1
|
Burgunter-Delamare B, Shetty P, Vuong T, Mittag M. Exchange or Eliminate: The Secrets of Algal-Bacterial Relationships. PLANTS (BASEL, SWITZERLAND) 2024; 13:829. [PMID: 38592793 PMCID: PMC10974524 DOI: 10.3390/plants13060829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
Algae and bacteria have co-occurred and coevolved in common habitats for hundreds of millions of years, fostering specific associations and interactions such as mutualism or antagonism. These interactions are shaped through exchanges of primary and secondary metabolites provided by one of the partners. Metabolites, such as N-sources or vitamins, can be beneficial to the partner and they may be assimilated through chemotaxis towards the partner producing these metabolites. Other metabolites, especially many natural products synthesized by bacteria, can act as toxins and damage or kill the partner. For instance, the green microalga Chlamydomonas reinhardtii establishes a mutualistic partnership with a Methylobacterium, in stark contrast to its antagonistic relationship with the toxin producing Pseudomonas protegens. In other cases, as with a coccolithophore haptophyte alga and a Phaeobacter bacterium, the same alga and bacterium can even be subject to both processes, depending on the secreted bacterial and algal metabolites. Some bacteria also influence algal morphology by producing specific metabolites and micronutrients, as is observed in some macroalgae. This review focuses on algal-bacterial interactions with micro- and macroalgal models from marine, freshwater, and terrestrial environments and summarizes the advances in the field. It also highlights the effects of temperature on these interactions as it is presently known.
Collapse
Affiliation(s)
- Bertille Burgunter-Delamare
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (P.S.); (T.V.)
| | - Prateek Shetty
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (P.S.); (T.V.)
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Trang Vuong
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (P.S.); (T.V.)
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (P.S.); (T.V.)
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
2
|
Murúa P, Garvetto A, Egan S, Gachon CMM. The Reemergence of Phycopathology: When Algal Biology Meets Ecology and Biosecurity. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:231-255. [PMID: 37253694 DOI: 10.1146/annurev-phyto-020620-120425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Viruses, bacteria, and eukaryotic symbionts interact with algae in a variety of ways to cause disease complexes, often shaping marine and freshwater ecosystems. The advent of phyconomy (a.k.a. seaweed agronomy) represents a need for a greater understanding of algal disease interactions, where underestimated cryptic diversity and lack of phycopathological basis are prospective constraints for algal domestication. Here, we highlight the limited yet increasing knowledge of algal pathogen biodiversity and the ecological interaction with their algal hosts. Finally, we discuss how ecology and cultivation experience contribute to and reinforce aquaculture practice, with the potential to reshape biosecurity policies of seaweed cultivation worldwide.
Collapse
Affiliation(s)
- Pedro Murúa
- Instituto de Acuicultura, Universidad Austral de Chile-Sede Puerto Montt, Los Lagos, Chile;
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, United Kingdom
| | - Andrea Garvetto
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, United Kingdom
- Institute of Microbiology, Universität Innsbruck, Innsbruck, Tyrol, Austria
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Claire M M Gachon
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, United Kingdom
- Muséum National d'Histoire Naturelle, CNRS, Paris, France
| |
Collapse
|
3
|
Li J, Weinberger F, de Nys R, Thomas T, Egan S. A pathway to improve seaweed aquaculture through microbiota manipulation. Trends Biotechnol 2023; 41:545-556. [PMID: 36089422 DOI: 10.1016/j.tibtech.2022.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022]
Abstract
Eukaryotic hosts are associated with microbial communities that are critical to their function. Microbiota manipulation using beneficial microorganisms, for example, in the form of animal probiotics or plant growth-promoting microorganisms (PGPMs), can enhance host performance and health. Recently, seaweed beneficial microorganisms (SBMs) have been identified that promote the growth and development and/or improve disease resistance of seaweeds. This knowledge coincides with global initiatives seeking to expand and intensify seaweed aquaculture. Here, we provide a pathway with the potential to improve commercial cultivation of seaweeds through microbiota manipulation, highlighting that seaweed restoration practices can also benefit from further understanding SBMs and their modes of action. The challenges and opportunities of different approaches to identify and apply SBMs to seaweed aquaculture are discussed.
Collapse
Affiliation(s)
- Jiasui Li
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Florian Weinberger
- Marine Ecology Division, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Rocky de Nys
- Sea Forest Limited, 488 Freestone Point Road, Triabunna, Tasmania 7190, Australia and College of Science and Engineering, James Cook University, Townsville 4810, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, 2052, Australia.
| |
Collapse
|
4
|
Li J, Weinberger F, Saha M, Majzoub ME, Egan S. Cross-Host Protection of Marine Bacteria Against Macroalgal Disease. MICROBIAL ECOLOGY 2022; 84:1288-1293. [PMID: 34731271 DOI: 10.1007/s00248-021-01909-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Despite an increasing awareness of disease impacts on both cultivated and native seaweed populations, the development of marine probiotics has been limited and predominately focused on farmed animals. Bleaching (loss of thallus pigmentation) is one of the most prevalent diseases observed in marine macroalgae. Endemic probiotic bacteria have been characterized to prevent bleaching disease in red macroalgae Agarophyton vermiculophyllum and Delisea pulchra; however, the extent to which probiotic strains provide cross-protection to non-endemic hosts and the influence of native microbiota remain unknown. Using A. vermiculophyllum as a model, we demonstrate that co-inoculation with the pathogen Pseudoalteromonas arctica G-MAN6 and D. pulchra probiotic strain Phaeobacter sp. BS52 or Pseudoalteromonas sp. PB2-1 reduced the disease risks compared to the pathogen only treatment. Moreover, non-endemic probiotics outperformed the endemic probiotic strain Ralstonia sp. G-NY6 in the presence of the host natural microbiota. This study highlights how the native microbiota can impact the effectiveness of marine probiotics and illustrates the potential of harnessing probiotics that can function across different hosts to mitigate the impact of emerging marine diseases.
Collapse
Affiliation(s)
- Jiasui Li
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Florian Weinberger
- Marine Ecology Division, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105, Kiel, Germany
| | - Mahasweta Saha
- Marine Ecology Division, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105, Kiel, Germany
- Marine Ecology and Biodiversity, Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK
| | - Marwan E Majzoub
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, 2052, Australia.
| |
Collapse
|
5
|
Wood G, Steinberg PD, Campbell AH, Vergés A, Coleman MA, Marzinelli EM. Host genetics, phenotype and geography structure the microbiome of a foundational seaweed. Mol Ecol 2022; 31:2189-2206. [PMID: 35104026 PMCID: PMC9540321 DOI: 10.1111/mec.16378] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/18/2022] [Indexed: 12/01/2022]
Abstract
Interactions between hosts and their microbiota are vital to the functioning and resilience of macro-organisms. Critically, for hosts that play foundational roles in communities, understanding what drives host-microbiota interactions is essential for informing ecosystem restoration and conservation. We investigated the relative influence of host traits and the surrounding environment on microbial communities associated with the foundational seaweed Phyllospora comosa. We quantified 16 morphological and functional phenotypic traits, including host genetics (using 354 single nucleotide polymorphisms) and surface-associated microbial communities (using 16S rRNA gene amplicon sequencing) from 160 individuals sampled from eight sites spanning Phyllospora's entire latitudinal distribution (1,300 km). Combined, these factors explained 54% of the overall variation in Phyllospora's associated microbial community structure, much of which was related to the local environment (~32%). We found that putative "core" microbial taxa (i.e., present on all Phyllospora individuals sampled) exhibited slightly higher associations with host traits when compared to "variable" taxa (not present on all individuals). We identified several key genetic loci and phenotypic traits in Phyllospora that were strongly related to multiple microbial amplicon sequence variants, including taxa with known associations to seaweed defence, disease and tissue degradation. This information on how host-associated microbial communities vary with host traits and the environment enhances our current understanding of how "holobionts" (hosts plus their microbiota) are structured. Such understanding can be used to inform management strategies of these important and vulnerable habitats.
Collapse
Affiliation(s)
- Georgina Wood
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
- Centre for Marine Science and InnovationSchool of Biological, Earth and Environmental SciencesUNSW SydneySydneyNew South WalesAustralia
| | - Peter D. Steinberg
- Centre for Marine Science and InnovationSchool of Biological, Earth and Environmental SciencesUNSW SydneySydneyNew South WalesAustralia
- Sydney Institute of Marine ScienceSydneyNew South WalesAustralia
- Singapore Centre for Environmental Life Sciences EngineeringNanyang Technological UniversitySingaporeSingapore
| | - Alexandra H. Campbell
- USC Seaweed Research GroupUniversity of the Sunshine CoastSunshine CoastQueenslandAustralia
| | - Adriana Vergés
- Centre for Marine Science and InnovationSchool of Biological, Earth and Environmental SciencesUNSW SydneySydneyNew South WalesAustralia
| | - Melinda A. Coleman
- Department of Primary IndustriesNational Marine Science CentreCoffs HarbourNew South WalesAustralia
| | - Ezequiel M. Marzinelli
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
- Sydney Institute of Marine ScienceSydneyNew South WalesAustralia
- Singapore Centre for Environmental Life Sciences EngineeringNanyang Technological UniversitySingaporeSingapore
| |
Collapse
|
6
|
Bacterial controlled mitigation of dysbiosis in a seaweed disease. THE ISME JOURNAL 2022; 16:378-387. [PMID: 34341505 PMCID: PMC8776837 DOI: 10.1038/s41396-021-01070-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023]
Abstract
Disease in the marine environment is predicted to increase with anthropogenic stressors and already affects major habitat-formers, such as corals and seaweeds. Solutions to address this issue are urgently needed. The seaweed Delisea pulchra is prone to a bleaching disease, which is caused by opportunistic pathogens and involves bacterial dysbiosis. Bacteria that can inhibit these pathogens and/or counteract dysbiosis are therefore hypothesised to reduce disease. This study aimed to identify such disease-protective bacteria and investigate their protective action. One strain, Phaeobacter sp. BS52, isolated from healthy D. pulchra, was antagonistic towards bleaching pathogens and significantly increased the proportion of healthy individuals when applied before the pathogen challenge (pathogen-only vs. BS52 + pathogen: 41-80%), and to a level similar to the control. However, no significant negative correlations between the relative abundances of pathogens and BS52 on D. pulchra were detected. Instead, inoculation of BS52 mitigated pathogen-induced changes in the epibacterial community. These observations suggest that the protective activity of BS52 was due to its ability to prevent dysbiosis, rather than direct pathogen inhibition. This study demonstrates the feasibility of manipulating bacterial communities in seaweeds to reduce disease and that mitigation of dysbiosis can have positive health outcomes.
Collapse
|
7
|
Paix B, Potin P, Schires G, Le Poupon C, Misson B, Leblanc C, Culioli G, Briand JF. Synergistic effects of temperature and light affect the relationship between Taonia atomaria and its epibacterial community: a controlled conditions study. Environ Microbiol 2021; 23:6777-6797. [PMID: 34490980 DOI: 10.1111/1462-2920.15758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 11/29/2022]
Abstract
In the context of global warming, this study aimed to assess the effect of temperature and irradiance on the macroalgal Taonia atomaria holobiont dynamics. We developed an experimental set-up using aquaria supplied by natural seawater with three temperatures combined with three irradiances. The holobiont response was monitored over 14 days using a multi-omics approach coupling algal surface metabolomics and metabarcoding. Both temperature and irradiance appeared to shape the microbiota and the surface metabolome, but with a distinct temporality. Epibacterial community first changed according to temperature, and later in relation to irradiance, while the opposite occurred for the surface metabolome. An increased temperature revealed a decreasing richness of the epiphytic community together with an increase of several bacterial taxa. Irradiance changes appeared to quickly impact surface metabolites production linked with the algal host photosynthesis (e.g. mannitol, fucoxanthin, dimethylsulfoniopropionate), which was hypothesized to explain modifications of the structure of the epiphytic community. Algal host may also directly adapt its surface metabolome to changing temperature with time (e.g. lipids content) and also in response to changing microbiota (e.g. chemical defences). Finally, this study brought new insights highlighting complex direct and indirect responses of seaweeds and their associated microbiota under changing environments.
Collapse
Affiliation(s)
- Benoit Paix
- Université de Toulon, Laboratoire MAPIEM, La Garde, EA 4323, France
| | - Philippe Potin
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), UMR 8227, Station Biologique de Roscoff (SBR), Roscoff, France
| | - Gaëtan Schires
- Sorbonne Université, CNRS, Center for Biological Marine Resources (CRBM), FR 2424, Station Biologique de Roscoff (SBR), Roscoff, France
| | - Christophe Le Poupon
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM110, La Garde, France
| | - Benjamin Misson
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM110, La Garde, France
| | - Catherine Leblanc
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), UMR 8227, Station Biologique de Roscoff (SBR), Roscoff, France
| | - Gérald Culioli
- Université de Toulon, Laboratoire MAPIEM, La Garde, EA 4323, France
| | | |
Collapse
|
8
|
Paix B, Layglon N, Le Poupon C, D'Onofrio S, Misson B, Garnier C, Culioli G, Briand JF. Integration of spatio-temporal variations of surface metabolomes and epibacterial communities highlights the importance of copper stress as a major factor shaping host-microbiota interactions within a Mediterranean seaweed holobiont. MICROBIOME 2021; 9:201. [PMID: 34641951 PMCID: PMC8507236 DOI: 10.1186/s40168-021-01124-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Although considered as holobionts, macroalgae and their surface microbiota share intimate interactions that are still poorly understood. Little is known on the effect of environmental parameters on the close relationships between the host and its surface-associated microbiota, and even more in a context of coastal pollutions. Therefore, the main objective of this study was to decipher the impact of local environmental parameters, especially trace metal concentrations, on an algal holobiont dynamics using the Phaeophyta Taonia atomaria as a model. Through a multidisciplinary multi-omics approach combining metabarcoding and untargeted LC-MS-based metabolomics, the epibacterial communities and the surface metabolome of T. atomaria were monitored along a spatio-temporal gradient in the bay of Toulon (Northwestern Mediterranean coast) and its surrounding. Indeed, this geographical area displays a well-described trace metal gradient particularly relevant to investigate the effect of such pollutants on marine organisms. RESULTS Epibacterial communities of T. atomaria exhibited a high specificity whatever the five environmentally contrasted collecting sites investigated on the NW Mediterranean coast. By integrating metabarcoding and metabolomics analyses, the holobiont dynamics varied as a whole. During the occurrence period of T. atomaria, epibacterial densities and α-diversity increased while the relative proportion of core communities decreased. Pioneer bacterial colonizers constituted a large part of the specific and core taxa, and their decrease might be linked to biofilm maturation through time. Then, the temporal increase of the Roseobacter was proposed to result from the higher temperature conditions, but also the increased production of dimethylsulfoniopropionate (DMSP) at the algal surface which could constitute of the source of carbon and sulfur for the catabolism pathways of these taxa. Finally, as a major result of this study, copper concentration constituted a key factor shaping the holobiont system. Thus, the higher expression of carotenoids suggested an oxidative stress which might result from an adaptation of the algal surface metabolome to high copper levels. In turn, this change in the surface metabolome composition could result in the selection of particular epibacterial taxa. CONCLUSION We showed that associated epibacterial communities were highly specific to the algal host and that the holobiont dynamics varied as a whole. While temperature increase was confirmed to be one of the main parameters associated to Taonia dynamics, the originality of this study was highlighting copper-stress as a major driver of seaweed-epibacterial interactions. In a context of global change, this study brought new insights on the dynamics of a Mediterranean algal holobiont submitted to heavy anthropic pressures. Video abstract.
Collapse
Affiliation(s)
- Benoît Paix
- Université de Toulon, Laboratoire MAPIEM, EA, 4323, Toulon, France
- Present adress: Marine Biodiversity, Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Nicolas Layglon
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM, 110, Toulon, France
| | - Christophe Le Poupon
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM, 110, Toulon, France
| | - Sébastien D'Onofrio
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM, 110, Toulon, France
| | - Benjamin Misson
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM, 110, Toulon, France
| | - Cédric Garnier
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM, 110, Toulon, France
| | - Gérald Culioli
- Université de Toulon, Laboratoire MAPIEM, EA, 4323, Toulon, France.
- Present address: Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), UMR CNRS-IRD-Avignon Université-Aix-Marseille Université, Avignon, France.
| | | |
Collapse
|
9
|
Ferrari J, Goncalves P, Campbell AH, Sudatti DB, Wood GV, Thomas T, Pereira RC, Steinberg PD, Marzinelli EM. Molecular analysis of a fungal disease in the habitat-forming brown macroalga Phyllospora comosa (Fucales) along a latitudinal gradient. JOURNAL OF PHYCOLOGY 2021; 57:1504-1516. [PMID: 33942303 DOI: 10.1111/jpy.13180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Infectious diseases affecting habitat-forming species can have significant impacts on population dynamics and alter the structure and functioning of marine ecosystems. Recently, a fungal infection was described as the causative agent of necrotic lesions on the stipe of the forest-forming macroalga Phyllospora comosa, a disease named "stipe rot" (SR). Here, we developed a quantitative PCR (qPCR) method for rapid detection and quantification of this pathogen, which was applied to evaluate the level of SR infection in eight P. comosa populations spanning the entire latitudinal distribution of this species along southeastern Australia. We also investigated the relationship between the abundance and prevalence of Stipe Rot Fungus (SRF) and potential host chemical defenses as well as its relationship with morphological and ecophysiological traits of P. comosa. qPCR estimates of SRF abundance reflected the levels of infection estimated by visual assessment, with higher numbers of SRF copies being observed in individuals showing high or intermediate levels of visual symptoms of SR. Concordance of conventional PCR and visual assessments was 92 and 94%, respectively, compared to qPCR detection. SRF prevalence was positively related to fucoxanthin content and herbivory, but not significant related to other traits measured (phlorotannin content, total length, thallus diameter, stipe width, number of branches, frond width, fouling, bleaching, gender, and photosynthetic efficiency). These results provide confidence for previous reports of this disease based upon visual assessments only, contribute to the development of monitoring and conservation strategies for safeguarding P. comosa forests, and generate insights into potential factors influencing host-pathogen interactions in this system.
Collapse
Affiliation(s)
- Juliana Ferrari
- Instituto de Biologia, Departamento de Biologia Marinha, Universidade Federal Fluminense, Outeiro de São Jõao Batista s/n, Niterói, RJ, 24.001-970, Brazil
- Instituto de Estudos do Mar Almirante Paulo Moreira, Arraial do Cabo, RJ, 28930-000, Brazil
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- Sydney Institute of Marine Science, Mosman, NSW, 2088, Australia
| | - Priscila Goncalves
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Alexandra Helene Campbell
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- Seaweed Research Group, University of the Sunshine Coast, 90 Sippy Downs Road, Sunshine Coast, Queensland, 4556, Australia
| | - Daniela Bueno Sudatti
- Instituto de Estudos do Mar Almirante Paulo Moreira, Arraial do Cabo, RJ, 28930-000, Brazil
- Universidade Federal Fluminense, Niterói, RJ, 24.001-970, Brazil
| | - Georgina Valentine Wood
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Renato Crespo Pereira
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, RJ, 22460-030, Brazil
- Universidade Federal Fluminense, Niterói, RJ, 24.001-970, Brazil
| | - Peter David Steinberg
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- Sydney Institute of Marine Science, Mosman, NSW, 2088, Australia
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technical University, Singapore, 637551, Singapore
| | - Ezequiel Miguel Marzinelli
- Sydney Institute of Marine Science, Mosman, NSW, 2088, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technical University, Singapore, 637551, Singapore
| |
Collapse
|
10
|
Yang F, Xiao Z, Wei Z, Long L. Bacterial Communities Associated With Healthy and Bleached Crustose Coralline Alga Porolithon onkodes. Front Microbiol 2021; 12:646143. [PMID: 34177828 PMCID: PMC8219876 DOI: 10.3389/fmicb.2021.646143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Abstract
Crustose coralline algae (CCA) play vital roles in producing and stabilizing reef structures and inducing the settlement and metamorphosis of invertebrate larvae in coral reef ecosystems. However, little is known about the bacterial communities associated with healthy and bleached CCA and their interactions with coral larval settlement. We collected samples of healthy, middle semi-bleached, and bleached CCA Porolithon onkodes from Sanya Bay in the South China Sea and investigated their influences on the larval settlement and metamorphosis of the reef-building coral Pocillopora damicornis. The larval settlement/metamorphosis rates all exceeded 70% when exposed to healthy, middle semi-bleached, and bleached algae. Furthermore, the compositions of bacterial community using amplicon pyrosequencing of the V3–V4 region of 16S rRNA were investigated. There were no obvious changes in bacterial community structure among healthy, middle semi-bleached, and bleached algae. Alphaproteobacteria, Bacteroidetes, and Gammaproteobacteria were dominant in all samples, which may contribute to coral larval settlement. However, the relative abundances of several bacterial communities varied among groups. The relative abundances of Mesoflavibacter, Ruegeria, Nautella, and Alteromonas in bleached samples were more than double those in the healthy samples, whereas Fodinicurvata and unclassified Rhodobacteraceae were significantly lower in the bleached samples. Additionally, others at the genus level increased significantly from 8.5% in the healthy samples to 22.93% in the bleached samples, which may be related to algal bleaching. These results revealed that the microbial community structure associated with P. onkodes generally displayed a degree of stability. Furthermore, bleached alga was still able to induce larval settlement and metamorphosis.
Collapse
Affiliation(s)
- Fangfang Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Zhiliang Xiao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhangliang Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Lijuan Long
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
11
|
Davis KM, Mazel F, Parfrey LW. The microbiota of intertidal macroalgae Fucus distichus is site-specific and resistant to change following transplant. Environ Microbiol 2021; 23:2617-2631. [PMID: 33817918 DOI: 10.1111/1462-2920.15496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 01/04/2023]
Abstract
It is unclear how host-associated microbial communities will be affected by future environmental change. Characterizing how microbiota differ across sites with varying environmental conditions and assessing the stability of the microbiota in response to abiotic variation are critical steps towards predicting outcomes of environmental change. Intertidal organisms are valuable study systems because they experience extreme variation in environmental conditions on tractable timescales such as tide cycles and across small spatial gradients in the intertidal zone. Here we show a widespread intertidal macroalgae, Fucus distichus, hosts site-specific microbiota over small (meters to kilometres) spatial scales. We demonstrate stability of site-specific microbial associations by manipulating the host environment and microbial species pool with common garden and reciprocal transplant experiments. We hypothesized that F. distichus microbiota would readily shift to reflect the contemporary environment due to selective filtering by abiotic conditions and/or colonization by microbes from the new environment or nearby hosts. Instead, F. distichus microbiota was stable for days after transplantation in both the laboratory and field. Our findings expand the current understanding of microbiota dynamics on an intertidal foundation species. These results may also point to adaptations for withstanding short-term environmental variation, in hosts and/or microbes, facilitating stable host-microbial associations.
Collapse
Affiliation(s)
- Katherine M Davis
- Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Florent Mazel
- Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Laura Wegener Parfrey
- Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Hakai Institute, PO Box 309, Heriot Bay, BC, V0P 1H0, Canada
| |
Collapse
|
12
|
Menaa F, Wijesinghe PAUI, Thiripuranathar G, Uzair B, Iqbal H, Khan BA, Menaa B. Ecological and Industrial Implications of Dynamic Seaweed-Associated Microbiota Interactions. Mar Drugs 2020; 18:md18120641. [PMID: 33327517 PMCID: PMC7764995 DOI: 10.3390/md18120641] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/09/2020] [Accepted: 12/13/2020] [Indexed: 02/07/2023] Open
Abstract
Seaweeds are broadly distributed and represent an important source of secondary metabolites (e.g., halogenated compounds, polyphenols) eliciting various pharmacological activities and playing a relevant ecological role in the anti-epibiosis. Importantly, host (as known as basibiont such as algae)–microbe (as known as epibiont such as bacteria) interaction (as known as halobiont) is a driving force for coevolution in the marine environment. Nevertheless, halobionts may be fundamental (harmless) or detrimental (harmful) to the functioning of the host. In addition to biotic factors, abiotic factors (e.g., pH, salinity, temperature, nutrients) regulate halobionts. Spatiotemporal and functional exploration of such dynamic interactions appear crucial. Indeed, environmental stress in a constantly changing ocean may disturb complex mutualistic relations, through mechanisms involving host chemical defense strategies (e.g., secretion of secondary metabolites and antifouling chemicals by quorum sensing). It is worth mentioning that many of bioactive compounds, such as terpenoids, previously attributed to macroalgae are in fact produced or metabolized by their associated microorganisms (e.g., bacteria, fungi, viruses, parasites). Eventually, recent metagenomics analyses suggest that microbes may have acquired seaweed associated genes because of increased seaweed in diets. This article retrospectively reviews pertinent studies on the spatiotemporal and functional seaweed-associated microbiota interactions which can lead to the production of bioactive compounds with high antifouling, theranostic, and biotechnological potential.
Collapse
Affiliation(s)
- Farid Menaa
- Department of Nanomedicine, California Innovations Corporation, San Diego, CA 92037, USA;
- Correspondence: or
| | - P. A. U. I. Wijesinghe
- College of Chemical Sciences, Institute of Chemistry Ceylon, Rajagiriya 10107, Sri Lanka; (P.A.U.I.W.); (G.T.)
| | - Gobika Thiripuranathar
- College of Chemical Sciences, Institute of Chemistry Ceylon, Rajagiriya 10107, Sri Lanka; (P.A.U.I.W.); (G.T.)
| | - Bushra Uzair
- Department of Biological Sciences, International Islamic University, Islamabad 44000, Pakistan;
| | - Haroon Iqbal
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China;
| | - Barkat Ali Khan
- Department of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan;
| | - Bouzid Menaa
- Department of Nanomedicine, California Innovations Corporation, San Diego, CA 92037, USA;
| |
Collapse
|
13
|
Vergés A, Campbell AH, Wood G, Kajlich L, Eger AM, Cruz D, Langley M, Bolton D, Coleman MA, Turpin J, Crawford M, Coombes N, Camilleri A, Steinberg PD, Marzinelli EM. Operation Crayweed: Ecological and sociocultural aspects of restoring Sydney’s underwater forests. ECOLOGICAL MANAGEMENT & RESTORATION 2020. [DOI: 10.1111/emr.12413] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
14
|
The Macroalgal Holobiont in a Changing Sea. Trends Microbiol 2019; 27:635-650. [DOI: 10.1016/j.tim.2019.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 03/01/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023]
|
15
|
Qiu Z, Coleman MA, Provost E, Campbell AH, Kelaher BP, Dalton SJ, Thomas T, Steinberg PD, Marzinelli EM. Future climate change is predicted to affect the microbiome and condition of habitat-forming kelp. Proc Biol Sci 2019; 286:20181887. [PMID: 30963929 PMCID: PMC6408609 DOI: 10.1098/rspb.2018.1887] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/14/2019] [Indexed: 01/09/2023] Open
Abstract
Climate change is driving global declines of marine habitat-forming species through physiological effects and through changes to ecological interactions, with projected trajectories for ocean warming and acidification likely to exacerbate such impacts in coming decades. Interactions between habitat-formers and their microbiomes are fundamental for host functioning and resilience, but how such relationships will change in future conditions is largely unknown. We investigated independent and interactive effects of warming and acidification on a large brown seaweed, the kelp Ecklonia radiata, and its associated microbiome in experimental mesocosms. Microbial communities were affected by warming and, during the first week, by acidification. During the second week, kelp developed disease-like symptoms previously observed in the field. The tissue of some kelp blistered, bleached and eventually degraded, particularly under the acidification treatments, affecting photosynthetic efficiency. Microbial communities differed between blistered and healthy kelp for all treatments, except for those under future conditions of warming and acidification, which after two weeks resembled assemblages associated with healthy hosts. This indicates that changes in the microbiome were not easily predictable as the severity of future climate scenarios increased. Future ocean conditions can change kelp microbiomes and may lead to host disease, with potentially cascading impacts on associated ecosystems.
Collapse
Affiliation(s)
- Zhiguang Qiu
- Centre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Melinda A. Coleman
- Department of Primary Industries, NSW Fisheries, PO Box 4321, Coffs Harbour, New South Wales 2450, Australia
| | - Euan Provost
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales 2450, Australia
| | - Alexandra H. Campbell
- Centre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
- GeneCology Research Centre, University of the Sunshine Coast, Queensland 4556, Australia
| | - Brendan P. Kelaher
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales 2450, Australia
| | - Steven J. Dalton
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales 2450, Australia
- School of Biological Sciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Torsten Thomas
- Centre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Peter D. Steinberg
- Centre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
- Sydney Institute of Marine Science, 19 Chowder Bay Road, Mosman, New South Wales 2088, Australia
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, SBS-01N-27, Singapore 637551, Republic of Singapore
| | - Ezequiel M. Marzinelli
- Centre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
- Sydney Institute of Marine Science, 19 Chowder Bay Road, Mosman, New South Wales 2088, Australia
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, SBS-01N-27, Singapore 637551, Republic of Singapore
- School of Life and Environmental Sciences, Coastal and Marine Ecosystems, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
16
|
Interactions within the microbiome alter microbial interactions with host chemical defences and affect disease in a marine holobiont. Sci Rep 2019; 9:1363. [PMID: 30718608 PMCID: PMC6361982 DOI: 10.1038/s41598-018-37062-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/23/2018] [Indexed: 12/29/2022] Open
Abstract
Our understanding of diseases has been transformed by the realisation that people are holobionts, comprised of a host and its associated microbiome(s). Disease can also have devastating effects on populations of marine organisms, including dominant habitat formers such as seaweed holobionts. However, we know very little about how interactions between microorganisms within microbiomes - of humans or marine organisms – affect host health and there is no underpinning theoretical framework for exploring this. We applied ecological models of succession to bacterial communities to understand how interactions within a seaweed microbiome affect the host. We observed succession of surface microbiomes on the red seaweed Delisea pulchra in situ, following a disturbance, with communities ‘recovering’ to resemble undisturbed states after only 12 days. Further, if this recovery was perturbed, a bleaching disease previously described for this seaweed developed. Early successional strains of bacteria protected the host from colonisation by a pathogenic, later successional strain. Host chemical defences also prevented disease, such that within-microbiome interactions were most important when the host’s chemical defences were inhibited. This is the first experimental evidence that interactions within microbiomes have important implications for host health and disease in a dominant marine habitat-forming organism.
Collapse
|
17
|
Angelini C, van Montfrans SG, Hensel MJS, He Q, Silliman BR. The importance of an underestimated grazer under climate change: how crab density, consumer competition, and physical stress affect salt marsh resilience. Oecologia 2018; 187:205-217. [DOI: 10.1007/s00442-018-4112-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 03/12/2018] [Indexed: 11/29/2022]
|
18
|
Hudson J, Gardiner M, Deshpande N, Egan S. Transcriptional response of Nautella italica R11 towards its macroalgal host uncovers new mechanisms of host-pathogen interaction. Mol Ecol 2017; 27:1820-1832. [PMID: 29215165 DOI: 10.1111/mec.14448] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 12/14/2022]
Abstract
Macroalgae (seaweeds) are essential for the functioning of temperate marine ecosystems, but there is increasing evidence to suggest that their survival is under threat from anthropogenic stressors and disease. Nautella italica R11 is recognized as an aetiological agent of bleaching disease in the red alga, Delisea pulchra. Yet, there is a lack of knowledge surrounding the molecular mechanisms involved in this model host-pathogen interaction. Here we report that mutations in the gene encoding for a LuxR-type quorum sensing transcriptional regulator, RaiR, render N. italica R11 avirulent, suggesting this gene is important for regulating the expression of virulence phenotypes. Using an RNA sequencing approach, we observed a strong transcriptional response of N. italica R11 towards the presence of D. pulchra. In particular, genes involved in oxidative stress resistance, carbohydrate and central metabolism were upregulated in the presence of the host, suggesting a role for these functions in the opportunistic pathogenicity of N. italica R11. Furthermore, we show that RaiR regulates a subset of genes in N. italica R11, including those involved in metabolism and the expression of phage-related proteins. The outcome of this research reveals new functions important for virulence of N. italica R11 and contributes to our greater understanding of the complex factors mitigating microbial diseases in macroalgae.
Collapse
Affiliation(s)
- Jennifer Hudson
- School of Biological, Earth and Environmental Sciences, Centre for Marine Bio-Innovation, UNSW Sydney, Sydney, NSW, Australia
| | - Melissa Gardiner
- School of Biological, Earth and Environmental Sciences, Centre for Marine Bio-Innovation, UNSW Sydney, Sydney, NSW, Australia
| | - Nandan Deshpande
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Suhelen Egan
- School of Biological, Earth and Environmental Sciences, Centre for Marine Bio-Innovation, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
19
|
Molecular Mechanisms for Microbe Recognition and Defense by the Red Seaweed Laurencia dendroidea. mSphere 2017; 2:mSphere00094-17. [PMID: 29242829 PMCID: PMC5717322 DOI: 10.1128/msphere.00094-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 11/08/2017] [Indexed: 01/26/2023] Open
Abstract
Marine bacteria are part of the healthy microbiota associated with seaweeds, but some species, such as Vibrio spp., are frequently associated with disease outbreaks, especially in economically valuable cultures. In this context, the ability of seaweeds to recognize microbes and, when necessary, activate defense mechanisms is essential for their survival. However, studies dedicated to understanding the molecular components of the immune response in seaweeds are rare and restricted to indirect stimulus. This work provides an unprecedentedly large-scale evaluation of the transcriptional changes involved in microbe recognition, cellular signaling, and defense in the red seaweed Laurencia dendroidea in response to the marine bacterium Vibrio madracius. By expanding knowledge about seaweed-bacterium interactions and about the integrated defensive system in seaweeds, this work offers the basis for the development of tools to increase the resistance of cultured seaweeds to bacterial infections. The ability to recognize and respond to the presence of microbes is an essential strategy for seaweeds to survive in the marine environment, but understanding of molecular seaweed-microbe interactions is limited. Laurencia dendroidea clones were inoculated with the marine bacterium Vibrio madracius. The seaweed RNA was sequenced, providing an unprecedentedly high coverage of the transcriptome of Laurencia, and the gene expression levels were compared between control and inoculated samples after 24, 48, and 72 h. Transcriptomic changes in L. dendroidea in the presence of V. madracius include the upregulation of genes that participate in signaling pathways described here for the first time as a response of seaweeds to microbes. Genes coding for defense-related transcription activators, reactive oxygen species metabolism, terpene biosynthesis, and energy conversion pathways were upregulated in inoculated samples of L. dendroidea, indicating an integrated defensive system in seaweeds. This report contributes significantly to the current knowledge about the molecular mechanisms involved in the highly dynamic seaweed-bacterium interactions. IMPORTANCE Marine bacteria are part of the healthy microbiota associated with seaweeds, but some species, such as Vibrio spp., are frequently associated with disease outbreaks, especially in economically valuable cultures. In this context, the ability of seaweeds to recognize microbes and, when necessary, activate defense mechanisms is essential for their survival. However, studies dedicated to understanding the molecular components of the immune response in seaweeds are rare and restricted to indirect stimulus. This work provides an unprecedentedly large-scale evaluation of the transcriptional changes involved in microbe recognition, cellular signaling, and defense in the red seaweed Laurencia dendroidea in response to the marine bacterium Vibrio madracius. By expanding knowledge about seaweed-bacterium interactions and about the integrated defensive system in seaweeds, this work offers the basis for the development of tools to increase the resistance of cultured seaweeds to bacterial infections.
Collapse
|
20
|
Coleman MA, Wernberg T. Forgotten underwater forests: The key role of fucoids on Australian temperate reefs. Ecol Evol 2017; 7:8406-8418. [PMID: 29075458 PMCID: PMC5648665 DOI: 10.1002/ece3.3279] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 05/09/2017] [Accepted: 07/03/2017] [Indexed: 11/08/2022] Open
Abstract
Kelp forests dominated by species of Laminariales are globally recognized as key habitats on subtidal temperate rocky reefs. Forests characterized by fucalean seaweed, in contrast, receive relatively less attention despite being abundant, ubiquitous, and ecologically important. Here, we review information on subtidal fucalean taxa of Australia's Great Southern Reef, with a focus on the three most abundant and widely distributed genera (Phyllospora, Scytothalia, and Sargassum) to reveal the functionally unique role of fucoids in temperate reef ecology. Fucalean species span the entire temperate coastline of Australia (~71,000 km2) and play an important role in supporting subtidal temperate biodiversity and economic values on rocky reefs as well as in adjacent habitats. Climatic and anthropogenic stressors have precipitated significant range retractions and declines in many fucoids, with critical implications for associated assemblages. Such losses are persistent and unlikely to be reversed naturally due to the life history of these species and colonization of competitors and grazers following loss. Active restoration is proving successful in bringing back some fucoid species (Phyllospora comosa) lost from urban shores and will complement other passive and active forms of conservation. Fucalean forests play a unique role on subtidal temperate reefs globally, especially in Australia, but are comparatively understudied. Addressing this knowledge gap will be critical for understanding, predicting, and mitigating extant and future loss of these underwater forests and the valuable ecosystem services they support.
Collapse
Affiliation(s)
- Melinda A Coleman
- NSW Fisheries Coffs Harbour NSW Australia.,National Marine Science Centre Southern Cross University Coffs Harbour NSW Australia
| | - Thomas Wernberg
- UWA Oceans Institute and School of Biological Sciences University of Western Australia Crawley WA Australia
| |
Collapse
|
21
|
Zozaya-Valdés E, Roth-Schulze AJ, Egan S, Thomas T. Microbial community function in the bleaching disease of the marine macroalgae Delisea pulchra. Environ Microbiol 2017; 19:3012-3024. [PMID: 28419766 DOI: 10.1111/1462-2920.13758] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/07/2017] [Indexed: 01/10/2023]
Abstract
Disease is increasingly viewed as a major factor impacting the health of both natural and cultured populations of marine organisms, including macroalgae. The red macroalga Delisea pulchra suffers from a bleaching disease resulting from host stress and infection by opportunistic bacterial pathogens. However, how pathogens cause the disease and how the entire macro algal-associated community is involved in the process is unclear. Here, we perform a metagenomic analysis of microbial communities associated with diseased and healthy D. pulchra across multiple bleaching events. Analysis of reconstructed 16S rRNA gene sequences showed that bacteria belonging to the families Rhodobacteraceae, Saprospiraceae and Flavobacteriaceae, including bacteria previously implicated in algal bleaching, to be enriched in diseased D. pulchra. Genes with predicted functions related to chemotaxis, motility, oxidative stress response, vitamin biosynthesis and nutrient acquisition were also prevalent in microbiomes of bleached algae, which may have a role in pathogenicity. Reconstruction of genomes that were abundant on bleached samples revealed that no single organism contains all bleaching-enriched functional genes. This observation indicates that potential virulence traits are distributed across multiple bacteria and that the disease in D. pulchra may result from a consortium of opportunistic pathogens, analogous to dysbiotic or polymicrobial diseases.
Collapse
Affiliation(s)
- Enrique Zozaya-Valdés
- Centre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Alexandra J Roth-Schulze
- Centre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Suhelen Egan
- Centre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Torsten Thomas
- Centre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
22
|
Kumar V, Zozaya-Valdes E, Kjelleberg S, Thomas T, Egan S. Multiple opportunistic pathogens can cause a bleaching disease in the red seaweed Delisea pulchra. Environ Microbiol 2016; 18:3962-3975. [PMID: 27337296 DOI: 10.1111/1462-2920.13403] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While macroalgae (or seaweeds) are increasingly recognized to suffer from disease, in most cases the causative agents are unknown. The model macroalga Delisea pulchra is susceptible to a bleaching disease and previous work has identified two epiphytic bacteria, belonging to the Roseobacter clade, that cause bleaching under laboratory conditions. However, recent environmental surveys have shown that these in vitro pathogens are not abundant in naturally bleached D. pulchra, suggesting the presence of other pathogens capable of causing this algal disease. To test this hypothesis, we cultured bacteria that were abundant on bleached tissue across multiple disease events and assessed their ability to cause bleaching disease. We identified the new pathogens Alteromonas sp. BL110, Aquimarina sp. AD1 and BL5 and Agarivorans sp BL7 that are phylogenetically diverse, distinct from the previous two pathogens and can also be found in low abundance in healthy individuals. Moreover, we found that bacterial communities of diseased individuals that were infected with these pathogens were less diverse and more divergent from each other than those of healthy algae. This study demonstrates that multiple and opportunistic pathogens can cause the same disease outcome for D. pulchra and we postulate that such pathogens are more common in marine systems than previously anticipated.
Collapse
Affiliation(s)
- Vipra Kumar
- Centre for Marine Bio-Innovation & School of Biological, Earth and Environmental Sciences. The University of New South Wales Sydney, NSW, 2052, Australia
| | - Enrique Zozaya-Valdes
- Centre for Marine Bio-Innovation & School of Biological, Earth and Environmental Sciences. The University of New South Wales Sydney, NSW, 2052, Australia
| | - Staffan Kjelleberg
- Centre for Marine Bio-Innovation & School of Biological, Earth and Environmental Sciences. The University of New South Wales Sydney, NSW, 2052, Australia.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore
| | - Torsten Thomas
- Centre for Marine Bio-Innovation & School of Biological, Earth and Environmental Sciences. The University of New South Wales Sydney, NSW, 2052, Australia
| | - Suhelen Egan
- Centre for Marine Bio-Innovation & School of Biological, Earth and Environmental Sciences. The University of New South Wales Sydney, NSW, 2052, Australia
| |
Collapse
|
23
|
Lachnit T, Thomas T, Steinberg P. Expanding our Understanding of the Seaweed Holobiont: RNA Viruses of the Red Alga Delisea pulchra. Front Microbiol 2016; 6:1489. [PMID: 26779145 PMCID: PMC4705237 DOI: 10.3389/fmicb.2015.01489] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/10/2015] [Indexed: 01/08/2023] Open
Abstract
Marine seaweeds are holobionts comprised of the macroalgal hosts and their associated microbiota. While the composition of the bacterial component of seaweed microbiomes is increasingly studied, almost nothing is known about the presence, diversity and composition of viruses in macroalgae in situ. In this study, we characterize for the first time the viruses associated with a red macroalga, Delisea pulchra. Using transmission electron microscopy we identified diverse morphotypes of virus-like particles in D. pulchra ranging from icosahedral to bacilliform to coiled pleomorphic as well as bacteriophages. Virome sequencing revealed the presence of a diverse group of dsRNA viruses affiliated to the genus Totivirus, known to infect plant pathogenic fungi. We further identified a ssRNA virus belonging to the order Picornavirales with a close phylogenetic relationship to a pathogenic virus infecting marine diatoms. The results of this study shed light on a so far neglected part of the seaweed holobiont, and suggest that some of the identified viruses may be possible pathogens for a host that is already known to be significantly impacted by bacterial infections.
Collapse
Affiliation(s)
- Tim Lachnit
- Centre for Marine Bio-Innovation, University of New South Wales, SydneyNSW, Australia
- Zoological Institute, Christian-Albrechts-University KielKiel, Germany
| | - Torsten Thomas
- Centre for Marine Bio-Innovation, University of New South Wales, SydneyNSW, Australia
- School for Biotechnology and Biomolecular Science, University of New South Wales, SydneyNSW, Australia
| | - Peter Steinberg
- Centre for Marine Bio-Innovation, University of New South Wales, SydneyNSW, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, SydneyNSW, Australia
- Sydney Institute of Marine Science, MosmanNSW, Australia
| |
Collapse
|
24
|
Gardiner M, Fernandes ND, Nowakowski D, Raftery M, Kjelleberg S, Zhong L, Thomas T, Egan S. VarR controls colonization and virulence in the marine macroalgal pathogen Nautella italica R11. Front Microbiol 2015; 6:1130. [PMID: 26528274 PMCID: PMC4602140 DOI: 10.3389/fmicb.2015.01130] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/28/2015] [Indexed: 01/16/2023] Open
Abstract
There is increasing evidence to suggest that macroalgae (seaweeds) are susceptible to infectious disease. However, to date, little is known about the mechanisms that facilitate the colonization and virulence of microbial seaweed pathogens. One well-described example of a seaweed disease is the bleaching of the red alga Delisea pulchra, which can be caused by the bacterium Nautella italica R11, a member of the Roseobacter clade. This pathogen contains a unique luxR-type gene, varR, which we hypothesize controls its colonization and virulence. We show here that a varR knock-out strain is deficient in its ability to cause disease in D. pulchra and is defective in biofilm formation and attachment to a common algal polysaccharide. Moreover complementation of the varR gene in trans can restore these functions to the wild type levels. Proteomic analysis of bacterial cells in planktonic and biofilm growth highlight the potential importance of nitrogen scavenging, mobilization of energy reserves, and stress resistance in the biofilm lifestyle of N. italica R11. Moreover, we show that VarR regulates the expression of a specific subset of biofilm-associated proteins. Taken together these data suggest that VarR controls colonization and persistence of N. italica R11 on the surface of a macroalgal host and that it is an important regulator of virulence.
Collapse
Affiliation(s)
- Melissa Gardiner
- School of Biotechnology and Biomolecular Sciences, Centre for Marine Bio-Innovation, The University of New South Wales Sydney, NSW, Australia
| | - Neil D Fernandes
- School of Biotechnology and Biomolecular Sciences, Centre for Marine Bio-Innovation, The University of New South Wales Sydney, NSW, Australia
| | - Dennis Nowakowski
- School of Biotechnology and Biomolecular Sciences, Centre for Marine Bio-Innovation, The University of New South Wales Sydney, NSW, Australia
| | - Mark Raftery
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, The University of New South Wales Sydney, NSW, Australia
| | - Staffan Kjelleberg
- School of Biotechnology and Biomolecular Sciences, Centre for Marine Bio-Innovation, The University of New South Wales Sydney, NSW, Australia ; Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore Singapore
| | - Ling Zhong
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, The University of New South Wales Sydney, NSW, Australia
| | - Torsten Thomas
- School of Biotechnology and Biomolecular Sciences, Centre for Marine Bio-Innovation, The University of New South Wales Sydney, NSW, Australia
| | - Suhelen Egan
- School of Biotechnology and Biomolecular Sciences, Centre for Marine Bio-Innovation, The University of New South Wales Sydney, NSW, Australia
| |
Collapse
|
25
|
Vergés A, Steinberg PD, Hay ME, Poore AGB, Campbell AH, Ballesteros E, Heck KL, Booth DJ, Coleman MA, Feary DA, Figueira W, Langlois T, Marzinelli EM, Mizerek T, Mumby PJ, Nakamura Y, Roughan M, van Sebille E, Gupta AS, Smale DA, Tomas F, Wernberg T, Wilson SK. The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proc Biol Sci 2015; 281:20140846. [PMID: 25009065 DOI: 10.1098/rspb.2014.0846] [Citation(s) in RCA: 326] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Climate-driven changes in biotic interactions can profoundly alter ecological communities, particularly when they impact foundation species. In marine systems, changes in herbivory and the consequent loss of dominant habitat forming species can result in dramatic community phase shifts, such as from coral to macroalgal dominance when tropical fish herbivory decreases, and from algal forests to 'barrens' when temperate urchin grazing increases. Here, we propose a novel phase-shift away from macroalgal dominance caused by tropical herbivores extending their range into temperate regions. We argue that this phase shift is facilitated by poleward-flowing boundary currents that are creating ocean warming hotspots around the globe, enabling the range expansion of tropical species and increasing their grazing rates in temperate areas. Overgrazing of temperate macroalgae by tropical herbivorous fishes has already occurred in Japan and the Mediterranean. Emerging evidence suggests similar phenomena are occurring in other temperate regions, with increasing occurrence of tropical fishes on temperate reefs.
Collapse
Affiliation(s)
- Adriana Vergés
- Centre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia Sydney Institute of Marine Sciences, Chowder Bay Road, Mosman, New South Wales 2088, Australia
| | - Peter D Steinberg
- Centre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia Sydney Institute of Marine Sciences, Chowder Bay Road, Mosman, New South Wales 2088, Australia Advanced Environmental Biotechnology Centre, Nanyang Technical University, Singapore 637551, Republic of Singapore
| | - Mark E Hay
- School of Biology and Aquatic Chemical Ecology Center, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alistair G B Poore
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia Sydney Institute of Marine Sciences, Chowder Bay Road, Mosman, New South Wales 2088, Australia
| | - Alexandra H Campbell
- Centre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia Sydney Institute of Marine Sciences, Chowder Bay Road, Mosman, New South Wales 2088, Australia
| | - Enric Ballesteros
- Centre d'Estudis Avançats de Blanes-CSIC, Blanes, Girona 17300, Spain
| | - Kenneth L Heck
- Dauphin Island Sea Laboratory and University of South Alabama, Mobile, AL 36688-0002, USA
| | - David J Booth
- Sydney Institute of Marine Sciences, Chowder Bay Road, Mosman, New South Wales 2088, Australia School of the Environment, University of Technology Sydney, Broadway, New South Wales 2007, Australia
| | - Melinda A Coleman
- Department of Primary Industries, NSW Fisheries, PO Box 4321, Coffs Harbour, New South Wales 2450, Australia
| | - David A Feary
- Sydney Institute of Marine Sciences, Chowder Bay Road, Mosman, New South Wales 2088, Australia School of the Environment, University of Technology Sydney, Broadway, New South Wales 2007, Australia
| | - Will Figueira
- Sydney Institute of Marine Sciences, Chowder Bay Road, Mosman, New South Wales 2088, Australia School of Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Tim Langlois
- UWA Oceans Institute and School of Plant Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Ezequiel M Marzinelli
- Centre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia Sydney Institute of Marine Sciences, Chowder Bay Road, Mosman, New South Wales 2088, Australia
| | - Toni Mizerek
- Sydney Institute of Marine Sciences, Chowder Bay Road, Mosman, New South Wales 2088, Australia Department of Biological Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Peter J Mumby
- Marine Spatial Ecology Laboratory, School of Biological Sciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Yohei Nakamura
- Graduate School of Kuroshio Science, Kochi University, Kochi 783-8502, Japan
| | - Moninya Roughan
- School of Mathematics, University of New South Wales, Sydney, New South Wales 2052, Australia Sydney Institute of Marine Sciences, Chowder Bay Road, Mosman, New South Wales 2088, Australia
| | - Erik van Sebille
- Climate Change Research Centre and ARC Centre of Excellence for Climate, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Alex Sen Gupta
- Climate Change Research Centre and ARC Centre of Excellence for Climate, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Dan A Smale
- UWA Oceans Institute and School of Plant Biology, University of Western Australia, Crawley, Western Australia 6009, Australia Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth PL1 2PB, UK
| | - Fiona Tomas
- Instituto Mediterráneo de Estudios Avanzados (CSIC-UIB), Esporles, Illes Balears 07190, Spain Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR 97331-3803, USA
| | - Thomas Wernberg
- UWA Oceans Institute and School of Plant Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Shaun K Wilson
- UWA Oceans Institute and School of Plant Biology, University of Western Australia, Crawley, Western Australia 6009, Australia Department of Parks and Wildlife, Kensington, Western Australia 6151, Australia
| |
Collapse
|
26
|
Clark GF, Marzinelli EM, Fogwill CJ, Turney CSM, Johnston EL. Effects of sea-ice cover on marine benthic communities: a natural experiment in Commonwealth Bay, East Antarctica. Polar Biol 2015. [DOI: 10.1007/s00300-015-1688-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Zozaya-Valdes E, Egan S, Thomas T. A comprehensive analysis of the microbial communities of healthy and diseased marine macroalgae and the detection of known and potential bacterial pathogens. Front Microbiol 2015; 6:146. [PMID: 25759688 PMCID: PMC4338804 DOI: 10.3389/fmicb.2015.00146] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 02/09/2015] [Indexed: 01/31/2023] Open
Abstract
Microorganisms are increasingly being recognized as the causative agents in the diseases of marine higher organisms, such as corals, sponges, and macroalgae. Delisea pulchra is a common, temperate red macroalga, which suffers from a bleaching disease. Two bacterial strains, Nautella italica R11 and Phaeobacter gallaeciensis LSS9, have been shown in vitro to cause bleaching symptoms, but previous work has failed to detect them during a natural bleaching event. To provide a link between in vitro observations and natural occurrences of the disease, we employ here deep-sequencing of the 16S rRNA gene to comprehensively analyze the community composition of healthy and diseased D. pulchra samples from two separate locations. We observed operational taxonomic units (OTUs) with 100% identity and coverage to the 16S RNA gene sequence of both in vitro pathogens, but only the OTU with similarity to strain LSS9 showed a statistically significant higher abundance in diseased samples. Our analysis also reveals the existence of other bacterial groups within the families Rhodobacteraceae and Flavobacteriaceae that strongly contribute to difference between diseased and healthy samples and thus these groups potentially contain novel macroalgal pathogens and/or saprophytes. Together our results provide evidence for the ecological relevance of one kind of in vitro pathogen, but also highlight the possibility that multiple opportunistic pathogens are involved in the bleaching disease of D. pulchra.
Collapse
Affiliation(s)
| | | | - Torsten Thomas
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Sciences, The University of New South WalesSydney, NSW, Australia
| |
Collapse
|
28
|
Poore AGB, Gutow L, Pantoja JF, Tala F, Jofré Madariaga D, Thiel M. Major consequences of minor damage: impacts of small grazers on fast-growing kelps. Oecologia 2014; 174:789-801. [PMID: 24100758 DOI: 10.1007/s00442-013-2795-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 09/24/2013] [Indexed: 11/28/2022]
Abstract
Damage by small herbivores can have disproportionately large effects on the fitness of individual plants if damage is concentrated on valuable tissues or on select individuals within a population. In marine systems, the impact of tissue loss on the growth rates of habitat-forming algae is poorly understood. We quantified the grazing damage by an isopod Amphoroidea typa on two species of large kelps, Lessonia spicata and Macrocystis pyrifera, in temperate Chile to test whether non-lethal grazing damage could reduce kelp growth rates and photosynthetic efficiency. For L. spicata, grazing damage was widespread in the field, unevenly distributed on several spatial scales (among individuals and among tissue types) and negatively correlated with blade growth rates. In field experiments, feeding by A. typa reduced the concentration of photosynthetic pigments and led to large reductions (~80%) in blade growth rates despite limited loss of kelp biomass (0.5% per day). For M. pyrifera, rates of damage in the field were lower and high densities of grazers were unable to reduce growth rates in field experiments. These results demonstrate that even low per capita grazing rates can result in large reductions in the growth of a kelp, due the spatial clustering of herbivores in the field and the selective removal of photosynthetically active tissues. The impacts of small herbivores on plant performance are thus not easily predicted from consumption rates or abundance in the field, and vary with plant species due to variation in their ability to compensate for damage.
Collapse
Affiliation(s)
- Alistair G B Poore
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, 2052, Sydney, NSW, Australia,
| | | | | | | | | | | |
Collapse
|