Cold Tumors. Int J Mol Sci 2022; 23:ijms23137325. [PMID: 35806328 PMCID: PMC9266676 DOI: 10.3390/ijms23137325] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/22/2022] Open
Abstract
Dendritic cells mediate innate and adaptive immune responses and are directly involved in the activation of cytotoxic T lymphocytes that kill tumor cells. Dendritic cell-based cancer immunotherapy has clinical benefits. Dendritic cell subsets are diverse, and tumors can be hot or cold, depending on their immunogenicity; this heterogeneity affects the success of dendritic cell-based immunotherapy. Here, we review the ontogeny of dendritic cells and dendritic cell subsets. We also review the characteristics of hot and cold tumors and briefly introduce therapeutic trials related to hot and cold tumors. Lastly, we discuss dendritic cell-based cancer immunotherapy in hot and cold tumors.
Collapse
|
13
|
Wang L, Jiang J, Chen Y, Jia Q, Chu Q. The roles of CC chemokines in response to radiation. Radiat Oncol 2022; 17:63. [PMID: 35365161 PMCID: PMC8974090 DOI: 10.1186/s13014-022-02038-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/20/2022] [Indexed: 01/21/2023] Open
Abstract
Radiotherapy is an effective regimen for cancer treatment alone or combined with chemotherapy or immunotherapy. The direct effect of radiotherapy involves radiation-induced DNA damage, and most studies have focused on this area to improve the efficacy of radiotherapy. Recently, the immunomodulatory effect of radiation on the tumour microenvironment has attracted much interest. Dying tumour cells can release multiple immune-related molecules, including tumour-associated antigens, chemokines, and inflammatory mediators. Then, immune cells are attracted to the irradiated site, exerting immunostimulatory or immunosuppressive effects. CC chemokines play pivotal roles in the trafficking process. The CC chemokine family includes 28 members that attract different immune subsets. Upon irradiation, tumour cells or immune cells can release different CC chemokines. Here, we mainly discuss the importance of CCL2, CCL3, CCL5, CCL8, CCL11, CCL20 and CCL22 in radiotherapy. In irradiated normal tissues, released chemokines induce epithelial to mesenchymal transition, thus promoting tissue injury. In the tumour microenvironment, released chemokines recruit cancer-associated cells, such as tumour-infiltrating lymphocytes, myeloid-derived suppressor cells and tumour-associated macrophages, to the tumour niche. Thus, CC chemokines have protumour and antitumour properties. Based on the complex roles of CC chemokines in the response to radiation, it would be promising to target specific chemokines to alleviate radiation-induced injury or promote tumour control.
Collapse
|
14
|
Alimohammadi A, Fajkovic H, Remzi M, Shariat S, Schmidinger M. Recent pharmacological approaches for the treatment of renal cell carcinoma. Expert Rev Clin Pharmacol 2022; 15:187-195. [PMID: 35285369 DOI: 10.1080/17512433.2022.2053521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Therapies combining either two immune check-point inhibitors (ICIs) or an ICI and a tyrosine kinase inhibitor (TKI) have been shown to improve overall survival (OS), progression-free survival (PFS) and objective response rates (ORR) in metastatic renal cell carcinoma (mRCC); moreover, unprecedented rates of complete remission (CR) have been reported. AREAS COVERED Among six randomized trials of ICI combinations, four have outperformed the TKI sunitinib in terms of OS. The CheckMate 214 trial investigated the combination of nivolumab (a programmed cell death protein 1 [PD-1] inhibitor) and ipilimumab (a cytotoxic T-lymphocyte antigen-4 [CTLA-4)] inhibitor). Three other trials evaluated combinations of an ICI and a TKI. These combinations are: 1) pembrolizumab (PD-1 inhibitor) plus axitinib, 2) nivolumab plus cabozantinib, and 3) pembrolizumab plus lenvatinib. This short review addresses the findings of these trials, comparing outcomes and discussing the challenges of decision-making in clinical practice. EXPERT OPINION Despite major improvements in outcomes with ICI combinations, not all patients benefit from this approach. Predictive biomarkers and new therapeutic approaches are urgently needed to overcome treatment failures. A growing understanding of immune escape mechanisms and the interplay between the immune response and the gut microbiota may offer additional rescue strategies beyond ICIs and TKIs.
Collapse
Affiliation(s)
- Arman Alimohammadi
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Harun Fajkovic
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Mesut Remzi
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Shahrokh Shariat
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.,Department of Urology, Weill Cornell Medical College, New York, New York, USA.,Department of Urology, University of Texas Southwestern, Dallas, Texas, USA.,Department of Urology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.,Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,Division of Urology, Department of Special Surgery, Jordan University Hospital, The University of Jordan, Amman, Jordan
| | - Manuela Schmidinger
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
Ren X, Guo S, Guan X, Kang Y, Liu J, Yang X. Immunological Classification of Tumor Types and Advances in Precision Combination Immunotherapy. Front Immunol 2022; 13:790113. [PMID: 35296094 PMCID: PMC8918549 DOI: 10.3389/fimmu.2022.790113] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/28/2022] [Indexed: 12/13/2022] Open
Abstract
Immunity is an important physiological function acquired throughout evolution as a defense system against the invasion of pathogenic microorganisms. The immune system also eliminates senescent cells and maintains homeostasis, monitoring cell mutations and preventing tumor development via the action of the immune cells and molecules. Immunotherapy often relies on the interaction of immune cells with the tumor microenvironment (TME). Based on the distribution of the number of lymphocytes (CD3 and CD8) in the center and edge of the tumor and the expression level of B7-H1/PD-L1, tumors are divided into hot tumors, cold tumors, and intermediate tumors (including immune-suppressed and isolated). This review focuses on the advances in precision combination immunotherapy, which has been widely explored in recent years, and its application in different tumor types.
Collapse
Affiliation(s)
- Xiufang Ren
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Songyi Guo
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Xiaojiao Guan
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ye Kang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jiamei Liu
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xianghong Yang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Xianghong Yang,
| |
Collapse
|
16
|
Bazyar S, O’Brien ET, Benefield T, Roberts VR, Kumar RJ, Gupta GP, Zhou O, Lee YZ. Immune-Mediated Effects of Microplanar Radiotherapy with a Small Animal Irradiator. Cancers (Basel) 2021; 14:155. [PMID: 35008319 PMCID: PMC8750301 DOI: 10.3390/cancers14010155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022] Open
Abstract
Spatially fractionated radiotherapy has been shown to have effects on the immune system that differ from conventional radiotherapy (CRT). We compared several aspects of the immune response to CRT relative to a model of spatially fractionated radiotherapy (RT), termed microplanar radiotherapy (MRT). MRT delivers hundreds of grays of radiation in submillimeter beams (peak), separated by non-radiated volumes (valley). We have developed a preclinical method to apply MRT by a commercial small animal irradiator. Using a B16-F10 murine melanoma model, we first evaluated the in vitro and in vivo effect of MRT, which demonstrated significant treatment superiority relative to CRT. Interestingly, we observed insignificant treatment responses when MRT was applied to Rag-/- and CD8-depleted mice. An immuno-histological analysis showed that MRT recruited cytotoxic lymphocytes (CD8), while suppressing the number of regulatory T cells (Tregs). Using RT-qPCR, we observed that, compared to CRT, MRT, up to the dose that we applied, significantly increased and did not saturate CXCL9 expression, a cytokine that plays a crucial role in the attraction of activated T cells. Finally, MRT combined with anti-CTLA-4 ablated the tumor in half of the cases, and induced prolonged systemic antitumor immunity.
Collapse
Affiliation(s)
- Soha Bazyar
- Department of Radiation Oncology, University of Maryland, Maryland, MD 21201, USA;
| | - Edward Timothy O’Brien
- Department of Physics and Astronomy, The University of North Carolina, Chapel Hill, NC 27514, USA;
| | - Thad Benefield
- Department of Radiology, The University of North Carolina, Chapel Hill, NC 27514, USA;
| | | | - Rashmi J. Kumar
- Medical Scientist Training Program, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA;
| | - Gaorav P. Gupta
- Department of Radiation Oncology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA;
| | - Otto Zhou
- Department of Applied Physics Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA;
| | - Yueh Z. Lee
- Department of Radiology, The University of North Carolina, Chapel Hill, NC 27514, USA;
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| |
Collapse
|
17
|
Yu X, Liu B, Zhang N, Wang Q, Cheng G. Immune Response: A Missed Opportunity Between Vitamin D and Radiotherapy. Front Cell Dev Biol 2021; 9:646981. [PMID: 33928081 PMCID: PMC8076745 DOI: 10.3389/fcell.2021.646981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/24/2021] [Indexed: 11/24/2022] Open
Abstract
Radiotherapy (RT) is a mainstay treatment in several types of cancer and acts by mediating various forms of cancer cell death, although it is still a large challenge to enhance therapy efficacy. Radiation resistance represents the main cause of cancer progression, therefore, overcoming treatment resistance is now the greatest challenge for clinicians. Increasing evidence indicates that immune response plays a role in reprogramming the radiation-induced tumor microenvironment (TME). Intriguingly, radiation-induced immunosuppression possibly overwhelms the ability of immune system to ablate tumor cells. This induces an immune equilibrium, which, we hypothesize, is an opportunity for radiosensitizers to make actions. Vitamin D has been reported to act in synergistic with RT by potentiating antiproliferative effect induced by therapeutics. Additionally, vitamin D can also regulate the TME and may even lead to immunostimulation by blocking immunosuppression following radiation. Previous reviews have focused on vitamin D metabolism and epidemiological trials, however, the synergistic effect of vitamin D and existing therapies remains unknown. This review summarizes vitamin D mediated radiosensitization, radiation immunity, and vitamin D-regulated TME, which may contribute to more successful vitamin D-adjuvant radiotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Guanghui Cheng
- Department of Radiation Oncology, China–Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
18
|
Aaes TL, Vandenabeele P. The intrinsic immunogenic properties of cancer cell lines, immunogenic cell death, and how these influence host antitumor immune responses. Cell Death Differ 2021; 28:843-860. [PMID: 33214663 PMCID: PMC7937679 DOI: 10.1038/s41418-020-00658-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 01/30/2023] Open
Abstract
Modern cancer therapies often involve the combination of tumor-directed cytotoxic strategies and generation of a host antitumor immune response. The latter is unleashed by immunotherapies that activate the immune system generating a more immunostimulatory tumor microenvironment and a stronger tumor antigen-specific immune response. Studying the interaction between antitumor cytotoxic therapies, dying cancer cells, and the innate and adaptive immune system requires appropriate experimental tumor models in mice. In this review, we discuss the immunostimulatory and immunosuppressive properties of cancer cell lines commonly used in immunogenic cell death (ICD) studies being apoptosis or necroptosis. We will especially focus on the antigenic component of immunogenicity. While in several cancer cell lines the epitopes of endogenously expressed tumor antigens are known, these intrinsic epitopes are rarely determined in experimental apoptotic or necroptotic ICD settings. Instead by far the most ICD research studies investigate the antigenic response against exogenously expressed model antigens such as ovalbumin or retroviral epitopes (e.g., AH1). In this review, we will argue that the immune response against endogenous tumor antigens and the immunopeptidome profile of cancer cell lines affect the eventual biological readouts in the typical prophylactic tumor vaccination type of experiments used in ICD research, and we will propose additional methods involving immunopeptidome profiling, major histocompatibility complex molecule expression, and identification of tumor-infiltrating immune cells to document intrinsic immunogenicity following different cell death modalities.
Collapse
Affiliation(s)
- Tania Løve Aaes
- grid.11486.3a0000000104788040Unit for Cell Clearance in Health and Disease, VIB Center for Inflammation Research, Ghent, Belgium ,grid.5342.00000 0001 2069 7798Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium ,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Peter Vandenabeele
- grid.5342.00000 0001 2069 7798Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium ,Cancer Research Institute Ghent (CRIG), Ghent, Belgium ,grid.11486.3a0000000104788040Unit of Molecular Signaling and Cell Death, VIB Center for Inflammation Research, Ghent, Belgium
| |
Collapse
|
19
|
Optimal combination treatment regimens of vaccine and radiotherapy augment tumor-bearing host immunity. Commun Biol 2021; 4:78. [PMID: 33469123 PMCID: PMC7815836 DOI: 10.1038/s42003-020-01598-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 12/14/2020] [Indexed: 01/29/2023] Open
Abstract
A major obstacle to immunotherapy is insufficient infiltration of effector immune cells into the tumor microenvironment. Radiotherapy greatly reduces tumor burden but relapses often occur. Here we show that the immunosuppressive tumor microenvironment was gradually established by recruiting Tregs after radiation. Despite tumors being controlled after depletion of Tregs in the irradiated area, improvement of mice survival remained poor. A much better antitumor effect was achieved with vaccination followed by radiation than other treatments. Vaccination followed by radiation recruited more effector T cells in tumor regions, which responded to high levels of chemokines. Sequential combination of vaccination and radiotherapy could elicit distinct host immune responses. Our study demonstrated that optimal combination of irradiation and vaccination is required to achieve effective antitumor immune responses. We propose a combination regimen that could be easily translated into the clinic and offer an opportunity for rational combination therapies design in cancer treatment.
Collapse
|
20
|
Role of nano-sensitizers in radiation therapy of metastatic tumors. Cancer Treat Res Commun 2021; 26:100303. [PMID: 33454575 DOI: 10.1016/j.ctarc.2021.100303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022]
Abstract
Cancer metastasis remains the major cause of global cancer deaths. Radiation therapy remains one of the golden standards for cancer treatment. Nanomedicine based strategies have been designed and developed in order to improve the clinical outcomes of cancer therapy and diagnosis at molecular levels. Over the years, several researchers have shown their interest in using radiosensitizers made of high Z elements. Metal-based nanosystems also play a dual role by enhancing the synergistic effect of cell killing via various biological immune responses. This review summarizes the role of Nano-sensitizers in boosting radiation (ionizing/non-ionizing radiations) induced biological responses in treatment of metastatic cancer models.
Collapse
|
21
|
Zheng W, Ranoa DRE, Huang X, Hou Y, Yang K, Poli EC, Beckett MA, Fu YX, Weichselbaum RR. RIG-I-Like Receptor LGP2 Is Required for Tumor Control by Radiotherapy. Cancer Res 2020; 80:5633-5641. [PMID: 33087322 DOI: 10.1158/0008-5472.can-20-2324] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/11/2020] [Accepted: 10/15/2020] [Indexed: 11/16/2022]
Abstract
Dendritic cells (DC) play an essential role in innate immunity and radiation-elicited immune responses. LGP2 is a RIG-I-like receptor involved in cytoplasmic RNA recognition and antiviral responses. Although LGP2 has also been linked to cell survival of both tumor cells and T cells, the role of LGP2 in mediating DC function and antitumor immunity elicited by radiotherapy remains unclear. Here, we report that tumor DCs are linked to the clinical outcome of patients with breast cancer who received radiotherapy, and the presence of DC correlates with gene expression of LGP2 in the tumor microenvironment. In preclinical models, host LGP2 was essential for optimal antitumor control by ionizing radiation (IR). The absence of LGP2 in DC dampened type I IFN production and the priming capacity of DC. In the absence of LGP2, MDA5-mediated activation of type I IFN signaling was abrogated. The MDA5/LGP2 agonist high molecular weight poly I:C improved the antitumor effect of IR. This study reveals a previously undefined role of LGP2 in host immunity and provides a new strategy to improve the efficacy of radiotherapy. SIGNIFICANCE: These findings reveal an essential role of LGP2 in promoting antitumor immunity after radiotherapy and provide a new strategy to enhance radiotherapy.
Collapse
Affiliation(s)
- Wenxin Zheng
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, Chicago, Illinois
| | - Diana Rose E Ranoa
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, Chicago, Illinois
| | - Xiaona Huang
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, Chicago, Illinois
| | - Yuzhu Hou
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, Chicago, Illinois
| | - Kaiting Yang
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, Chicago, Illinois
| | | | - Michael A Beckett
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, Chicago, Illinois
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas.
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, Chicago, Illinois.
| |
Collapse
|
22
|
Vanneste BG, Van Limbergen EJ, Dubois L, Samarska IV, Wieten L, Aarts MJ, Marcelissen T, De Ruysscher D. Immunotherapy as sensitizer for local radiotherapy. Oncoimmunology 2020; 9:1832760. [PMID: 33194319 PMCID: PMC7605354 DOI: 10.1080/2162402x.2020.1832760] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/28/2022] Open
Abstract
The purpose of this report was to systematically review the radiation enhancement factor (REF) effects of immunotherapy on radiotherapy (RT) to the local tumor in comparison with other traditional radiation sensitizers such as cisplatin. PubMed and Medline databases were searched until February 2019. Reports with abscopal effect in the results were excluded. Graphs of the selected papers were digitized using Plot Digitizer (Sourceforge.net) in order to calculate the tumor growth delay (TGD) caused by immunotherapy. To enable comparison between different studies,the TGD were used to define the REF between RT versus the RT/immunotherapy combination. Thirty-two preclinical papers, and nine clinical series were selected. Different mouse models were exposed to RT doses ranging from 1 to 10 fractions of 1.8 to 20 Gray (Gy) per fraction. Endpoints were heterogeneous, ranging from regression to complete local response. No randomized clinical studies were identified. The median preclinical REF effect of different immunotherapy was varying from 1.7 to 9.1. There was no relationship observed either with subclasses of immunotherapy orRT doses. In the clinical studies, RT doses ranged from 1 to 37 fractions of 1.8 to 24 Gy per fraction. Most clinical trials used ipilimumab and interleukin-2. Local control rate in the clinical series ranged from 66% to 100%. A strong REF of immunotherapy (1.7 to 9.1) was observed, this being higher than traditionally sensitizers such as cisplatin (1.1). This result implies that for the same RT dose, a higher local control was achieved with a combination of immunotherapy and RT in preclinical settings. This study therefore supports the use of combined RT and immunotherapy to improve local tumor control in clinical settings without exacerbation of toxicities.
Collapse
Affiliation(s)
- Ben G.L. Vanneste
- Department of Radiation Oncology (MAASTRO Clinic), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Evert J Van Limbergen
- Department of Radiation Oncology (MAASTRO Clinic), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ludwig Dubois
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Iryna V. Samarska
- Department of Pathology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - L. Wieten
- Department of Transplantation Immunology, Tissue Typing Laboratory, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - M. J.B. Aarts
- Department of Medical Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - T. Marcelissen
- Department of Urology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Dirk De Ruysscher
- Department of Radiation Oncology (MAASTRO Clinic), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
23
|
Bolis M, Vallerga A, Fratelli M. Computational deconvolution of transcriptomic data for the study of tumor-infiltrating immune cells. Int J Biol Markers 2020; 35:20-22. [PMID: 32079462 DOI: 10.1177/1724600820903317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cancer is a complex disease characterized by a wide array of mutually interacting components constituting the tumor microenvironment (connective tissue, vascular system, immune cells), many of which are targeted therapeutically. In particular, immune checkpoint inhibitors have recently become an established part of the treatment of cancer. Despite great promise, only a portion of the patients display durable response. Current research efforts are concentrated on the determination of tumor-specific biomarkers predictive of response, such as tumor mutational burden, microsatellite instability, and neo-antigen presentation. However, it is clear that several additional characteristics pertaining to the tumor microenvironment play a critical role in the effectiveness of immunotherapy. Here we comment on the computational methods that are used for the analysis of the tumor microenvironment components from transcriptomic data, discuss the critical needs, and foresee potential evolutions in the field.
Collapse
Affiliation(s)
- Marco Bolis
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Arianna Vallerga
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | | |
Collapse
|
24
|
Peng Q, Qiu X, Zhang Z, Zhang S, Zhang Y, Liang Y, Guo J, Peng H, Chen M, Fu YX, Tang H. PD-L1 on dendritic cells attenuates T cell activation and regulates response to immune checkpoint blockade. Nat Commun 2020; 11:4835. [PMID: 32973173 PMCID: PMC7518441 DOI: 10.1038/s41467-020-18570-x] [Citation(s) in RCA: 352] [Impact Index Per Article: 70.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/27/2020] [Indexed: 12/31/2022] Open
Abstract
Immune checkpoint blockade therapies have shown clinical promise in a variety of cancers, but how tumor-infiltrating T cells are activated remains unclear. In this study, we explore the functions of PD-L1 on dendritic cells (DCs), which highly express PD-L1. We observe that PD-L1 on DC plays a critical role in limiting T cell responses. Type 1 conventional DCs are essential for PD-L1 blockade and they upregulate PD-L1 upon antigen uptake. Upregulation of PD-L1 on DC is mediated by type II interferon. While DCs are the major antigen presenting cells for cross-presenting tumor antigens to T cells, subsequent PD-L1 upregulation protects them from killing by cytotoxic T lymphocytes, yet dampens the antitumor responses. Blocking PD-L1 in established tumors promotes re-activation of tumor-infiltrating T cells for tumor control. Our study identifies a critical and dynamic role of PD-L1 on DC, which needs to be harnessed for better invigoration of antitumor immune responses.
Collapse
Affiliation(s)
- Qi Peng
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
- Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xiangyan Qiu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Zihan Zhang
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
| | - Silin Zhang
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
| | - Yuanyuan Zhang
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
| | - Yong Liang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Jingya Guo
- Chinese Academy of Science Key Laboratory for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Hua Peng
- Chinese Academy of Science Key Laboratory for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Mingyi Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Haidong Tang
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
25
|
Basics and Frontiers on Pancreatic Cancer for Radiation Oncology: Target Delineation, SBRT, SIB technique, MRgRT, Particle Therapy, Immunotherapy and Clinical Guidelines. Cancers (Basel) 2020; 12:cancers12071729. [PMID: 32610592 PMCID: PMC7407382 DOI: 10.3390/cancers12071729] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 12/17/2022] Open
Abstract
Pancreatic cancer represents a modern oncological urgency. Its management is aimed to both distal and local disease control. Resectability is the cornerstone of treatment aim. It influences the clinical presentation’s definitions as up-front resectable, borderline resectable and locally advanced (unresectable). The main treatment categories are neoadjuvant (preoperative), definitive and adjuvant (postoperative). This review will focus on (i) the current indications by the available national and international guidelines; (ii) the current standard indications for target volume delineation in radiotherapy (RT); (iii) the emerging modern technologies (including particle therapy and Magnetic Resonance [MR]-guided-RT); (iv) stereotactic body radiotherapy (SBRT), as the most promising technical delivery application of RT in this framework; (v) a particularly promising dose delivery technique called simultaneous integrated boost (SIB); and (vi) a multimodal integration opportunity: the combination of RT with immunotherapy.
Collapse
|
26
|
Salomon N, Vascotto F, Selmi A, Vormehr M, Quinkhardt J, Bukur T, Schrörs B, Löewer M, Diken M, Türeci Ö, Sahin U, Kreiter S. A liposomal RNA vaccine inducing neoantigen-specific CD4 + T cells augments the antitumor activity of local radiotherapy in mice. Oncoimmunology 2020; 9:1771925. [PMID: 32923128 PMCID: PMC7458669 DOI: 10.1080/2162402x.2020.1771925] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Antigen-encoding, lipoplex-formulated RNA (RNA-LPX) enables systemic delivery to lymphoid compartments and selective expression in resident antigen-presenting cells. We report here that the rejection of CT26 tumors, mediated by local radiotherapy (LRT), is further augmented in a CD8+ T cell-dependent manner by an RNA-LPX vaccine that encodes CD4+ T cell-recognized neoantigens (CD4 neoantigen vaccine). Whereas CD8+ T cells induced by LRT alone were primarily directed against the immunodominant gp70 antigen, mice treated with LRT plus the CD4 neoantigen vaccine rejected gp70-negative tumors and were protected from rechallenge with these tumors, indicating a potent poly-antigenic CD8+ T cell response and T cell memory. In the spleens of CD4 neoantigen-vaccinated mice, we found a high number of activated, poly-functional, Th1-like CD4+ T cells against ME1, the immunodominant CD4 neoantigen within the poly-neoantigen vaccine. LRT itself strongly increased CD8+ T cell numbers and clonal expansion. However, tumor infiltrates of mice treated with CD4 neoantigen vaccine/LRT, as compared to LRT alone, displayed a higher fraction of activated gp70-specific CD8+ T cells, lower PD-1/LAG-3 expression and contained ME1-specific IFNγ+ CD4+ T cells capable of providing cognate help. CD4 neoantigen vaccine/LRT treatment followed by anti-CTLA-4 antibody therapy further enhanced the efficacy with complete remission of gp70-negative CT26 tumors and survival of all mice. Our data highlight the power of combining synergistic modes of action and warrants further exploration of the presented treatment schema.
Collapse
Affiliation(s)
- Nadja Salomon
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg-University gGmbH, 55131 Mainz, Germany
| | - Fulvia Vascotto
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg-University gGmbH, 55131 Mainz, Germany
| | - Abderaouf Selmi
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg-University gGmbH, 55131 Mainz, Germany
| | | | | | - Thomas Bukur
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg-University gGmbH, 55131 Mainz, Germany
| | - Barbara Schrörs
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg-University gGmbH, 55131 Mainz, Germany
| | - Martin Löewer
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg-University gGmbH, 55131 Mainz, Germany
| | - Mustafa Diken
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg-University gGmbH, 55131 Mainz, Germany
| | | | - Ugur Sahin
- BioNTech SE, 55131 Mainz, Germany.,Research Center for Immunotherapy (FZI) of the University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Sebastian Kreiter
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg-University gGmbH, 55131 Mainz, Germany
| |
Collapse
|
27
|
Roy S, Sethi TK, Taylor D, Kim YJ, Johnson DB. Breakthrough concepts in immune-oncology: Cancer vaccines at the bedside. J Leukoc Biol 2020; 108:1455-1489. [PMID: 32557857 DOI: 10.1002/jlb.5bt0420-585rr] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 12/11/2022] Open
Abstract
Clinical approval of the immune checkpoint blockade (ICB) agents for multiple cancer types has reinvigorated the long-standing work on cancer vaccines. In the pre-ICB era, clinical efforts focused on the Ag, the adjuvants, the formulation, and the mode of delivery. These translational efforts on therapeutic vaccines range from cell-based (e.g., dendritic cells vaccine Sipuleucel-T) to DNA/RNA-based platforms with various formulations (liposome), vectors (Listeria monocytogenes), or modes of delivery (intratumoral, gene gun, etc.). Despite promising preclinical results, cancer vaccine trials without ICB have historically shown little clinical activity. With the anticipation and expansion of combinatorial immunotherapeutic trials with ICB, the cancer vaccine field has entered the personalized medicine arena with recent advances in immunogenic neoantigen-based vaccines. In this article, we review the literature to organize the different cancer vaccines in the clinical space, and we will discuss their advantages, limits, and recent progress to overcome their challenges. Furthermore, we will also discuss recent preclinical advances and clinical strategies to combine vaccines with checkpoint blockade to improve therapeutic outcome and present a translational perspective on future directions.
Collapse
Affiliation(s)
- Sohini Roy
- Department of Otolaryngology - Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Tarsheen K Sethi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - David Taylor
- Department of Otolaryngology - Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Young J Kim
- Department of Otolaryngology - Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Douglas B Johnson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
28
|
Arina A, Gutiontov SI, Weichselbaum RR. Radiotherapy and Immunotherapy for Cancer: From "Systemic" to "Multisite". Clin Cancer Res 2020; 26:2777-2782. [PMID: 32047000 PMCID: PMC10759929 DOI: 10.1158/1078-0432.ccr-19-2034] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/28/2020] [Accepted: 02/06/2020] [Indexed: 11/16/2022]
Abstract
In the era of cancer immunotherapy, there is significant interest in combining conventional cancer therapies, such as radiotherapy, with drugs that stimulate the immune system. The observation that ionizing radiation applied to murine tumors delays the growth of distant tumors ("abscopal effect") and that this effect is potentiated by immunostimulatory drugs, led to clinical trials in which often only one lesion is irradiated in combination with immunotherapy drugs. The results of these initial clinical trials combining radio therapy and immunotherapy show that a meaningful abscopal effect is still infrequent. Recent preclinical data suggest that preexistent intratumoral T cells can survive radiation and contribute to its therapeutic effect. In this review, we discuss possible mechanisms underlying the preclinical/clinical discrepancies regarding the abscopal effect, and we propose the irradiation of multiple or all tumor sites in combination with systemic immunotherapy as a possible avenue to increase the efficacy of radio-immunotherapy.
Collapse
Affiliation(s)
- Ainhoa Arina
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois.
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, Illinois
| | - Stanley I Gutiontov
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois.
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, Illinois
| |
Collapse
|
29
|
Mariotti FR, Quatrini L, Munari E, Vacca P, Tumino N, Pietra G, Mingari MC, Moretta L. Inhibitory checkpoints in human natural killer cells: IUPHAR Review 28. Br J Pharmacol 2020; 177:2889-2903. [PMID: 32335915 PMCID: PMC7279970 DOI: 10.1111/bph.15081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint inhibitors have revolutionized cancer therapy leading to exceptional success. However, there is still the need to improve their efficacy in non‐responder patients. Natural killer (NK) cells represent the first line of defence against tumours, due to their ability to release immunomodulatory cytokines and kill target cells that have undergone malignant transformation. Harnessing NK cell response will open new possibilities to improve control of tumour growth. In this respect inhibitory checkpoints expressed on these innate lymphocytes represents a promising target for next‐generation immunotherapy. In this review, we will summarize recent evidences on the expression of NK cells receptors in cancer, with a focus on the inhibitory checkpoint programmed cell death protein 1 (PD‐1). We will also highlight the strength and limitations of the blockade of PD‐1 inhibitory pathway and suggest new combination strategies that may help to unleash more efficiently NK cell anti‐tumour response.
Collapse
Affiliation(s)
- F R Mariotti
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - L Quatrini
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - E Munari
- Department of Pathology, Sacro Cuore Don Calabria, Negrar, Italy
| | - P Vacca
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - N Tumino
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - G Pietra
- Laboratory of Immunology, Department of Integrated Oncological Therapies, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Experimental Medicine (DIMES), Università di Genova, Genoa, Italy
| | - M C Mingari
- Laboratory of Immunology, Department of Integrated Oncological Therapies, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Experimental Medicine (DIMES), Center of Excellence for Biomedical Research, Università di Genova, Genoa, Italy
| | - L Moretta
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
30
|
Zebertavage LK, Alice A, Crittenden MR, Gough MJ. Transcriptional Upregulation of NLRC5 by Radiation Drives STING- and Interferon-Independent MHC-I Expression on Cancer Cells and T Cell Cytotoxicity. Sci Rep 2020; 10:7376. [PMID: 32355214 PMCID: PMC7193601 DOI: 10.1038/s41598-020-64408-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/15/2020] [Indexed: 12/19/2022] Open
Abstract
Radiation therapy has been shown to enhance the efficacy of various T cell-targeted immunotherapies that improve antigen-specific T cell expansion, T regulatory cell depletion, or effector T cell function. Additionally, radiation therapy has been proposed as a means to recruit T cells to the treatment site and modulate cancer cells as effector T cell targets. The significance of these features remains unclear. We set out to determine, in checkpoint inhibitor resistant models, which components of radiation are primarily responsible for overcoming this resistance. In order to model the vaccination effect of radiation, we used a Listeria monocytogenes based vaccine to generate a large population of tumor antigen specific T cells but found that the presence of cells with cytotoxic capacity was unable to replicate the efficacy of radiation with combination checkpoint blockade. Instead, we demonstrated that a major role of radiation was to increase the susceptibility of surviving cancer cells to CD8+ T cell-mediated control through enhanced MHC-I expression. We observed a novel mechanism of genetic induction of MHC-I in cancer cells through upregulation of the MHC-I transactivator NLRC5. These data support the critical role of local modulation of tumors by radiation to improve tumor control with combination immunotherapy.
Collapse
Affiliation(s)
- Lauren K Zebertavage
- Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, OR, 97213, USA.,Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Alejandro Alice
- Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, OR, 97213, USA
| | - Marka R Crittenden
- Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, OR, 97213, USA.,The Oregon Clinic, Portland, OR, 97213, USA
| | - Michael J Gough
- Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, OR, 97213, USA.
| |
Collapse
|
31
|
Gough MJ, Sharon S, Crittenden MR, Young KH. Using Preclinical Data to Design Combination Clinical Trials of Radiation Therapy and Immunotherapy. Semin Radiat Oncol 2020; 30:158-172. [PMID: 32381295 PMCID: PMC7213059 DOI: 10.1016/j.semradonc.2019.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Immunotherapies are rapidly entering the clinic as approved treatments for diverse cancer pathologies. Radiation therapy is an integral partner in cancer therapy, commonly as part of complicated multimodality approaches that optimize patient outcomes. Preclinical studies have demonstrated that the success of radiation therapy in tumor control is due in part to immune mechanisms, and that outcomes following radiation therapy can be improved through combination with a range of immunotherapies. However, preclinical models of cancer are very different from patient tumors, and the way these preclinical tumors are treated is often very different from standard of care treatment of patients. This review examines the preclinical and clinical data for the role of the immune system in radiation therapy outcomes, and how to integrate preclinical findings into clinical trials, using ongoing studies as examples.
Collapse
Affiliation(s)
- Michael J Gough
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR.
| | - Shay Sharon
- Department of Oral and Maxillofacial Surgery, Hadassah and Hebrew University Medical Center, Jerusalem, ISRAEL
| | - Marka R Crittenden
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR; The Oregon Clinic, Portland, OR
| | - Kristina H Young
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR; The Oregon Clinic, Portland, OR
| |
Collapse
|
32
|
Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov 2019; 18:197-218. [PMID: 30610226 DOI: 10.1038/s41573-018-0007-y] [Citation(s) in RCA: 2173] [Impact Index Per Article: 362.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunotherapies are the most rapidly growing drug class and have a major impact in oncology and on human health. It is increasingly clear that the effectiveness of immunomodulatory strategies depends on the presence of a baseline immune response and on unleashing of pre-existing immunity. Therefore, a general consensus emerged on the central part played by effector T cells in the antitumour responses. Recent technological, analytical and mechanistic advances in immunology have enabled the identification of patients who are more likely to respond to immunotherapy. In this Review, we focus on defining hot, altered and cold tumours, the complexity of the tumour microenvironment, the Immunoscore and immune contexture of tumours, and we describe approaches to treat such tumours with combination immunotherapies, including checkpoint inhibitors. In the upcoming era of combination immunotherapy, it is becoming critical to understand the mechanisms responsible for hot, altered or cold immune tumours in order to boost a weak antitumour immunity. The impact of combination therapy on the immune response to convert an immune cold into a hot tumour will be discussed.
Collapse
|
33
|
D'Alterio C, Buoncervello M, Ieranò C, Napolitano M, Portella L, Rea G, Barbieri A, Luciano A, Scognamiglio G, Tatangelo F, Anniciello AM, Monaco M, Cavalcanti E, Maiolino P, Romagnoli G, Arra C, Botti G, Gabriele L, Scala S. Targeting CXCR4 potentiates anti-PD-1 efficacy modifying the tumor microenvironment and inhibiting neoplastic PD-1. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:432. [PMID: 31661001 PMCID: PMC6819555 DOI: 10.1186/s13046-019-1420-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/10/2019] [Indexed: 12/21/2022]
Abstract
Background Inefficient T-cell access to the tumor microenvironment (TME) is among the causes of tumor immune-resistance. Previous evidence demonstrated that targeting CXCR4 improves anti-PD-1/PD-L1 efficacy reshaping TME. To evaluate the role of newly developed CXCR4 antagonists (PCT/IB2011/000120/ EP2528936B1/US2013/0079292A1) in potentiating anti-PD-1 efficacy two syngeneic murine models, the MC38 colon cancer and the B16 melanoma-human CXCR4-transduced, were employed. Methods Mice were subcutaneously injected with MC38 (1 × 106) or B16-hCXCR4 (5 × 105). After two weeks, tumors bearing mice were intraperitoneally (ip) treated with murine anti-PD-1 [RMP1–14] (5 mg/kg, twice week for 2 weeks), Pep R (2 mg/kg, 5 days per week for 2 weeks), or both agents. The TME was evaluated through immunohistochemistry and flow-cytometry. In addition, the effects of the human-anti-PD-1 nivolumab and/or Peptide-R54 (Pep R54), were evaluated on human melanoma PES43 cells and xenografts treated. Results The combined treatment, Pep R plus anti-PD-1, reduced the MC38 Relative Tumor Volume (RTV) by 2.67 fold (p = 0.038) while nor anti-PD-1, neither Pep R significantly impacted on tumor growth. Significant higher number of Granzyme B (GZMB) positive cells was detected in MC38 tumors from mice treated with the combined treatment (p = 0.016) while anti-PD-1 determined a modest but significant increase of tumor-infiltrating GZMB positive cells (p = 0.035). Also, a lower number of FoxP3 positive cells was detected (p = 0.022). In the B16-hCXCR4 tumors, two weeks of combined treatment reduced tumor volume by 2.27 fold while nor anti-PD-1 neither Pep R significantly impacted on tumor growth. A significant higher number of GRZB positive cells was observed in B16-hCXCR4 tumors treated with combined treatment (p = 0,0015) as compared to anti-PD-1 (p = 0.028). The combined treatment reduced CXCR4, CXCL12 and PD-L1 expression in MC38 tumors. In addition, flow cytometry on fresh B16-hCXCR4 tumors showed significantly higher Tregs number following anti-PD-1 partially reversed by the combined treatment Pep R and anti-PD-1. Combined treatment determined an increase of CD8/Tregs and CD8/MDSC ratio. To dissect the effect of anti-PD-1 and CXCR4 targeting on PD-1 expressed by human cancer cells, PES43 human melanoma xenograft model was employed. In vitro human anti-PD-1 nivolumab or pembrolizumab (10 μM) reduced PES43 cells growth while nivolumab (10 μM) inhibited pERK1/2, P38 MAPK, pAKT and p4EBP. PES43 xenograft mice were treated with Pep R54, a newly developed Pep R derivative (AcHN-Arg-Ala-[DCys-Arg- Nal(2′)-His-Pen]- COOH), plus nivolumab. After 3 weeks of combined treatment a significant reduction in tumor growth was shown (p = 0.038). PES43 lung disseminated tumor cells (DTC) were detected in fresh lung tissues as melanoma positive MCSP-APC+ cells. Although not statistically significant, DTC-PES43 cells were reduced in mice lungs treated with combined treatment while nivolumab or Pep R54 did not affect DTC number. Conclusion Combined treatment with the new developed CXCR4 antagonist, Pep R, plus anti-PD-1, reduced tumor-growth in two syngeneic murine models, anti-PD-1 sensitive and resistant, potentiating Granzyme and reducing Foxp3 cells infiltration. In addition, the human specific CXCR4 antagonist, Pep R54, cooperated with nivolumab in inhibiting the growth of the PD-1 expressing human PES43 melanoma xenograft. This evidence sheds light on PD-1 targeting mechanisms and paves the way for CXCR4/PD-1 targeting combination therapy.
Collapse
Affiliation(s)
- Crescenzo D'Alterio
- Functional Genomics, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, 80,131, Naples, Italy
| | - Maria Buoncervello
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Caterina Ieranò
- Functional Genomics, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, 80,131, Naples, Italy
| | - Maria Napolitano
- Functional Genomics, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, 80,131, Naples, Italy
| | - Luigi Portella
- Functional Genomics, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, 80,131, Naples, Italy
| | - Giuseppina Rea
- Functional Genomics, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, 80,131, Naples, Italy
| | - Antonio Barbieri
- Animal Facility, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, 80,131, Naples, Italy
| | - Antonio Luciano
- Animal Facility, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, 80,131, Naples, Italy
| | - Giosuè Scognamiglio
- Pathology, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, 80,131, Naples, Italy
| | - Fabiana Tatangelo
- Pathology, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, 80,131, Naples, Italy
| | - Anna Maria Anniciello
- Pathology, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, 80,131, Naples, Italy
| | - Mario Monaco
- Functional Genomics, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, 80,131, Naples, Italy
| | - Ernesta Cavalcanti
- Division of Laboratory Medicine, Department of Pathology and Laboratory Diagnostics, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, 80,131, Naples, Italy
| | - Piera Maiolino
- Pharmacy, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, 80,131, Naples, Italy
| | - Giulia Romagnoli
- Department of Haematology, Oncology and Molecular Biology Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Claudio Arra
- Animal Facility, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, 80,131, Naples, Italy
| | - Gerardo Botti
- Pathology, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, 80,131, Naples, Italy
| | - Lucia Gabriele
- Department of Haematology, Oncology and Molecular Biology Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Stefania Scala
- Functional Genomics, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, 80,131, Naples, Italy.
| |
Collapse
|
34
|
Arina A, Beckett M, Fernandez C, Zheng W, Pitroda S, Chmura SJ, Luke JJ, Forde M, Hou Y, Burnette B, Mauceri H, Lowy I, Sims T, Khodarev N, Fu YX, Weichselbaum RR. Tumor-reprogrammed resident T cells resist radiation to control tumors. Nat Commun 2019; 10:3959. [PMID: 31477729 PMCID: PMC6718618 DOI: 10.1038/s41467-019-11906-2] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
Successful combinations of radiotherapy and immunotherapy depend on the presence of live T cells within the tumor; however, radiotherapy is believed to damage T cells. Here, based on longitudinal in vivo imaging and functional analysis, we report that a large proportion of T cells survive clinically relevant doses of radiation and show increased motility, and higher production of interferon gamma, compared with T cells from unirradiated tumors. Irradiated intratumoral T cells can mediate tumor control without newly-infiltrating T cells. Transcriptomic analysis suggests T cell reprogramming in the tumor microenvironment and similarities with tissue-resident memory T cells, which are more radio-resistant than circulating/lymphoid tissue T cells. TGFβ is a key upstream regulator of T cell reprogramming and contributes to intratumoral Tcell radio-resistance. These findings have implications for the design of radio-immunotherapy trials in that local irradiation is not inherently immunosuppressive, and irradiation of multiple tumors might optimize systemic effects of radiotherapy.
Collapse
Affiliation(s)
- Ainhoa Arina
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA.
| | - Michael Beckett
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Christian Fernandez
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Wenxin Zheng
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Sean Pitroda
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Steven J Chmura
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Jason J Luke
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Martin Forde
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Yuzhu Hou
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Byron Burnette
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Helena Mauceri
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Israel Lowy
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Tasha Sims
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Nikolai Khodarev
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
35
|
Seitz C, Rückert M, Deloch L, Weiss EM, Utz S, Izydor M, Ebel N, Schlücker E, Fietkau R, Gaipl US, Frey B. Tumor Cell-Based Vaccine Generated With High Hydrostatic Pressure Synergizes With Radiotherapy by Generating a Favorable Anti-tumor Immune Microenvironment. Front Oncol 2019; 9:805. [PMID: 31555582 PMCID: PMC6722191 DOI: 10.3389/fonc.2019.00805] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/07/2019] [Indexed: 12/13/2022] Open
Abstract
Dendritic cell (DC)-based vaccines pulsed with high hydrostatic pressure (HHP)-inactivated tumor cells have been demonstrated to be a promising immunotherapy for solid tumors. We focused on sole injection of tumor cells that were inactivated by HHP and their combination with local radiotherapy (RTx) for in vivo induction of anti-tumor immune responses. HHP-treatment of tumor cells resulted in pre-dominantly necrotic cells with degraded DNA. We confirmed that treatments at 200 MPa or higher completely inhibited the formation of tumor cell colonies in vitro. No tumor growth was seen in vivo after injection of HHP-treated tumor cells. Single vaccination with HHP-killed tumor cells combined with local RTx significantly retarded tumor growth and improved the survival as shown in B16-F10 and CT26 tumor models. In B16-F10 tumors that were irradiated with 2 × 5Gy and vaccinated once with HHP-killed tumor cells, the amount of natural killer (NK) cells, monocytes/macrophages, CD4+ T cells and NKT cells was significantly increased, while the amount of B cells was significantly decreased. In both models, a trend of increased CD8+ T cell infiltration was observed. Generally, in irradiated tumors high amounts of CD4+ and CD8+ T cells expressing PD-1 were found. We conclude that HHP generates inactivated tumor cells that can be used as a tumor vaccine. Moreover, we show for the first time that tumor cell-based vaccine acts synergistically with RTx to significantly retard tumor growth by generating a favorable anti-tumor immune microenvironment.
Collapse
Affiliation(s)
- Christoph Seitz
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Rückert
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Lisa Deloch
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Eva-Maria Weiss
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany.,Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Sebastian Utz
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Marika Izydor
- Institute of Process Machinery and Systems Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nina Ebel
- Department of Cardiac Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Eberhard Schlücker
- Institute of Process Machinery and Systems Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Udo S Gaipl
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Benjamin Frey
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
36
|
Fontana F, Fusciello M, Groeneveldt C, Capasso C, Chiaro J, Feola S, Liu Z, Mäkilä EM, Salonen JJ, Hirvonen JT, Cerullo V, Santos HA. Biohybrid Vaccines for Improved Treatment of Aggressive Melanoma with Checkpoint Inhibitor. ACS NANO 2019; 13:6477-6490. [PMID: 31100004 PMCID: PMC6595659 DOI: 10.1021/acsnano.8b09613] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Recent approaches in the treatment of cancer focus on involving the immune system to control the tumor growth. The administration of immunotherapies, like checkpoint inhibitors, has shown impressive results in the long term survival of patients. Cancer vaccines are being investigated as further tools to prime tumor-specific immunity. Biomaterials show potential as adjuvants in the formulation of vaccines, and biomimetic elements derived from the membrane of tumor cells may widen the range of antigens contained in the vaccine. Here, we show how mice presenting an aggressive melanoma tumor model treated twice with the complete nanovaccine formulation showed control on the tumor progression, while in a less aggressive model, the animals showed remission and control on the tumor progression, with a modification in the immunological profile of the tumor microenvironment. We also prove that co-administration of the nanovaccine together with a checkpoint inhibitor increases the efficacy of the treatment (87.5% of the animals responding, with 2 remissions) compared to the checkpoint inhibitor alone in the B16.OVA model. Our platform thereby shows potential applications as a cancer nanovaccine in combination with the standard clinical care treatment for melanoma cancers.
Collapse
Affiliation(s)
- Flavia Fontana
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Manlio Fusciello
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Christianne Groeneveldt
- Division
of Biotherapeutics, Leiden Academic Center for Drug Research (LACDR), Leiden University, 2300 RA Leiden, Netherlands
| | - Cristian Capasso
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Jacopo Chiaro
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Sara Feola
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Zehua Liu
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Ermei M. Mäkilä
- Laboratory
of Industrial Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland
| | - Jarno J. Salonen
- Laboratory
of Industrial Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland
| | - Jouni T. Hirvonen
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Vincenzo Cerullo
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
- Helsinki
Institute of Life Science (HiLIFE), University
of Helsinki, FI-00014 Helsinki, Finland
- E-mail:
| | - Hélder A. Santos
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
- Helsinki
Institute of Life Science (HiLIFE), University
of Helsinki, FI-00014 Helsinki, Finland
- E-mail:
| |
Collapse
|
37
|
Hou YC, Chao YJ, Hsieh MH, Tung HL, Wang HC, Shan YS. Low CD8⁺ T Cell Infiltration and High PD-L1 Expression Are Associated with Level of CD44⁺/CD133⁺ Cancer Stem Cells and Predict an Unfavorable Prognosis in Pancreatic Cancer. Cancers (Basel) 2019; 11:cancers11040541. [PMID: 30991694 PMCID: PMC6520688 DOI: 10.3390/cancers11040541] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer immunotherapy targeting immune checkpoints has exhibited promising clinical outcomes in many cancers, but it offers only limited benefits for pancreatic cancer (PC). Cancer stem cells (CSCs), a minor subpopulation of cancer cells, play important roles in tumor initiation, progression, and drug resistance. Accumulating evidence suggests that CSCs employ immunosuppressive effects to evade immune system recognition. However, the clinical implications of the associations among CD8⁺ T cells infiltration, programmed death receptor ligand-1 (PD-L1) expression, and CSCs existence are poorly understood in PC. Immunostaining and quantitative analysis were performed to assess CD8⁺ T cells infiltration, PD-L1 expression, and their relationship with CD44⁺/CD133⁺ CSCs and disease progression in PC. CD8⁺ T cells infiltration was associated with better survival while PD-L1 expression was correlated with PC recurrence. Both the low CD8⁺ T cells infiltration/high PD-L1 expression group and the high CD8⁺ T cells infiltration/high PD-L1 expression group show high levels of CD44⁺/CD133⁺ CSCs, but patients with low CD8⁺ T cells infiltration/high PD-L1 expression had worse survival and higher recurrence risk than those with high CD8⁺ T cells infiltration/high PD-L1 expression. Moreover, high infiltration of CD8⁺ T cells could reduce unfavorable prognostic effect of high co-expression of PD-L1 and CD44/CD133. Our study highlights an interaction among CD8⁺ T cells infiltration, PD-L1 expression, and CD44⁺/CD133⁺ CSCs existence, which contributes to PC progression and immune evasion.
Collapse
Affiliation(s)
- Ya-Chin Hou
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
- Department of Clinical Medical Research, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
| | - Ying-Jui Chao
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
| | - Min-Hua Hsieh
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
| | - Hui-Ling Tung
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
| | - Hao-Chen Wang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
- Department of Clinical Medical Research, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
- Department of Clinical Medical Research, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
| |
Collapse
|
38
|
Chen F, Zou Z, Du J, Su S, Shao J, Meng F, Yang J, Xu Q, Ding N, Yang Y, Liu Q, Wang Q, Sun Z, Zhou S, Du S, Wei J, Liu B. Neoantigen identification strategies enable personalized immunotherapy in refractory solid tumors. J Clin Invest 2019; 129:2056-2070. [PMID: 30835255 DOI: 10.1172/jci99538] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Recent genomic and bioinformatic technological advances have made it possible to dissect the immune response to personalized neoantigens encoded by tumor-specific mutations. However, timely and efficient identification of neoantigens is still one of the major obstacles to using personalized neoantigen-based cancer immunotherapy. METHODS Two different pipelines of neoantigens identification were established in this study: (1) Clinical grade targeted sequencing was performed in patients with refractory solid tumor, and mutant peptides with high variant allele frequency and predicted high HLA-binding affinity were de novo synthesized. (2) An inventory-shared neoantigen peptide library of common solid tumors was constructed, and patients' hotspot mutations were matched to the neoantigen peptide library. The candidate neoepitopes were identified by recalling memory T-cell responses in vitro. Subsequently, neoantigen-loaded dendritic cell vaccines and neoantigen-reactive T cells were generated for personalized immunotherapy in six patients. RESULTS Immunogenic neo-epitopes were recognized by autologous T cells in 3 of 4 patients who utilized the de novo synthesis mode and in 6 of 13 patients who performed shared neoantigen peptide library, respectively. A metastatic thymoma patient achieved a complete and durable response beyond 29 months after treatment. Immune-related partial response was observed in another patient with metastatic pancreatic cancer. The remaining four patients achieved the prolonged stabilization of disease with a median PFS of 8.6 months. CONCLUSIONS The current study provided feasible pipelines for neoantigen identification. Implementing these strategies to individually tailor neoantigens could facilitate the neoantigen-based translational immunotherapy research.TRIAL REGSITRATION. ChiCTR.org ChiCTR-OIC-16010092, ChiCTR-OIC-17011275, ChiCTR-OIC-17011913; ClinicalTrials.gov NCT03171220. FUNDING This work was funded by grants from the National Key Research and Development Program of China (Grant No. 2017YFC1308900), the National Major Projects for "Major New Drugs Innovation and Development" (Grant No.2018ZX09301048-003), the National Natural Science Foundation of China (Grant No. 81672367, 81572329, 81572601), and the Key Research and Development Program of Jiangsu Province (No. BE2017607).
Collapse
|
39
|
Darragh LB, Oweida AJ, Karam SD. Overcoming Resistance to Combination Radiation-Immunotherapy: A Focus on Contributing Pathways Within the Tumor Microenvironment. Front Immunol 2019; 9:3154. [PMID: 30766539 PMCID: PMC6366147 DOI: 10.3389/fimmu.2018.03154] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/20/2018] [Indexed: 12/19/2022] Open
Abstract
Radiation therapy has been used for many years to treat tumors based on its DNA-damage-mediated ability to kill cells. More recently, RT has been shown to exert beneficial modulatory effects on immune responses, such as triggering immunogenic cell death, enhancing antigen presentation, and activating cytotoxic T cells. Consequently, combining radiation therapy with immunotherapy represents an important area of research. Thus far, immune-checkpoint inhibitors targeting programmed death-ligand 1 (PD-L1), programmed cell death protein 1 (PD-1), and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) have been the focus of many research studies and clinical trials. The available data suggest that such immunotherapies are enhanced when combined with radiation therapy. However, treatment resistance, intrinsic or acquired, is still prevalent. Various theories as to how to enhance these combination therapies to overcome treatment resistance have been proposed. In this review, we focus on the principles surrounding radiation therapy's positive and negative effects on the tumor microenvironment. We explore mechanisms underlying radiation therapy's synergistic and antagonistic effects on immune responses and provide a base of knowledge for radio-immunology combination therapies to overcome treatment resistance. We provide evidence for targeting regulatory T cells, tumor-associated macrophages, and cancer-associated fibroblasts in combination radio-immunotherapies to improve cancer treatment.
Collapse
Affiliation(s)
| | | | - Sana D. Karam
- Department of Radiation Oncology, School of Medicine, University of Colorado, Aurora, CO, United States
| |
Collapse
|
40
|
Immune Modulatory Effects of Radiotherapy. Radiat Oncol 2019. [DOI: 10.1007/978-3-319-52619-5_106-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
41
|
Gong J, Hendifar A, Tuli R, Chuang J, Cho M, Chung V, Li D, Salgia R. Combination systemic therapies with immune checkpoint inhibitors in pancreatic cancer: overcoming resistance to single-agent checkpoint blockade. Clin Transl Med 2018; 7:32. [PMID: 30294755 PMCID: PMC6174117 DOI: 10.1186/s40169-018-0210-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 09/24/2018] [Indexed: 12/16/2022] Open
Abstract
Immune checkpoint inhibitors have demonstrated broad single-agent antitumor activity and a favorable safety profile that render them attractive agents to combine with other systemic anticancer therapies. Pancreatic cancer has been fairly resistant to monotherapy blockade of programmed cell death protein 1 receptor, programmed death ligand 1, and cytotoxic T-lymphocyte associated protein 4. However, there is a growing body of preclinical evidence to support the rational combination of checkpoint inhibitors and various systemic therapies in pancreatic cancer. Furthermore, early clinical evidence has begun to support the feasibility and efficacy of checkpoint inhibitor-based combination therapy in advanced pancreatic cancer. Despite accumulating preclinical and clinical data, there remains several questions as to the optimal dosing and timing of administration of respective agents, toxicity of combination strategies, and mechanisms by which immune resistance to single-agent checkpoint blockade are overcome. Further development of biomarkers is also important in the advancement of combination systemic therapies incorporating checkpoint blockade in pancreatic cancer. Results from an impressive number of ongoing prospective clinical trials are eagerly anticipated and will seek to validate the viability of combination immuno-oncology strategies in pancreatic cancer.
Collapse
Affiliation(s)
- Jun Gong
- Department of Gastrointestinal Malignancies, Cedars-Sinai Medical Center, 8700 Beverly Blvd, AC 1042C, Los Angeles, CA, 90048, USA
| | - Andrew Hendifar
- Department of Gastrointestinal Malignancies, Cedars-Sinai Medical Center, 8700 Beverly Blvd, AC 1042C, Los Angeles, CA, 90048, USA
| | - Richard Tuli
- Department of Radiation Oncology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, AC 1023, Los Angeles, CA, 90048, USA
| | - Jeremy Chuang
- Department of Internal Medicine, Harbor-UCLA Medical Center, 1000 W Carson St, Box 400, Torrance, CA, 90509, USA
| | - May Cho
- Department of Internal Medicine, Division of Hematology and Oncology, UC Davis Comprehensive Cancer Center, 4501 X Street, Ste 3016, Sacramento, CA, 95817, USA
| | - Vincent Chung
- Department of Medical Oncology, City of Hope National Medical Center, 1500 E Duarte Rd, Bldg 51, Duarte, CA, 91010, USA
| | - Daneng Li
- Department of Medical Oncology, City of Hope National Medical Center, 1500 E Duarte Rd, Bldg 51, Duarte, CA, 91010, USA
| | - Ravi Salgia
- Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Building 51, Room 101, 1500 E Duarte St, Duarte, CA, 91010, USA.
| |
Collapse
|
42
|
Medler T, Patel JM, Alice A, Baird JR, Hu HM, Gough MJ. Activating the Nucleic Acid-Sensing Machinery for Anticancer Immunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 344:173-214. [PMID: 30798988 PMCID: PMC6754183 DOI: 10.1016/bs.ircmb.2018.08.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nucleic acid sensing pathways have likely evolved as part of a broad pathogen sensing strategy intended to discriminate infectious agents and initiate appropriate innate and adaptive controls. However, in the absence of infectious agents, nucleic acid sensing pathways have been shown to play positive and negative roles in regulating tumorigenesis, tumor progression and metastatic spread. Understanding the normal biology behind these pathways and how they are regulated in malignant cells and in the tumor immune environment can help us devise strategies to exploit nucleic acid sensing to manipulate anti-cancer immunity.
Collapse
Affiliation(s)
- Terry Medler
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States
| | - Jaina M Patel
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States
| | - Alejandro Alice
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States
| | - Jason R Baird
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States
| | - Hong-Ming Hu
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States
| | - Michael J Gough
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States.
| |
Collapse
|
43
|
Wisdom AJ, Mowery YM, Riedel RF, Kirsch DG. Rationale and emerging strategies for immune checkpoint blockade in soft tissue sarcoma. Cancer 2018; 124:3819-3829. [PMID: 29723407 PMCID: PMC6215523 DOI: 10.1002/cncr.31517] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/27/2018] [Accepted: 03/30/2018] [Indexed: 12/11/2022]
Abstract
Soft tissue sarcomas (STS) are heterogeneous, mesenchymal malignancies with variable biologic behavior. The primary management for localized STS is surgical resection, which may be combined with neoadjuvant or adjuvant radiation therapy to increase the probability of achieving local control. Many patients with large, high-grade STS develop metastatic disease. Several clinical trials of immune checkpoint blockade for STS have produced promising responses in patients with metastatic disease. In this review, recent and ongoing clinical trials of immune checkpoint inhibition for STS are discussed. The authors explain the rationale for immune checkpoint inhibition and radiation therapy and highlight new studies testing this combination in the neoadjuvant setting for patients with high-risk STS. In addition, they describe novel combinations of immunotherapy with targeted therapies and chemotherapies being tested in the metastatic setting and discuss how these combinations have the potential to be integrated into adjuvant therapy in the future.
Collapse
Affiliation(s)
- Amy J. Wisdom
- Department of Pharmacology & Cancer Biology, Duke University Health System, Durham, NC, USA
| | - Yvonne M. Mowery
- Department of Radiation Oncology, Duke University Health System, Durham, NC, USA
| | - Richard F. Riedel
- Department of Medicine, Division of Medical Oncology, Duke University Health System, Durham, NC, USA
| | - David G. Kirsch
- Department of Pharmacology & Cancer Biology, Duke University Health System, Durham, NC, USA
- Department of Radiation Oncology, Duke University Health System, Durham, NC, USA
| |
Collapse
|
44
|
Affiliation(s)
- Jason J. Luke
- Jason J. Luke and Steven J. Chmura, University of Chicago, Chicago, IL
| | - Steven J. Chmura
- Jason J. Luke and Steven J. Chmura, University of Chicago, Chicago, IL
| |
Collapse
|
45
|
Nano-Pulse Stimulation for the Treatment of Pancreatic Cancer and the Changes in Immune Profile. Cancers (Basel) 2018; 10:cancers10070217. [PMID: 29954062 PMCID: PMC6070875 DOI: 10.3390/cancers10070217] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/21/2018] [Accepted: 05/21/2018] [Indexed: 12/25/2022] Open
Abstract
A Pancreatic cancer is a notorious malignant neoplasm with an extremely poor prognosis. Current standard of care is rarely effective against late-stage pancreatic cancer. In this study, we assessed nanopulse stimulation (NPS) as a local treatment for pancreatic cancer in a syngeneic mouse Pan02 pancreatic cancer model and characterized corresponding changes in the immune profile. A single NPS treatment either achieved complete tumor regression or prolonged overall survival in animals with partial tumor regression. While this is very encouraging, we also explored if this local ablation effect could also result in immune stimulation, as was observed when NPS led to the induction of immune-mediated protection from a second tumor challenge in orthotopic mouse breast and rat liver cancer models. In the Pan02 model, there were insufficient abscopal effects (1/10) and vaccine-like protective effects (1/15) suggesting that NPS-induced immune mechanisms in this model were limited. To evaluate this further, the immune landscape was analyzed. The numbers of both T regulatory cells (Tregs) and myeloid derived suppressor cells (MDSCs) in blood were significantly reduced, but memory (CD44+) T-cells were absent. Furthermore, the numbers of Tregs and MDSCs did not reduce in spleens compared to tumor-bearing mice. Very few T-cells, but large numbers of MDSCs were present in the NPS treated tumor microenvironment (TME). The number of dendritic cells in the TME was increased and multiple activation markers were upregulated following NPS treatment. Overall, NPS treatments used here are effective for pancreatic tumor ablation, but require further optimization for induction of immunity or the need to include effective combinational NPS therapeutic strategy for pancreatic cancer.
Collapse
|
46
|
Marciscano AE, Ghasemzadeh A, Nirschl TR, Theodros D, Kochel CM, Francica BJ, Muroyama Y, Anders RA, Sharabi AB, Velarde E, Mao W, Chaudhary KR, Chaimowitz MG, Wong J, Selby MJ, Thudium KB, Korman AJ, Ulmert D, Thorek DLJ, DeWeese TL, Drake CG. Elective Nodal Irradiation Attenuates the Combinatorial Efficacy of Stereotactic Radiation Therapy and Immunotherapy. Clin Cancer Res 2018; 24:5058-5071. [PMID: 29898992 DOI: 10.1158/1078-0432.ccr-17-3427] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/18/2018] [Accepted: 06/08/2018] [Indexed: 01/18/2023]
Abstract
Purpose: In the proper context, radiotherapy can promote antitumor immunity. It is unknown if elective nodal irradiation (ENI), a strategy that irradiates tumor-associated draining lymph nodes (DLN), affects adaptive immune responses and combinatorial efficacy of radiotherapy with immune checkpoint blockade (ICB).Experimental Design: We developed a preclinical model to compare stereotactic radiotherapy (Tumor RT) with or without ENI to examine immunologic differences between radiotherapy techniques that spare or irradiate the DLN.Results: Tumor RT was associated with upregulation of an intratumoral T-cell chemoattractant chemokine signature (CXCR3, CCR5-related) that resulted in robust infiltration of antigen-specific CD8+ effector T cells as well as FoxP3+ regulatory T cells (Tregs). The addition of ENI attenuated chemokine expression, restrained immune infiltration, and adversely affected survival when combined with ICB, especially with anti-CLTA4 therapy. The combination of stereotactic radiotherapy and ICB led to long-term survival in a subset of mice and was associated with favorable CD8 effector-to-Treg ratios and increased intratumoral density of antigen-specific CD8+ T cells. Although radiotherapy technique (Tumor RT vs. ENI) affected initial tumor control and survival, the ability to reject tumor upon rechallenge was partially dependent upon the mechanism of action of ICB; as radiotherapy/anti-CTLA4 was superior to radiotherapy/anti-PD-1.Conclusions: Our results highlight that irradiation of the DLN restrains adaptive immune responses through altered chemokine expression and CD8+ T-cell trafficking. These data have implications for combining radiotherapy and ICB, long-term survival, and induction of immunologic memory. Clinically, the immunomodulatory effect of the radiotherapy strategy should be considered when combining stereotactic radiotherapy with immunotherapy. Clin Cancer Res; 24(20); 5058-71. ©2018 AACR.
Collapse
Affiliation(s)
- Ariel E Marciscano
- Department of Radiation Oncology & Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ali Ghasemzadeh
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Thomas R Nirschl
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Debebe Theodros
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christina M Kochel
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Brian J Francica
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yuki Muroyama
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert A Anders
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andrew B Sharabi
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, Moores Cancer Center, San Diego, California
| | - Esteban Velarde
- Department of Radiation Oncology & Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Wendy Mao
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kunal R Chaudhary
- Department of Radiation Oncology, Columbia University Medical Center, New York, New York
| | - Matthew G Chaimowitz
- Division of Hematology and Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - John Wong
- Department of Radiation Oncology & Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mark J Selby
- Bristol-Myers Squibb Company, Redwood City, California
| | | | - Alan J Korman
- Bristol-Myers Squibb Company, Redwood City, California
| | - David Ulmert
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daniel L J Thorek
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Theodore L DeWeese
- Department of Radiation Oncology & Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Charles G Drake
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Division of Hematology and Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| |
Collapse
|
47
|
Gong J, Le TQ, Massarelli E, Hendifar AE, Tuli R. Radiation therapy and PD-1/PD-L1 blockade: the clinical development of an evolving anticancer combination. J Immunother Cancer 2018; 6:46. [PMID: 29866197 PMCID: PMC5987486 DOI: 10.1186/s40425-018-0361-7] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 05/16/2018] [Indexed: 02/06/2023] Open
Abstract
Several inhibitors of programmed cell death-1 (PD-1) and programmed death ligand-1 (PD-L1) have been approved as a form of immunotherapy for multiple cancers. Ionizing radiation therapy (RT) has been shown to enhance the priming and effector phases of the antitumor T-cell response rendering it an attractive therapy to combine with PD-1/PD-L1 inhibitors. Preclinical data support the rational combination of the 2 modalities and has paved way for the clinical development of the combination across a spectrum of cancers. In this review, we highlight the preclinical and clinical development of combined RT and PD-1/PD-L1 blockade to date. In addition to a comprehensive evaluation of available safety and efficacy data, we discuss important points of consideration in clinical trial design for this promising combination.
Collapse
Affiliation(s)
- Jun Gong
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Thang Q Le
- Division of Angiography and Interventional Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Erminia Massarelli
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Andrew E Hendifar
- Division of Medical Oncology, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Richard Tuli
- Departments of Radiation Oncology and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, AC 1023, Los Angeles, CA, 90048, USA.
| |
Collapse
|
48
|
Jang BS, Kim IA. A radiosensitivity gene signature and PD-L1 predict the clinical outcomes of patients with lower grade glioma in TCGA. Radiother Oncol 2018; 128:245-253. [PMID: 29784449 DOI: 10.1016/j.radonc.2018.05.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 12/22/2022]
Abstract
PURPOSE Identifying predictive factors for the clinical outcome of patients with lower grade gliomas following radiotherapy could help optimize patient treatments. Here, we investigate the predictive efficacy of both a previously identified "31-gene signature" and programmed death ligand-1 (PD-L1) expression. MATERIAL AND METHODS We identified 511 patients with lower grade glioma (Grade 2 and 3) in The Cancer Genome Atlas dataset and divided them into two clusters: radiosensitive (RS) and radioresistant (RR). Patients were also classified as PD-L1-high or PD-L1-low based on CD274 mRNA expression. Five-year survival rates were compared across patient groups, and differentially expressed genes were identified via a gene enrichment analysis. RESULTS Among 511 patients with lower grade glioma in The Cancer Genome Atlas dataset, we identified a group that was characterized by radioresistant and high PD-L1 (the PD-L1-high-RR group). Multivariate Cox models demonstrated that the membership in the PD-L1-high-RR can predict overall survival regarding to RT. Differentially expressed genes associated with the PD-L1-high-RR group were found to play a role in the immune response, including the T-cell receptor signaling pathway. CONCLUSION We tested the predictive value of a "31-gene signature" and PD-L1 expression status in a dataset of patients with lower grade glioma. Our results suggest that the patient population classified as the PD-L1-high-RR may benefit most from radiotherapy combined with anti-PD-1/PD-L1 treatment. Prospective clinical trial is necessary to validate the findings in a homogenous treated patient cohort.
Collapse
Affiliation(s)
- Bum-Sup Jang
- Department of Radiation Oncology, Seoul National University Hospital, Republic of Korea
| | - In Ah Kim
- Department of Radiation Oncology and Cancer Research Institute, Seoul National University, College of Medicine, Republic of Korea; Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnamsi, Republic of Korea.
| |
Collapse
|
49
|
Tumor cure by radiation therapy and checkpoint inhibitors depends on pre-existing immunity. Sci Rep 2018; 8:7012. [PMID: 29725089 PMCID: PMC5934473 DOI: 10.1038/s41598-018-25482-w] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/20/2018] [Indexed: 11/25/2022] Open
Abstract
Radiation therapy is a source of tumor antigen release that has the potential to serve as an endogenous tumor vaccination event. In preclinical models radiation therapy synergizes with checkpoint inhibitors to cure tumors via CD8 T cell responses. To evaluate the immune response initiated by radiation therapy, we used a range of approaches to block the pre-existing immune response artifact initiated by tumor implantation. We demonstrate that blocking immune responses at tumor implantation blocks development of a tumor-resident antigen specific T cell population and prevents tumor cure by radiation therapy combined with checkpoint immunotherapy. These data demonstrate that this treatment combination relies on a pre-existing immune response to cure tumors, and may not be a solution for patients without pre-existing immunity.
Collapse
|
50
|
Ngwa W, Irabor OC, Schoenfeld JD, Hesser J, Demaria S, Formenti SC. Using immunotherapy to boost the abscopal effect. Nat Rev Cancer 2018; 18:313-322. [PMID: 29449659 PMCID: PMC5912991 DOI: 10.1038/nrc.2018.6] [Citation(s) in RCA: 839] [Impact Index Per Article: 119.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
More than 60 years ago, the effect whereby radiotherapy at one site may lead to regression of metastatic cancer at distant sites that are not irradiated was described and called the abscopal effect (from 'ab scopus', that is, away from the target). The abscopal effect has been connected to mechanisms involving the immune system. However, the effect is rare because at the time of treatment, established immune-tolerance mechanisms may hamper the development of sufficiently robust abscopal responses. Today, the growing consensus is that combining radiotherapy with immunotherapy provides an opportunity to boost abscopal response rates, extending the use of radiotherapy to treatment of both local and metastatic disease. In this Opinion article, we review evidence for this growing consensus and highlight emerging limitations to boosting the abscopal effect using immunotherapy. This is followed by a perspective on current and potential cross-disciplinary approaches, including the use of smart materials to address these limitations.
Collapse
Affiliation(s)
- Wilfred Ngwa
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, 450 Brookline Avenue, Boston, MA, USA
| | - Omoruyi Credit Irabor
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, 450 Brookline Avenue, Boston, MA, USA
| | - Jonathan D. Schoenfeld
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, 450 Brookline Avenue, Boston, MA, USA
| | - Jürgen Hesser
- University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1–3. D-68167, Mannheim, Germany
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, 1300 York Avenue, Box 169, New York, NY, USA
| | - Silvia C. Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, 1300 York Avenue, Box 169, New York, NY, USA
| |
Collapse
|