1
|
Tavakoli-Kolour P, Sinniger F, Morita M, Hazraty-Kari S, Nakamura T, Harii S. Shallow corals acclimate to mesophotic depths while maintaining their heat tolerance against ongoing climate change. MARINE POLLUTION BULLETIN 2024; 209:117277. [PMID: 39561488 DOI: 10.1016/j.marpolbul.2024.117277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024]
Abstract
Global warming poses a significant threat to coral reefs. It has been assumed that mesophotic coral ecosystems (MCEs, 30 to 150 m depths) may serve as refugia from ocean warming. This study examined the acclimation capacity and thermal tolerance of two shallow coral species, Porites cylindrica and Turbinaria reniformis, transplanted to mesophotic depths (40 m) for 12 months. Fragments from 5 and 40 m were exposed to control (28 °C), moderate (30 °C), and high (32 °C) temperatures over 14 days. MCE-acclimated fragments showed higher thermal thresholds and survival rates, delayed onset of bleaching, and less decline in photosynthesis efficiency (Fv/Fm) compared to shallow fragments. Both species maintained high thermal tolerance despite prolonged exposure to cooler temperatures of mesophotic depth. These findings suggest that low light intensity in MCEs can act as a modulator of bleaching, supporting the potential of these ecosystems as refugia for shallow corals in a rapidly changing world.
Collapse
Affiliation(s)
- Parviz Tavakoli-Kolour
- Sesoko Marine Research Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan.
| | - Frederic Sinniger
- Sesoko Marine Research Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Masaya Morita
- Sesoko Marine Research Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Sanaz Hazraty-Kari
- Sesoko Marine Research Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Takashi Nakamura
- Sesoko Marine Research Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan; Graduate School of Engineering and Science, University of the Ryukyus, Okinawa, Japan
| | - Saki Harii
- Sesoko Marine Research Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan.
| |
Collapse
|
2
|
Denis H, Selmoni O, Gossuin H, Jauffrais T, Butler CC, Lecellier G, Berteaux-Lecellier V. Climate adaptive loci revealed by seascape genomics correlate with phenotypic variation in heat tolerance of the coral Acropora millepora. Sci Rep 2024; 14:22179. [PMID: 39333135 PMCID: PMC11436834 DOI: 10.1038/s41598-024-67971-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/18/2024] [Indexed: 09/29/2024] Open
Abstract
One of the main challenges in coral reef conservation and restoration is the identification of coral populations resilient under global warming. Seascape genomics is a powerful tool to uncover genetic markers potentially involved in heat tolerance among large populations without prior information on phenotypes. Here, we aimed to provide first insights on the role of candidate heat associated loci identified using seascape genomics in driving the phenotypic response of Acropora millepora from New Caledonia to thermal stress. We subjected 7 colonies to a long-term ex-situ heat stress assay (4 °C above the maximum monthly mean) and investigated their physiological response along with their Symbiodiniaceae communities and genotypes. Despite sharing similar thermal histories and associated symbionts, these conspecific individuals differed greatly in their tolerance to heat stress. More importantly, the clustering of individuals based on their genotype at heat-associated loci matched the phenotypic variation in heat tolerance. Colonies that sustained on average lower mortality, higher Symbiodiniaceae/chlorophyll concentrations and photosynthetic efficiency under prolonged heat stress were also the closest based on their genotypes, although the low sample size prevented testing loci predictive accuracy. Together these preliminary results support the relevance of coupling seascape genomics and long-term heat stress experiments in the future, to evaluate the effect size of candidate heat associated loci and pave the way for genomic predictive models of corals heat tolerance.
Collapse
Affiliation(s)
- Hugo Denis
- UMR250/9220 ENTROPIE (IRD-CNRS-UR-IFREMER-UNC), Promenade Roger-Laroque, Noumea Cedex, New Caledonia.
- Ecole Doctorale 129, SU Sorbonne Université, 4, Place Jussieu, 75252, Paris, France.
| | - Oliver Selmoni
- Laboratory of Geographic Information Systems (LASIG), EPFL, Lausanne, Switzerland
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
| | - Hugues Gossuin
- Laboratory of Marine Biology and Ecology, Aquarium des Lagons, Nouméa, New Caledonia
| | - Thierry Jauffrais
- UMR250/9220 ENTROPIE (IRD-CNRS-UR-IFREMER-UNC), Promenade Roger-Laroque, Noumea Cedex, New Caledonia
| | | | - Gaël Lecellier
- UMR250/9220 ENTROPIE (IRD-CNRS-UR-IFREMER-UNC), Promenade Roger-Laroque, Noumea Cedex, New Caledonia
- Institut des Sciences Exactes et Appliquées (ISEA) EA7484, 145, Avenue James Cook, BP R4 98 851, Nouméa, New Caledonia
| | | |
Collapse
|
3
|
Britton D, Layton C, Mundy CN, Brewer EA, Gaitán-Espitia JD, Beardall J, Raven JA, Hurd CL. Cool-edge populations of the kelp Ecklonia radiata under global ocean change scenarios: strong sensitivity to ocean warming but little effect of ocean acidification. Proc Biol Sci 2024; 291:20232253. [PMID: 38228502 DOI: 10.1098/rspb.2023.2253] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/04/2023] [Indexed: 01/18/2024] Open
Abstract
Kelp forests are threatened by ocean warming, yet effects of co-occurring drivers such as CO2 are rarely considered when predicting their performance in the future. In Australia, the kelp Ecklonia radiata forms extensive forests across seawater temperatures of approximately 7-26°C. Cool-edge populations are typically considered more thermally tolerant than their warm-edge counterparts but this ignores the possibility of local adaptation. Moreover, it is unknown whether elevated CO2 can mitigate negative effects of warming. To identify whether elevated CO2 could improve thermal performance of a cool-edge population of E. radiata, we constructed thermal performance curves for growth and photosynthesis, under both current and elevated CO2 (approx. 400 and 1000 µatm). We then modelled annual performance under warming scenarios to highlight thermal susceptibility. Elevated CO2 had minimal effect on growth but increased photosynthesis around the thermal optimum. Thermal optima were approximately 16°C for growth and approximately 18°C for photosynthesis, and modelled performance indicated cool-edge populations may be vulnerable in the future. Our findings demonstrate that elevated CO2 is unlikely to offset negative effects of ocean warming on the kelp E. radiata and highlight the potential susceptibility of cool-edge populations to ocean warming.
Collapse
Affiliation(s)
- Damon Britton
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Hobart, Tasmania 7004, Australia
| | - Cayne Layton
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Hobart, Tasmania 7004, Australia
| | - Craig N Mundy
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Hobart, Tasmania 7004, Australia
| | | | - Juan Diego Gaitán-Espitia
- School of Biological Sciences and the SWIRE Institute of Marine Sciences, The University of Hong-Kong, Hong Kong, People's Republic of China
| | - John Beardall
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - John A Raven
- Division of Plant Science, University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
- Climate Change Cluster, University of Technology, Sydney, Ultimo, New South Wales 2007, Australia
| | - Catriona L Hurd
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Hobart, Tasmania 7004, Australia
| |
Collapse
|
4
|
Denis H, Bay LK, Mocellin VJL, Naugle MS, Lecellier G, Purcell SW, Berteaux-Lecellier V, Howells EJ. Thermal tolerance traits of individual corals are widely distributed across the Great Barrier Reef. Proc Biol Sci 2024; 291:20240587. [PMID: 39257340 PMCID: PMC11463214 DOI: 10.1098/rspb.2024.0587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/19/2024] [Accepted: 07/10/2024] [Indexed: 09/12/2024] Open
Abstract
Adaptation of reef-building corals to global warming depends upon standing heritable variation in tolerance traits upon which selection can act. Yet limited knowledge exists on heat-tolerance variation among conspecific individuals separated by metres to hundreds of kilometres. Here, we performed standardized acute heat-stress assays to quantify the thermal tolerance traits of 709 colonies of Acropora spathulata from 13 reefs spanning 1060 km (9.5° latitude) of the Great Barrier Reef. Thermal thresholds for photochemical efficiency and chlorophyll retention varied considerably among individual colonies both among reefs (approximately 6°C) and within reefs (approximately 3°C). Although tolerance rankings of colonies varied between traits, the most heat-tolerant corals (i.e. top 25% of each trait) were found at virtually all reefs, indicating widespread phenotypic variation. Reef-scale environmental predictors explained 12-62% of trait variation. Corals exposed to high thermal averages and recent thermal stress exhibited the greatest photochemical performance, probably reflecting local adaptation and stress pre-acclimatization, and the lowest chlorophyll retention suggesting stress pre-sensitization. Importantly, heat tolerance relative to local summer temperatures was the greatest on higher latitude reefs suggestive of higher adaptive potential. These results can be used to identify naturally tolerant coral populations and individuals for conservation and restoration applications.
Collapse
Affiliation(s)
- Hugo Denis
- UMR250/9220 ENTROPIE (IRD-CNRS-UR-IFREMER-UNC), Promenade Roger-Laroque, Noumea Cedex, New Caledonia, France
- ED 129, Sorbonne Université, 4, Place Jussieu, Paris75252, France
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Line K. Bay
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | | | - Melissa S. Naugle
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Gaël Lecellier
- UMR250/9220 ENTROPIE (IRD-CNRS-UR-IFREMER-UNC), Promenade Roger-Laroque, Noumea Cedex, New Caledonia, France
- Institut de Sciences Exactes et Appliquées (ISEA) EA7484, 145, Avenue James Cook, NouméaBP R4 98 851, New Caledonia
| | - Steven W. Purcell
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | | | - Emily J. Howells
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
| |
Collapse
|
5
|
Amario M, Villela LB, Jardim-Messeder D, Silva-Lima AW, Rosado PM, de Moura RL, Sachetto-Martins G, Chaloub RM, Salomon PS. Physiological response of Symbiodiniaceae to thermal stress: Reactive oxygen species, photosynthesis, and relative cell size. PLoS One 2023; 18:e0284717. [PMID: 37535627 PMCID: PMC10399794 DOI: 10.1371/journal.pone.0284717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 04/06/2023] [Indexed: 08/05/2023] Open
Abstract
This study investigates the physiological response to heat stress of three genetically different Symbiodiniaceae strains isolated from the scleractinian coral Mussismilia braziliensis, endemic of the Abrolhos Bank, Brazil. Cultures of two Symbiodinium sp. and one Cladocopium sp. were exposed to a stepwise increase in temperature (2°C every second day) ranging from 26°C (modal temperature in Abrolhos) to 32°C (just above the maximum temperature registered in Abrolhos during the third global bleaching event-TGBE). After the cultures reached their final testing temperature, reactive oxygen species (ROS) production, single cell attributes (relative cell size and chlorophyll fluorescence), and photosynthetic efficiency (effective (Y(II)) and maximum (Fv/Fm) quantum yields) were measured within 4 h and 72 h. Non-photochemical coefficient (NPQ) was estimated based on fluorescence values. Population average ROS production was variable across strains and exposure times, reaching up a 2-fold increase at 32°C in one of the Symbiodinium sp. strains. A marked intrapopulation difference was observed in ROS production, with 5 to 25% of the cells producing up to 10 times more than the population average, highlighting the importance of single cell approaches to assess population physiology. Average cell size increases at higher temperatures, likely resulting from cell cycle arrest, whereas chlorophyll fluorescence decreased, especially in 4 h, indicating a photoacclimation response. The conditions tested do not seem to have elicited loss of photosynthetic efficiency nor the activation of non-photochemical mechanisms in the cells. Our results unveiled a generalized thermotolerance in three Symbiodiniaceae strains originated from Abrolhos' corals. Inter and intra-specific variability could be detected, likely reflecting the genetic differences among the strains.
Collapse
Affiliation(s)
- Michelle Amario
- Laboratório de Fitoplâncton Marinho, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Genética, Rio de Janeiro, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lívia Bonetti Villela
- Laboratório de Fitoplâncton Marinho, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Genética, Rio de Janeiro, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Douglas Jardim-Messeder
- Laboratório de Genômica Funcional e Transdução de Sinal, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Instituto de Biologia, Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Arthur Weiss Silva-Lima
- Laboratório de Fitoplâncton Marinho, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Rodrigo Leão de Moura
- Laboratório de Monitoramento da Biodiversidade, Instituto de Biologia SAGE-COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gilberto Sachetto-Martins
- Laboratório de Genômica Funcional e Transdução de Sinal, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Instituto de Biologia, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo Moreira Chaloub
- Laboratório de Estudos Aplicados em Fotossíntese, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo Sergio Salomon
- Laboratório de Fitoplâncton Marinho, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Pigot AL, Merow C, Wilson A, Trisos CH. Abrupt expansion of climate change risks for species globally. Nat Ecol Evol 2023; 7:1060-1071. [PMID: 37202503 DOI: 10.1038/s41559-023-02070-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 04/14/2023] [Indexed: 05/20/2023]
Abstract
Climate change is already exposing species to dangerous temperatures driving widespread population and geographical contractions. However, little is known about how these risks of thermal exposure will expand across species' existing geographical ranges over time as climate change continues. Here, using geographical data for approximately 36,000 marine and terrestrial species and climate projections to 2100, we show that the area of each species' geographical range at risk of thermal exposure will expand abruptly. On average, more than 50% of the increase in exposure projected for a species will occur in a single decade. This abruptness is partly due to the rapid pace of future projected warming but also because the greater area available at the warm end of thermal gradients constrains species to disproportionately occupy sites close to their upper thermal limit. These geographical constraints on the structure of species ranges operate both on land and in the ocean and mean that, even in the absence of amplifying ecological feedbacks, thermally sensitive species may be inherently vulnerable to sudden warming-driven collapse. With higher levels of warming, the number of species passing these thermal thresholds, and at risk of abrupt and widespread thermal exposure, increases, doubling from less than 15% to more than 30% between 1.5 °C and 2.5 °C of global warming. These results indicate that climate threats to thousands of species are expected to expand abruptly in the coming decades, thereby highlighting the urgency of mitigation and adaptation actions.
Collapse
Affiliation(s)
- Alex L Pigot
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK.
| | - Cory Merow
- Eversource Energy Center and Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Adam Wilson
- Department of Geography, University at Buffalo, Buffalo, NY, USA
| | - Christopher H Trisos
- African Climate and Development Initiative, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
7
|
Shlesinger T, van Woesik R. Oceanic differences in coral-bleaching responses to marine heatwaves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162113. [PMID: 36773903 DOI: 10.1016/j.scitotenv.2023.162113] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Anomalously high ocean temperatures have increased in frequency, intensity, and duration over the last several decades because of greenhouse gas emissions that cause global warming and marine heatwaves. Reef-building corals are sensitive to such temperature anomalies that commonly lead to coral bleaching, mortality, and changes in community structure. Yet, despite these overarching effects, there are geographical differences in thermal regimes, evolutionary histories, and past disturbances that may lead to different bleaching responses of corals within and among oceans. Here we examined the overall bleaching responses of corals in the Atlantic, Indian, and Pacific Oceans, using both a spatially explicit Bayesian mixed-effects model and a deep-learning neural-network model. We used a 40-year global dataset encompassing 23,288 coral-reef surveys at 11,058 sites in 88 countries, from 1980 to 2020. Focusing on ocean-wide differences we assessed the relationships between the percentage of bleached corals and different temperature-related metrics alongside a suite of environmental variables. We found that while high sea-surface temperatures were consistently, and strongly, related to coral bleaching within all oceans, there were clear geographical differences in the relationships between coral bleaching and most environmental variables. For instance, there was an increase in coral bleaching with depth in the Atlantic Ocean whereas the opposite was observed in the Indian Ocean, and no clear trend could be seen in the Pacific Ocean. The standard deviation of thermal-stress anomalies was negatively related to coral bleaching in the Atlantic and Pacific Oceans, but not in the Indian Ocean. Globally, coral bleaching has progressively occurred at higher temperatures over the last four decades within the Atlantic, Indian, and Pacific Oceans, although, again, there were differences among the three oceans. Together, such patterns highlight that historical circumstances and geographical differences in oceanographic conditions play a central role in contemporary coral-bleaching responses.
Collapse
Affiliation(s)
- Tom Shlesinger
- Institute for Global Ecology, Florida Institute of Technology, Melbourne 32901, FL, USA
| | - Robert van Woesik
- Institute for Global Ecology, Florida Institute of Technology, Melbourne 32901, FL, USA.
| |
Collapse
|
8
|
Lachs L, Humanes A, Pygas DR, Bythell JC, Mumby PJ, Ferrari R, Figueira WF, Beauchamp E, East HK, Edwards AJ, Golbuu Y, Martinez HM, Sommer B, van der Steeg E, Guest JR. No apparent trade-offs associated with heat tolerance in a reef-building coral. Commun Biol 2023; 6:400. [PMID: 37046074 PMCID: PMC10097654 DOI: 10.1038/s42003-023-04758-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/24/2023] [Indexed: 04/14/2023] Open
Abstract
As marine species adapt to climate change, their heat tolerance will likely be under strong selection. Yet trade-offs between heat tolerance and other life history traits could compromise natural adaptation or assisted evolution. This is particularly important for ecosystem engineers, such as reef-building corals, which support biodiversity yet are vulnerable to heatwave-induced mass bleaching and mortality. Here, we exposed 70 colonies of the reef-building coral Acropora digitifera to a long-term marine heatwave emulation experiment. We tested for trade-offs between heat tolerance and three traits measured from the colonies in situ - colony growth, fecundity, and symbiont community composition. Despite observing remarkable within-population variability in heat tolerance, all colonies were dominated by Cladocopium C40 symbionts. We found no evidence for trade-offs between heat tolerance and fecundity or growth. Contrary to expectations, positive associations emerged with growth, such that faster-growing colonies tended to bleach and die at higher levels of heat stress. Collectively, our results suggest that these corals exist on an energetic continuum where some high-performing individuals excel across multiple traits. Within populations, trade-offs between heat tolerance and growth or fecundity may not be major barriers to natural adaptation or the success of assisted evolution interventions.
Collapse
Affiliation(s)
- Liam Lachs
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | - Adriana Humanes
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Daniel R Pygas
- Australian Institute of Marine Sciences, Townsville, QLD, 4810, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - John C Bythell
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Peter J Mumby
- Marine Spatial Ecology Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD, 4072, Australia
- Palau International Coral Reef Center, Koror, 96940, Palau
| | - Renata Ferrari
- Australian Institute of Marine Sciences, Townsville, QLD, 4810, Australia
| | - Will F Figueira
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Elizabeth Beauchamp
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Holly K East
- Department of Geography and Environmental Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Alasdair J Edwards
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Yimnang Golbuu
- Palau International Coral Reef Center, Koror, 96940, Palau
| | - Helios M Martinez
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Brigitte Sommer
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Eveline van der Steeg
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - James R Guest
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
9
|
Page CA, Giuliano C, Bay LK, Randall CJ. High survival following bleaching underscores the resilience of a frequently disturbed region of the Great Barrier Reef. Ecosphere 2023. [DOI: 10.1002/ecs2.4280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Affiliation(s)
- Cathie A. Page
- Australian Institute of Marine Science Townsville Queensland Australia
| | | | - Line K. Bay
- Australian Institute of Marine Science Townsville Queensland Australia
| | - Carly J. Randall
- Australian Institute of Marine Science Townsville Queensland Australia
| |
Collapse
|
10
|
Marzonie MR, Bay LK, Bourne DG, Hoey AS, Matthews S, Nielsen JJV, Harrison HB. The effects of marine heatwaves on acute heat tolerance in corals. GLOBAL CHANGE BIOLOGY 2023; 29:404-416. [PMID: 36285622 PMCID: PMC10092175 DOI: 10.1111/gcb.16473] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/16/2022] [Accepted: 09/16/2022] [Indexed: 05/19/2023]
Abstract
Scleractinian coral populations are increasingly exposed to conditions above their upper thermal limits due to marine heatwaves, contributing to global declines of coral reef ecosystem health. However, historic mass bleaching events indicate there is considerable inter- and intra-specific variation in thermal tolerance whereby species, individual coral colonies and populations show differential susceptibility to exposure to elevated temperatures. Despite this, we lack a clear understanding of how heat tolerance varies across large contemporary and historical environmental gradients, or the selective pressures that underpin this variation. Here we conducted standardised acute heat stress experiments to identify variation in heat tolerance among species and isolated reefs spanning a large environmental gradient across the Coral Sea Marine Park. We quantified the photochemical yield (Fv /Fm ) of coral samples in three coral species, Acropora cf humilis, Pocillopora meandrina, and Pocillopora verrucosa, following exposure to four temperature treatments (local ambient temperatures, and + 3°C, +6°C and + 9°C above local maximum monthly mean). We quantified the temperature at which Fv /Fm decreased by 50% (termed ED50) and used derived values to directly compare acute heat tolerance across reefs and species. The ED50 for Acropora was 0.4-0.7°C lower than either Pocillopora species, with a 0.3°C difference between the two Pocillopora species. We also recorded 0.9°C to 1.9°C phenotypic variation in heat tolerance among reefs within species, indicating spatial heterogeneity in heat tolerance across broad environmental gradients. Acute heat tolerance had a strong positive relationship to mild heatwave exposure over the past 35 years (since 1986) but was negatively related to recent severe heatwaves (2016-2020). Phenotypic variation associated with mild thermal history in local environments provides supportive evidence that marine heatwaves are selecting for tolerant individuals and populations; however, this adaptive potential may be compromised by the exposure to recent severe heatwaves.
Collapse
Affiliation(s)
- Magena R. Marzonie
- Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
- AIMS@JCUTownsvilleQueenslandAustralia
| | - Line K. Bay
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
- AIMS@JCUTownsvilleQueenslandAustralia
| | - David G. Bourne
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
- College of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
| | - Andrew S. Hoey
- Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Samuel Matthews
- Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Josephine J. V. Nielsen
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
- AIMS@JCUTownsvilleQueenslandAustralia
- College of Public Health, Medical and Veterinary SciencesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Hugo B. Harrison
- Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
- AIMS@JCUTownsvilleQueenslandAustralia
| |
Collapse
|
11
|
Davies SW, Gamache MH, Howe-Kerr LI, Kriefall NG, Baker AC, Banaszak AT, Bay LK, Bellantuono AJ, Bhattacharya D, Chan CX, Claar DC, Coffroth MA, Cunning R, Davy SK, del Campo J, Díaz-Almeyda EM, Frommlet JC, Fuess LE, González-Pech RA, Goulet TL, Hoadley KD, Howells EJ, Hume BCC, Kemp DW, Kenkel CD, Kitchen SA, LaJeunesse TC, Lin S, McIlroy SE, McMinds R, Nitschke MR, Oakley CA, Peixoto RS, Prada C, Putnam HM, Quigley K, Reich HG, Reimer JD, Rodriguez-Lanetty M, Rosales SM, Saad OS, Sampayo EM, Santos SR, Shoguchi E, Smith EG, Stat M, Stephens TG, Strader ME, Suggett DJ, Swain TD, Tran C, Traylor-Knowles N, Voolstra CR, Warner ME, Weis VM, Wright RM, Xiang T, Yamashita H, Ziegler M, Correa AMS, Parkinson JE. Building consensus around the assessment and interpretation of Symbiodiniaceae diversity. PeerJ 2023; 11:e15023. [PMID: 37151292 PMCID: PMC10162043 DOI: 10.7717/peerj.15023] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/17/2023] [Indexed: 05/09/2023] Open
Abstract
Within microeukaryotes, genetic variation and functional variation sometimes accumulate more quickly than morphological differences. To understand the evolutionary history and ecology of such lineages, it is key to examine diversity at multiple levels of organization. In the dinoflagellate family Symbiodiniaceae, which can form endosymbioses with cnidarians (e.g., corals, octocorals, sea anemones, jellyfish), other marine invertebrates (e.g., sponges, molluscs, flatworms), and protists (e.g., foraminifera), molecular data have been used extensively over the past three decades to describe phenotypes and to make evolutionary and ecological inferences. Despite advances in Symbiodiniaceae genomics, a lack of consensus among researchers with respect to interpreting genetic data has slowed progress in the field and acted as a barrier to reconciling observations. Here, we identify key challenges regarding the assessment and interpretation of Symbiodiniaceae genetic diversity across three levels: species, populations, and communities. We summarize areas of agreement and highlight techniques and approaches that are broadly accepted. In areas where debate remains, we identify unresolved issues and discuss technologies and approaches that can help to fill knowledge gaps related to genetic and phenotypic diversity. We also discuss ways to stimulate progress, in particular by fostering a more inclusive and collaborative research community. We hope that this perspective will inspire and accelerate coral reef science by serving as a resource to those designing experiments, publishing research, and applying for funding related to Symbiodiniaceae and their symbiotic partnerships.
Collapse
Affiliation(s)
- Sarah W. Davies
- Department of Biology, Boston University, Boston, MA, United States
| | - Matthew H. Gamache
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
| | | | | | - Andrew C. Baker
- Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, United States
| | - Anastazia T. Banaszak
- Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| | - Line Kolind Bay
- Australian Institute of Marine Science, Townsville, Australia
| | - Anthony J. Bellantuono
- Department of Biological Sciences, Florida International University, Miami, FL, United States
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, United States
| | - Cheong Xin Chan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Danielle C. Claar
- Nearshore Habitat Program, Washington State Department of Natural Resources, Olympia, WA, USA
| | | | - Ross Cunning
- Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, Chicago, IL, United States
| | - Simon K. Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Javier del Campo
- Institut de Biologia Evolutiva (CSIC - Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | | | - Jörg C. Frommlet
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Lauren E. Fuess
- Department of Biology, Texas State University, San Marcos, TX, United States
| | - Raúl A. González-Pech
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
- Department of Biology, Pennsylvania State University, State College, PA, United States
| | - Tamar L. Goulet
- Department of Biology, University of Mississippi, University, MS, United States
| | - Kenneth D. Hoadley
- Department of Biological Sciences, University of Alabama—Tuscaloosa, Tuscaloosa, AL, United States
| | - Emily J. Howells
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia
| | | | - Dustin W. Kemp
- Department of Biology, University of Alabama—Birmingham, Birmingham, Al, United States
| | - Carly D. Kenkel
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Sheila A. Kitchen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Todd C. LaJeunesse
- Department of Biology, Pennsylvania State University, University Park, PA, United States
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut, Mansfield, CT, United States
| | - Shelby E. McIlroy
- Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Ryan McMinds
- Center for Global Health and Infectious Disease Research, University of South Florida, Tampa, FL, United States
| | | | - Clinton A. Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Raquel S. Peixoto
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Carlos Prada
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
| | - Hollie M. Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
| | | | - Hannah G. Reich
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
| | - James Davis Reimer
- Department of Biology, Chemistry and Marine Sciences, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | | | - Stephanie M. Rosales
- The Cooperative Institute For Marine and Atmospheric Studies, Miami, FL, United States
| | - Osama S. Saad
- Department of Biological Oceanography, Red Sea University, Port-Sudan, Sudan
| | - Eugenia M. Sampayo
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Scott R. Santos
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, United States
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Edward G. Smith
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Michael Stat
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Timothy G. Stephens
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, United States
| | - Marie E. Strader
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - David J. Suggett
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Timothy D. Swain
- Department of Marine and Environmental Science, Nova Southeastern University, Dania Beach, FL, United States
| | - Cawa Tran
- Department of Biology, University of San Diego, San Diego, CA, United States
| | - Nikki Traylor-Knowles
- Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, United States
| | | | - Mark E. Warner
- School of Marine Science and Policy, University of Delaware, Lewes, DE, United States
| | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Rachel M. Wright
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, United States
| | - Tingting Xiang
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Hiroshi Yamashita
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Ishigaki, Okinawa, Japan
| | - Maren Ziegler
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen (Germany), Giessen, Germany
| | | | - John Everett Parkinson
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
| |
Collapse
|
12
|
Exploring the response of a key Mediterranean gorgonian to heat stress across biological and spatial scales. Sci Rep 2022; 12:21064. [PMID: 36473926 PMCID: PMC9726941 DOI: 10.1038/s41598-022-25565-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Understanding the factors and processes that shape intra-specific sensitivity to heat stress is fundamental to better predicting the vulnerability of benthic species to climate change. Here, we investigate the response of a habitat-forming Mediterranean octocoral, the red gorgonian Paramuricea clavata (Risso, 1826) to thermal stress at multiple biological and geographical scales. Samples from eleven P. clavata populations inhabiting four localities separated by hundreds to more than 1500 km of coast and with contrasting thermal histories were exposed to a critical temperature threshold (25 °C) in a common garden experiment in aquaria. Ten of the 11 populations lacked thermotolerance to the experimental conditions provided (25 days at 25 °C), with 100% or almost 100% colony mortality by the end of the experiment. Furthermore, we found no significant association between local average thermal regimes nor recent thermal history (i.e., local water temperatures in the 3 months prior to the experiment) and population thermotolerance. Overall, our results suggest that local adaptation and/or acclimation to warmer conditions have a limited role in the response of P. clavata to thermal stress. The study also confirms the sensitivity of this species to warm temperatures across its distributional range and questions its adaptive capacity under ocean warming conditions. However, important inter-individual variation in thermotolerance was found within populations, particularly those exposed to the most severe prior marine heatwaves. These observations suggest that P. clavata could harbor adaptive potential to future warming acting on standing genetic variation (i.e., divergent selection) and/or environmentally-induced phenotypic variation (i.e., intra- and/or intergenerational plasticity).
Collapse
|
13
|
Caruso C, Rocha de Souza M, Ruiz‐Jones L, Conetta D, Hancock J, Hobbs C, Hobbs C, Kahkejian V, Kitchen R, Marin C, Monismith S, Madin J, Gates R, Drury C. Genetic patterns in Montipora capitata across an environmental mosaic in Kāne'ohe Bay, O'ahu, Hawai'i. Mol Ecol 2022; 31:5201-5213. [PMID: 35962751 PMCID: PMC9825948 DOI: 10.1111/mec.16655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 05/24/2022] [Accepted: 08/02/2022] [Indexed: 01/11/2023]
Abstract
Spatial genetic structure (SGS) is important to a population's ability to adapt to environmental change. For species that reproduce both sexually and asexually, the relative contribution of each reproductive mode has important ecological and evolutionary implications because asexual reproduction can have a strong effect on SGS. Reef-building corals reproduce sexually, but many species also propagate asexually under certain conditions. To understand SGS and the relative importance of reproductive mode across environmental gradients, we evaluated genetic relatedness in almost 600 colonies of Montipora capitata across 30 environmentally characterized sites in Kāne'ohe Bay, O'ahu, Hawaii, using low-depth restriction digest-associated sequencing. Clonal colonies were relatively rare overall but influenced SGS. Clones were located significantly closer to one another spatially than average colonies and were more frequent on sites where wave energy was relatively high, suggesting a strong role of mechanical breakage in their formation. Excluding clones, we found no evidence of isolation by distance within sites or across the bay. Several environmental characteristics were significant predictors of the underlying genetic variation (including degree heating weeks, time spent above 30°C, depth, sedimentation rate and wave height); however, they only explained 5% of this genetic variation. Our results show that asexual fragmentation contributes to the ecology of branching corals at local scales and that genetic diversity is maintained despite strong environmental gradients in a highly impacted ecosystem, suggesting potential for broad adaptation or acclimatization in this population.
Collapse
Affiliation(s)
- Carlo Caruso
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at MānoaKāne'oheHawai'iUSA
| | | | | | | | - Joshua Hancock
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at MānoaKāne'oheHawai'iUSA
| | | | | | - Valerie Kahkejian
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at MānoaKāne'oheHawai'iUSA
| | - Rebecca Kitchen
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at MānoaKāne'oheHawai'iUSA
| | - Christian Marin
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at MānoaKāne'oheHawai'iUSA
| | | | - Joshua Madin
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at MānoaKāne'oheHawai'iUSA
| | - Ruth Gates
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at MānoaKāne'oheHawai'iUSA
| | - Crawford Drury
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at MānoaKāne'oheHawai'iUSA
| |
Collapse
|
14
|
DeFilippo LB, McManus LC, Schindler DE, Pinsky ML, Colton MA, Fox HE, Tekwa EW, Palumbi SR, Essington TE, Webster MM. Assessing the potential for demographic restoration and assisted evolution to build climate resilience in coral reefs. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2650. [PMID: 35538738 PMCID: PMC9788104 DOI: 10.1002/eap.2650] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Interest is growing in developing conservation strategies to restore and maintain coral reef ecosystems in the face of mounting anthropogenic stressors, particularly climate warming and associated mass bleaching events. One such approach is to propagate coral colonies ex situ and transplant them to degraded reef areas to augment habitat for reef-dependent fauna, prevent colonization from spatial competitors, and enhance coral reproductive output. In addition to such "demographic restoration" efforts, manipulating the thermal tolerance of outplanted colonies through assisted relocation, selective breeding, or genetic engineering is being considered for enhancing rates of evolutionary adaptation to warming. Although research into such "assisted evolution" strategies has been growing, their expected performance remains unclear. We evaluated the potential outcomes of demographic restoration and assisted evolution in climate change scenarios using an eco-evolutionary simulation model. We found that supplementing reefs with pre-existing genotypes (demographic restoration) offers little climate resilience benefits unless input levels are large and maintained for centuries. Supplementation with thermally resistant colonies was successful at improving coral cover at lower input levels, but only if maintained for at least a century. Overall, we found that, although demographic restoration and assisted evolution have the potential to improve long-term coral cover, both approaches had a limited impact in preventing severe declines under climate change scenarios. Conversely, with sufficient natural genetic variance and time, corals could readily adapt to warming temperatures, suggesting that restoration approaches focused on building genetic variance may outperform those based solely on introducing heat-tolerant genotypes.
Collapse
Affiliation(s)
- Lukas B. DeFilippo
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashingtonUSA
- Present address:
Resource Assessment and Conservation Engineering DivisionNOAA Alaska Fisheries Science CenterSeattleWashingtonUSA
| | - Lisa C. McManus
- Department of Ecology, Evolution, and Natural ResourcesRutgers UniversityNew BrunswickNew JerseyUSA
- Hawaiʻi Institute of Marine BiologyUniversity of Hawaiʻi at ManoaKaneʻoheHawaiiUSA
| | - Daniel E. Schindler
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Malin L. Pinsky
- Department of Ecology, Evolution, and Natural ResourcesRutgers UniversityNew BrunswickNew JerseyUSA
| | | | | | - E. W. Tekwa
- Department of Ecology, Evolution, and Natural ResourcesRutgers UniversityNew BrunswickNew JerseyUSA
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Stephen R. Palumbi
- Department of Biology, Hopkins Marine StationStanford UniversityPacific GroveCaliforniaUSA
| | - Timothy E. Essington
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Michael M. Webster
- Department of Environmental StudiesNew York UniversityNew YorkNew YorkUSA
| |
Collapse
|
15
|
Howells EJ, Hagedorn M, Van Oppen MJ, Burt JA. Challenges of sperm cryopreservation in transferring heat adaptation of corals across ocean basins. PeerJ 2022; 10:e13395. [PMID: 35651741 PMCID: PMC9150692 DOI: 10.7717/peerj.13395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/16/2022] [Indexed: 01/14/2023] Open
Abstract
Reef-building corals live very close to their upper thermal limits and their persistence is imperiled by a rapidly warming climate. Human interventions may be used to increase the thermal limits of sensitive corals by cross-breeding with heat-adapted populations. However, the scope of breeding interventions is constrained by regional variation in the annual reproductive cycle of corals. Here we use cryopreservation technology to overcome this barrier and cross-breed conspecific coral populations across ocean basins for the first time. During regional spawning events, sperm samples were cryopreserved from populations of the widespread Indo-Pacific coral, Platygyra daedalea, from the southern Persian Gulf (maximum daily sea surface temperature of 36 °C), the Oman Sea (33 °C), and the central Great Barrier Reef (30 °C). These sperm samples were thawed during a later spawning event to test their ability to fertilize freshly spawned eggs of P. daedalea colonies from the central Great Barrier Reef. Average fertilization success for the Persian Gulf (9%) and Oman Sea (6%) sperm were 1.4-2.5 times lower than those for the native cryopreserved sperm from Great Barrier Reef (13-15%), potentially due to lower sperm quality of the Middle Eastern sperm and/or reproductive incompatibility between these distant populations. Overall, fertilization success with cryopreserved sperm was low compared with fresh sperm (>80%), likely due to the low motility of thawed sperm (≤5%, reduced from 50% to >90% in fresh sperm). To evaluate whether cross-bred offspring had enhanced thermal tolerance, the survival of larvae sired by Persian Gulf cryopreserved sperm, Great Barrier Reef cryopreserved sperm, and Great Barrier Reef fresh sperm was monitored for six days at ambient (27 °C) and elevated (33 °C) temperature. Against expectations of thermal tolerance enhancement, survival of larvae sired by Persian Gulf cryopreserved sperm was 2.6 times lower than larvae sired by Great Barrier Reef fresh sperm at 33 °C (27% versus 71%), but did not differ at 27 °C (77% versus 84%). This lack of enhanced thermal tolerance was unlikely due to outbreeding depression as survival was equally poor in larvae sired by Great Barrier Reef cryopreserved sperm. Rather, follow-up tests showed that cryoprotectant exposure during fertilization (0.1% DMSO) has a negative effect on the survival of P. daedalea larvae which is exacerbated at elevated temperature. Collectively, our findings highlight challenges of breeding corals for enhanced thermal tolerance using cryopreserved sperm, which may be overcome by methodological advances in the collection and preservation of high-quality motile sperm and minimizing the exposure time of eggs to cryoprotectants.
Collapse
Affiliation(s)
- Emily J. Howells
- Water Research Center and Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates,National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Mary Hagedorn
- Center for Species Survival, Smithsonian Conservation Biology Institute, Smithsonian Institution, Free Royal, Virginia, United States of America,Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, Hawaii, United States of America
| | - Madeleine J.H. Van Oppen
- School of Biocsiences, The University of Melbourne, Melbourne, Victoria, Australia,Australian Institute of Marine Science, Townsville, Queenslabd, Australia
| | - John A. Burt
- Water Research Center and Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
16
|
Thomas L, Underwood JN, Rose NH, Fuller ZL, Richards ZT, Dugal L, Grimaldi CM, Cooke IR, Palumbi SR, Gilmour JP. Spatially varying selection between habitats drives physiological shifts and local adaptation in a broadcast spawning coral on a remote atoll in Western Australia. SCIENCE ADVANCES 2022; 8:eabl9185. [PMID: 35476443 PMCID: PMC9045720 DOI: 10.1126/sciadv.abl9185] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
At the Rowley Shoals in Western Australia, the prominent reef flat becomes exposed on low tide and the stagnant water in the shallow atoll lagoons heats up, creating a natural laboratory for characterizing the mechanisms of coral resilience to climate change. To explore these mechanisms in the reef coral Acropora tenuis, we collected samples from lagoon and reef slope habitats and combined whole-genome sequencing, ITS2 metabarcoding, experimental heat stress, and transcriptomics. Despite high gene flow across the atoll, we identified clear shifts in allele frequencies between habitats at relatively small linked genomic islands. Common garden heat stress assays showed corals from the lagoon to be more resistant to bleaching, and RNA sequencing revealed marked differences in baseline levels of gene expression between habitats. Our results provide new insight into the complex mechanisms of coral resilience to climate change and highlight the potential for spatially varying selection across complex coral reef seascapes to drive pronounced ecological divergence in climate-related traits.
Collapse
Affiliation(s)
- Luke Thomas
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, Australia
- UWA Oceans Institute, Oceans Graduate School, The University of Western Australia, Crawley, Australia
- Corresponding author.
| | - Jim N. Underwood
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, Australia
| | - Noah H. Rose
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Zachary L. Fuller
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Zoe T. Richards
- Coral Conservation and Research Group, School of Molecular and Life Sciences, Curtin University, Perth, Australia
- Collections and Research, Western Australian Museum, Welshpool, Australia
| | - Laurence Dugal
- UWA Oceans Institute, Oceans Graduate School, The University of Western Australia, Crawley, Australia
| | - Camille M. Grimaldi
- UWA Oceans Institute, Oceans Graduate School, The University of Western Australia, Crawley, Australia
| | - Ira R. Cooke
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
| | - Stephen R. Palumbi
- Hopkins Marine Station, Biology Department, Stanford University, Pacific Grove, CA, USA
| | - James P. Gilmour
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, Australia
| |
Collapse
|
17
|
Impacts of ocean warming and acidification on calcifying coral reef taxa: mechanisms responsible and adaptive capacity. Emerg Top Life Sci 2022; 6:1-9. [PMID: 35157039 DOI: 10.1042/etls20210226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022]
Abstract
Ocean warming (OW) and acidification (OA) are two of the greatest global threats to the persistence of coral reefs. Calcifying reef taxa such as corals and coralline algae provide the essential substrate and habitat in tropical reefs but are at particular risk due to their susceptibility to both OW and OA. OW poses the greater threat to future reef growth and function, via its capacity to destabilise the productivity of both taxa, and to cause mass bleaching events and mortality of corals. Marine heatwaves are projected to increase in frequency, intensity, and duration over the coming decades, raising the question of whether coral reefs will be able to persist as functioning ecosystems and in what form. OA should not be overlooked, as its negative impacts on the calcification of reef-building corals and coralline algae will have consequences for global reef accretion. Given that OA can have negative impacts on the reproduction and early life stages of both coralline algae and corals, the interdependence of these taxa may result in negative feedbacks for reef replenishment. However, there is little evidence that OA causes coral bleaching or exacerbates the effects of OW on coral bleaching. Instead, there is some evidence that OA alters the photo-physiology of both taxa. Tropical coralline algal possess shorter generation times than corals, which could enable more rapid evolutionary responses. Future reefs will be dominated by taxa with shorter generation times and high plasticity, or those individuals inherently resistant and resilient to both marine heatwaves and OA.
Collapse
|
18
|
McManus LC, Forrest DL, Tekwa EW, Schindler DE, Colton MA, Webster MM, Essington TE, Palumbi SR, Mumby PJ, Pinsky ML. Evolution and connectivity influence the persistence and recovery of coral reefs under climate change in the Caribbean, Southwest Pacific, and Coral Triangle. GLOBAL CHANGE BIOLOGY 2021; 27:4307-4321. [PMID: 34106494 PMCID: PMC8453988 DOI: 10.1111/gcb.15725] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 05/19/2023]
Abstract
Corals are experiencing unprecedented decline from climate change-induced mass bleaching events. Dispersal not only contributes to coral reef persistence through demographic rescue but can also hinder or facilitate evolutionary adaptation. Locations of reefs that are likely to survive future warming therefore remain largely unknown, particularly within the context of both ecological and evolutionary processes across complex seascapes that differ in temperature range, strength of connectivity, network size, and other characteristics. Here, we used eco-evolutionary simulations to examine coral adaptation to warming across reef networks in the Caribbean, the Southwest Pacific, and the Coral Triangle. We assessed the factors associated with coral persistence in multiple reef systems to understand which results are general and which are sensitive to particular geographic contexts. We found that evolution can be critical in preventing extinction and facilitating the long-term recovery of coral communities in all regions. Furthermore, the strength of immigration to a reef (destination strength) and current sea surface temperature robustly predicted reef persistence across all reef networks and across temperature projections. However, we found higher initial coral cover, slower recovery, and more evolutionary lag in the Coral Triangle, which has a greater number of reefs and more larval settlement than the other regions. We also found the lowest projected future coral cover in the Caribbean. These findings suggest that coral reef persistence depends on ecology, evolution, and habitat network characteristics, and that, under an emissions stabilization scenario (RCP 4.5), recovery may be possible over multiple centuries.
Collapse
Affiliation(s)
- Lisa C. McManus
- Department of Ecology, Evolution, and Natural ResourcesRutgers UniversityNew BrunswickNJUSA
- Hawaiʻi Institute of Marine BiologyUniversity of Hawaiʻi at ManoaKaneʻoheHIUSA
| | - Daniel L. Forrest
- Department of Ecology, Evolution, and Natural ResourcesRutgers UniversityNew BrunswickNJUSA
| | - Edward W. Tekwa
- Department of Ecology, Evolution, and Natural ResourcesRutgers UniversityNew BrunswickNJUSA
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNJUSA
| | | | | | | | | | - Stephen R. Palumbi
- Department of BiologyHopkins Marine StationStanford UniversityPacific GroveCAUSA
| | - Peter J. Mumby
- Marine Spatial Ecology LaboratorySchool of Biological SciencesThe University of QueenslandSt LuciaQldAustralia
| | - Malin L. Pinsky
- Department of Ecology, Evolution, and Natural ResourcesRutgers UniversityNew BrunswickNJUSA
| |
Collapse
|
19
|
Howells EJ, Abrego D, Liew YJ, Burt JA, Meyer E, Aranda M. Enhancing the heat tolerance of reef-building corals to future warming. SCIENCE ADVANCES 2021; 7:7/34/eabg6070. [PMID: 34417178 PMCID: PMC8378819 DOI: 10.1126/sciadv.abg6070] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/01/2021] [Indexed: 05/19/2023]
Abstract
Reef-building corals thriving in extreme thermal environments may provide genetic variation that can assist the evolution of populations to rapid climate warming. However, the feasibility and scale of genetic improvements remain untested despite ongoing population declines from recurrent thermal stress events. Here, we show that corals from the hottest reefs in the world transfer sufficient heat tolerance to a naïve population sufficient to withstand end-of-century warming projections. Heat survival increased up to 84% when naïve mothers were selectively bred with fathers from the hottest reefs because of strong heritable genetic effects. We identified genomic loci associated with tolerance variation that were enriched for heat shock proteins, oxidative stress, and immune functions. Unexpectedly, several coral families exhibited survival rates and genomic associations deviating from origin predictions, including a few naïve purebreds with exceptionally high heat tolerance. Our findings highlight previously uncharacterized enhanced and intrinsic potential of coral populations to adapt to climate warming.
Collapse
Affiliation(s)
- Emily J Howells
- Water Research Center and Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - David Abrego
- Department of Natural Science and Public Health, Zayed University, Abu Dhabi, United Arab Emirates
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Yi Jin Liew
- CSIRO Health and Biosecurity, North Ryde, New South Wales, Australia
| | - John A Burt
- Water Research Center and Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Eli Meyer
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| | - Manuel Aranda
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
20
|
Rippe JP, Dixon G, Fuller ZL, Liao Y, Matz M. Environmental specialization and cryptic genetic divergence in two massive coral species from the Florida Keys Reef Tract. Mol Ecol 2021; 30:3468-3484. [PMID: 33894013 DOI: 10.1111/mec.15931] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/22/2021] [Accepted: 04/14/2021] [Indexed: 01/02/2023]
Abstract
Broadcast-spawning coral species have wide geographical ranges spanning strong environmental gradients, but it is unclear how much spatially varying selection these gradients actually impose. Strong divergent selection might present a considerable barrier for demographic exchange between disparate reef habitats. We investigated whether the cross-shelf gradient is associated with spatially varying selection in two common coral species, Montastraea cavernosa and Siderastrea siderea, in the Florida Keys. To this end, we generated a de novo genome assembly for M. cavernosa and used 2bRAD to genotype 20 juveniles and 20 adults of both species from each of the three reef zones to identify signatures of selection occurring within a single generation. Unexpectedly, each species was found to be composed of four genetically distinct lineages, with gene flow between them still ongoing but highly reduced in 13.0%-54.7% of the genome. Each species includes two sympatric lineages that are only found in the deep (20 m) habitat, while the other lineages are found almost exclusively on the shallower reefs (3-10 m). The two "shallow" lineages of M. cavernosa are also specialized for either nearshore or offshore: comparison between adult and juvenile cohorts indicates that cross-shelf migrants are more than twice as likely to die before reaching adulthood than local recruits. S. siderea and M. cavernosa are among the most ecologically successful species on the Florida Keys Reef Tract, and this work offers important insight into the genomic background of divergent selection and environmental specialization that may in part explain their resilience and broad environmental range.
Collapse
Affiliation(s)
- John P Rippe
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Groves Dixon
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Zachary L Fuller
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Yi Liao
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.,Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, USA
| | - Mikhail Matz
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
21
|
Coral bleaching response is unaltered following acclimatization to reefs with distinct environmental conditions. Proc Natl Acad Sci U S A 2021; 118:2025435118. [PMID: 34050025 PMCID: PMC8179235 DOI: 10.1073/pnas.2025435118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ocean warming has caused catastrophic losses of corals on reefs worldwide and is intensifying faster than the adaptive rate of most coral populations that remain. Human interventions, such as propagation of heat-resistant corals, may help maintain reef function and delay further devastation of these valuable ecosystems as society confronts the climate crisis. However, exposing adult corals to a complex suite of new environmental conditions could lead to tradeoffs that alter their heat stress responses, and empirical data are needed to test the utility of this approach. Here, we show that corals transplanted to novel reef conditions did not exhibit changes in their heat stress response or negative fitness tradeoffs, supporting the inclusion of this approach in our management arsenal. Urgent action is needed to prevent the demise of coral reefs as the climate crisis leads to an increasingly warmer and more acidic ocean. Propagating climate change–resistant corals to restore degraded reefs is one promising strategy; however, empirical evidence is needed to determine whether stress resistance is affected by transplantation beyond a coral’s native reef. Here, we assessed the performance of bleaching-resistant individuals of two coral species following reciprocal transplantation between reefs with distinct pH, salinity, dissolved oxygen, sedimentation, and flow dynamics to determine whether heat stress response is altered following coral exposure to novel physicochemical conditions in situ. Critically, transplantation had no influence on coral heat stress responses, indicating that this trait was relatively fixed. In contrast, growth was highly plastic, and native performance was not predictive of performance in the novel environment. Coral metabolic rates and overall fitness were higher at the reef with higher flow, salinity, sedimentation, and diel fluctuations of pH and dissolved oxygen, and did not differ between native and cross-transplanted corals, indicating acclimatization via plasticity within just 3 mo. Conversely, cross-transplants at the second reef had higher fitness than native corals, thus increasing the fitness potential of the recipient population. This experiment was conducted during a nonbleaching year, so the potential benefits to recipient population fitness are likely enhanced during bleaching years. In summary, this study demonstrates that outplanting bleaching-resistant corals is a promising tool for elevating the resistance of coral populations to ocean warming.
Collapse
|
22
|
Abstract
Climate-driven reef decline has prompted the development of next-generation coral conservation strategies, many of which hinge on the movement of adaptive variation across genetic and environmental gradients. This process is limited by our understanding of how genetic and genotypic drivers of coral bleaching will manifest in different environmental conditions. We reciprocally transplanted 10 genotypes of Acropora cervicornis across eight sites along a 60 km span of the Florida Reef Tract and documented significant genotype × environment interactions in bleaching response during the severe 2015 bleaching event. Performance relative to site mean was significantly different between genotypes and can be mostly explained by ensemble models of correlations with genetic markers. The high explanatory power was driven by significant enrichment of loci associated DNA repair, cell signalling and apoptosis. No genotypes performed above (or below) bleaching average at all sites, so genomic predictors can provide practitioners with 'confidence intervals' about the chance of success in novel habitats. These data have important implications for assisted gene flow and managed relocation, and their integration with traditional active restoration.
Collapse
Affiliation(s)
- Crawford Drury
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| | - Diego Lirman
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| |
Collapse
|
23
|
Depth-dependent parental effects create invisible barriers to coral dispersal. Commun Biol 2021; 4:202. [PMID: 33589736 PMCID: PMC7884412 DOI: 10.1038/s42003-021-01727-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/19/2021] [Indexed: 01/02/2023] Open
Abstract
Historically, marine populations were considered to be interconnected across large geographic regions due to the lack of apparent physical barriers to dispersal, coupled with a potentially widely dispersive pelagic larval stage. Recent studies, however, are providing increasing evidence of small-scale genetic segregation of populations across habitats and depths, separated in some cases by only a few dozen meters. Here, we performed a series of ex-situ and in-situ experiments using coral larvae of three brooding species from contrasting shallow- and deep-water reef habitats, and show that their settlement success, habitat choices, and subsequent survival are substantially influenced by parental effects in a habitat-dependent manner. Generally, larvae originating from deep-water corals, which experience less variable conditions, expressed more specific responses than shallow-water larvae, with a higher settlement success in simulated parental-habitat conditions. Survival of juvenile corals experimentally translocated to the sea was significantly lower when not at parental depths. We conclude that local adaptations and parental effects alongside larval selectivity and phenotype-environment mismatches combine to create invisible semipermeable barriers to coral dispersal and connectivity, leading to habitat-dependent population segregation. Tom Shlesinger and Yossi Loya use ex-situ and in-situ experiments with coral larvae of three brooding species from contrasting shallow- and deep-water habitats and show that larvae originating from deep-water corals have narrower tolerances and higher habitat-specificity in simulated parental-habitat conditions. They also show that survival of juvenile corals experimentally translocated to the sea was significantly lower when not at parental depths. Together these results demonstrate that local adaptations and parental effects interact with larval selectivity and phenotype-environment mismatches to create semipermeable barriers to coral dispersal and connectivity.
Collapse
|
24
|
Baird AH, Guest JR, Edwards AJ, Bauman AG, Bouwmeester J, Mera H, Abrego D, Alvarez-Noriega M, Babcock RC, Barbosa MB, Bonito V, Burt J, Cabaitan PC, Chang CF, Chavanich S, Chen CA, Chen CJ, Chen WJ, Chung FC, Connolly SR, Cumbo VR, Dornelas M, Doropoulos C, Eyal G, Eyal-Shaham L, Fadli N, Figueiredo J, Flot JF, Gan SH, Gomez E, Graham EM, Grinblat M, Gutiérrez-Isaza N, Harii S, Harrison PL, Hatta M, Ho NAJ, Hoarau G, Hoogenboom M, Howells EJ, Iguchi A, Isomura N, Jamodiong EA, Jandang S, Keyse J, Kitanobo S, Kongjandtre N, Kuo CY, Ligson C, Lin CH, Low J, Loya Y, Maboloc EA, Madin JS, Mezaki T, Min C, Morita M, Moya A, Neo SH, Nitschke MR, Nojima S, Nozawa Y, Piromvaragorn S, Plathong S, Puill-Stephan E, Quigley K, Ramirez-Portilla C, Ricardo G, Sakai K, Sampayo E, Shlesinger T, Sikim L, Simpson C, Sims CA, Sinniger F, Spiji DA, Tabalanza T, Tan CH, Terraneo TI, Torda G, True J, Tun K, Vicentuan K, Viyakarn V, Waheed Z, Ward S, Willis B, Woods RM, Woolsey ES, Yamamoto HH, Yusuf S. An Indo-Pacific coral spawning database. Sci Data 2021; 8:35. [PMID: 33514754 PMCID: PMC7846567 DOI: 10.1038/s41597-020-00793-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/19/2020] [Indexed: 01/30/2023] Open
Abstract
The discovery of multi-species synchronous spawning of scleractinian corals on the Great Barrier Reef in the 1980s stimulated an extraordinary effort to document spawning times in other parts of the globe. Unfortunately, most of these data remain unpublished which limits our understanding of regional and global reproductive patterns. The Coral Spawning Database (CSD) collates much of these disparate data into a single place. The CSD includes 6178 observations (3085 of which were unpublished) of the time or day of spawning for over 300 scleractinian species in 61 genera from 101 sites in the Indo-Pacific. The goal of the CSD is to provide open access to coral spawning data to accelerate our understanding of coral reproductive biology and to provide a baseline against which to evaluate any future changes in reproductive phenology.
Collapse
Affiliation(s)
- Andrew H. Baird
- grid.1011.10000 0004 0474 1797ARC Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811 Australia
| | - James R. Guest
- grid.1006.70000 0001 0462 7212School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU United Kingdom
| | - Alasdair J. Edwards
- grid.1006.70000 0001 0462 7212School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU United Kingdom
| | - Andrew G. Bauman
- grid.4280.e0000 0001 2180 6431Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558 Singapore, Singapore
| | - Jessica Bouwmeester
- grid.410445.00000 0001 2188 0957Smithsonian Conservation Biology Institute, Smithsonian Institution, Hawai’i Institute of Marine Biology, 46-007 Lilipuna Rd, Kaneohe, Hawaii 96744 USA
| | - Hanaka Mera
- grid.1011.10000 0004 0474 1797ARC Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811 Australia
| | - David Abrego
- grid.1031.30000000121532610National Marine Science Centre, Southern Cross University, 2 Bay Drive, Coffs Harbour, New South Wales 2450 Australia
| | - Mariana Alvarez-Noriega
- grid.1011.10000 0004 0474 1797ARC Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811 Australia
| | - Russel C. Babcock
- grid.1016.60000 0001 2173 2719Oceans and Atmosphere, CSIRO, Queensland Biosciences Precinct, 306 Carmody Rd, St Lucia, Queensland 4072 Australia
| | - Miguel B. Barbosa
- grid.11914.3c0000 0001 0721 1626School of Biology, University of St Andrews, Sir Harold Mitchell Building, St Andrews, KY16 9TH United Kingdom
| | - Victor Bonito
- Reef Explorer Fiji, Coral Coast Conservation Center, Votua Village, Korolevu, Nadroga Fiji
| | - John Burt
- grid.440573.1Center for Genomics and Systems Biology, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
| | - Patrick C. Cabaitan
- grid.11159.3d0000 0000 9650 2179Marine Science Institute, College of Science, University of the Philippines, Velasquez Street, Diliman, Quezon City, Manila, 1101 Philippines
| | - Ching-Fong Chang
- grid.260664.00000 0001 0313 3026Aquaculture, National Taiwan Ocean University, 2 Beining Rd, Keelung, 20224 Taiwan
| | - Suchana Chavanich
- grid.7922.e0000 0001 0244 7875Reef Biology Research Group, Department of Marine Science, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok, 10330 Thailand
| | - Chaolun A. Chen
- grid.506939.0Biodiversity Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529 Taiwan
| | - Chieh-Jhen Chen
- grid.260664.00000 0001 0313 3026Center of Excellence for the Oceans, National Taiwan Ocean University, 2 Beining Rd, Keelung, 20224 Taiwan
| | - Wei-Jen Chen
- grid.260664.00000 0001 0313 3026Center of Excellence for the Oceans, National Taiwan Ocean University, 2 Beining Rd, Keelung, 20224 Taiwan
| | - Fung-Chen Chung
- Reef Guardian Sdn. Bhd., Bandar Tyng, Mile 6, North Road, Sandakan, Sabah 90000 Malaysia
| | - Sean R. Connolly
- grid.438006.90000 0001 2296 9689Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Republic of Panama
| | - Vivian R. Cumbo
- grid.1004.50000 0001 2158 5405Department of Biological Sciences, Macquarie University, Macquarie Park, New South Wales 2109 Australia
| | - Maria Dornelas
- grid.11914.3c0000 0001 0721 1626Centre for Biological Diversity, University of St Andrews, St Andrews, KY16 9TH United Kingdom
| | - Christopher Doropoulos
- grid.1016.60000 0001 2173 2719Oceans and Atmosphere, CSIRO, Queensland Biosciences Precinct, 306 Carmody Rd, St Lucia, Queensland 4072 Australia
| | - Gal Eyal
- grid.1003.20000 0000 9320 7537ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Queensland 4072 Australia
| | - Lee Eyal-Shaham
- grid.22098.310000 0004 1937 0503The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002 Israel
| | - Nur Fadli
- grid.440768.90000 0004 1759 6066Faculty of Marine Science and Fisheries, Syiah Kuala University, Banda Aceh, Aceh Indonesia
| | - Joana Figueiredo
- grid.261241.20000 0001 2168 8324Halmos College of Natural Sciences and Oceanography, Department of Marine and Environmental Science, Nova Southeastern University, 8000 N Ocean Drive, Dania Beach, Florida 33004 USA
| | - Jean-François Flot
- grid.4989.c0000 0001 2348 0746Evolutionary Biology and Ecology, Université libre de Bruxelles, Brussels, B-1050 Belgium
| | - Sze-Hoon Gan
- grid.265727.30000 0001 0417 0814Endangered Marine Species Research Unit, Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah 88400 Malaysia
| | - Elizabeth Gomez
- grid.11159.3d0000 0000 9650 2179Marine Science Institute, College of Science, University of the Philippines, Velasquez Street, Diliman, Quezon City, Manila, 1101 Philippines
| | - Erin M. Graham
- grid.1011.10000 0004 0474 1797eResearch Centre, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811 Australia
| | - Mila Grinblat
- grid.1011.10000 0004 0474 1797ARC Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811 Australia ,grid.1011.10000 0004 0474 1797Molecular & Cell biology, College of Public Health, Medical & Vet Sciences, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811 Australia
| | - Nataly Gutiérrez-Isaza
- grid.1003.20000 0000 9320 7537ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Queensland 4072 Australia ,grid.1003.20000 0000 9320 7537School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072 Australia
| | - Saki Harii
- grid.267625.20000 0001 0685 5104Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa, 905-0227 Japan
| | - Peter L. Harrison
- grid.1031.30000000121532610Marine Ecology Research Centre, Southern Cross University, PO Box 157, Lismore, NSW 2480 Australia
| | - Masayuki Hatta
- grid.412314.10000 0001 2192 178XDepartment of Biology, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610 Japan
| | - Nina Ann Jin Ho
- grid.503008.eChina-ASEAN College of Marine Sciences, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang Selangor, Darul Ehsan, 43900 Malaysia
| | - Gaetan Hoarau
- 12 Rue Caumont, Saint-Pierre Reunion Island, 97410 France
| | - Mia Hoogenboom
- grid.1011.10000 0004 0474 1797ARC Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811 Australia
| | - Emily J. Howells
- grid.1007.60000 0004 0486 528XCentre for Sustainable Ecosystem Solutions and School of Earth, Atmospheric and Life Sciences, University of Wollongong, Northfields Avenue, Wollongong, New South Wales 2522 Australia
| | - Akira Iguchi
- grid.466781.a0000 0001 2222 3430Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8567 Japan
| | - Naoko Isomura
- grid.471922.b0000 0004 4672 6261Department of Bioresources Engineering, National Institute of Technology, Okinawa College, 905 Henoko, Nago, Okinawa, 905-2192 Japan
| | - Emmeline A. Jamodiong
- grid.267625.20000 0001 0685 5104Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa 902-0213 Japan
| | - Suppakarn Jandang
- grid.7922.e0000 0001 0244 7875Reef Biology Research Group, Department of Marine Science, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok, 10330 Thailand
| | - Jude Keyse
- Glenala State High School, Durack, Queensland 4077 Australia
| | - Seiya Kitanobo
- grid.267625.20000 0001 0685 5104Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa, 905-0227 Japan
| | - Narinratana Kongjandtre
- grid.411825.b0000 0000 9482 780XAquatic Science, Faculty of Science, Burapha University, 169 LongHaad Bangsaen Rd, Saensook, Mueang Chonburi 20131 Thailand
| | - Chao-Yang Kuo
- grid.506939.0Biodiversity Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529 Taiwan
| | - Charlon Ligson
- grid.11159.3d0000 0000 9650 2179Marine Science Institute, College of Science, University of the Philippines, Velasquez Street, Diliman, Quezon City, Manila, 1101 Philippines
| | - Che-Hung Lin
- grid.506939.0Biodiversity Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529 Taiwan
| | - Jeffrey Low
- Coastal and Marine Branch, National Biodiversity Centre, National Parks Board, 1 Cluny Road, Singapore, Singapore
| | - Yossi Loya
- grid.12136.370000 0004 1937 0546School of Zoology, Tel-Aviv University, Ramat Aviv, 6997801 Israel
| | - Elizaldy A. Maboloc
- grid.24515.370000 0004 1937 1450Department of Ocean Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Joshua S. Madin
- grid.410445.00000 0001 2188 0957Hawai’i Institute of Marine Biology, University of Hawaii at Manoa, 46-007 Lilipuna Rd, Kaneohe, Hawaii 96744 USA
| | - Takuma Mezaki
- Kuroshio Biological Research Foundation, 560 Nishidomari, Otsuki Town, Hata Kochi, 788-0333 Japan
| | - Choo Min
- grid.4280.e0000 0001 2180 6431Reef Ecology Lab, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558 Singapore, Singapore
| | - Masaya Morita
- grid.267625.20000 0001 0685 5104Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa, 905-0227 Japan
| | - Aurelie Moya
- grid.1011.10000 0004 0474 1797ARC Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811 Australia
| | - Su-Hwei Neo
- grid.4280.e0000 0001 2180 6431Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558 Singapore, Singapore
| | - Matthew R. Nitschke
- grid.267827.e0000 0001 2292 3111School of Biological Sciences, Victoria University of Wellington, Wellington, 2820 New Zealand
| | | | - Yoko Nozawa
- grid.506939.0Biodiversity Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529 Taiwan
| | | | - Sakanan Plathong
- grid.7130.50000 0004 0470 1162Department of Biology, Faculty of Science, Prince of Songkla University, 15 Karnjanavanich Rd, Hat Yai, 90110 Thailand
| | | | - Kate Quigley
- grid.1046.30000 0001 0328 1619Australian Institute of Marine Science, PMB 3, Townsville, Queensland 4810 Australia
| | - Catalina Ramirez-Portilla
- grid.4989.c0000 0001 2348 0746Evolutionary Biology and Ecology, Université libre de Bruxelles, Brussels, B-1050 Belgium
| | - Gerard Ricardo
- grid.1046.30000 0001 0328 1619Australian Institute of Marine Science, PMB 3, Townsville, Queensland 4810 Australia
| | - Kazuhiko Sakai
- grid.267625.20000 0001 0685 5104Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa, 905-0227 Japan
| | - Eugenia Sampayo
- grid.1003.20000 0000 9320 7537ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Queensland 4072 Australia ,grid.1003.20000 0000 9320 7537School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072 Australia
| | - Tom Shlesinger
- grid.255966.b0000 0001 2229 7296Institute for Global Ecology, Florida Institute of Technology, 150 West University Boulevard, Melbourne, Florida 32901-6988 USA
| | - Leony Sikim
- Reef Guardian Sdn. Bhd., Bandar Tyng, Mile 6, North Road, Sandakan, Sabah 90000 Malaysia
| | - Chris Simpson
- 25 Mettam Street, Trigg, Western Australia 6029 Australia
| | - Carrie A. Sims
- grid.1003.20000 0000 9320 7537ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Queensland 4072 Australia ,grid.1003.20000 0000 9320 7537School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072 Australia
| | - Frederic Sinniger
- grid.267625.20000 0001 0685 5104Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa, 905-0227 Japan
| | - Davies A. Spiji
- Reef Guardian Sdn. Bhd., Bandar Tyng, Mile 6, North Road, Sandakan, Sabah 90000 Malaysia
| | - Tracy Tabalanza
- grid.11159.3d0000 0000 9650 2179Marine Science Institute, College of Science, University of the Philippines, Velasquez Street, Diliman, Quezon City, Manila, 1101 Philippines
| | - Chung-Hong Tan
- grid.412255.50000 0000 9284 9319Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030 Malaysia
| | - Tullia I. Terraneo
- grid.45672.320000 0001 1926 5090Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Saudi Arabia
| | - Gergely Torda
- grid.1011.10000 0004 0474 1797ARC Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811 Australia
| | - James True
- grid.419784.70000 0001 0816 7508Faculty of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang, Chalongkrung Rd, Ladkrabang, Bangkok 10520 Thailand
| | - Karenne Tun
- Coastal and Marine Branch, National Biodiversity Centre, National Parks Board, 1 Cluny Road, Singapore, Singapore
| | - Kareen Vicentuan
- grid.4280.e0000 0001 2180 6431Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, 119227 Singapore, Singapore
| | - Voranop Viyakarn
- grid.7922.e0000 0001 0244 7875Reef Biology Research Group, Department of Marine Science, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok, 10330 Thailand
| | - Zarinah Waheed
- grid.265727.30000 0001 0417 0814Endangered Marine Species Research Unit, Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah 88400 Malaysia
| | - Selina Ward
- grid.1003.20000 0000 9320 7537ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Queensland 4072 Australia ,grid.1003.20000 0000 9320 7537School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072 Australia
| | - Bette Willis
- grid.1011.10000 0004 0474 1797ARC Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811 Australia ,grid.1011.10000 0004 0474 1797College of Science and Engineering, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811 Australia
| | - Rachael M. Woods
- grid.1004.50000 0001 2158 5405Department of Biological Sciences, Macquarie University, Macquarie Park, New South Wales 2109 Australia
| | | | - Hiromi H. Yamamoto
- grid.505718.eOkinawa Churashima Research Center, Okinawa Churashima Foundation, 888 Ishikawa, Motobu, Okinawa, 905-0206 Japan
| | - Syafyudin Yusuf
- grid.412001.60000 0000 8544 230XFaculty of Marine Science and Fisheries, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
25
|
Herrera M, Klein SG, Schmidt‐Roach S, Campana S, Cziesielski MJ, Chen JE, Duarte CM, Aranda M. Unfamiliar partnerships limit cnidarian holobiont acclimation to warming. GLOBAL CHANGE BIOLOGY 2020; 26:5539-5553. [PMID: 32627905 PMCID: PMC7539969 DOI: 10.1111/gcb.15263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/23/2020] [Indexed: 05/08/2023]
Abstract
Enhancing the resilience of corals to rising temperatures is now a matter of urgency, leading to growing efforts to explore the use of heat tolerant symbiont species to improve their thermal resilience. The notion that adaptive traits can be retained by transferring the symbionts alone, however, challenges the holobiont concept, a fundamental paradigm in coral research. Holobiont traits are products of a specific community (holobiont) and all its co-evolutionary and local adaptations, which might limit the retention or transference of holobiont traits by exchanging only one partner. Here we evaluate how interchanging partners affect the short- and long-term performance of holobionts under heat stress using clonal lineages of the cnidarian model system Aiptasia (host and Symbiodiniaceae strains) originating from distinct thermal environments. Our results show that holobionts from more thermally variable environments have higher plasticity to heat stress, but this resilience could not be transferred to other host genotypes through the exchange of symbionts. Importantly, our findings highlight the role of the host in determining holobiont productivity in response to thermal stress and indicate that local adaptations of holobionts will likely limit the efficacy of interchanging unfamiliar compartments to enhance thermal tolerance.
Collapse
Affiliation(s)
- Marcela Herrera
- Red Sea Research Center (RSRC), Biological and Environmental Sciences & Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Shannon G. Klein
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), Biological and Environmental Sciences & Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Sebastian Schmidt‐Roach
- Red Sea Research Center (RSRC), Biological and Environmental Sciences & Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Sara Campana
- Red Sea Research Center (RSRC), Biological and Environmental Sciences & Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- Present address:
Faculty of ScienceInstitute for Biodiversity and Ecosystem DynamicsUniversity of Amsterdam1090 GEAmsterdamThe Netherlands
| | - Maha J. Cziesielski
- Red Sea Research Center (RSRC), Biological and Environmental Sciences & Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Jit Ern Chen
- Red Sea Research Center (RSRC), Biological and Environmental Sciences & Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- Present address:
School of Science and TechnologyDepartment of Biological SciencesSunway UniversitySubang JayaSelangorMalaysia
| | - Carlos M. Duarte
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), Biological and Environmental Sciences & Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Manuel Aranda
- Red Sea Research Center (RSRC), Biological and Environmental Sciences & Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| |
Collapse
|
26
|
Selmoni O, Rochat E, Lecellier G, Berteaux‐Lecellier V, Joost S. Seascape genomics as a new tool to empower coral reef conservation strategies: An example on north-western Pacific Acropora digitifera. Evol Appl 2020; 13:1923-1938. [PMID: 32908595 PMCID: PMC7463334 DOI: 10.1111/eva.12944] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/10/2020] [Accepted: 02/17/2020] [Indexed: 12/25/2022] Open
Abstract
Coral reefs are suffering a major decline due to the environmental constraints imposed by climate change. Over the last 20 years, three major coral bleaching events occurred in concomitance with anomalous heatwaves, provoking a severe loss of coral cover worldwide. The conservation strategies for preserving reefs, as they are implemented now, cannot cope with global climatic shifts. Consequently, researchers are advocating for preservation networks to be set-up to reinforce coral adaptive potential. However, the main obstacle to this implementation is that studies on coral adaption are usually hard to generalize at the scale of a reef system. Here, we study the relationships between genotype frequencies and environmental characteristics of the sea (seascape genomics), in combination with connectivity analysis, to investigate the adaptive potential of a flagship coral species of the Ryukyu Archipelago (Japan). By associating genotype frequencies with descriptors of historical environmental conditions, we discovered six genomic regions hosting polymorphisms that might promote resistance against heat stress. Remarkably, annotations of genes in these regions were consistent with molecular roles associated with heat responses. Furthermore, we combined information on genetic and spatial distances between reefs to predict connectivity at a regional scale. The combination of these results portrayed the adaptive potential of this population: we were able to identify reefs carrying potential heat stress adapted genotypes and to understand how they disperse to neighbouring reefs. This information was summarized by objective, quantifiable and mappable indices covering the whole region, which can be extremely useful for future prioritization of reefs in conservation planning. This framework is transferable to any coral species on any reef system and therefore represents a valuable tool for empowering preservation efforts dedicated to the protection of coral reefs in warming oceans.
Collapse
Affiliation(s)
- Oliver Selmoni
- Laboratory of Geographic Information Systems (LASIG)School of Architecture, Civil and Environmental EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Estelle Rochat
- Laboratory of Geographic Information Systems (LASIG)School of Architecture, Civil and Environmental EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Gael Lecellier
- UMR250/9220 ENTROPIE IRD‐CNRS‐URLabex CORAILNoumeaNew Caledonia
- UVSQUniversité de Paris‐SaclayVersaillesFrance
| | | | - Stéphane Joost
- Laboratory of Geographic Information Systems (LASIG)School of Architecture, Civil and Environmental EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| |
Collapse
|
27
|
Klepac CN, Barshis DJ. Reduced thermal tolerance of massive coral species in a highly variable environment. Proc Biol Sci 2020; 287:20201379. [PMID: 32811319 DOI: 10.1098/rspb.2020.1379] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Coral bleaching events are increasing in frequency and severity, resulting in widespread losses in coral cover. However, branching corals native to highly variable (HV) thermal environments can have higher bleaching resistance than corals from more moderate habitats. Here, we investigated the response of two massive corals, Porites lobata and Goniastrea retiformis, from a moderately variable (MV) and a low variability (LV) pool transplanted into a HV pool on Ofu Island in American Samoa. Paired transplant and native ramets were exposed to an acute thermal stress after 6 and 12 months of exposure to the HV pool to evaluate changes in thermal tolerance limits. For both species, photosynthetic efficiency and chlorophyll loss following acute heat stress did not differ between ramets transplanted into the HV pool and respective native pool. Moreover, HV native P. lobata exhibited the greatest bleaching susceptibility compared to MV and LV natives and there was no effect of acute heat stress on MV P. lobata. There was also a thermal anomaly during the study, where Ofu's backreef thermal regime surpassed historical records-2015 had 8 degree heating weeks (DHW) and 2016 had up to 5 DHW (in comparison to less than or equal to 3 over the last 10 years)-which may have exceeded the upper thermal limits of HV native P. lobata. These results strongly contrast with other research on coral tolerance in variable environments, potentially underscoring species-specific mechanisms and regional thermal anomalies that may be equally important in shaping coral responses to extreme temperatures.
Collapse
Affiliation(s)
- C N Klepac
- Department of Biology, Old Dominion University, Norfolk, VA 23529, USA
| | - D J Barshis
- Department of Biology, Old Dominion University, Norfolk, VA 23529, USA
| |
Collapse
|
28
|
Jury CP, Toonen RJ. Adaptive responses and local stressor mitigation drive coral resilience in warmer, more acidic oceans. Proc Biol Sci 2020; 286:20190614. [PMID: 31088274 DOI: 10.1098/rspb.2019.0614] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Coral reefs have great biological and socioeconomic value, but are threatened by ocean acidification, climate change and local human impacts. The capacity for corals to adapt or acclimatize to novel environmental conditions is unknown but fundamental to projected reef futures. The coral reefs of Kāne'ohe Bay, Hawai'i were devastated by anthropogenic insults from the 1930s to 1970s. These reefs experience naturally reduced pH and elevated temperature relative to many other Hawaiian reefs which are not expected to face similar conditions for decades. Despite catastrophic loss in coral cover owing to human disturbance, these reefs recovered under low pH and high temperature within 20 years after sewage input was diverted. We compare the pH and temperature tolerances of three dominant Hawaiian coral species from within Kāne'ohe Bay to conspecifics from a nearby control site and show that corals from Kāne'ohe are far more resistant to acidification and warming. These results show that corals can have different pH and temperature tolerances among habitats and understanding the mechanisms by which coral cover rebounded within two decades under projected future ocean conditions will be critical to management. Together these results indicate that reducing human stressors offers hope for reef resilience and effective conservation over coming decades.
Collapse
Affiliation(s)
- Christopher P Jury
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa , Kāne'ohe, HI , USA
| | - Robert J Toonen
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa , Kāne'ohe, HI , USA
| |
Collapse
|
29
|
Howe-Kerr LI, Bachelot B, Wright RM, Kenkel CD, Bay LK, Correa AMS. Symbiont community diversity is more variable in corals that respond poorly to stress. GLOBAL CHANGE BIOLOGY 2020; 26:2220-2234. [PMID: 32048447 DOI: 10.1111/gcb.14999] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 12/20/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Coral reefs are declining globally as climate change and local water quality press environmental conditions beyond the physiological tolerances of holobionts-the collective of the host and its microbial symbionts. To assess the relationship between symbiont composition and holobiont stress tolerance, community diversity metrics were quantified for dinoflagellate endosymbionts (Family: Symbiodiniaceae) from eight Acropora millepora genets that thrived under or responded poorly to various stressors. These eight selected genets represent the upper and lower tails of the response distribution of 40 coral genets that were exposed to four stress treatments (and control conditions) in a 10-day experiment. Specifically, four 'best performer' coral genets were analyzed at the end of the experiment because they survived high temperature, high pCO2 , bacterial exposure, or combined stressors, whereas four 'worst performer' genets were characterized because they experienced substantial mortality under these stressors. At the end of the experiment, seven of eight coral genets mainly hosted Cladocopium symbionts, whereas the eighth genet was dominated by both Cladocopium and Durusdinium symbionts. Symbiodiniaceae alpha and beta diversity were higher in worst performing genets than in best performing genets. Symbiont communities in worst performers also differed more after stress exposure relative to their controls (based on normalized proportional differences in beta diversity), than did best performers. A generalized joint attribute model estimated the influence of host genet and treatment on Symbiodiniaceae community composition and identified strong associations among particular symbionts and host genet performance, as well as weaker associations with treatment. Although dominant symbiont physiology and function contribute to host performance, these findings emphasize the importance of symbiont community diversity and stochasticity as components of host performance. Our findings also suggest that symbiont community diversity metrics may function as indicators of resilience and have potential applications in diverse disciplines from climate change adaptation to agriculture and medicine.
Collapse
Affiliation(s)
| | | | | | - Carly D Kenkel
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Line K Bay
- Australian Institute of Marine Science, Townsville, Qld, Australia
| | | |
Collapse
|
30
|
Quigley KM, Randall CJ, van Oppen MJH, Bay LK. Assessing the role of historical temperature regime and algal symbionts on the heat tolerance of coral juveniles. Biol Open 2020; 9:bio047316. [PMID: 31915210 PMCID: PMC6994947 DOI: 10.1242/bio.047316] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/10/2019] [Indexed: 01/02/2023] Open
Abstract
The rate of coral reef degradation from climate change is accelerating and, as a consequence, a number of interventions to increase coral resilience and accelerate recovery are under consideration. Acropora spathulata coral colonies that survived mass bleaching in 2016 and 2017 were sourced from a bleaching-impacted and warmer northern reef on the Great Barrier Reef (GBR). These individuals were reproductively crossed with colonies collected from a recently bleached but historically cooler central GBR reef to produce pure and crossbred offspring groups (warm-warm, warm-cool and cool-warm). We tested whether corals from the warmer reef produced more thermally tolerant hybrid and purebred offspring compared with crosses produced with colonies sourced from the cooler reef and whether different symbiont taxa affect heat tolerance. Juveniles were infected with Symbiodinium tridacnidorum, Cladocopium goreaui and Durusdinium trenchii and survival, bleaching and growth were assessed at 27.5°C and 31°C. The contribution of host genetic background and symbiont identity varied across fitness traits. Offspring with either both or one parent from the northern population exhibited a 13- to 26-fold increase in survival odds relative to all other treatments where survival probability was significantly influenced by familial cross identity at 31°C but not 27.5°C (Kaplan-Meier P=0.001 versus 0.2). If in symbiosis with D. trenchii, a warm sire and cool dam provided the best odds of juvenile survival. Bleaching was predominantly driven by Symbiodiniaceae treatment, where juveniles hosting D. trenchii bleached significantly less than the other treatments at 31°C. The greatest overall fold-benefits in growth and survival at 31°C occurred in having at least one warm dam and in symbiosis with D. trenchii Juveniles associated with D. trenchii grew the most at 31°C, but at 27.5°C, growth was fastest in juveniles associated with C. goreaui In conclusion, selective breeding with warmer GBR corals in combination with algal symbiont manipulation can assist in increasing thermal tolerance on cooler but warming reefs. Such interventions have the potential to improve coral fitness in warming oceans.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- K M Quigley
- Australian Institute of Marine Science, Townsville 4810, Australia
| | - C J Randall
- Australian Institute of Marine Science, Townsville 4810, Australia
| | - M J H van Oppen
- Australian Institute of Marine Science, Townsville 4810, Australia
- Faculty of Science, The University of Melbourne, Victoria 3010, Australia
| | - L K Bay
- Australian Institute of Marine Science, Townsville 4810, Australia
| |
Collapse
|
31
|
Drury C. Resilience in reef-building corals: The ecological and evolutionary importance of the host response to thermal stress. Mol Ecol 2020; 29:448-465. [PMID: 31845413 DOI: 10.1111/mec.15337] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 12/05/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023]
Abstract
Coral reefs are under extreme threat due to a number of stressors, but temperature increases due to changing climate are the most severe. Rising ocean temperatures coupled with local extremes lead to extensive bleaching, where the coral-algal symbiosis breaks down and corals may die, compromising the structure and function of reefs. Although the symbiotic nature of the coral colony has historically been a focus of research on coral resilience, the host itself is a foundational component in the response to thermal stress. Fixed effects in the coral host set trait baselines through evolutionary processes, acting on many loci of small effect to create mosaics of thermal tolerance across latitudes and individual coral reefs. These genomic differences can be strongly heritable, producing wide variation among clones of different genotypes or families of a specific larval cross. Phenotypic plasticity is overlaid on these baselines and a growing body of knowledge demonstrates the potential for acclimatization of reef-building corals through a variety of mechanisms that promote resilience and stress tolerance. The long-term persistence of coral reefs will require many of these mechanisms to adjust to warmer temperatures within a generation, bridging the gap to reproductive events that allow recombination of standing diversity and adaptive change. Business-as-usual climate scenarios will probably lead to the loss of some coral populations or species in the future, so the interaction between intragenerational effects and evolutionary pressure is critical for the survival of reefs.
Collapse
|
32
|
Thyrring J, Tremblay R, Sejr MK. Local cold adaption increases the thermal window of temperate mussels in the Arctic. CONSERVATION PHYSIOLOGY 2019; 7:coz098. [PMID: 31890211 PMCID: PMC6933310 DOI: 10.1093/conphys/coz098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 10/08/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
Species expand towards higher latitudes in response to climate warming, but the pace of this expansion is related to the physiological capacity to resist cold stress. However, few studies exist that have quantified the level of inter-population local adaptation in marine species freeze tolerance, especially in the Arctic. We investigated the importance of cold adaptation and thermal window width towards high latitudes from the temperate to the Arctic region. We measured upper and lower lethal air temperatures (i.e. LT and LT50) in temperate and Arctic populations of blue mussels (Mytilus edulis), and analysed weather data and membrane fatty acid compositions, following emersion simulations. Both populations had similar upper LT (~38 °C), but Arctic mussels survived 4°C colder air temperatures than temperate mussels (-13 vs. -9°C, respectively), corresponding to an 8% increase in their thermal window. There were strong latitudinal relationships between thermal window width and local air temperatures, indicating Arctic mussels are highly adapted to the Arctic environment where the seasonal temperature span exceeds 60°C. Local adaptation and local habitat heterogeneity thus allow leading-edge M. edulis to inhabit high Arctic intertidal zones. This intraspecific pattern provides insight into the importance of accounting for cold adaptation in climate change, conservation and biogeographic studies.
Collapse
Affiliation(s)
- J Thyrring
- British Antarctic Survey, High Cross, Madingley Road, CB3 0ET, Cambridge, United Kingdom
- Department of Zoology, University of British Columbia, 4200 - 6270 University Blvd., V6T 1Z4, Vancouver, British Columbia, Canada
- Homerton College, Hills Road, CB2 8PH, Cambridge, United Kingdom
| | - R Tremblay
- Institut des sciences de la mer, Université du Québec à Rimouski, G5L 3A Rimouski, Canada
| | - M K Sejr
- Arctic Research Centre, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
33
|
Baums IB, Baker AC, Davies SW, Grottoli AG, Kenkel CD, Kitchen SA, Kuffner IB, LaJeunesse TC, Matz MV, Miller MW, Parkinson JE, Shantz AA. Considerations for maximizing the adaptive potential of restored coral populations in the western Atlantic. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2019; 29:e01978. [PMID: 31332879 PMCID: PMC6916196 DOI: 10.1002/eap.1978] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/13/2019] [Accepted: 06/21/2019] [Indexed: 05/06/2023]
Abstract
Active coral restoration typically involves two interventions: crossing gametes to facilitate sexual larval propagation; and fragmenting, growing, and outplanting adult colonies to enhance asexual propagation. From an evolutionary perspective, the goal of these efforts is to establish self-sustaining, sexually reproducing coral populations that have sufficient genetic and phenotypic variation to adapt to changing environments. Here, we provide concrete guidelines to help restoration practitioners meet this goal for most Caribbean species of interest. To enable the persistence of coral populations exposed to severe selection pressure from many stressors, a mixed provenance strategy is suggested: genetically unique colonies (genets) should be sourced both locally as well as from more distant, environmentally distinct sites. Sourcing three to four genets per reef along environmental gradients should be sufficient to capture a majority of intraspecies genetic diversity. It is best for practitioners to propagate genets with one or more phenotypic traits that are predicted to be valuable in the future, such as low partial mortality, high wound healing rate, high skeletal growth rate, bleaching resilience, infectious disease resilience, and high sexual reproductive output. Some effort should also be reserved for underperforming genets because colonies that grow poorly in nurseries sometimes thrive once returned to the reef and may harbor genetic variants with as yet unrecognized value. Outplants should be clustered in groups of four to six genets to enable successful fertilization upon maturation. Current evidence indicates that translocating genets among distant reefs is unlikely to be problematic from a population genetic perspective but will likely provide substantial adaptive benefits. Similarly, inbreeding depression is not a concern given that current practices only raise first-generation offspring. Thus, proceeding with the proposed management strategies even in the absence of a detailed population genetic analysis of the focal species at sites targeted for restoration is the best course of action. These basic guidelines should help maximize the adaptive potential of reef-building corals facing a rapidly changing environment.
Collapse
Affiliation(s)
- Iliana B. Baums
- Department of BiologyPennsylvania State UniversityUniversity ParkPennsylvania16803USA
| | - Andrew C. Baker
- Department of Marine Biology and EcologyRosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiFlorida33149USA
| | - Sarah W. Davies
- Department of BiologyBoston UniversityBostonMassachusetts02215USA
| | | | - Carly D. Kenkel
- Department of Biological SciencesUniversity of Southern CaliforniaLos AngelesCalifornia90007USA
| | - Sheila A. Kitchen
- Department of BiologyPennsylvania State UniversityUniversity ParkPennsylvania16803USA
| | - Ilsa B. Kuffner
- U.S. Geological Survey600 4th Street S.St. PetersburgFlorida33701USA
| | - Todd C. LaJeunesse
- Department of BiologyPennsylvania State UniversityUniversity ParkPennsylvania16803USA
| | - Mikhail V. Matz
- Department of Integrative BiologyThe University of Texas at AustinAustinTexas78712USA
| | | | - John E. Parkinson
- SECORE InternationalMiamiFlorida33145USA
- Department of Integrative BiologyUniversity of South FloridaTampaFlorida33620USA
| | - Andrew A. Shantz
- Department of BiologyPennsylvania State UniversityUniversity ParkPennsylvania16803USA
| |
Collapse
|
34
|
Quigley KM, Bay LK, van Oppen MJH. The active spread of adaptive variation for reef resilience. Ecol Evol 2019; 9:11122-11135. [PMID: 31641460 PMCID: PMC6802068 DOI: 10.1002/ece3.5616] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/03/2019] [Accepted: 08/06/2019] [Indexed: 12/26/2022] Open
Abstract
The speed at which species adapt depends partly on the rates of beneficial adaptation generation and how quickly they spread within and among populations. Natural rates of adaptation of corals may not be able to keep pace with climate warming. Several interventions have been proposed to fast-track thermal adaptation, including the intentional translocation of warm-adapted adults or their offspring (assisted gene flow, AGF) and the ex situ crossing of warm-adapted corals with conspecifics from cooler reefs (hybridization or selective breeding) and field deployment of those offspring. The introgression of temperature tolerance loci into the genomic background of cooler-environment corals aims to facilitate adaptation to warming while maintaining fitness under local conditions. Here we use research on selective sweeps and connectivity to understand the spread of adaptive variants as it applies to AGF on the Great Barrier Reef (GBR), focusing on the genus Acropora. Using larval biophysical dispersal modeling, we estimate levels of natural connectivity in warm-adapted northern corals. We then model the spread of adaptive variants from single and multiple reefs and assess if the natural and assisted spread of adaptive variants will occur fast enough to prepare receiving central and southern populations given current rates of warming. We also estimate fixation rates and spatial extent of fixation under multiple release scenarios to inform intervention design. Our results suggest that thermal tolerance is unlikely to spread beyond northern reefs to the central and southern GBR without intervention, and if it does, 30+ generations are needed for adaptive gene variants to reach fixation even under multiple release scenarios. We argue that if translocation, breeding, and reseeding risks are managed, AGF using multiple release reefs can be beneficial for the restoration of coral populations. These interventions should be considered in addition to conventional management and accompanied by strong mitigation of CO2 emissions.
Collapse
Affiliation(s)
- Kate M. Quigley
- Australian Institute of Marine ScienceTownsvilleQldAustralia
| | - Line K. Bay
- Australian Institute of Marine ScienceTownsvilleQldAustralia
| | - Madeleine J. H. van Oppen
- Australian Institute of Marine ScienceTownsvilleQldAustralia
- School of BioSciencesThe University of MelbourneParkvilleVic.Australia
| |
Collapse
|
35
|
Schoepf V, Carrion SA, Pfeifer SM, Naugle M, Dugal L, Bruyn J, McCulloch MT. Stress-resistant corals may not acclimatize to ocean warming but maintain heat tolerance under cooler temperatures. Nat Commun 2019; 10:4031. [PMID: 31530800 PMCID: PMC6748961 DOI: 10.1038/s41467-019-12065-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 08/13/2019] [Indexed: 11/27/2022] Open
Abstract
Naturally heat-resistant coral populations hold significant potential for facilitating coral reef survival under rapid climate change. However, it remains poorly understood whether they can acclimatize to ocean warming when superimposed on their already thermally-extreme habitats. Furthermore, it is unknown whether they can maintain their heat tolerance upon larval dispersal or translocation to cooler reefs. We test this in a long-term mesocosm experiment using stress-resistant corals from thermally-extreme reefs in NW Australia. We show that these corals have a remarkable ability to maintain their heat tolerance and health despite acclimation to 3-6 °C cooler, more stable temperatures over 9 months. However, they are unable to increase their bleaching thresholds after 6-months acclimation to + 1 °C warming. This apparent rigidity in the thermal thresholds of even stress-resistant corals highlights the increasing vulnerability of corals to ocean warming, but provides a rationale for human-assisted migration to restore cooler, degraded reefs with corals from thermally-extreme reefs.
Collapse
Affiliation(s)
- Verena Schoepf
- Oceans Graduate School and UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia.
- ARC Centre of Excellence for Coral Reef Studies, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia.
| | - Steven A Carrion
- Oceans Graduate School and UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- School of Geosciences, University of Edinburgh, James Hutton Road, Edinburgh, EH9 3FE, UK
| | - Svenja M Pfeifer
- Oceans Graduate School and UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- Department of Biology, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Melissa Naugle
- Oceans Graduate School and UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Laurence Dugal
- Oceans Graduate School and UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Jennifer Bruyn
- Oceans Graduate School and UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Malcolm T McCulloch
- Oceans Graduate School and UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- ARC Centre of Excellence for Coral Reef Studies, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| |
Collapse
|
36
|
Bennett S, Duarte CM, Marbà N, Wernberg T. Integrating within-species variation in thermal physiology into climate change ecology. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180550. [PMID: 31203756 PMCID: PMC6606463 DOI: 10.1098/rstb.2018.0550] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Accurately forecasting the response of global biota to warming is a fundamental challenge for ecology in the Anthropocene. Within-species variation in thermal sensitivity, caused by phenotypic plasticity and local adaptation of thermal limits, is often overlooked in assessments of species responses to warming. Despite this, implicit assumptions of thermal niche conservatism or adaptation and plasticity at the species level permeate the literature with potentially important implications for predictions of warming impacts at the population level. Here we review how these attributes interact with the spatial and temporal context of ocean warming to influence the vulnerability of marine organisms. We identify a broad spectrum of thermal sensitivities among marine organisms, particularly in central and cool-edge populations of species distributions. These are characterized by generally low sensitivity in organisms with conserved thermal niches, to high sensitivity for organisms with locally adapted thermal niches. Important differences in thermal sensitivity among marine taxa suggest that warming could adversely affect benthic primary producers sooner than less vulnerable higher trophic groups. Embracing the spatial, temporal and biological context of within-species variation in thermal physiology helps explain observed impacts of ocean warming and can improve forecasts of climate change vulnerability in marine systems. This article is part of the theme issue ‘Physiological diversity, biodiversity patterns and global climate change: testing key hypotheses involving temperature and oxygen’.
Collapse
Affiliation(s)
- Scott Bennett
- 1 Global Change Research Group, Institut Mediterrani d'Estudis Avançats (CSIC-UIB) , Miquel Marquès 21, 07190 Esporles , Spain
| | - Carlos M Duarte
- 2 King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC) , Thuwal 23955-6900 , Saudi Arabia
| | - Núria Marbà
- 1 Global Change Research Group, Institut Mediterrani d'Estudis Avançats (CSIC-UIB) , Miquel Marquès 21, 07190 Esporles , Spain
| | - Thomas Wernberg
- 3 School of Biological Sciences, UWA Oceans Institute, University of Western Australia , Cnr Fairway and Service Road 4, Crawley, WA 6009 , Australia
| |
Collapse
|
37
|
Gabay Y, Parkinson JE, Wilkinson SP, Weis VM, Davy SK. Inter-partner specificity limits the acquisition of thermotolerant symbionts in a model cnidarian-dinoflagellate symbiosis. ISME JOURNAL 2019; 13:2489-2499. [PMID: 31186513 DOI: 10.1038/s41396-019-0429-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 02/07/2019] [Accepted: 04/10/2019] [Indexed: 01/19/2023]
Abstract
The ability of corals and other cnidarians to survive climate change depends partly on the composition of their endosymbiont communities. The dinoflagellate family Symbiodiniaceae is genetically and physiologically diverse, and one proposed mechanism for cnidarians to acclimate to rising temperatures is to acquire more thermally tolerant symbionts. However, cnidarian-dinoflagellate associations vary in their degree of specificity, which may limit their capacity to alter symbiont communities. Here, we inoculated symbiont-free polyps of the sea anemone Exaiptasia pallida (commonly referred to as 'Aiptasia'), a model system for the cnidarian-dinoflagellate symbiosis, with simultaneous or sequential mixtures of thermally tolerant and thermally sensitive species of Symbiodiniaceae. We then monitored symbiont success (relative proportional abundance) at normal and elevated temperatures across two to four weeks. All anemones showed signs of bleaching at high temperature. During simultaneous inoculations, the native, thermally sensitive Breviolum minutum colonized polyps most successfully regardless of temperature when paired against the non-native but more thermally tolerant Symbiodinium microadriaticum or Durusdinium trenchii. Furthermore, anemones initially colonized with B. minutum and subsequently exposed to S. microadriaticum failed to acquire the new symbiont. These results highlight how partner specificity may place strong limitations on the ability of certain cnidarians to acquire more thermally tolerant symbionts, and hence their adaptive potential under climate change.
Collapse
Affiliation(s)
- Yasmin Gabay
- School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington, 6140, New Zealand
| | - John Everett Parkinson
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA.,Department of Integrative Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Shaun P Wilkinson
- School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington, 6140, New Zealand
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington, 6140, New Zealand.
| |
Collapse
|
38
|
Strahl J, Rocker MM, Fabricius KE. Contrasting responses of the coral Acropora tenuis to moderate and strong light limitation in coastal waters. MARINE ENVIRONMENTAL RESEARCH 2019; 147:80-89. [PMID: 31010596 DOI: 10.1016/j.marenvres.2019.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
Coastal water quality and light attenuation can detrimentally affect coral health. This study investigated the effects of light limitation and reduced water quality on the physiological performance of the coral Acropora tenuis. Branches of individual colonies were collected in 2 m water depth at six inshore reefs at increasing distances from major river sources in the Great Barrier Reef, along a strong water quality gradient in the Burdekin and a weak gradient in the Whitsunday region. Rates of net photosynthesis, dark respiration, and light and dark calcification were determined at daily light integrals (DLI) of moderate (13.86-16.38 mol photons m-2 d-1), low (7.92-9.36 mol photons m-2 d-1) and no light (0 mol photons m-2 d-1), in both the dry season (October 2013, June 2014) and the wet season (February 2014). Along the strong but not the weak water quality gradient, rates of net photosynthesis, dark respiration and light calcification increased towards the river mouth both in the dry and the wet seasons. Additionally, a ∼50% light reduction (from moderate to low light), as often found in shallow turbid waters in the Burdekin region, reduced rates of net photosynthesis and light calcification by up to 70% and 50%. The data show the acclimation potential in A. tenuis to river derived nutrients and sediments at moderate DLI (i.e., in very shallow water). However, prolonged and frequent periods of low DLI (i.e., in deeper water, especially after high river sediment discharges) will affect the corals' energy balance, and may represent a major factor limiting the depth distribution of these corals in turbid coastal reefs.
Collapse
Affiliation(s)
- Julia Strahl
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, Ammerländer Heerstraße 231, 23129, Oldenburg, Germany; Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Carl von Ossietzky Str. 9-11, 26111, Oldenburg, Germany.
| | - Melissa M Rocker
- Australian Institute of Marine Science, PMB #3, Townsville MC, QLD, 4810, Australia
| | | |
Collapse
|
39
|
Hughes TP, Kerry JT, Baird AH, Connolly SR, Chase TJ, Dietzel A, Hill T, Hoey AS, Hoogenboom MO, Jacobson M, Kerswell A, Madin JS, Mieog A, Paley AS, Pratchett MS, Torda G, Woods RM. Global warming impairs stock-recruitment dynamics of corals. Nature 2019; 568:387-390. [PMID: 30944475 DOI: 10.1038/s41586-019-1081-y] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 03/08/2019] [Indexed: 11/09/2022]
Abstract
Changes in disturbance regimes due to climate change are increasingly challenging the capacity of ecosystems to absorb recurrent shocks and reassemble afterwards, escalating the risk of widespread ecological collapse of current ecosystems and the emergence of novel assemblages1-3. In marine systems, the production of larvae and recruitment of functionally important species are fundamental processes for rebuilding depleted adult populations, maintaining resilience and avoiding regime shifts in the face of rising environmental pressures4,5. Here we document a regional-scale shift in stock-recruitment relationships of corals along the Great Barrier Reef-the world's largest coral reef system-following unprecedented back-to-back mass bleaching events caused by global warming. As a consequence of mass mortality of adult brood stock in 2016 and 2017 owing to heat stress6, the amount of larval recruitment declined in 2018 by 89% compared to historical levels. For the first time, brooding pocilloporids replaced spawning acroporids as the dominant taxon in the depleted recruitment pool. The collapse in stock-recruitment relationships indicates that the low resistance of adult brood stocks to repeated episodes of coral bleaching is inexorably tied to an impaired capacity for recovery, which highlights the multifaceted processes that underlie the global decline of coral reefs. The extent to which the Great Barrier Reef will be able to recover from the collapse in stock-recruitment relationships remains uncertain, given the projected increased frequency of extreme climate events over the next two decades7.
Collapse
Affiliation(s)
- Terry P Hughes
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia.
| | - James T Kerry
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Andrew H Baird
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Sean R Connolly
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia.,College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Tory J Chase
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia.,College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Andreas Dietzel
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Tessa Hill
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia.,College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Andrew S Hoey
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Mia O Hoogenboom
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia.,College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Mizue Jacobson
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia.,College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | | | - Joshua S Madin
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI, USA.,Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Abbie Mieog
- Murray-Darling Basin Authority, Canberra City, Australian Capital Territory, Australia
| | - Allison S Paley
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia.,College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Morgan S Pratchett
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Gergely Torda
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia.,Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Rachael M Woods
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
40
|
Donelson JM, Sunday JM, Figueira WF, Gaitán-Espitia JD, Hobday AJ, Johnson CR, Leis JM, Ling SD, Marshall D, Pandolfi JM, Pecl G, Rodgers GG, Booth DJ, Munday PL. Understanding interactions between plasticity, adaptation and range shifts in response to marine environmental change. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180186. [PMID: 30966966 PMCID: PMC6365866 DOI: 10.1098/rstb.2018.0186] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2018] [Indexed: 12/16/2022] Open
Abstract
Climate change is leading to shifts in species geographical distributions, but populations are also probably adapting to environmental change at different rates across their range. Owing to a lack of natural and empirical data on the influence of phenotypic adaptation on range shifts of marine species, we provide a general conceptual model for understanding population responses to climate change that incorporates plasticity and adaptation to environmental change in marine ecosystems. We use this conceptual model to help inform where within the geographical range each mechanism will probably operate most strongly and explore the supporting evidence in species. We then expand the discussion from a single-species perspective to community-level responses and use the conceptual model to visualize and guide research into the important yet poorly understood processes of plasticity and adaptation. This article is part of the theme issue 'The role of plasticity in phenotypic adaptation to rapid environmental change'.
Collapse
Affiliation(s)
- Jennifer M. Donelson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4810, Australia
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| | | | - Will F. Figueira
- University of Sydney, School of Life and Environmental Sciences, Sydney 2006, Australia
| | - Juan Diego Gaitán-Espitia
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, People's Republic of China
- CSIRO Oceans and Atmosphere, Hobart, Tasmania 7000, Australia
| | | | - Craig R. Johnson
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Jeffrey M. Leis
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7000, Australia
- Australian Museum Research Institute, Sydney, New South Wales 2001, Australia
| | - Scott D. Ling
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Dustin Marshall
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - John M. Pandolfi
- ARC Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Gretta Pecl
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Giverny G. Rodgers
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4810, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - David J. Booth
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| | - Philip L. Munday
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4810, Australia
| |
Collapse
|
41
|
Kubicek A, Breckling B, Hoegh-Guldberg O, Reuter H. Climate change drives trait-shifts in coral reef communities. Sci Rep 2019; 9:3721. [PMID: 30842480 PMCID: PMC6403357 DOI: 10.1038/s41598-019-38962-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/07/2019] [Indexed: 01/13/2023] Open
Abstract
Climate change is expected to have profound, partly unforeseeable effects on the composition of functional traits of complex ecosystems, such as coral reefs, and some ecosystem properties are at risk of disappearing. This study applies a novel spatially explicit, individual-based model to explore three critical life history traits of corals: heat tolerance, competitiveness and growth performance under various environmental settings. Building upon these findings, we test the adaptation potential required by a coral community in order to not only survive but also retain its diversity by the end of this century under different IPCC climate scenarios. Even under the most favourable IPCC scenario (Representative Concentration Pathway, RCP 2.6), model results indicate that shifts in the trait space are likely and coral communities will mainly consist of small numbers of temperature-tolerant and fast-growing species. Species composition of coral communities is likely to be determined by heat tolerance, with competitiveness most likely playing a subordinate role. To sustain ~15% of current coral cover under a 2 °C temperature increase by the end of the century (RCP 4.5), coral systems would have to accommodate temperature increases of 0.1-0.15 °C per decade, assuming that periodic extreme thermal events occurred every 8 years. These required adaptation rates are unprecedented and unlikely, given corals' life-history characteristics.
Collapse
Affiliation(s)
- Andreas Kubicek
- Coral Reef Ecosystems Laboratory, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.
- Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - Broder Breckling
- Department Landscape Ecology, University of Vechta, 49364, Vechta, Germany
- University of Bremen, Faculty of Biology and Chemistry, 28359, Bremen, Germany
| | - Ove Hoegh-Guldberg
- Coral Reef Ecosystems Laboratory, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Queensland, St. Lucia, QLD, 4072, Australia
- Global Change Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Hauke Reuter
- Department Theoretical Ecology and Modelling, Leibniz Center for Tropical Marine Research (ZMT), 28359, Bremen, Germany
- University of Bremen, Faculty of Biology and Chemistry, 28359, Bremen, Germany
| |
Collapse
|
42
|
Kahng SE, Akkaynak D, Shlesinger T, Hochberg EJ, Wiedenmann J, Tamir R, Tchernov D. Light, Temperature, Photosynthesis, Heterotrophy, and the Lower Depth Limits of Mesophotic Coral Ecosystems. CORAL REEFS OF THE WORLD 2019. [DOI: 10.1007/978-3-319-92735-0_42] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
43
|
Repeated and Prolonged Temperature Anomalies Negate Symbiodiniaceae Genera Shuffling in the Coral Platygyra verweyi (Scleractinia; Merulinidae). Zool Stud 2018; 57:e55. [PMID: 31966295 DOI: 10.6620/zs.2018.57-55] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/15/2018] [Indexed: 01/09/2023]
Abstract
Kuo-Wei Kao, Shashank Keshavmurthy, Cing-Hsin Tsao, Jih-Terng Wang, and Chaolun Allen Chen (2018) With climate change, global average sea surface temperatures are expected to increase by 1.0-3.7°C by the end of this century. Even a 1.0°C increase in seawater temperature from local long-term summer maxima lasting for weeks to months results in bleaching and/or mortality in reef-building corals. Studies on coral resistance mechanisms have proposed a correlation between shuffling of different Symbiodiniaceae genera (changing the dominant Symbiodiniaceae genera) and putative thermal tolerance in corals. Although it was suggested that some corals can increase their tolerance by 1.0-1.5°C through shuffling to thermally tolerant Durusdinium trenchii (formerly D1a), the effects of accumulated thermal stress due to prolonged high temperatures on the survival of corals that have shuffled have not been investigated. We show herein that prolonged exposure to high temperature (> 10.43-degree heating weeks) can drastically reduce coral survival rate even after it has shuffled to stress-tolerant Symbiodiniaceae genera. Our study suggests that there is a limit to the capacity of for shuffling, and hence is likely to lose its efficacy in the future as repeated and prolonged thermal stress events become more frequent and pronounced.
Collapse
|
44
|
van Oppen MJH, Bongaerts P, Frade P, Peplow L, Boyd SE, Nim HT, Bay LK. Adaptation to reef habitats through selection on the coral animal and its associated microbiome. Mol Ecol 2018; 27:2956-2971. [DOI: 10.1111/mec.14763] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Madeleine J. H. van Oppen
- Australian Institute of Marine Science; Townsville MC Qld Australia
- School of BioSciences; University of Melbourne; Parkville Vic. Australia
| | - Pim Bongaerts
- Global Change Institute; The University of Queensland; St Lucia Qld Australia
- California Academy of Sciences; San Francisco California
| | - Pedro Frade
- Centre of Marine Sciences (CCMAR); University of Algarve; Faro Portugal
| | - Lesa M. Peplow
- Australian Institute of Marine Science; Townsville MC Qld Australia
| | - Sarah E. Boyd
- Faculty of Information Technology; Monash University; Melbourne Vic. Australia
| | - Hieu T. Nim
- Faculty of Information Technology; Monash University; Melbourne Vic. Australia
- Australian Regenerative Medicine Institute; Monash University; Melbourne Vic. Australia
| | - Line K. Bay
- Australian Institute of Marine Science; Townsville MC Qld Australia
| |
Collapse
|
45
|
Baumann JH, Davies SW, Aichelman HE, Castillo KD. Coral Symbiodinium Community Composition Across the Belize Mesoamerican Barrier Reef System is Influenced by Host Species and Thermal Variability. MICROBIAL ECOLOGY 2018; 75:903-915. [PMID: 29098358 DOI: 10.1007/s00248-017-1096-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/24/2017] [Indexed: 06/07/2023]
Abstract
Reef-building corals maintain a symbiotic relationship with dinoflagellate algae of the genus Symbiodinium, and this symbiosis is vital for the survival of the coral holobiont. Symbiodinium community composition within the coral host has been shown to influence a coral's ability to resist and recover from stress. A multitude of stressors including ocean warming, ocean acidification, and eutrophication have been linked to global scale decline in coral health and cover in recent decades. Three distinct thermal regimes (highTP, modTP, and lowTP) following an inshore-offshore gradient of declining average temperatures and thermal variation were identified on the Belize Mesoamerican Barrier Reef System (MBRS). Quantitative metabarcoding of the ITS-2 locus was employed to investigate differences and similarities in Symbiodinium genetic diversity of the Caribbean corals Siderastrea siderea, S. radians, and Pseudodiploria strigosa between the three thermal regimes. A total of ten Symbiodinium lineages were identified across the three coral host species. S. siderea was associated with distinct Symbiodinium communities; however, Symbiodinium communities of its congener, S. radians and P. strigosa, were more similar to one another. Thermal regime played a role in defining Symbiodinium communities in S. siderea but not S. radians or P. strigosa. Against expectations, Symbiodinium trenchii, a symbiont known to confer thermal tolerance, was dominant only in S. siderea at one sampled offshore site and was rare inshore, suggesting that coral thermal tolerance in more thermally variable inshore habitats is achieved through alternative mechanisms. Overall, thermal parameters alone were likely not the only primary drivers of Symbiodinium community composition, suggesting that environmental variables unrelated to temperature (i.e., light availability or nutrients) may play key roles in structuring coral-algal communities in Belize and that the relative importance of these environmental variables may vary by coral host species.
Collapse
Affiliation(s)
- J H Baumann
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3300, USA.
| | - S W Davies
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3300, USA
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - H E Aichelman
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3300, USA
- Department of Biological Sciences, Old Dominion University, 302 Miles Godwin building, Norfolk, VA, 23529, USA
| | - K D Castillo
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3300, USA
| |
Collapse
|
46
|
Matz MV, Treml EA, Aglyamova GV, Bay LK. Potential and limits for rapid genetic adaptation to warming in a Great Barrier Reef coral. PLoS Genet 2018; 14:e1007220. [PMID: 29672529 PMCID: PMC5908067 DOI: 10.1371/journal.pgen.1007220] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/24/2018] [Indexed: 01/03/2023] Open
Abstract
Can genetic adaptation in reef-building corals keep pace with the current rate of sea surface warming? Here we combine population genomics, biophysical modeling, and evolutionary simulations to predict future adaptation of the common coral Acropora millepora on the Great Barrier Reef (GBR). Genomics-derived migration rates were high (0.1–1% of immigrants per generation across half the latitudinal range of the GBR) and closely matched the biophysical model of larval dispersal. Both genetic and biophysical models indicated the prevalence of southward migration along the GBR that would facilitate the spread of heat-tolerant alleles to higher latitudes as the climate warms. We developed an individual-based metapopulation model of polygenic adaptation and parameterized it with population sizes and migration rates derived from the genomic analysis. We find that high migration rates do not disrupt local thermal adaptation, and that the resulting standing genetic variation should be sufficient to fuel rapid region-wide adaptation of A. millepora populations to gradual warming over the next 20–50 coral generations (100–250 years). Further adaptation based on novel mutations might also be possible, but this depends on the currently unknown genetic parameters underlying coral thermal tolerance and the rate of warming realized. Despite this capacity for adaptation, our model predicts that coral populations would become increasingly sensitive to random thermal fluctuations such as ENSO cycles or heat waves, which corresponds well with the recent increase in frequency of catastrophic coral bleaching events. Coral reefs worldwide are suffering high mortality from severe thermal stress episodes induced by acute ocean warming events. Under the current rate of warming, will corals be gone before the end of this century? Here we combine population genomics with biophysical and evolutionary modeling to investigate adaptive potential of a common reef-building coral from the Great Barrier Reef. To approach this task, we have developed a predictive model of polygenic adaptation in a system of multiple inter-connected populations that exist in a heterogeneous and changing environment. Applying this model to our coral species, we find that populations successfully adapt to diverse local temperatures along the range of the Great Barrier Reef despite high migrant exchange and should collectively harbor enough adaptive genetic variants to fuel region-wide thermal adaptation for another century and perhaps longer. In the same time, the model predicts that random thermal fluctuations will induce increasingly severe coral mortality episodes, which aligns well with observations over the last few decades.
Collapse
Affiliation(s)
- Mikhail V. Matz
- University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| | - Eric A. Treml
- University of Melbourne, Melbourne, Melbourne, Victoria, Australia
| | | | - Line K. Bay
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| |
Collapse
|
47
|
Synthesis: Coral Bleaching: Patterns, Processes, Causes and Consequences. ECOLOGICAL STUDIES 2018. [DOI: 10.1007/978-3-319-75393-5_14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
48
|
Bay RA, Rose NH, Logan CA, Palumbi SR. Genomic models predict successful coral adaptation if future ocean warming rates are reduced. SCIENCE ADVANCES 2017; 3:e1701413. [PMID: 29109975 PMCID: PMC5665595 DOI: 10.1126/sciadv.1701413] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 10/10/2017] [Indexed: 05/02/2023]
Abstract
Population genomic surveys suggest that climate-associated genetic variation occurs widely across species, but whether it is sufficient to allow population persistence via evolutionary adaptation has seldom been quantified. To ask whether rapid adaptation in reef-building corals can keep pace with future ocean warming, we measured genetic variation at predicted warm-adapted loci and simulated future evolution and persistence in a high-latitude population of corals from Rarotonga, Cook Islands. Alleles associated with thermal tolerance were present but at low frequencies in this cooler, southerly locality. Simulations based on predicted ocean warming in Rarotonga showed rapid evolution of heat tolerance resulting in population persistence under mild warming scenarios consistent with low CO2 emission plans, RCP2.6 and RCP4.5. Under more severe scenarios, RCP6.0 and RCP8.5, adaptation was not rapid enough to prevent extinction. Population adaptation was faster for models based on smaller numbers of additive loci that determine thermal tolerance and for higher population growth rates. Finally, accelerated migration via transplantation of thermally tolerant individuals (1 to 5%/year) sped adaptation. These results show that cool-water corals can adapt to warmer oceans but only under mild scenarios resulting from international emissions controls. Incorporation of genomic data into models of species response to climate change offers a promising method for estimating future adaptive processes.
Collapse
Affiliation(s)
- Rachael A. Bay
- Department of Biology, Hopkins Marine Station of Stanford University, Pacific Grove, CA 93950, USA
- Corresponding author.
| | - Noah H. Rose
- Department of Biology, Hopkins Marine Station of Stanford University, Pacific Grove, CA 93950, USA
| | - Cheryl A. Logan
- School of Natural Sciences, California State University, Monterey Bay, Seaside, CA 93955, USA
| | - Stephen R. Palumbi
- Department of Biology, Hopkins Marine Station of Stanford University, Pacific Grove, CA 93950, USA
| |
Collapse
|
49
|
Abstract
Coral reefs support immense biodiversity and provide important ecosystem services to many millions of people. Yet reefs are degrading rapidly in response to numerous anthropogenic drivers. In the coming centuries, reefs will run the gauntlet of climate change, and rising temperatures will transform them into new configurations, unlike anything observed previously by humans. Returning reefs to past configurations is no longer an option. Instead, the global challenge is to steer reefs through the Anthropocene era in a way that maintains their biological functions. Successful navigation of this transition will require radical changes in the science, management and governance of coral reefs.
Collapse
|
50
|
Bay RA, Palumbi SR. Transcriptome predictors of coral survival and growth in a highly variable environment. Ecol Evol 2017; 7:4794-4803. [PMID: 28690808 PMCID: PMC5496549 DOI: 10.1002/ece3.2685] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/14/2016] [Accepted: 11/16/2016] [Indexed: 12/26/2022] Open
Abstract
Concern over rapid environmental shifts associated with climate change has led to a search for molecular markers of environmental tolerance. Climate-associated gene expression profiles exist for a number of systems, but have rarely been tied to fitness outcomes, especially in nonmodel organisms. We reciprocally transplanted corals between two backreef locations with more and less variable temperature regimes to disentangle effects of recent and native environment on survival and growth. Coral growth over 12 months was largely determined by local environment. Survival, however, was impacted by native environment; corals from the more variable environment had 22% higher survivorship. By contrast, corals native to the less variable environment had more variable survival. This might represent a "selective sieve" where poor survivors are filtered from the more stressful environment. We also find a potential fitness trade-off-corals with high survival under stressful conditions grew less in the more benign environment. Transcriptome samples taken a year before transplantation were used to examine gene expression patterns that predicted transplant survival and growth. Two separate clusters of coexpressed genes were predictive of survival in the two locations. Genes from these clusters are candidate biomarkers for predicting persistence of corals under future climate change scenarios.
Collapse
Affiliation(s)
- Rachael A. Bay
- Hopkins Marine StationStanford UniversityPacific GroveCAUSA
- Present address: Institute for the Environment and SustainabilityUCLALos AngelesCAUSA
| | | |
Collapse
|