1
|
Monteux S, Blume-Werry G, Gavazov K, Kirchhoff L, Krab EJ, Lett S, Pedersen EP, Väisänen M. Controlling biases in targeted plant removal experiments. THE NEW PHYTOLOGIST 2024; 242:1835-1845. [PMID: 38044568 DOI: 10.1111/nph.19386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/19/2023] [Indexed: 12/05/2023]
Abstract
Targeted removal experiments are a powerful tool to assess the effects of plant species or (functional) groups on ecosystem functions. However, removing plant biomass in itself can bias the observed responses. This bias is commonly addressed by waiting until ecosystem recovery, but this is inherently based on unverified proxies or anecdotal evidence. Statistical control methods are efficient, but restricted in scope by underlying assumptions. We propose accounting for such biases within the experimental design, using a gradient of biomass removal controls. We demonstrate the relevance of this design by presenting (1) conceptual examples of suspected biases and (2) how to observe and control for these biases. Using data from a mycorrhizal association-based removal experiment, we show that ignoring biomass removal biases (including by assuming ecosystem recovery) can lead to incorrect, or even contrary conclusions (e.g. false positive and false negative). Our gradient design can prevent such incorrect interpretations, regardless of whether aboveground biomass has fully recovered. Our approach provides more objective and quantitative insights, independently assessed for each variable, than using a proxy to assume ecosystem recovery. Our approach circumvents the strict statistical assumptions of, for example, ANCOVA and thus offers greater flexibility in data analysis.
Collapse
Affiliation(s)
- Sylvain Monteux
- Department of Environmental Science, Stockholm University, SE-10691, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, SE-10691, Stockholm, Sweden
- UiT The Arctic University Museum of Norway, NO-9006, Tromsø, Norway
| | - Gesche Blume-Werry
- Department of Ecology and Environmental Sciences, Climate Impacts Research Centre, Umeå University, SE-98107, Abisko, Sweden
| | - Konstantin Gavazov
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
| | - Leah Kirchhoff
- Department of Ecology and Environmental Sciences, Climate Impacts Research Centre, Umeå University, SE-98107, Abisko, Sweden
| | - Eveline J Krab
- Department of Soil and Environment, Swedish University for Agricultural Sciences SLU, SE-75651, Uppsala, Sweden
| | - Signe Lett
- Department of Biology, University of Copenhagen, DK-1165, Copenhagen, Denmark
| | - Emily P Pedersen
- Department of Ecology and Environmental Sciences, Climate Impacts Research Centre, Umeå University, SE-98107, Abisko, Sweden
- Swedish Polar Research Secretariat, Abisko Scientific Research Station, SE-98107, Abisko, Sweden
| | - Maria Väisänen
- Ecology and Genetics Research Unit, University of Oulu, FI-90014, Oulu, Finland
| |
Collapse
|
2
|
Fanin N, Clemmensen KE, Lindahl BD, Farrell M, Nilsson MC, Gundale MJ, Kardol P, Wardle DA. Ericoid shrubs shape fungal communities and suppress organic matter decomposition in boreal forests. THE NEW PHYTOLOGIST 2022; 236:684-697. [PMID: 35779014 DOI: 10.1111/nph.18353] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Mycorrhizal fungi associated with boreal trees and ericaceous shrubs are central actors in organic matter (OM) accumulation through their belowground carbon allocation, their potential capacity to mine organic matter for nitrogen (N) and their ability to suppress saprotrophs. Yet, interactions between co-occurring ectomycorrhizal fungi (EMF), ericoid mycorrhizal fungi (ERI), and saprotrophs are poorly understood. We used a long-term (19 yr) plant functional group manipulation experiment with removals of tree roots, ericaceous shrubs and mosses and analysed the responses of different fungal guilds (assessed by metabarcoding) and their interactions in relation to OM quality (assessed by mid-infrared spectroscopy and nuclear magnetic resonance) and decomposition (litter mesh-bags) across a 5000-yr post-fire boreal forest chronosequence. We found that the removal of ericaceous shrubs and associated ERI changed the composition of EMF communities, with larger effects occurring at earlier stages of the chronosequence. Removal of shrubs was associated with enhanced N availability, litter decomposition and enrichment of the recalcitrant OM fraction. We conclude that increasing abundance of slow-growing ericaceous shrubs and the associated fungi contributes to increasing nutrient limitation, impaired decomposition and progressive OM accumulation in boreal forests, particularly towards later successional stages. These results are indicative of the contrasting roles of EMF and ERI in regulating belowground OM storage.
Collapse
Affiliation(s)
- Nicolas Fanin
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901-83, Umeå, Sweden
- INRAE, Bordeaux Sciences Agro, UMR 1391 ISPA, 71 avenue Edouard Bourlaux, CS 20032, F33882, Villenave-d'Ornon cedex, France
| | - Karina E Clemmensen
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, SE-75007, Uppsala, Sweden
| | - Björn D Lindahl
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, SE-75007, Uppsala, Sweden
| | - Mark Farrell
- CSIRO Agriculture & Food, Kaurna Country, Locked Bag 2, Glen Osmond, South Australia, 5064, Australia
| | - Marie-Charlotte Nilsson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901-83, Umeå, Sweden
| | - Michael J Gundale
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901-83, Umeå, Sweden
| | - Paul Kardol
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901-83, Umeå, Sweden
| | - David A Wardle
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901-83, Umeå, Sweden
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore City, 639798, Singapore
| |
Collapse
|
3
|
Grau-Andrés R, Wardle DA, Gundale MJ, Foster CN, Kardol P. Effects of plant functional group removal on CO 2 fluxes and belowground C stocks across contrasting ecosystems. Ecology 2020; 101:e03170. [PMID: 32846007 PMCID: PMC7757239 DOI: 10.1002/ecy.3170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 06/29/2020] [Indexed: 11/17/2022]
Abstract
Changes in plant communities can have large effects on ecosystem carbon (C) dynamics and long‐term C stocks. However, how these effects are mediated by environmental context or vary among ecosystems is not well understood. To study this, we used a long‐term plant removal experiment set up across 30 forested lake islands in northern Sweden that collectively represent a strong gradient of soil fertility and ecosystem productivity. We measured forest floor CO2 exchange and aboveground and belowground C stocks for a 22‐yr experiment involving factorial removal of the two dominant functional groups of the boreal forest understory, namely ericaceous dwarf shrubs and feather mosses, on each of the 30 islands. We found that long‐term shrub and moss removal increased forest floor net CO2 loss and decreased belowground C stocks consistently across the islands irrespective of their productivity or soil fertility. However, we did see context‐dependent responses of respiration to shrub removals because removals only increased respiration on islands of intermediate productivity. Both CO2 exchange and C stocks responded more strongly to shrub removal than to moss removal. Shrub removal reduced gross primary productivity of the forest floor consistently across the island gradient, but it had no effect on respiration, which suggests that loss of belowground C caused by the removals was driven by reduced litter inputs. Across the island gradient, shrub removal consistently depleted C stocks in the soil organic horizon by 0.8 kg C/m2. Our results show that the effect of plant functional group diversity on C dynamics can be relatively consistent across contrasting ecosystems that vary greatly in productivity and soil fertility. These findings underline the key role of understory vegetation in forest C cycling, and suggest that global change leading to changes in the relative abundance of both shrubs and mosses could impact on the capacity of boreal forests to store C.
Collapse
Affiliation(s)
- Roger Grau-Andrés
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
| | - David A Wardle
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden.,Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
| | - Michael J Gundale
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
| | - Claire N Foster
- Fenner School of Environment and Society, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Paul Kardol
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
| |
Collapse
|
4
|
Jean M, Holland-Moritz H, Melvin AM, Johnstone JF, Mack MC. Experimental assessment of tree canopy and leaf litter controls on the microbiome and nitrogen fixation rates of two boreal mosses. THE NEW PHYTOLOGIST 2020; 227:1335-1349. [PMID: 32299141 DOI: 10.1111/nph.16611] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
Nitrogen (N2 )-fixing moss microbial communities play key roles in nitrogen cycling of boreal forests. Forest type and leaf litter inputs regulate moss abundance, but how they control moss microbiomes and N2 -fixation remains understudied. We examined the impacts of forest type and broadleaf litter on microbial community composition and N2 -fixation rates of Hylocomium splendens and Pleurozium schreberi. We conducted a moss transplant and leaf litter manipulation experiment at three sites with paired paper birch (Betula neoalaskana) and black spruce (Picea mariana) stands in Alaska. We characterized bacterial communities using marker gene sequencing, determined N2 -fixation rates using stable isotopes (15 N2 ) and measured environmental covariates. Mosses native to and transplanted into spruce stands supported generally higher N2 -fixation and distinct microbial communities compared to similar treatments in birch stands. High leaf litter inputs shifted microbial community composition for both moss species and reduced N2 -fixation rates for H. splendens, which had the highest rates. N2 -fixation was positively associated with several bacterial taxa, including cyanobacteria. The moss microbiome and environmental conditions controlled N2 -fixation at the stand and transplant scales. Predicted shifts from spruce- to deciduous-dominated stands will interact with the relative abundances of mosses supporting different microbiomes and N2 -fixation rates, which could affect stand-level N inputs.
Collapse
Affiliation(s)
- Mélanie Jean
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Hannah Holland-Moritz
- Cooperative Institute for Research in Environmental Sciences and Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - April M Melvin
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- Independent researcher, Washington, DC, 20001, USA
| | - Jill F Johnstone
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Michelle C Mack
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| |
Collapse
|
5
|
Fanin N, Kardol P, Farrell M, Kempel A, Ciobanu M, Nilsson MC, Gundale MJ, Wardle DA. Effects of plant functional group removal on structure and function of soil communities across contrasting ecosystems. Ecol Lett 2019; 22:1095-1103. [PMID: 30957419 DOI: 10.1111/ele.13266] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/10/2019] [Accepted: 03/15/2019] [Indexed: 01/09/2023]
Abstract
Loss of plant diversity has an impact on ecosystems worldwide, but we lack a mechanistic understanding of how this loss may influence below-ground biota and ecosystem functions across contrasting ecosystems in the long term. We used the longest running biodiversity manipulation experiment across contrasting ecosystems in existence to explore the below-ground consequences of 19 years of plant functional group removals for each of 30 contrasting forested lake islands in northern Sweden. We found that, against expectations, the effects of plant removals on the communities of key groups of soil organisms (bacteria, fungi and nematodes), and organic matter quality and soil ecosystem functioning (decomposition and microbial activity) were relatively similar among islands that varied greatly in productivity and soil fertility. This highlights that, in contrast to what has been shown for plant productivity, plant biodiversity loss effects on below-ground functions can be relatively insensitive to environmental context or variation among widely contrasting ecosystems.
Collapse
Affiliation(s)
- Nicolas Fanin
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901-83, Umeå, Sweden.,INRA, UMR 1391 ISPA, Bordeaux Sciences Agro, 71 avenue Edouard Bourlaux, CS, 20032, F33882, Villenave-d'Ornon cedex, France
| | - Paul Kardol
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901-83, Umeå, Sweden
| | - Mark Farrell
- CSIRO Agriculture & Food, Locked bag 2, Glen Osmond, SA, 5064, Australia
| | - Anne Kempel
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901-83, Umeå, Sweden.,University of Bern, Institute of Plant Sciences, Altenbergrain 21, 3013, Bern, Switzerland
| | - Marcel Ciobanu
- Institute of Biological Research, Branch of the National Institute of Research and Development for Biological Sciences, Str. Republicii 48, Cluj-Napoca, Romania
| | - Marie-Charlotte Nilsson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901-83, Umeå, Sweden
| | - Michael J Gundale
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901-83, Umeå, Sweden
| | - David A Wardle
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901-83, Umeå, Sweden.,Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798
| |
Collapse
|
6
|
Sokołowska K, Turzańska M, Nilsson MC. Symplasmic and apoplasmic transport inside feather moss stems of Pleurozium schreberi and Hylocomium splendens. ANNALS OF BOTANY 2017; 120:805-817. [PMID: 29028868 PMCID: PMC5691860 DOI: 10.1093/aob/mcx102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 07/31/2017] [Indexed: 06/07/2023]
Abstract
Background and Aims The ubiquitous feather mosses Pleurozium schreberi and Hylocomium splendens form a thick, continuous boundary layer between the soil and the atmosphere, and play important roles in hydrology and nutrient cycling in tundra and boreal ecosystems. The water fluxes among these mosses and environmental factors controlling them are poorly understood. The aim of this study was to investigate whether feather mosses are capable of internal transport and to provide a better understanding of species-specific morphological traits underlying this function. The impacts of environmental conditions on their internal transport rates were also investigated. Methods Cells involved in water and food conduction in P. schreberi and H. splendens were identified by transmission electron microscopy. Symplasmic and apoplasmic fluorescent tracers were applied to the moss stems to determine the routes of internal short- and long-distance transport and the impact of air humidity on the transport rates. Key Results Symplasmic transport over short distances occurs via food-conducting cells in both mosses. Pleurozium schreberi is also capable of apoplasmic internal long-distance transport via a central strand of hydroids. These are absent in H. splendens. Reduced air humidity significantly increased the internal transport of both species, and the increase was significantly faster for P. schreberi than for H. splendens. Conclusions Pleurozium schreberi and Hylocomium splendens are capable of internal transport but the pathway and conductivity differ due to differences in stem anatomy. These results help explain their varying desiccation tolerance and possibly their differing physiology and autecology and, ultimately, their impact on ecosystem functioning.
Collapse
Affiliation(s)
- K Sokołowska
- University of Wrocław, Institute of Experimental Biology, Department of Plant Developmental Biology, Wrocław, Poland
| | - M Turzańska
- University of Wrocław, Institute of Experimental Biology, Department of Plant Developmental Biology, Wrocław, Poland
| | - M-C Nilsson
- Swedish University of Agricultural Sciences, Department of Forest Ecology and Management, Umeå, Sweden
| |
Collapse
|
7
|
Warshan D, Bay G, Nahar N, Wardle DA, Nilsson MC, Rasmussen U. Seasonal variation in nifH abundance and expression of cyanobacterial communities associated with boreal feather mosses. THE ISME JOURNAL 2016; 10:2198-208. [PMID: 26918665 PMCID: PMC4989308 DOI: 10.1038/ismej.2016.17] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 12/16/2015] [Accepted: 01/08/2016] [Indexed: 11/13/2022]
Abstract
Dinitrogen (N2)-fixation by cyanobacteria living in symbiosis with pleurocarpous feather mosses (for example, Pleurozium schreberi and Hylocomium splendens) represents the main pathway of biological N input into N-depleted boreal forests. Little is known about the role of the cyanobacterial community in contributing to the observed temporal variability of N2-fixation. Using specific nifH primers targeting four major cyanobacterial clusters and quantitative PCR, we investigated how community composition, abundance and nifH expression varied by moss species and over the growing seasons. We evaluated N2-fixation rates across nine forest sites in June and September and explored the abundance and nifH expression of individual cyanobacterial clusters when N2-fixation is highest. Our results showed temporal and host-dependent variations of cyanobacterial community composition, nifH gene abundance and expression. N2-fixation was higher in September than June for both moss species, explained by higher nifH gene expression of individual clusters rather than higher nifH gene abundance or differences in cyanobacterial community composition. In most cases, 'Stigonema cluster' made up less than 29% of the total cyanobacterial community, but accounted for the majority of nifH gene expression (82-94% of total nifH expression), irrespective of sampling date or moss species. Stepwise multiple regressions showed temporal variations in N2-fixation being greatly explained by variations in nifH expression of the 'Stigonema cluster'. These results suggest that Stigonema is potentially the most influential N2-fixer in symbiosis with boreal forest feather mosses.
Collapse
Affiliation(s)
- Denis Warshan
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Guillaume Bay
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Nurun Nahar
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - David A Wardle
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Marie-Charlotte Nilsson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Ulla Rasmussen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
8
|
Metcalfe DB, Crutsinger GM, Kumordzi BB, Wardle DA. Nutrient fluxes from insect herbivory increase during ecosystem retrogression in boreal forest. Ecology 2016; 97:124-32. [PMID: 27008782 DOI: 10.1890/15-0302.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ecological theory, developed largely from ungulates and grassland systems, predicts that herbivory accelerates nutrient cycling more in productive than unproductive systems. This prediction may be important for understanding patterns of ecosystem change over time and space, but its applicability to other ecosystems and types of herbivore remain uncertain. We estimated fluxes of nitrogen (N) and phosphorus (P) from herbivory of a common tree species (Betula pubescens) by a common species of herbivorous insect along a -5000-yr boreal chronosequence. Contrary to established theory, fluxes of N and P via herbivory increased along the chronosequence despite a decline in plant productivity. The herbivore-mediated N and P fluxes to the soil are comparable to the main alternative pathway for these nutrients via tree leaf litterfall. We conclude that insect herbivores can make large contributions to nutrient cycling even in unproductive systems, and influence the rate and pattern of ecosystem development, particularly in systems with low external nutrient inputs.
Collapse
|
9
|
De Long JR, Dorrepaal E, Kardol P, Nilsson MC, Teuber LM, Wardle DA. Contrasting Responses of Soil Microbial and Nematode Communities to Warming and Plant Functional Group Removal Across a Post-fire Boreal Forest Successional Gradient. Ecosystems 2015. [DOI: 10.1007/s10021-015-9935-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Jonsson M, Kardol P, Gundale MJ, Bansal S, Nilsson MC, Metcalfe DB, Wardle DA. Direct and Indirect Drivers of Moss Community Structure, Function, and Associated Microfauna Across a Successional Gradient. Ecosystems 2014. [DOI: 10.1007/s10021-014-9819-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Wardle DA, Jonsson M. Long-term resilience of above- and belowground ecosystem components among contrasting ecosystems. Ecology 2014; 95:1836-49. [DOI: 10.1890/13-1666.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Kuiper JJ, Mooij WM, Bragazza L, Robroek BJM. Plant functional types define magnitude of drought response in peatland CO2exchange. Ecology 2014; 95:123-31. [DOI: 10.1890/13-0270.1] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Gundale MJ, Bach LH, Nordin A. The impact of simulated chronic nitrogen deposition on the biomass and N₂-fixation activity of two boreal feather moss-cyanobacteria associations. Biol Lett 2013; 9:20130797. [PMID: 24196519 DOI: 10.1098/rsbl.2013.0797] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bryophytes achieve substantial biomass and play several key functional roles in boreal forests that can influence how carbon (C) and nitrogen (N) cycling respond to atmospheric deposition of reactive nitrogen (Nr). They associate with cyanobacteria that fix atmospheric N₂, and downregulation of this process may offset anthropogenic Nr inputs to boreal systems. Bryophytes also promote soil C accumulation by thermally insulating soils, and changes in their biomass influence soil C dynamics. Using a unique large-scale (0.1 ha forested plots), long-term experiment (16 years) in northern Sweden where we simulated anthropogenic Nr deposition, we measured the biomass and N₂-fixation response of two bryophyte species, the feather mosses Hylocomium splendens and Pleurozium schreberi. Our data show that the biomass declined for both species; however, N₂-fixation rates per unit mass and per unit area declined only for H. splendens. The low and high treatments resulted in a 29% and 54% reduction in total feather moss biomass, and a 58% and 97% reduction in total N₂-fixation rate per unit area, respectively. These results help to quantify the sensitivity of feather moss biomass and N₂ fixation to chronic Nr deposition, which is relevant for modelling ecosystem C and N balances in boreal ecosystems.
Collapse
Affiliation(s)
- Michael J Gundale
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, , Umeå 90183, Sweden
| | | | | |
Collapse
|
14
|
Lindo Z, Nilsson MC, Gundale MJ. Bryophyte-cyanobacteria associations as regulators of the northern latitude carbon balance in response to global change. GLOBAL CHANGE BIOLOGY 2013; 19:2022-35. [PMID: 23505142 DOI: 10.1111/gcb.12175] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 01/17/2013] [Accepted: 01/23/2013] [Indexed: 05/03/2023]
Abstract
Ecosystems in the far north, including arctic and boreal biomes, are a globally significant pool of carbon (C). Global change is proposed to influence both C uptake and release in these ecosystems, thereby potentially affecting whether they act as C sources or sinks. Bryophytes (i.e., mosses) serve a variety of key functions in these systems, including their association with nitrogen (N2 )-fixing cyanobacteria, as thermal insulators of the soil, and producers of recalcitrant litter, which have implications for both net primary productivity (NPP) and heterotrophic respiration. While ground-cover bryophytes typically make up a small proportion of the total biomass in northern systems, their combined physical structure and N2 -fixing capabilities facilitate a disproportionally large impact on key processes that control ecosystem C and N cycles. As such, the response of bryophyte-cyanobacteria associations to global change may influence whether and how ecosystem C balances are influenced by global change. Here, we review what is known about their occurrence and N2 -fixing activity, and how bryophyte systems will respond to several key global change factors. We explore the implications these responses may have in determining how global change influences C balances in high northern latitudes.
Collapse
Affiliation(s)
- Zoë Lindo
- Department of Biology, Western University, London, ON, Canada.
| | | | | |
Collapse
|
15
|
Gundale MJ, Hyodo F, Nilsson MC, Wardle DA. Nitrogen niches revealed through species and functional group removal in a boreal shrub community. Ecology 2012; 93:1695-706. [DOI: 10.1890/11-1877.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Wardle DA, Jonsson M, Kalela-Brundin M, Lagerström A, Bardgett RD, Yeates GW, Nilsson MC. Drivers of inter-year variability of plant production and decomposers across contrasting island ecosystems. Ecology 2012; 93:521-31. [PMID: 22624207 DOI: 10.1890/11-0930.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Despite the likely importance of inter-year dynamics of plant production and consumer biota for driving community- and ecosystem-level processes, very few studies have explored how and why these dynamics vary across contrasting ecosystems. We utilized a well-characterized system of 30 lake islands in the boreal forest zone of northern Sweden across which soil fertility and productivity vary considerably, with larger islands being more fertile and productive than smaller ones. In this system we assessed the inter-year dynamics of several measures of plant production and the soil microbial community (primary consumers in the decomposer food web) for each of nine years, and soil microfaunal groups (secondary and tertiary consumers) for each of six of those years. We found that, for measures of plant production and each of the three consumer trophic levels, inter-year dynamics were strongly affected by island size. Further, many variables were strongly affected by island size (and thus bottom-up regulation by soil fertility and resources) in some years, but not in other years, most likely due to inter-year variation in climatic conditions. For each of the plant and microbial variables for which we had nine years of data, we also determined the inter-year coefficient of variation (CV), an inverse measure of stability. We found that CVs of some measures of plant productivity were greater on large islands, whereas those of other measures were greater on smaller islands; CVs of microbial variables were unresponsive to island size. We also found that the effects of island size on the temporal dynamics of some variables were related to inter-year variability of macroclimatic variables. As such, our results show that the inter-year dynamics of both plant productivity and decomposer biota across each of three trophic levels, as well as the inter-year stability of plant productivity, differ greatly across contrasting ecosystems, with potentially important but largely overlooked implications for community and ecosystem processes.
Collapse
Affiliation(s)
- David A Wardle
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE 901 83 Umeå, Sweden.
| | | | | | | | | | | | | |
Collapse
|
17
|
Gundale MJ, Nilsson M, Bansal S, Jäderlund A. The interactive effects of temperature and light on biological nitrogen fixation in boreal forests. THE NEW PHYTOLOGIST 2012; 194:453-463. [PMID: 22329746 DOI: 10.1111/j.1469-8137.2012.04071.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plant productivity is predicted to increase in northern latitudes as a result of climate warming; however, this may depend on whether biological nitrogen (N)-fixation also increases. We evaluated how the variation in temperature and light affects N-fixation by two boreal feather mosses, Pleurozium schreberi and Hylocomium splendens, which are the primary source of N-fixation in most boreal environments. We measured N-fixation rates 2 and 4 wk after exposure to a factorial combination of environments of normal, intermediate and high temperature (16.3, 22.0 and 30.3°C) and light (148.0, 295.7 and 517.3 μmol m(-2) s(-1)). Our results showed that P. schreberi achieved higher N-fixation rates relative to H. splendens in response to warming treatments, but that the highest warming treatment eventually caused N-fixation to decline for both species. Light strongly interacted with warming treatments, having positive effects at low or intermediate temperatures and damaging effects at high temperatures. These results suggest that climate warming may increase N-fixation in boreal forests, but that increased shading by the forest canopy or the occurrence of extreme temperature events could limit increases. They also suggest that P. schreberi may become a larger source of N in boreal forests relative to H. splendens as climate warming progresses.
Collapse
Affiliation(s)
- Michael J Gundale
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE901-83 Umeå, Sweden
| | - Madeleine Nilsson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE901-83 Umeå, Sweden
| | - Sheel Bansal
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE901-83 Umeå, Sweden
| | - Anders Jäderlund
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE901-83 Umeå, Sweden
| |
Collapse
|
18
|
Rzanny M, Voigt W. Complexity of multitrophic interactions in a grassland ecosystem depends on plant species diversity. J Anim Ecol 2012; 81:614-27. [DOI: 10.1111/j.1365-2656.2012.01951.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Response of photosynthetic carbon gain to ecosystem retrogression of vascular plants and mosses in the boreal forest. Oecologia 2012; 169:661-72. [PMID: 22228262 DOI: 10.1007/s00442-011-2246-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 12/23/2011] [Indexed: 10/14/2022]
Abstract
In the long-term absence of rejuvenating disturbances, forest succession frequently proceeds from a maximal biomass phase to a retrogressive phase characterized by reduced nutrient availability [notably nitrogen (N) and phosphorus (P)] and net primary productivity. Few studies have considered how retrogression induces changes in ecophysiological responses associated with photosynthetic carbon (C) gain, and only for trees. We tested the hypothesis that retrogression would negatively impact photosynthetic C gain of four contrasting species, and that this impact would be greater for vascular plants (i.e., trees and shrubs) than for non-vascular plants (i.e., mosses). We used a 5,000-year-old chronosequence of forested islands in Sweden, where retrogression occurs in the long-term absence of lightning-ignited wildfires. Despite fundamental differences in plant form and ecological niche among species, vascular plants and mosses showed similar ecophysiological responses to retrogression. The most common effects of retrogression were reductions in photosynthesis and respiration per unit foliar N, increases in foliar N, δ(13)C and δ(15)N, and decreases in specific leaf areas. In contrast, photosynthesis per unit mass or area generally did not change along the chronosequence, but did vary many-fold between vascular plants and mosses. The consistent increases in foliar N without corresponding increases in mass- or area-based photosynthesis suggest that other factor(s), such as P co-limitation, light conditions or water availability, may co-regulate C gain in retrogressive boreal forests. Against our predictions, traits of mosses associated with C and N were generally highly responsive to retrogression, which has implications for how mosses influence ecosystem processes in boreal forests.
Collapse
|
20
|
Ininbergs K, Bay G, Rasmussen U, Wardle DA, Nilsson MC. Composition and diversity of nifH genes of nitrogen-fixing cyanobacteria associated with boreal forest feather mosses. THE NEW PHYTOLOGIST 2011; 192:507-517. [PMID: 21714790 DOI: 10.1111/j.1469-8137.2011.03809.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Recent studies have revealed that nitrogen fixation by cyanobacteria living in association with feather mosses is a major input of nitrogen to boreal forests. We characterized the community composition and diversity of cyanobacterial nifH phylotypes associated with each of two feather moss species (Pleurozium schreberi and Hylocomium splendens) on each of 30 lake islands varying in ecosystem properties in northern Sweden. Nitrogen fixation was measured using acetylene reduction, and nifH sequences were amplified using general and cyanobacterial selective primers, separated and analyzed using density gradient gel electrophoresis (DGGE) or cloning, and further sequenced for phylogenetic analyses. Analyses of DGGE fingerprinting patterns revealed two host-specific clusters (one for each moss species), and sequence analysis showed five clusters of nifH phylotypes originating from heterocystous cyanobacteria. For H. splendens only, N(2) fixation was related to both nifH composition and diversity among islands. We demonstrated that the cyanobacterial communities associated with feather mosses show a high degree of host specificity. However, phylotype composition and diversity, and nitrogen fixation, did not differ among groups of islands that varied greatly in their availability of resources. These results suggest that moss species identity, but not extrinsic environmental conditions, serves as the primary determinant of nitrogen-fixing cyanobacterial communities that inhabit mosses.
Collapse
|
21
|
Kreyling J, Haei M, Laudon H. Absence of snow cover reduces understory plant cover and alters plant community composition in boreal forests. Oecologia 2011; 168:577-87. [DOI: 10.1007/s00442-011-2092-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 07/18/2011] [Indexed: 11/28/2022]
|
22
|
Peltzer DA, Wardle DA, Allison VJ, Baisden WT, Bardgett RD, Chadwick OA, Condron LM, Parfitt RL, Porder S, Richardson SJ, Turner BL, Vitousek PM, Walker J, Walker LR. Understanding ecosystem retrogression. ECOL MONOGR 2010. [DOI: 10.1890/09-1552.1] [Citation(s) in RCA: 308] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|