1
|
Hamster CHS, Schaap J, van Heijster P, Dijksman JA. Random evolutionary dynamics in predator-prey systems yields large, clustered ecosystems. Math Biosci 2025; 383:109417. [PMID: 40113162 DOI: 10.1016/j.mbs.2025.109417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/28/2025] [Accepted: 02/27/2025] [Indexed: 03/22/2025]
Abstract
We study the effect of introducing new species through evolution into communities. We use the setting of predator-prey systems. Predator-prey dynamics is classically well modeled by Lotka-Volterra (LV) equations, also when multiple predator and prey species co-exist. We use a stochastic method to introduce new species in a two-trophic LV system. We find that introducing random evolving species leads to robust ecosystems in which large numbers of species coexist. Crucially, in these large ecosystems an emergent clustering of species is observed, tying functional differences to phylogenetic history.
Collapse
Affiliation(s)
- Christian H S Hamster
- Dutch Institute for Emergent Phenomena, University of Amsterdam, Amsterdam, The Netherlands; Korteweg-De Vries Institute for Mathematics, University of Amsterdam, Amsterdam, The Netherlands; Biometris, Wageningen University & Research, Wageningen, The Netherlands.
| | - Jorik Schaap
- PhotoCatalytic Synthesis Group, University of Twente, Enschede, The Netherlands; Physical Chemistry and Soft Matter, Wageningen University & Research, Wageningen, The Netherlands
| | - Peter van Heijster
- Biometris, Wageningen University & Research, Wageningen, The Netherlands
| | - Joshua A Dijksman
- Physical Chemistry and Soft Matter, Wageningen University & Research, Wageningen, The Netherlands; Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Manea AMG, Maisson DJN, Voloh B, Zilverstand A, Hayden B, Zimmermann J. Neural timescales reflect behavioral demands in freely moving rhesus macaques. Nat Commun 2024; 15:2151. [PMID: 38461167 PMCID: PMC10925022 DOI: 10.1038/s41467-024-46488-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 02/28/2024] [Indexed: 03/11/2024] Open
Abstract
Previous work demonstrated a highly reproducible cortical hierarchy of neural timescales at rest, with sensory areas displaying fast, and higher-order association areas displaying slower timescales. The question arises how such stable hierarchies give rise to adaptive behavior that requires flexible adjustment of temporal coding and integration demands. Potentially, this lack of variability in the hierarchical organization of neural timescales could reflect the structure of the laboratory contexts. We posit that unconstrained paradigms are ideal to test whether the dynamics of neural timescales reflect behavioral demands. Here we measured timescales of local field potential activity while male rhesus macaques foraged in an open space. We found a hierarchy of neural timescales that differs from previous work. Importantly, although the magnitude of neural timescales expanded with task engagement, the brain areas' relative position in the hierarchy was stable. Next, we demonstrated that the change in neural timescales is dynamic and contains functionally-relevant information, differentiating between similar events in terms of motor demands and associated reward. Finally, we demonstrated that brain areas are differentially affected by these behavioral demands. These results demonstrate that while the space of neural timescales is anatomically constrained, the observed hierarchical organization and magnitude is dependent on behavioral demands.
Collapse
Affiliation(s)
- Ana M G Manea
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA.
| | - David J-N Maisson
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Benjamin Voloh
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Anna Zilverstand
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Benjamin Hayden
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Jan Zimmermann
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
3
|
Li J, Fan M, Wei Z, Zhang K, Ma X, Shangguan Z. Broad environmental adaptation of abundant microbial taxa in Robinia pseudoacacia forests during long-term vegetation restoration. ENVIRONMENTAL RESEARCH 2024; 242:117720. [PMID: 37996008 DOI: 10.1016/j.envres.2023.117720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/31/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Vegetation restoration has significant impacts on ecosystems, and a comprehensive understanding of microbial environmental adaptability could facilitate coping with ecological challenges such as environmental change and biodiversity loss. Here, abundant and rare soil bacterial and fungal communities were characterized along a 15-45-year chronosequence of forest vegetation restoration in the Loess Plateau region. Phylogenetic-bin-based null model analysis (iCAMP), niche breadth index, and co-occurrence network analysis were used to assess microbial community assembly and environmental adaptation of a Robinia pseudoacacia plantation under long-term vegetation restoration. The drift process governed community assembly of abundant and rare soil fungi and bacteria. With increasing soil total phosphorus content, the relative importance of drift increased, while dispersal limitation and heterogeneous selection exhibited opposite trends for abundant and rare fungi. Rare soil fungal composition dissimilarities were dominated by species replacement processes. Abundant microbial taxa had higher ecological niche width and contribution to ecosystem multifunctionality than rare taxa. Node property values (e.g., degree and betweenness) of abundant microbial taxa were substantially higher than those of rare microbial taxa, indicating abundant species occupied a central position in the network. This study provides insights into the diversity and stability of microbial communities during vegetation restoration in Loess Plateau. The findings highlight that abundant soil fungi and bacteria have broad environmental adaptation and major implications for soil multifunctionality under long-term vegetation restoration.
Collapse
Affiliation(s)
- Jiajia Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| | - Miaochun Fan
- Department of Grassland Science, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Zhenhao Wei
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Kang Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Xing Ma
- Department of Grassland Science, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Zhouping Shangguan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
4
|
Monk CT, Aslak U, Brockmann D, Arlinghaus R. Rhythm of relationships in a social fish over the course of a full year in the wild. MOVEMENT ECOLOGY 2023; 11:56. [PMID: 37710318 PMCID: PMC10502983 DOI: 10.1186/s40462-023-00410-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/06/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Animals are expected to adjust their social behaviour to cope with challenges in their environment. Therefore, for fish populations in temperate regions with seasonal and daily environmental oscillations, characteristic rhythms of social relationships should be pronounced. To date, most research concerning fish social networks and biorhythms has occurred in artificial laboratory environments or over confined temporal scales of days to weeks. Little is known about the social networks of wild, freely roaming fish, including how seasonal and diurnal rhythms modulate social networks over the course of a full year. The advent of high-resolution acoustic telemetry enables us to quantify detailed social interactions in the wild over time-scales sufficient to examine seasonal rhythms at whole-ecosystems scales. Our objective was to explore the rhythms of social interactions in a social fish population at various time-scales over one full year in the wild by examining high-resolution snapshots of a dynamic social network. METHODS To that end, we tracked the behaviour of 36 adult common carp, Cyprinus carpio, in a 25 ha lake and constructed temporal social networks among individuals across various time-scales, where social interactions were defined by proximity. We compared the network structure to a temporally shuffled null model to examine the importance of social attraction, and checked for persistent characteristic groups over time. RESULTS The clustering within the carp social network tended to be more pronounced during daytime than nighttime throughout the year. Social attraction, particularly during daytime, was a key driver for interactions. Shoaling behavior substantially increased during daytime in the wintertime, whereas in summer carp interacted less frequently, but the interaction duration increased. Therefore, smaller, characteristic groups were more common in the summer months and during nighttime, where the social memory of carp lasted up to two weeks. CONCLUSIONS We conclude that social relationships of carp change diurnally and seasonally. These patterns were likely driven by predator avoidance, seasonal shifts in lake temperature, visibility, forage availability and the presence of anoxic zones. The techniques we employed can be applied generally to high-resolution biotelemetry data to reveal social structures across other fish species at ecologically realistic scales.
Collapse
Affiliation(s)
- Christopher T Monk
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, Kiel, 24105, Germany.
- Department of Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin, 12587, Germany.
| | - Ulf Aslak
- DTU Compute, Technical University of Denmark, Lyngby, DK-2800 Kgs.., Denmark
| | - Dirk Brockmann
- Robert Koch-Institute, Nordufer 20, Berlin, D-13353, Germany
- Institute for Theoretical Biology and Integrative Research Institute for the Life Sciences, Humboldt Universität zu Berlin, Berlin, Germany
| | - Robert Arlinghaus
- Department of Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin, 12587, Germany
- Integrative Research Institute on Transformations of Human-Environmental Systems, Humboldt-Universität zu Berlin, Invalidenstrasse 42, Berlin, 10115, Germany
- Division of Integrative Fisheries Management, Department of Crop and Animal Sciences, Faculty of Life Science, Humboldt-Universität zu Berlin, Invalidenstrasse 42, Berlin, 10115, Germany
| |
Collapse
|
5
|
DeSiervo MH, Sullivan LL, Kahan LM, Seabloom EW, Shoemaker LG. Disturbance alters transience but nutrients determine equilibria during grassland succession with multiple global change drivers. Ecol Lett 2023. [PMID: 37125464 DOI: 10.1111/ele.14229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/15/2023] [Indexed: 05/02/2023]
Abstract
Disturbance and environmental change may cause communities to converge on a steady state, diverge towards multiple alternative states or remain in long-term transience. Yet, empirical investigations of successional trajectories are rare, especially in systems experiencing multiple concurrent anthropogenic drivers of change. We examined succession in old field grassland communities subjected to disturbance and nitrogen fertilization using data from a long-term (22-year) experiment. Regardless of initial disturbance, after a decade communities converged on steady states largely determined by resource availability, where species turnover declined as communities approached dynamic equilibria. Species favoured by the disturbance were those that eventually came to dominate the highly fertilized plots. Furthermore, disturbance made successional pathways more direct revealing an important interaction effect between nutrients and disturbance as drivers of community change. Our results underscore the dynamical nature of grassland and old field succession, demonstrating how community properties such as β $$ \beta $$ diversity change through transient and equilibrium states.
Collapse
|
6
|
Pattanayak D, Mishra A, Bairagi N, Dana SK. Multimodal distribution of transient time of predator extinction in a three-species food chain. CHAOS (WOODBURY, N.Y.) 2023; 33:043122. [PMID: 37097935 DOI: 10.1063/5.0136372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
The transient dynamics capture the time history in the behavior of a system before reaching an attractor. This paper deals with the statistics of transient dynamics in a classic tri-trophic food chain with bistability. The species of the food chain model either coexist or undergo a partial extinction with predator death after a transient time depending upon the initial population density. The distribution of transient time to predator extinction shows interesting patterns of inhomogeneity and anisotropy in the basin of the predator-free state. More precisely, the distribution shows a multimodal character when the initial points are located near a basin boundary and a unimodal character when chosen from a location far away from the boundary. The distribution is also anisotropic because the number of modes depends on the direction of the local of initial points. We define two new metrics, viz., homogeneity index and local isotropic index, to characterize the distinctive features of the distribution. We explain the origin of such multimodal distributions and try to present their ecological implications.
Collapse
Affiliation(s)
- Debarghya Pattanayak
- Centre for Mathematical Biology and Ecology, Department of Mathematics, Jadavpur University, Kolkata 700032, India
| | - Arindam Mishra
- Department of Physics, National University of Singapore, Singapore 117551
| | - Nandadulal Bairagi
- Centre for Mathematical Biology and Ecology, Department of Mathematics, Jadavpur University, Kolkata 700032, India
| | - Syamal K Dana
- Centre for Mathematical Biology and Ecology, Department of Mathematics, Jadavpur University, Kolkata 700032, India
- Division of Dynamics, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland
- Department of Mathematics, National Institute of Technology, Durgapur 713209, India
| |
Collapse
|
7
|
Manea AMG, Zilverstand A, Hayden B, Zimmermann J. Neural timescales reflect behavioral demands in freely moving rhesus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.534470. [PMID: 37034608 PMCID: PMC10081241 DOI: 10.1101/2023.03.27.534470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Previous work has demonstrated remarkably reproducible and consistent hierarchies of neural timescales across cortical areas at rest. The question arises how such stable hierarchies give rise to adaptive behavior that requires flexible adjustment of temporal coding and integration demands. Potentially, this previously found lack of variability in the hierarchical organization of neural timescales could be a reflection of the structure of the laboratory contexts in which they were measured. Indeed, computational work demonstrates the existence of multiple temporal hierarchies within the same anatomical network when the input structure is altered. We posit that unconstrained behavioral environments where relatively little temporal demands are imposed from the experimenter are an ideal test bed to address the question of whether the hierarchical organization and the magnitude of neural timescales reflect ongoing behavioral demands. To tackle this question, we measured timescales of local field potential activity while rhesus macaques were foraging freely in a large open space. We find a hierarchy of neural timescales that is unique to this foraging environment. Importantly, although the magnitude of neural timescales generally expanded with task engagement, the brain areas' relative position in the hierarchy was stable across the recording sessions. Notably, the magnitude of neural timescales monotonically expanded with task engagement across a relatively long temporal scale spanning the duration of the recording session. Over shorter temporal scales, the magnitude of neural timescales changed dynamically around foraging events. Moreover, the change in the magnitude of neural timescales contained functionally relevant information, differentiating between seemingly similar events in terms of motor demands and associated reward. That is, the patterns of change were associated with the cognitive and behavioral meaning of these events. Finally, we demonstrated that brain areas were differentially affected by these behavioral demands - i.e., the expansion of neural timescales was not the same across all areas. Together, these results demonstrate that the observed hierarchy of neural timescales is context-dependent and that changes in the magnitude of neural timescales are closely related to overall task engagement and behavioral demands.
Collapse
Affiliation(s)
- Ana M G Manea
- Department of Neuroscience, University of Minnesota, Minneapolis MN
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis MN
| | - Anna Zilverstand
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis MN
| | - Benjamin Hayden
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX
| | - Jan Zimmermann
- Department of Neuroscience, University of Minnesota, Minneapolis MN
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis MN
| |
Collapse
|
8
|
Phillips JS, Einarsson Á, Strickland K, Ives AR, Kristjánsson BK, Räsänen K. Demographic Basis of Spatially Structured Fluctuations in a Threespine Stickleback Metapopulation. Am Nat 2023; 201:E41-E55. [PMID: 36848516 DOI: 10.1086/722741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractUncovering the demographic basis of population fluctuations is a central goal of population biology. This is particularly challenging for spatially structured populations, which require disentangling synchrony in demographic rates from coupling via movement between locations. In this study, we fit a stage-structured metapopulation model to a 29-year time series of threespine stickleback abundance in the heterogeneous and productive Lake Mývatn, Iceland. The lake comprises two basins (North and South) connected by a channel through which the stickleback disperse. The model includes time-varying demographic rates, allowing us to assess the potential contributions of recruitment and survival, spatial coupling via movement, and demographic transience to the population's large fluctuations in abundance. Our analyses indicate that recruitment was only modestly synchronized between the two basins, whereas survival probabilities of adults were more strongly synchronized, contributing to cyclic fluctuations in the lake-wide population size with a period of approximately 6 years. The analyses further show that the two basins were coupled through movement, with the North Basin subsidizing the South Basin and playing a dominant role in driving the lake-wide dynamics. Our results show that cyclic fluctuations of a metapopulation can be explained in terms of the combined effects of synchronized demographic rates and spatial coupling.
Collapse
|
9
|
Combe FJ, Juškaitis R, Trout RC, Bird S, Ellis JS, Norrey J, Al‐Fulaij N, White I, Harris WE. Density and climate effects on age‐specific survival and population growth: consequences for hibernating mammals. Anim Conserv 2022. [DOI: 10.1111/acv.12843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- F. J. Combe
- Division of Biology and Conservation Ecology, School of Science and the Environment Manchester Metropolitan University Manchester UK
- Division of Biology Kansas State University Manhattan KS USA
| | | | | | - S. Bird
- North of England Zoological Society Chester UK
| | - J. S. Ellis
- School of Biological and Marine Sciences University of Plymouth Plymouth UK
| | - J. Norrey
- Division of Biology and Conservation Ecology, School of Science and the Environment Manchester Metropolitan University Manchester UK
| | | | - I. White
- People's Trust for Endangered Species London UK
| | - W. E. Harris
- Agriculture and Environment Sciences Department Harper Adams University Newport UK
| |
Collapse
|
10
|
Bridging landscape ecology and urban science to respond to the rising threat of mosquito-borne diseases. Nat Ecol Evol 2022; 6:1601-1616. [DOI: 10.1038/s41559-022-01876-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/03/2022] [Indexed: 11/09/2022]
|
11
|
Johnson EC, Hastings A. Towards a heuristic understanding of the storage effect. Ecol Lett 2022; 25:2347-2358. [PMID: 36181717 DOI: 10.1111/ele.14112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 11/26/2022]
Abstract
The storage effect is a general explanation for coexistence in a variable environment. Unfortunately, the storage effect is poorly understood, in part because the generality of the storage effect precludes an interpretation that is simultaneously simple, intuitive and correct. Here, we explicate the storage effect by dividing one of its key conditions-covariance between environment and competition-into two pieces, namely that there must be a strong causal relationship between environment and competition, and that the effects of the environment do not change too quickly. This finer-grained definition can explain a number of previous results, including (1) that the storage effect promotes annual plant coexistence when the germination rate fluctuates, but not when the seed yield fluctuates, (2) that the storage effect is more likely to be induced by resource competition than the apparent competition, and (3) why the storage effect arises readily in models with either stage structure or environmental autocorrelation. Additionally, our expanded definition suggests two novel mechanisms by which the temporal storage effect can arise-transgenerational plasticity and causal chains of environmental variables-thus suggesting that the storage effect is a more common phenomenon than previously thought.
Collapse
Affiliation(s)
- Evan C Johnson
- Department of Environmental Science and Policy, University of California Davis, Davis, California, USA.,Center for Population Biology, University of California Davis, Davis, California, USA
| | - Alan Hastings
- Department of Environmental Science and Policy, University of California Davis, Davis, California, USA
| |
Collapse
|
12
|
Getz WM, Salter R, Vissat LL. Simulation applications to support teaching and research in epidemiological dynamics. BMC MEDICAL EDUCATION 2022; 22:632. [PMID: 35987608 PMCID: PMC9391658 DOI: 10.1186/s12909-022-03674-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND An understanding of epidemiological dynamics, once confined to mathematical epidemiologists and applied mathematicians, can be disseminated to a non-mathematical community of health care professionals and applied biologists through simple-to-use simulation applications. We used Numerus Model Builder RAMP Ⓡ (Runtime Alterable Model Platform) technology, to construct deterministic and stochastic versions of compartmental SIR (Susceptible, Infectious, Recovered with immunity) models as simple-to-use, freely available, epidemic simulation application programs. RESULTS We take the reader through simulations used to demonstrate the following concepts: 1) disease prevalence curves of unmitigated outbreaks have a single peak and result in epidemics that 'burn' through the population to become extinguished when the proportion of the susceptible population drops below a critical level; 2) if immunity in recovered individuals wanes sufficiently fast then the disease persists indefinitely as an endemic state, with possible dampening oscillations following the initial outbreak phase; 3) the steepness and initial peak of the prevalence curve are influenced by the basic reproductive value R0, which must exceed 1 for an epidemic to occur; 4) the probability that a single infectious individual in a closed population (i.e. no migration) gives rise to an epidemic increases with the value of R0>1; 5) behavior that adaptively decreases the contact rate among individuals with increasing prevalence has major effects on the prevalence curve including dramatic flattening of the prevalence curve along with the generation of multiple prevalence peaks; 6) the impacts of treatment are complicated to model because they effect multiple processes including transmission, recovery and mortality; 7) the impacts of vaccination policies, constrained by a fixed number of vaccination regimens and by the rate and timing of delivery, are crucially important to maximizing the ability of vaccination programs to reduce mortality. CONCLUSION Our presentation makes transparent the key assumptions underlying SIR epidemic models. Our RAMP simulators are meant to augment rather than replace classroom material when teaching epidemiological dynamics. They are sufficiently versatile to be used by students to address a range of research questions for term papers and even dissertations.
Collapse
Affiliation(s)
- Wayne M Getz
- Department Environmental Science, Policy and Management, University of California, Berkeley, 94720 CA USA
- School of Mathematics, Statistics & Computer Science, University of KwaZulu-Natal, Durban, 4000 South Africa
- Numerus Inc, 850 Iron Point Road, Folsom, 95630 CA USA
| | - Richard Salter
- Numerus Inc, 850 Iron Point Road, Folsom, 95630 CA USA
- Computer Science Department, Oberlin College, Oberlin, 44074 OH USA
| | - Ludovica Luisa Vissat
- Department Environmental Science, Policy and Management, University of California, Berkeley, 94720 CA USA
| |
Collapse
|
13
|
Intersection between parental investment, transgenerational immunity, and termite sociality in the face of disease: a theoretical approach. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03128-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
14
|
Chaparro-Pedraza PC. Fast environmental change and eco-evolutionary feedbacks can drive regime shifts in ecosystems before tipping points are crossed. Proc Biol Sci 2021; 288:20211192. [PMID: 34284624 PMCID: PMC8292780 DOI: 10.1098/rspb.2021.1192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Anthropogenic environmental changes are altering ecological and evolutionary processes of ecosystems. The possibility that ecosystems can respond abruptly to gradual environmental change when critical thresholds are crossed (i.e. tipping points) and shift to an alternative stable state is a growing concern. Here I show that fast environmental change can trigger regime shifts before environmental stress exceeds a tipping point in evolving ecological systems. The difference in the time scales of coupled ecological and evolutionary processes makes ecosystems sensitive not only to the magnitude of environmental changes, but also to the rate at which changes are imposed. Fast evolutionary change mediated by high trait variation can reduce the sensitivity of ecosystems to the rate of environmental change and prevent the occurrence of rate-induced regime shifts. This suggests that management measures to prevent rate-induced regime shifts should focus on mitigating the effects of environmental change and protecting phenotypic diversity in ecosystems.
Collapse
|
15
|
Schoenmakers S, Feudel U. A resilience concept based on system functioning: A dynamical systems perspective. CHAOS (WOODBURY, N.Y.) 2021; 31:053126. [PMID: 34240958 DOI: 10.1063/5.0042755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 04/21/2021] [Indexed: 06/13/2023]
Abstract
We introduce a new framework for resilience, which is traditionally understood as the ability of a system to absorb disturbances and maintain its state, by proposing a shift from a state-based to a system functioning-based approach to resilience, which takes into account that several different coexisting stable states could fulfill the same functioning. As a consequence, not every regime shift, i.e., transition from one stable state to another, is associated with a lack or loss of resilience. We emphasize the importance of flexibility-the ability of a system to shift between different stable states while still maintaining system functioning. Furthermore, we provide a classification of system responses based on the phenomenological properties of possible disturbances, including the role of their timescales. Therefore, we discern fluctuations, shocks, press disturbances, and trends as possible disturbances. We distinguish between two types of mechanisms of resilience: (i) tolerance and flexibility, which are properties of the system, and (ii) adaptation and transformation, which are processes that alter the system's tolerance and flexibility. Furthermore, we discuss quantitative methods to investigate resilience in model systems based on approaches developed in dynamical systems theory.
Collapse
Affiliation(s)
- Sarah Schoenmakers
- Theoretical Physics/Complex Systems, ICBM, Carl von Ossietzky University of Oldenburg, 26111 Oldenburg, Germany
| | - Ulrike Feudel
- Theoretical Physics/Complex Systems, ICBM, Carl von Ossietzky University of Oldenburg, 26111 Oldenburg, Germany
| |
Collapse
|
16
|
Weinans E, Quax R, van Nes EH, Leemput IAVD. Evaluating the performance of multivariate indicators of resilience loss. Sci Rep 2021; 11:9148. [PMID: 33911086 PMCID: PMC8080839 DOI: 10.1038/s41598-021-87839-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/01/2021] [Indexed: 11/09/2022] Open
Abstract
Various complex systems, such as the climate, ecosystems, and physical and mental health can show large shifts in response to small changes in their environment. These 'tipping points' are notoriously hard to predict based on trends. However, in the past 20 years several indicators pointing to a loss of resilience have been developed. These indicators use fluctuations in time series to detect critical slowing down preceding a tipping point. Most of the existing indicators are based on models of one-dimensional systems. However, complex systems generally consist of multiple interacting entities. Moreover, because of technological developments and wearables, multivariate time series are becoming increasingly available in different fields of science. In order to apply the framework of resilience indicators to multivariate time series, various extensions have been proposed. Not all multivariate indicators have been tested for the same types of systems and therefore a systematic comparison between the methods is lacking. Here, we evaluate the performance of the different multivariate indicators of resilience loss in different scenarios. We show that there is not one method outperforming the others. Instead, which method is best to use depends on the type of scenario the system is subject to. We propose a set of guidelines to help future users choose which multivariate indicator of resilience is best to use for their particular system.
Collapse
Affiliation(s)
- Els Weinans
- Department of Environmental Sciences, Wageningen University, Wageningen, The Netherlands.
| | - Rick Quax
- Computational Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Egbert H van Nes
- Department of Environmental Sciences, Wageningen University, Wageningen, The Netherlands
| | | |
Collapse
|
17
|
Manela N, Ovadia O, Shemesh H. The ability of short-term responses to predict the long-term consequences of conservation management actions: The case of the endangered Paeonia mascula (L.) Mill. J Nat Conserv 2021. [DOI: 10.1016/j.jnc.2021.125956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Vandermeer J, Hajian-Forooshani Z, Medina N, Perfecto I. New forms of structure in ecosystems revealed with the Kuramoto model. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210122. [PMID: 33959373 PMCID: PMC8074911 DOI: 10.1098/rsos.210122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Ecological systems, as is often noted, are complex. Equally notable is the generalization that complex systems tend to be oscillatory, whether Huygens' simple patterns of pendulum entrainment or the twisted chaotic orbits of Lorenz' convection rolls. The analytics of oscillators may thus provide insight into the structure of ecological systems. One of the most popular analytical tools for such study is the Kuramoto model of coupled oscillators. We apply this model as a stylized vision of the dynamics of a well-studied system of pests and their enemies, to ask whether its actual natural history is reflected in the dynamics of the qualitatively instantiated Kuramoto model. Emerging from the model is a series of synchrony groups generally corresponding to subnetworks of the natural system, with an overlying chimeric structure, depending on the strength of the inter-oscillator coupling. We conclude that the Kuramoto model presents a novel window through which interesting questions about the structure of ecological systems may emerge.
Collapse
Affiliation(s)
- John Vandermeer
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 481090, USA
- Program in the Environment, University of Michigan, Ann Arbor, MI 481090, USA
| | | | - Nicholas Medina
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 481090, USA
| | - Ivette Perfecto
- Program in the Environment, University of Michigan, Ann Arbor, MI 481090, USA
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI 481090, USA
| |
Collapse
|
19
|
Francis TB, Abbott KC, Cuddington K, Gellner G, Hastings A, Lai YC, Morozov A, Petrovskii S, Zeeman ML. Management implications of long transients in ecological systems. Nat Ecol Evol 2021; 5:285-294. [PMID: 33462492 DOI: 10.1038/s41559-020-01365-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 11/16/2020] [Indexed: 01/29/2023]
Abstract
The underlying biological processes that govern many ecological systems can create very long periods of transient dynamics. It is often difficult or impossible to distinguish this transient behaviour from similar dynamics that would persist indefinitely. In some cases, a shift from the transient to the long-term, stable dynamics may occur in the absence of any exogenous forces. Recognizing the possibility that the state of an ecosystem may be less stable than it appears is crucial to the long-term success of management strategies in systems with long transient periods. Here we demonstrate the importance of considering the potential of transient system behaviour for management actions across a range of ecosystem organizational scales and natural system types. Developing mechanistic models that capture essential system dynamics will be crucial for promoting system resilience and avoiding system collapses.
Collapse
Affiliation(s)
- Tessa B Francis
- Puget Sound Institute, University of Washington, Tacoma, WA, USA.
| | - Karen C Abbott
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Kim Cuddington
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Gabriel Gellner
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Alan Hastings
- Department of Environmental Science and Policy, University of California, Davis, CA, USA.,Santa Fe Institute, Santa Fe, NM, USA
| | - Ying-Cheng Lai
- School of Electrical Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA
| | - Andrew Morozov
- School of Mathematics and Actuarial Science, University of Leicester, Leicester, UK.,Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Sergei Petrovskii
- School of Mathematics and Actuarial Science, University of Leicester, Leicester, UK
| | - Mary Lou Zeeman
- Department of Mathematics, Bowdoin College, Brunswick, ME, USA
| |
Collapse
|
20
|
Cusser S, Helms J, Bahlai CA, Haddad NM. How long do population level field experiments need to be? Utilising data from the 40-year-old LTER network. Ecol Lett 2021; 24:1103-1111. [PMID: 33616295 DOI: 10.1111/ele.13710] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 01/20/2023]
Abstract
We utilise the wealth of data accessible through the 40-year-old Long-Term Ecological Research (LTER) network to ask if aspects of the study environment or taxa alter the duration of research necessary to detect consistent results. To do this, we use a moving-window algorithm. We limit our analysis to long-term (> 10 year) press experiments recording organismal abundance. We find that studies conducted in dynamic abiotic environments need longer periods of study to reach consistent results, as compared to those conducted in more moderated environments. Studies of plants were more often characterised by spurious results than those on animals. Nearly half of the studies we investigated required 10 years or longer to become consistent, where all significant trends agreed in direction, and four studies (of 100) required longer than 20 years. Here, we champion the importance of long-term data and bolster the value of multi-decadal experiments in understanding, explaining and predicting long-term trends.
Collapse
Affiliation(s)
- Sarah Cusser
- W.K. Kellogg Biological Station, Department of Integrative Biology, Michigan State University, Hickory Corners, MI, USA.,Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT, USA
| | - Jackson Helms
- W.K. Kellogg Biological Station, Department of Integrative Biology, Michigan State University, Hickory Corners, MI, USA.,USDA-ARS, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL, USA
| | - Christie A Bahlai
- W.K. Kellogg Biological Station, Department of Integrative Biology, Michigan State University, Hickory Corners, MI, USA.,Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Nick M Haddad
- W.K. Kellogg Biological Station, Department of Integrative Biology, Michigan State University, Hickory Corners, MI, USA
| |
Collapse
|
21
|
Ontiveros VJ, Capitán JA, Casamayor EO, Alonso D. The characteristic time of ecological communities. Ecology 2021; 102:e03247. [PMID: 33217780 PMCID: PMC7900965 DOI: 10.1002/ecy.3247] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/09/2020] [Accepted: 09/14/2020] [Indexed: 11/30/2022]
Abstract
A simple description of temporal dynamics of ecological communities may help us understand how community assembly proceeds, predict ecological responses to environmental disturbances, and improve the performance of biological conservation actions. Although community changes take place at multiple temporal scales, the variation of species composition and richness over time across communities and habitats shows general patterns that may potentially reveal the main drivers of community dynamics. We used the simplest stochastic model of island biogeography to propose two quantities to characterize community dynamics: the community characteristic time, as a measure of the typical time scale of species‐richness change, and the characteristic Jaccard index, as a measure of temporal β diversity, that is, the variation of community composition over time. In addition, the community characteristic time, which sets the temporal scale at which null, noninteracting species assemblages operate, allowed us to define a relative sampling frequency (to the characteristic time). Here we estimate these quantities across microbial and macroscopic species assemblages to highlight two related results. First, we illustrated both characteristic time and Jaccard index and their relation with classic time‐series in ecology, and found that the most thoroughly sampled communities, relative to their characteristic time, presented the largest similarity between consecutive samples. Second, our analysis across a variety of habitats and taxa show that communities span a large range of species turnover, from potentially very fast (short characteristic times) to rather slow (long characteristic times) communities. This was in agreement with previous knowledge, but indicated that some habitats may have been sampled less frequently than required. Our work provides new perspectives to explore the temporal component in ecological studies and highlights the usefulness of simple approximations to the complex dynamics of ecological communities.
Collapse
Affiliation(s)
- Vicente J Ontiveros
- Theoretical and Computational Ecology, Center for Advanced Studies of Blanes (CEAB-CSIC), Spanish Council for Scientific Research, Acces Cala St. Francesc 14, Blanes, E-17300, Spain
| | - José A Capitán
- Theoretical and Computational Ecology, Center for Advanced Studies of Blanes (CEAB-CSIC), Spanish Council for Scientific Research, Acces Cala St. Francesc 14, Blanes, E-17300, Spain.,Complex Systems Group, Department of Applied Mathematics, Universidad Politécnica de Madrid, Avenida Juan de Herrera, 6, Madrid, E-28040, Spain
| | - Emilio O Casamayor
- Integrative Freshwater Ecology Group, Centre of Advanced Studies of Blanes (CEAB-CSIC), Spanish Council for Scientific Research, Accés Cala St. Francesc 14, Blanes, E-17300, Spain
| | - David Alonso
- Theoretical and Computational Ecology, Center for Advanced Studies of Blanes (CEAB-CSIC), Spanish Council for Scientific Research, Acces Cala St. Francesc 14, Blanes, E-17300, Spain
| |
Collapse
|
22
|
Ray A, Pal A, Ghosh D, Dana SK, Hens C. Mitigating long transient time in deterministic systems by resetting. CHAOS (WOODBURY, N.Y.) 2021; 31:011103. [PMID: 33754784 DOI: 10.1063/5.0038374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
How long does a trajectory take to reach a stable equilibrium point in the basin of attraction of a dynamical system? This is a question of quite general interest and has stimulated a lot of activities in dynamical and stochastic systems where the metric of this estimation is often known as the transient or first passage time. In nonlinear systems, one often experiences long transients due to their underlying dynamics. We apply resetting or restart, an emerging concept in statistical physics and stochastic process, to mitigate the detrimental effects of prolonged transients in deterministic dynamical systems. We show that resetting the intrinsic dynamics intermittently to a spatial control line that passes through the equilibrium point can dramatically expedite its completion, resulting in a huge reduction in mean transient time and fluctuations around it. Moreover, our study reveals the emergence of an optimal restart time that globally minimizes the mean transient time. We corroborate the results with detailed numerical studies on two canonical setups in deterministic dynamical systems, namely, the Stuart-Landau oscillator and the Lorenz system. The key features-expedition of transient time-are found to be very generic under different resetting strategies. Our analysis opens up a door to control the mean and fluctuations in transient time by unifying the original dynamics with an external stochastic or periodic timer and poses open questions on the optimal way to harness transients in dynamical systems.
Collapse
Affiliation(s)
- Arnob Ray
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Arnab Pal
- School of Chemistry, Faculty of Exact Sciences and The Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Syamal K Dana
- Centre for Mathematical Biology and Ecology, Department of Mathematics, Jadavpur University, Kolkata 700032, India
| | - Chittaranjan Hens
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| |
Collapse
|
23
|
Boyce WT, Sokolowski MB, Robinson GE. Genes and environments, development and time. Proc Natl Acad Sci U S A 2020; 117:23235-23241. [PMID: 32967067 PMCID: PMC7519332 DOI: 10.1073/pnas.2016710117] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A now substantial body of science implicates a dynamic interplay between genetic and environmental variation in the development of individual differences in behavior and health. Such outcomes are affected by molecular, often epigenetic, processes involving gene-environment (G-E) interplay that can influence gene expression. Early environments with exposures to poverty, chronic adversities, and acutely stressful events have been linked to maladaptive development and compromised health and behavior. Genetic differences can impart either enhanced or blunted susceptibility to the effects of such pathogenic environments. However, largely missing from present discourse regarding G-E interplay is the role of time, a "third factor" guiding the emergence of complex developmental endpoints across different scales of time. Trajectories of development increasingly appear best accounted for by a complex, dynamic interchange among the highly linked elements of genes, contexts, and time at multiple scales, including neurobiological (minutes to milliseconds), genomic (hours to minutes), developmental (years and months), and evolutionary (centuries and millennia) time. This special issue of PNAS thus explores time and timing among G-E transactions: The importance of timing and timescales in plasticity and critical periods of brain development; epigenetics and the molecular underpinnings of biologically embedded experience; the encoding of experience across time and biological levels of organization; and gene-regulatory networks in behavior and development and their linkages to neuronal networks. Taken together, the collection of papers offers perspectives on how G-E interplay operates contingently within and against a backdrop of time and timescales.
Collapse
Affiliation(s)
- W Thomas Boyce
- Department of Pediatrics, University of California, San Francisco, CA 94143
- Department of Psychiatry, University of California, San Francisco, CA 94143
- Program in Child and Brain Development, Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada
| | - Marla B Sokolowski
- Program in Child and Brain Development, Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada;
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Gene E Robinson
- Program in Child and Brain Development, Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Neuroscience Program, Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
24
|
Skórka P, Grzywacz B, Moroń D, Lenda M. The macroecology of the COVID-19 pandemic in the Anthropocene. PLoS One 2020; 15:e0236856. [PMID: 32730366 PMCID: PMC7392232 DOI: 10.1371/journal.pone.0236856] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/15/2020] [Indexed: 12/20/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2, the virus that causes coronavirus disease 2019 (COVID-19), has expanded rapidly throughout the world. Thus, it is important to understand how global factors linked with the functioning of the Anthropocene are responsible for the COVID-19 outbreak. We tested hypotheses that the number of COVID-19 cases, number of deaths and growth rate of recorded infections: (1) are positively associated with population density as well as (2) proportion of the human population living in urban areas as a proxies of interpersonal contact rate, (3) age of the population in a given country as an indication of that population's susceptibility to COVID-19; (4) net migration rate and (5) number of tourists as proxies of infection pressure, and negatively associated with (5) gross domestic product which is a proxy of health care quality. Data at the country level were compiled from publicly available databases and analysed with gradient boosting regression trees after controlling for confounding factors (e.g. geographic location). We found a positive association between the number of COVID-19 cases in a given country and gross domestic product, number of tourists, and geographic longitude. The number of deaths was positively associated with gross domestic product, number of tourists in a country, and geographic longitude. The effects of gross domestic product and number of tourists were non-linear, with clear thresholds above which the number of COVID-19 cases and deaths increased rapidly. The growth rate of COVID-19 cases was positively linked to the number of tourists and gross domestic product. The growth rate of COVID-19 cases was negatively associated with the mean age of the population and geographic longitude. Growth was slower in less urbanised countries. This study demonstrates that the characteristics of the human population and high mobility, but not population density, may help explain the global spread of the virus. In addition, geography, possibly via climate, may play a role in the pandemic. The unexpected positive and strong association between gross domestic product and number of cases, deaths, and growth rate suggests that COVID-19 may be a new civilisation disease affecting rich economies.
Collapse
Affiliation(s)
- Piotr Skórka
- Institute of Nature Conservation, Polish Academy of Sciences, Kraków, Poland
| | - Beata Grzywacz
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków, Poland
| | - Dawid Moroń
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków, Poland
| | - Magdalena Lenda
- Institute of Nature Conservation, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
25
|
Jacquet C, Gounand I, Altermatt F. How pulse disturbances shape size-abundance pyramids. Ecol Lett 2020; 23:1014-1023. [PMID: 32282125 DOI: 10.1111/ele.13508] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/27/2019] [Accepted: 03/02/2020] [Indexed: 01/04/2023]
Abstract
Ecological pyramids represent the distribution of abundance and biomass of living organisms across body-sizes. Our understanding of their expected shape relies on the assumption of invariant steady-state conditions. However, most of the world's ecosystems experience disturbances that keep them far from such a steady state. Here, using the allometric scaling between population growth rate and body-size, we predict the response of size-abundance pyramids within a trophic guild to any combination of disturbance frequency and intensity affecting all species in a similar way. We show that disturbances narrow the base of size-abundance pyramids, lower their height and decrease total community biomass in a nonlinear way. An experimental test using microbial communities demonstrates that the model captures well the effect of disturbances on empirical pyramids. Overall, we demonstrate both theoretically and experimentally how disturbances that are not size-selective can nonetheless have disproportionate impacts on large species.
Collapse
Affiliation(s)
- Claire Jacquet
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland.,Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland
| | - Isabelle Gounand
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland.,Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland.,Sorbonne Université, CNRS, UPEC, CNRS, IRD, INRA, Institut d'écologie et des sciences de l'environnement, IEES,, Paris, France
| | - Florian Altermatt
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland.,Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland
| |
Collapse
|
26
|
Easter EE, Adreani MS, Hamilton SL, Steele MA, Pang S, White JW. Influence of protogynous sex change on recovery of fish populations within marine protected areas. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02070. [PMID: 31903628 DOI: 10.1002/eap.2070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Marine protected areas (MPAs) are increasingly implemented as a conservation tool worldwide. In many cases, they are managed adaptively: the abundance of target species is monitored, and observations are compared to some model-based expectation for the trajectory of population recovery to ensure that the MPA is achieving its goals. Most previous analyses of the transient (short-term) response of populations to the cessation of fishing inside MPAs have dealt only with gonochore (fixed-sex) species. However, many important fishery species are protogynous hermaphrodites (female-to-male sex-changing). Because size-selective harvest will predominantly target males in these species, harvesting not only reduces abundance but also skews the sex ratio toward females. Thus the response to MPA implementation will involve changes in both survival and sex ratio, and ultimately reproductive output. We used an age-structured model of a generic sex-changing fish population to compare transient population dynamics after MPA implementation to those of an otherwise similar gonochore population and examine how different features of sex-changing life history affect those dynamics. We examined both demographically open (most larval recruitment comes from outside the MPA) and demographically closed (most larval recruitment is locally produced) dynamics. Under both scenarios, population recovery of protogynous species takes longer when fishing was more intense pre-MPA (as in gonochores), but also depends heavily on the mating function, the degree to which the sex ratio affects reproduction. If few males are needed and reproduction is not affected by a highly female-biased sex ratio, then population recovery is much faster; if males are a limiting resource, then increases in abundance after MPA implementation are much slower than for gonochores. Unfortunately, the mating function is largely unknown for fishes. In general, we expect that most protogynous species with haremic mating systems will be in the first category (few males needed), though there is at least one example of a fish species (though not a sex-changing species) for which males are limiting. Thus a better understanding of the importance of male fish to population dynamics is needed for the adaptive management of MPAs.
Collapse
Affiliation(s)
- E E Easter
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, 28403, USA
| | - M S Adreani
- Department of Biology, California State University, Northridge, California, 91330, USA
| | - S L Hamilton
- Moss Landing Marine Laboratories, Moss Landing, California, 95309, USA
| | - M A Steele
- Department of Biology, California State University, Northridge, California, 91330, USA
| | - S Pang
- Moss Landing Marine Laboratories, Moss Landing, California, 95309, USA
| | - J W White
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, 28403, USA
- Department of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station, Oregon State University, Newport, Oregon, 97365, USA
| |
Collapse
|
27
|
Liang Y, Xiao X, Nuccio EE, Yuan M, Zhang N, Xue K, Cohan FM, Zhou J, Sun B. Differentiation strategies of soil rare and abundant microbial taxa in response to changing climatic regimes. Environ Microbiol 2020; 22:1327-1340. [PMID: 32067386 DOI: 10.1111/1462-2920.14945] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 01/14/2023]
Abstract
Despite the important roles of soil microbes, especially the most diverse rare taxa in maintaining community diversity and multifunctionality, how different climate regimes alter the stability and functions of the rare microbial biosphere remains unknown. We reciprocally transplanted field soils across a latitudinal gradient to simulate climate change and sampled the soils annually after harvesting the maize over the following 6 years (from 2005 to 2011). By sequencing microbial 16S ribosomal RNA gene amplicons, we found that changing climate regimes significantly altered the composition and dynamics of soil microbial communities. A continuous succession of the rare and abundant communities was observed. Rare microbial communities were more stable under changing climatic regimes, with lower variations in temporal dynamics, and higher stability and constancy of diversity. More nitrogen cycling genes were detected in the rare members than in the abundant members, including amoA, napA, nifH, nirK, nirS, norB and nrfA. Random forest analysis and receiver operating characteristics analysis showed that rare taxa may act as potential contributors to maize yield under changing climatics. The study indicates that the taxonomically and functionally diverse rare biosphere has the potential to increase functional redundancy and enhance the ability of soil communities to counteract environmental disturbances. With ongoing global climate change, exploring the succession process and functional changes of rare taxa may be important in elucidating the ecosystem stability and multifunctionality that are mediated by microbial communities.
Collapse
Affiliation(s)
- Yuting Liang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xian Xiao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Erin E Nuccio
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Mengting Yuan
- Department of Environmental Science Policy and Management, University of California, Berkeley, CA, 94720, USA
| | - Na Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Xue
- University of the Chinese Academy of Sciences, Beijing, 100049, China.,Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, 73019, USA
| | - Frederick M Cohan
- Department of Biology, Wesleyan University, Middletown, CT, 06459-0170, USA
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, 73019, USA.,Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, 94270, USA
| | - Bo Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
28
|
Shuai LY, Wang LQ, Yang YP, Zhang FS. Effects of density dependence and climatic factors on population dynamics of Cricetulus barabensis: a 25-year field study. J Mammal 2020. [DOI: 10.1093/jmammal/gyaa001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Abstract
Rodents often act as keystone species in communities and play important roles in shaping structures and functions of many ecosystems. Understanding the underlying mechanisms of population fluctuation in rodents is therefore of great interest. Using the data from a 25-year field survey carried out in Inner Mongolia, China, we explored the effects of density dependence, local climatic factors, and a large-scale climatic perturbation (El Niño–Southern Oscillation) on the population dynamics of the striped hamster (Cricetulus barabensis), a rodent widely distributed in northern China. We detected a strong negative density-dependent effect on the population dynamics of C. barabensis. Rainfall had a significant positive effect on population change with a 1-year lag. The pregnancy rate of C. barabensis was negatively affected by the annual mean temperature in the current year, but positively associated with the population density in the current year and the annual Southern Oscillation Index in the previous year. Moving-window analyses suggested that, with a window length of 12 years, there was a significant interaction between rainfall and density dependence, with increasing rainfall alleviating the negative effect of density dependence. As C. barabensis often causes agricultural damage and can transmit zoonotic diseases to human beings, our results also have implications for pest and disease control.
Collapse
Affiliation(s)
- Ling-Ying Shuai
- School of Life Sciences, Huaibei Normal University, Huaibei, People’s Republic of China
| | - Li-Qing Wang
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot, People’s Republic of China
| | - Yu-Ping Yang
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot, People’s Republic of China
| | - Fu-Shun Zhang
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot, People’s Republic of China
| |
Collapse
|
29
|
Shoemaker LG, Sullivan LL, Donohue I, Cabral JS, Williams RJ, Mayfield MM, Chase JM, Chu C, Harpole WS, Huth A, HilleRisLambers J, James ARM, Kraft NJB, May F, Muthukrishnan R, Satterlee S, Taubert F, Wang X, Wiegand T, Yang Q, Abbott KC. Integrating the underlying structure of stochasticity into community ecology. Ecology 2020; 101:e02922. [PMID: 31652337 PMCID: PMC7027466 DOI: 10.1002/ecy.2922] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 08/26/2019] [Accepted: 09/10/2019] [Indexed: 01/13/2023]
Abstract
Stochasticity is a core component of ecology, as it underlies key processes that structure and create variability in nature. Despite its fundamental importance in ecological systems, the concept is often treated as synonymous with unpredictability in community ecology, and studies tend to focus on single forms of stochasticity rather than taking a more holistic view. This has led to multiple narratives for how stochasticity mediates community dynamics. Here, we present a framework that describes how different forms of stochasticity (notably demographic and environmental stochasticity) combine to provide underlying and predictable structure in diverse communities. This framework builds on the deep ecological understanding of stochastic processes acting at individual and population levels and in modules of a few interacting species. We support our framework with a mathematical model that we use to synthesize key literature, demonstrating that stochasticity is more than simple uncertainty. Rather, stochasticity has profound and predictable effects on community dynamics that are critical for understanding how diversity is maintained. We propose next steps that ecologists might use to explore the role of stochasticity for structuring communities in theoretical and empirical systems, and thereby enhance our understanding of community dynamics.
Collapse
Affiliation(s)
- Lauren G. Shoemaker
- Department of BotanyUniversity of Wyoming1000 E. University Ave.LaramieWyoming82017USA
- Department of Ecology, Evolution, and BehaviorUniversity of Minnesota1987 Upper Buford CircleSaint PaulMinnesota55108USA
- Department of Ecology and Evolutionary BiologyUniversity of Colorado1900 Pleasant StreetBoulderColorado80309USA
| | - Lauren L. Sullivan
- Department of Ecology, Evolution, and BehaviorUniversity of Minnesota1987 Upper Buford CircleSaint PaulMinnesota55108USA
- Division of Biological SciencesUniversity of Missouri105 Tucker HallColumbiaMissouri65211USA
| | - Ian Donohue
- Department of Zoology, School of Natural SciencesTrinity CollegeCollege Green Dublin 2Ireland
| | - Juliano S. Cabral
- Synthesis Centre of the German Centre for Integrative Biodiversity Research (sDiv) Halle-Jena-LeipzigDeutscher Platz 5eLeipzig04103Germany
- Ecosystem Modeling, Center of Computation and Theoretical BiologyUniversity of WürzburgEmil-Fischer-Strasse 3297074WürzburgGermany
| | - Ryan J. Williams
- Division of Biological SciencesUniversity of Missouri105 Tucker HallColumbiaMissouri65211USA
| | - Margaret M. Mayfield
- The University of QueenslandSchool of Biological SciencesGoddard BuildingBrisbaneQueensland4072Australia
| | - Jonathan M. Chase
- German Centre for Integrative Biodiversity Research (iDiv)Deutscher Platz 5eLeipzig04103Germany
- Institute for Computer ScienceMartin Luther University Halle-WittenbergHalle06099Germany
| | - Chengjin Chu
- Department of Ecology, State Key Laboratory of Biocontrol and School of Life SciencesSun Yat-sen University510275GuangzhouGuangdongChina
| | - W. Stanley Harpole
- German Centre for Integrative Biodiversity Research (iDiv)Deutscher Platz 5eLeipzig04103Germany
- Helmholtz Center for Environmental Research–UFZPermoserstrasse 1504318LeipzigGermany
- Institute of BiologyMartin Luther University Halle-WittenbergAm Kirchtor 106108Halle (Saale)Germany
| | - Andreas Huth
- German Centre for Integrative Biodiversity Research (iDiv)Deutscher Platz 5eLeipzig04103Germany
- Helmholtz Center for Environmental Research–UFZPermoserstrasse 1504318LeipzigGermany
- Institute of Environmental Research SystemsUniversity of OsnabrückP.O. Box 44 69,49069OsnabrückGermany
| | | | - Aubrie R. M. James
- Department of Ecology and Evolutionary BiologyCornell UniversityE145 Corson HallIthacaNew York14853USA
| | - Nathan J. B. Kraft
- Department of Ecology and Evolutionary BiologyUniversity of California, Los Angeles621 Charles E. Young Drive East, P.O. Box 957246Los AngelesCA90095USA
| | - Felix May
- German Centre for Integrative Biodiversity Research (iDiv)Deutscher Platz 5eLeipzig04103Germany
- Institute for Computer ScienceMartin Luther University Halle-WittenbergHalle06099Germany
- Center for MethodologyLeuphana University LüneburgUniversitätsallee 1D‐21335LüneburgGermany
| | - Ranjan Muthukrishnan
- Environmental Resilience InstituteIndiana University717 E 8th StBloomingtonIndiana 47408USA
- Department of Fisheries, Wildlife, and Conservation BiologyUniversity of Minnesota2003 Upper Buford CircleSt. PaulMinnesota55108USA
| | - Sean Satterlee
- Department of Ecology, Evolution, and Organismal BiologyIowa State University251 Bessey HallAmesIowa50011USA
| | - Franziska Taubert
- Helmholtz Center for Environmental Research–UFZPermoserstrasse 1504318LeipzigGermany
| | - Xugao Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied EcologyChinese Academy of SciencesShenyang 110016China
| | - Thorsten Wiegand
- German Centre for Integrative Biodiversity Research (iDiv)Deutscher Platz 5eLeipzig04103Germany
- Helmholtz Center for Environmental Research–UFZPermoserstrasse 1504318LeipzigGermany
| | - Qiang Yang
- Department of Zoology, School of Natural SciencesTrinity CollegeCollege Green Dublin 2Ireland
- Department of BiologyUniversity of KonstanzUniversitätsstraße 1078464KonstanzGermany
| | - Karen C. Abbott
- Department of BiologyCase Western Reserve University10900 Euclid AvenueClevelandOH44106USA
| |
Collapse
|
30
|
Nakamura GM, Martinez AS. Hamiltonian dynamics of the SIS epidemic model with stochastic fluctuations. Sci Rep 2019; 9:15841. [PMID: 31676857 PMCID: PMC6825157 DOI: 10.1038/s41598-019-52351-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 10/11/2019] [Indexed: 12/03/2022] Open
Abstract
Empirical records of epidemics reveal that fluctuations are important factors for the spread and prevalence of infectious diseases. The exact manner in which fluctuations affect spreading dynamics remains poorly known. Recent analytical and numerical studies have demonstrated that improved differential equations for mean and variance of infected individuals reproduce certain regimes of the SIS epidemic model. Here, we show they form a dynamical system that follows Hamilton’s equations, which allow us to understand the role of fluctuations and their effects on epidemics. Our findings show the Hamiltonian is a constant of motion for large population sizes. For small populations, finite size effects break the temporal symmetry and induce a power-law decay of the Hamiltonian near the outbreak onset, with a parameter-free exponent. Away from the onset, the Hamiltonian decays exponentially according to a constant relaxation time, which we propose as a metric when fluctuations cannot be neglected.
Collapse
Affiliation(s)
- Gilberto M Nakamura
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo, Avenida Bandeirantes 3900, 14040-901, Ribeirão Preto, Brazil. .,Instituto Nacional de Ciência e Tecnologia - Sistemas Complexos (INCT-SC), 22460-320, Rio de Janeiro, Brazil. .,Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique (CNRS), UMR 8165, Universités Paris 11 and Paris 7, Campus d'Orsay, 91405, Orsay, France.
| | - Alexandre S Martinez
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo, Avenida Bandeirantes 3900, 14040-901, Ribeirão Preto, Brazil.,Instituto Nacional de Ciência e Tecnologia - Sistemas Complexos (INCT-SC), 22460-320, Rio de Janeiro, Brazil
| |
Collapse
|
31
|
Commander CJC, White JW. Not all disturbances are created equal: disturbance magnitude affects predator–prey populations more than disturbance frequency. OIKOS 2019. [DOI: 10.1111/oik.06376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Christian J. C. Commander
- Dept of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station, Oregon State Univ 2820 SW Campus Way Corvallis OR 97331 USA
- Dept of Biology and Marine Biology, Univ. of North Carolina at Wilmington Wilmington NC USA
| | - J. Wilson White
- Dept of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station, Oregon State Univ 2820 SW Campus Way Corvallis OR 97331 USA
| |
Collapse
|
32
|
Ryo M, Aguilar-Trigueros CA, Pinek L, Muller LA, Rillig MC. Basic Principles of Temporal Dynamics. Trends Ecol Evol 2019; 34:723-733. [DOI: 10.1016/j.tree.2019.03.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 03/13/2019] [Accepted: 03/26/2019] [Indexed: 12/23/2022]
|
33
|
Perkins TA, Rodriguez-Barraquer I, Manore C, Siraj AS, España G, Barker CM, Johansson MA, Reiner RC. Heterogeneous local dynamics revealed by classification analysis of spatially disaggregated time series data. Epidemics 2019; 29:100357. [PMID: 31607654 DOI: 10.1016/j.epidem.2019.100357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 06/25/2019] [Accepted: 07/19/2019] [Indexed: 11/25/2022] Open
Abstract
Time series data provide a crucial window into infectious disease dynamics, yet their utility is often limited by the spatially aggregated form in which they are presented. When working with time series data, violating the implicit assumption of homogeneous dynamics below the scale of spatial aggregation could bias inferences about underlying processes. We tested this assumption in the context of the 2015-2016 Zika epidemic in Colombia, where time series of weekly case reports were available at national, departmental, and municipal scales. First, we performed a descriptive analysis, which showed that the timing of departmental-level epidemic peaks varied by three months and that departmental-level estimates of the time-varying reproduction number, R(t), showed patterns that were distinct from a national-level estimate. Second, we applied a classification algorithm to six features of proportional cumulative incidence curves, which showed that variability in epidemic duration, the length of the epidemic tail, and consistency with a cumulative normal density curve made the greatest contributions to distinguishing groups. Third, we applied this classification algorithm to data simulated with a stochastic transmission model, which showed that group assignments were consistent with simulated differences in the basic reproduction number, R0. This result, along with associations between spatial drivers of transmission and group assignments based on observed data, suggests that the classification algorithm is capable of detecting differences in temporal patterns that are associated with differences in underlying drivers of incidence patterns. Overall, this diversity of temporal patterns at local scales underscores the value of spatially disaggregated time series data.
Collapse
Affiliation(s)
- T Alex Perkins
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, United States.
| | | | - Carrie Manore
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, United States.
| | - Amir S Siraj
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, United States.
| | - Guido España
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, United States.
| | - Christopher M Barker
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, United States.
| | - Michael A Johansson
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, United States; Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, United States.
| | - Robert C Reiner
- Institute for Health Metrics and Evaluation, University of Washington, United States.
| |
Collapse
|
34
|
Chen N, Ratajczak Z, Yu K. A dryland re‐vegetation in northern China: Success or failure? Quick transitions or long lags? Ecosphere 2019. [DOI: 10.1002/ecs2.2678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Ning Chen
- State Key Laboratory of Grassland Agro‐ecosystems School of Life Sciences Lanzhou University No. 222, Tianshui South Road Lanzhou Gansu 730000 China
- Yuzhong Mountain Ecosystem Field Observation and Research Station Lanzhou University No. 222, Tianshui South Road Lanzhou Gansu 730000 China
- Shapotou Desert Research and Environment Station Northwest Institute of Eco‐Environment and Resources Chinese Academy of Sciences No. 320, Donggang West Road Lanzhou Gansu 730000 China
| | - Zak Ratajczak
- Department of Integrative Biology University of Wisconsin‐Madison Madison Wisconsin 53703 USA
| | - Kailiang Yu
- School of Biological Sciences University of Utah Salt Lake City Utah 84112 USA
- Institute of Integrative Biology ETH Zürich Zürich 8006 Switzerland
| |
Collapse
|
35
|
Brito-Millán M, Werner BT, Sandin SA, McNamara DE. Influence of aggregation on benthic coral reef spatio-temporal dynamics. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181703. [PMID: 30891282 PMCID: PMC6408412 DOI: 10.1098/rsos.181703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
Spatial patterning of coral reef sessile benthic organisms can constrain competitive and demographic rates, with implications for dynamics over a range of time scales. However, techniques for quantifying and analysing reefscape behaviour, particularly at short to intermediate time scales (weeks to decades), are lacking. An analysis of the dynamics of coral reefscapes simulated with a lattice model shows consistent trends that can be categorized into four stages: a repelling stage that moves rapidly away from an unstable initial condition, a transient stage where spatial rearrangements bring key competitors into contact, an attracting stage where the reefscape decays to a steady-state attractor, and an attractor stage. The transient stage exhibits nonlinear dynamics, whereas the other stages are linear. The relative durations of the stages are affected by the initial spatial configuration as characterized by coral aggregation-a measure of spatial clumpiness, which together with coral and macroalgae fractional cover, more completely describe modelled reefscape dynamics. Incorporating diffusional processes results in aggregated patterns persisting in the attractor. Our quantitative characterization of reefscape dynamics has possible applications to other spatio-temporal systems and implications for reef restoration: high initial aggregation patterns slow losses in herbivore-limited systems and low initial aggregation configurations accelerate growth in herbivore-dominated systems.
Collapse
Affiliation(s)
- Marlene Brito-Millán
- Complex Systems Laboratory, Climate, Atmospheric Sciences, and Physical Oceanography, and University of California - San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0230, USA
- Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, University of San Diego, 5998 Alcalá Park, San Diego, CA 92110-2492, USA
- Environmental and Ocean Sciences Department, University of San Diego, 5998 Alcalá Park, San Diego, CA 92110-2492, USA
| | - B. T. Werner
- Complex Systems Laboratory, Climate, Atmospheric Sciences, and Physical Oceanography, and University of California - San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0230, USA
| | - Stuart A. Sandin
- Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, University of San Diego, 5998 Alcalá Park, San Diego, CA 92110-2492, USA
| | - Dylan E. McNamara
- Department of Physics and Physical Oceanography/Center for Marine Sciences, University of North Carolina, Wilmington, 601 South College Road, Wilmington, NC 28403, USA
| |
Collapse
|
36
|
Levi T, Barfield M, Barrantes S, Sullivan C, Holt RD, Terborgh J. Tropical forests can maintain hyperdiversity because of enemies. Proc Natl Acad Sci U S A 2019; 116:581-586. [PMID: 30584100 PMCID: PMC6329942 DOI: 10.1073/pnas.1813211116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Explaining the maintenance of tropical forest diversity under the countervailing forces of drift and competition poses a major challenge to ecological theory. Janzen-Connell effects, in which host-specific natural enemies restrict the recruitment of juveniles near conspecific adults, provide a potential mechanism. Janzen-Connell is strongly supported empirically, but existing theory does not address the stable coexistence of hundreds of species. Here we use high-performance computing and analytical models to demonstrate that tropical forest diversity can be maintained nearly indefinitely in a prolonged state of transient dynamics due to distance-responsive natural enemies. Further, we show that Janzen-Connell effects lead to community regulation of diversity by imposing a diversity-dependent cost to commonness and benefit to rarity. The resulting species-area and rank-abundance relationships are consistent with empirical results. Diversity maintenance over long time spans does not require dispersal from an external metacommunity, speciation, or resource niche partitioning, only a small zone around conspecific adults in which saplings fail to recruit. We conclude that the Janzen-Connell mechanism can explain the maintenance of tropical tree diversity while not precluding the operation of other niche-based mechanisms such as resource partitioning.
Collapse
Affiliation(s)
- Taal Levi
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR 97331;
| | - Michael Barfield
- Department of Biology, University of Florida, Gainesville, FL 32611
| | - Shane Barrantes
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331
| | - Christopher Sullivan
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331
| | - Robert D Holt
- Department of Biology, University of Florida, Gainesville, FL 32611
| | - John Terborgh
- Department of Biology, University of Florida, Gainesville, FL 32611;
- Centre for Tropical Environmental and Sustainability Science, James Cook University, Cairns, QLD 4870, Australia
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611
| |
Collapse
|
37
|
Kimbro DL, White JW, Grosholz ED. The dynamics of open populations: integration of top–down, bottom–up and supply–side influences on intertidal oysters. OIKOS 2018. [DOI: 10.1111/oik.05892] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- David L. Kimbro
- Dept of Marine and Environmental Science, Northeastern Univ Nahant MA 01908 USA
| | - J. Wilson White
- Dept of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station, Oregon State Univ Newport OR USA
| | - Edwin D. Grosholz
- Dept of Environmental Science and Policy, Univ. of California Davis Davis CA USA
| |
Collapse
|
38
|
Cantrell RS, Cosner C, Lewis MA, Lou Y. Evolution of dispersal in spatial population models with multiple timescales. J Math Biol 2018; 80:3-37. [PMID: 30392106 DOI: 10.1007/s00285-018-1302-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/07/2018] [Indexed: 10/27/2022]
Abstract
We study the evolutionary stability of dispersal strategies, including but not limited to those that can produce ideal free population distributions (that is, distributions where all individuals have equal fitness and there is no net movement of individuals at equilibrium). The environment is assumed to be variable in space but constant in time. We assume that there is a separation of times scales, so that dispersal occurs on a fast timescale, evolution occurs on a slow timescale, and population dynamics and interactions occur on an intermediate timescale. Starting with advection-diffusion models for dispersal without population dynamics, we use the large time limits of profiles for population distributions together with the distribution of resources in the environment to calculate growth and interaction coefficients in logistic and Lotka-Volterra ordinary differential equations describing population dynamics. We then use a pairwise invasibility analysis approach motivated by adaptive dynamics to study the evolutionary and/or convergence stability of strategies determined by various assumptions about the advection and diffusion terms in the original advection-diffusion dispersal models. Among other results we find that those strategies which can produce an ideal free distribution are evolutionarily stable.
Collapse
Affiliation(s)
- Robert Stephen Cantrell
- Institute for Mathematical Sciences, Renmin University of China, Beijing, 100872, People's Republic of China.,Department of Mathematics, University of Miami, Coral Gables, FL, 33146, USA
| | - Chris Cosner
- Department of Mathematics, University of Miami, Coral Gables, FL, 33146, USA.
| | - Mark A Lewis
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, T6G 2G1, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2G1, Canada
| | - Yuan Lou
- Institute for Mathematical Sciences, Renmin University of China, Beijing, 100872, People's Republic of China.,Department of Mathematics, Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
39
|
Hastings A, Abbott KC, Cuddington K, Francis T, Gellner G, Lai YC, Morozov A, Petrovskii S, Scranton K, Zeeman ML. Transient phenomena in ecology. Science 2018; 361:eaat6412. [PMID: 30190378 DOI: 10.1126/science.aat6412] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/02/2018] [Indexed: 05/15/2025]
Abstract
The importance of transient dynamics in ecological systems and in the models that describe them has become increasingly recognized. However, previous work has typically treated each instance of these dynamics separately. We review both empirical examples and model systems, and outline a classification of transient dynamics based on ideas and concepts from dynamical systems theory. This classification provides ways to understand the likelihood of transients for particular systems, and to guide investigations to determine the timing of sudden switches in dynamics and other characteristics of transients. Implications for both management and underlying ecological theories emerge.
Collapse
Affiliation(s)
- Alan Hastings
- Department of Environmental Science and Policy, University of California, Davis, CA 95616, USA.
| | - Karen C Abbott
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Kim Cuddington
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Tessa Francis
- Puget Sound Institute, University of Washington, Tacoma, WA 98421, USA
| | - Gabriel Gellner
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Ying-Cheng Lai
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Andrew Morozov
- Department of Mathematics, University of Leicester, Leicester LE1 7RH, UK
- Shirshov Institute of Oceanology, Moscow 117851, Russia
| | - Sergei Petrovskii
- Department of Mathematics, University of Leicester, Leicester LE1 7RH, UK
| | - Katherine Scranton
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
| | - Mary Lou Zeeman
- Department of Mathematics, Bowdoin College, Brunswick, ME 04011, USA
| |
Collapse
|
40
|
Tabak MA, Webb CT, Miller RS. Propagule size and structure, life history, and environmental conditions affect establishment success of an invasive species. Sci Rep 2018; 8:10313. [PMID: 29985418 PMCID: PMC6037743 DOI: 10.1038/s41598-018-28654-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 06/26/2018] [Indexed: 11/08/2022] Open
Abstract
Population dynamics of species that are recently introduced into a new area, e.g., invasive species and species of conservation concern that are translocated to support global populations, are likely to be dominated by short-term, transient effects. Wild pigs (Sus scrofa, or wild boar) are pulsed-resource consumers of mast nuts that are commonly introduced into new areas. We used vital rate data (i.e., survival and fecundity) for wild pigs in Germany under varying forage conditions to simulate transient population dynamics in the 10-years following introduction into a new environment. In a low forage environment (i.e., conditions similar to their native range), simulated wild pig populations maintained a stable population size with low probability of establishment, while in environments with better quality forage (i.e., conditions similar to parts of their invasive range), high juvenile fecundity and survival facilitated rapid population growth and establishment probability was high. We identified a strategy for simulating population dynamics of species whose reproduction and survival depend on environmental conditions that fluctuate and for predicting establishment success of species introduced into a new environment. Our approach can also be useful in projecting near-term transient population dynamics for many conservation and management applications.
Collapse
Affiliation(s)
- Michael A Tabak
- Center for Epidemiology and Animal Health, United States Department of Agriculture - Animal & Plant Health Inspection Service, 2150 Centre Ave, Bldg B, Fort Collins, CO, 80526, USA.
| | - Colleen T Webb
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Ryan S Miller
- Center for Epidemiology and Animal Health, United States Department of Agriculture - Animal & Plant Health Inspection Service, 2150 Centre Ave, Bldg B, Fort Collins, CO, 80526, USA
| |
Collapse
|
41
|
Ratajczak Z, Carpenter SR, Ives AR, Kucharik CJ, Ramiadantsoa T, Stegner MA, Williams JW, Zhang J, Turner MG. Abrupt Change in Ecological Systems: Inference and Diagnosis. Trends Ecol Evol 2018; 33:513-526. [PMID: 29784428 DOI: 10.1016/j.tree.2018.04.013] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/21/2018] [Accepted: 04/23/2018] [Indexed: 02/07/2023]
Abstract
Abrupt ecological changes are, by definition, those that occur over short periods of time relative to typical rates of change for a given ecosystem. The potential for such changes is growing due to anthropogenic pressures, which challenges the resilience of societies and ecosystems. Abrupt ecological changes are difficult to diagnose because they can arise from a variety of circumstances, including rapid changes in external drivers (e.g., climate, or resource extraction), nonlinear responses to gradual changes in drivers, and interactions among multiple drivers and disturbances. We synthesize strategies for identifying causes of abrupt ecological change and highlight instances where abrupt changes are likely. Diagnosing abrupt changes and inferring causation are increasingly important as society seek to adapt to rapid, multifaceted environmental changes.
Collapse
Affiliation(s)
- Zak Ratajczak
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Stephen R Carpenter
- Center for Limnology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Anthony R Ives
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Tanjona Ramiadantsoa
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - M Allison Stegner
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John W Williams
- Department of Geography and Center for Climatic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jien Zhang
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Monica G Turner
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
42
|
Inferring genetic connectivity in real populations, exemplified by coastal and oceanic Atlantic cod. Proc Natl Acad Sci U S A 2018; 115:4945-4950. [PMID: 29674450 PMCID: PMC5948993 DOI: 10.1073/pnas.1800096115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Estimates of migration are important for understanding the dynamics of natural populations. A statistic known as FST is often used to measure levels of genetic differentiation among natural populations. Equations that translate FST into estimates of migration are based on “ideal” populations, which are subject to many simplifying assumptions compared with real populations. Therefore, theoretical estimates of migration might not be realistic. We modeled populations of Atlantic cod in the North Sea and the adjacent Skagerrak region to compare how migration is related to the complexities of real populations, and how actual migration compares with predictions based on theory. Results are intended to help apply population genetic theory to practical situations. Genetic data are commonly used to estimate connectivity between putative populations, but translating them to demographic dispersal rates is complicated. Theoretical equations that infer a migration rate based on the genetic estimator FST, such as Wright’s equation, FST ≈ 1/(4Nem + 1), make assumptions that do not apply to most real populations. How complexities inherent to real populations affect migration was exemplified by Atlantic cod in the North Sea and Skagerrak and was examined within an age-structured model that incorporated genetic markers. Migration was determined under various scenarios by varying the number of simulated migrants until the mean simulated level of genetic differentiation matched a fixed level of genetic differentiation equal to empirical estimates. Parameters that decreased the Ne/Nt ratio (where Ne is the effective and Nt is the total population size), such as high fishing mortality and high fishing gear selectivity, increased the number of migrants required to achieve empirical levels of genetic differentiation. Higher maturity-at-age and lower selectivity increased Ne/Nt and decreased migration when genetic differentiation was fixed. Changes in natural mortality, fishing gear selectivity, and maturity-at-age within expected limits had a moderate effect on migration when genetic differentiation was held constant. Changes in population size had the greatest effect on the number of migrants to achieve fixed levels of FST, particularly when genetic differentiation was low, FST ≈ 10−3. Highly variable migration patterns, compared with constant migration, resulted in higher variance in genetic differentiation and higher extreme values. Results are compared with and provide insight into the use of theoretical equations to estimate migration among real populations.
Collapse
|
43
|
Mari L, Casagrandi R, Rinaldo A, Gatto M. Epidemicity thresholds for water-borne and water-related diseases. J Theor Biol 2018; 447:126-138. [PMID: 29588168 DOI: 10.1016/j.jtbi.2018.03.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 02/02/2018] [Accepted: 03/16/2018] [Indexed: 12/18/2022]
Abstract
Determining the conditions that favor pathogen establishment in a host community is key to disease control and eradication. However, focusing on long-term dynamics alone may lead to an underestimation of the threats imposed by outbreaks triggered by short-term transient phenomena. Achieving an effective epidemiological response thus requires to look at different timescales, each of which may be endowed with specific management objectives. In this work we aim to determine epidemicity thresholds for some prototypical examples of water-borne and water-related diseases, a diverse family of infections transmitted either directly through water infested with pathogens or by vectors whose lifecycles are closely associated with water. From a technical perspective, while conditions for endemicity are determined via stability analysis, epidemicity thresholds are defined through generalized reactivity analysis, a recently proposed method that allows the study of the short-term instability properties of ecological systems. Understanding the drivers of water-borne and water-related disease dynamics over timescales that may be relevant to epidemic and/or endemic transmission is a challenge of the utmost importance, as large portions of the developing world are still struggling with the burden imposed by these infections.
Collapse
Affiliation(s)
- Lorenzo Mari
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano 20133, Italy.
| | - Renato Casagrandi
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano 20133, Italy
| | - Andrea Rinaldo
- Laboratory of Ecohydrology, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland; Dipartimento ICEA, Università di Padova, Padova 35131, Italy
| | - Marino Gatto
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano 20133, Italy
| |
Collapse
|
44
|
Klapwijk MJ, Walter JA, Hirka A, Csóka G, Björkman C, Liebhold AM. Transient synchrony among populations of five foliage-feeding Lepidoptera. J Anim Ecol 2018. [PMID: 29536534 DOI: 10.1111/1365-2656.12823] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Studies of transient population dynamics have largely focused on temporal changes in dynamical behaviour, such as the transition between periods of stability and instability. This study explores a related dynamic pattern, namely transient synchrony during a 49-year period among populations of five sympatric species of forest insects that share host tree resources. The long time series allows a more comprehensive exploration of transient synchrony patterns than most previous studies. Considerable variation existed in the dynamics of individual species, ranging from periodic to aperiodic. We used time-averaged methods to investigate long-term patterns of synchrony and time-localized methods to detect transient synchrony. We investigated transient patterns of synchrony between species and related these to the species' varying density dependence structures; even species with very different density dependence exhibited at least temporary periods of synchrony. Observed periods of interspecific synchrony may arise from interactions with host trees (e.g., induced host defences), interactions with shared natural enemies or shared impacts of environmental stochasticity. The transient nature of synchrony observed here raises questions both about the identity of synchronizing mechanisms and how these mechanisms interact with the endogenous dynamics of each species. We conclude that these patterns are the result of interspecific interactions that act only temporarily to synchronize populations, after which differences in the endogenous population dynamics among the species acts to desynchronize their dynamics.
Collapse
Affiliation(s)
- Maartje J Klapwijk
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jonathan A Walter
- Department of Biology, Virginia Commonwealth University, Richmond, VA, USA.,Department of Ecology and Evolution and Kansas Biological Survey, University of Kansas, Lawrence, KS, USA
| | - Anikó Hirka
- Department of Forest Protection, NARIC Forest Research Institute, Mátrafûred, Hungary
| | - György Csóka
- Department of Forest Protection, NARIC Forest Research Institute, Mátrafûred, Hungary
| | - Christer Björkman
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | |
Collapse
|
45
|
|
46
|
Abstract
Complex systems in many fields, because of their intrinsic nonlinear dynamics, can exhibit a tipping point (point of no return) at which a total collapse of the system occurs. In ecosystems, environmental deterioration can lead to evolution toward a tipping point. To predict tipping point is an outstanding and extremely challenging problem. Using complex bipartite mutualistic networks, we articulate a dimension reduction strategy and establish its general applicability to predicting tipping points using a large number of empirical networks. Not only can our reduced model serve as a paradigm for understanding the tipping point dynamics in real world ecosystems for safeguarding pollinators, the principle can also be extended to other disciplines to address critical issues, such as resilience and sustainability. Complex networked systems ranging from ecosystems and the climate to economic, social, and infrastructure systems can exhibit a tipping point (a “point of no return”) at which a total collapse of the system occurs. To understand the dynamical mechanism of a tipping point and to predict its occurrence as a system parameter varies are of uttermost importance, tasks that are hindered by the often extremely high dimensionality of the underlying system. Using complex mutualistic networks in ecology as a prototype class of systems, we carry out a dimension reduction process to arrive at an effective 2D system with the two dynamical variables corresponding to the average pollinator and plant abundances. We show, using 59 empirical mutualistic networks extracted from real data, that our 2D model can accurately predict the occurrence of a tipping point, even in the presence of stochastic disturbances. We also find that, because of the lack of sufficient randomness in the structure of the real networks, weighted averaging is necessary in the dimension reduction process. Our reduced model can serve as a paradigm for understanding and predicting the tipping point dynamics in real world mutualistic networks for safeguarding pollinators, and the general principle can be extended to a broad range of disciplines to address the issues of resilience and sustainability.
Collapse
|
47
|
Arnoldi JF, Bideault A, Loreau M, Haegeman B. How ecosystems recover from pulse perturbations: A theory of short- to long-term responses. J Theor Biol 2018; 436:79-92. [PMID: 28987466 PMCID: PMC5675055 DOI: 10.1016/j.jtbi.2017.10.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 09/21/2017] [Accepted: 10/04/2017] [Indexed: 10/18/2022]
Abstract
Quantifying stability properties of ecosystems is an important problem in ecology. A common approach is based on the recovery from pulse perturbations, and posits that the faster an ecosystem return to its pre-perturbation state, the more stable it is. Theoretical studies often collapse the recovery dynamics into a single quantity: the long-term rate of return, called asymptotic resilience. However, empirical studies typically measure the recovery dynamics at much shorter time scales. In this paper we explain why asymptotic resilience is rarely representative of the short-term recovery. First, we show that, in contrast to asymptotic resilience, short-term return rates depend on features of the perturbation, in particular on the way its intensity is distributed over species. We argue that empirically relevant predictions can be obtained by considering the median response over a set of perturbations, for which we provide explicit formulas. Next, we show that the recovery dynamics are controlled through time by different species: abundant species tend to govern the short-term recovery, while rare species often dominate the long-term recovery. This shift from abundant to rare species typically causes short-term return rates to be unrelated to asymptotic resilience. We illustrate that asymptotic resilience can be determined by rare species that have almost no effect on the observable part of the recovery dynamics. Finally, we discuss how these findings can help to better connect empirical observations and theoretical predictions.
Collapse
Affiliation(s)
- J-F Arnoldi
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS and Paul Sabatier University, Moulis, France.
| | - A Bideault
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS and Paul Sabatier University, Moulis, France; Integrative Ecology Lab, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - M Loreau
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS and Paul Sabatier University, Moulis, France.
| | - B Haegeman
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS and Paul Sabatier University, Moulis, France.
| |
Collapse
|
48
|
|
49
|
Ruhí A, Datry T, Sabo JL. Interpreting beta-diversity components over time to conserve metacommunities in highly dynamic ecosystems. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2017; 31:1459-1468. [PMID: 28188969 DOI: 10.1111/cobi.12906] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 01/12/2017] [Accepted: 02/03/2017] [Indexed: 06/06/2023]
Abstract
The concept of metacommunity (i.e., a set of local communities linked by dispersal) has gained great popularity among community ecologists. However, metacommunity research mostly addresses questions on spatial patterns of biodiversity at the regional scale, whereas conservation planning requires quantifying temporal variation in those metacommunities and the contributions that individual (local) sites make to regional dynamics. We propose that recent advances in diversity-partitioning methods may allow for a better understanding of metacommunity dynamics and the identification of keystone sites. We used time series of the 2 components of beta diversity (richness and replacement) and the contributions of local sites to these components to examine which sites controlled source-sink dynamics in a highly dynamic model system (an intermittent river). The relative importance of the richness and replacement components of beta diversity fluctuated over time, and sample aggregation led to underestimation of beta diversity by up to 35%. Our literature review revealed that research on intermittent rivers would benefit greatly from examination of beta-diversity components over time. Adequately appraising spatiotemporal variability in community composition and identifying sites that are pivotal for maintaining biodiversity at the landscape scale are key needs for conservation prioritization and planning. Thus, our framework may be used to guide conservation actions in highly dynamic ecosystems when time-series data describing biodiversity across sites connected by dispersal are available.
Collapse
Affiliation(s)
- Albert Ruhí
- Julie Ann Wrigley Global Institute of Sustainability, Arizona State University, Tempe, AZ, 85287-5402, U.S.A
- National Socio-Environmental Synthesis Center (SESYNC), University of Maryland, Annapolis, MD, 21401, U.S.A
| | - Thibault Datry
- IRSTEA, UR MALY, Centre de Lyon-Villeurbanne, 5 Rue de la Doua CS70077, 69626, Villeurbanne, Cedex, France
| | - John L Sabo
- Julie Ann Wrigley Global Institute of Sustainability, Arizona State University, Tempe, AZ, 85287-5402, U.S.A
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-5402, U.S.A
| |
Collapse
|
50
|
Mari L, Casagrandi R, Rinaldo A, Gatto M. A generalized definition of reactivity for ecological systems and the problem of transient species dynamics. Methods Ecol Evol 2017. [DOI: 10.1111/2041-210x.12805] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Lorenzo Mari
- Department of Electronics Information and Bioengineering Polytechnic University of Milan 20133 Milan Italy
| | - Renato Casagrandi
- Department of Electronics Information and Bioengineering Polytechnic University of Milan 20133 Milan Italy
| | - Andrea Rinaldo
- Laboratory of Ecohydrology Swiss Federal Institute of Technology in Lausanne 1015 Lausanne Switzerland
- Department of Civil Environmental and Architectural Engineering University of Padua 35131 Padua Italy
| | - Marino Gatto
- Department of Electronics Information and Bioengineering Polytechnic University of Milan 20133 Milan Italy
| |
Collapse
|