1
|
Wen Y, Wu R, Qi D, Xu T, Chang W, Li K, Fang X, Song F. The effect of AMF combined with biochar on plant growth and soil quality under saline-alkali stress: Insights from microbial community analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116592. [PMID: 38901167 DOI: 10.1016/j.ecoenv.2024.116592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/12/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) and biochar application individually can enhance plant tolerance to saline-alkali stress and promote plant growth efficiency. However, little is known about the potential synergistic effects of their combination on improving plant growth and soil quality under saline-alkali stress. This experiment adopted the potted method to explore the effects of four treatments on switchgrass growth and soil quality: biochar (BC), Rhizophagus irregularis (Ri), biochar + Ri (BR) and a control without biochar or Ri (CK). Compared to the CK treatment, the switchgrass biomass increased by 92.4 %, 148.6 %, and 177.3 % in the BC, Ri, and BR treatment groups, respectively. Similarly, the rhizosphere soil quality index increased by 29.33 %, 22.7 %, and 49.1 % in the respective treatment groups. The BR treatment significantly altered the rhizosphere soil microbial composition and diversity. Notably, compared to the other treatments, the archaeal α-diversity in the BR group showed a significant decrease. BR treatment significantly increased the relative abundance of bacteria, fungi and archaea at the genus level (e.g., Bacillus, Trichome and candidatus_methanopenens). Network analysis showed that the complexity and closeness of interactions between different microbial taxa were stronger in the BC, Ri and BR treatments than in the CK treatment, with BR being the more prominent. In summary, biochar combined with Ri has a better effect on promoting the growth of switchgrass under saline-alkali stress, improving the quality of saline-alkali soil, and increasing soil microbial diversity. This study provides a new approach for the efficient development and utilization of saline-alkali land.
Collapse
Affiliation(s)
- Yuqiang Wen
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Jiaxiang Industrial Technology Research Institute of Heilongjiang University, Jining 272000, China
| | - Ruotong Wu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Dandan Qi
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Tianle Xu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Wei Chang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Jiaxiang Industrial Technology Research Institute of Heilongjiang University, Jining 272000, China.
| | - Kun Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Xiaoxu Fang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Fuqiang Song
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Jiaxiang Industrial Technology Research Institute of Heilongjiang University, Jining 272000, China.
| |
Collapse
|
2
|
Chen S, Sun Y, Wang Y, Luo G, Ran J, Zeng T, Zhang P. Grazing weakens the linkages between plants and soil biotic communities in the alpine grassland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169417. [PMID: 38143005 DOI: 10.1016/j.scitotenv.2023.169417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 12/26/2023]
Abstract
Livestock grazing alters the diversity and composition of plants and soil biota in grassland ecosystems. However, whether and how grazing affects plant-soil biota interactions are limited. Here, we performed a field investigation on the Tibetan grasslands to determine the relationships between plant community properties (biomass, diversity and richness) and soil biota (abundance, diversity and composition of bacteria, fungi and nematodes) in the long-term yak grazing and ungrazed plots, and responses of plant-soil biota linkages to grazing in alpine meadows and alpine swampy meadows were compared. The results found that grazing did not cause significant changes in plant community properties but increased the soil water content. Further, grazing weakened plant-soil microbes/nematode relationships in alpine meadows. The bacterial and fungal abundances were correlated with plant belowground biomass and Simpson index in the ungrazed plots of alpine meadows, while the correlation was not significant under grazing. Bacterial composition was correlated with plant richness only in the ungrazed meadows. Plant-soil nematode linkages were more sensitive to grazing than plant-microbes linkages. Grazing decoupled the relationships between the abundances of nematode trophic groups and plant aboveground biomass, richness and Simpson index in alpine meadows, while the decoupling phenomenon is less evident in alpine swampy meadows. The SEM results indicate that grazing altered the plant above- and belowground biomass to affect the soil nematode community, while influenced soil microbes only through alterations of plant belowground biomass. The findings highlight the importance of grazing in influencing the interactions between aboveground plant communities and soil biological communities in Tibetan grasslands.
Collapse
Affiliation(s)
- Shuangdan Chen
- Key Laboratory for Bio-Resource and Eco-Environmental of Ministry of Education & Sichuan Zoigê Alpine Wetland Ecosystem National Observation and Research Station, Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Yuxuan Sun
- Key Laboratory for Bio-Resource and Eco-Environmental of Ministry of Education & Sichuan Zoigê Alpine Wetland Ecosystem National Observation and Research Station, Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Yonghong Wang
- Zhejiang SeeGene Biotechnology Company, Hangzhou, China
| | - Gai Luo
- Key Laboratory for Bio-Resource and Eco-Environmental of Ministry of Education & Sichuan Zoigê Alpine Wetland Ecosystem National Observation and Research Station, Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Jianghong Ran
- Key Laboratory for Bio-Resource and Eco-Environmental of Ministry of Education & Sichuan Zoigê Alpine Wetland Ecosystem National Observation and Research Station, Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Tao Zeng
- Key Laboratory for Bio-Resource and Eco-Environmental of Ministry of Education & Sichuan Zoigê Alpine Wetland Ecosystem National Observation and Research Station, Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Pei Zhang
- Key Laboratory for Bio-Resource and Eco-Environmental of Ministry of Education & Sichuan Zoigê Alpine Wetland Ecosystem National Observation and Research Station, Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Science, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
3
|
Tulloch AIT, Healy A, Silcock J, Wardle GM, Dickman CR, Frank ASK, Aubault H, Barton K, Greenville AC. Long-term livestock exclusion increases plant richness and reproductive capacity in arid woodlands. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2909. [PMID: 37602895 DOI: 10.1002/eap.2909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 08/22/2023]
Abstract
Herbivore exclusion is implemented globally to recover ecosystems from grazing by introduced and native herbivores, but evidence for large-scale biodiversity benefits is inconsistent in arid ecosystems. We examined the effects of livestock exclusion on dryland plant richness and reproductive capacity. We collected data on plant species richness and seeding (reproductive capacity), rainfall, vegetation productivity and cover, soil strength and herbivore grazing intensity from 68 sites across 6500 km2 of arid Georgina gidgee (Acacia georginae) woodlands in central Australia between 2018 and 2020. Sites were on an actively grazed cattle station and two destocked conservation reserves. We used structural equation modeling to examine indirect (via soil or vegetation modification) versus direct (herbivory) effects of grazing intensity by two introduced herbivores (cattle, camels) and a native herbivore (red kangaroo), on seasonal plant species richness and seeding of all plants, and the richness and seeding of four plant groups (native grasses, forbs, annual chenopod shrubs, and palatable perennial shrubs). Non-native herbivores had a strong indirect effect on plant richness and seeding by reducing vegetative ground cover, resulting in decreased richness and seeding of native grasses and forbs. Herbivores also had small but negative direct impacts on plant richness and seeding. This direct effect was explained by reductions in annual chenopod and palatable perennial shrub richness under grazing activity. Responses to grazing were herbivore-dependent; introduced herbivore grazing reduced native plant richness and seeding, while native herbivore grazing had no significant effect on richness or seeding of different plant functional groups. Soil strength decreased under grazing by cattle but not camels or kangaroos. Cattle had direct effects on palatable perennial shrub richness and seeding, whereas camels had indirect effects, reducing richness and seeding by reducing the abundance of shrubs. We show that considering indirect pathways improves evaluations of the effects of disturbances on biodiversity, as focusing only on direct effects can mask critical mechanisms of change. Our results indicate substantial biodiversity benefits from excluding livestock and controlling camels in drylands. Reducing introduced herbivore impacts will improve soil and vegetation condition, ensure reproduction and seasonal persistence of species, and protect native plant diversity.
Collapse
Affiliation(s)
- Ayesha I T Tulloch
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Al Healy
- School of Earth and Environmental Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Jennifer Silcock
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Glenda M Wardle
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Christopher R Dickman
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Anke S K Frank
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Pilungah Reserve, Bush Heritage Australia, Boulia, Queensland, Australia
- School of Agriculture, Environmental and Veterinary Sciences, Charles Sturt University, Port Macquarie, New South Wales, Australia
| | - Helene Aubault
- Ethabuka Reserve, Bush Heritage Australia, Bedourie, Queensland, Australia
| | - Kyle Barton
- Ethabuka Reserve, Bush Heritage Australia, Bedourie, Queensland, Australia
| | - Aaron C Greenville
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Song H, Liu Z, Cui H, Chen J, Chen S, Gao H, Yang X, Wang Y, Wang J, Liu K, Xiao S, An L, Nielsen UN. Contrasting influences of two dominant plants, Dasiphora fruticosa and Ligularia virguarea, on aboveground and belowground communities in an alpine meadow. Front Microbiol 2023; 14:1118789. [PMID: 37125161 PMCID: PMC10140320 DOI: 10.3389/fmicb.2023.1118789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Soil organisms are abundant, phylogenetically and functionally diverse, and interact to catalyse and regulate critical soil processes. Understanding what structures belowground communities is therefore fundamental to gaining insight into ecosystem functioning. Dominant plants have been shown to influence belowground communities both directly and indirectly through changes in abiotic and biotic factors. In a field study, we used piecewise structural equation modelling to disentangle and compare the effects of a dominant allelopathic plant, Ligularia virgaurea, and a dominant facilitative plant, Dasiphora fruticosa, on understory plant, soil microbial and nematode community composition in an alpine meadow on the Tibetan plateau. Dasiphora fruticosa was associated with changes in edaphic variables (total nitrogen, soil organic carbon, pH and ammonium), understory plant and soil bacterial communities, whereas Ligularia virguarea was associated with increased soil ammonium content and soil fungal richness relative to dominant plant-free control plots. Moreover, nematode richness was significantly greater under D. fruticosa, with no change in nematode community composition. By contrast, nematode richness under Ligularia virgaurea was similar to that of dominant plant-free control plots, but nematode community composition differed from the control. The effects of both plants were predominantly direct rather than mediated by indirect pathways despite the observed effects on understory plant communities, soil properties and microbial assemblages. Our results highlight the importance of plants in determining soil communities and provide new insight to disentangle the complex above- and belowground linkages.
Collapse
Affiliation(s)
- Hongxian Song
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Ziyang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu, China
| | - Hanwen Cui
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu, China
| | - Jingwei Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu, China
| | - Shuyan Chen
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
- *Correspondence: Shuyan Chen,
| | - Haining Gao
- College of Life Sciences and Engineering, Hexi University, Zhangye, Gansu, China
| | - Xiaoli Yang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu, China
| | - Yajun Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu, China
| | - Jiajia Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Kun Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu, China
| | - Sa Xiao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu, China
| | - Lizhe An
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Uffe N. Nielsen
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
5
|
Naz B, Liu Z, Malard LA, Ali I, Song H, Wang Y, Li X, Usman M, Ali I, Liu K, An L, Xiao S, Chen S. Dominant plant species play an important role in regulating bacterial antagonism in terrestrial Antarctica. Front Microbiol 2023; 14:1130321. [PMID: 37032907 PMCID: PMC10076557 DOI: 10.3389/fmicb.2023.1130321] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
In Antarctic terrestrial ecosystems, dominant plant species (grasses and mosses) and soil physicochemical properties have a significant influence on soil microbial communities. However, the effects of dominant plants on bacterial antagonistic interactions in Antarctica remain unclear. We hypothesized that dominant plant species can affect bacterial antagonistic interactions directly and indirectly by inducing alterations in soil physicochemical properties and bacterial abundance. We collected soil samples from two typical dominant plant species; the Antarctic grass Deschampsia antarctica and the Antarctic moss Sanionia uncinata, as well as bulk soil sample, devoid of vegetation. We evaluated bacterial antagonistic interactions, focusing on species from the genera Actinomyces, Bacillus, and Pseudomonas. We also measured soil physicochemical properties and evaluated bacterial abundance and diversity using high-throughput sequencing. Our results suggested that Antarctic dominant plants significantly influenced bacterial antagonistic interactions compared to bulk soils. Using structural equation modelling (SEM), we compared and analyzed the direct effect of grasses and mosses on bacterial antagonistic interactions and the indirect effects through changes in edaphic properties and bacterial abundance. SEMs showed that (1) grasses and mosses had a significant direct influence on bacterial antagonistic interactions; (2) grasses had a strong influence on soil water content, pH, and abundances of Actinomyces and Pseudomonas and (3) mosses influenced bacterial antagonistic interactions by impacting abundances of Actinomyces, Bacillus, and Pseudomonas. This study highlights the role of dominant plants in modulating bacterial antagonistic interactions in Antarctic terrestrial ecosystems.
Collapse
Affiliation(s)
- Beenish Naz
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Ziyang Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Lucie A. Malard
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Izhar Ali
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Hongxian Song
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yajun Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Xin Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Muhammad Usman
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Ikram Ali
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Kun Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu, China
| | - Lizhe An
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Sa Xiao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Shuyan Chen
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
- *Correspondence: Shuyan Chen,
| |
Collapse
|
6
|
Wang Y, Ma L, Liu Z, Chen J, Song H, Wang J, Cui H, Yang Z, Xiao S, Liu K, An L, Chen S. Microbial interactions play an important role in regulating the effects of plant species on soil bacterial diversity. Front Microbiol 2022; 13:984200. [PMID: 36187969 PMCID: PMC9521175 DOI: 10.3389/fmicb.2022.984200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022] Open
Abstract
Plant species and microbial interactions have significant impacts on the diversity of bacterial communities. However, few studies have explored interactions among these factors, such the role of microbial interactions in regulating the effects of plant species on soil bacterial diversity. We assumed that plant species not only affect bacterial community diversity directly, but also influence bacterial community diversity indirectly through changing microbial interactions. Specifically, we collected soil samples associated with three different plant species, one evergreen shrub (Rhododendron simsii) and the other two deciduous shrubs (Dasiphora fruticosa and Salix oritrepha). Soil bacterial community composition and diversity were examined by high-throughput sequencing. Moreover, soil bacterial antagonistic interactions and soil edaphic characteristics were evaluated. We used structural equation modeling (SEM) to disentangle and compare the direct effect of different plant species on soil bacterial community diversity, and their indirect effects through influence on soil edaphic characteristics and microbial antagonistic interactions. The results showed that (1) Plant species effects on soil bacterial diversity were significant; (2) Plant species effects on soil microbial antagonistic interactions were significant; and (3) there was not only a significant direct plant species effect on bacterial diversity, but also a significant indirect effect on bacterial diversity through influence on microbial antagonistic interactions. Our study reveals the difference among plant species in their effects on soil microbial antagonistic interactions and highlights the vital role of microbial interactions on shaping soil microbial community diversity.
Collapse
Affiliation(s)
- Yajun Wang
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Lan Ma
- College of Ecology, Lanzhou University, Lanzhou, Gansu, China
| | - Ziyang Liu
- College of Ecology, Lanzhou University, Lanzhou, Gansu, China
| | - Jingwei Chen
- College of Ecology, Lanzhou University, Lanzhou, Gansu, China
| | - Hongxian Song
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Jiajia Wang
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Hanwen Cui
- College of Ecology, Lanzhou University, Lanzhou, Gansu, China
| | - Zi Yang
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Sa Xiao
- College of Ecology, Lanzhou University, Lanzhou, Gansu, China
| | - Kun Liu
- College of Ecology, Lanzhou University, Lanzhou, Gansu, China
| | - Lizhe An
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Shuyan Chen
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
7
|
Yang Y, Luo W, Xu J, Guan P, Chang L, Wu X, Wu D. Fallow Land Enhances Carbon Sequestration in Glomalin and Soil Aggregates Through Regulating Diversity and Network Complexity of Arbuscular Mycorrhizal Fungi Under Climate Change in Relatively High-Latitude Regions. Front Microbiol 2022; 13:930622. [PMID: 35859742 PMCID: PMC9292920 DOI: 10.3389/fmicb.2022.930622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Soil aggregation and aggregate-associated carbon (C) play an essential function in soil health and C sequestration. Arbuscular mycorrhizal fungi (AMF) are considered to be primary soil aggregators due to the combined effect of extraradical hyphae and glomalin-related soil proteins (GRSPs). However, the effects of diversity and network complexity of AMF community on stability of soil aggregates and their associated C under long-term climate change (CC) and land-use conversion (LUC) in relatively high-latitude regions are largely unexplored. Therefore, an 8-year soil plot (with a 30-year cropping history) transplantation experiment was conducted to simulate CC and LUC from cropland to fallow land. The results showed that Glomus, Paraglomus, and Archaeospora were the most abundant genera. The diversity of AMF community in fallow land was higher than cropland and increased with increasing of mean annual temperature (MAT) and mean annual precipitation (MAP). Fallow land enhanced the network complexity of AMF community. The abundance families (Glomeraceae and Paraglomeraceae) exhibited higher values of topological features and were more often located in central ecological positions. Long-term fallow land had a significantly higher hyphal length density, GRSP, mean weight diameter (MWD), geometric mean diameter (GMD), and C concentration of GRSP (C-GRSP) than the cropland. The soil aggregate associated soil organic carbon (SOC) was 16.8, 18.6, and 13.8% higher under fallow land compared to that under cropland at HLJ, JL, and LN study sites, respectively. The structural equation model and random forest regression revealed that AMF diversity, network complexity, and their secreted GRSP mediate the effects of CC and LUC on C-GRSP and aggregate-associated SOC. This study elucidates the climate sensitivity of C within GRSP and soil aggregates which response symmetry to LUC and highlights the potential importance of AMF in C sequestration and climate change mitigation.
Collapse
Affiliation(s)
- Yurong Yang
- Key Laboratory of Vegetation Ecology, Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun, China
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, China
| | - Wenbo Luo
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, China
| | - Jiazheng Xu
- Key Laboratory of Vegetation Ecology, Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Pingting Guan
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, China
| | - Liang Chang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Xuefeng Wu
- Key Laboratory of Vegetation Ecology, Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun, China
- School of Tourism and Service Management, Chongqing University of Education, Chongqing, China
- *Correspondence: Xuefeng Wu,
| | - Donghui Wu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, China
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- Donghui Wu,
| |
Collapse
|
8
|
Zhou J, Xu X, Huang G, Li W, Wei Q, Zheng J, Han F. Oil degradation and variation of microbial communities in contaminated soils induced by different bacterivorous nematodes species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113079. [PMID: 34915222 DOI: 10.1016/j.ecoenv.2021.113079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Oil pollution poses a great threat to environments and makes the remediation of oil-contaminated soils an urgent task. Microorganisms are the main biological factor for oil removal in the environment but microbial remediation is greatly affected by environmental factors. For our research, we inoculated three species of bacterivorous nematodes into oil-contaminated soil to explore how bacterivorous nematodes affect soil microbial activities and community structure in contaminated soil, as well as how efficiently different nematodes remove oil pollution from the soil. Six treatments were set in this experiment: sterilized oil-contaminated soil (SOC); nematode-free soil (S); oil-contaminated soil (OC); oil-contaminated soil + Caenorhabditis elegans (OCN1); oil-contaminated soil + Cephalobus persegnis (OCN2); oil-contaminated soil + Rhabditis marina (OCN3) for a 168-day incubation experiment. After the experiment was done, the oil contents in SOC, OC, OCN1, OCN2, and OCN3 were reduced by 6.5%, 32.3%, 38.2%, 42.8%, and 40.2%, respectively, compared with the beginning of the experiment. The amount of phospholipid fatty acids (PLFAs) of Gram-negative bacteria in OC, OCN1, OCN2, and OCN3 was increased by 50.9%, 43.4%, 37.7%, and 47.9%, respectively, compared with that of S. During the 168-day incubation period, the maximum growth of the number of nematodes in OCN1, OCN2, and OCN3 compared with the initial number of the nematodes were 2.25-, 1.52-, and 1.65-fold, respectively. The amount of oil residue in the contaminated soil negatively correlated with the populations of nematodes, total microorganisms, Gram-negative bacteria, actinomycetes, and eukaryotes. Thus, oil pollution increased the number of Gram-negative bacteria, decreased the ratio of Gram-positive bacteria/Gram-negative bacteria and Fungi/Bacteria significantly, and altered the community structure of soil microorganisms. Each species of bacterivorous nematodes has got its unique effect on the microbial activity and community structure in oil contaminated soils, but those tested can promote oil degradation and thus improve the environment of oil contaminated soils.
Collapse
Affiliation(s)
- Jihai Zhou
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, Shaanxi, China; Nanchang Institute of Technology, Nanchang 330099, China.
| | - Xiaoyang Xu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Guomin Huang
- Nanchang Institute of Technology, Nanchang 330099, China
| | - Wei Li
- Nanchang Institute of Technology, Nanchang 330099, China
| | - Qian Wei
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Jiyong Zheng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fengpeng Han
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
9
|
Meng Y, Hui D, Huangfu C. Site conditions interact with litter quality to affect home-field advantage and rhizosphere effect of litter decomposition in a subtropical wetland ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141442. [PMID: 32836120 DOI: 10.1016/j.scitotenv.2020.141442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/16/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
The home-field advantage (HFA) hypothesis predicts that plant litter would decompose more quickly beneath its own plant species in the soil than beneath other plant species. Theoretically, HFA can be induced by the rhizosphere of growing plants, due to so-called rhizosphere effect (RE). Despite growing evidence for the site condition-dependence of both effects, few work has be conducted to explore how site climate, vegetation type and soil properties interact to affect RE and HFA, and especially limited in situ representation from subtropical wetland systems. In a field experiment, we reciprocally incubated three root litter species (Rumex dentatus L., Carex thunbergii Steud., and Polygonum cripolitanum Hance) along a hydroperiod gradient in a subtropical wetland, which differed mainly with respect to vegetation and soil microclimate, with and without growing plants. The occurrence and magnitude of HFA and RE were mainly determined by litter quality and were stage-specific. Collectively, we detected significant HFA with chemically-recalcitrant litter from C. thunbergii and P. cripolitanum, but only at the first stage of decomposition. The presence of growing plants generally reduced litter decomposition, but the magnitude of the response was species-specific, with the positive effects detected only for root litters from C. thunbergii at the first stage of decomposition. In addition, we did not find a significant relationship between HFA and RE, indicating that plant species that produce litters exhibiting HFA may not accelerate litter decomposition via RE at same time. Structural equation models (SEM) revealed that site microclimate factors were conducive with soil properties in regulating C dynamics. Overall, soil microclimate in this wetland ecosystem was likely important in driving C cycling, either directly by changing environmental conditions, litter quality, and plant trait spectra, or indirectly by interrupting the interactions between litter and decomposers.
Collapse
Affiliation(s)
- Yingying Meng
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Dafeng Hui
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Chaohe Huangfu
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China.
| |
Collapse
|
10
|
Tuomi M, Väisänen M, Ylänne H, Brearley FQ, Barrio IC, Anne Bråthen K, Eischeid I, Forbes BC, Jónsdóttir IS, Kolstad AL, Macek P, Petit Bon M, Speed JDM, Stark S, Svavarsdóttir K, Thórsson J, Bueno CG. Stomping in silence: Conceptualizing trampling effects on soils in polar tundra. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13719] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maria Tuomi
- Section of Ecology Department of Biology University of Turku Turku Finland
- Department of Arctic and Marine Biology Faculty of Biosciences, Fisheries, and Economics The Arctic University of Norway Tromsø Norway
| | - Maria Väisänen
- Ecology and Genetics Research Unit University of Oulu Oulu Finland
- Arctic Centre University of Lapland Rovaniemi Finland
| | - Henni Ylänne
- Ecology and Genetics Research Unit University of Oulu Oulu Finland
- Centre for Environmental and Climate Research Lund University Lund Sweden
| | - Francis Q. Brearley
- Department of Natural Sciences Manchester Metropolitan University Manchester UK
| | - Isabel C. Barrio
- Agricultural University of Iceland Reykjavík Iceland
- Institute of Life and Environmental Sciences University of Iceland Reykjavík Iceland
| | - Kari Anne Bråthen
- Department of Arctic and Marine Biology Faculty of Biosciences, Fisheries, and Economics The Arctic University of Norway Tromsø Norway
| | - Isabell Eischeid
- Department of Arctic and Marine Biology Faculty of Biosciences, Fisheries, and Economics The Arctic University of Norway Tromsø Norway
- Norwegian Polar InstituteFRAM – High North Research Centre for Climate and the Environment Tromsø Norway
| | | | - Ingibjörg S. Jónsdóttir
- Agricultural University of Iceland Reykjavík Iceland
- University Centre in Svalbard (UNIS) Longyearbyen Norway
| | - Anders L. Kolstad
- Department of Natural History NTNU University MuseumNorwegian University of Science and Technology Trondheim Norway
| | - Petr Macek
- Centre for Polar Ecology Faculty of Science University of South Bohemia Ceske Budejovice Czech Republic
- Biology Centre ASCRInstitute of Soil Biology Ceske Budejovice Czech Republic
| | - Matteo Petit Bon
- Department of Arctic and Marine Biology Faculty of Biosciences, Fisheries, and Economics The Arctic University of Norway Tromsø Norway
- University Centre in Svalbard (UNIS) Longyearbyen Norway
| | - James D. M. Speed
- Department of Natural History NTNU University MuseumNorwegian University of Science and Technology Trondheim Norway
| | - Sari Stark
- Arctic Centre University of Lapland Rovaniemi Finland
| | | | | | - C. Guillermo Bueno
- Institute of Ecology and Earth Sciences Department of Botany University of Tartu Tartu Estonia
| |
Collapse
|
11
|
Xue W, Wang WL, Yuan QY, Yu FH. Clonal integration in Phragmites australis alters soil microbial communities in an oil-contaminated wetland. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114828. [PMID: 32480007 DOI: 10.1016/j.envpol.2020.114828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/25/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
Clonal plants can share information and resources among connected ramets (asexual individuals). Such clonal integration can promote ramet growth, which may further influence soil microbial communities in the rooting zone. Crude oil contamination can negatively affect plant growth and alter soil microbial community composition. However, we still know little about how clonal integration affects soil microbial communities, especially under crude oil contamination. In a coastal wetland, ramets of the rhizomatous plant Phragmites australis in circular plots (60 cm in diameter) were subjected to 0, 5 and 10 mm depth of crude oil, and the rhizomes at the edge of the plots were either severed (preventing clonal integration) or left intact (allowing clonal integration). After three years of treatment, we analysed in each plot soil physiochemical properties and soil microbial community composition. The alpha-diversity of the soil microbial communities did not differ between intact and severed plots, but was overall lower in 10-mm than in 0-mm and 5-mm oil plots. Considering all three oil treatments together, soil microbial community dissimilarity (beta-diversity) was positively correlated with soil property distance in both severed and intact plots. Considering the three oil treatments separately, this pattern was also observed in 10-mm oil plots, but not in 0-mm or 5-mm oil plots. The soil microbial community composition was more sensitive to the oil addition than to the clonal integration. Moreover, the relative abundance of the nitrogen-cycling bacterial taxa was lower in intact than in severed plots, and that of the oil-degrading bacterial taxa increased with increasing oil-addition levels. Our results indicate that clonal integration and oil contamination can influence soil microbial communities independently through changing the relative abundance of the component bacteria taxa, which has important implications for ecosystem functions of the soil food web mediated by clonal plants.
Collapse
Affiliation(s)
- Wei Xue
- Institute of Wetland Ecology & Clone Ecology/ Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
| | - Wan-Li Wang
- Institute of Wetland Ecology & Clone Ecology/ Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China; School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Qing-Ye Yuan
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Fei-Hai Yu
- Institute of Wetland Ecology & Clone Ecology/ Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China.
| |
Collapse
|
12
|
Deng C, Liu X, Li L, Shi J, Guo W, Xue J. Temporal dynamics of antibiotic resistant genes and their association with the bacterial community in a water-sediment mesocosm under selection by 14 antibiotics. ENVIRONMENT INTERNATIONAL 2020; 137:105554. [PMID: 32062436 DOI: 10.1016/j.envint.2020.105554] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/10/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
Antibiotics in aquatic environments at high concentrations and sub-inhibitory concentrations potentially select for the evolution of antibiotic resistant genes (ARGs), posing a potential risk to aquatic ecological safety. Our knowledge of the temporal and successive dynamics of ARGs and bacterial community under the selective pressure of antibiotics in natural water-sediment system was limited. This study used a 120-d operating hydrodynamic mesocosm to explore the temporal dynamics of ARGs in water-sediment systems, and the main selective mechanisms following the attenuation and transport of 14 commonly used antibiotics. Under the selective pressures by antibiotics, ARGs propagated transiently, and persisted after antibiotic removal; the bacterial community structures likewise changed. Mantel test and network analysis indicated that ARGs significantly correlated with the bacterial community in the water and surface sediments. Structural equation model (SEM) further revealed that the evolution of ARGs was mainly due to the direct effect of the change in bacterial community and horizontal gene transfer (HGT) via the class 1 integron-integrase gene (intI1), but antibiotics indirectly influenced ARG profiles. The migration of ARGs in deep layer sediments was not related to the bacterial community and intI1, but may be explained by antibiotic selective effects and ARG transformation.
Collapse
Affiliation(s)
- Chengxun Deng
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaowei Liu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China.
| | - Lanlan Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Jianghong Shi
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wei Guo
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jianhui Xue
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
13
|
Brandt’s vole (Lasiopodomys brandtii) affects its habitat quality by altering plant community composition. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00469-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Wang B, Wu L, Chen D, Wu Y, Hu S, Li L, Bai Y. Grazing simplifies soil micro-food webs and decouples their relationships with ecosystem functions in grasslands. GLOBAL CHANGE BIOLOGY 2020; 26:960-970. [PMID: 31529564 DOI: 10.1111/gcb.14841] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
Livestock grazing often alters aboveground and belowground communities of grasslands and their mediated carbon (C) and nitrogen (N) cycling processes at the local scale. Yet, few have examined whether grazing-induced changes in soil food webs and their ecosystem functions can be extrapolated to a regional scale. We investigated how large herbivore grazing affects soil micro-food webs (microbes and nematodes) and ecosystem functions (soil C and N mineralization), using paired grazed and ungrazed plots at 10 locations across the Mongolian Plateau. Our results showed that grazing not only affected plant variables (e.g., biomass and C and N concentrations), but also altered soil substrates (e.g., C and N contents) and soil environment (e.g., soil pH and bulk density). Grazing had strong bottom-up effects on soil micro-food webs, leading to more pronounced decreases at higher trophic levels (nematodes) than at lower trophic levels (microbes). Structural equation modeling showed that changes in plant biomass and soil environment dominated grazing effects on microbes, while nematodes were mainly influenced by changes in plant biomass and soil C and N contents; the grazing effects, however, differed greatly among functional groups in the soil micro-food webs. Grazing reduced soil C and N mineralization rates via changes in plant biomass, soil C and N contents, and soil environment across grasslands on the Mongolian Plateau. Spearman's rank correlation analysis also showed that grazing reduced the correlations between functional groups in soil micro-food webs and then weakened the correlation between soil micro-food webs and soil C and N mineralization. These results suggest that changes in soil micro-food webs resulting from livestock grazing are poor predictors of soil C and N processes at regional scale, and that the relationships between soil food webs and ecosystem functions depend on spatial scales and land-use changes.
Collapse
Affiliation(s)
- Bing Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liji Wu
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Dima Chen
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Ying Wu
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Shuijin Hu
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Linghao Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongfei Bai
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Effects of Vegetation Restoration on the Distribution of Nutrients, Glomalin-Related Soil Protein, and Enzyme Activity in Soil Aggregates on the Loess Plateau, China. FORESTS 2019. [DOI: 10.3390/f10090796] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Research Highlights: Soil enzymes have a significant impact on the production of glomalin-related soil protein (GRSP), directly and indirectly affecting the nutrient metabolism balance, but there is little available information on ecological stoichiometry in soil aggregates. Background and Objectives: Vegetation restoration changes community structure and species composition in ecosystems, thus changing the physicochemical properties of soil. Soil aggregate is the most basic physical structure of the soil. Therefore, in order to understand dynamic changes in soil aggregate nutrients as vegetation restoration progresses, we set out to investigate the nutrient distribution and utilization in aggregates, and how enzymes respond to the nutrient changes in achieving a nutritional balance along successive stages of vegetation restoration. Materials and Methods: We collected and analyzed soil from plots representing six different stages of a vegetation restoration chronosequence (0, 30, 60, 100, 130, and 160 years) after farmland abandonment on the Loess Plateau, China. We investigated soil nutrient stoichiometry, GRSP, and enzyme stoichiometry in the different successional stages. Results: The results revealed that soil organic carbon, total nitrogen, enzyme activity, and GRSP increased with vegetation recovery age, but not total phosphorus, and not all enzymes reached their maximum in the climax forest community. The easily extractable GRSP/total GRSP ratio was the largest at the shrub community stage, indicating that glomalin degradation was the lowest at this stage. Ecological stoichiometry revealed N-limitation decreased and P-limitation increased with increasing vegetation restoration age. Soil enzymes had a significant impact on the GRSP production, directly and indirectly affecting nutrient metabolism balance. Conclusions: Further study of arbuscular mycorrhizal fungi to identify changes in their category and composition is needed for a better understanding of how soil enzymes affect their release of GRSP, in order to maintain a nutrient balance along successive stages of vegetation restoration.
Collapse
|
16
|
Su F, Wei Y, Wang F, Guo J, Zhang J, Wang Y, Guo H, Hu S. Sensitivity of plant species to warming and altered precipitation dominates the community productivity in a semiarid grassland on the Loess Plateau. Ecol Evol 2019; 9:7628-7638. [PMID: 31346427 PMCID: PMC6635936 DOI: 10.1002/ece3.5312] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/20/2019] [Accepted: 05/08/2019] [Indexed: 11/29/2022] Open
Abstract
Global warming and changes in precipitation patterns can critically influence the structure and productivity of terrestrial ecosystems. However, the underlying mechanisms are not fully understood. We conducted two independent but complementary experiments (one with warming and precipitation manipulation (+ or - 30%) and another with selective plant removal) in a semiarid grassland on the Loess Plateau, northwestern China, to assess how warming and altered precipitation affect plant community. Our results showed that warming and altered precipitation affected community aboveground net primary productivity (ANPP) through impacting soil moisture. Results of the removal experiment showed competitive relationships among dominant grasses, the dominant subshrub and nondominant species, which played a more important role than soil moisture in the response of plant community to warming and altered precipitation. Precipitation addition intensified the competition but primarily benefited the dominant subshrub. Warming and precipitation reduction enhanced water stresses but increased ANPP of the dominant subshrub and grasses, indicating that plant tolerance to drought critically meditated the community responses. These findings suggest that specie competitivity for water resources as well as tolerance to environmental stresses may dominate the responses of plant communities on the Loess Plateaus to future climate change factors.
Collapse
Affiliation(s)
- Fanglong Su
- Ecosystem Ecology Lab, College of Resources and Environmental SciencesNanjing Agricultural UniversityNanjingChina
| | - Yanan Wei
- Ecosystem Ecology Lab, College of Resources and Environmental SciencesNanjing Agricultural UniversityNanjingChina
| | - Fuwei Wang
- Ecosystem Ecology Lab, College of Resources and Environmental SciencesNanjing Agricultural UniversityNanjingChina
| | - Jiuxin Guo
- Ecosystem Ecology Lab, College of Resources and Environmental SciencesNanjing Agricultural UniversityNanjingChina
- International Magnesium Institute, College of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhou CityChina
| | - Juanjuan Zhang
- Ecosystem Ecology Lab, College of Resources and Environmental SciencesNanjing Agricultural UniversityNanjingChina
| | - Yi Wang
- State Key Laboratory of Loess and Quaternary, Institute of Earth EnvironmentChinese Academy of SciencesXi'anChina
| | - Hui Guo
- Ecosystem Ecology Lab, College of Resources and Environmental SciencesNanjing Agricultural UniversityNanjingChina
| | - Shuijin Hu
- Ecosystem Ecology Lab, College of Resources and Environmental SciencesNanjing Agricultural UniversityNanjingChina
- Department of Entomology & Plant PathologyNorth Carolina State UniversityRaleighNorth Carolina
| |
Collapse
|
17
|
Chen D, Xing W, Lan Z, Saleem M, Wu Y, Hu S, Bai Y. Direct and indirect effects of nitrogen enrichment on soil organisms and carbon and nitrogen mineralization in a semi‐arid grassland. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13226] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dima Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany Chinese Academy of Sciences Beijing China
| | - Wen Xing
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany Chinese Academy of Sciences Beijing China
| | - Zhichun Lan
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Center for Watershed Ecology, Institute of Life Science and School of Life Sciences Nanchang University Nanchang China
| | - Muhammad Saleem
- Biology Department University of Nebraska‐Kearney Kearney Nebraska
| | - Yunqiqige Wu
- Grassland Station of Xilinhot, Inner Mongolia Autonomous Region Xilinhot Inner Mongolia China
| | - Shuijin Hu
- Department of Plant Pathology North Carolina State University Raleigh North Carolina
| | - Yongfei Bai
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany Chinese Academy of Sciences Beijing China
| |
Collapse
|
18
|
Andriuzzi WS, Wall DH. Soil biological responses to, and feedbacks on, trophic rewilding. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170448. [PMID: 30348874 PMCID: PMC6231063 DOI: 10.1098/rstb.2017.0448] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2018] [Indexed: 12/21/2022] Open
Abstract
Trophic rewilding-the (re)introduction of missing large herbivores and/or their predators-is increasingly proposed to restore biodiversity and biotic interactions, but its effects on soils have been largely neglected. The high diversity of soil organisms and the ecological functions they perform mean that the full impact of rewilding on ecosystems cannot be assessed considering only above-ground food webs. Here we outline current understanding on how animal species of rewilding interest affect soil structure, processes and communities, and how in turn soil biota may affect species above ground. We highlight considerable uncertainty in soil responses to and feedbacks on above-ground consumers, with potentially large implications for rewilding interactions with global change. For example, the impact of large herbivores on soil decomposers and plant-soil interactions could lead to reduced carbon sequestration, whereas herbivore interactions with keystone biota such as mycorrhizal fungi, dung beetles and bioturbators could promote native plants and ecosystem heterogeneity. Moreover, (re)inoculation of keystone soil biota could be considered as a strategy to meet some of the objectives of trophic rewilding. Overall, we call for the rewilding research community to engage more with soil ecology experts and consider above-ground-below-ground linkages as integral to assess potential benefits as well as pitfalls.This article is part of the theme issue 'Trophic rewilding: consequences for ecosystems under global change'.
Collapse
Affiliation(s)
- W S Andriuzzi
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - D H Wall
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
- School of Global Environmental Sustainability, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
19
|
Ramirez KS, Geisen S, Morriën E, Snoek BL, van der Putten WH. Network Analyses Can Advance Above-Belowground Ecology. TRENDS IN PLANT SCIENCE 2018; 23:759-768. [PMID: 30072227 DOI: 10.1016/j.tplants.2018.06.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/05/2018] [Accepted: 06/17/2018] [Indexed: 06/08/2023]
Abstract
An understanding of above-belowground (AG-BG) ecology is important for evaluating how plant interactions with enemies, symbionts, and decomposers affect species diversity and will respond to global changes. However, research questions and experiments often focus on only a limited number of interactions, creating an incomplete picture of how entire communities may be involved in AG-BG community ecology. Therefore, a pressing challenge is to formulate hypotheses of AG-BG interactions when considering communities in their full complexity. Here we discuss how network analyses can be a powerful tool to progress AG-BG research, link across scales from individual to community and ecosystem, visualize community interactions between the two (AG and BG) subsystems, and develop testable hypotheses.
Collapse
Affiliation(s)
- Kelly S Ramirez
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB, Wageningen, The Netherlands.
| | - Stefan Geisen
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB, Wageningen, The Netherlands; Laboratory of Nematology, Wageningen University, P.O. Box 8123, 6700 ES, Wageningen, The Netherlands
| | - Elly Morriën
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB, Wageningen, The Netherlands; Institute of Biodiversity and Ecosystem Dynamics, Department of Ecosystem and Landscape Dynamics (IBED-ELD), University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands
| | - Basten L Snoek
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB, Wageningen, The Netherlands; Laboratory of Nematology, Wageningen University, P.O. Box 8123, 6700 ES, Wageningen, The Netherlands; Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Wim H van der Putten
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB, Wageningen, The Netherlands; Laboratory of Nematology, Wageningen University, P.O. Box 8123, 6700 ES, Wageningen, The Netherlands
| |
Collapse
|
20
|
Borgström P, Bommarco R, Strengbom J, Viketoft M. Above- and belowground insect herbivores mediate the impact of nitrogen eutrophication on the soil food web in a grassland ecosystem. OIKOS 2018. [DOI: 10.1111/oik.04763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Pernilla Borgström
- Swedish Univ. of Agricultural Sciences; PO Box 7044 SE-75007 Uppsala Sweden
| | - Riccardo Bommarco
- Swedish Univ. of Agricultural Sciences; PO Box 7044 SE-75007 Uppsala Sweden
| | - Joachim Strengbom
- Swedish Univ. of Agricultural Sciences; PO Box 7044 SE-75007 Uppsala Sweden
| | - Maria Viketoft
- Swedish Univ. of Agricultural Sciences; PO Box 7044 SE-75007 Uppsala Sweden
| |
Collapse
|
21
|
Ren H, Gui W, Bai Y, Stein C, Rodrigues JLM, Wilson GWT, Cobb AB, Zhang Y, Yang G. Long-term effects of grazing and topography on extra-radical hyphae of arbuscular mycorrhizal fungi in semi-arid grasslands. MYCORRHIZA 2018; 28:117-127. [PMID: 29243065 DOI: 10.1007/s00572-017-0812-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/06/2017] [Indexed: 06/07/2023]
Abstract
Grazing and topography have drastic effects on plant communities and soil properties. These effects are thought to influence arbuscular mycorrhizal (AM) fungi. However, the simultaneous impacts of grazing pressure (sheep ha-1) and topography on plant and soil factors and their relationship to the production of extra-radical AM hyphae are not well understood. Our 10-year study assessed relationships between grazing, plant species richness, aboveground plant productivity, soil nutrients, edaphic properties, and AM hyphal length density (HLD) in different topographic areas (flat or sloped). We found HLD linearly declined with increasing grazing pressure (1.5-9.0 sheep ha-1) in sloped areas, but HLD was greatest at moderate grazing pressure (4.5 sheep ha-1) in flat areas. Structural equation modeling indicates grazing reduces HLD by altering soil nutrient dynamics in sloped areas, but non-linearly influences HLD through plant community and edaphic changes in flat areas. Our findings highlight how topography influences key plant and soil factors, thus regulating the effects of grazing pressure on extra-radical hyphal production of AM fungi in grasslands. Understanding how grazing and topography influence AM fungi in semi-arid grasslands is vital, as globally, severe human population pressure and increasing demand for food aggravate the grazing intensity in grasslands.
Collapse
Affiliation(s)
- Haiyan Ren
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiyang Gui
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongfei Bai
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Claudia Stein
- Tyson Research Center and Department of Biology, Washington University St. Louis, 1 Brookings Drive, St. Louis, MO, 63130, USA
| | - Jorge L M Rodrigues
- Department of Land, Air and Water Resources, University of California-Davis, Davis, CA, 95616, USA
| | - Gail W T Wilson
- Natural Resource Ecology and Management, Oklahoma State University, 008C Ag Hall, Stillwater, OK, 74078, USA
| | - Adam B Cobb
- Natural Resource Ecology and Management, Oklahoma State University, 008C Ag Hall, Stillwater, OK, 74078, USA
| | - Yingjun Zhang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
- Department of Grassland Science, China Agricultural University, Beijing, 100193, China
| | - Gaowen Yang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
22
|
Kolstad AL, Austrheim G, Solberg EJ, Venete AMA, Woodin SJ, Speed JDM. Cervid Exclusion Alters Boreal Forest Properties with Little Cascading Impacts on Soils. Ecosystems 2017. [DOI: 10.1007/s10021-017-0202-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Veen GFC, De Long JR, Kardol P, Sundqvist MK, Snoek LB, Wardle DA. Coordinated responses of soil communities to elevation in three subarctic vegetation types. OIKOS 2017. [DOI: 10.1111/oik.04158] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- G. F. Ciska Veen
- Dept of Forest Ecology and Management, Swedish Univ. of Agricultural Sciences; Umeå Sweden
| | - Jonathan R. De Long
- Dept of Forest Ecology and Management, Swedish Univ. of Agricultural Sciences; Umeå Sweden
- School of Earth and Environmental Sciences, The Univ. of Manchester; Manchester England
| | - Paul Kardol
- Dept of Forest Ecology and Management, Swedish Univ. of Agricultural Sciences; Umeå Sweden
| | - Maja K. Sundqvist
- Dept of Ecology and Environmental Science, Umeå Univ.; Umeå Sweden
- Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, Univ. of Copenhagen; Copenhagen Denmark
| | - L. Basten Snoek
- Dept of Terrestrial Ecology, Netherlands Inst. of Ecology PO Box 50; NL-6700 AB, Wageningen Netherlands
- Laboratory of Nematology, Wageningen Univ.; Wageningen Netherlands
| | - David A. Wardle
- Dept of Forest Ecology and Management, Swedish Univ. of Agricultural Sciences; Umeå Sweden
- Asian School of the Environment, Nanyang Technological Univ.; Singapore
| |
Collapse
|
24
|
Cortois R, Veen GFC, Duyts H, Abbas M, Strecker T, Kostenko O, Eisenhauer N, Scheu S, Gleixner G, De Deyn GB, van der Putten WH. Possible mechanisms underlying abundance and diversity responses of nematode communities to plant diversity. Ecosphere 2017. [DOI: 10.1002/ecs2.1719] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Roeland Cortois
- Department of Terrestrial Ecology; Netherlands Institute of Ecology (NIOO-KNAW); P.O. Box 50 6700 AB Wageningen The Netherlands
| | - G. F. Ciska Veen
- Department of Terrestrial Ecology; Netherlands Institute of Ecology (NIOO-KNAW); P.O. Box 50 6700 AB Wageningen The Netherlands
| | - Henk Duyts
- Department of Terrestrial Ecology; Netherlands Institute of Ecology (NIOO-KNAW); P.O. Box 50 6700 AB Wageningen The Netherlands
| | - Maike Abbas
- AG Planktologie; Institut für Chemie und Biologie des Meeres; Carl von Ossietzky Universität Oldenburg; Schleusenstraße 1 26382 Wilhelmshaven Germany
| | - Tanja Strecker
- JFB Institute of Zoology and Anthropology; University of Göttingen; Berliner Straße 28 Göttingen Germany
| | - Olga Kostenko
- Department of Terrestrial Ecology; Netherlands Institute of Ecology (NIOO-KNAW); P.O. Box 50 6700 AB Wageningen The Netherlands
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; Deutscher Platz 5e 04103 Leipzig Germany
- Institute of Biology; Leipzig University; Johannisallee 21 04103 Leipzig Germany
| | - Stefan Scheu
- JFB Institute of Zoology and Anthropology; University of Göttingen; Berliner Straße 28 Göttingen Germany
| | - Gerd Gleixner
- Max Planck Institute for Biogeochemistry; Jena Germany
| | - Gerlinde B. De Deyn
- Department of Soil Quality; Wageningen University; 6700 AA Wageningen The Netherlands
| | - Wim H. van der Putten
- Department of Terrestrial Ecology; Netherlands Institute of Ecology (NIOO-KNAW); P.O. Box 50 6700 AB Wageningen The Netherlands
- Laboratory of Nematology; Wageningen University; 6700 ES Wageningen The Netherlands
| |
Collapse
|
25
|
Moorhead LC, Souza L, Habeck CW, Lindroth RL, Classen AT. Small mammal activity alters plant community composition and microbial activity in an old-field ecosystem. Ecosphere 2017. [DOI: 10.1002/ecs2.1777] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Leigh C. Moorhead
- Department of Ecology and Evolutionary Biology; University of Tennessee; 569 Dabney Hall 1416 Circle Drive Knoxville Tennessee 37996 USA
- Center for Macroecology, Evolution and Climate; Natural History Museum of Denmark; University of Copenhagen; Sølvgade 83S DK-1307 Copenhagen K Denmark
| | - Lara Souza
- Department of Ecology and Evolutionary Biology; University of Tennessee; 569 Dabney Hall 1416 Circle Drive Knoxville Tennessee 37996 USA
| | | | - Richard L. Lindroth
- Department of Entomology; University of Wisconsin-Madison; Madison Wisconsin 53706 USA
| | - Aimée T. Classen
- Department of Ecology and Evolutionary Biology; University of Tennessee; 569 Dabney Hall 1416 Circle Drive Knoxville Tennessee 37996 USA
- Center for Macroecology, Evolution and Climate; Natural History Museum of Denmark; University of Copenhagen; Sølvgade 83S DK-1307 Copenhagen K Denmark
| |
Collapse
|
26
|
Year-round breeding equatorial Larks from three climatically-distinct populations do not use rainfall, temperature or invertebrate biomass to time reproduction. PLoS One 2017; 12:e0175275. [PMID: 28419105 PMCID: PMC5395156 DOI: 10.1371/journal.pone.0175275] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 03/23/2017] [Indexed: 11/19/2022] Open
Abstract
Timing of reproduction in birds is important for reproductive success and is known to depend on environmental cues such as day length and food availability. However, in equatorial regions, where day length is nearly constant, other factors such as rainfall and temperature are thought to determine timing of reproduction. Rainfall can vary at small spatial and temporal scales, providing a highly fluctuating and unpredictable environmental cue. In this study we investigated the extent to which spatio-temporal variation in environmental conditions can explain the timing of breeding of Red-capped Lark, Calandrella cinerea, a species that is capable of reproducing during every month of the year in our equatorial east African study locations. For 39 months in three climatically-distinct locations, we monitored nesting activities, sampled ground and flying invertebrates, and quantified rainfall, maximum (Tmax) and minimum (Tmin) temperatures. Among locations we found that lower rainfall and higher temperatures did not coincide with lower invertebrate biomasses and decreased nesting activities, as predicted. Within locations, we found that rainfall, Tmax, and Tmin varied unpredictably among months and years. The only consistent annually recurring observations in all locations were that January and February had low rainfall, high Tmax, and low Tmin. Ground and flying invertebrate biomasses varied unpredictably among months and years, but invertebrates were captured in all months in all locations. Red-capped Larks bred in all calendar months overall but not in every month in every year in every location. Using model selection, we found no clear support for any relationship between the environmental variables and breeding in any of the three locations. Contrary to popular understanding, this study suggests that rainfall and invertebrate biomass as proxy for food do not influence breeding in equatorial Larks. Instead, we propose that factors such as nest predation, female protein reserves, and competition are more important in environments where weather and food meet minimum requirements for breeding during most of the year.
Collapse
|
27
|
Alberti J, Bakker ES, van Klink R, Olff H, Smit C. Herbivore exclusion promotes a more stochastic plant community assembly in a natural grassland. Ecology 2017; 98:961-970. [DOI: 10.1002/ecy.1741] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 12/20/2016] [Accepted: 01/03/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Juan Alberti
- Laboratorio de Ecología; Instituto de Investigaciones Marinas y Costeras (IIMyC); Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); CC 1260 Correo Central B7600WAG, Mar del Plata Argentina
| | - Elisabeth S. Bakker
- Department of Aquatic Ecology; Netherlands Institute of Ecology (NIOO-KNAW); Droevendaalsesteeg 10 6708, PB Wageningen The Netherlands
| | - Roel van Klink
- Institute of Botany; Czech Academy of Sciences; Dukelská 135 37982, Tĭeboň Czech Republic
| | - Han Olff
- Conservation Ecology Group; Groningen Institute of Evolutionary Life Sciences; University of Groningen; P.O. Box 11103 9700, CC Groningen The Netherlands
| | - Christian Smit
- Conservation Ecology Group; Groningen Institute of Evolutionary Life Sciences; University of Groningen; P.O. Box 11103 9700, CC Groningen The Netherlands
| |
Collapse
|
28
|
Vandegehuchte ML, Putten WH, Duyts H, Schütz M, Risch AC. Aboveground mammal and invertebrate exclusions cause consistent changes in soil food webs of two subalpine grassland types, but mechanisms are system‐specific. OIKOS 2016. [DOI: 10.1111/oik.03341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Martijn L. Vandegehuchte
- Research Unit Community Ecology Swiss Federal Inst. for Forest, Snow and Landscape Research Zürcherstrasse 111 CH‐8903 Birmensdorf Switzerland
| | - Wim H. Putten
- Dept of Terrestrial Ecology Netherlands Inst. of Ecology (NIOO‐KNAW) Wageningen the Netherlands
- Lab. of Nematology, Wageningen Univ. and Research Centre (WUR) Wageningen the Netherlands
| | - Henk Duyts
- Dept of Terrestrial Ecology Netherlands Inst. of Ecology (NIOO‐KNAW) Wageningen the Netherlands
| | - Martin Schütz
- Research Unit Community Ecology Swiss Federal Inst. for Forest, Snow and Landscape Research Zürcherstrasse 111 CH‐8903 Birmensdorf Switzerland
| | - Anita C. Risch
- Research Unit Community Ecology Swiss Federal Inst. for Forest, Snow and Landscape Research Zürcherstrasse 111 CH‐8903 Birmensdorf Switzerland
| |
Collapse
|
29
|
Zhang K, Shi Y, Jing X, He JS, Sun R, Yang Y, Shade A, Chu H. Effects of Short-Term Warming and Altered Precipitation on Soil Microbial Communities in Alpine Grassland of the Tibetan Plateau. Front Microbiol 2016; 7:1032. [PMID: 27446064 PMCID: PMC4927576 DOI: 10.3389/fmicb.2016.01032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/20/2016] [Indexed: 01/26/2023] Open
Abstract
Soil microbial communities are influenced by climate change drivers such as warming and altered precipitation. These changes create abiotic stresses, including desiccation and nutrient limitation, which act on microbes. However, our understanding of the responses of microbial communities to co-occurring climate change drivers is limited. We surveyed soil bacterial and fungal diversity and composition after a 1-year warming and altered precipitation manipulation in the Tibetan plateau alpine grassland. In isolation, warming and decreased precipitation treatments each had no significant effects on soil bacterial community structure; however, in combination of both treatments altered bacterial community structure (p = 0.03). The main effect of altered precipitation specifically impacted the relative abundances of Bacteroidetes and Gammaproteobacteria compared to the control, while the main effect of warming impacted the relative abundance of Betaproteobacteria. In contrast, the fungal community had no significant response to the treatments after 1-year. Using structural equation modeling (SEM), we found bacterial community composition was positively related to soil moisture. Our results indicate that short-term climate change could cause changes in soil bacterial community through taxonomic shifts. Our work provides new insights into immediate soil microbial responses to short-term stressors acting on an ecosystem that is particularly sensitive to global climate change.
Collapse
Affiliation(s)
- Kaoping Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science Nanjing, China
| | - Yu Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science Nanjing, China
| | - Xin Jing
- Department of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University Beijing, China
| | - Jin-Sheng He
- Department of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking UniversityBeijing, China; Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of SciencesXining, China
| | - Ruibo Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science Nanjing, China
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University Beijing, China
| | - Ashley Shade
- Department of Microbiology and Molecular Genetics, Michigan State University East Lansing, MI, USA
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science Nanjing, China
| |
Collapse
|
30
|
Xu L, Schmid BV, Liu J, Si X, Stenseth NC, Zhang Z. The trophic responses of two different rodent-vector-plague systems to climate change. Proc Biol Sci 2016; 282:20141846. [PMID: 25540277 DOI: 10.1098/rspb.2014.1846] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Plague, the causative agent of three devastating pandemics in history, is currently a re-emerging disease, probably due to climate change and other anthropogenic changes. Without understanding the response of plague systems to anthropogenic or climate changes in their trophic web, it is unfeasible to effectively predict years with high risks of plague outbreak, hampering our ability for effective prevention and control of the disease. Here, by using surveillance data, we apply structural equation modelling to reveal the drivers of plague prevalence in two very different rodent systems: those of the solitary Daurian ground squirrel and the social Mongolian gerbil. We show that plague prevalence in the Daurian ground squirrel is not detectably related to its trophic web, and that therefore surveillance efforts should focus on detecting plague directly in this ecosystem. On the other hand, plague in the Mongolian gerbil is strongly embedded in a complex, yet understandable trophic web of climate, vegetation, and rodent and flea densities, making the ecosystem suitable for more sophisticated low-cost surveillance practices, such as remote sensing. As for the trophic webs of the two rodent species, we find that increased vegetation is positively associated with higher temperatures and precipitation for both ecosystems. We furthermore find a positive association between vegetation and ground squirrel density, yet a negative association between vegetation and gerbil density. Our study thus shows how past surveillance records can be used to design and improve existing plague prevention and control measures, by tailoring them to individual plague foci. Such measures are indeed highly needed under present conditions with prevailing climate change.
Collapse
Affiliation(s)
- Lei Xu
- State Key Laboratory of Integrated Management on Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Boris V Schmid
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Blindern, Oslo 0316, Norway
| | - Jun Liu
- Inner Mongolia Center for Endemic Disease Control and Research, Huhehot 010031, People's Republic of China
| | - Xiaoyan Si
- Inner Mongolia Center for Endemic Disease Control and Research, Huhehot 010031, People's Republic of China
| | - Nils Chr Stenseth
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Blindern, Oslo 0316, Norway
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management on Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| |
Collapse
|
31
|
Risch AC, Schütz M, Vandegehuchte ML, van der Putten WH, Duyts H, Raschein U, Gwiazdowicz DJ, Busse MD, Page-Dumroese DS, Zimmermann S. Aboveground vertebrate and invertebrate herbivore impact on net N mineralization in subalpine grasslands. Ecology 2015; 96:3312-22. [DOI: 10.1890/15-0300.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Yu L, Yan X, Ye C, Zhao H, Chen X, Hu F, Li H. Bacterial Respiration and Growth Rates Affect the Feeding Preferences, Brood Size and Lifespan of Caenorhabditis elegans. PLoS One 2015. [PMID: 26222828 PMCID: PMC4519269 DOI: 10.1371/journal.pone.0134401] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bacteria serve as live food and nutrients for bacterial-feeding nematodes (BFNs) in soils, and influence nematodes behavior and physiology through their metabolism. Five bacterial taxa (Bacillus amyloliquefaciens JX1, Variovorax sp. JX14, Bacillus megaterium JX15, Pseudomonas fluorescens Y1 and Escherichia coli OP50) and the typical BFN Caenorhabditis elegans were selected to study the effects of bacterial respiration and growth rates on the feeding preferences, brood size and lifespan of nematodes. P. fluorescens Y1 and E. coli OP50 were found to be more active, with high respiration and rapid growth, whereas B. amyloliquefaciens JX1 and B. megaterium JX15 were inactive. The nematode C. elegans preferred active P. fluorescens Y1 and E. coli OP50 obviously. Furthermore, worms that fed on these two active bacteria produced more offspring but had shorter lifespan, while inactive and less preferred bacteria had increased nematodes lifespan and decreased the brood size. Based on these results, we propose that the bacterial activity may influence the behavior and life traits of C. elegans in the following ways: (1) active bacteria reproduce rapidly and emit high levels of CO2 attracting C. elegans; (2) these active bacteria use more resources in the nematodes’ gut to sustain their survival and reproduction, thereby reducing the worm's lifespan; (3) inactive bacteria may provide less food for worms than active bacteria, thus increasing nematodes lifespan but decreasing their fertility. Nematodes generally require a balance between their preferred foods and beneficial foods, only preferred food may not be beneficial for nematodes.
Collapse
Affiliation(s)
- Li Yu
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Xiaomei Yan
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Chenglong Ye
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Haiyan Zhao
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Xiaoyun Chen
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
| | - Huixin Li
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
- * E-mail:
| |
Collapse
|
33
|
Veen GFC, de Vries S, Bakker ES, van der Putten WH, Olff H. Grazing-induced changes in plant-soil feedback alter plant biomass allocation. OIKOS 2014. [DOI: 10.1111/j.1600-0706.2013.01077.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Wei C, Yu Q, Bai E, Lü X, Li Q, Xia J, Kardol P, Liang W, Wang Z, Han X. Nitrogen deposition weakens plant-microbe interactions in grassland ecosystems. GLOBAL CHANGE BIOLOGY 2013; 19:3688-97. [PMID: 23925948 DOI: 10.1111/gcb.12348] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 07/15/2013] [Accepted: 07/20/2013] [Indexed: 05/09/2023]
Abstract
Soil carbon (C) and nitrogen (N) stoichiometry is a main driver of ecosystem functioning. Global N enrichment has greatly changed soil C : N ratios, but how altered resource stoichiometry influences the complexity of direct and indirect interactions among plants, soils, and microbial communities has rarely been explored. Here, we investigated the responses of the plant-soil-microbe system to multi-level N additions and the role of dissolved organic carbon (DOC) and inorganic N stoichiometry in regulating microbial biomass in semiarid grassland in northern China. We documented a significant positive correlation between DOC and inorganic N across the N addition gradient, which contradicts the negative nonlinear correlation between nitrate accrual and DOC availability commonly observed in natural ecosystems. Using hierarchical structural equation modeling, we found that soil acidification resulting from N addition, rather than changes in the plant community, was most closely related to shifts in soil microbial community composition and decline of microbial respiration. These findings indicate a down-regulating effect of high N availability on plant-microbe interactions. That is, with the limiting factor for microbial biomass shifting from resource stoichiometry to soil acidity, N enrichment weakens the bottom-up control of soil microorganisms by plant-derived C sources. These results highlight the importance of integratively studying the plant-soil-microbe system in improving our understanding of ecosystem functioning under conditions of global N enrichment.
Collapse
Affiliation(s)
- Cunzheng Wei
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
A′Bear AD, Murray W, Webb R, Boddy L, Jones TH. Contrasting effects of elevated temperature and invertebrate grazing regulate multispecies interactions between decomposer fungi. PLoS One 2013; 8:e77610. [PMID: 24194892 PMCID: PMC3806825 DOI: 10.1371/journal.pone.0077610] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 09/08/2013] [Indexed: 12/01/2022] Open
Abstract
Predicting the influence of biotic and abiotic factors on species interactions and ecosystem processes is among the primary aims of community ecologists. The composition of saprotrophic fungal communities is a consequence of competitive mycelial interactions, and a major determinant of woodland decomposition and nutrient cycling rates. Elevation of atmospheric temperature is predicted to drive changes in fungal community development. Top-down regulation of mycelial growth is an important determinant of, and moderator of temperature-driven changes to, two-species interaction outcomes. This study explores the interactive effects of a 4 °C temperature increase and soil invertebrate (collembola or woodlice) grazing on multispecies interactions between cord-forming basidiomycete fungi emerging from colonised beech (Fagus sylvatica) wood blocks. The fungal dominance hierarchy at ambient temperature (16 °C; Phanerochaete velutina > Resinicium bicolor > Hypholoma fasciculare) was altered by elevated temperature (20 °C; R. bicolor > P. velutina > H. fasciculare) in ungrazed systems. Warming promoted the competitive ability of the fungal species (R. bicolor) that was preferentially grazed by all invertebrate species. As a consequence, grazing prevented the effect of temperature on fungal community development and maintained a multispecies assemblage. Decomposition of fungal-colonised wood was stimulated by warming, with implications for increased CO2 efflux from woodland soil. Analogous to aboveground plant communities, increasing complexity of biotic and abiotic interactions appears to be important in buffering climate change effects on soil decomposers.
Collapse
Affiliation(s)
- A. Donald A′Bear
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - William Murray
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Rachel Webb
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Lynne Boddy
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
- * E-mail:
| | - T. Hefin Jones
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
36
|
Li Q, Bai H, Liang W, Xia J, Wan S, van der Putten WH. Nitrogen addition and warming independently influence the belowground micro-food web in a temperate steppe. PLoS One 2013; 8:e60441. [PMID: 23544140 PMCID: PMC3609780 DOI: 10.1371/journal.pone.0060441] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 02/26/2013] [Indexed: 11/18/2022] Open
Abstract
Climate warming and atmospheric nitrogen (N) deposition are known to influence ecosystem structure and functioning. However, our understanding of the interactive effect of these global changes on ecosystem functioning is relatively limited, especially when it concerns the responses of soils and soil organisms. We conducted a field experiment to study the interactive effects of warming and N addition on soil food web. The experiment was established in 2006 in a temperate steppe in northern China. After three to four years (2009–2010), we found that N addition positively affected microbial biomass and negatively influenced trophic group and ecological indices of soil nematodes. However, the warming effects were less obvious, only fungal PLFA showed a decreasing trend under warming. Interestingly, the influence of N addition did not depend on warming. Structural equation modeling analysis suggested that the direct pathway between N addition and soil food web components were more important than the indirect connections through alterations in soil abiotic characters or plant growth. Nitrogen enrichment also affected the soil nematode community indirectly through changes in soil pH and PLFA. We conclude that experimental warming influenced soil food web components of the temperate steppe less than N addition, and there was little influence of warming on N addition effects under these experimental conditions.
Collapse
Affiliation(s)
- Qi Li
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Netherlands Institute of Ecology, Terrestrial Ecology Department, Wageningen, The Netherlands
- * E-mail: (QL); (WL)
| | - Huahua Bai
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Wenju Liang
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- * E-mail: (QL); (WL)
| | - Jianyang Xia
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Shiqiang Wan
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Stress Plant Biology, School of Life Sciences, Henan University, Henan, China
| | - Wim H. van der Putten
- Netherlands Institute of Ecology, Terrestrial Ecology Department, Wageningen, The Netherlands
- Laboratory of Nematology, Wageningen University and Research Centre, Wageningen, The Netherlands
| |
Collapse
|
37
|
Herbivore trampling as an alternative pathway for explaining differences in nitrogen mineralization in moist grasslands. Oecologia 2012; 172:231-43. [DOI: 10.1007/s00442-012-2484-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 09/17/2012] [Indexed: 10/27/2022]
|
38
|
Chen D, Zheng S, Shan Y, Taube F, Bai Y. Vertebrate herbivore-induced changes in plants and soils: linkages to ecosystem functioning in a semi-arid steppe. Funct Ecol 2012. [DOI: 10.1111/1365-2435.12027] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dima Chen
- State Key Laboratory of Vegetation and Environmental Change; Institute of Botany; Chinese Academy of Sciences; Beijing; 100093; China
| | - Shuxia Zheng
- State Key Laboratory of Vegetation and Environmental Change; Institute of Botany; Chinese Academy of Sciences; Beijing; 100093; China
| | - Yumei Shan
- State Key Laboratory of Vegetation and Environmental Change; Institute of Botany; Chinese Academy of Sciences; Beijing; 100093; China
| | - Friedhelm Taube
- Institute of Crop Science and Plant Breeding - Grass and Forage Science/Organic Agriculture; Christian-Albrechts University; Hermann-Rodewald-Str. 9; 24118; Kiel; Germany
| | - Yongfei Bai
- State Key Laboratory of Vegetation and Environmental Change; Institute of Botany; Chinese Academy of Sciences; Beijing; 100093; China
| |
Collapse
|
39
|
Folmer EO, van der Geest M, Jansen E, Olff H, Michael Anderson T, Piersma T, van Gils JA. Seagrass–Sediment Feedback: An Exploration Using a Non-recursive Structural Equation Model. Ecosystems 2012. [DOI: 10.1007/s10021-012-9591-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Wei C, Zheng H, Li Q, Lü X, Yu Q, Zhang H, Chen Q, He N, Kardol P, Liang W, Han X. Nitrogen addition regulates soil nematode community composition through ammonium suppression. PLoS One 2012; 7:e43384. [PMID: 22952671 PMCID: PMC3432042 DOI: 10.1371/journal.pone.0043384] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 07/19/2012] [Indexed: 12/04/2022] Open
Abstract
Nitrogen (N) enrichment resulting from anthropogenic activities has greatly changed the composition and functioning of soil communities. Nematodes are one of the most abundant and diverse groups of soil organisms, and they occupy key trophic positions in the soil detritus food web. Nematodes have therefore been proposed as useful indicators for shifts in soil ecosystem functioning under N enrichment. Here, we monitored temporal dynamics of the soil nematode community using a multi-level N addition experiment in an Inner Mongolia grassland. Measurements were made three years after the start of the experiment. We used structural equation modeling (SEM) to explore the mechanisms regulating nematode responses to N enrichment. Across the N enrichment gradient, significant reductions in total nematode abundance, diversity (H' and taxonomic richness), maturity index (MI), and the abundance of root herbivores, fungivores and omnivores-predators were found in August. Root herbivores recovered in September, contributing to the temporal variation of total nematode abundance across the N gradient. Bacterivores showed a hump-shaped relationship with N addition rate, both in August and September. Ammonium concentration was negatively correlated with the abundance of total and herbivorous nematodes in August, but not in September. Ammonium suppression explained 61% of the variation in nematode richness and 43% of the variation in nematode trophic group composition. Ammonium toxicity may occur when herbivorous nematodes feed on root fluid, providing a possible explanation for the negative relationship between herbivorous nematodes and ammonium concentration in August. We found a significantly positive relationship between fungivores and fungal phospholipid fatty acids (PLFA), suggesting bottom-up control of fungivores. No such relationship was found between bacterivorous nematodes and bacterial PLFA. Our findings contribute to the understanding of effects of N enrichment in semiarid grassland on soil nematode trophic groups, and the cascading effects in the detrital soil food web.
Collapse
Affiliation(s)
- Cunzheng Wei
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (CZW); (XGH)
| | - Huifen Zheng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Qi Li
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Xiaotao Lü
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Qiang Yu
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Haiyang Zhang
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Quansheng Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Nianpeng He
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Paul Kardol
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Wenju Liang
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Xingguo Han
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- * E-mail: (CZW); (XGH)
| |
Collapse
|
41
|
Zhu H, Wang D, Wang L, Bai Y, Fang J, Liu J. The effects of large herbivore grazing on meadow steppe plant and insect diversity. J Appl Ecol 2012. [DOI: 10.1111/j.1365-2664.2012.02195.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hui Zhu
- Institute of Grassland Science; Northeast Normal University; Key Laboratory of Vegetation Ecology; Ministry of Education; Changchun; Jilin; 130024; China
| | - Deli Wang
- Institute of Grassland Science; Northeast Normal University; Key Laboratory of Vegetation Ecology; Ministry of Education; Changchun; Jilin; 130024; China
| | - Ling Wang
- Institute of Grassland Science; Northeast Normal University; Key Laboratory of Vegetation Ecology; Ministry of Education; Changchun; Jilin; 130024; China
| | - Yuguang Bai
- Department of Plant Sciences; University of Saskatchewan; Saskatoon; SK; S7N 5A8; Canada
| | - Jian Fang
- Institute of Grassland Science; Northeast Normal University; Key Laboratory of Vegetation Ecology; Ministry of Education; Changchun; Jilin; 130024; China
| | - Jun Liu
- Institute of Grassland Science; Northeast Normal University; Key Laboratory of Vegetation Ecology; Ministry of Education; Changchun; Jilin; 130024; China
| |
Collapse
|
42
|
Ruan WB, Sang Y, Chen Q, Zhu X, Lin S, Gao YB. The Response of Soil Nematode Community to Nitrogen, Water, and Grazing History in the Inner Mongolian Steppe, China. Ecosystems 2012. [DOI: 10.1007/s10021-012-9570-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
43
|
Lessard JP, Reynolds WN, Bunn WA, Genung MA, Cregger MA, Felker-Quinn E, Barrios-Garcia MN, Stevenson ML, Lawton RM, Brown CB, Patrick M, Rock JH, Jenkins MA, Bailey JK, Schweitzer JA. Equivalence in the strength of deer herbivory on above and below ground communities. Basic Appl Ecol 2012. [DOI: 10.1016/j.baae.2011.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
44
|
Crowther TW, Boddy L, Jones TH. Outcomes of fungal interactions are determined by soil invertebrate grazers. Ecol Lett 2011; 14:1134-42. [PMID: 21929699 DOI: 10.1111/j.1461-0248.2011.01682.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Saprotrophic fungal community composition, determined by the outcome of competitive mycelial interactions, is one of the many key factors affecting soil nutrient mineralisation and decomposition rates. Fungal communities are not generally predicted to be regulated by top-down factors, such as predation, but rather by bottom-up factors, including resource availability. We show that invertebrate grazers can exert selective pressures on fungal decomposer communities in soil, reversing the outcomes of competitive interactions. By feeding selectively on the cord-forming fungus Resinicium bicolor, isopods prevented the competitive exclusion of Hypholoma fasciculare and Phanerochaete velutina in soil and wood. Nematode populations also reversed the outcomes of competitive interactions by stimulating growth of less competitive fungi. These represent two opposing mechanisms by which soil fauna may influence fungal community composition and diversity. Factors affecting soil invertebrate communities will have direct consequences for fungal-mediated nutrient cycling in woodland soils.
Collapse
Affiliation(s)
- Thomas W Crowther
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | | | | |
Collapse
|
45
|
Bliss T, Powers TO, Brassil CE. The spatial influence of aboveground diversity on belowground communities. Ecosphere 2010. [DOI: 10.1890/es10-00040.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|