1
|
Zhu K, Song Y, Lesage JC, Luong JC, Bartolome JW, Chiariello NR, Dudney J, Field CB, Hallett LM, Hammond M, Harrison SP, Hayes GF, Hobbs RJ, Holl KD, Hopkinson P, Larios L, Loik ME, Prugh LR. Rapid shifts in grassland communities driven by climate change. Nat Ecol Evol 2024; 8:2252-2264. [PMID: 39414961 PMCID: PMC11618070 DOI: 10.1038/s41559-024-02552-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/03/2024] [Indexed: 10/18/2024]
Abstract
Many terrestrial plant communities, especially forests, have been shown to lag in response to rapid climate change. Grassland communities may respond more quickly to novel climates, as they consist mostly of short-lived species, which are directly exposed to macroclimate change. Here we report the rapid response of grassland communities to climate change in the California Floristic Province. We estimated 349 vascular plant species' climatic niches from 829,337 occurrence records, compiled 15 long-term community composition datasets from 12 observational studies and 3 global change experiments, and analysed community compositional shifts in the climate niche space. We show that communities experienced significant shifts towards species associated with warmer and drier locations at rates of 0.0216 ± 0.00592 °C yr-1 (mean ± s.e.) and -3.04 ± 0.742 mm yr-1, and these changes occurred at a pace similar to that of climate warming and drying. These directional shifts were consistent across observations and experiments. Our findings contrast with the lagged responses observed in communities dominated by long-lived plants and suggest greater biodiversity changes than expected in the near future.
Collapse
Affiliation(s)
- Kai Zhu
- School for Environment and Sustainability, Institute for Global Change Biology, and Michigan Institute for Data and AI in Society, University of Michigan, Ann Arbor, MI, USA.
- Department of Environmental Studies, University of California, Santa Cruz, Santa Cruz, CA, USA.
| | - Yiluan Song
- School for Environment and Sustainability, Institute for Global Change Biology, and Michigan Institute for Data and AI in Society, University of Michigan, Ann Arbor, MI, USA
- Department of Environmental Studies, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Josephine C Lesage
- Department of Environmental Studies, University of California, Santa Cruz, Santa Cruz, CA, USA
- Earth and Environmental Sciences, Clark College, Vancouver, WA, USA
| | - Justin C Luong
- Department of Environmental Studies, University of California, Santa Cruz, Santa Cruz, CA, USA
- Department of Forestry, Fire and Rangeland Management, California Polytechnic State University, Humboldt, Arcata, CA, USA
| | - James W Bartolome
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, USA
| | - Nona R Chiariello
- Jasper Ridge Biological Preserve, Stanford University, Stanford, CA, USA
| | - Joan Dudney
- Bren School of Environmental Science and Management and Department of Environmental Studies, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Christopher B Field
- Stanford Woods Institute for the Environment, Stanford University, Stanford, CA, USA
| | - Lauren M Hallett
- Department of Biology and Environmental Studies Program, University of Oregon, Eugene, OR, USA
| | | | - Susan P Harrison
- Department of Environmental Science and Policy, University of California, Davis, Davis, CA, USA
| | - Grey F Hayes
- Department of Environmental Studies, University of California, Santa Cruz, Santa Cruz, CA, USA
- Swanton Pacific Ranch, California Polytechnic State University, Davenport, CA, USA
| | - Richard J Hobbs
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Karen D Holl
- Department of Environmental Studies, University of California, Santa Cruz, Santa Cruz, CA, USA
| | | | - Loralee Larios
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | - Michael E Loik
- Department of Environmental Studies, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Laura R Prugh
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
2
|
Suding KN, Collins CG, Hallett LM, Larios L, Brigham LM, Dudney J, Farrer EC, Larson JE, Shackelford N, Spasojevic MJ. Biodiversity in changing environments: An external-driver internal-topology framework to guide intervention. Ecology 2024; 105:e4322. [PMID: 39014865 DOI: 10.1002/ecy.4322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/15/2024] [Accepted: 03/08/2024] [Indexed: 07/18/2024]
Abstract
Accompanying the climate crisis is the more enigmatic biodiversity crisis. Rapid reorganization of biodiversity due to global environmental change has defied prediction and tested the basic tenets of conservation and restoration. Conceptual and practical innovation is needed to support decision making in the face of these unprecedented shifts. Critical questions include: How can we generalize biodiversity change at the community level? When are systems able to reorganize and maintain integrity, and when does abiotic change result in collapse or restructuring? How does this understanding provide a template to guide when and how to intervene in conservation and restoration? To this end, we frame changes in community organization as the modulation of external abiotic drivers on the internal topology of species interactions, using plant-plant interactions in terrestrial communities as a starting point. We then explore how this framing can help translate available data on species abundance and trait distributions to corresponding decisions in management. Given the expectation that community response and reorganization are highly complex, the external-driver internal-topology (EDIT) framework offers a way to capture general patterns of biodiversity that can help guide resilience and adaptation in changing environments.
Collapse
Affiliation(s)
- Katharine N Suding
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
| | - Courtney G Collins
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- Biodiversity Research Centre, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lauren M Hallett
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- Department of Biology and Environmental Studies Program, University of Oregon, Eugene, Oregon, USA
| | - Loralee Larios
- Department of Botany & Plant Sciences, University of California Riverside, Riverside, California, USA
| | - Laurel M Brigham
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Joan Dudney
- Environmental Studies Program, Santa Barbara, California, USA
- Bren School of Environmental Science & Management, UC Santa Barbara, Santa Barbara, California, USA
| | - Emily C Farrer
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, Louisiana, USA
| | - Julie E Larson
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- USDA Agricultural Research Service, Eastern Oregon Agricultural Research Center, Burns, Oregon, USA
| | - Nancy Shackelford
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- School of Environmental Studies, University of Victoria, Victoria, British Columbia, Canada
| | - Marko J Spasojevic
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, California, USA
| |
Collapse
|
3
|
An Y, Sun J, Ren L, Gao Y, Wu X, Lian G. Enhanced microbial remediation of uranium tailings through red soil utilization. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2024; 277:107463. [PMID: 38815432 DOI: 10.1016/j.jenvrad.2024.107463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Seepage of uranium tailings has become a focus of attention in the uranium mining and metallurgy industry, and in-situ microbial remediation is considered an effective way to treat uranium pollution. However, this method has the drawbacks of easy biomass loss and unstable remediation effect. To overcome these issues, spare red soil around the uranium mine was used to enhance the efficiency and stability of bioremediation. Furthermore, the bioremediation mechanism was revealed by employing XRD, FTIR, XPS, and 16S rRNA. The results showed that red soil, as a barrier material, had the adsorption potential of 8.21-148.00 mg U/kg soil, but the adsorption is accompanied by the release of certain acidic and oxidative substances. During the dynamic microbial remediation, red soil was used as a cover material to neutralize acidity, provide a higher reduction potential (<-200 mV), and increase the retention rate of microbial agent (19.06 mL/d) compared to the remediation group without red soil. In the presence of red soil, the anaerobic system could maintain the uranium concentration in the solution below 0.3 mg/L for more than 70 days. Moreover, the generation of new clay minerals driven by microorganisms was more conducive to the stability of uranium tailings. Through alcohol and amino acid metabolism of microorganisms, a reducing environment with reduced valence states of multiple elements (such as S2-, Fe2+, and U4+) was formed. At the same time, the relative abundance of functional microbial communities in uranium tailings improved in presence of red soil and Desulfovirobo, Desulfocapsa, Desulfosporosinus, and other active microbial communities reconstructed the anaerobic environment. The study provides a new two-in-one solution for treatment of uranium tailings and resource utilization of red soil through in-situ microbial remediation.
Collapse
Affiliation(s)
- Yifu An
- China Nuclear Mining Science and Technology Corporation, Shijiazhuang, 050021, China
| | - Juan Sun
- China Nuclear Mining Science and Technology Corporation, Shijiazhuang, 050021, China.
| | - Lijiang Ren
- China Nuclear Mining Science and Technology Corporation, Shijiazhuang, 050021, China
| | - Yang Gao
- China Nuclear Mining Science and Technology Corporation, Shijiazhuang, 050021, China
| | - Xuyang Wu
- China Nuclear Mining Science and Technology Corporation, Shijiazhuang, 050021, China
| | - Guoxi Lian
- State Key Laboratory of Water Environment, School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
4
|
Wei F, Xie T, Su C, He B, Shu Z, Zhang Y, Xiao Z, Hao J. Stability and Assembly Mechanisms of Butterfly Communities across Environmental Gradients of a Subtropical Mountain. INSECTS 2024; 15:230. [PMID: 38667360 PMCID: PMC11050375 DOI: 10.3390/insects15040230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024]
Abstract
Mountain ecosystems harbor evolutionarily unique and exceptionally rich biodiversity, particularly in insects. In this study, we characterized the diversity, community stability, and assembly mechanisms of butterflies on a subtropical mountain in the Chebaling National Nature Reserve, Guangdong Province, China, using grid-based monitoring across the entire region for two years. The results showed that species richness, abundance, and Faith's phylogenetic diversity decreased with increasing elevation; taxonomic diversity played a considerable role in mediating the effects of environmental changes on stability. Moreover, our results showed that stochastic processes are dominant in governing the assembly of butterfly communities across all elevational gradients, with habitats at an elevation of 416-580 m subjected to the strongest stochastic processes, whereas heterogeneous selection processes displayed stronger effects on the assembly of butterfly communities at 744-908 m, 580-744 m, and 908-1072 m, with abiotic factors inferred as the main driving forces. In addition, significant differences were detected between the barcode tree and the placement tree for the calculated β-NTI values at 416-580 m. Overall, this study provides new insights into the effects of environmental change on the stability and assembly of butterflies in Chebaling, which will be beneficial for biodiversity conservation and policy development.
Collapse
Affiliation(s)
- Fanyu Wei
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (F.W.); (T.X.); (C.S.); (B.H.)
| | - Tingting Xie
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (F.W.); (T.X.); (C.S.); (B.H.)
- Key Laboratory of Zoological and Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100045, China
| | - Chengyong Su
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (F.W.); (T.X.); (C.S.); (B.H.)
| | - Bo He
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (F.W.); (T.X.); (C.S.); (B.H.)
| | - Zufei Shu
- Guangdong Chebaling National Nature Reserve Administration Bureau, Shaoguan 512500, China; (Z.S.); (Y.Z.)
| | - Yingming Zhang
- Guangdong Chebaling National Nature Reserve Administration Bureau, Shaoguan 512500, China; (Z.S.); (Y.Z.)
| | - Zhishu Xiao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing 100045, China
| | - Jiasheng Hao
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (F.W.); (T.X.); (C.S.); (B.H.)
| |
Collapse
|
5
|
Fulbright TE, Ortega‐Santos JA, Hines SL, Drabek DJ, Saenz R, Campbell TA, Hewitt DG, Wester DB. Relationships between plant species richness and grazing intensity in a semiarid ecosystem. Ecol Evol 2023; 13:e10668. [PMID: 37920775 PMCID: PMC10618571 DOI: 10.1002/ece3.10668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 07/29/2023] [Accepted: 10/12/2023] [Indexed: 11/04/2023] Open
Abstract
Plant species richness is an important property of ecosystems that is altered by grazing. In a semiarid environment, we tested the hypotheses that (1) small-scale herbaceous plant species richness declines linearly with increasing grazing intensity by large ungulates, (2) precipitation and percent sand interact with grazing intensity, and (3) response of herbaceous plant species richness to increasing intensity of ungulate grazing varies with patch productivity. During January-March 2012, we randomly allocated 50, 1.5-m × 1.5-m grazing exclosures within each of six 2500 ha study sites across South Texas, USA. We counted the number of herbaceous plant species and harvested vegetation in 0.25-m2 plots within exclosures (ungrazed control plots) and in the grazed area outside the exclosures (grazed treatment plots) during October-November 2012-2019. We estimated percent use (grazing intensity) based on the difference in herbaceous plant standing crop between control plots and treatment plots. We selected the negative binomial regression model that best explained the relationship between grazing intensity and herbaceous plant species richness using the Schwarz-Bayesian information criterion. After accounting for the positive effect of precipitation and percent sand on herbaceous plant species richness, species richness/0.25 m2 increased slightly from 0% to 30% grazing intensity and then declined with increasing grazing intensity. Linear and quadratic responses of herbaceous plant species richness to increasing grazing intensity were greater for the least productive patches (<15.7 g/0.25 m2) than for productive patches (≥15.7 g/0.25 m2). Our results followed the pattern predicted by the intermediate disturbance hypothesis model for the effect of grazing intensity on small-scale herbaceous plant species richness.
Collapse
Affiliation(s)
- Timothy E. Fulbright
- Caesar Kleberg Wildlife Research InstituteMSC 218, Texas A&M University‐KingsvilleKingsvilleTexasUSA
| | - J. Alfonso Ortega‐Santos
- Caesar Kleberg Wildlife Research InstituteMSC 218, Texas A&M University‐KingsvilleKingsvilleTexasUSA
| | - Stacy L. Hines
- Texas A&M AgriLife Extension, Department of RangelandWildlife and Fisheries ManagementCorpus ChristiTexasUSA
| | - Dillan J. Drabek
- Caesar Kleberg Wildlife Research InstituteMSC 218, Texas A&M University‐KingsvilleKingsvilleTexasUSA
| | - Ramon Saenz
- Natural Resources Conservation ServiceClaudeTexasUSA
| | | | - David G. Hewitt
- Caesar Kleberg Wildlife Research InstituteMSC 218, Texas A&M University‐KingsvilleKingsvilleTexasUSA
| | - David B. Wester
- Caesar Kleberg Wildlife Research InstituteMSC 218, Texas A&M University‐KingsvilleKingsvilleTexasUSA
| |
Collapse
|
6
|
DeSiervo MH, Sullivan LL, Kahan LM, Seabloom EW, Shoemaker LG. Disturbance alters transience but nutrients determine equilibria during grassland succession with multiple global change drivers. Ecol Lett 2023. [PMID: 37125464 DOI: 10.1111/ele.14229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/15/2023] [Indexed: 05/02/2023]
Abstract
Disturbance and environmental change may cause communities to converge on a steady state, diverge towards multiple alternative states or remain in long-term transience. Yet, empirical investigations of successional trajectories are rare, especially in systems experiencing multiple concurrent anthropogenic drivers of change. We examined succession in old field grassland communities subjected to disturbance and nitrogen fertilization using data from a long-term (22-year) experiment. Regardless of initial disturbance, after a decade communities converged on steady states largely determined by resource availability, where species turnover declined as communities approached dynamic equilibria. Species favoured by the disturbance were those that eventually came to dominate the highly fertilized plots. Furthermore, disturbance made successional pathways more direct revealing an important interaction effect between nutrients and disturbance as drivers of community change. Our results underscore the dynamical nature of grassland and old field succession, demonstrating how community properties such as β $$ \beta $$ diversity change through transient and equilibrium states.
Collapse
|
7
|
Hidalgo-Triana N, Pérez-Latorre AV, Adomou AC, Rudner M, Thorne JH. Adaptations to the stressful combination of serpentine soils and Mediterranean climate drive plant functional groups and trait richness. FRONTIERS IN PLANT SCIENCE 2023; 14:1040839. [PMID: 36993858 PMCID: PMC10040603 DOI: 10.3389/fpls.2023.1040839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/15/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION Plant functional traits (FTs) are important for understanding plant ecological strategies (e.g., drought avoidance), especially in the nutrient-poor soils of serpentine ecosystems. In the Mediterranean areas, such ecosystems are characterized by climatic factors (e.g., summer drought) that exert a filtering effect. MATERIAL AND METHODS In our study, we analyzed 24 species with varying serpentine affinity, from strictly serpentine plants to generalist plants, from two ultramafic shrublands in southern Spain, considering four FTs: plant height (H), leaf area (LA), specific leaf area (SLA), and stem specific density (SSD). Additionally, we also identified the species' dominant strategies to avoid drought and those strategies' relationship to serpentine affinity. We used principal component analysis to identify combinations of FTs, and cluster analysis to define Functional Groups (FGs). RESULTS AND DISCUSSION We defined eight FGs, which suggests that such Mediterranean serpentine shrublands are composed of species with wide-ranging of FTs. Indicator traits explained 67-72% of the variability based on four strategies: (1) lower H than in other Mediterranean ecosystems; (2) middling SSD; (3) low LA; and (4) low SLA due to thick and/or dense leaves, which contribute to long leaf survival, nutrient retention, and protection from desiccation and herbivory. Generalist plants had higher SLA than obligate serpentine plants, whereas the obligate serpentine plants showed more drought avoidance mechanisms than the generalists. Although most plant species inhabiting Mediterranean serpentine ecosystems have shown similar ecological adaptations in response to the Mediterranean environment, our results suggest that serpentine obligate plant species could present greater resilience to climate change. Given greater number and more pronounced drought avoidance mechanisms in these species compared with generalists, and the high number of FGs identified, the serpentine plants have shown adaptation to severe drought.
Collapse
Affiliation(s)
| | | | | | - Michael Rudner
- Faculty of Environmental Engineering, Weihenstephan-Triesdorf University of Applied Sciences, Weidenbach, Germany
| | - James H. Thorne
- Department of Environmental Science and Policy, University of California, Davis, Davis, CA, United States
| |
Collapse
|
8
|
Identifying the potential global distribution and conservation areas for Terminalia chebula, an important medicinal tree species under changing climate scenario. Trop Ecol 2022. [DOI: 10.1007/s42965-022-00237-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Raymundo M, Pastore A, HilleRisLambers J, Mayfield MM. Annual rainfall variation and dispersal limitation combine to alter invaded plant community diversity, dominance hierarchies and seeding phenology. CLIMATE CHANGE ECOLOGY 2021. [DOI: 10.1016/j.ecochg.2021.100024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Eskelinen A, Elwood E, Harrison S, Beyen E, Gremer JR. Vulnerability of grassland seed banks to resource-enhancing global changes. Ecology 2021; 102:e03512. [PMID: 34358331 DOI: 10.1002/ecy.3512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 12/18/2022]
Abstract
Soil seed banks represent reservoirs of diversity in the soil that may increase resilience of communities to global changes. Two global change factors that can dramatically alter the composition and diversity of aboveground communities are nutrient enrichment and increased rainfall. In a full-factorial nutrient and rainfall addition experiment in an annual Californian grassland, we asked whether shifts in aboveground composition and diversity were reflected in belowground seed banks. Nutrient and rainfall additions increased exotic and decreased native abundances, while rainfall addition increased exotic richness, both in aboveground communities and seed banks. Under nutrient addition, forbs and short-statured plants were replaced by grasses and tall-statured species, both above and below ground, and whole-community responses to the treatments were similar. Structural equation models indicated that especially nutrient addition effects on seed banks were largely indirect via aboveground communities. However, rainfall addition also had a direct negative effect on native species richness and abundance of species with high specific leaf area (SLA) in seed banks, showing that seed banks are sensitive to the direct effects of temporary increases in rainfall. Our findings highlight the vulnerability of seed banks in annual, resource-poor grasslands to shifts in compositional and trait changes in aboveground communities and show how invasion of exotics and depletion of natives are critical for these above-belowground compositional shifts. Our findings suggest that seed banks have limited potential to buffer resource-poor annual grasslands from the community changes caused by resource enrichment.
Collapse
Affiliation(s)
- Anu Eskelinen
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig, 04318, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig, 04103, Germany.,Department of Ecology and Genetics, University of Oulu, P.O. Box 8000, Oulu, FI-90014, Finland
| | - Elise Elwood
- Department of Evolution and Ecology, University of California, Davis, California, 95616, USA
| | - Susan Harrison
- Department of Environmental Science and Policy, University of California, Davis, California, 95616, USA
| | - Eva Beyen
- Department of Evolution and Ecology, University of California, Davis, California, 95616, USA
| | - Jennifer R Gremer
- Department of Evolution and Ecology, University of California, Davis, California, 95616, USA
| |
Collapse
|
11
|
Nolan M, Dewees S, Ma Lucero S. Identifying effective restoration approaches to maximize plant establishment in California grasslands through a
meta‐analysis. Restor Ecol 2021. [DOI: 10.1111/rec.13370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Madeline Nolan
- Department of Ecology, Evolution, and Marine Biology University of California Santa Barbara Santa Barbara CA 93106 U.S.A
| | - Shane Dewees
- Department of Ecology, Evolution, and Marine Biology University of California Santa Barbara Santa Barbara CA 93106 U.S.A
| | - Stephanie Ma Lucero
- Department of Ecology, Evolution, and Marine Biology University of California Santa Barbara Santa Barbara CA 93106 U.S.A
| |
Collapse
|
12
|
Impacts of invasive annual grasses and their litter vary by native functional strategy. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02527-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractInvasive species may act as a functional filter on native communities by differentially affecting species with different trait values. Across environments, invasive plants typically display traits associated with high resource acquisition and fast growth. Conversely, native plants, especially those in water-limited environments, tend to adopt one of two functional strategies: fast growth during high resource availability to avoid stress (resource-acquisitive), or slow growth during resource-poor conditions to tolerate stress (resource-conservative). While invasive competition can be a strong filter on these groups, many invaders also alter the structure of native communities through their accumulation of litter. How fast-growing invaders with litter shift native functional communities remains unknown. To elucidate these functional shifts, I manipulated invasive annual grasses and their litter in an annual grassland and followed the demographic rates of six native annual forb species that varied in their functional strategy. Live grass competition alone decreased per capita growth rates of resource-acquisitive natives and had no effect on resource-conservative natives. The presence of litter, however, decreased growth rates in both functional types of natives, with stronger declines in resource-acquisitive species through differential effects on seed set and germination. Invaders in this system thus create an unfavorable environment for natives through litter, limiting the capacity of both resource-acquisitive and resource-conservative native forbs to maintain high population growth. These findings suggest that grass invasions have the potential to dramatically shift the functional composition of native communities through the time-lagged effects of their litter.
Collapse
|
13
|
Kendig AE, Spear ER, Daws SC, Flory SL, Mordecai EA. Native perennial and non-native annual grasses shape pathogen community composition and disease severity in a California grassland. THE JOURNAL OF ECOLOGY 2021; 109:900-912. [PMID: 34158675 PMCID: PMC8215988 DOI: 10.1111/1365-2745.13515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/23/2020] [Indexed: 06/13/2023]
Abstract
The densities of highly competent plant hosts (i.e. those that are susceptible to and successfully transmit a pathogen) may shape pathogen community composition and disease severity, altering disease risk and impacts. Life history and evolutionary history can influence host competence; longer lived species tend to be better defended than shorter lived species and pathogens adapt to infect species with which they have longer evolutionary histories. It is unclear, however, how the densities of species that differ in competence due to life and evolutionary histories affect plant pathogen community composition and disease severity.We examined foliar fungal pathogens of two host groups in a California grassland: native perennial and non-native annual grasses. We first characterized pathogen community composition and disease severity of the two host groups to approximate differences in competence. We then used observational and manipulated gradients of native perennial and non-native annual grass densities to assess the effects of each host group on pathogen community composition and disease severity in 1-m2 plots.Native perennial and non-native annual grasses hosted distinct pathogen communities but shared generalist pathogens. Native perennial grasses experienced 26% higher disease severity than non-native annuals. Only the observational gradient of native perennial grass density affected disease severity; there were no other significant relationships between host group density and either disease severity or pathogen community composition.Synthesis. The life and evolutionary histories of grasses likely influence their competence for different pathogen species, exemplified by distinct pathogen communities and differences in disease severity. However, there was limited evidence that the density of either host group affected pathogen community composition or disease severity. Therefore, competence for different pathogens likely shapes pathogen community composition and disease severity but may not interact with host density to alter disease risk and impacts at small scales.
Collapse
Affiliation(s)
- Amy E. Kendig
- Agronomy Department, University of Florida, Gainesville, FL, USA
| | - Erin R. Spear
- Smithsonian Tropical Research Institute, Panama City, Panama
| | | | - S. Luke Flory
- Agronomy Department, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
14
|
|
15
|
Farner JE, Spear ER, Mordecai EA. Habitat type and interannual variation shape unique fungal pathogen communities on a California native bunchgrass. FUNGAL ECOL 2021; 48. [PMID: 33408755 DOI: 10.1016/j.funeco.2020.100983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The role of infectious disease in regulating host populations is increasingly recognized, but how environmental conditions affect pathogen communities and infection levels remains poorly understood. Over 3 y, we compared foliar disease burden, fungal pathogen community composition, and foliar chemistry in the perennial bunchgrass Stipa pulchra occurring in adjacent serpentine and nonserpentine grassland habitats with distinct soil types and plant communities. We found that serpentine and nonserpentine S. pulchra experienced consistent, low disease pressure associated with distinct fungal pathogen communities with high interannual species turnover. Additionally, plant chemistry differed with habitat type. The results indicate that this species experiences minimal foliar disease associated with diverse fungal communities that are structured across landscapes by spatially and temporally variable conditions. Distinct fungal communities associated with different growing conditions may shield S. pulchra from large disease outbreaks, contributing to the low disease burden observed on this and other Mediterranean grassland species.
Collapse
Affiliation(s)
- Johannah E Farner
- Biology Department, Stanford University, Stanford, California 94305 USA
| | - Erin R Spear
- Biology Department, Stanford University, Stanford, California 94305 USA.,Smithsonian Tropical Research Institute, Panama City, Panama, Republic of Panama
| | - Erin A Mordecai
- Biology Department, Stanford University, Stanford, California 94305 USA
| |
Collapse
|
16
|
Zolotareva NV. Dynamics of Extrazonal Steppes in the Southern Urals over a 20-year Period amid Climatic Changes. RUSS J ECOL+ 2020. [DOI: 10.1134/s1067413620050148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Frameworks on Patterns of Grasslands’ Sensitivity to Forecast Extreme Drought. SUSTAINABILITY 2020. [DOI: 10.3390/su12197837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Climate models have predicted the future occurrence of extreme drought (ED). The management, conservation, or restoration of grasslands following ED requires a robust prior knowledge of the patterns and mechanisms of sensitivity—declining rate of ecosystem functions due to ED. Yet, the global-scale pattern of grasslands’ sensitivity to any ED event remains unresolved. Here, frameworks were built to predict the sensitivity patterns of above-ground net primary productivity (ANPP) spanning the global precipitation gradient under ED. The frameworks particularly present three sensitivity patterns that could manipulate (weaken, strengthen, or erode) the orthodox positive precipitation–productivity relationship which exists under non-drought (ambient) condition. First, the slope of the relationship could become steeper via higher sensitivity at xeric sites than mesic and hydric ones. Second, if the sensitivity emerges highest in hydric, followed by mesic, then xeric, a weakened slope, flat line, or negative slope would emerge. Lastly, if the sensitivity emerges unexpectedly similar across the precipitation gradient, the slope of the relationship would remain similar to that of the ambient condition. Overall, the frameworks provide background knowledge on possible differences or similarities in responses of grasslands to forecast ED, and could stimulate increase in conduct of experiments to unravel the impacts of ED on grasslands. More importantly, the frameworks indicate the need for reconciliation of conflicting hypotheses of grasslands’ sensitivity to ED through global-scale experiments.
Collapse
|
18
|
Luzuriaga AL, Ferrandis P, Flores J, Escudero A. Effect of aridity on species assembly in gypsum drylands: a response mediated by the soil affinity of species. AOB PLANTS 2020; 12:plaa020. [PMID: 32547722 PMCID: PMC7288742 DOI: 10.1093/aobpla/plaa020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Previous studies found that plant communities on infertile soils are relatively resistant to climatic variation due to stress tolerance adaptations. However, the species assemblies in gypsum soil habitats require further investigation. Thus, we considered the following questions. (1) Do harsher arid conditions determine the characteristics of the species that form plant assemblages? (2) Is the selection of the species that assemble in arid conditions mediated by their ability to grow on gypsum soils? (3) Is the selection of species that assemble in harsher conditions related to phylogenetically conserved functional traits? Perennial plant communities were analysed in 89 gypsum-soil sites along a 400 km climate gradient from the central to southeastern Iberian Peninsula. Each local assemblage was analysed in 30 × 30 m plots and described based on taxonomic, functional (soil plant affinity) and phylogenetic parameters. The mean maximum temperatures in the hottest month, mean annual precipitation and their interaction terms were used as surrogates for the aridity conditions in generalized linear models. In the hottest locations, the gypsophily range narrowed and the mean gypsophily increased at the community level, thereby suggesting the filtering of species and the dominance of soil specialists in the actual plant assemblies. Drier sites had higher taxonomic diversity. The species that formed the perennial communities were close in evolutionary terms at the two ends of the aridity gradient. The mean maximum temperatures in the hottest month had the main abiotic filtering effect on perennial plant communities, which was mediated by the ability of species to grow on gypsum soils, and thus gypsum specialists dominated the species assemblies in the hottest locations. In contrast, the perennial communities on gypsum soils were relatively resistant to changes in precipitation. Our findings suggest that the warmer environmental conditions predicted by global change models will favour gypsum specialists over generalists.
Collapse
Affiliation(s)
- Arantzazu L Luzuriaga
- Department of Biology and Geology, Rey Juan Carlos University, Móstoles, Madrid, Spain
| | - Pablo Ferrandis
- Botanic Institute of UCLM, Botanic Garden of Castilla-La Mancha, Avda. de La Mancha, Albacete, Spain
| | - Joel Flores
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, México
| | - Adrián Escudero
- Department of Biology and Geology, Rey Juan Carlos University, Móstoles, Madrid, Spain
| |
Collapse
|
19
|
Pearse IS, Aguilar JM, Strauss SY. Life-History Plasticity and Water-Use Trade-Offs Associated with Drought Resistance in a Clade of California Jewelflowers. Am Nat 2020; 195:691-704. [PMID: 32216663 DOI: 10.1086/707371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Water limitation is a primary driver of plant geographic distributions and individual plant fitness. Drought resistance is the ability to survive and reproduce despite limited water, and numerous studies have explored its physiological basis in plants. However, it is unclear how drought resistance and trade-offs associated with drought resistance evolve within plant clades. We quantified the relationship between water availability and fitness for 13 short-lived plant taxa in the Streptanthus clade that vary in their phenology and the availability of water in the environments where they occur. We derived two parameters from these relationships: plant fitness when water is not limiting and the water inflection point (WIF), the watering level at which additional water is most efficiently turned into fitness. We used phylogenetic comparative methods to explore trade-offs related to drought resistance and trait plasticity and the degree to which water relationship parameters are conserved. Taxa from drier climates produced fruits at the lowest water levels, had a lower WIF, flowered earlier, had shorter life spans, had greater plastic water-use efficiency (WUE), and had lower fitness at nonlimiting water. In contrast, later-flowering Streptanthus taxa from less xeric climates experienced high fitness at nonlimiting water but had no fitness at the lowest water levels. Across the clade, we found a trade-off between drought resistance and fitness at high water, though a single ruderal species was an outlier in this relationship. Our results suggest that drought escape trades off with maximal fitness under nonlimiting water, and both are tied to phenology. We also found that variation in trait plasticity determines how different plant species produce fitness over a water gradient.
Collapse
|
20
|
Abstract
Climate strongly shapes plant diversity over large spatial scales, with relatively warm and wet (benign, productive) regions supporting greater numbers of species. Unresolved aspects of this relationship include what causes it, whether it permeates to community diversity at smaller spatial scales, whether it is accompanied by patterns in functional and phylogenetic diversity as some hypotheses predict, and whether it is paralleled by climate-driven changes in diversity over time. Here, studies of Californian plants are reviewed and new analyses are conducted to synthesize climate-diversity relationships in space and time. Across spatial scales and organizational levels, plant diversity is maximized in more productive (wetter) climates, and these consistent spatial relationships are mirrored in losses of taxonomic, functional, and phylogenetic diversity over time during a recent climatic drying trend. These results support the tolerance and climatic niche conservatism hypotheses for climate-diversity relationships, and suggest there is some predictability to future changes in diversity in water-limited climates.
Collapse
|
21
|
Jia Y, Shi Z, Chen Z, Walder F, Tian C, Feng G. Soil moisture threshold in controlling above- and belowground community stability in a temperate desert of Central Asia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134650. [PMID: 31731166 DOI: 10.1016/j.scitotenv.2019.134650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Terrestrial ecosystems are composed of above- and belowground community, which have been researched separately for many years even though the two subsystems clearly interact with each other. And it is still less understood how the above- and belowground ecosystems co-response to the changing precipitation in this changing world. To understand the interdependence and co-responses of plant-arbuscular mycorrhizal (AM) fungi symbioses to this facet of climate change, we examined the plant and AM fungal diversity and abundance along both, a transect from east to west of the desert which exhibits an annual precipitation gradient and a topographical transect of a typical sand dune which exhibits a gradient of soil moisture but equal precipitation, in a temperate desert in Central Asia. The results showed that community structure and biomass of plants and AM fungi along both transects were positively correlated and related to either precipitation or soil moisture, strongly support the Habitat Hypothesis. We found a soil moisture threshold between 0.64% and 0.86%, below which the variability of plant coverage, plant species richness, spore density and Shannon-wiener diversity index of both plant and AM fungal communities increased sharply yielding in an average threshold of 0.73% for the stability of plant-AMF symbioses. Our results highlight that increasing precipitation contributes to above- and belowground, and particularly to the overall AM-symbiotic stability in a desert ecosystem. This emphasizes the susceptibility and the importance plant-AMF symbioses for ecosystem stability to climate changes across different scales.
Collapse
Affiliation(s)
- Yangyang Jia
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zhaoyong Shi
- College of Agriculture, Henan University of Science and Technology, Luoyang 471003, China
| | - Zhichao Chen
- Henan Polytechnic University, Jiaozuo 454003, China
| | - Florian Walder
- Plant-Soil-Interactions, Research Division Agroecology and Environment, Agroscope, Zurich 8046, Switzerland
| | - Changyan Tian
- Xinjiang Institute Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Gu Feng
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
22
|
Corlett RT, Tomlinson KW. Climate Change and Edaphic Specialists: Irresistible Force Meets Immovable Object? Trends Ecol Evol 2020; 35:367-376. [PMID: 31959419 DOI: 10.1016/j.tree.2019.12.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022]
Abstract
Species exposed to anthropogenic climate change can acclimate, adapt, move, or be extirpated. It is often assumed that movement will be the dominant response, with populations tracking their climate envelopes in space, but the numerous species restricted to specialized substrates cannot easily move. In warmer regions of the world, such edaphic specialists appear to have accumulated in situ over millions of years, persisting despite climate change by local movements, plastic responses, and genetic adaptation. However, past climates were usually cooler than today and rates of warming slower, while edaphic islands are now exposed to multiple additional threats, including mining. Modeling studies that ignore edaphic constraints on climate change responses may therefore give misleading results for a significant proportion of all taxa.
Collapse
Affiliation(s)
- Richard T Corlett
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan 666303, China.
| | - Kyle W Tomlinson
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| |
Collapse
|
23
|
Molinari NA, D’Antonio CM. Where have all the wildflowers gone? The role of exotic grass thatch. Biol Invasions 2019. [DOI: 10.1007/s10530-019-02135-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Carr AN, Hooper DU, Dukes JS. Long‐term propagule pressure overwhelms initial community determination of invader success. Ecosphere 2019. [DOI: 10.1002/ecs2.2826] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Amanda N. Carr
- Biology Department Western Washington University Bellingham Washington 98225 USA
| | - David U. Hooper
- Biology Department Western Washington University Bellingham Washington 98225 USA
| | - Jeffrey S. Dukes
- Department of Forestry and Natural Resources Department of Biological Sciences Purdue Climate Change Research Center Purdue University West Lafayette Indiana 47907 USA
| |
Collapse
|
25
|
Sianta SA, Kay KM. Adaptation and divergence in edaphic specialists and generalists: serpentine soil endemics in the California flora occur in barer serpentine habitats with lower soil calcium levels than serpentine tolerators. AMERICAN JOURNAL OF BOTANY 2019; 106:690-703. [PMID: 31070790 DOI: 10.1002/ajb2.1285] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
PREMISE Adaptation to harsh edaphic substrates has repeatedly led to the evolution of edaphic specialists and generalists. Yet, it is unclear what factors promote specialization versus generalization. Here, we search for habitat use patterns associated with serpentine endemics (specialists) and serpentine tolerators (generalists) to indirectly test the hypothesis that trade-offs associated with serpentine adaptation promote specialization. We predict that (1) endemics have adapted to chemically harsher and more bare serpentine habitats than tolerators, and (2) edaphic endemics show more habitat divergence from their sister species than tolerators do among on- and off-serpentine populations. METHODS We selected 8 serpentine endemic and 9 serpentine tolerator species representing independent adaptation to serpentine. We characterized soil chemistry and microhabitat bareness from one serpentine taxon of each species and from a paired nonserpentine sister taxon, resulting in 8 endemic and 9 tolerator sister-taxa pairs. RESULTS We find endemic serpentine taxa occur in serpentine habitats averaging twice as much bare ground as tolerator serpentine taxa and 25% less soil calcium, a limiting macronutrient in serpentine soils. We do not find strong evidence that habitat divergence between sister taxa of endemic pairs is greater than between sister taxa of tolerator pairs. CONCLUSIONS These results suggest serpentine endemism is associated with adaptation to chemically harsher and more bare serpentine habitats. It may be that this adaptation trades off with competitive ability, which would support the longstanding, but rarely tested, competitive trade-off hypothesis.
Collapse
Affiliation(s)
- Shelley A Sianta
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California
| | - Kathleen M Kay
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California
| |
Collapse
|
26
|
Harrison SP, LaForgia ML, Latimer AM. Climate-driven diversity change in annual grasslands: Drought plus deluge does not equal normal. GLOBAL CHANGE BIOLOGY 2018; 24:1782-1792. [PMID: 29244898 DOI: 10.1111/gcb.14018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/07/2017] [Accepted: 12/07/2017] [Indexed: 06/07/2023]
Abstract
Climate forecasts agree that increased variability and extremes will tend to reduce the availability of water in many terrestrial ecosystems. Increasingly severe droughts may be exacerbated both by warmer temperatures and by the relative unavailability of water that arrives in more sporadic and intense rainfall events. Using long-term data and an experimental water manipulation, we examined the resilience of a heterogeneous annual grassland community to a prolonged series of dry winters that led to a decline in plant species richness (2000-2014), followed by a near-record wet winter (2016-2017), a climatic sequence that broadly resembles the predicted future in its high variability. In our 80, 5-m2 observational plots, species richness did not recover in response to the wet winter, and the positive relationship of richness to annual winter rainfall thus showed a significant weakening trend over the 18-year time period. In experiments on 100, 1-m2 plots, wintertime water supplementation increased and drought shelters decreased the seedling survival and final individual biomass of native annual forbs, the main functional group contributing to the observed long-term decline in richness. Water supplementation also increased the total cover of native annual forbs, but only increased richness within nested subplots to which seeds were also added. We conclude that prolonged dry winters, by increasing seedling mortality and reducing growth of native forbs, may have diminished the seedbank and thus the recovery potential of diversity in this community. However, the wet winter and the watering treatment did cause recovery of the community mean values of a key functional trait (specific leaf area, an indicator of drought intolerance), suggesting that some aggregate community properties may be stabilized by functional redundancy among species.
Collapse
Affiliation(s)
- Susan P Harrison
- Department of Environmental Science and Policy, University of California, Davis, CA, USA
| | - Marina L LaForgia
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Andrew M Latimer
- Department of Plant Sciences, University of California, Davis, CA, USA
| |
Collapse
|
27
|
LaForgia ML, Spasojevic MJ, Case EJ, Latimer AM, Harrison SP. Seed banks of native forbs, but not exotic grasses, increase during extreme drought. Ecology 2018; 99:896-903. [PMID: 29494753 DOI: 10.1002/ecy.2160] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/23/2017] [Accepted: 01/08/2018] [Indexed: 11/06/2022]
Abstract
Extreme droughts such as the one that affected California in 2012-2015 have been linked to severe ecological consequences in perennial-dominated communities such as forests. In annual communities, drought impacts are difficult to assess because many species persist through facultative multiyear seed dormancy, which leads to the development of seed banks. Impacts of extreme drought on the abundance and composition of the seed banks of whole communities are little known. In 80 heterogeneous grassland plots where cover is dominated by ~15 species of exotic annual grasses and diversity is dominated by ~70 species of native annual forbs, we grew out seeds from soil cores collected early in the California drought (2012) and later in the multiyear drought (2014), and analyzed drought-associated changes in the seed bank. Over the course of the study we identified more than 22,000 seedlings to species. We found that seeds of exotic annual grasses declined sharply in abundance during the drought while seeds of native annual forbs increased, a pattern that resembled but was even stronger than the changes in aboveground cover of these groups. Consistent with the expectation that low specific leaf area (SLA) is an indicator of drought tolerance, we found that the community-weighted mean SLA of annual forbs declined both in the seed bank and in the aboveground community, as low-SLA forbs increased disproportionately. In this system, seed dormancy reinforces the indirect benefits of extreme drought to the native forb community.
Collapse
Affiliation(s)
- Marina L LaForgia
- Department of Plant Sciences, University of California, One Shields Ave, Davis, California, 95616, USA
| | - Marko J Spasojevic
- Department of Evolution, Ecology, and Organismal Biology, University of California, 900 University Ave, Riverside, California, 92521, USA
| | - Erica J Case
- Department of Land, Air and Water Resources, University of California, One Shields Ave, Davis, California, 95616, USA
| | - Andrew M Latimer
- Department of Plant Sciences, University of California, One Shields Ave, Davis, California, 95616, USA
| | - Susan P Harrison
- Department of Environmental Science and Policy, University of California, 900 University Ave, Davis, California, 92521, USA
| |
Collapse
|
28
|
Hidalgo-Triana N, Pérez Latorre AV, Thorne JH. Plant functional traits and groups in a Californian serpentine chaparral. Ecol Res 2017. [DOI: 10.1007/s11284-017-1532-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Kimball S, Funk JL, Spasojevic MJ, Suding KN, Parker S, Goulden ML. Can functional traits predict plant community response to global change? Ecosphere 2016. [DOI: 10.1002/ecs2.1602] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Sarah Kimball
- Center for Environmental Biology University of California Irvine California 92697 USA
| | - Jennifer L. Funk
- School of Earth and Environmental Sciences Chapman University Orange California 92866 USA
| | - Marko J. Spasojevic
- Department of Biology and Tyson Research Center Washington University in St. Louis St. Louis Missouri 63130 USA
| | - Katharine N. Suding
- Department of Ecology and Evolutionary Biology University of Colorado Boulder Colorado 80303 USA
| | - Scot Parker
- Department of Earth System Science University of California Irvine California 92697 USA
| | - Michael L. Goulden
- Department of Earth System Science University of California Irvine California 92697 USA
| |
Collapse
|
30
|
Li S, Wu J. Community assembly and functional leaf traits mediate precipitation use efficiency of alpine grasslands along environmental gradients on the Tibetan Plateau. PeerJ 2016; 4:e2680. [PMID: 27843716 PMCID: PMC5103816 DOI: 10.7717/peerj.2680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 10/13/2016] [Indexed: 11/20/2022] Open
Abstract
The alpine grasslands on the Tibetan Plateau are sensitive and vulnerable to climate change. However, it is still unknown how precipitation use efficiency (PUE), the ratio of aboveground net primary productivity (ANPP) to precipitation, is related to community assembly of plant species, functional groups or traits for the Tibetan alpine grasslands along actual environmental gradients. We conducted a multi-site field survey at grazing-excluded pastures across meadow, steppe and desert-steppe to measure aboveground biomass (AGB) in August, 2010. We used species richness (SR), the Shannon diversity index, and cover-weighted functional group composition (FGC) of 1-xerophytes, 2-mesophytes, and 3-hygrophytes to describe community assembly at the species level; and chose community-level leaf area index (LAIc), specific leaf area (SLAc), and species-mixed foliar δ13C to quantify community assembly at the functional trait level. Our results showed that PUE decreased with increasing accumulated active temperatures (AccT) when daily temperature average is higher than 5 °C, but increased with increasing climatic moisture index (CMI), which was demined as the ratio of growing season precipitation (GSP) to AccT. We also found that PUE increased with increasing SR, the Shannon diversity index, FGC and LAIc, decreased with increasing foliar δ13C, and had no relation with SLAc at the regional scale. Neither soil total nitrogen (STN) nor organic carbon has no influence on PUE at the regional scale. The community assembly of the Shannon index, LAIc and SLAc together accounted for 46.3% of variance in PUE, whilst CMI accounted for 47.9% of variance in PUE at the regional scale. This implies that community structural properties and plant functional traits can mediate the sensitivity of alpine grassland productivity in response to climate change. Thus, a long-term observation on community structural and functional changes is recommended for better understanding the response of alpine ecosystems to regional climate change on the Tibetan Plateau.
Collapse
Affiliation(s)
- Shaowei Li
- Lhasa National Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences , Beijing , China
| | - Jianshuang Wu
- Lhasa National Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; Functional Biodiversity, Dahlem Center of Plant Sciences, Free University of Berlin, Berlin, Germany
| |
Collapse
|
31
|
Copeland SM, Harrison SP. Shading and litter mediate the effects of soil fertility on the performance of an understorey herb. ANNALS OF BOTANY 2016; 118:1187-1198. [PMID: 27604279 PMCID: PMC5091728 DOI: 10.1093/aob/mcw172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 05/13/2016] [Accepted: 06/07/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND AND AIMS Soil fertility and topographic microclimate are common determinants of plant species distributions. However, biotic conditions also vary along these abiotic gradients, and may mediate their effects on plants. In this study, we investigated whether soils and topographic microclimate acted directly on the performance of a focal understorey plant, or indirectly via changing biotic conditions. METHODS We examined direct and indirect relationships between abiotic variables (soil fertility and topographic microclimate) and biotic factors (overstorey and understorey cover, litter depth and mycorrhizal colonization) and the occurrence, density and flowering of a common understorey herb, Trientalis latifolia, in the Klamath-Siskiyou Mountains, Oregon, USA. RESULTS We found that the positive effects of soil fertility on Trientalis occurrence were mediated by greater overstorey shading and deeper litter. However, we did not find any effects of topographic microclimate on Trientalis distribution that were mediated by the biotic variables we measured. The predictive success of Trientalis species distribution models with soils and topographic microclimate increased by 12 % with the addition of the biotic variables. CONCLUSIONS Our results reinforce the idea that species distributions are the outcome of interrelated abiotic gradients and biotic interactions, and suggest that biotic conditions, such as overstorey density, should be included in species distribution models if data are available.
Collapse
Affiliation(s)
- Stella M Copeland
- Environmental Science and Policy, University of California, Davis, CA, USA
| | - Susan P Harrison
- Environmental Science and Policy, University of California, Davis, CA, USA
| |
Collapse
|
32
|
Copeland SM, Harrison SP, Latimer AM, Damschen EI, Eskelinen AM, Fernandez‐Going B, Spasojevic MJ, Anacker BL, Thorne JH. Ecological effects of extreme drought on Californian herbaceous plant communities. ECOL MONOGR 2016. [DOI: 10.1002/ecm.1218] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Stella M. Copeland
- Department of Environmental Science and Policy University of California DavisCalifornia 95616USA
| | - Susan P. Harrison
- Department of Environmental Science and Policy University of California DavisCalifornia 95616USA
| | - Andrew M. Latimer
- Department of Plant Sciences University of California DavisCalifornia 95616USA
| | - Ellen I. Damschen
- Department of Zoology University of Wisconsin MadisonWisconsin 53706USA
| | - Anu M. Eskelinen
- Department of Environmental Science and Policy University of California DavisCalifornia 95616USA
- Department of Ecology University of Oulu Oulu Finland
- Department of Physiological Diversity Helmholtz Center for Environmental Research – UFZ German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Deutscher Platz 5e D‐04103 Leipzig Germany
| | - Barbara Fernandez‐Going
- Department of Ecology, Evolution, and Marine Biology University of California Santa BarbaraCalifornia 93106USA
| | - Marko J. Spasojevic
- Department of Biology and Tyson Research Center Washington University in St. Louis St. Louis, Missouri USA
| | - Brian L. Anacker
- Open Space and Mountain Parks Department, City of Boulder BoulderColorado 80303USA
| | - James H. Thorne
- Department of Environmental Science and Policy University of California DavisCalifornia 95616USA
| |
Collapse
|
33
|
Lacher I, Schwartz MW. Empirical test on the relative climatic sensitivity between individuals of narrowly and broadly distributed species. Ecosphere 2016. [DOI: 10.1002/ecs2.1227] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Iara Lacher
- Department of Environmental Science and PolicyUniversity of California, DavisDavisCalifornia95616USA
| | - Mark W. Schwartz
- Department of Environmental Science and PolicyUniversity of California, DavisDavisCalifornia95616USA
- John Muir Institute of the EnvironmentUniversity of California, DavisDavisCalifornia95616USA
| |
Collapse
|
34
|
Jonas JL, Buhl DA, Symstad AJ. Impacts of weather on long-term patterns of plant richness and diversity vary with location and management. Ecology 2015; 96:2417-32. [PMID: 26594699 DOI: 10.1890/14-1989.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Better understanding the influence of precipitation and temperature on plant assemblages is needed to predict the effects of climate change. Many studies have examined the relationship between plant productivity and weather (primarily precipitation), but few have directly assessed the relationship between plant richness or diversity and weather despite their increased use as metrics of ecosystem condition. We focus on the grasslands of central North America, which are characterized by high temporal climatic variability. Over the next 100 years, these grasslands are predicted to experience further increased variability in growing season precipitation, as well as increased temperatures, due to global climate change. We assess the portion of interannual variability of richness and diversity explained by weather, how relationships between these metrics and weather vary among plant assemblages, and which aspects of weather best explain temporal variability. We used an information-theoretic approach to assess relationships between long-term plant richness and diversity patterns and a priori weather covariates using six data sets from four grasslands. Weather explained up to 49% and 63% of interannual variability in total plant species richness and diversity, respectively. However, richness and diversity responses to specific weather variables varied both among sites and among experimental treatments within sites. In general, we found many instances in which temperature was of equal or greater importance as precipitation, as well as evidence of the importance of lagged effects and precipitation or temperature variability. Although precipitation has been shown to be a key driver of productivity in grasslands, our results indicate that increasing temperatures alone, without substantial changes in precipitation patterns, could have measurable effects on Great Plains grassland plant assemblages and biodiversity metrics. Our results also suggest that richness and diversity will respond in unique ways to changing climate and management can affect these responses; additional research and monitoring will be essential for further understanding of these complex relationships.
Collapse
|
35
|
Case EJ, Harrison S, Cornell HV. After an invasion: understanding variation in grassland community recovery following removal of a high-impact invader. Biol Invasions 2015. [DOI: 10.1007/s10530-015-1009-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Eskelinen A, Harrison S. Biotic context and soil properties modulate native plant responses to enhanced rainfall. ANNALS OF BOTANY 2015; 116:963-73. [PMID: 26159934 PMCID: PMC4640127 DOI: 10.1093/aob/mcv109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/29/2015] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND AIMS The environmental and biotic context within which plants grow have a great potential to modify responses to climatic changes, yet few studies have addressed both the direct effects of climate and the modulating roles played by variation in the biotic (e.g. competitors) and abiotic (e.g. soils) environment. METHODS In a grassland with highly heterogeneous soils and community composition, small seedlings of two native plants, Lasthenia californica and Calycadenia pauciflora, were transplanted into factorially watered and fertilized plots. Measurements were made to test how the effect of climatic variability (mimicked by the watering treatment) on the survival, growth and seed production of these species was modulated by above-ground competition and by edaphic variables. KEY RESULTS Increased competition outweighed the direct positive impacts of enhanced rainfall on most fitness measures for both species, resulting in no net effect of enhanced rainfall. Both species benefitted from enhanced rainfall when the absence of competitors was accompanied by high soil water retention capacity. Fertilization did not amplify the watering effects; rather, plants benefitted from enhanced rainfall or competitor removal only in ambient nutrient conditions with high soil water retention capacity. CONCLUSIONS The findings show that the direct effects of climatic variability on plant fitness may be reversed or neutralized by competition and, in addition, may be strongly modulated by soil variation. Specifically, coarse soil texture was identified as a factor that may limit plant responsiveness to altered water availability. These results highlight the importance of considering the abiotic as well as biotic context when making future climate change forecasts.
Collapse
Affiliation(s)
- Anu Eskelinen
- Department of Environmental Science and Policy, University of California Davis, One Shields Avenue, Davis, CA 95616, USA and Department of Biology, University of Oulu, PO Box 3000, FI-90014 University of Oulu, Finland
| | - Susan Harrison
- Department of Environmental Science and Policy, University of California Davis, One Shields Avenue, Davis, CA 95616, USA and
| |
Collapse
|
37
|
Harrison S, Damschen E, Fernandez-Going B, Eskelinen A, Copeland S. Plant communities on infertile soils are less sensitive to climate change. ANNALS OF BOTANY 2015; 116:1017-22. [PMID: 25452247 PMCID: PMC4640116 DOI: 10.1093/aob/mcu230] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/01/2014] [Accepted: 10/02/2014] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND AIMS Much evidence suggests that plant communities on infertile soils are relatively insensitive to increased water deficit caused by increasing temperature and/or decreasing precipitation. However, a multi-decadal study of community change in the western USA does not support this conclusion. This paper tests explanations related to macroclimatic differences, overstorey effects on microclimate, variation in soil texture and plant functional traits. METHODS A re-analysis was undertaken of the changes in the multi-decadal study, which concerned forest understorey communities on infertile (serpentine) and fertile soils in an aridifying climate (southern Oregan) from 1949-1951 to 2007-2008. Macroclimatic variables, overstorey cover and soil texture were used as new covariates. As an alternative measure of climate-related change, the community mean value of specific leaf area was used, a functional trait measuring drought tolerance. We investigated whether these revised analyses supported the prediction of lesser sensitivity to climate change in understorey communities on infertile serpentine soils. KEY RESULTS Overstorey cover, but not macroclimate or soil texture, was a significant covariate of community change over time. It strongly buffered understorey temperatures, was correlated with less change and averaged >50 % lower on serpentine soils, thereby counteracting the lower climate sensitivity of understorey herbs on these soils. Community mean specific leaf area showed the predicted pattern of less change over time in serpentine than non-serpentine communities. CONCLUSIONS Based on the current balance of evidence, plant communities on infertile serpentine soils are less sensitive to changes in the climatic water balance than communities on more fertile soils. However, this advantage may in some cases be lessened by their sparser overstorey cover.
Collapse
Affiliation(s)
- Susan Harrison
- Department of Environmental Science and Policy, University of California-Davis, Davis, CA 95616, USA,
| | - Ellen Damschen
- Department of Zoology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Barbara Fernandez-Going
- Wildland Resources Department, Utah State University, 5230 Old Main Hill, Logan, UT 84322-5230, USA and
| | - Anu Eskelinen
- Department of Biology, University of Oulu, PO Box 3000, FI-90014 University of Oulu, Finland
| | - Stella Copeland
- Department of Environmental Science and Policy, University of California-Davis, Davis, CA 95616, USA
| |
Collapse
|
38
|
Eskelinen A, Harrison SP. Resource colimitation governs plant community responses to altered precipitation. Proc Natl Acad Sci U S A 2015; 112:13009-14. [PMID: 26438856 PMCID: PMC4620885 DOI: 10.1073/pnas.1508170112] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ecological theory and evidence suggest that plant community biomass and composition may often be jointly controlled by climatic water availability and soil nutrient supply. To the extent that such colimitation operates, alterations in water availability caused by climatic change may have relatively little effect on plant communities on nutrient-poor soils. We tested this prediction with a 5-y rainfall and nutrient manipulation in a semiarid annual grassland system with highly heterogeneous soil nutrient supplies. On nutrient-poor soils, rainfall addition alone had little impact, but rainfall and nutrient addition synergized to cause large increases in biomass, declines in diversity, and near-complete species turnover. Plant species with resource-conservative functional traits (low specific leaf area, short stature) were replaced by species with resource-acquisitive functional traits (high specific leaf area, tall stature). On nutrient-rich soils, in contrast, rainfall addition alone caused substantial increases in biomass, whereas fertilization had little effect. Our results highlight that multiple resource limitation is a critical aspect when predicting the relative vulnerability of natural communities to climatically induced compositional change and diversity loss.
Collapse
Affiliation(s)
- Anu Eskelinen
- Department of Environmental Science and Policy, University of California, Davis, CA 95616; Department of Ecology, University of Oulu, 90014 Oulu, Finland;
| | - Susan P Harrison
- Department of Environmental Science and Policy, University of California, Davis, CA 95616
| |
Collapse
|
39
|
Stahlheber KA, Crispin KL, Anton C, D'Antonio CM. The ghosts of trees past: savanna trees create enduring legacies in plant species composition. Ecology 2015; 96:2510-22. [DOI: 10.1890/14-2035.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
40
|
Spotswood EN, Bartolome JW, Allen-Diaz B. Hotspots of Community Change: Temporal Dynamics Are Spatially Variable in Understory Plant Composition of a California Oak Woodland. PLoS One 2015. [PMID: 26222069 PMCID: PMC4519272 DOI: 10.1371/journal.pone.0133501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Community response to external drivers such climate and disturbance can lead to fluctuations in community composition, or to directional change. Temporal dynamics can be influenced by a combination of drivers operating at multiple spatial scales, including external landscape scale drivers, local abiotic conditions, and local species pools. We hypothesized that spatial variation in these factors can create heterogeneity in temporal dynamics within landscapes. We used understory plant species composition from an 11 year dataset from a California oak woodland to compare plots where disturbance was experimentally manipulated with the removal of livestock grazing and a prescribed burn. We quantified three properties of temporal variation: compositional change (reflecting the appearance and disappearance of species), temporal fluctuation, and directional change. Directional change was related most strongly to disturbance type, and was highest at plots where grazing was removed during the study. Temporal fluctuations, compositional change, and directional change were all related to intrinsic abiotic factors, suggesting that some locations are more responsive to external drivers than others. Temporal fluctuations and compositional change were linked to local functional composition, indicating that environmental filters can create subsets of the local species pool that do not respond in the same way to external drivers. Temporal dynamics are often assumed to be relatively static at the landscape scale, provided disturbance and climate are continuous. This study shows that local and landscape scale factors jointly influence temporal dynamics creating hotspots that are particularly responsive to climate and disturbance. Thus, adequate predictions of response to disturbance or to changing climate will only be achieved by considering how factors at multiple spatial scales influence community resilience and recovery.
Collapse
Affiliation(s)
- Erica N. Spotswood
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, United States of America
- * E-mail:
| | - James W. Bartolome
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, United States of America
| | - Barbara Allen-Diaz
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, United States of America
- Department of Agriculture and Natural Resources, University of California, Oakland, California, United States of America
| |
Collapse
|
41
|
Harrison SP, Gornish ES, Copeland S. Climate-driven diversity loss in a grassland community. Proc Natl Acad Sci U S A 2015; 112:8672-7. [PMID: 26100891 PMCID: PMC4507231 DOI: 10.1073/pnas.1502074112] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Local ecological communities represent the scale at which species coexist and share resources, and at which diversity has been experimentally shown to underlie stability, productivity, invasion resistance, and other desirable community properties. Globally, community diversity shows a mixture of increases and decreases over recent decades, and these changes have relatively seldom been linked to climatic trends. In a heterogeneous California grassland, we documented declining plant diversity from 2000 to 2014 at both the local community (5 m(2)) and landscape (27 km(2)) scales, across multiple functional groups and soil environments. Communities became particularly poorer in native annual forbs, which are present as small seedlings in midwinter; within native annual forbs, community composition changed toward lower representation of species with a trait indicating drought intolerance (high specific leaf area). Time series models linked diversity decline to the significant decrease in midwinter precipitation. Livestock grazing history, fire, succession, N deposition, and increases in exotic species could be ruled out as contributing causes. This finding is among the first demonstrations to our knowledge of climate-driven directional loss of species diversity in ecological communities in a natural (nonexperimental) setting. Such diversity losses, which may also foreshadow larger-scale extinctions, may be especially likely in semiarid regions that are undergoing climatic trends toward higher aridity and lower productivity.
Collapse
Affiliation(s)
- Susan P Harrison
- Department of Environmental Science and Policy, University of California, Davis, CA 95616;
| | - Elise S Gornish
- Department of Plant Sciences, University of California, Davis, CA 95616
| | - Stella Copeland
- Department of Environmental Science and Policy, University of California, Davis, CA 95616
| |
Collapse
|
42
|
Effects of climate change on plant population growth rate and community composition change. PLoS One 2015; 10:e0126228. [PMID: 26039073 PMCID: PMC4454569 DOI: 10.1371/journal.pone.0126228] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/31/2015] [Indexed: 11/25/2022] Open
Abstract
The impacts of climate change on forest community composition are still not well known. Although directional trends in climate change and community composition change were reported in recent years, further quantitative analyses are urgently needed. Previous studies focused on measuring population growth rates in a single time period, neglecting the development of the populations. Here we aimed to compose a method for calculating the community composition change, and to testify the impacts of climate change on community composition change within a relatively short period (several decades) based on long-term monitoring data from two plots—Dinghushan Biosphere Reserve, China (DBR) and Barro Colorado Island, Panama (BCI)—that are located in tropical and subtropical regions. We proposed a relatively more concise index, Slnλ, which refers to an overall population growth rate based on the dominant species in a community. The results indicated that the population growth rate of a majority of populations has decreased over the past few decades. This decrease was mainly caused by population development. The increasing temperature had a positive effect on population growth rates and community change rates. Our results promote understanding and explaining variations in population growth rates and community composition rates, and are helpful to predict population dynamics and population responses to climate change.
Collapse
|
43
|
Spasojevic MJ, Yablon EA, Oberle B, Myers JA. Ontogenetic trait variation influences tree community assembly across environmental gradients. Ecosphere 2014. [DOI: 10.1890/es14-000159.1] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
44
|
Eskelinen A, Harrison S. Exotic plant invasions under enhanced rainfall are constrained by soil nutrients and competition. Ecology 2014; 95:682-92. [PMID: 24804452 DOI: 10.1890/13-0288.1] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To predict the net impact of climate change on invasions, it is critical to understand how its effects interact with environmental and biotic context. In a factorial field experiment, we examined how increased late-season rainfall influences the growth and reproductive success of two widespread invasive species (Centaurea solstitialis and Aegilops triuncialis) in heterogeneous Californian grasslands, and, in particular, how its impact depends on habitat type, nutrient addition, and competition with resident species. Rainfall enhancement alone exhibited only weak effects, especially in naturally infertile and relatively uninvaded grasslands. In contrast, watering and fertilization together exhibited highly synergistic effects on both invasive species. However, the benefits of the combined treatment were greatly reduced or offset by the presence of surrounding competitors. Our results highlight the roles of nutrient limitation and biotic resistance by resident competitors in constraining the responses of invasive species to changes in rainfall. In systems with strong environmental control by precipitation, enhanced rainfall may promote invasions mainly under nutrient-rich and disturbed conditions, while having lesser effects on nutrient-poor, native "refuges".
Collapse
|
45
|
Adamidis GC, Kazakou E, Fyllas NM, Dimitrakopoulos PG. Species adaptive strategies and leaf economic relationships across serpentine and non-serpentine habitats on Lesbos, eastern Mediterranean. PLoS One 2014; 9:e96034. [PMID: 24800835 PMCID: PMC4011732 DOI: 10.1371/journal.pone.0096034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 04/02/2014] [Indexed: 11/21/2022] Open
Abstract
Shifts in species' traits across contrasting environments have the potential to influence ecosystem functioning. Plant communities on unusually harsh soils may have unique responses to environmental change, through the mediating role of functional plant traits. We conducted a field study comparing eight functional leaf traits of seventeen common species located on both serpentine and non-serpentine environments on Lesbos Island, in the eastern Mediterranean. We focused on species' adaptive strategies across the two contrasting environments and investigated the effect of trait variation on the robustness of core 'leaf economic' relationships across local environmental variability. Our results showed that the same species followed a conservative strategy on serpentine substrates and an exploitative strategy on non-serpentine ones, consistent with the leaf economic spectrum predictions. Although considerable species-specific trait variability emerged, the single-trait responses across contrasting environments were generally consistent. However, multivariate-trait responses were diverse. Finally, we found that the strength of relationships between core 'leaf economic' traits altered across local environmental variability. Our results highlight the divergent trait evolution on serpentine and non-serpentine communities and reinforce other findings presenting species-specific responses to environmental variation.
Collapse
Affiliation(s)
- George C. Adamidis
- Biodiversity Conservation Laboratory, Department of Environment, University of the Aegean, Mytilene, Greece
| | - Elena Kazakou
- Montpellier SupAgro, UMR Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, UMR 5175, Montpellier, France
| | - Nikolaos M. Fyllas
- Department of Ecology & Systematics, Faculty of Biology, University of Athens, Athens, Greece
| | | |
Collapse
|
46
|
Abstract
Serpentine soils are a model system for the study of plant adaptation, speciation, and species interactions. Serpentine soil is an edaphically stressful, low productivity soil type that hosts stunted vegetation and a spectacular level of plant endemism. One of the first papers on serpentine plant endemism was by Arthur Kruckeberg, titled "Intraspecific variability in the response of certain native plant species to serpentine soil." Published in the American Journal of Botany in 1951, it has been cited over 100 times. Here, I review the context and content of the paper, as well as its impact. On the basis of the results of reciprocal transplant experiments in the greenhouse, Kruckeberg made three important conclusions on the nature of serpentine plant endemism: (1) Plants are locally adapted to serpentine soils, forming distinct soil ecotypes; (2) soil ecotypes are the first stage in the evolutionary progression toward serpentine endemism; and (3) serpentine endemics are restricted from more fertile nonserpentine soils by competition. Kruckeberg's paper inspired a substantial amount of research, especially in the three areas reviewed here: local adaptation and plant traits, speciation, and the interaction of climate and soil in plant endemism. In documenting soil ecotypes, Kruckeberg identified serpentine soils as a potent selective factor in plant evolution and helped establish serpentine soils as a model system in evolution and ecology.
Collapse
Affiliation(s)
- Brian L Anacker
- Department of Evolution and Ecology, University of California-Davis, One Shields Avenue, Davis, California 95616 USA
| |
Collapse
|
47
|
Fernandez-Going BM, Harrison SP, Anacker BL, Safford HD. Climate interacts with soil to produce beta diversity in Californian plant communities. Ecology 2013; 94:2007-18. [PMID: 24279272 DOI: 10.1890/12-2011.1] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Spatially distinct communities can arise through interactions and feedbacks between abiotic and biotic factors. We suggest that, for plants, patches of infertile soils such as serpentine may support more distinct communities from those in the surrounding non-serpentine matrix in regions where the climate is more productive (i.e., warmer and/or wetter). Where both soil fertility and climatic productivity are high, communities may be dominated by plants with fast-growing functional traits, whereas where either soils or climate impose low productivity, species with stress-tolerant functional traits may predominate. As a result, both species and functional composition may show higher dissimilarity between patch and matrix in productive climates. This pattern may be reinforced by positive feedbacks, in which higher plant growth under favorable climate and soil conditions leads to higher soil fertility, further enhancing plant growth. For 96 pairs of sites across a 200-km latitudinal gradient in California, we found that the species and functional dissimilarities between communities on infertile serpentine and fertile non-serpentine soils were higher in more productive (wetter) regions. Woody species had more stress-tolerant functional traits on serpentine than non-serpentine soil, and as rainfall increased, woody species functional composition changed toward fast-growing traits on non-serpentine, but not on serpentine soils. Soil organic matter increased with rainfall, but only on non-serpentine soils, and the difference in organic matter between soils was positively correlated with plant community dissimilarity. These results illustrate a novel mechanism wherein climatic productivity is associated with higher species, functional, and landscape-level dissimilarity (beta diversity).
Collapse
Affiliation(s)
- B M Fernandez-Going
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California 93106, USA.
| | | | | | | |
Collapse
|
48
|
Cleland EE, Collins SL, Dickson TL, Farrer EC, Gross KL, Gherardi LA, Hallett LM, Hobbs RJ, Hsu JS, Turnbull L, Suding KN. Sensitivity of grassland plant community composition to spatial vs. temporal variation in precipitation. Ecology 2013; 94:1687-96. [PMID: 24015513 DOI: 10.1890/12-1006.1] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Climate gradients shape spatial variation in the richness and composition of plant communities. Given future predicted changes in climate means and variability, and likely regional variation in the magnitudes of these changes, it is important to determine how temporal variation in climate influences temporal variation in plant community structure. Here, we evaluated how species richness, turnover, and composition of grassland plant communities responded to interannual variation in precipitation by synthesizing long-term data from grasslands across the United States. We found that mean annual precipitation,(MAP) was a positive predictor of species richness across sites, but a positive temporal relationship between annual precipitation and richness was only evident within two sites with low MAP. We also found higher average rates of species turnover in dry sites that in turn had a high proportion of annual species, although interannual rates of species turnover were surprisingly high across all locations. Annual species were less abundant than perennial species at nearly all sites, and our analysis showed that the probability of a species being lost or gained from one year to the next increased with decreasing species abundance. Bray-Curtis dissimilarity from one year to the next, a measure of species composition change that is influenced mainly by abundant species, was insensitive to precipitation at all sites. These results suggest that the richness and turnover patterns we observed were driven primarily by rare species, which comprise the majority of the local species pools at these grassland sites. These findings are consistent with the idea that short-lived and less abundant species are more sensitive to interannual climate variability than longer-lived and more abundant species. We conclude that, among grassland ecosystems, xeric grasslands are likely to exhibit the greatest responsiveness of community composition (richness and turnover) to predicted future increases in interannual precipitation variability. Over the long-term, species composition may shift to reflect spatial patterns of mean precipitation; however, perennial-dominated systems will be buffered against rising interannual variation, while systems that have a large number of rare, annual species will show the greatest temporal variability in species composition in response to rising interannual variability in precipitation.
Collapse
Affiliation(s)
- Elsa E Cleland
- Ecology, Behavior, and Evolution Section, University of California-San Diego, La Jolla, California 92093, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Eskelinen A, Harrison S, Tuomi M. Plant traits mediate consumer and nutrient control on plant community productivity and diversity. Ecology 2013; 93:2705-18. [PMID: 23431600 DOI: 10.1890/12-0393.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The interactive effects of consumers and nutrients on terrestrial plant communities, and the role of plant functional traits in mediating these responses, are poorly known. We carried out a six-year full-factorial field experiment using mammalian herbivore exclusion and fertilization in two habitat types (fertile and infertile alpine tundra heaths) that differed in plant functional traits related to resource acquisition and palatability. Infertile habitats were dominated by species with traits indicative of a slow-growing strategy: high C:N ratio, low specific leaf area, and high condensed tannins. We found that herbivory counteracted the effect of fertilization on biomass, and that this response differed between the two habitats and was correlated with plant functional traits. Live biomass dominated the treatment responses in infertile habitats, whereas litter accumulation dominated the treatment responses in fertile habitats and was strongly negatively associated with resident community tannin concentration. Species richness declined under herbivore exclusion and fertilization in fertile habitats, where litter accumulation was greatest. Community means of plant C:N ratio predicted treatment effects on diversity: fertilization decreased and herbivory increased dominance in communities originally dominated by plants with high C:N, while fertilization increased and herbivory diminished dominance in communities where low C:N species were abundant. Our results highlight the close interdependence between consumer effects, soil nutrients, and plant functional traits and suggest that plant traits may provide an improved understanding of how consumers and nutrients influence plant community productivity and diversity.
Collapse
Affiliation(s)
- Anu Eskelinen
- Department of Biology, University of Oulu, P.O. Box 3000, FI-90014, University of Oulu, Finland.
| | | | | |
Collapse
|