1
|
Nafus MG, Gray LN. Quantifying the importance of ontogeny and prey type in modeling top-down and bottom-up effects of an ectothermic predator. Sci Rep 2024; 14:21601. [PMID: 39285164 PMCID: PMC11405723 DOI: 10.1038/s41598-024-61761-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 05/09/2024] [Indexed: 09/19/2024] Open
Abstract
Dietary decisions by predators can affect prey abundance and overall food web dynamics. Many predators do not forage on the same prey at the same frequency throughout their lives. Ontogenetic shifts in prey preference are not, however, often accounted for when modeling food web relationships, despite growing literature that suggests that stage specific dietary relationships may be an important consideration when modeling trophic interactions. We investigated the importance of considering size-structure of a predator population with ontogenetic diet shifts in evaluating relationships with prey response using a manipulative experiment with the brown treesnake (Boiga irregularis) in Guam. After removing ~ 40% of the snake population via toxic mammal carrion, we measured the strength of the relationship between snake density and the response of two types of prey (lizards and mammals). We evaluated these relationships based on total population size or division of the population into stage specific size categories based on diet preference predictions. We hypothesized that the density of juvenile snakes would correlate more strongly with lizard detections, while adult snakes would better correlate to rodent detections. We also measured reproductive output following changes in rates of prey detection. As expected by known ontogenetic shifts in dietary preference, explicit stage-based models better predicted shifts in rates of observed prey items than did total predator density for both lizards and mammals. Additionally, rodent detections were predictive of one reproductive pulse from snakes, while lizard detections were not predictive or correlated. Our findings support that consideration of predatory species stage-based dietary preference can be meaningful for understanding food web dynamics, particularly when a predator has a broad diet or one that changes through time.
Collapse
Affiliation(s)
- Melia G Nafus
- U.S. Geological Survey, Pacific Island Ecosystems Research Center, Hawai'i Volcanoes National Park, Hawai'i, USA.
| | - Levi N Gray
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
2
|
Chen J, Xiao Q, Xu D, Li Z, Chao L, Li X, Liu H, Wang P, Zheng Y, Liu X, Qu H, Bao Y. Soil microbial community composition and co-occurrence network responses to mild and severe disturbances in volcanic areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165889. [PMID: 37524180 DOI: 10.1016/j.scitotenv.2023.165889] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023]
Abstract
Soil physicochemical properties and vegetation types are the main factors affecting soil microorganisms, but there are few studies on the effects of the disturbance following volcanic eruption. To make up for this lack of knowledge, we used Illumina Miseq high-throughput sequencing to study the characteristics of soil microorganisms on both shores of a volcanically disturbed lake. Soil microorganisms in the two sites were subjected to different degrees of volcanic disturbance and showed significant heterogeneity. Mild volcanic disturbance area had higher enrichment of prokaryotic community. Co-occurrence network analysis showed that a total of 12 keystone taxa (9 prokaryotes and 3 fungi) were identified, suggesting that soil prokaryote may play a more significant role than fungi in overall community structure and function. Compared with severe volcanic disturbance area, the soil microbial community in mild volcanic disturbance area had the higher modular network (0.327 vs 0.291). The competition was stronger (positive/negative link ratio, P/N: 1.422 vs 1.159). Random forest analysis showed that soil superoxide dismutase was the most significant variable associated with soil microbial community. Structural equation model (SEM) results showed that keystone had a directly positive effect on prokaryotic (λ = 0.867, P < 0.001) and fungal (λ = 0.990, P < 0.001) multifunctionality while had also a directly positive effect on fungal diversity (λ = 0.553, P < 0.001), suggesting that keystone taxa played a key role in maintaining ecosystem stability. These results were important for understanding the effects of different levels of volcanic disturbance on soil ecosystems.
Collapse
Affiliation(s)
- Jin Chen
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, PR China
| | - Qingchen Xiao
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, PR China
| | - Daolong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Zishan Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, PR China
| | - Lumeng Chao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China
| | - Xiaoyu Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, PR China
| | - Haijing Liu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China
| | - Pengfei Wang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China
| | - Yaxin Zheng
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China
| | - Xinyan Liu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China
| | - Hanting Qu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China
| | - Yuying Bao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China.
| |
Collapse
|
3
|
Zou HX, Schreiber SJ, Rudolf VHW. Stage-mediated priority effects and season lengths shape long-term competition dynamics. Proc Biol Sci 2023; 290:20231217. [PMID: 37752843 PMCID: PMC10523084 DOI: 10.1098/rspb.2023.1217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
The relative arrival time of species can affect their interactions and thus determine which species persist in a community. Although this phenomenon, called priority effect, is widespread in natural communities, it is unclear how it depends on the length of growing season. Using a seasonal stage-structured model, we show that differences in stages of interacting species could generate priority effects by altering the strength of stabilizing and equalizing coexistence mechanisms, changing outcomes between exclusion, coexistence and positive frequency dependence. However, these priority effects are strongest in systems with just one or a few generations per season and diminish in systems where many overlapping generations per season dilute the importance of stage-specific interactions. Our model reveals a novel link between the number of generations in a season and the consequences of priority effects, suggesting that consequences of phenological shifts driven by climate change should depend on specific life histories of organisms.
Collapse
Affiliation(s)
- Heng-Xing Zou
- Program in Ecology and Evolutionary Biology, Department of BioSciences, Rice University, Houston, TX 77005, USA
| | | | - Volker H. W. Rudolf
- Program in Ecology and Evolutionary Biology, Department of BioSciences, Rice University, Houston, TX 77005, USA
| |
Collapse
|
4
|
Raffard A, Cucherousset J, Santoul F, Di Gesu L, Blanchet S. Climate and intraspecific variation in a consumer species drive ecosystem multifunctionality. OIKOS 2023. [DOI: 10.1111/oik.09286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Allan Raffard
- Centre National de la Recherche Scientifique (CNRS), Station d’Écologie Théorique et Expérimentale (UAR2029) Moulis France
- Laboratoire d'Ecologie Fonctionelle et Environnement CNRS‐INPT‐UPS, Univ. Paul Sabatier Toulouse France
| | - Julien Cucherousset
- Laboratoire Évolution et Diversité Biologique (EDB), UMR 5174, Univ. de Toulouse 3 Paul Sabatier, CNRS, IRD Toulouse France
| | - Frédéric Santoul
- Laboratoire d'Ecologie Fonctionelle et Environnement CNRS‐INPT‐UPS, Univ. Paul Sabatier Toulouse France
| | - Lucie Di Gesu
- Centre National de la Recherche Scientifique (CNRS), Station d’Écologie Théorique et Expérimentale (UAR2029) Moulis France
| | - Simon Blanchet
- Centre National de la Recherche Scientifique (CNRS), Station d’Écologie Théorique et Expérimentale (UAR2029) Moulis France
| |
Collapse
|
5
|
Anderson TL, Burkhart JJ, Cianci‐Gaskill JA, Davenport JM. Limited population and community effects of hatching asynchrony in a pond‐breeding salamander. Ecosphere 2023. [DOI: 10.1002/ecs2.4372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Affiliation(s)
- Thomas L. Anderson
- Department of Biology Appalachian State University Boone North Carolina USA
| | - Jacob J. Burkhart
- Department of Biology Appalachian State University Boone North Carolina USA
| | | | - Jon M. Davenport
- Department of Biology Appalachian State University Boone North Carolina USA
| |
Collapse
|
6
|
Weak effects on growth and cannibalism under fluctuating temperatures in damselfly larvae. Sci Rep 2022; 12:12910. [PMID: 35902660 PMCID: PMC9334275 DOI: 10.1038/s41598-022-17192-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022] Open
Abstract
The Earth’s climate is changing with a trend towards higher mean temperatures and increased temperature fluctuations. Little attention has been paid to the effects of thermal variation on competition within species. Understanding the temperature-dependence of competition is important since it might affect dynamics within and between populations. In a laboratory experiment we investigated the effects of thermal variation on growth and cannibalism in larvae of a damselfly. The temperature treatments included three amplitudes between 20 and 26 °C with an average of 23 °C, and a constant control at 23 °C. Larvae were also raised at five constant temperatures for an estimation of the thermal performance curve, which showed that the thermal optimum for growth was 26.9 °C. Cannibalism was significantly positively correlated with initial body size variance. There was neither a difference among the temperature variation treatments, nor between the constant and the variation treatments in growth and cannibalism. Hence, positive and negative effects of temperature variation within the linear range of a species thermal performance curve might cancel each other out. Since our study mimicked natural temperature conditions, we suggest that the increase in temperature variation predicted by climate models will not necessarily differ from the effects without an increase in variation.
Collapse
|
7
|
The importance of intraspecific variation in litter consumption rate of aquatic and terrestrial macro-detritivores. Basic Appl Ecol 2022. [DOI: 10.1016/j.baae.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Rudolf VHW. Temperature and nutrient conditions modify the effects of phenological shifts in predator-prey communities. Ecology 2022; 103:e3704. [PMID: 35357008 DOI: 10.1002/ecy.3704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 11/10/2022]
Abstract
While there is mounting evidence indicating that the relative timing of predator and prey phenologies shapes the outcome of trophic interactions, we still lack a comprehensive understanding of how important the environmental context (e.g. abiotic conditions) is for shaping this relationship. Environmental conditions not only frequently drive shifts in phenologies, but they can also affect the very same processes that mediate the effects of phenological shifts on species interactions. Thus, identifying how environmental conditions shape the effects of phenological shifts is key to predict community dynamics across a heterogenous landscape and how they will change with ongoing climate change in the future. Here I tested how environmental conditions shape effects of phenological shifts by experimentally manipulating temperature, nutrient availability, and relative phenologies in two predator-prey freshwater systems (mole salamander- bronze frog vs dragonfly larvae-leopard frog). This allowed me to (1) isolate the effect of phenological shifts and different environmental conditions, (2) determine how they interact, and (3) how consistent these patterns are across different species and environments. I found that delaying prey arrival dramatically increased predation rates, but these effects were contingent on environmental conditions and predator system. While both nutrient addition and warming significantly enhanced the effect of arrival time, their effect was qualitatively different across systems: Nutrient addition enhanced the positive effect of early arrival in the dragonfly-leopard frog system, while warming enhanced the negative effect of arriving late in the salamander-bronze frog system. Predator responses varied qualitatively across predator-prey systems. Only in the system with strong gape-limitation were predators (salamanders) significantly affected by prey arrival time and this effect varied with environmental context. Correlations between predator and prey demographic rates suggest that this was driven by shifts in initial predator-prey size ratios and a positive feedback between size-specific predation rates and predator growth rates. These results highlight the importance of accounting for temporal and spatial correlation of local environmental conditions and gape-limitation in predator-prey systems when predicting the effects of phenological shifts and climate change on predator-prey systems.
Collapse
Affiliation(s)
- V H W Rudolf
- BioSciences, Rice University, Houston, Texas, USA
| |
Collapse
|
9
|
Hogle SL, Hepolehto I, Ruokolainen L, Cairns J, Hiltunen T. Effects of phenotypic variation on consumer coexistence and prey community structure. Ecol Lett 2022; 25:307-319. [PMID: 34808704 PMCID: PMC9299012 DOI: 10.1111/ele.13924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/06/2021] [Accepted: 10/15/2021] [Indexed: 12/29/2022]
Abstract
A popular idea in ecology is that trait variation among individuals from the same species may promote the coexistence of competing species. However, theoretical and empirical tests of this idea have yielded inconsistent findings. We manipulated intraspecific trait diversity in a ciliate competing with a nematode for bacterial prey in experimental microcosms. We found that intraspecific trait variation inverted the original competitive hierarchy to favour the consumer with variable traits, ultimately resulting in competitive exclusion. This competitive outcome was driven by foraging traits (size, speed and directionality) that increased the ciliate's fitness ratio and niche overlap with the nematode. The interplay between consumer trait variation and competition resulted in non-additive cascading effects-mediated through prey defence traits-on prey community assembly. Our results suggest that predicting consumer competitive population dynamics and the assembly of prey communities will require understanding the complexities of trait variation within consumer species.
Collapse
Affiliation(s)
| | - Iina Hepolehto
- Department of MicrobiologyUniversity of HelsinkiHelsinkiFinland
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Lasse Ruokolainen
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Johannes Cairns
- Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiFinland
- Department of Computer ScienceUniversity of HelsinkiFinland
| | | |
Collapse
|
10
|
Woodward G, Morris O, Barquín J, Belgrano A, Bull C, de Eyto E, Friberg N, Guðbergsson G, Layer-Dobra K, Lauridsen RB, Lewis HM, McGinnity P, Pawar S, Rosindell J, O’Gorman EJ. Using Food Webs and Metabolic Theory to Monitor, Model, and Manage Atlantic Salmon—A Keystone Species Under Threat. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.675261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Populations of Atlantic salmon are crashing across most of its natural range: understanding the underlying causes and predicting these collapses in time to intervene effectively are urgent ecological and socioeconomic priorities. Current management techniques rely on phenomenological analyses of demographic population time-series and thus lack a mechanistic understanding of how and why populations may be declining. New multidisciplinary approaches are thus needed to capitalize on the long-term, large-scale population data that are currently scattered across various repositories in multiple countries, as well as marshaling additional data to understand the constraints on the life cycle and how salmon operate within the wider food web. Here, we explore how we might combine data and theory to develop the mechanistic models that we need to predict and manage responses to future change. Although we focus on Atlantic salmon—given the huge data resources that already exist for this species—the general principles developed here could be applied and extended to many other species and ecosystems.
Collapse
|
11
|
The effects of intraguild interactions (or lack of) on prey diversity in experimental ponds food webs. FOOD WEBS 2021. [DOI: 10.1016/j.fooweb.2021.e00207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Jacob S, Legrand D. Phenotypic plasticity can reverse the relative extent of intra- and interspecific variability across a thermal gradient. Proc Biol Sci 2021; 288:20210428. [PMID: 34187192 DOI: 10.1098/rspb.2021.0428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Intra- and interspecific variability can both ensure ecosystem functions. Generalizing the effects of individual and species assemblages requires understanding how much within and between species trait variation is genetically based or results from phenotypic plasticity. Phenotypic plasticity can indeed lead to rapid and important changes of trait distributions, and in turn community functionality, depending on environmental conditions, which raises a crucial question: could phenotypic plasticity modify the relative importance of intra- and interspecific variability along environmental gradients? We quantified the fundamental niche of five genotypes in monocultures for each of five ciliate species along a wide thermal gradient in standardized conditions to assess the importance of phenotypic plasticity for the level of intraspecific variability compared to differences between species. We showed that phenotypic plasticity strongly influences trait variability and reverses the relative extent of intra- and interspecific variability along the thermal gradient. Our results show that phenotypic plasticity may lead to either increase or decrease of functional trait variability along environmental gradients, making intra- and interspecific variability highly dynamic components of ecological systems.
Collapse
Affiliation(s)
- Staffan Jacob
- Station d'Ecologie Théorique et Expérimentale du CNRS UAR5321, 2 route du CNRS, 09200, Moulis, France
| | - Delphine Legrand
- Station d'Ecologie Théorique et Expérimentale du CNRS UAR5321, 2 route du CNRS, 09200, Moulis, France
| |
Collapse
|
13
|
Rudolf VHW, Eveland L. Ontogenetic diversity buffers communities against consequences of species loss. J Anim Ecol 2021; 90:1492-1504. [PMID: 33694228 DOI: 10.1111/1365-2656.13470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 03/01/2021] [Indexed: 01/26/2023]
Abstract
Biodiversity can be measured at multiple organizational scales. While traditional studies have focused at taxonomic diversity, recent studies have emphasized the ecological importance of diversity within populations. However, it is unclear how these different scales of diversity interact to determine the consequence of species loss. Here we asked how predator diversity and presence of ontogenetic diversity within predator populations influences community structure. Ontogenetic diversity arises from shifts in the traits and ecology of individuals during ontogeny and it is one of the biggest sources of intraspecific diversity. However, whether it dampens or strengthens the negative consequences of with species loss is poorly understood. To study the interaction of species diversity and ontogenetic diversity, we experimentally manipulated predator species diversity and diversity of developmental stages within focal predator species and analysed their joint effect on predator and prey survival, biomass and prey community structure in experimental pond systems. While individual effects of ontogenetic diversity were often species specific, losing predator species from the community often had a much smaller or no effect on prey survival, biomass or community structure when all predator populations had high ontogenetic diversity. Thus, ontogenetic diversity within populations buffered against some of the consequences of biodiversity loss at higher organizational levels. Because the experiment controlled mean per capita size and biomass across structured versus unstructured populations, this pattern was not driven by differences in biomass of predators. Instead, results suggest that effects were driven by changes in the functional roles and indirect interactions across and within species. This indicates that even if all environmental conditions are similar, differences in the intrinsic structure of populations can modify the consequences of biodiversity loss. Together, these results revealed the importance of ontogenetic diversity within species for strengthening the resilience of natural communities to consequences of biodiversity loss and emphasize the need to integrate biodiversity patterns across organizational scales.
Collapse
|
14
|
Benkendorf DJ, Whiteman HH. Omnivore density affects community structure through multiple trophic cascades. Oecologia 2021; 195:397-407. [PMID: 33392792 DOI: 10.1007/s00442-020-04836-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/14/2020] [Indexed: 11/30/2022]
Abstract
Omnivores can dampen trophic cascades by feeding at multiple trophic levels, yet few studies have evaluated how intraspecific variation of omnivores influences community structure. The speckled dace (Rhinichthys osculus) is a common and omnivorous minnow that consumes algae and invertebrates. We studied effects of size and size structure on top-down control by dace and how effects scaled with density. Dace were manipulated in a mesocosm experiment and changes in invertebrate and algal communities and ecosystem function were monitored. Omnivores affected experimental communities via two distinct trophic pathways (benthic and pelagic). In the benthic pathway, dace reduced macroinvertebrate biomass, thereby causing density-mediated indirect effects that led to increased benthic algal biomass. Dace also reduced pelagic predatory macroinvertebrate biomass (hemipterans), thereby increasing the abundance of emerging insects. The effect of dace and hemipterans on emerging insects was mediated by a non-linear response to dace with peak emergence at intermediate dace density. In contrast with recent studies, omnivore size and size structure had no clear effect, indicating that small and large dace in our experiment shared similar functional roles. Our results support that the degree to which omnivores dampen trophic cascades depends on their relative effect on multiple trophic levels, such that the more omnivorous a predator is, the more likely cascades will be dampened. Availability of abundant macroinvertebrates, and the absence of top predators, may have shifted dace diets from primary to secondary consumption, strengthening density-dependent trophic cascades. Both omnivore density and dietary shifts are important factors influencing omnivore-mediated communities.
Collapse
Affiliation(s)
- Donald J Benkendorf
- Watershed Studies Institute, Murray State University, Murray, KY, 42071, USA. .,Department of Biological Sciences, Murray State University, Murray, KY, 42071, USA. .,High Lonesome Institute, De Beque, CO, 81630, USA. .,Department of Watershed Sciences, Utah State University, 5210 Old Main Hill, Logan, UT, 84322-5210, USA.
| | - Howard H Whiteman
- Watershed Studies Institute, Murray State University, Murray, KY, 42071, USA.,Department of Biological Sciences, Murray State University, Murray, KY, 42071, USA.,High Lonesome Institute, De Beque, CO, 81630, USA
| |
Collapse
|
15
|
Riparian and in-channel habitat properties linked to dragonfly emergence. Sci Rep 2020; 10:17665. [PMID: 33077819 PMCID: PMC7573607 DOI: 10.1038/s41598-020-74429-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 09/23/2020] [Indexed: 11/08/2022] Open
Abstract
In freshwater ecosystems, habitat alteration contributes directly to biodiversity loss. Dragonflies are sentinel species that are key invertebrate predators in both aquatic (as larvae) and terrestrial ecosystems (as adults). Understanding the habitat factors affecting dragonfly emergence can inform management practices to conserve habitats supporting these species and the functions they perform. Transitioning from larvae to adults, dragonflies leave behind larval exoskeletons (exuviae), which reveal information about the emergent population without the need for sacrificing living organisms. Capitalizing on Atlantic Canada's largest freshwater wetland, the Grand Lake Meadows (GLM) and the associated Saint John/Wolastoq River (SJWR), we studied the spatial (i.e., across the mainstem, tributary, and wetland sites) and temporal (across 3 years) variation in assemblages of emergent dragonflies (Anisoptera) and assessed the relative contribution of aquatic and terrestrial factors structuring these assemblages. The GLM complex, including the lotic SJWR and its tributaries and associated lentic wetlands, provided a range of riparian and aquatic habitat variability ideal for studying dragonfly emergence patterns across a relatively homogenous climatic region. Emergent dragonfly responses were associated with spatial, but not temporal, variation. Additionally, dragonfly communities were associated with both aquatic and terrestrial factors, while diversity was primarily associated with terrestrial factors. Specific terrestrial factors associated with the emergence of the dragonfly community included canopy cover and slope, while aquatic factors included water temperature, dissolved oxygen, and baseflow. Our results indicate that management of river habitats for dragonfly conservation should incorporate riparian habitat protection while maintaining aquatic habitat and habitat quality.
Collapse
|
16
|
Seasonal and ontogenetic variation of whiting diet in the Eastern English Channel and the Southern North Sea. PLoS One 2020; 15:e0239436. [PMID: 32966332 PMCID: PMC7511009 DOI: 10.1371/journal.pone.0239436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/05/2020] [Indexed: 11/19/2022] Open
Abstract
An accurate description of trophic interactions is crucial to understand ecosystem functioning and sustainably manage marine ecosystems exploitation. Carbon and nitrogen stable isotopes were coupled with stomach content analyses to investigate whiting (Merlangius merlangus, Linnaeus, 1758) feeding behavior in the Eastern English Channel and Southern North Sea. Whiting juveniles and adults were sampled in autumn and winter to investigate both ontogenetic and seasonal changes. In addition, queen scallops (Aequipecten opercularis) samples were collected along with fish to be used as isotopic benthic baseline. Results indicated an ontogenetic diet change from crustaceans to fish and cephalopods. In autumn, δ15N values generally increased with fish size while in winter, a decrease of δ15N values with fish size was observed, as a potential result of spatial variation in baseline δ15N values. In winter, a nutrient-poor period, an increase in feeding intensity was observed, especially on the copepod Temora longicornis. This study provides further insights into whiting trophic ecology in relation to ontogenetic and seasonal variations, and it confirms the importance of combining several trophic analysis methods to understand ecosystem functioning.
Collapse
|
17
|
Intraspecific dietary variation in niche partitioning within a community of ecologically similar snakes. Evol Ecol 2020. [DOI: 10.1007/s10682-020-10078-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Cuthbert RN, Wasserman RJ, Dalu T, Kaiser H, Weyl OLF, Dick JTA, Sentis A, McCoy MW, Alexander ME. Influence of intra- and interspecific variation in predator-prey body size ratios on trophic interaction strengths. Ecol Evol 2020; 10:5946-5962. [PMID: 32607203 PMCID: PMC7319243 DOI: 10.1002/ece3.6332] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 01/18/2023] Open
Abstract
Predation is a pervasive force that structures food webs and directly influences ecosystem functioning. The relative body sizes of predators and prey may be an important determinant of interaction strengths. However, studies quantifying the combined influence of intra- and interspecific variation in predator-prey body size ratios are lacking.We use a comparative functional response approach to examine interaction strengths between three size classes of invasive bluegill and largemouth bass toward three scaled size classes of their tilapia prey. We then quantify the influence of intra- and interspecific predator-prey body mass ratios on the scaling of attack rates and handling times.Type II functional responses were displayed by both predators across all predator and prey size classes. Largemouth bass consumed more than bluegill at small and intermediate predator size classes, while large predators of both species were more similar. Small prey were most vulnerable overall; however, differential attack rates among prey were emergent across predator sizes. For both bluegill and largemouth bass, small predators exhibited higher attack rates toward small and intermediate prey sizes, while larger predators exhibited greater attack rates toward large prey. Conversely, handling times increased with prey size, with small bluegill exhibiting particularly low feeding rates toward medium-large prey types. Attack rates for both predators peaked unimodally at intermediate predator-prey body mass ratios, while handling times generally shortened across increasing body mass ratios.We thus demonstrate effects of body size ratios on predator-prey interaction strengths between key fish species, with attack rates and handling times dependent on the relative sizes of predator-prey participants.Considerations for intra- and interspecific body size ratio effects are critical for predicting the strengths of interactions within ecosystems and may drive differential ecological impacts among invasive species as size ratios shift.
Collapse
Affiliation(s)
- Ross N. Cuthbert
- GEOMARHelmholtz‐Zentrum für Ozeanforschung KielKielGermany
- Institute for Global Food SecuritySchool of Biological SciencesQueen's University BelfastBelfastUK
- South African Institute for Aquatic BiodiversityMakhandaSouth Africa
| | - Ryan J. Wasserman
- South African Institute for Aquatic BiodiversityMakhandaSouth Africa
- Department of Zoology and EntomologyRhodes UniversityMakhandaSouth Africa
| | - Tatenda Dalu
- South African Institute for Aquatic BiodiversityMakhandaSouth Africa
- Department of Ecology and Resource ManagementUniversity of VendaThohoyandouSouth Africa
| | - Horst Kaiser
- Department of Ichthyology and Fisheries ScienceRhodes UniversityMakhandaSouth Africa
| | - Olaf L. F. Weyl
- Department of Ichthyology and Fisheries ScienceRhodes UniversityMakhandaSouth Africa
- DSI/NRF Research Chair in Inland Fisheries and Freshwater EcologySouth African Institute for Aquatic BiodiversityMakhandaSouth Africa
| | - Jaimie T. A. Dick
- Institute for Global Food SecuritySchool of Biological SciencesQueen's University BelfastBelfastUK
| | - Arnaud Sentis
- INRAEAix Marseille UniversityUMR RECOVERAix‐en‐ProvenceFrance
| | | | - Mhairi E. Alexander
- South African Institute for Aquatic BiodiversityMakhandaSouth Africa
- Institute for Biomedical and Environmental Health ResearchSchool of Health and Life SciencesUniversity of the West of ScotlandPaisleyUK
- Department of Botany and ZoologyCentre for Invasion BiologyStellenbosch UniversityMatielandSouth Africa
| |
Collapse
|
19
|
Fokkema W, van der Jeugd HP, Lameris TK, Dokter AM, Ebbinge BS, de Roos AM, Nolet BA, Piersma T, Olff H. Ontogenetic niche shifts as a driver of seasonal migration. Oecologia 2020; 193:285-297. [PMID: 32529317 PMCID: PMC7320946 DOI: 10.1007/s00442-020-04682-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 06/06/2020] [Indexed: 10/31/2022]
Abstract
Ontogenetic niche shifts have helped to understand population dynamics. Here we show that ontogenetic niche shifts also offer an explanation, complementary to traditional concepts, as to why certain species show seasonal migration. We describe how demographic processes (survival, reproduction and migration) and associated ecological requirements of species may change with ontogenetic stage (juvenile, adult) and across the migratory range (breeding, non-breeding). We apply this concept to widely different species (dark-bellied brent geese (Branta b. bernicla), humpback whales (Megaptera novaeangliae) and migratory Pacific salmon (Oncorhynchus gorbuscha) to check the generality of this hypothesis. Consistent with the idea that ontogenetic niche shifts are an important driver of seasonal migration, we find that growth and survival of juvenile life stages profit most from ecological conditions that are specific to breeding areas. We suggest that matrix population modelling techniques are promising to detect the importance of the ontogenetic niche shifts in maintaining migratory strategies. As a proof of concept, we applied a first analysis to resident, partial migratory and fully migratory populations of barnacle geese (Branta leucopsis). We argue that recognition of the costs and benefits of migration, and how these vary with life stages, is important to understand and conserve migration under global environmental change.
Collapse
Affiliation(s)
- Wimke Fokkema
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), Univ. of Groningen, Groningen, The Netherlands
| | - Henk P van der Jeugd
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Vogeltrekstation, Dutch Centre for Avian Migration and Demography (NIOO-KNAW), Wageningen, The Netherlands
| | - Thomas K Lameris
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems, and Utrecht University, Den Burg, Texel, The Netherlands
| | - Adriaan M Dokter
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Road, Ithaca, NY, 14850, USA
| | - Barwolt S Ebbinge
- Wageningen Environmental Research, Wageningen Univ. and Research, Wageningen, The Netherlands
| | - André M de Roos
- Department of Theoretical and Computational Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), Univ. of Amsterdam, Amsterdam, The Netherlands
| | - Bart A Nolet
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.
- Department of Theoretical and Computational Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), Univ. of Amsterdam, Amsterdam, The Netherlands.
| | - Theunis Piersma
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), Univ. of Groningen, Groningen, The Netherlands
- NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems, and Utrecht University, Den Burg, Texel, The Netherlands
| | - Han Olff
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), Univ. of Groningen, Groningen, The Netherlands
| |
Collapse
|
20
|
|
21
|
Noto AE, Hughes AR. Intraspecific diversity at two trophic levels influences plant–herbivore interactions. Ecosphere 2020. [DOI: 10.1002/ecs2.3121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Akana E. Noto
- Northeastern University Marine Science Center 430 Nahant Road Nahant Massachusetts 01908 USA
| | - A. Randall Hughes
- Northeastern University Marine Science Center 430 Nahant Road Nahant Massachusetts 01908 USA
| |
Collapse
|
22
|
Gribben PE, Bishop MJ, O’Connor WA, Bradley DJ, Hughes AR. Intraspecific diversity in prey body size influences survivorship by conferring resistance to predation. Ecosphere 2020. [DOI: 10.1002/ecs2.3106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Paul E. Gribben
- Centre for Marine Science and Innovation School of Earth, Environmental and Biological Sciences University of New South Wales Sydney New South Wales 2052 Australia
- Sydney Institute of Marine Science 19 Chowder Bay Road Mosman New South Wales 2088 Australia
| | - Melanie J. Bishop
- Department of Biological Sciences Macquarie University Sydney New South Wales 2109 Australia
| | - Wayne A. O’Connor
- NSW Department of Primary Industries Nelson Bay New South Wales 2315 Australia
| | - Daniel J. Bradley
- School of Life Sciences University of Technology Sydney New South Wales 2007 Australia
| | - A. Randall Hughes
- Northeastern University Marine Science Centre 430 Nahant Raod Nahant Massachusetts 01908 USA
| |
Collapse
|
23
|
Haak CR, Hui FKC, Cowles GW, Danylchuk AJ. Positive interspecific associations consistent with social information use shape juvenile fish assemblages. Ecology 2019; 101:e02920. [DOI: 10.1002/ecy.2920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 06/12/2019] [Accepted: 08/23/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Christopher R. Haak
- Department of Environmental Conservation & Intercampus Marine Science Graduate Program University of Massachusetts Amherst 160 Holdsworth Way Amherst Massachusetts 01003 USA
| | - Francis K. C. Hui
- Research School of Finance Actuarial Studies and Statistics Australian National University Acton 2601 Australian Capital Territory Australia
| | - Geoffrey W. Cowles
- Department of Fisheries Oceanography School for Marine Science and Technology University of Massachusetts Dartmouth 836 South Rodney French Blvd. New Bedford Massachusetts 02744 USA
| | - Andy J. Danylchuk
- Department of Environmental Conservation & Intercampus Marine Science Graduate Program University of Massachusetts Amherst 160 Holdsworth Way Amherst Massachusetts 01003 USA
| |
Collapse
|
24
|
Miller ML, Kronenberger JA, Fitzpatrick SW. Recent evolutionary history predicts population but not ecosystem-level patterns. Ecol Evol 2019; 9:14442-14452. [PMID: 31938531 PMCID: PMC6953670 DOI: 10.1002/ece3.5879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/14/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022] Open
Abstract
In the face of rapid anthropogenic environmental change, it is increasingly important to understand how ecological and evolutionary interactions affect the persistence of natural populations. Augmented gene flow has emerged as a potentially effective management strategy to counteract negative consequences of genetic drift and inbreeding depression in small and isolated populations. However, questions remain about the long-term impacts of augmented gene flow and whether changes in individual and population fitness are reflected in ecosystem structure, potentiating eco-evolutionary feedbacks. In this study, we used Trinidadian guppies (Poecilia reticulata) in experimental outdoor mesocosms to assess how populations with different recent evolutionary histories responded to a scenario of severe population size reduction followed by expansion in a high-quality environment. We also investigated how variation in evolutionary history of the focal species affected ecosystem dynamics. We found that evolutionary history (i.e., gene flow vs. no gene flow) consistently predicted variation in individual growth. In addition, gene flow led to faster population growth in populations from one of the two drainages, but did not have measurable impacts on the ecosystem variables we measured: zooplankton density, algal growth, and decomposition rates. Our results suggest that benefits of gene flow may be long-term and environment-dependent. Although small in replication and duration, our study highlights the importance of eco-evolutionary interactions in determining population persistence and sets the stage for future work in this area.
Collapse
Affiliation(s)
- Madison L. Miller
- W. K. Kellogg Biological StationMichigan State UniversityHickory CornersMIUSA
| | - John A. Kronenberger
- National Genomics Center for Wildlife and Fish ConservationUSDA Forest ServiceMissoulaMTUSA
| | - Sarah W. Fitzpatrick
- W. K. Kellogg Biological StationMichigan State UniversityHickory CornersMIUSA
- Department of Integrative BiologyMichigan State UniversityHickory CornersMIUSA
| |
Collapse
|
25
|
Reum JCP, Blanchard JL, Holsman KK, Aydin K, Punt AE. Species‐specific ontogenetic diet shifts attenuate trophic cascades and lengthen food chains in exploited ecosystems. OIKOS 2019. [DOI: 10.1111/oik.05630] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Jonathan C. P. Reum
- School of Aquatic and Fishery SciencesUniv. of Washington1122 NE Boat StSeattle WA 98102 USA
- Centre for Marine Socioecology, Univ. of Hobart TAS Australia
| | - Julia L. Blanchard
- Inst. for Marine and Antarctic StudiesUniv. of Tasmania Hobart TAS Australia
- Centre for Marine Socioecology, Univ. of Hobart TAS Australia
| | - Kirstin K. Holsman
- Alaska Fisheries Science CenterNational Marine Fisheries ServiceNOAA Seattle WA USA
| | - Kerim Aydin
- Alaska Fisheries Science CenterNational Marine Fisheries ServiceNOAA Seattle WA USA
| | - André E. Punt
- School of Aquatic and Fishery SciencesUniv. of Washington1122 NE Boat StSeattle WA 98102 USA
| |
Collapse
|
26
|
Kendall LK, Rader R, Gagic V, Cariveau DP, Albrecht M, Baldock KCR, Freitas BM, Hall M, Holzschuh A, Molina FP, Morten JM, Pereira JS, Portman ZM, Roberts SPM, Rodriguez J, Russo L, Sutter L, Vereecken NJ, Bartomeus I. Pollinator size and its consequences: Robust estimates of body size in pollinating insects. Ecol Evol 2019; 9:1702-1714. [PMID: 30847066 PMCID: PMC6392396 DOI: 10.1002/ece3.4835] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/18/2018] [Accepted: 11/27/2018] [Indexed: 11/09/2022] Open
Abstract
Body size is an integral functional trait that underlies pollination-related ecological processes, yet it is often impractical to measure directly. Allometric scaling laws have been used to overcome this problem. However, most existing models rely upon small sample sizes, geographically restricted sampling and have limited applicability for non-bee taxa. Allometric models that consider biogeography, phylogenetic relatedness, and intraspecific variation are urgently required to ensure greater accuracy. We measured body size as dry weight and intertegular distance (ITD) of 391 bee species (4,035 specimens) and 103 hoverfly species (399 specimens) across four biogeographic regions: Australia, Europe, North America, and South America. We updated existing models within a Bayesian mixed-model framework to test the power of ITD to predict interspecific variation in pollinator dry weight in interaction with different co-variates: phylogeny or taxonomy, sexual dimorphism, and biogeographic region. In addition, we used ordinary least squares regression to assess intraspecific dry weight ~ ITD relationships for ten bees and five hoverfly species. Including co-variates led to more robust interspecific body size predictions for both bees and hoverflies relative to models with the ITD alone. In contrast, at the intraspecific level, our results demonstrate that the ITD is an inconsistent predictor of body size for bees and hoverflies. The use of allometric scaling laws to estimate body size is more suitable for interspecific comparative analyses than assessing intraspecific variation. Collectively, these models form the basis of the dynamic R package, "pollimetry," which provides a comprehensive resource for allometric pollination research worldwide.
Collapse
Affiliation(s)
- Liam K. Kendall
- School of Environmental and Rural ScienceUniversity of New EnglandArmidaleNew South WalesAustralia
- CSIRO AgricultureBrisbaneQueenslandAustralia
| | - Romina Rader
- School of Environmental and Rural ScienceUniversity of New EnglandArmidaleNew South WalesAustralia
| | - Vesna Gagic
- CSIRO AgricultureBrisbaneQueenslandAustralia
| | | | | | | | - Breno M. Freitas
- Departamento de Zootecnia—CCAUniversidade Federal do CearáFortalezaBrazil
| | - Mark Hall
- School of Environmental and Rural ScienceUniversity of New EnglandArmidaleNew South WalesAustralia
| | - Andrea Holzschuh
- Animal Ecology and Tropical Biology, BiocenterUniversity of WürzburgWürzburgGermany
| | - Francisco P. Molina
- Dpto. Ecología IntegrativaEstación Biológica de Doñana (EBD‐CSIC)SevillaSpain
| | - Joanne M. Morten
- School of Biological Sciences & Cabot InstituteUniversity of BristolBristolUK
| | - Janaely S. Pereira
- Departamento de Zootecnia—CCAUniversidade Federal do CearáFortalezaBrazil
| | | | | | - Juanita Rodriguez
- Australian National Insect Collection, CSIROCanberraAustralian Capital TerritoryAustralia
| | - Laura Russo
- Botany DepartmentTrinity College DublinDublinIreland
| | - Louis Sutter
- Agroscope, Agroecology and EnvironmentZürichSwitzerland
| | - Nicolas J. Vereecken
- Interfaculty School of Bioengineers, Université Libre de BruxellesBruxellesBelgium
| | - Ignasi Bartomeus
- Dpto. Ecología IntegrativaEstación Biológica de Doñana (EBD‐CSIC)SevillaSpain
| |
Collapse
|
27
|
Griffin JN, Silliman BR. Predator size-structure and species identity determine cascading effects in a coastal ecosystem. Ecol Evol 2018; 8:12435-12442. [PMID: 30619556 PMCID: PMC6308854 DOI: 10.1002/ece3.4571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/22/2018] [Accepted: 08/30/2018] [Indexed: 11/24/2022] Open
Abstract
Cascading consequences of predator extinctions are well documented, but impacts of perturbations to predator size-structure and how these vary across species remain unclear. Body size is hypothesized to be a key trait governing individual predators' impact on ecosystems. Therefore, shifts in predator size-structure should trigger ecosystem ramifications which are consistent across functionally similar species. Using a US salt marsh as a model system, we tested this hypothesis by manipulating size class (small, medium, and large) and size diversity (combination of all three size classes) within two closely related and functionally similar predatory crab species over 4 months. Across treatments, predators suppressed densities of a dominant grazer and an ecosystem engineer, enhanced plant biomass, and altered sediment properties (redox potential and saturation). Over the metabolically equivalent experimental predator treatments, small size class predators had stronger average impacts on response variables, and size class interacted with predator species identity to drive engineer suppression. Within both predator species, size diversity increased cannibalism and slightly weakened the average impact. These results show that predator impacts in a salt marsh ecosystem are determined by both size class and size diversity; they also highlight that size class can have species-dependent and response-dependent effects, underlining the challenge of generalizing trait effects.
Collapse
Affiliation(s)
| | - Brian R. Silliman
- Division of Marine Science and Conservation, Nicholas School of the EnvironmentDuke UniversityBeaufortNorth Carolina
| |
Collapse
|
28
|
Zhao T, Villéger S, Cucherousset J. Accounting for intraspecific diversity when examining relationships between non-native species and functional diversity. Oecologia 2018; 189:171-183. [PMID: 30470889 DOI: 10.1007/s00442-018-4311-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 11/19/2018] [Indexed: 11/29/2022]
Abstract
Quantifying changes in functional diversity, the facet of biodiversity accounting for the biological features of organisms, has been advocated as one of the most integrative ways to unravel how communities are affected by human-induced perturbations. The present study assessed how functional diversity patterns varied among communities that differed in the degree to which non-native species dominated the community in temperate lake fish communities and whether accounting for intraspecific functional variability could provide a better understanding of the variation of functional diversity across communities. Four functional diversity indices were computed for 18 temperate lake fish communities along a gradient of non-native fish dominance using morphological functional traits assessed for each life-stage within each species. First, we showed that intraspecific variability in functional traits was high and comparable to interspecific variability. Second, we found that non-native fish were functionally distinct from native fish. Finally, we demonstrated that there was a significant relationship between functional diversity and the degree to which non-native fish currently dominated the community and that this association could be better detected when accounting for intraspecific functional variability. These findings highlighted the importance of incorporating intraspecific variability to better quantify the variation of functional diversity patterns in communities facing human-induced perturbations.
Collapse
Affiliation(s)
- T Zhao
- Laboratoire Evolution et Diversité Biologique (EDB UMR 5174), Université de Toulouse, CNRS, ENFA, UPS, 118 route de Narbonne, 31062, Toulouse, France.
| | - S Villéger
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - J Cucherousset
- Laboratoire Evolution et Diversité Biologique (EDB UMR 5174), Université de Toulouse, CNRS, ENFA, UPS, 118 route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
29
|
Raffard A, Santoul F, Cucherousset J, Blanchet S. The community and ecosystem consequences of intraspecific diversity: a meta-analysis. Biol Rev Camb Philos Soc 2018; 94:648-661. [PMID: 30294844 DOI: 10.1111/brv.12472] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 12/12/2022]
Abstract
Understanding the relationships between biodiversity and ecosystem functioning has major implications. Biodiversity-ecosystem functioning relationships are generally investigated at the interspecific level, although intraspecific diversity (i.e. within-species diversity) is increasingly perceived as an important ecological facet of biodiversity. Here, we provide a quantitative and integrative synthesis testing, across diverse plant and animal species, whether intraspecific diversity is a major driver of community dynamics and ecosystem functioning. We specifically tested (i) whether the number of genotypes/phenotypes (i.e. intraspecific richness) or the specific identity of genotypes/phenotypes (i.e. intraspecific variation) in populations modulate the structure of communities and the functioning of ecosystems, (ii) whether the ecological effects of intraspecific richness and variation are strong in magnitude, and (iii) whether these effects vary among taxonomic groups and ecological responses. We found a non-linear relationship between intraspecific richness and community and ecosystem dynamics that follows a saturating curve shape, as observed for biodiversity-function relationships measured at the interspecific level. Importantly, intraspecific richness modulated ecological dynamics with a magnitude that was equal to that previously reported for interspecific richness. Our results further confirm, based on a database containing more than 50 species, that intraspecific variation also has substantial effects on ecological dynamics. We demonstrated that the effects of intraspecific variation are twice as high as expected by chance, and that they might have been underestimated previously. Finally, we found that the ecological effects of intraspecific variation are not homogeneous and are actually stronger when intraspecific variation is manipulated in primary producers than in consumer species, and when they are measured at the ecosystem rather than at the community level. Overall, we demonstrated that the two facets of intraspecific diversity (richness and variation) can both strongly affect community and ecosystem dynamics, which reveals the pivotal role of within-species biodiversity for understanding ecological dynamics.
Collapse
Affiliation(s)
- Allan Raffard
- CNRS, Station d'Écologie Théorique et Expérimentale du CNRS à Moulis UMR-5321, Université Toulouse III Paul Sabatier, 2 route du CNRS, F-09200, Moulis, France.,EcoLab, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse, France
| | - Frédéric Santoul
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse, France
| | - Julien Cucherousset
- CNRS, IRD, UPS, Laboratoire Évolution et Diversité Biologique (EDB UMR 5174), Université de Toulouse, 118 route de Narbonne, Toulouse 31062, France
| | - Simon Blanchet
- CNRS, Station d'Écologie Théorique et Expérimentale du CNRS à Moulis UMR-5321, Université Toulouse III Paul Sabatier, 2 route du CNRS, F-09200, Moulis, France.,CNRS, IRD, UPS, Laboratoire Évolution et Diversité Biologique (EDB UMR 5174), Université de Toulouse, 118 route de Narbonne, Toulouse 31062, France
| |
Collapse
|
30
|
Affiliation(s)
- Volker H. W. Rudolf
- Program in Ecology and Evolutionary Biology, Rice Univ., BioSciences; Houston TX USA
| | - Amber Roman
- Program in Ecology and Evolutionary Biology, Rice Univ., BioSciences; Houston TX USA
| |
Collapse
|
31
|
Conspecific boldness and predator species determine predation-risk consequences of prey personality. Behav Ecol Sociobiol 2018. [DOI: 10.1007/s00265-018-2544-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
32
|
Lamothe KA, Alofs KM, Jackson DA, Somers KM. Functional diversity and redundancy of freshwater fish communities across biogeographic and environmental gradients. DIVERS DISTRIB 2018. [DOI: 10.1111/ddi.12812] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Karl A. Lamothe
- Department of Ecology and Evolutionary Biology; University of Toronto; Toronto ON Canada
| | - Karen M. Alofs
- Department of Ecology and Evolutionary Biology; University of Toronto; Toronto ON Canada
| | - Donald A. Jackson
- Department of Ecology and Evolutionary Biology; University of Toronto; Toronto ON Canada
| | - Keith M. Somers
- Department of Ecology and Evolutionary Biology; University of Toronto; Toronto ON Canada
| |
Collapse
|
33
|
Raffard A, Lecerf A, Cote J, Buoro M, Lassus R, Cucherousset J. The functional syndrome: linking individual trait variability to ecosystem functioning. Proc Biol Sci 2018; 284:rspb.2017.1893. [PMID: 29212725 DOI: 10.1098/rspb.2017.1893] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/06/2017] [Indexed: 01/11/2023] Open
Abstract
Phenotypic variability is increasingly assessed through functional response and effect traits, which provide a mechanistic framework for investigating how an organism responds to varying ecological factors and how these responses affect ecosystem functioning. Covariation between response and effect traits has been poorly examined at the intraspecific level, thus hampering progress in understanding how phenotypic variability alters the role of organisms in ecosystems. Using a multi-trait approach and a nine-month longitudinal monitoring of individual red-swamp crayfish (Procambarus clarkii), we demonstrated that most of the measured response and effect traits were partially stable during the ontogeny of individuals. Suites of response and effect traits were associated with a response syndrome and an effect syndrome, respectively, which were correlated to form a functional syndrome. Using a bioenergetic model, we predicted that differences in the response syndrome composition of hypothetical populations had important ecological effects on a key ecosystem process (i.e. whole-lake litter decomposition) to a level similar to those induced by doubling population size. Demonstrating the existence of a functional syndrome is likely to improve our understanding of the ecological impacts of phenotypic variation among individuals in wild populations across levels of biological organization, and the linkage between ecosystem and evolutionary ecology.
Collapse
Affiliation(s)
- Allan Raffard
- Laboratoire Evolution and Diversité Biologique (EDB UMR 5174), Université de Toulouse, CNRS, ENFA, UPS, 118 route de Narbonne, Toulouse 31062, France
| | - Antoine Lecerf
- Ecolab, Universitè de Toulouse, 118 route de Narbonne, Toulouse 31062, France
| | - Julien Cote
- Laboratoire Evolution and Diversité Biologique (EDB UMR 5174), Université de Toulouse, CNRS, ENFA, UPS, 118 route de Narbonne, Toulouse 31062, France
| | - Mathieu Buoro
- Laboratoire Evolution and Diversité Biologique (EDB UMR 5174), Université de Toulouse, CNRS, ENFA, UPS, 118 route de Narbonne, Toulouse 31062, France.,ECOBIOP, INRA, Univ. Pau and Pays Adour, 64310 St Pée-sur-Nivelle, France
| | - Remy Lassus
- Laboratoire Evolution and Diversité Biologique (EDB UMR 5174), Université de Toulouse, CNRS, ENFA, UPS, 118 route de Narbonne, Toulouse 31062, France
| | - Julien Cucherousset
- Laboratoire Evolution and Diversité Biologique (EDB UMR 5174), Université de Toulouse, CNRS, ENFA, UPS, 118 route de Narbonne, Toulouse 31062, France
| |
Collapse
|
34
|
Rudolf VHW. Nonlinear effects of phenological shifts link interannual variation to species interactions. J Anim Ecol 2018; 87:1395-1406. [PMID: 29749640 DOI: 10.1111/1365-2656.12850] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 04/26/2018] [Indexed: 11/29/2022]
Abstract
The vast majority of species interactions are seasonally structured and depend on species' relative phenologies. However, differences in the phenologies of species naturally vary across years and are altered by ongoing climate change around the world. By combining experiments that shifted the relative hatching of two competing tadpole species across a productivity gradient with simulations of inter-annual variation in arrival times I tested how phenological variation across years can alter the strength and outcome of interspecific competition. Shifting the relative timing of hatching (phenology) of a species fundamentally altered interspecific competition, and the effect of shifting the timing on competition was highly non-linear for most demographic rates. Furthemore, this relationship varied with productivity of the system. As a consequence, (a) shifts in relative timing of phenologies had small or large effects depending on the average natural timing of interactions, and (b) changes in the inter-annual variation in onset of interaction alone can alter species interactions in simulations even when mean phenologies (timing) remain unchanged across years. Studies on phenologies traditionally focus on directional shifts in the mean of phenologies, but these results suggest that we also need to consider inter-annual variation in phenologies of interacting species to predict dynamics of natural communities and how they will be modified by climate change.
Collapse
Affiliation(s)
- Volker H W Rudolf
- Program in Ecology, & Evolutionary Biology, BioSciences, Rice University, Houston, Texas
| |
Collapse
|
35
|
Prescott VA, Eason PK. Lentic and lotic odonate communities and the factors that influence them in urban versus rural landscapes. Urban Ecosyst 2018. [DOI: 10.1007/s11252-018-0752-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
36
|
Selection of trilateral continuums of life history strategies under food web interactions. Sci Rep 2018. [PMID: 29540759 PMCID: PMC5852047 DOI: 10.1038/s41598-018-22789-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The study of life history strategies has a long history in ecology and evolution, but determining the underlying mechanisms driving the evolution of life history variation and its consequences for population regulation remains a major challenge. In this study, a food web model with constant environmental conditions was used to demonstrate how multi-species consumer–resource interactions (food-web interactions) can create variation in the duration of the adult stage, age of maturation, and fecundity among species. The model included three key ecological processes: size-dependent species interactions, energetics, and transition among developmental stages. Resultant patterns of life history variation were consistent with previous empirical observations of the life history strategies of aquatic organisms referred to as periodic, equilibrium, and opportunistic strategies (trilateral continuums of life history strategies). Results from the simulation model suggest that these three life history strategies can emerge from food web interactions even when abiotic environmental conditions are held constant.
Collapse
|
37
|
Jackrel SL, Morton TC. Inducible phenotypic plasticity in plants regulates aquatic ecosystem functioning. Oecologia 2018; 186:895-906. [DOI: 10.1007/s00442-018-4094-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 02/12/2018] [Indexed: 11/28/2022]
|
38
|
Carlson BE, Langkilde T. Body size variation in aquatic consumers causes pervasive community effects, independent of mean body size. Ecol Evol 2017; 7:9978-9990. [PMID: 29238530 PMCID: PMC5723604 DOI: 10.1002/ece3.3511] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/09/2017] [Accepted: 09/21/2017] [Indexed: 11/08/2022] Open
Abstract
Intraspecific phenotypic variation is a significant component of biodiversity. Body size, for example, is variable and critical for structuring communities. We need to understand how homogenous and variably sized populations differ in their ecological responses or effects if we are to have a robust understanding of communities. We manipulated body size variation in consumer (tadpole) populations in mesocosms (both with and without predators), keeping mean size and density of these consumers constant. Size-variable consumer populations exhibited stronger antipredator responses (reduced activity), which had a cascading effect of increasing the biomass of the consumer's resources. Predators foraged less when consumers were variable in size, and this may have mediated the differential effects of predators on the community composition of alternative prey (zooplankton). All trophic levels responded to differences in consumer size variation, demonstrating that intrapopulation phenotypic variability can significantly alter interspecific ecological interactions. Furthermore, we identify a key mechanism (size thresholds for predation risk) that may mediate impacts of size variation in natural communities. Together, our results suggest that phenotypic variability plays a significant role in structuring ecological communities.
Collapse
Affiliation(s)
- Bradley E. Carlson
- Department of Biology, Intercollege Graduate Degree Program in Ecology, and Center for Brain, Behavior, and CognitionThe Pennsylvania State UniversityUniversity ParkPAUSA
| | - Tracy Langkilde
- Department of Biology, Intercollege Graduate Degree Program in Ecology, and Center for Brain, Behavior, and CognitionThe Pennsylvania State UniversityUniversity ParkPAUSA
| |
Collapse
|
39
|
Piovia-Scott J, Yang LH, Wright AN. Temporal Variation in Trophic Cascades. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2017. [DOI: 10.1146/annurev-ecolsys-121415-032246] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The trophic cascade has emerged as a key paradigm in ecology. Although ecologists have made progress in understanding spatial variation in the strength of trophic cascades, temporal variation remains relatively unexplored. Our review suggests that strong trophic cascades are often transient, appearing when ecological conditions support high consumer abundance and rapidly growing, highly edible prey. Persistent top-down control is expected to decay over time in the absence of external drivers, as strong top-down control favors the emergence of better-defended resources. Temporal shifts in cascade strength—including those driven by contemporary global change—can either stabilize or destabilize ecological communities. We suggest that a more temporally explicit approach can improve our ability to explain the drivers of trophic cascades and predict the impact of changing cascade strength on community dynamics.
Collapse
Affiliation(s)
- Jonah Piovia-Scott
- School of Biological Sciences, Washington State University, Vancouver, Washington
| | - Louie H. Yang
- Department of Entomology and Nematology, University of California, Davis, California
| | | |
Collapse
|
40
|
Abstract
Most species have one or more natural enemies, e.g., predators, parasites, pathogens, and herbivores, among others. These species in turn typically attack multiple victim species. This leads to the possibility of indirect interactions among those victims, both positive and negative. The term apparent competition commonly denotes negative indirect interactions between victim species that arise because they share a natural enemy. This indirect interaction, which in principle can be reflected in many facets of the distribution and abundance of individual species and more broadly govern the structure of ecological communities in time and space, pervades many natural ecosystems. It also is a central theme in many applied ecological problems, including the control of agricultural pests, harvesting, the conservation of endangered species, and the dynamics of emerging diseases. At one end of the scale of life, apparent competition characterizes intriguing aspects of dynamics within individual organisms—for example, the immune system is akin in many ways to a predator that can induce negative indirect interactions among different pathogens. At intermediate scales of biological organization, the existence and strength of apparent competition depend upon many contingent details of individual behavior and life history, as well as the community and spatial context within which indirect interactions play out. At the broadest scale of macroecology and macroevolution, apparent competition may play a major, if poorly understood, role in the evolution of species’ geographical ranges and adaptive radiations.
Collapse
Affiliation(s)
- Robert D. Holt
- Department of Biology, University of Florida, Gainesville, Florida 32611 USA
| | - Michael B. Bonsall
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| |
Collapse
|
41
|
Johnson DS, Williams BL. Sea level rise may increase extinction risk of a saltmarsh ontogenetic habitat specialist. Ecol Evol 2017; 7:7786-7795. [PMID: 29043034 PMCID: PMC5632627 DOI: 10.1002/ece3.3291] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/28/2017] [Accepted: 07/03/2017] [Indexed: 11/11/2022] Open
Abstract
Specialist species are more vulnerable to environmental change than generalist species. For species with ontogenetic niche shifts, specialization may occur at a particular life stage making those stages more susceptible to environmental change. In the salt marshes in the northeast U.S., accelerated sea level rise is shifting vegetation patterns from flood-intolerant species such as Spartina patens to the flood-tolerant Spartina alterniflora. We tested the potential impact of this change on the coffee bean snail, Melampus bidentatus, a numerically dominant benthic invertebrate with an ontogenetic niche shift. From a survey of eight marshes throughout the northeast U.S., small snails were found primarily in S. patens habitats, and large snails were found primarily in stunted S. alterniflora habitats. When transplanted into stunted S. alterniflora, small snails suffered significantly higher mortality relative to those in S. patens habitats; adult snail survivorship was similar between habitats. Because other habitats were not interchangeable with S. patens for young snails, these results suggest that Melampus is an ontogenetic specialist where young snails are habitat specialists and adult snails are habitat generalists. Temperature was significantly higher and relative humidity significantly lower in stunted S. alterniflora than in S. patens. These data suggest that thermal and desiccation stress restricted young snails to S. patens habitat, which has high stem density and a layer of thatch that protects snails from environmental stress. Other authors predict that if salt marshes in the northeast U.S. are unable to migrate landward, sea level rise will eliminate S. patens habitats. We suggest that if a salt marsh loses its S. patens habitats, it will also lose its coffee bean snails. Our results demonstrate the need to consider individual life stages when determining a species' vulnerability to global change.
Collapse
|
42
|
Vieira C, Ramires EN, Vasconcellos-Neto J, Poppi RJ, Romero GQ. Crab Spider Lures Prey In Flowerless Neighborhoods. Sci Rep 2017; 7:9188. [PMID: 28835630 PMCID: PMC5569008 DOI: 10.1038/s41598-017-09456-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/26/2017] [Indexed: 11/17/2022] Open
Abstract
One fundamental question in prey luring systems is to understand how visual signals are interpreted by the receiver. Predators lure prey by falsely imitating the signal of a model, or may exploit sensory preferences of the receivers, which search for rewarding signals. Crab spiders reflect ultraviolet (UV) light, ambush pollinators on flowers, and manipulate flower UV signals altering the behavior and response of prey. Whereas crab spiders typically depend on flowers to forage, adult Epicadus heterogaster departs from this standard behavior by preying on pollinators upon green leaves, even in the absence of flowers nearby. This species has a conspicuous abdomen resembling the shape of a flower, which may reflect UV signals similar to that of flowers, and thus attract pollinators. Nevertheless, no empirical evidence is available that E. heterogaster foraging on leaves mimics flowers, nor how this crab spider interacts with its prey. Field and laboratory experiments demonstrated that UV reflection of adult E. heterogaster is the main signal responsible for the attraction of pollinators. This is the first study to demonstrate that a crab spider attracts pollinators regardless of flower UV signal, which may represent an evolutionary pathway beyond the dependence of flowers.
Collapse
Affiliation(s)
- Camila Vieira
- Pós-graduação em Ecologia, Universidade Estadual de Campinas (UNICAMP), CP 6109, CEP 13083-970, Campinas-SP, Brazil
| | - Eduardo N Ramires
- Departamento Acadêmico de Química e Biologia, Universidade Tecnológica Federal do Paraná, CEP 80230-901, Curitiba-PR, Brazil
| | - João Vasconcellos-Neto
- Departamento de Biologia Animal, IB, Universidade Estadual de Campinas, CP 6109, CEP 13083-970, Campinas-SP, Brazil
| | - Ronei J Poppi
- Instituto de Química, IQ, Universidade Estadual de Campinas, CEP 13083-970, Campinas-SP, Brazil
| | - Gustavo Q Romero
- Departamento de Biologia Animal, IB, Universidade Estadual de Campinas, CP 6109, CEP 13083-970, Campinas-SP, Brazil.
| |
Collapse
|
43
|
Mao B, Mao R, Zeng DH. Species diversity and chemical properties of litter influence non-additive effects of litter mixtures on soil carbon and nitrogen cycling. PLoS One 2017; 12:e0180422. [PMID: 28686660 PMCID: PMC5501526 DOI: 10.1371/journal.pone.0180422] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/23/2017] [Indexed: 11/19/2022] Open
Abstract
Decomposition of litter mixtures generally cannot be predicted from the component species incubated in isolation. Therefore, such non-additive effects of litter mixing on soil C and N dynamics remain poorly understood in terrestrial ecosystems. In this study, litters of Mongolian pine and three dominant understory species and soil were collected from a Mongolian pine plantation in Northeast China. In order to examine the effects of mixed-species litter on soil microbial biomass N, soil net N mineralization and soil respiration, four single litter species and their mixtures consisting of all possible 2-, 3- and 4-species combinations were added to soils, respectively. In most instances, species mixing produced synergistic non-additive effects on soil microbial biomass N and soil respiration, but antagonistic non-additive effects on net N mineralization. Species composition rather than species richness explained the non-additive effects of species mixing on soil microbial biomass N and net N mineralization, due to the interspecific differences in litter chemical composition. Both litter species composition and richness explained non-additive soil respiration responses to mixed-species litter, while litter chemical diversity and chemical composition did not. Our study indicated that litter mixtures promoted soil microbial biomass N and soil respiration, and inhibited net N mineralization. Soil N related processes rather than soil respiration were partly explained by litter chemical composition and chemical diversity, highlighting the importance of functional diversity of litter on soil N cycling.
Collapse
Affiliation(s)
- Bing Mao
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Daqinggou Ecological Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Rong Mao
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - De-Hui Zeng
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Daqinggou Ecological Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- * E-mail:
| |
Collapse
|
44
|
Zhao T, Li C, Wang X, Xie F, Jiang J. Unraveling the relative contribution of inter- and intrapopulation functional variability in wild populations of a tadpole species. Ecol Evol 2017; 7:4726-4734. [PMID: 28690802 PMCID: PMC5496530 DOI: 10.1002/ece3.3048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 03/27/2017] [Accepted: 04/10/2017] [Indexed: 11/16/2022] Open
Abstract
Functional traits are increasingly recognized as an integrative approach by ecologists to quantify a key facet of biodiversity. And these traits are primarily expressed as species means in previous studies, based on the assumption that the effects of intraspecific variability can be overridden by interspecific variability when studying functional ecology at the community level. However, given that intraspecific variability could also have important effects on community dynamics and ecosystem functioning, empirical studies are needed to investigate the importance of intraspecific variability in functional traits. In this study, 256 Scutiger boulengeri tadpole individuals from four different populations are used to quantify the functional difference between populations within a species, and the relative contribution of inter‐ and intrapopulation variability in functional traits. Our results demonstrate that these four populations differ significantly in functional attributes (i.e., functional position, functional richness, and low functional overlap), indicating that individuals from different populations within a species should be explicitly accounted for in functional studies. We also find similar relative contribution of inter‐ (~56%) and intrapopulation (~44%) variation to the total variability between individuals, providing evidence that individuals within populations should also be incorporated in functional studies. Overall, our results support the recent claims that intraspecific variability cannot be ignored, as well as the general idea of “individual level” research in functional ecology.
Collapse
Affiliation(s)
- Tian Zhao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province Chengdu Institute of Biology Chinese Academy of Sciences Chengdu China
| | - Cheng Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province Chengdu Institute of Biology Chinese Academy of Sciences Chengdu China
| | - Xiaoyi Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province Chengdu Institute of Biology Chinese Academy of Sciences Chengdu China
| | - Feng Xie
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province Chengdu Institute of Biology Chinese Academy of Sciences Chengdu China
| | - Jianping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province Chengdu Institute of Biology Chinese Academy of Sciences Chengdu China
| |
Collapse
|
45
|
Evangelista C, Lecerf A, Britton JR, Cucherousset J. Resource composition mediates the effects of intraspecific variability in nutrient recycling on ecosystem processes. OIKOS 2017. [DOI: 10.1111/oik.03787] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Charlotte Evangelista
- EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement), Univ. de Toulouse, CNRS, INP, UPS; Toulouse France
| | - Antoine Lecerf
- EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement), Univ. de Toulouse, CNRS, INP, UPS; Toulouse France
| | - J. Robert Britton
- Dept for Life and Environmental Sciences; Faculty of Science and Technology, Bournemouth Univ., Poole; Dorset UK
| | - Julien Cucherousset
- CNRS, Univ. Toulouse III Paul Sabatier, ENFA, UMR 5174 EDB (Laboratoire Evolution & Diversité Biologique), 118 route de Narbonne; FR-31062 Toulouse France
| |
Collapse
|
46
|
Cloyed CS, Eason PK. Niche partitioning and the role of intraspecific niche variation in structuring a guild of generalist anurans. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170060. [PMID: 28405403 PMCID: PMC5383860 DOI: 10.1098/rsos.170060] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/14/2017] [Indexed: 05/30/2023]
Abstract
Intra-population niche differences in generalist foragers have captured the interest of ecologists, because such individuality can have important ecological and evolutionary implications. Few researchers have investigated how these differences affect the relationships among ecologically similar, sympatric species. Using stable isotopes, stomach contents, morphology and habitat preference, we examined niche partitioning within a group of five anurans and determined whether variation within species could facilitate resource partitioning. Species partitioned their niches by trophic level and by foraging habitat. However, there was considerable intraspecific variation in trophic level, with larger individuals generally feeding at higher trophic levels. For species at intermediate trophic levels, smaller individuals overlapped in trophic level with individuals of smaller species and larger individuals overlapped with the smallest individuals from larger species. Species varied in carbon isotopes; species with enriched carbon isotope ratios foraged farther from ponds, whereas species with depleted carbon isotope values foraged closer to ponds. Our study shows that these species partition their niches by feeding at different trophic levels and foraging at different distances from ponds. The intraspecific variation in trophic level decreased the number of individuals from each species that overlapped in trophic level with individuals from other species, which can facilitate species coexistence.
Collapse
Affiliation(s)
- Carl S. Cloyed
- National Great Rivers Research and Education Center, East Alton, IL 62024, USA
- Department of Biology, Washington University in St Louis, St Louis, MO 63130, USA
| | - Perri K. Eason
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
47
|
Selden RL, Gaines SD, Hamilton SL, Warner RR. Protection of large predators in a marine reserve alters size-dependent prey mortality. Proc Biol Sci 2017; 284:20161936. [PMID: 28123086 PMCID: PMC5310031 DOI: 10.1098/rspb.2016.1936] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/03/2017] [Indexed: 11/12/2022] Open
Abstract
Where predator-prey interactions are size-dependent, reductions in predator size owing to fishing has the potential to disrupt the ecological role of top predators in marine ecosystems. In southern California kelp forests, we investigated the size-dependence of the interaction between herbivorous sea urchins and one of their predators, California sheephead (Semicossyphus pulcher). Empirical tests examined how differences in predator size structure between reserve and fished areas affected size-specific urchin mortality. Sites inside marine reserves had greater sheephead size and biomass, while empirical feeding trials indicated that larger sheephead were required to successfully consume urchins of increasing test diameter. Evaluations of the selectivity of sheephead for two urchin species indicated that shorter-spined purple urchins were attacked more frequently and successfully than longer-spined red urchins of the same size class, particularly at the largest test diameters. As a result of these size-specific interactions and the higher biomass of large sheephead inside reserves, urchin mortality rates were three times higher inside the reserve for both species. In addition, urchin mortality rates decreased with urchin size, and very few large urchins were successfully consumed in fished areas. The truncation of sheephead size structure that commonly occurs owing to fishing will probably result in reductions in urchin mortality, which may reduce the resilience of kelp beds to urchin barren formation. By contrast, the recovery of predator size structure in marine reserves may restore this resilience, but may be delayed until fish grow to sizes capable of consuming larger urchins.
Collapse
Affiliation(s)
- Rebecca L Selden
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Steven D Gaines
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106, USA
| | - Scott L Hamilton
- Moss Landing Marine Laboratories, 8272 Moss Landing Road, Moss Landing, CA 95039, USA
| | - Robert R Warner
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
48
|
Caskenette AL, McCann KS. Biomass Reallocation between Juveniles and Adults Mediates Food Web Stability by Distributing Energy Away from Strong Interactions. PLoS One 2017; 12:e0170725. [PMID: 28114339 PMCID: PMC5256945 DOI: 10.1371/journal.pone.0170725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 12/28/2016] [Indexed: 11/19/2022] Open
Abstract
Ecological theory has uncovered dynamical differences between food web modules (i.e. low species food web configurations) with only species-level links and food web modules that include within-species links (e.g. non-feeding links between mature and immature individuals) and has argued that these differences ought to cause food web theory that includes within-species links to contrast with classical food web theory. It is unclear, however, if life-history will affect the observed connection between interaction strength and stability in species-level theory. We show that when the predator in a species-level food chain is split into juvenile and adult stages using a simple nested approach, stage-structure can mute potentially strong interactions through the transfer of biomass within a species. Within-species biomass transfer distributes energy away from strong interactions promoting increased system stability consistent with classical food web theory.
Collapse
Affiliation(s)
- Amanda L. Caskenette
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Kevin S. McCann
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
49
|
Legacy effects of developmental stages determine the functional role of predators. Nat Ecol Evol 2017; 1:38. [PMID: 28812616 DOI: 10.1038/s41559-016-0038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/21/2016] [Indexed: 11/09/2022]
Abstract
Predators are instrumental in structuring natural communities and ecosystem processes. The strong effects of predators are often attributed to their high trophic position in the food web. However, most predators have to grow and move up the food chain before reaching their final trophic position, and during this developmental process their traits, interactions and abundances change. Here, we show that this process of 'moving up' the food chain during development strongly determines the ecological role of a predator. By experimentally manipulating the succession of developmental stages of a predatory salamander in a seasonal aquatic ecosystem, we found that the effects of this apex predator on the ecosystem typically declined with age and size. Furthermore, younger, smaller predator stages had long-lasting effects on community structure and ecosystem function that determined the effects of subsequent older, larger stages. Consequently, the legacy effects of early stages largely shaped the impact of the predator on the ecosystem, which could not simply be inferred from its final trophic position. Our results highlight that accounting for all life stages when managing natural populations is crucial to preserve the functioning of natural ecosystems, especially given that early life stages of species are often particularly vulnerable to natural and anthropogenic disturbances.
Collapse
|
50
|
Sánchez-Hernández J, Eloranta AP, Finstad AG, Amundsen PA. Community structure affects trophic ontogeny in a predatory fish. Ecol Evol 2016; 7:358-367. [PMID: 28070298 PMCID: PMC5214065 DOI: 10.1002/ece3.2600] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/13/2016] [Accepted: 10/22/2016] [Indexed: 11/11/2022] Open
Abstract
While most studies have focused on the timing and nature of ontogenetic niche shifts, information is scarce about the effects of community structure on trophic ontogeny of top predators. We investigated how community structure affects ontogenetic niche shifts (i.e., relationships between body length, trophic position, and individual dietary specialization) of a predatory fish, brown trout (Salmo trutta). We used stable isotope and stomach content analyses to test how functional characteristics of lake fish community compositions (competition and prey availability) modulate niche shifts in terms of (i) piscivorous behavior, (ii) trophic position, and (iii) individual dietary specialization. Northern Scandinavian freshwater fish communities were used as a study system, including nine subarctic lakes with contrasting fish community configurations: (i) trout‐only systems, (ii) two‐species systems (brown trout and Arctic charr [Salvelinus alpinus] coexisting), and (iii) three‐species systems (brown trout, Arctic charr, and three‐spined sticklebacks [Gasterosteus aculeatus] coexisting). We expected that the presence of profitable small prey (stickleback) and mixed competitor–prey fish species (charr) supports early piscivory and high individual dietary specialization among trout in multispecies communities, whereas minor ontogenetic shifts were expected in trout‐only systems. From logistic regression models, the presence of a suitable prey fish species (stickleback) emerged as the principal variable determining the size at ontogenetic niche shifts. Generalized additive mixed models indicated that fish community structure shaped ontogenetic niche shifts in trout, with the strongest positive relationships between body length, trophic position, and individual dietary specialization being observed in three‐species communities. Our findings revealed that the presence of a small‐sized prey fish species (stickleback) rather than a mixed competitor–prey fish species (charr) was an important factor affecting the ontogenetic niche‐shift processes of trout. The study demonstrates that community structure may modulate the ontogenetic diet trajectories of and individual niche specialization within a top predator.
Collapse
Affiliation(s)
- Javier Sánchez-Hernández
- Department of Zoology, Genetics and Physical Anthropology University of Santiago de Compostela Santiago de Compostela Spain; Department of Arctic and Marine Biology UiT The Arctic University of Norway Tromsø Norway; Department of Natural History NTNU University Museum Trondheim Norway
| | - Antti P Eloranta
- Aquatic Ecology Department Norwegian Institute for Nature Research (NINA)Trondheim Norway; Department of Biological and Environmental Sciences University of Jyväskylä Jyväskylä Finland
| | - Anders G Finstad
- Department of Natural History NTNU University Museum Trondheim Norway; Aquatic Ecology Department Norwegian Institute for Nature Research (NINA)Trondheim Norway
| | - Per-Arne Amundsen
- Department of Arctic and Marine Biology UiT The Arctic University of Norway Tromsø Norway
| |
Collapse
|