1
|
Pesce E, Benitez-Gonzalez J, Tindall AJ, Lemkine GF, Robin-Duchesne B, Sachs LM, Pasquier EDD. Testing the sensitivity of the medaka Transgenic Eleuthero-embryonic THYroid-Specific assay (TETHYS) to different mechanisms of action. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107081. [PMID: 39305711 DOI: 10.1016/j.aquatox.2024.107081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 11/12/2024]
Abstract
There are many concerns about the impacts of Endocrine-Disrupting Chemicals on both wildlife and human populations. A plethora of chemicals have been shown to interfere with the Hypothalamic-Pituitary-Thyroid (HPT) axis in vertebrates. Disruption of the HPT axis is one of main endocrine criteria considered for the regulation of chemicals, along with the estrogen axis, androgen axis and steroidogenesis (EATS). In response to these concerns, the Organization for Economic Cooperation and Development (OECD) initiated the validation of test guidelines (TGs) covering the EATS modalities. Regarding thyroid activity and/or disruption assessment, three OECD TGs are validated, all of them using amphibians. To date, no OECD TGs based on fish are available for the detection of Thyroid Active Chemicals (TACs). To fill this gap, we developed a new test for the detection of TACs, the TETHYS assay (Transgenic Eleuthero-embryonic THYroid-Specific assay). This assay uses a medaka (Oryzias latipes) transgenic line Tg(tg:eGFP) expressing Green Fluorescent Protein in the thyroid follicles, under the control of the thyroglobulin promoter. This assay is performed at eleuthero-embryonic life-stages with an exposure length of 72 h. In the present study, the following reference chemicals with known thyroid hormone system mechanism of action have been tested: methimazole, sodium perchlorate, sodium tetrafluoroborate, diclofenac, iopanoic acid, sobetirome, NH-3 and 1-850. Except for the thyroid receptor antagonists, all chemicals tested were identified as thyroid active, modifying the total fluorescence and the size of the thyroid follicles. To investigate the test specificity, we tested three chemicals presumed to be inert on the HPT axis: cefuroxime, abamectin and 17α-ethinylestradiol. All were found to be inactive in the TETHYS assay. This promising New Approach Methodology can serve as a foundation for the development of a new OECD TG in the frame of regulatory assessment of chemicals for thyroid activity.
Collapse
Affiliation(s)
- Elise Pesce
- Laboratoire WatchFrog S.A., 1 Rue Pierre Fontaine, 91000 Évry, France; UMR 7221 Physiologie Moléculaire et Adaptation, CNRS, Muséum National d'Histoire Naturelle, CP32, 57 rue Cuvier, 75005 Paris, France
| | | | - Andrew J Tindall
- Laboratoire WatchFrog S.A., 1 Rue Pierre Fontaine, 91000 Évry, France
| | - Gregory F Lemkine
- Laboratoire WatchFrog S.A., 1 Rue Pierre Fontaine, 91000 Évry, France
| | | | - Laurent M Sachs
- UMR 7221 Physiologie Moléculaire et Adaptation, CNRS, Muséum National d'Histoire Naturelle, CP32, 57 rue Cuvier, 75005 Paris, France
| | | |
Collapse
|
2
|
Du Pasquier D, Salinier B, Coady KK, Jones A, Körner O, LaRocca J, Lemkine G, Robin-Duchesne B, Weltje L, Wheeler JR, Lagadic L. How the Xenopus eleutheroembryonic thyroid assay compares to the amphibian metamorphosis assay for detecting thyroid active chemicals. Regul Toxicol Pharmacol 2024; 149:105619. [PMID: 38614220 DOI: 10.1016/j.yrtph.2024.105619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/05/2024] [Accepted: 04/03/2024] [Indexed: 04/15/2024]
Abstract
The Xenopus Eleutheroembryonic Thyroid Assay (XETA) was recently published as an OECD Test Guideline for detecting chemicals acting on the thyroid axis. However, the OECD validation did not cover all mechanisms that can potentially be detected by the XETA. This study was therefore initiated to investigate and consolidate the applicability domain of the XETA regarding the following mechanisms: thyroid hormone receptor (THR) agonism, sodium-iodide symporter (NIS) inhibition, thyroperoxidase (TPO) inhibition, deiodinase (DIO) inhibition, glucocorticoid receptor (GR) agonism, and uridine 5'-diphospho-glucuronosyltransferase (UDPGT) induction. In total, 22 chemicals identified as thyroid-active or -inactive in Amphibian Metamorphosis Assays (AMAs) were tested using the XETA OECD Test Guideline. The comparison showed that both assays are highly concordant in identifying chemicals with mechanisms of action related to THR agonism, DIO inhibition, and GR agonism. They also consistently identified the UDPGT inducers as thyroid inactive. NIS inhibition, investigated using sodium perchlorate, was not detected in the XETA. TPO inhibition requires further mechanistic investigations as the reference chemicals tested resulted in opposing response directions in the XETA and AMA. This study contributes refining the applicability domain of the XETA, thereby helping to clarify the conditions where it can be used as an ethical alternative to the AMA.
Collapse
Affiliation(s)
- David Du Pasquier
- Laboratoire WatchFrog, 1 Rue Pierre Fontaine, 91000, Évry-Courcouronnes, France
| | - Benoît Salinier
- Laboratoire WatchFrog, 1 Rue Pierre Fontaine, 91000, Évry-Courcouronnes, France
| | - Katherine K Coady
- Bayer Crop Science, Environmental Safety, 700 Chesterfield Parkway West, Chesterfield, MO, USA
| | - Alan Jones
- ADAMA US, Environmental Safety, 3120 Highwoods Blvd., Raleigh, NC, 27604, USA
| | - Oliver Körner
- ADAMA, Environmental Safety, Edmund-Rumpler-Strasse 6, 51149, Cologne, Germany
| | - Jessica LaRocca
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, IN, 46268, USA
| | - Gregory Lemkine
- Laboratoire WatchFrog, 1 Rue Pierre Fontaine, 91000, Évry-Courcouronnes, France
| | | | - Lennart Weltje
- BASF SE, Agricultural Solutions - Ecotoxicology, Speyerer Strasse 2, 67117, Limburgerhof, Germany
| | - James R Wheeler
- Corteva Agriscience, Zuid-Oostsingel 24D, 4611 BB, Bergen op Zoom, the Netherlands
| | - Laurent Lagadic
- Bayer AG R&D Crop Science, Alfred-Nobel-Strasse 50, 40789, Monheim am Rhein, Germany.
| |
Collapse
|
3
|
Wolf JC, Green JW, Mingo V, Marini JP, Schneider SZ, Fort DJ, Wheeler JR. Historical control histopathology data from amphibian metamorphosis assays and fathead minnow fish short term reproductive assays: A tool for data interpretation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 267:106811. [PMID: 38159458 DOI: 10.1016/j.aquatox.2023.106811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
The Amphibian Metamorphosis Assay (AMA) is used to determine if a tested chemical has potential to impact the hypothalamic-pituitary-thyroid (HPT) axis of Xenopus laevis tadpoles, while the Fish Short Term Reproduction Assay (FSTRA) assesses potential effects on the hypothalamic-pituitary-gonadal (HPG) axis of fish such as the fathead minnow (Pimephales promelas). Several global regulatory programs routinely require these internationally validated tests be performed to determine the potential endocrine activity of chemicals. As such, they are conducted in accordance with standardized protocols and test criteria, which were originally developed more than a decade ago. Sizeable numbers of AMA and FSTRA studies have since been carried out, which allows for the mining of extensive historical control data (HCD). Such data are useful for investigating the existence of outlier results and aberrant control groups, identifying potential confounding variables, providing context for rare diagnoses, discriminating target from non-target effects, and for refining current testing paradigms. The present paper provides histopathology HCD from 55 AMA studies and 45 fathead minnow FSTRA studies, so that these data may become publicly available and thus aid in the interpretation of future study outcomes. Histopathology is a key endpoint in these assays, in which it is considered to be one of the most sensitive indicators of endocrine perturbation. In the current review, granular explorations of HCD data were used to identify background lesions, to assess the utility of particular diagnostic findings for distinguishing endocrine from non-endocrine effects, and to help determine if specific improvements to established regulatory guidance may be warranted. Knowledge gleaned from this investigation, supplemented by information from other recent studies, provided further context for the interpretation of AMA and FSTRA histopathology results. We recommend HCDs for the AMA and FSTRA be maintained to support the interpretation of study results.
Collapse
Affiliation(s)
- Jeffrey C Wolf
- Experimental Pathology Laboratories, Inc., 45600 Terminal Drive, Sterling, VA 20166, USA.
| | - John W Green
- John W Green Ecostatistical Consulting, LLC 372 Chickory Way, Newark, DE 19711, USA
| | - Valentin Mingo
- Corteva Agriscience, Riedenburger Str. 7, München 81677, Germany
| | | | | | - Douglas J Fort
- Fort Environmental Laboratories, Stillwater, OK 74074, USA
| | - James R Wheeler
- Corteva Agriscience, Zuid-Oostsingel 24D, Bergen op Zoom 4611 BB, the Netherlands
| |
Collapse
|
4
|
Li X, Li J, Li K, Zhang Z, Wang H. Effects of perchlorate and exogenous T4 exposures on body condition and endochondral ossification of Rana chensinensis tadpoles. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106767. [PMID: 37972501 DOI: 10.1016/j.aquatox.2023.106767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/14/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Perchlorate, as an endocrine-disrupting chemical (EDC), is largely produced and used in the military, fireworks, fertilizers, and other industries and widely exists in water. Although perchlorate is known to destroy the normal function of thyroid hormones (THs) in amphibians and interfere with their growth and development, the impact of TH levels caused by sodium perchlorate (NaClO4) on endochondral ossification and skeletal development is poorly investigated, and the underlying molecular mechanism has not been clarified. The present study aimed to explore the potential effects of NaClO4 and exogenous thyroxine (T4) on the skeletal development of Rana chensinensis tadpoles and elucidate the related molecular mechanisms. Our results showed that histological changes occurred to the femur and tibia-fibula of tadpoles raised in 250 μg/L NaClO4 and 5 μg/L exogenous T4, and the length of their hindlimbs was significantly reduced. In addition, exogenous T4 exposure significantly interfered with the expression of Dio3, TRβ, MMP9, MMP13, and Runx2, inhibiting the endochondral ossification process. Therefore, we provide robust evidence that the changes in TH levels caused by NaClO4 and exogenous T4 will adversely affect the endochondral ossification and skeletal development of R. chensinensis tadpoles.
Collapse
Affiliation(s)
- Xinyi Li
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Jiayi Li
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Kaiyue Li
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Zhiqin Zhang
- Basic Experimental Teaching Center, Shaanxi Normal University, Xi'an 710119, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
5
|
Li X, Li K, Li J, Zhang Z, Wang H. Effects of perchlorate and exogenous T4 on growth, development and tail resorption of Rana chensinensis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122333. [PMID: 37558196 DOI: 10.1016/j.envpol.2023.122333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/31/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
Endocrine disruptors have been demonstrated to exert adverse effects on growth and development of amphibians by disrupting hormone levels. Tail resorption, which is one of the most remarkable events during amphibian metamorphosis, is closely associated with thyroid hormones levels. However, limited research has been conducted on the effects of endocrine disruptors on tail resorption in amphibians. This study explored the effects of NaClO4 and T4 on the growth, development and tail resorption during the metamorphosis of Rana Chensinensis. The results demonstrated that exposure to NaClO4 led to an increase in body size and a delay in metamorphosis of R. Chensinensis tadpoles. Histological analysis revealed that both NaClO4 and exogenous T4 exposure resulted in thyroid gland injury, and NaClO4 treatment delayed the degradation of notochord and muscles, thereby delaying tail resorption. Moreover, transcriptome sequencing results showed that apoptosis-related genes (APAF1, BAX and CASP6) and cell component degradation-related genes (MMP9 and MMP13) were highly expressed in the T4 exposure group, and the expression of oxidative stress-related genes (SOD and CAT) was higher in the NaClO4 exposure group. Taken together, both NaClO4 and exogenous T4 affect tail resorption in R. Chensinensis, thereby affecting their adaptation to terrestrial life. The present study will not only provide a reference for future experimental research on the effects of other endocrine disruptors on the growth, development and tail resorption of amphibians but will also provide insights into environmental protection and ecological risk assessment.
Collapse
Affiliation(s)
- Xinyi Li
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Kaiyue Li
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Jiayi Li
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhiqin Zhang
- Basic Experimental Teaching Center, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
6
|
Haselman JT, Nichols JW, Mattingly KZ, Hornung MW, Degitz SJ. A biologically based computational model for the hypothalamic-pituitary-thyroid (HPT) axis in Xenopus laevis larvae. Math Biosci 2023; 362:109021. [PMID: 37201649 PMCID: PMC11556306 DOI: 10.1016/j.mbs.2023.109021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/28/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
A biologically based computational model was developed to describe the hypothalamic-pituitary-thyroid (HPT) axis in developing Xenopus laevis larvae. The goal of this effort was to develop a tool that can be used to better understand mechanisms of thyroid hormone-mediated metamorphosis in X. laevis and predict organismal outcomes when those mechanisms are perturbed by chemical toxicants. In this report, we describe efforts to simulate the normal biology of control organisms. The structure of the model borrows from established models of HPT axis function in mammals. Additional features specific to X. laevis account for the effects of organism growth, growth of the thyroid gland, and developmental changes in regulation of thyroid stimulating hormone (TSH) by circulating thyroid hormones (THs). Calibration was achieved by simulating observed changes in stored and circulating levels of THs during a critical developmental window (Nieuwkoop and Faber stages 54-57) that encompasses widely used in vivo chemical testing protocols. The resulting model predicts that multiple homeostatic processes, operating in concert, can act to preserve circulating levels of THs despite profound impairments in TH synthesis. Represented in the model are several biochemical processes for which there are high-throughput in vitro chemical screening assays. By linking the HPT axis model to a toxicokinetic model of chemical uptake and distribution, it may be possible to use this in vitro effects information to predict chemical effects in X. laevis larvae resulting from defined chemical exposures.
Collapse
Affiliation(s)
- Jonathan T Haselman
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Boulevard, Duluth, MN, 55804, United States of America.
| | - John W Nichols
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Boulevard, Duluth, MN, 55804, United States of America
| | - Kali Z Mattingly
- SpecPro Professional Services (SPS), Contractor to U.S. Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, 6201 Congdon Boulevard, Duluth, MN, 55804, United States of America
| | - Michael W Hornung
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Boulevard, Duluth, MN, 55804, United States of America
| | - Sigmund J Degitz
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Boulevard, Duluth, MN, 55804, United States of America
| |
Collapse
|
7
|
Zheng Q, Qiu H, Zhu Z, Gong W, Zhang D, Ma J, Chen X, Yang J, Lin Y, Lu S. Perchlorate in fine particulate matter in Shenzhen, China, and implications for human inhalation exposure. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:2857-2867. [PMID: 36076152 DOI: 10.1007/s10653-022-01381-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/27/2022] [Indexed: 06/01/2023]
Abstract
The wide application of perchlorate in military and aerospace industries raises potential exposure risks for humans. Previous studies have mainly focused on perchlorate in drinking water, foodstuffs and dust, while its exposure in fine particulate matter (PM2.5) has received less attention. Thus, we investigated its concentrations and temporal variability in PM2.5 from October 2020 to September 2021 in Shenzhen, southern China. We also assessed the native population's intake and uptake of perchlorate in PM2.5 via inhalation. Measured PM2.5 concentrations in samples from Shenzhen ranged from 2.0 to 91.9 μg m-3. According to air quality guidelines proposed by the World Health Organization, 12.7% of all the samples exceeded interim target 1 (> 35 μg m-3), and only 37.3% met interim target 3 (< 15 μg m-3). Logistic regression analysis showed that perchlorate concentrations positively correlated with the PM2.5 concentrations and negatively correlated with precipitation. The median estimated daily intake (EDI) was highest for infants (0.029 ng kg-1 day-1), and both EDIs and estimated daily uptakes (EDUs) gradually decreased with age. All the EDIs and EDUs were below the reference dose provided by the US National Academy of Sciences (NAS), indicating that exposure to perchlorate in PM2.5 posed negligible health risks for Shenzhen residents. However, the exposure of infants and specific groups who tend to be more highly exposed than average still warrants attention.
Collapse
Affiliation(s)
- Quanzhi Zheng
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangzhou, 510275, China
| | - Hongmei Qiu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Zhou Zhu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Weiran Gong
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Duo Zhang
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jiaojiao Ma
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xin Chen
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jialei Yang
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yuli Lin
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangzhou, 510275, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
8
|
Fort DJ, Leopold MA, Wolf JC, Todhunter KJ, Weterings PJJM. Importance of diet in amphibian metamorphosis-based studies designed to assess the risk of thyroid active substances. J Appl Toxicol 2023; 43:360-372. [PMID: 36053261 DOI: 10.1002/jat.4387] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/18/2022] [Accepted: 08/29/2022] [Indexed: 11/09/2022]
Abstract
The present study evaluated the hypothesis that dietary quality used in historical studies may impact the effects of chemical stressors on premetamorphic development and metamorphosis due to suboptimal nutritional quality. A modified Amphibian Metamorphosis Assay (AMA) was performed in which Nieuwkoop and Faber (NF) Stage 47 tadpoles of Xenopus laevis were exposed for 32 days to iodide (I- )-deficient FETAX solution supplemented with <0.025, 0.17, 0.52, 1.58, and 4.80 μg I- /L (measured concentrations 0.061, 0.220, 0.614, 1.65, and 4.73 μg I- /L) and fed a pureed Frog Brittle (FB) diet. An AMA guideline benchmark group (four replicates) exposed to dechlorinated tap water and fed standard Sera Micron Nature® (SMN) diet was evaluated concurrently. Developmental delay, observed as changes in stage distribution or median developmental stage, occurred in FB treatments with 0.061, 0.220, and 0.614 μg/L I- , respectively. Developmental rates and hind limb length of the 1.65 and 4.73 μg/L I- groups were similar to each other, but both treatments fell short of the developmental rate achieved by the SMN benchmark. Iodide supplementation also had no impact on nonthyroidal growth endpoints, which were markedly reduced in FB-fed frogs compared with their SMN-fed counterparts. All larvae that received the FB diet had mildly to severely hypoplastic/atrophic thyroids, a condition for which iodine supplementation had little if any ameliorative effect. Collectively, these results suggested that nutritional deficiencies in the FB diet negatively affected both growth and metamorphic development, the latter of which was only compensated to a limited extent by iodine supplementation.
Collapse
Affiliation(s)
- Douglas J Fort
- Fort Environmental Laboratories, Inc., Stillwater, Oklahoma, USA
| | | | - Jeffrey C Wolf
- Experimental Pathology Laboratories, Inc., Sterling, Virginia, USA
| | | | | |
Collapse
|
9
|
Aviles A, Hulgard K, Green JW, Duus A, Holbech B, Morthorst JE. Effects of sodium perchlorate and 6-propylthiouracil on metamorphosis and thyroid gland histopathology in the European common frog (Rana temporaria). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 244:106094. [PMID: 35134604 DOI: 10.1016/j.aquatox.2022.106094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Several chemicals have been identified as thyroid hormone axis disrupting chemicals (THADCs) able to interfere with the thyroid hormone system during fetal life and early life stages, thereby impairing neurodevelopment in mammals and inducing development and growth disorders in fish and amphibians. However, identification of THADCs is particularly challenging, and thyroid modalities are currently only assessed in vivo by mammalian and amphibian tests. The aquatic African clawed frog (Xenopus laevis/tropicalis) is the model species of the amphibian test guidelines developed by the OECD and the United States Environmental Protection Agency, but as most European amphibians are semi-aquatic, concern has been raised whether the sensitivity of native European species is comparable to Xenopus. A shortened version of the OEDC test guideline 241 (Larval Amphibian Growth and Development Assay, LAGDA) was used to investigate the effects of two model THADCs on the metamorphosis and thyroid histopathology in the European common frog (Rana temporaria). R. temporaria eggs were collected on the field and exposed till metamorphic climax to sodium perchlorate (11.9-426.5 μg/L perchlorate concentrations) and 6-propylthiouracil (PTU: 1.23-47.7 mg/L). PTU severely delayed metamorphosis and affected several thyroid gland histopathological endpoints at slightly lower concentrations compared to Xenopus. As opposed to what was described in similar Xenopus studies, we observed no effect of perchlorate on the investigated endpoints. Interspecies differences may be linked to mechanisms of action.
Collapse
Affiliation(s)
- Amandine Aviles
- Department of Biology, University of Southern Denmark, Syddansk Universitet, Odense, Denmark
| | - Katrine Hulgard
- Department of Biology, University of Southern Denmark, Syddansk Universitet, Odense, Denmark
| | - John W Green
- John W Green Ecostatistical Consulting LLC, 372 Chickory Way, Newark, DE 19711, USA
| | - Annette Duus
- Department of Biology, University of Southern Denmark, Syddansk Universitet, Odense, Denmark
| | - Bente Holbech
- Department of Biology, University of Southern Denmark, Syddansk Universitet, Odense, Denmark
| | - Jane E Morthorst
- Department of Biology, University of Southern Denmark, Syddansk Universitet, Odense, Denmark.
| |
Collapse
|
10
|
Liu Y, Wang H, Chai L, Li X, Wu M, Wang H. Effects of perchlorate and exogenous T4 exposures on development, metamorphosis and endochondral ossification in Bufo gargarizans larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 242:106036. [PMID: 34818595 DOI: 10.1016/j.aquatox.2021.106036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Several endocrine-disrupting chemicals (EDCs) have been proven to interfere with the physiological function of thyroid hormone (TH), which affected growth and development. However, few studies have investigated the effects of EDCs on TH axis with consequence for skeletal development in amphibians. This study thus examined the potential role of perchlorate and T4 in growth, development and endochondral ossification during metamorphosis of Bufo gargarizans. Our studies showed that NaClO₄ treatment caused weight gain and delayed the developmental stage in B. gargarizans tadpoles, while T4 decreased body size and survival rate, accelerated metamorphic duration and increased the risk of early death. Histological sections suggested that NaClO₄ and T4 treatments caused damages to thyroid tissue, such as decreased thyroid gland size, follicle size, colloid area, the height of follicular epithelial cells and the number of follicles. In addition, the double skeletal staining and RT-qPCR showed that NaClO₄ and T4 treatments inhibited the endochondral ossification by regulating TH synthesis (TRs, Dios) and endochondral ossification-related genes (MMPs, Runxs, VEGFs and VEGFRs) expression levels, which might affect terrestrial locomotion and terrestrial life. Altogether, these thyroid injury and gene expression changes as caused by NaClO₄ and T4 may have an influence on development and endochondral ossification during the metamorphosis of amphibians.
Collapse
Affiliation(s)
- Yutian Liu
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Hemei Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710062, China
| | - Xinyi Li
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Minyao Wu
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
11
|
Ortego LS, Olmstead AW, Weltje L, Wheeler JR, Bone AJ, Coady KK, Banman CS, Burden N, Lagadic L. The Extended Amphibian Metamorphosis Assay: A Thyroid-Specific and Less Animal-Intensive Alternative to the Larval Amphibian Growth and Development Assay. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2135-2144. [PMID: 33939850 PMCID: PMC8362105 DOI: 10.1002/etc.5078] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/13/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
The amphibian metamorphosis assay (AMA; US Environmental Protection Agency [USEPA] test guideline 890.1100 and Organisation for Economic Co-Operation and Development test guideline 231) has been used for more than a decade to assess the potential thyroid-mediated endocrine activity of chemicals. In 2013, in the context of the Endocrine Disruptor Screening Program of the USEPA, a Scientific Advisory Panel reviewed the results from 18 studies and recommended changes to the AMA test guideline, including a modification to a fixed-stage design rather than a fixed-time (i.e., 21-d) design. We describe an extended test design for the AMA (or EAMA) that includes thyroid histopathology and time to metamorphosis (Nieuwkoop-Faber [NF] stage 62), to address both the issues with the fixed-time design and the specific question of thyroid-mediated adversity in a shorter assay than the larval amphibian growth and development assay (LAGDA; Organisation for Economic Co-Operation and Development test guideline 241), using fewer animals and resources. A demonstration study was conducted with the EAMA (up to NF stage 58) using sodium perchlorate. Data analyses and interpretation of the fixed-stage design of the EAMA are more straightforward than the fixed-time design because the fixed-stage design avoids confounded morphometric measurements and thyroid histopathology caused by varying developmental stages at test termination. It also results in greater statistical power to detect metamorphic delays than the fixed-time design. By preferentially extending the AMA to NF stage 62, suitable data can be produced to evaluate thyroid-mediated adversity and preclude the need to perform a LAGDA for thyroid mode of action analysis. The LAGDA remains of further interest should investigations of longer term effects related to sexual development modulated though the hypothalamus-pituitary-gonadal axis be necessary. However, reproduction assessment or life cycle testing is currently not addressed in the LAGDA study design. This is better addressed by higher tier studies in fish, which should then include specific thyroid-related endpoints. Environ Toxicol Chem 2021;40:2135-2144. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Lisa S. Ortego
- Bayer U.S. LLC, Crop ScienceEnvironmental Effects and Risk AssessmentCaryNorth CarolinaUSA
| | - Allen W. Olmstead
- BASF Corporation, Agricultural Solutions–EcotoxicologyResearch Triangle ParkNorth CarolinaUSA
| | - Lennart Weltje
- BASF SEAgricultural Solutions–EcotoxicologyLimburgerhofGermany
| | | | - Audrey J. Bone
- Bayer U.S. LLC, Crop ScienceEnvironmental Effects and Risk AssessmentChesterfieldMissouriUSA
| | - Katherine K. Coady
- Bayer U.S. LLC, Crop ScienceEnvironmental Effects and Risk AssessmentChesterfieldMissouriUSA
| | | | - Natalie Burden
- National Centre for the Replacement, Refinement, & Reduction of Animals in ResearchLondonUnited Kingdom
| | - Laurent Lagadic
- Bayer AG, Research and Development, Crop Science, Environmental SafetyMonheim am RheinGermany
| |
Collapse
|
12
|
Haselman JT, Olker JH, Kosian PA, Korte JJ, Swintek JA, Denny JS, Nichols JW, Tietge JE, Hornung MW, Degitz SJ. Targeted Pathway-based In Vivo Testing Using Thyroperoxidase Inhibition to Evaluate Plasma Thyroxine as a Surrogate Metric of Metamorphic Success in Model Amphibian Xenopus laevis. Toxicol Sci 2021; 175:236-250. [PMID: 32176285 DOI: 10.1093/toxsci/kfaa036] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chemical safety evaluation is in the midst of a transition from traditional whole-animal toxicity testing to molecular pathway-based in vitro assays and in silico modeling. However, to facilitate the shift in reliance on apical effects for risk assessment to predictive surrogate metrics having characterized linkages to chemical mechanisms of action, targeted in vivo testing is necessary to establish these predictive relationships. In this study, we demonstrate a means to predict thyroid-related metamorphic success in the model amphibian Xenopus laevis using relevant biochemical measurements during early prometamorphosis. The adverse outcome pathway for thyroperoxidase inhibition leading to altered amphibian metamorphosis was used to inform a pathway-based in vivo study design that generated response-response relationships. These causal relationships were used to develop Bayesian probabilistic network models that mathematically determine conditional dependencies between biochemical nodes and support the predictive capability of the biochemical profiles. Plasma thyroxine concentrations were the most predictive of metamorphic success with improved predictivity when thyroid gland sodium-iodide symporter gene expression levels (a compensatory response) were used in conjunction with plasma thyroxine as an additional regressor. Although thyroid-mediated amphibian metamorphosis has been studied for decades, this is the first time a predictive relationship has been characterized between plasma thyroxine and metamorphic success. Linking these types of biochemical surrogate metrics to apical outcomes is vital to facilitate the transition to the new paradigm of chemical safety assessments.
Collapse
Affiliation(s)
- Jonathan T Haselman
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Duluth, Minnesota 55804
| | - Jennifer H Olker
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Duluth, Minnesota 55804
| | - Patricia A Kosian
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Duluth, Minnesota 55804
| | - Joseph J Korte
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Duluth, Minnesota 55804
| | - Joseph A Swintek
- Badger Technical Services, Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Duluth, Minnesota 55804
| | - Jeffrey S Denny
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Duluth, Minnesota 55804
| | - John W Nichols
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Duluth, Minnesota 55804
| | - Joseph E Tietge
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Duluth, Minnesota 55804
| | - Michael W Hornung
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Duluth, Minnesota 55804
| | - Sigmund J Degitz
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Duluth, Minnesota 55804
| |
Collapse
|
13
|
Babalola OO, Truter JC, Archer E, van Wyk JH. Exposure Impacts of Environmentally Relevant Concentrations of a Glufosinate Ammonium Herbicide Formulation on Larval Development and Thyroid Histology of Xenopus laevis. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 80:717-725. [PMID: 32948887 DOI: 10.1007/s00244-020-00758-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 09/05/2020] [Indexed: 06/11/2023]
Abstract
Thyroid hormones play critical roles in body growth and development as well as reproduction. They also influence the activities of a wider variety of tissues and biological functions, such as osmoregulation, metabolism, and especially metamorphosis in organisms, such as frogs. These complex activities of thyroid hormones are prone to disruption by agricultural pesticides, often leading to modulation of growth and the reproductive system in particular. These substances include Glufosinate ammonium, Glyphosates, Imazapyr, Penoxsulam, and Diquat dibromide among other herbicides. In this study, the standardized Xenopus Metamorphosis Assay protocol was used to assess the potential thyroid-modulatory properties of the Glufosinate ammonium Basta formulation, at relevant environmental concentrations (0.05 mg/L, 0.15 mg/L, and 0.25 mg/L) for 21 days. The results showed that this formulation only reduced the hind-limb length among the morphological endpoints. Histological evaluation showed that the mean thyroid gland area and the mean thyroidal follicle epithelium height were significantly increased following 0.15 and 0.25 mg/L exposures. The present study confirmed that this Basta formulation interacts with the thyroid axis and therefore potentially pose health hazard to amphibian in particular and potentially metamorphic aquatic vertebrates. Furthermore, the result is a signal of inherent potential thyroid disrupting activities that must be further investigated and characterised in some of the aquatic herbicide formulations to safeguard the aquatic biodiversity.
Collapse
Affiliation(s)
- Oluwaseun O Babalola
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa.
- Zoology and Environmental Biology, Lagos State University, Lagos, Nigeria.
| | - J Christoff Truter
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
- Department of Paraclinical Sciences, University of Pretoria, Pretoria, South Africa
| | - Edward Archer
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Johannes H van Wyk
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
14
|
Shuman-Goodier ME, Singleton GR, Forsman AM, Hines S, Christodoulides N, Daniels KD, Propper CR. Developmental assays using invasive cane toads, Rhinella marina, reveal safety concerns of a common formulation of the rice herbicide, butachlor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:115955. [PMID: 33221087 PMCID: PMC7878340 DOI: 10.1016/j.envpol.2020.115955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Identifying the adverse impacts of pesticide exposure is essential to guide regulations that are protective of wildlife and human health. Within rice ecosystems, amphibians are valuable indicators because pesticide applications coincide with sensitive reproductive and developmental life stages. We conducted two experiments using wild cane toads (Rhinella marina) to test 1) whether environmentally relevant exposure to a commercial formulation of butachlor, an acetanilide herbicide used extensively in rice, affects amphibian development and 2) whether cane toad tadpoles are capable of acclimatizing to sub-lethal exposure. First, we exposed wild cane toads to 0.002, 0.02, or 0.2 mg/L of butachlor (Machete EC), during distinct development stages (as eggs and hatchlings, as tadpoles, or continuously) for 12 days. Next, we exposed a subset of animals from the first experiment to a second, lethal concentration and examined survivorship. We found that cane toads exposed to butachlor developed slower and weighed less than controls, and that development of the thyroid gland was affected: exposed individuals had smaller thyroid glands and thyrocyte cells, and more individual follicles. Analyses of the transcriptome revealed that butachlor exposure resulted in downregulation of transcripts related to metabolic processes, anatomic structure development, immune system function, and response to stress. Last, we observed evidence of acclimatization, where animals exposed to butachlor early in life performed better than naïve animals during a second exposure. Our findings indicate that the commercial formulation of butachlor, Machete EC, causes thyroid endocrine disruption in vertebrates, and suggest that exposure in lowland irrigated rice fields presents a concern for wildlife and human health. Furthermore, we establish that developmental assays with cane toads can be used to screen for adverse effects of pesticides in rice fields.
Collapse
Affiliation(s)
- Molly E Shuman-Goodier
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86001, USA; International Rice Research Institute, Los Baños, Philippines.
| | - Grant R Singleton
- International Rice Research Institute, Los Baños, Philippines; Natural Resource Institute, University of Greenwich, Chatham Maritime, Kent, UK
| | - Anna M Forsman
- Department of Biology, University of Central Florida, Orlando, FL, 32816-2368, USA; Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL, 32816-2368, USA
| | - Shyann Hines
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86001, USA
| | | | - Kevin D Daniels
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Catherine R Propper
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86001, USA
| |
Collapse
|
15
|
Tater A, Gupta A, Upadhyay G, Deshpande A, Date R, Tamboli IY. In vitro assays for characterization of distinct multiple catalytic activities of thyroid peroxidase using LC-MS/MS. Curr Res Toxicol 2021; 2:19-29. [PMID: 34345847 PMCID: PMC8320612 DOI: 10.1016/j.crtox.2021.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 11/30/2022] Open
Abstract
Multiple reactions catalyzed by thyroid peroxidase (TPO) were monitored by a battery of unique in vitro assays. Monoiodination and diiodination of L-Tyr to MIT and DIT was examined in a single assay. MIT to DIT and T3 to T4 monoiodination reactions were monitored separately. DIT to T4 conversion assay was used to study coupling of iodotyrosine phenolic rings. Distinct Km, Vmax, Kcat and Kcat/ Km values for each of the TPO catalysed reaction are presented. Differential response of 5 known inhibitors with specific TPO reactions was studied.
A diverse set of environmental contaminants have raised a concern about their potential adverse effects on endocrine signaling. Robust and widely accepted battery of in vitro assays is available to assess the disruption of androgenic and estrogenic pathways. However, such definitive systems to investigate effects on the disruption of thyroid pathways by the xenobiotics are not yet well established. One of the major “Molecular Initiating Events” (MIEs) in thyroid disruption involves targeting of thyroid peroxidase (TPO), a key enzyme involved in thyroid hormone synthesis. TPO catalyzes mono- and diiodination of L-Tyrosine (L-Tyr) to generate 3-Iodo-l-tyrosine (MIT) and 3,5-Diiodo-l-tyrosine (DIT), respectively, followed by the coupling of iodinated tyrosine rings to generate thyroid hormones, 3,3’5-Triiodo-l-thyronine (T3) and Levothyroxine (T4). We sought to develop a robust, sensitive, and rapid in vitro assay systems to evaluate the effects of test chemicals on the multiple catalytic activities of thyroid peroxidase. Simple in vitro assays were designed to study TPO mediated distinct reactions using a single LC-MS/MS method. Herein, we describe a battery of assays to investigate the iodination of L-Tyr to MIT and DIT, MIT to DIT as well as, T3 to T4 catalyzed by rat thyroid TPO. Importantly, two sequential reactions involving mono- and diiodination of L-Tyr could be analyzed in a single assay. The assay that monitors in vitro conversion of DIT to T4 was developed to study the coupling of tyrosine rings. Enzyme kinetics studies revealed distinct characteristics of multiple reactions catalyzed by TPO. Further, the known TPO inhibitors were used to assess their potency towards individual TPO substrates and reactions. The resultant half maximum inhibitory concentration (IC50) values highlighted differential targeting of TPO catalyzed reactions by the same inhibitor. Overall results underscore the need to develop more nuanced approaches that account for distinct multiple catalytic activities of TPO.
Collapse
Affiliation(s)
- Abhishek Tater
- Jai Research Foundation, N. H. 48, Near Daman-Ganga bridge, Valvada 396105, India
| | - Aditi Gupta
- Jai Research Foundation, N. H. 48, Near Daman-Ganga bridge, Valvada 396105, India
| | - Gopal Upadhyay
- Jai Research Foundation, N. H. 48, Near Daman-Ganga bridge, Valvada 396105, India
| | - Abhay Deshpande
- Jai Research Foundation, N. H. 48, Near Daman-Ganga bridge, Valvada 396105, India
| | - Rahul Date
- Jai Research Foundation, N. H. 48, Near Daman-Ganga bridge, Valvada 396105, India
| | - Irfan Y Tamboli
- Jai Research Foundation, N. H. 48, Near Daman-Ganga bridge, Valvada 396105, India
| |
Collapse
|
16
|
Zheng R, Liu R, Wu M, Wang H, Xie L. Effects of sodium perchlorate and exogenous L-thyroxine on growth, development and leptin signaling pathway of Bufo gargarizans tadpoles during metamorphosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111410. [PMID: 33007540 DOI: 10.1016/j.ecoenv.2020.111410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Sodium perchlorate (NaClO4) and exogenous L-thyroxine (T4), two kinds of endocrine-disrupting chemicals (EDCs), mainly affect the circulating thyroid hormones, which regulate the initiation and rate of metamorphosis in amphibian. The aim of this study is to evaluate the potential role of EDCs in regulating the development of tadpoles and leptin signaling pathway of liver during the metamorphosis of Bufo gargarizans. There was completely opposite result of average development stage of tadpoles and morphological parameters between the NaClO4 and T4 exposure groups. Histological analysis revealed that NaClO4 and T4 exposure both caused liver injury, such as the decreased size of hepatocytes, atrophy of nucleus, increased melanomacrophage centres and disappearance of hepatocyte membranes. In addition, the results of RT-qPCR revealed that NaClO4 treatment significantly inhibited the transcript levels of genes related to thyroid hormone (D2, TRα and TRβ) and leptin signaling pathway (LepR, JAK1, JAK2, and TYK2), while there was an increase of mRNA expression of these genes in the liver of tadpoles administrated with T4 compared with control. This work lays an important foundation for assessing the risk of EDCs in relation to amphibian development during metamorphosis.
Collapse
Affiliation(s)
- Rui Zheng
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Rong Liu
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Minyao Wu
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Lei Xie
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, 325035, Wenzhou, China; College of Life and Environmental Science, Wenzhou University, 325035, Wenzhou, China.
| |
Collapse
|
17
|
Ruthsatz K, Dausmann KH, Paesler K, Babos P, Sabatino NM, Peck MA, Glos J. Shifts in sensitivity of amphibian metamorphosis to endocrine disruption: the common frog ( Rana temporaria) as a case study. CONSERVATION PHYSIOLOGY 2020; 8:coaa100. [PMID: 33343902 PMCID: PMC7735370 DOI: 10.1093/conphys/coaa100] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/28/2020] [Accepted: 11/09/2020] [Indexed: 06/01/2023]
Abstract
Effective conservation actions require knowledge on the sensitivity of species to pollution and other anthropogenic stressors. Many of these stressors are endocrine disruptors (EDs) that can impair the hypothalamus-pituitary-thyroid axis and thus alter thyroid hormone (TH) levels with physiological consequences to wildlife. Due to their specific habitat requirements, amphibians are often sentinels of environmental degradation. We investigated how altered TH levels affected the bioenergetics of growth and development (i.e. age, size, metabolism, cardiac function and energy stores) before, during and after metamorphosis in the European common frog (Rana temporaria). We also determined how ontogenetic stage affected susceptibility to endocrine disruption and estimated juvenile performance. TH levels significantly affected growth and energetics at all developmental stages. Tadpoles and froglets exposed to high TH levels were significantly younger, smaller and lighter at all stages compared to those in control and low TH groups, indicating increased developmental and reduced growth rates. Across all ontogenetic stages tested, physiological consequences were rapidly observed after exposure to EDs. High TH increased heart rate by an average of 86% and reduced energy stores (fat content) by 33% compared to controls. Effects of exposure were smallest after the completion of metamorphosis. Our results demonstrate that both morphological and physiological traits of the European common frog are strongly impacted by endocrine disruption and that ontogenetic stage modulates the sensitivity of this species to endocrine disruption. Since endocrine disruption during metamorphosis can impair the physiological stress response in later life stages, long-term studies examining carry-over effects will be an important contribution to the conservation physiology of amphibians.
Collapse
Affiliation(s)
- Katharina Ruthsatz
- Institute of Zoology, Universität Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany
| | - Kathrin H Dausmann
- Institute of Zoology, Universität Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| | - Katharina Paesler
- Institute of Zoology, Universität Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| | - Patricia Babos
- Institute of Zoology, Universität Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| | - Nikita M Sabatino
- Department of Life Sciences, Hamburg University of Applied Sciences, Ulmenliet 20, 21033 Hamburg, Germany
| | - Myron A Peck
- Institute of Marine Ecosystems and Fisheries Science, Universität Hamburg, Große Elbstraße 133, 22767 Hamburg, Germany
- Department of Coastal Systems, Royal Netherlands Institute for Sea Research, PO Box 59 1790, AB Den Burg, Netherlands
| | - Julian Glos
- Institute of Zoology, Universität Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| |
Collapse
|
18
|
Ruthsatz K, Dausmann KH, Drees C, Becker LI, Hartmann L, Reese J, Reinhardt S, Robinson T, Sabatino NM, Peck MA, Glos J. Altered thyroid hormone levels affect the capacity for temperature-induced developmental plasticity in larvae of Rana temporaria and Xenopus laevis. J Therm Biol 2020; 90:102599. [PMID: 32479394 DOI: 10.1016/j.jtherbio.2020.102599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023]
Abstract
Anuran larvae show phenotypic plasticity in age and size at metamorphosis as a response to temperature variation. The capacity for temperature-induced developmental plasticity is determined by the thermal adaptation of a population. Multiple factors such as physiological responses to changing environmental conditions, however, might influence this capacity as well. In anuran larvae, thyroid hormone (TH) levels control growth and developmental rate and changes in TH status are a well-known stress response to sub-optimal environmental conditions. We investigated how chemically altered TH levels affect the capacity to exhibit temperature-induced developmental plasticity in larvae of the African clawed frog (Xenopus laevis) and the common frog (Rana temporaria). In both species, TH level influenced growth and developmental rate and modified the capacity for temperature-induced developmental plasticity. High TH levels reduced thermal sensitivity of metamorphic traits up to 57% (R. temporaria) and 36% (X. laevis). Rates of growth and development were more plastic in response to temperature in X. laevis (+30%) than in R. temporaria (+6%). Plasticity in rates of growth and development is beneficial to larvae in heterogeneous habitats as it allows a more rapid transition into the juvenile stage where rates of mortality are lower. Therefore, environmental stressors that increase endogenous TH levels and reduce temperature-dependent plasticity may increase risks and the vulnerability of anuran larvae. As TH status also influences metabolism, future studies should investigate whether reductions in physiological plasticity also increases the vulnerability of tadpoles to global change.
Collapse
Affiliation(s)
- Katharina Ruthsatz
- Institute of Zoology, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany.
| | - Kathrin H Dausmann
- Institute of Zoology, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany.
| | - Claudia Drees
- Institute of Zoology, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany.
| | - Laura I Becker
- Institute of Zoology, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany.
| | - Lisa Hartmann
- Institute of Zoology, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany.
| | - Janica Reese
- Institute of Zoology, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany.
| | - Steffen Reinhardt
- Institute of Zoology, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany.
| | - Tom Robinson
- Institute of Zoology, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany.
| | - Nikita M Sabatino
- Department of Life Sciences, Hamburg University of Applied Sciences, Ulmenliet 20, 21033 Hamburg, Germany.
| | - Myron A Peck
- Institute of Marine Ecosystems and Fisheries Science, University of Hamburg, Große Elbstrasse 133, 22767 Hamburg, Germany.
| | - Julian Glos
- Institute of Zoology, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany.
| |
Collapse
|
19
|
Ruthsatz K, Dausmann KH, Reinhardt S, Robinson T, Sabatino NM, Peck MA, Glos J. Post-metamorphic carry-over effects of altered thyroid hormone level and developmental temperature: physiological plasticity and body condition at two life stages in Rana temporaria. J Comp Physiol B 2020; 190:297-315. [PMID: 32144506 DOI: 10.1007/s00360-020-01271-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 02/03/2020] [Accepted: 02/15/2020] [Indexed: 01/08/2023]
Abstract
Environmental stress induced by natural and anthropogenic processes including climate change may threaten the productivity of species and persistence of populations. Ectotherms can potentially cope with stressful conditions such as extremes in temperature by exhibiting physiological plasticity. Amphibian larvae experiencing stressful environments display altered thyroid hormone (TH) status with potential implications for physiological traits and acclimation capacity. We investigated how developmental temperature (Tdev) and altered TH levels (simulating proximate effects of environmental stress) influence the standard metabolic rate (SMR), body condition (BC), and thermal tolerance in metamorphic and post-metamorphic anuran larvae of the common frog (Rana temporaria) reared at five constant temperatures (14-28 °C). At metamorphosis, larvae that developed at higher temperatures had higher maximum thermal limits but narrower ranges in thermal tolerance. Mean CTmax was 37.63 °C ± 0.14 (low TH), 36.49 °C ± 0.31 (control), and 36.43 °C ± 0.68 (high TH) in larvae acclimated to different temperatures. Larvae were able to acclimate to higher Tdev by adjusting their thermal tolerance, but not their SMR, and this effect was not impaired by altered TH levels. BC was reduced by 80% (metamorphic) and by 85% (post-metamorphic) at highest Tdev. The effect of stressful larval conditions (i.e., different developmental temperatures and, to some extent, altered TH levels) on SMR and particularly on BC at the onset of metamorphosis was carried over to froglets at the end of metamorphic climax. This has far reaching consequences, since body condition at metamorphosis is known to determine metamorphic success and, thus, is indirectly linked to individual fitness in later life stages.
Collapse
Affiliation(s)
- Katharina Ruthsatz
- Institute for Zoology, University of Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany.
| | - Kathrin H Dausmann
- Institute for Zoology, University of Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| | - Steffen Reinhardt
- Institute for Zoology, University of Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| | - Tom Robinson
- Institute for Zoology, University of Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| | - Nikita M Sabatino
- Department of Life Sciences, Hamburg University of Applied Sciences, Ulmenliet 20, 21033, Hamburg, Germany
| | - Myron A Peck
- Institute of Hydrobiology and Fisheries Science, University of Hamburg, Olbersweg 24, 22767, Hamburg, Germany
| | - Julian Glos
- Institute for Zoology, University of Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| |
Collapse
|
20
|
Olker JH, Haselman JT, Kosian PA, Donnay KG, Korte JJ, Blanksma C, Hornung MW, Degitz SJ. Evaluating Iodide Recycling Inhibition as a Novel Molecular Initiating Event for Thyroid Axis Disruption in Amphibians. Toxicol Sci 2019; 166:318-331. [PMID: 30137636 DOI: 10.1093/toxsci/kfy203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The enzyme iodotyrosine deiodinase (dehalogenase, IYD) catalyzes iodide recycling and promotes iodide retention in thyroid follicular cells. Loss of function or chemical inhibition of IYD reduces available iodide for thyroid hormone synthesis, which leads to hormone insufficiency in tissues and subsequent negative developmental consequences. IYD activity is especially critical under conditions of lower dietary iodine and in low iodine environments. Our objective was to evaluate the toxicological relevance of IYD inhibition in a model amphibian (Xenopus laevis) used extensively for thyroid disruption research. First, we characterized IYD ontogeny through quantification of IYD mRNA expression. Under normal development, IYD was expressed in thyroid glands, kidneys, liver, and intestines, but minimally in the tail. Then, we evaluated how IYD inhibition affected developing larval X. laevis with an in vivo exposure to a known IYD inhibitor (3-nitro-l-tyrosine, MNT) under iodine-controlled conditions; MNT concentrations were 7.4-200 mg/L, with an additional 'rescue' treatment of 200 mg/L MNT supplemented with iodide. Chemical inhibition of IYD resulted in markedly delayed development, with larvae in the highest MNT concentrations arrested prior to metamorphic climax. This effect was linked to reduced glandular and circulating thyroid hormones, increased thyroidal sodium-iodide symporter gene expression, and follicular cell hypertrophy and hyperplasia. Iodide supplementation negated these effects, effectively rescuing exposed larvae. These results establish toxicological relevance of IYD inhibition in amphibians. Given the highly conserved nature of the IYD protein sequence and scarcity of environmental iodine, IYD should be further investigated as a target for thyroid axis disruption in freshwater organisms.
Collapse
Affiliation(s)
- Jennifer H Olker
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, Duluth, Minnesota 55804
| | - Jonathan T Haselman
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, Duluth, Minnesota 55804
| | - Patricia A Kosian
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, Duluth, Minnesota 55804
| | - Kelby G Donnay
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, Duluth, Minnesota 55804
| | - Joseph J Korte
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, Duluth, Minnesota 55804
| | - Chad Blanksma
- Badger Technical Services, U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, Duluth, Minnesota 55804
| | - Michael W Hornung
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, Duluth, Minnesota 55804
| | - Sigmund J Degitz
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, Duluth, Minnesota 55804
| |
Collapse
|
21
|
Noyes PD, Friedman KP, Browne P, Haselman JT, Gilbert ME, Hornung MW, Barone S, Crofton KM, Laws SC, Stoker TE, Simmons SO, Tietge JE, Degitz SJ. Evaluating Chemicals for Thyroid Disruption: Opportunities and Challenges with in Vitro Testing and Adverse Outcome Pathway Approaches. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:95001. [PMID: 31487205 PMCID: PMC6791490 DOI: 10.1289/ehp5297] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/01/2019] [Accepted: 08/13/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Extensive clinical and experimental research documents the potential for chemical disruption of thyroid hormone (TH) signaling through multiple molecular targets. Perturbation of TH signaling can lead to abnormal brain development, cognitive impairments, and other adverse outcomes in humans and wildlife. To increase chemical safety screening efficiency and reduce vertebrate animal testing, in vitro assays that identify chemical interactions with molecular targets of the thyroid system have been developed and implemented. OBJECTIVES We present an adverse outcome pathway (AOP) network to link data derived from in vitro assays that measure chemical interactions with thyroid molecular targets to downstream events and adverse outcomes traditionally derived from in vivo testing. We examine the role of new in vitro technologies, in the context of the AOP network, in facilitating consideration of several important regulatory and biological challenges in characterizing chemicals that exert effects through a thyroid mechanism. DISCUSSION There is a substantial body of knowledge describing chemical effects on molecular and physiological regulation of TH signaling and associated adverse outcomes. Until recently, few alternative nonanimal assays were available to interrogate chemical effects on TH signaling. With the development of these new tools, screening large libraries of chemicals for interactions with molecular targets of the thyroid is now possible. Measuring early chemical interactions with targets in the thyroid pathway provides a means of linking adverse outcomes, which may be influenced by many biological processes, to a thyroid mechanism. However, the use of in vitro assays beyond chemical screening is complicated by continuing limits in our knowledge of TH signaling in important life stages and tissues, such as during fetal brain development. Nonetheless, the thyroid AOP network provides an ideal tool for defining causal linkages of a chemical exerting thyroid-dependent effects and identifying research needs to quantify these effects in support of regulatory decision making. https://doi.org/10.1289/EHP5297.
Collapse
Affiliation(s)
- Pamela D Noyes
- National Center for Environmental Assessment, Office of Research and Development (ORD), U.S. Environmental Protection Agency (EPA), Washington, DC, USA
| | - Katie Paul Friedman
- National Center for Computational Toxicology, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Patience Browne
- Environment Health and Safety Division, Environment Directorate, Organisation for Economic Co-operation and Development (OECD), Paris, France
| | - Jonathan T Haselman
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| | - Mary E Gilbert
- Toxicity Assessment Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Michael W Hornung
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| | - Stan Barone
- Office of Pollution Prevention and Toxics, Office of Chemical Safety and Pollution Prevention, U.S. EPA, Washington, DC, USA
| | - Kevin M Crofton
- National Center for Computational Toxicology, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Susan C Laws
- Toxicity Assessment Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Tammy E Stoker
- Toxicity Assessment Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Steven O Simmons
- National Center for Computational Toxicology, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Joseph E Tietge
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| | - Sigmund J Degitz
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| |
Collapse
|
22
|
Xu Y, Park SJ, Gye MC. Effects of nonylphenols on embryonic development and metamorphosis of Xenopus laevis: FETAX and amphibian metamorphosis toxicity test (OECD TG231). ENVIRONMENTAL RESEARCH 2019; 174:14-23. [PMID: 31022611 DOI: 10.1016/j.envres.2019.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
Nonylphenols (NPs) are a group of endocrine-disrupting surfactants that mimic estrogen. To determine the developmental toxicity and thyroid-disrupting effect of NPs, the effects of exposure to nonylphenol (NP), 4-nonylphenol (4-NP), and nonylphenol ethoxylate (NP-12) were examined according to the frog embryo teratogenesis assay-Xenopus (FETAX) and Organization for Economic Co-operation and Development test guidelines 231 (TG231). In FETAX, the LC50 values of NP, 4-NP, and NP-12 were 59.14 mg/L, 10.13 mg/L, and 14.60 mg/L, respectively. At 10.0 mg/L, NP, 4-NP, and NP-12 significantly decreased the total length of tadpoles, and NP and 4-NP increased gut malformation and bent tails. In surviving tadpoles, the EC50 values for malformation of NP, 4-NP, and NP-12 were 4.66, 6.51, and 13.08 mg/L, respectively. The teratogenic indices of NP, 4-NP, and NP-12 were 12.69, 1.56, and 1.08, respectively, suggesting the teratogenic potential of NP and 4-NP. In a range-finder assay for TG231, the 96-h LC50 values of NP, 4-NP, and NP-12 were 2.0, 2.0, and 10.57 mg/L, respectively. When NF stage 51 larvae were exposed for 21 days, larval growth was inhibited by NP, 4-NP, and NP-12 at 0.67, 0.07, and 0.37 mg/L, respectively. 4-NP at 0.07 mg/L accelerated the developmental stage and significantly increased hind limb length, while 0.67 mg/L 4-NP delayed the developmental stage and decreased hind limb length, suggesting a bimodal effect of 4-NP on metamorphosis. NP and NP-12 at test concentrations did not alter the larval stage, but NP-12 at 0.37 mg/L significantly decreased total length and tail length, suggesting growth inhibition in larvae. The total colloid area of thyroid follicles was significantly increased by 0.07 mg/L 4-NP but not by NP and NP-12, suggesting that 4-NP may interfere with thyroid function. Together, the developmental toxicity of NPs was in the following order: 4-NP, NP-12, and NP. 4-NP may alter metamorphosis driven by thyroid hormones in X. laevis.
Collapse
Affiliation(s)
- Yang Xu
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Sun Jung Park
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Myung Chan Gye
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul, 04763, South Korea.
| |
Collapse
|
23
|
Ruthsatz K, Dausmann KH, Reinhardt S, Robinson T, Sabatino NM, Peck MA, Glos J. Endocrine Disruption Alters Developmental Energy Allocation and Performance in Rana temporaria. Integr Comp Biol 2019; 59:70-88. [PMID: 31095322 DOI: 10.1093/icb/icz041] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Environmental change exposes wildlife to a wide array of environmental stressors that arise from both anthropogenic and natural sources. Many environmental stressors with the ability to alter endocrine function are known as endocrine disruptors, which may impair the hypothalamus-pituitary-thyroid axis resulting in physiological consequences to wildlife. In this study, we investigated how the alteration of thyroid hormone (TH) levels due to exposure to the environmentally relevant endocrine disruptor sodium perchlorate (SP; inhibitory) and exogenous L-thyroxin (T4; stimulatory) affects metabolic costs and energy allocation during and after metamorphosis in a common amphibian (Rana temporaria). We further tested for possible carry-over effects of endocrine disruption during larval stage on juvenile performance. Energy allocated to development was negatively related to metabolic rate and thus, tadpoles exposed to T4 could allocate 24% less energy to development during metamorphic climax than control animals. Therefore, the energy available for metamorphosis was reduced in tadpoles with increased TH level by exposure to T4. We suggest that differences in metabolic rate caused by altered TH levels during metamorphic climax and energy allocation to maintenance costs might have contributed to a reduced energetic efficiency in tadpoles with high TH levels. Differences in size and energetics persisted beyond the metamorphic boundary and impacted on juvenile performance. Performance differences are mainly related to strong size-effects, as altered TH levels by exposure to T4 and SP significantly affected growth and developmental rate. Nevertheless, we assume that juvenile performance is influenced by a size-independent effect of achieved TH. Energetic efficiency varied between treatments due to differences in size allocation of internal macronutrient stores. Altered TH levels as caused by several environmental stressors lead to persisting effects on metamorphic traits and energetics and, thus, caused carry-over effects on performance of froglets. We demonstrate the mechanisms through which alterations in abiotic and biotic environmental factors can alter phenotypes at metamorphosis and reduce lifetime fitness in these and likely other amphibians.
Collapse
Affiliation(s)
- Katharina Ruthsatz
- Institute for Zoology, University of Hamburg, Martin-Luther-King-Platz 3, Hamburg, 20146, Germany
| | - Kathrin H Dausmann
- Institute for Zoology, University of Hamburg, Martin-Luther-King-Platz 3, Hamburg, 20146, Germany
| | - Steffen Reinhardt
- Institute for Zoology, University of Hamburg, Martin-Luther-King-Platz 3, Hamburg, 20146, Germany
| | - Tom Robinson
- Institute for Zoology, University of Hamburg, Martin-Luther-King-Platz 3, Hamburg, 20146, Germany
| | - Nikita M Sabatino
- Department of Life Sciences, Hamburg University of Applied Sciences, Ulmenliet 20, Hamburg, 21033, Germany
| | - Myron A Peck
- Institute of Hydrobiology and Fisheries Science, University of Hamburg, Olbersweg 24, Hamburg, 22767, Germany
| | - Julian Glos
- Institute for Zoology, University of Hamburg, Martin-Luther-King-Platz 3, Hamburg, 20146, Germany
| |
Collapse
|
24
|
Thambirajah AA, Koide EM, Imbery JJ, Helbing CC. Contaminant and Environmental Influences on Thyroid Hormone Action in Amphibian Metamorphosis. Front Endocrinol (Lausanne) 2019; 10:276. [PMID: 31156547 PMCID: PMC6530347 DOI: 10.3389/fendo.2019.00276] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/16/2019] [Indexed: 12/31/2022] Open
Abstract
Aquatic and terrestrial environments are increasingly contaminated by anthropogenic sources that include pharmaceuticals, personal care products, and industrial and agricultural chemicals (i. e., pesticides). Many of these substances have the potential to disrupt endocrine function, yet their effect on thyroid hormone (TH) action has garnered relatively little attention. Anuran postembryonic metamorphosis is strictly dependent on TH and perturbation of this process can serve as a sensitive barometer for the detection and mechanistic elucidation of TH disrupting activities of chemical contaminants and their complex mixtures. The ecological threats posed by these contaminants are further exacerbated by changing environmental conditions such as temperature, photoperiod, pond drying, food restriction, and ultraviolet radiation. We review the current knowledge of several chemical and environmental factors that disrupt TH-dependent metamorphosis in amphibian tadpoles as assessed by morphological, thyroid histology, behavioral, and molecular endpoints. Although the molecular mechanisms for TH disruption have yet to be determined for many chemical and environmental factors, several affect TH synthesis, transport or metabolism with subsequent downstream effects. As molecular dysfunction typically precedes phenotypic or histological pathologies, sensitive assays that detect changes in transcript, protein, or metabolite abundance are indispensable for the timely detection of TH disruption. The emergence and application of 'omics techniques-genomics, transcriptomics, proteomics, metabolomics, and epigenomics-on metamorphosing tadpoles are powerful emerging assets for the rapid, proxy assessment of toxicant or environmental damage for all vertebrates including humans. Moreover, these highly informative 'omics techniques will complement morphological, behavioral, and histological assessments, thereby providing a comprehensive understanding of how TH-dependent signal disruption is propagated by environmental contaminants and factors.
Collapse
Affiliation(s)
| | | | | | - Caren C. Helbing
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
25
|
Carlsson G, Pohl J, Athanassiadis I, Norrgren L, Weiss J. Thyroid disruption properties of three indoor dust chemicals tested in Silurana tropicalis tadpoles. J Appl Toxicol 2019; 39:1248-1256. [PMID: 31066086 DOI: 10.1002/jat.3810] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/20/2019] [Accepted: 03/20/2019] [Indexed: 11/08/2022]
Abstract
Indoor dust contains a multitude of industrial chemicals, and ingestion of dust is considered an important exposure route to organic contaminants. Some of these contaminants have been shown to interfere with the thyroid system, which may result in significant consequences on public health. The amphibian metamorphosis is a thyroid hormone-dependent process, which can be used as an in vivo model for studies on thyroid hormone-disrupting potency. Three contaminants of indoor dust were tested on metamorphosing Silurana (Xenopus) tropicalis tadpoles. The tested chemicals were Tris (1,3-dichloroisopropyl) phosphate (TDCiPP), tetrabromobisphenol-A (TBBPA) and propylparaben (PrP). Measurements reflecting general growth, development progress and thyroid epithelial cell height were performed on the exposed tadpoles as well as chemical analyses of the exposure water. It was shown that TDCiPP acts as a thyroid hormone-disrupting chemical in metamorphosing tadpoles by causing increased epithelial cell height in thyroid glands after exposure to a nominal concentration of 0.010 mg/L and in higher concentrations. TBBPA caused reductions in general growth of tadpoles at the nominal concentration 0.125 mg/L, and PrP caused acute toxicity at the nominal concentration 12.5 mg/L. However, no evident indications of specific thyroid-disrupting effects caused by TBBPA or PrP were observed.
Collapse
Affiliation(s)
- Gunnar Carlsson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Johannes Pohl
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ioannis Athanassiadis
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Leif Norrgren
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jana Weiss
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden.,Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
26
|
Zhang YF, Xu HM, Yu F, Yang HY, Jia DD, Li PF. Comparison the sensitivity of amphibian metamorphosis assays with NF 48 stage and NF 51 stage Xenopus laevis tadpoles. Toxicol Mech Methods 2019; 29:421-427. [PMID: 30732517 DOI: 10.1080/15376516.2019.1579291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The amphibian metamorphosis assay (AMA) was proposed by the Organization for Economic Cooperation and Development (OECD) to screen thyroid disruptors of vertebrate species. The general experimental design of the AMA exposes Nieuwkoop and Faber (NF) stage 51 Xenopus laevis tadpoles to test chemical concentrations for 21 d. However, recent studies demonstrated that thyroid gland began to function after NF stage 45 in X. laevis. Thus, in this study, we initiated exposure with NF stage 48 tadpoles when the thyroid gland is still in a preliminary development period, to compare the sensitivity of the AMA with NF 48 stage and NF 51 stage tadpoles. Further, the application and sensitivity of the optimized AMA were evaluated and validated by two known thyroid toxicants methimazole (MMI) and sodium perchlorate (SP). The observational endpoints are developmental stage, hind limb length (HLL), snout-vent length (SVL), wet weight, and daily observations of mortality. The results were as follows. Although the sensitivity to endpoint of growth, such as wet weight and SVL was similar between the two assays, our optimized AMA detected delaying effects of 1 mg/L MMI and 32 μg/L SP on metamorphosis development both on day 7 and at test termination, which were lower than those in AMA. Additionally, it is easier to get a large number of animals at NF stage 48 than NF stage 51 in a short time. Thus, it is suggested that the NF stage 48 tadpoles might be applied to the AMA for efficiently screening the thyroid-active substances.
Collapse
Affiliation(s)
- Yin-Feng Zhang
- a College of Medicine , Institute for Translational Medicine, Qingdao University , Qingdao , PR China
| | - Hai-Ming Xu
- b Department of Occupational and Environmental Medicine, School of Public Health and Management , Ningxia Medical University , Yinchuan , PR China
| | - Fei Yu
- a College of Medicine , Institute for Translational Medicine, Qingdao University , Qingdao , PR China
| | - Hong-Yu Yang
- a College of Medicine , Institute for Translational Medicine, Qingdao University , Qingdao , PR China
| | - Dong-Dong Jia
- a College of Medicine , Institute for Translational Medicine, Qingdao University , Qingdao , PR China
| | - Pei-Feng Li
- a College of Medicine , Institute for Translational Medicine, Qingdao University , Qingdao , PR China
| |
Collapse
|
27
|
Stage-dependent cardiac regeneration in Xenopus is regulated by thyroid hormone availability. Proc Natl Acad Sci U S A 2019; 116:3614-3623. [PMID: 30755533 DOI: 10.1073/pnas.1803794116] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite therapeutic advances, heart failure is the major cause of morbidity and mortality worldwide, but why cardiac regenerative capacity is lost in adult humans remains an enigma. Cardiac regenerative capacity widely varies across vertebrates. Zebrafish and newt hearts regenerate throughout life. In mice, this ability is lost in the first postnatal week, a period physiologically similar to thyroid hormone (TH)-regulated metamorphosis in anuran amphibians. We thus assessed heart regeneration in Xenopus laevis before, during, and after TH-dependent metamorphosis. We found that tadpoles display efficient cardiac regeneration, but this capacity is abrogated during the metamorphic larval-to-adult switch. Therefore, we examined the consequence of TH excess and deprivation on the efficiently regenerating tadpole heart. We found that either acute TH treatment or blocking TH production before resection significantly but differentially altered gene expression and kinetics of extracellular matrix components deposition, and negatively impacted myocardial wall closure, both resulting in an impeded regenerative process. However, neither treatment significantly influenced DNA synthesis or mitosis in cardiac tissue after amputation. Overall, our data highlight an unexplored role of TH availability in modulating the cardiac regenerative outcome, and present X. laevis as an alternative model to decipher the developmental switches underlying stage-dependent constraint on cardiac regeneration.
Collapse
|
28
|
Ruthsatz K, Dausmann KH, Peck MA, Drees C, Sabatino NM, Becker LI, Reese J, Hartmann L, Glos J. Thyroid hormone levels and temperature during development alter thermal tolerance and energetics of Xenopus laevis larvae. CONSERVATION PHYSIOLOGY 2018; 6:coy059. [PMID: 30464840 PMCID: PMC6240330 DOI: 10.1093/conphys/coy059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/29/2018] [Accepted: 10/16/2018] [Indexed: 06/02/2023]
Abstract
Environmental variation induced by natural and anthropogenic processes including climate change may threaten species by causing environmental stress. Anuran larvae experiencing environmental stress may display altered thyroid hormone (TH) status with potential implications for physiological traits. Therefore, any capacity to adapt to environmental changes through plastic responses provides a key to determining species vulnerability to environmental variation. We investigated whether developmental temperature (T dev), altered TH levels and whether the interactive effect of both affect standard metabolic rate (SMR), body condition (BC), survival and thermal tolerance in larvae of the African clawed frog (Xenopus laevis) reared at five temperatures with experimentally altered TH levels. At metamorphosis, SMR, BC and survival were significantly affected by T dev, TH status and their interaction with the latter often intensified impacts. Larvae developing at warmer temperatures exhibited significantly higher SMRs and BC was reduced at warm T dev and high TH levels suggesting decreased ability to acclimate to variation in temperature. Accordingly, tadpoles that developed at warm temperatures had higher maximum thermal limits but more narrow thermal tolerance windows. High and low TH levels decreased and increased upper thermal limits, respectively. Thus, when experiencing both warmer temperatures and environmental stress, larvae may be less able to compensate for changes in T dev. Our results demonstrate that physiological traits in larvae of X. laevis are strongly affected by increased TH levels and warmer temperatures. Altered TH levels and increasing T dev due to global change may result in a reduced capacity for physiological plasticity. This has far reaching consequences since the energetic requirement at the onset of metamorphosis is known to determine metamorphic success and thus, is indirectly linked to individual fitness in later life stages.
Collapse
Affiliation(s)
- Katharina Ruthsatz
- Institute for Zoology, University of Hamburg, Martin-Luther-King-Platz 3, Hamburg, Germany
| | - Kathrin H Dausmann
- Institute for Zoology, University of Hamburg, Martin-Luther-King-Platz 3, Hamburg, Germany
| | - Myron A Peck
- Institute of Hydrobiology and Fisheries Science, University of Hamburg, Olbersweg 24, Hamburg, Germany
| | - Claudia Drees
- Institute for Zoology, University of Hamburg, Martin-Luther-King-Platz 3, Hamburg, Germany
| | - Nikita M Sabatino
- Department of Life Sciences, Hamburg University of Applied Sciences, Ulmenliet 20, Hamburg, Germany
| | - Laura I Becker
- Institute for Zoology, University of Hamburg, Martin-Luther-King-Platz 3, Hamburg, Germany
| | - Janica Reese
- Institute for Zoology, University of Hamburg, Martin-Luther-King-Platz 3, Hamburg, Germany
| | - Lisa Hartmann
- Institute for Zoology, University of Hamburg, Martin-Luther-King-Platz 3, Hamburg, Germany
| | - Julian Glos
- Institute for Zoology, University of Hamburg, Martin-Luther-King-Platz 3, Hamburg, Germany
| |
Collapse
|
29
|
Ruthsatz K, Dausmann KH, Drees C, Becker LI, Hartmann L, Reese J, Sabatino NM, Peck MA, Glos J. Altered thyroid hormone levels affect body condition at metamorphosis in larvae of Xenopus laevis. J Appl Toxicol 2018; 38:1416-1425. [DOI: 10.1002/jat.3663] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/05/2018] [Accepted: 06/05/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Katharina Ruthsatz
- Institut for Zoology; University of Hamburg; Martin-Luther-King-Platz 3 20146 Hamburg Germany
| | - Kathrin H. Dausmann
- Institut for Zoology; University of Hamburg; Martin-Luther-King-Platz 3 20146 Hamburg Germany
| | - Claudia Drees
- Institut for Zoology; University of Hamburg; Martin-Luther-King-Platz 3 20146 Hamburg Germany
| | - Laura I. Becker
- Institut for Zoology; University of Hamburg; Martin-Luther-King-Platz 3 20146 Hamburg Germany
| | - Lisa Hartmann
- Institut for Zoology; University of Hamburg; Martin-Luther-King-Platz 3 20146 Hamburg Germany
| | - Janica Reese
- Institut for Zoology; University of Hamburg; Martin-Luther-King-Platz 3 20146 Hamburg Germany
| | - Nikita M. Sabatino
- Department of Life Sciences; Hamburg University of Applied Sciences; Ulmenliet 20 21033 Hamburg Germany
| | - Myron A. Peck
- Institute for Marine Ecosystem and Fishery Science; University of Hamburg; Olbersweg 24 22767 Hamburg Germany
| | - Julian Glos
- Institut for Zoology; University of Hamburg; Martin-Luther-King-Platz 3 20146 Hamburg Germany
| |
Collapse
|
30
|
Gallant MJ, Hogan NS. Developmental expression profiles and thyroidal regulation of cytokines during metamorphosis in the amphibian Xenopus laevis. Gen Comp Endocrinol 2018; 263:62-71. [PMID: 29656046 DOI: 10.1016/j.ygcen.2018.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/09/2018] [Accepted: 04/03/2018] [Indexed: 11/21/2022]
Abstract
Early life-stages of amphibians rely on the innate immune system for defense against pathogens. While thyroid hormones (TH) are critical for metamorphosis and later development of the adaptive immune system, the role of TH in innate immune system development is less clear. An integral part of the innate immune response are pro-inflammatory cytokines - effector molecules that allow communication between components of the immune system. The objective of this study was to characterize the expression of key pro-inflammatory cytokines, tumor necrosis factor-α (TNFα), interleukin-1β (IL-1β) and interferon-γ (IFN-γ), throughout amphibian development and determine the impacts of thyroidal modulation on their expression. Xenopus laevis were sampled at various stages of development encompassing early embryogenesis to late prometamorphosis and cytokine expression was measured by real-time PCR. Expression of TNFα and IL-1β were transient over development, increasing with developmental stage, while IFN-γ remained relatively stable. Functionally athyroid, premetamorphic tadpoles were exposed to thyroxine (0.5 and 2 μg/L) or sodium perchlorate (125 and 500 μg/L) for seven days. Tadpoles demonstrated characteristic responses of advanced development with thyroxine exposure and delayed development (although to a lesser extent) and increased thyroid gland area and follicular cell height with sodium perchlorate exposure. Exposure to thyroxine for two days resulted in decreased expression of IL-1β in tadpole trunks. Sodium perchlorate had negligible effects on cytokine expression. Overall, these results demonstrate that cytokine transcript levels vary with stage of tadpole development but that their ontogenic regulation is not likely exclusively influenced by thyroid status. Understanding the direct and indirect effects of altered hormone status may provide insight into potential mechanisms of altered immune function during amphibian development.
Collapse
Affiliation(s)
- Melanie J Gallant
- Toxicology Graduate Program, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Natacha S Hogan
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada; Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada.
| |
Collapse
|
31
|
Campbell DEK, Montgomerie RD, Langlois VS. Lifecycle exposure to perchlorate differentially alters morphology, biochemistry, and transcription as well as sperm motility in Silurana tropicalis frogs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:196-204. [PMID: 29482025 DOI: 10.1016/j.envpol.2018.02.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/29/2018] [Accepted: 02/12/2018] [Indexed: 06/08/2023]
Abstract
Perchlorate (ClO4-) contamination has been reported in ground and surface waters across North America. However, few studies have examined the effects of prolonged exposure to this thyroid hormone disrupting chemical, particularly at environmentally relevant concentrations in lower vertebrates, such as amphibians. The aim of this study was to examine the effects of a yearlong chronic exposure to ClO4- in adult male and female Western clawed frogs (Silurana tropicalis). Frogs were spawned and raised from fertilized embryo until sexual maturity in potassium perchlorate (KClO4)-treated water at different concentrations (0, 20, 53, and 107 μg/L). Developmental and reproductive indices - including adult morphology, androgen plasma levels, gonadal thyroid hormone- and sex steroid-related transcript levels, and sperm motility - were evaluated in male and female adult frogs. Female growth (e.g., body mass, snout-vent length, and hind limb length) was significantly reduced following chronic exposure to environmentally relevant concentrations of KClO4 resulting in females with morphometric indices similar to those of control males - indicating potential sex-specific sensitivities to KClO4. Changes to reproductive indices (i.e., plasma androgen levels, gonadal thyroid hormone- and sex steroid-related transcript levels, and sperm motility) were also observed in both sexes and suggest that KClO4 exposure may also have indirect secondary effects on the reproductive axes in male and female adult frogs. These effects were observed at concentrations at or below those reported in surface waters contaminated with ClO4- suggesting that this contaminant may have developmental and reproductive effects post-metamorphosis in natural amphibian populations.
Collapse
Affiliation(s)
| | | | - Valérie S Langlois
- Department of Biology, Queen's University, Kingston, ON, Canada; Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, Canada; Institut national de la recherche scientifique, INRS - Centre Eau Terre Environnement, Quebec, QC, Canada.
| |
Collapse
|
32
|
Hines DE, Edwards SW, Conolly RB, Jarabek AM. A Case Study Application of the Aggregate Exposure Pathway (AEP) and Adverse Outcome Pathway (AOP) Frameworks to Facilitate the Integration of Human Health and Ecological End Points for Cumulative Risk Assessment (CRA). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:839-849. [PMID: 29236470 PMCID: PMC6003653 DOI: 10.1021/acs.est.7b04940] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cumulative risk assessment (CRA) methods promote the use of a conceptual site model (CSM) to apportion exposures and integrate risk from multiple stressors. While CSMs may encompass multiple species, evaluating end points across taxa can be challenging due to data availability and physiological differences among organisms. Adverse outcome pathways (AOPs) describe biological mechanisms leading to adverse outcomes (AOs) by assembling causal pathways with measurable intermediate steps termed key events (KEs), thereby providing a framework for integrating data across species. In this work, we used a case study focused on the perchlorate anion (ClO4-) to highlight the value of the AOP framework for cross-species data integration. Computational models and dose-response data were used to evaluate the effects of ClO4- in 12 species and revealed a dose-response concordance across KEs and taxa. The aggregate exposure pathway (AEP) tracks stressors from sources to the exposures and serves as a complement to the AOP. We discuss how the combined AEP-AOP construct helps to maximize the use of existing data and advances CRA by (1) organizing toxicity and exposure data, (2) providing a mechanistic framework of KEs for integrating data across human health and ecological end points, (3) facilitating cross-species dose-response evaluation, and (4) highlighting data gaps and technical limitations.
Collapse
Affiliation(s)
- David E. Hines
- U.S. Environmental Protection Agency, Office of Research and Development, National, Health and Environmental Effects Research Laboratory
| | - Stephen W. Edwards
- U.S. Environmental Protection Agency, Office of Research and Development, National, Health and Environmental Effects Research Laboratory
| | - Rory B. Conolly
- U.S. Environmental Protection Agency, Office of Research and Development, National, Health and Environmental Effects Research Laboratory
| | - Annie M. Jarabek
- U.S. Environmental Protection Agency, Office of Research and Development, National, Center for Environmental Assessment
| |
Collapse
|
33
|
Sandoz MA, Wages M, Wooten KJ, Clendening SL, Smith LR, Mulhearn B, Smith PN. Surface water mitigates the anti-metamorphic effects of elevated perchlorate concentrations in New Mexico spadefoot toad larvae (Spea multiplicata). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:17839-17844. [PMID: 28608158 DOI: 10.1007/s11356-017-9436-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/01/2017] [Indexed: 06/07/2023]
Abstract
Perchlorate (ClO4-) has potential to negatively impact amphibian populations by inhibiting thyroid hormone production, and thus metamorphosis in developing larvae. However, variability exists in species sensitivity, and there is evidence suggesting that natural surface waters can mitigate the anti-metamorphic potential of perchlorate. New Mexico spadefoot toad tadpoles, Spea multiplicata, were exposed to natural surface waters spiked with nominal concentrations of 0, 1000, 1350, 1710, 3000, 5110, and 8000 μg/L perchlorate ion for up to 42 days. No consistent dose-response trends were observed in mortality, rate of metamorphosis, Gosner stage, mass, or length. This study suggests that perchlorate exposure to concentrations as high as 8000 μg/L in natural surface waters does not result in adverse effects on New Mexico spadefoot tadpoles and emphasizes the importance of using site-specific conditions and species when evaluating ecological risks in perchlorate-impacted areas.
Collapse
Affiliation(s)
- Melissa A Sandoz
- Department of Environmental Toxicology, Texas Tech University, PO Box 41163, Lubbock, TX, 79409, USA
| | - Mike Wages
- Department of Environmental Toxicology, Texas Tech University, PO Box 41163, Lubbock, TX, 79409, USA
| | - Kim J Wooten
- Department of Environmental Toxicology, Texas Tech University, PO Box 41163, Lubbock, TX, 79409, USA
| | - Sheree L Clendening
- Department of Environmental Toxicology, Texas Tech University, PO Box 41163, Lubbock, TX, 79409, USA
| | - Lucas R Smith
- Department of Environmental Toxicology, Texas Tech University, PO Box 41163, Lubbock, TX, 79409, USA
| | | | - Philip N Smith
- Department of Environmental Toxicology, Texas Tech University, PO Box 41163, Lubbock, TX, 79409, USA.
| |
Collapse
|
34
|
Regnault C, Willison J, Veyrenc S, Airieau A, Méresse P, Fortier M, Fournier M, Brousseau P, Raveton M, Reynaud S. Metabolic and immune impairments induced by the endocrine disruptors benzo[a]pyrene and triclosan in Xenopus tropicalis. CHEMOSPHERE 2016; 155:519-527. [PMID: 27153234 DOI: 10.1016/j.chemosphere.2016.04.047] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/09/2016] [Accepted: 04/12/2016] [Indexed: 06/05/2023]
Abstract
Despite numerous studies suggesting that amphibians are highly sensitive to cumulative anthropogenic stresses, the role played by endocrine disruptors (EDs) in the decline of amphibian populations remains unclear. EDs have been extensively studied in adult amphibians for their capacity to disturb reproduction by interfering with the sexual hormone axis. Here, we studied the in vivo responses of Xenopus tropicalis males exposed to environmentally relevant concentrations of each ED, benzo[a]pyrene (BaP) and triclosan (TCS) alone (10 μg L(-1)) or a mixture of the two (10 μg L(-1) each) over a 24 h exposure period by following the modulation of the transcription of key genes involved in metabolic, sexual and immunity processes and the cellular changes in liver, spleen and testis. BaP, TCS and the mixture of the two all induced a marked metabolic disorder in the liver highlighted by insulin resistance-like and non-alcoholic fatty liver disease (NAFLD)-like phenotypes together with hepatotoxicity due to the impairment of lipid metabolism. For TCS and the mixture, these metabolic disorders were concomitant with modulation of innate immunity. These results confirmed that in addition to the reproductive effects induced by EDs in amphibians, metabolic disorders and immune system disruption should also be considered.
Collapse
Affiliation(s)
- Christophe Regnault
- Univ. Grenoble-Alpes, LECA, F-38000, Grenoble, France; CNRS, LECA, F-38000, Grenoble, France; Univ. Grenoble-Alpes, BEeSy, F-38000, Grenoble, France.
| | - John Willison
- Univ. Grenoble-Alpes, Institut de recherches en technologies et Sciences pour le vivant, Laboratoire de chimie et biologie des métaux (iRTSV-LCBM), F-38000, France; CNRS, IRTSV-LCBM, F-38000, Grenoble, France; Commissariat à l'énergie atomique et aux énergies alternatives (CEA), iRTSV-LCBM, F-38000, Grenoble, France.
| | - Sylvie Veyrenc
- Univ. Grenoble-Alpes, LECA, F-38000, Grenoble, France; CNRS, LECA, F-38000, Grenoble, France; Univ. Grenoble-Alpes, BEeSy, F-38000, Grenoble, France.
| | - Antinéa Airieau
- Univ. Grenoble-Alpes, LECA, F-38000, Grenoble, France; CNRS, LECA, F-38000, Grenoble, France; Univ. Grenoble-Alpes, BEeSy, F-38000, Grenoble, France.
| | - Patrick Méresse
- Univ. Grenoble-Alpes, LECA, F-38000, Grenoble, France; Univ. Grenoble-Alpes, CUBE, F-38000, Grenoble, France.
| | | | | | | | - Muriel Raveton
- Univ. Grenoble-Alpes, LECA, F-38000, Grenoble, France; CNRS, LECA, F-38000, Grenoble, France; Univ. Grenoble-Alpes, BEeSy, F-38000, Grenoble, France.
| | - Stéphane Reynaud
- Univ. Grenoble-Alpes, LECA, F-38000, Grenoble, France; CNRS, LECA, F-38000, Grenoble, France; Univ. Grenoble-Alpes, BEeSy, F-38000, Grenoble, France.
| |
Collapse
|
35
|
Khan MA, Fenton SE, Swank AE, Hester SD, Williams A, Wolf DC. A Mixture of Ammonium Perchlorate and Sodium Chlorate Enhances Alterations of the Pitutary-Thyroid Axis Caused by the Individual Chemicals in Adult Male F344 Rats. Toxicol Pathol 2016; 33:776-83. [PMID: 16392172 DOI: 10.1080/01926230500449832] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Ammonium perchlorate (AP) and sodium chlorate (SC) have been detected in public drinking water supplies in many parts of the United States. These chemicals cause perturbations in pituitary-thyroid homeostasis in animals by competitively inhibiting iodide uptake, thus hindering the synthesis of thyroglobulin and reducing circulating T4 (thyroxine). Little is known about the short-term exposure effects of mixtures of perchlorate and chlorate. The present study investigated the potential for the response to a mixture of these chemicals on the pituitary-thyroid axis in rats to be greater than that induced by the individual chemicals. Adult male F-344 rats were exposed, via their drinking water, to the nominal concentrations of 0.1, 1.0, 10 mg/L AP or 10, 100, 1000 mg/L SC and their mixtures for 7 days. Serum T4 levels were significantly ( p < 0.05) reduced in rats following exposure to the mixtures, but not after exposure to the individual chemicals. Serum T3 (triiodothyronine) was not altered by treatment and TSH (thyroid stimulating hormone) was only increased after the high-dose chlorate treatment. Histological examination of the thyroid gland showed colloid depletion and hypertrophy of follicular epithelial cells in high-dose single chemical and all mixture-treated rats, while hyperplasia was observed only in some of the rats treated with mixtures (AP 10 + SC 100, AP 0.1 + SC 1000, and AP 10 + SC 1000 mg/L). These data suggest that short-term exposure to the mixture of AP and SC enhances the effect of either chemical alone on the pituitary-thyroid axis in rats.
Collapse
Affiliation(s)
- Moazzam A Khan
- National Research Council, Environmental Carcinogenesis Divisions, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
36
|
Pablos MV, Jiménez MÁ, San Segundo L, Martini F, Beltrán E, Fernández C. Effects of dietary exposure of polycyclic musk HHCB on the metamorphosis of Xenopus laevis. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:1428-1435. [PMID: 26472276 DOI: 10.1002/etc.3286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/15/2015] [Accepted: 10/14/2015] [Indexed: 06/05/2023]
Abstract
The compound 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-[γ]-2-benzopyrane (HHCB; galaxolide, Chemical Abstracts Service number 1222-05-5) is a synthetic musk used extensively as a fragrance in many consumer products and classified as an emerging pollutant. The ecotoxicological information available for HHCB addresses exposure via water, but this compound is frequently adsorbed into particulate matter. The goal of the present study was to assess the effects of dietary exposure to several environmentally relevant HHCB concentrations adsorbed in food during Xenopus laevis metamorphosis. The authors sought to determine if such exposure to this synthetic musk resulted in histological changes in the thyroid gland in conjunction with changes in development (staging, timing to metamorphosis), body weight, and length. Developmental acceleration on day 14, together with hypertrophy of the thyroid follicular epithelium in tadpoles, suggested a possible agonistic effect of HHCB, which would have been compensated after metamorphosis by regulatory mechanisms to maintain homeostasis. Further research into the potential thyroid-related mechanisms of action of HHCB should be conducted. Environ Toxicol Chem 2016;35:1428-1435. © 2015 SETAC.
Collapse
Affiliation(s)
- María Victoria Pablos
- Department of Environment, Spanish National Institute for Agricultural and Food Research and Technology, Madrid, Spain
| | - María Ángeles Jiménez
- Histology Department, Faculty of Veterinary Medicine, The Complutense University, Madrid, Spain
| | - Laura San Segundo
- Department of Environment, Spanish National Institute for Agricultural and Food Research and Technology, Madrid, Spain
| | - Federica Martini
- Department of Environment, Spanish National Institute for Agricultural and Food Research and Technology, Madrid, Spain
| | - Eulalia Beltrán
- Department of Environment, Spanish National Institute for Agricultural and Food Research and Technology, Madrid, Spain
| | - Carlos Fernández
- Department of Environment, Spanish National Institute for Agricultural and Food Research and Technology, Madrid, Spain
| |
Collapse
|
37
|
Haselman JT, Sakurai M, Watanabe N, Goto Y, Onishi Y, Ito Y, Onoda Y, Kosian PA, Korte JJ, Johnson RD, Iguchi T, Degitz SJ. Development of the Larval Amphibian Growth and Development Assay: Effects of benzophenone-2 exposure inXenopus laevisfrom embryo to juvenile. J Appl Toxicol 2016; 36:1651-1661. [DOI: 10.1002/jat.3336] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/22/2016] [Accepted: 03/22/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Jonathan T. Haselman
- US EPA ORD/NHEERL/Mid-Continent Ecology Division; 6201 Congdon Blvd Duluth MN 55804 USA
| | - Maki Sakurai
- Institute of Environmental Ecology; IDEA Consultants Inc.; 1334-5 Riemon, Yaizu Shizuoka 421-0212 Japan
| | - Naoko Watanabe
- Institute of Environmental Ecology; IDEA Consultants Inc.; 1334-5 Riemon, Yaizu Shizuoka 421-0212 Japan
| | - Yasushi Goto
- Institute of Environmental Ecology; IDEA Consultants Inc.; 1334-5 Riemon, Yaizu Shizuoka 421-0212 Japan
| | - Yuta Onishi
- Institute of Environmental Ecology; IDEA Consultants Inc.; 1334-5 Riemon, Yaizu Shizuoka 421-0212 Japan
| | - Yuki Ito
- Institute of Environmental Ecology; IDEA Consultants Inc.; 1334-5 Riemon, Yaizu Shizuoka 421-0212 Japan
| | - Yu Onoda
- Institute of Environmental Ecology; IDEA Consultants Inc.; 1334-5 Riemon, Yaizu Shizuoka 421-0212 Japan
| | - Patricia A. Kosian
- US EPA ORD/NHEERL/Mid-Continent Ecology Division; 6201 Congdon Blvd Duluth MN 55804 USA
| | - Joseph J. Korte
- US EPA ORD/NHEERL/Mid-Continent Ecology Division; 6201 Congdon Blvd Duluth MN 55804 USA
| | - Rodney D. Johnson
- US EPA ORD/NHEERL/Mid-Continent Ecology Division; 6201 Congdon Blvd Duluth MN 55804 USA
| | - Taisen Iguchi
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences; 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
| | - Sigmund J. Degitz
- US EPA ORD/NHEERL/Mid-Continent Ecology Division; 6201 Congdon Blvd Duluth MN 55804 USA
| |
Collapse
|
38
|
Kumarathilaka P, Oze C, Indraratne SP, Vithanage M. Perchlorate as an emerging contaminant in soil, water and food. CHEMOSPHERE 2016; 150:667-677. [PMID: 26868023 DOI: 10.1016/j.chemosphere.2016.01.109] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/11/2016] [Accepted: 01/25/2016] [Indexed: 06/05/2023]
Abstract
Perchlorate ( [Formula: see text] ) is a strong oxidizer and has gained significant attention due to its reactivity, occurrence, and persistence in surface water, groundwater, soil and food. Stable isotope techniques (i.e., ((18)O/(16)O and (17)O/(16)O) and (37)Cl/(35)Cl) facilitate the differentiation of naturally occurring perchlorate from anthropogenic perchlorate. At high enough concentrations, perchlorate can inhibit proper function of the thyroid gland. Dietary reference dose (RfD) for perchlorate exposure from both food and water is set at 0.7 μg kg(-1) body weight/day which translates to a drinking water level of 24.5 μg L(-1). Chromatographic techniques (i.e., ion chromatography and liquid chromatography mass spectrometry) can be successfully used to detect trace level of perchlorate in environmental samples. Perchlorate can be effectively removed by wide variety of remediation techniques such as bio-reduction, chemical reduction, adsorption, membrane filtration, ion exchange and electro-reduction. Bio-reduction is appropriate for large scale treatment plants whereas ion exchange is suitable for removing trace level of perchlorate in aqueous medium. The environmental occurrence of perchlorate, toxicity, analytical techniques, removal technologies are presented.
Collapse
Affiliation(s)
- Prasanna Kumarathilaka
- Chemical and Environmental Systems Modeling Research Group, National Institute of Fundamental Studies, Kandy, Sri Lanka
| | - Christopher Oze
- Geology Department, Occidental College, 1600 Campus Rd., Los Angeles, CA 90041, USA
| | - S P Indraratne
- Department of Soil Science, Faculty of Agriculture, University of Peradeniya, Sri Lanka
| | - Meththika Vithanage
- Chemical and Environmental Systems Modeling Research Group, National Institute of Fundamental Studies, Kandy, Sri Lanka.
| |
Collapse
|
39
|
Nelson KR, Schroeder AL, Ankley GT, Blackwell BR, Blanksma C, Degitz SJ, Flynn KM, Jensen KM, Johnson RD, Kahl MD, Knapen D, Kosian PA, Milsk RY, Randolph EC, Saari T, Stinckens E, Vergauwen L, Villeneuve DL. Impaired anterior swim bladder inflation following exposure to the thyroid peroxidase inhibitor 2-mercaptobenzothiazole part I: Fathead minnow. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 173:192-203. [PMID: 26852267 DOI: 10.1016/j.aquatox.2015.12.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/28/2015] [Accepted: 12/30/2015] [Indexed: 05/14/2023]
Abstract
In the present study, a hypothesized adverse outcome pathway linking inhibition of thyroid peroxidase (TPO) activity to impaired swim bladder inflation was investigated in two experiments in which fathead minnows (Pimephales promelas) were exposed to 2-mercaptobenzothiazole (MBT). Continuous exposure to 1mg MBT/L for up to 22 days had no effect on inflation of the posterior chamber of the swim bladder, which typically inflates around 6 days post fertilization (dpf), a period during which maternally-derived thyroid hormone is presumed to be present. In contrast, inflation of the anterior swim bladder, which occurs around 14dpf, was impacted. Specifically, at 14dpf, approximately 50% of fish exposed to 1mg MBT/L did not have an inflated anterior swim bladder. In fish exposed to MBT through 21 or 22dpf, the anterior swim bladder was able to inflate, but the ratio of the anterior/posterior chamber length was significantly reduced compared to controls. Both abundance of thyroid peroxidase mRNA and thyroid follicle histology suggest that fathead minnows mounted a compensatory response to the presumed inhibition of TPO activity by MBT. Time-course characterization showed that fish exposed to MBT for at least 4 days prior to normal anterior swim bladder inflation had significant reductions in anterior swim bladder size, relative to the posterior chamber, compared to controls. These results, along with similar results observed in zebrafish (see part II, this issue) are consistent with the hypothesis that thyroid hormone signaling plays a significant role in mediating anterior swim bladder inflation and development in cyprinids, and that role can be disrupted by exposure to thyroid hormone synthesis inhibitors. Nonetheless, possible thyroid-independent actions of MBT on anterior swim bladder inflation cannot be ruled out based on the present results. Overall, although anterior swim bladder inflation has not been directly linked to survival as posterior swim bladder inflation has, potential links to adverse ecological outcomes are plausible given involvement of the anterior chamber in sound production and detection.
Collapse
Affiliation(s)
- Krysta R Nelson
- Student Services Contractor, U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| | - Anthony L Schroeder
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA; University of Minnesota-Twin Cities, Water Resources Center, 1985 Lower Buford Circle, St. Paul, MN 55108, USA.
| | - Gerald T Ankley
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| | - Brett R Blackwell
- Oak Ridge Institute for Science and Education (ORISE) Research Participation Program, U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| | - Chad Blanksma
- Badger Technical Services, U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA
| | - Sigmund J Degitz
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| | - Kevin M Flynn
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| | - Kathleen M Jensen
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| | - Rodney D Johnson
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| | - Michael D Kahl
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Patricia A Kosian
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| | - Rebecca Y Milsk
- Oak Ridge Institute for Science and Education (ORISE) Research Participation Program, U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| | - Eric C Randolph
- Student Services Contractor, U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| | - Travis Saari
- Student Services Contractor, U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| | - Evelyn Stinckens
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Daniel L Villeneuve
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| |
Collapse
|
40
|
Bulaeva E, Lanctôt C, Reynolds L, Trudeau VL, Navarro-Martín L. Sodium perchlorate disrupts development and affects metamorphosis- and growth-related gene expression in tadpoles of the wood frog (Lithobates sylvaticus). Gen Comp Endocrinol 2015; 222:33-43. [PMID: 25623150 DOI: 10.1016/j.ygcen.2015.01.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 12/19/2014] [Accepted: 01/16/2015] [Indexed: 11/20/2022]
Abstract
Numerous endocrine disrupting chemicals can affect the growth and development of amphibians. We investigated the effects of a targeted disruption of the endocrine axes modulating development and somatic growth. Wood frog (Lithobates sylvaticus) tadpoles were exposed for 2weeks (from developmental Gosner stage (Gs) 25 to Gs30) to sodium perchlorate (SP, thyroid inhibitor, 14mg/L), estradiol (E2, known to alter growth and development, 200nM) and a reduced feeding regime (RF, to affect growth and development in a chemically-independent manner). All treatments experienced developmental delay, and animals exposed to SP or subjected to RF respectively reached metamorphic climax (Gs42) approximately 11(±3) and 17(±3) days later than controls. At Gs42, only SP-treated animals showed increased weight and snout-vent length (P<0.05) relative to controls. Tadpoles treated with SP had 10-times higher levels of liver igf1 mRNA after 4days of exposure (Gs28) compared to controls. Tadpoles in the RF treatment expressed 6-times lower levels of liver igf1 mRNA and 2-times higher liver igf1r mRNA (P<0.05) at Gs30. Tadpoles treated with E2 exhibited similar developmental and growth patterns as controls, but had increased liver igf1 mRNA levels at Gs28, and tail igf1r at Gs42. Effects on tail trβ mRNA levels were detected in SP-treated tadpoles at Gs42, 40days post-exposure, suggesting that the chemical inhibition of thyroid hormone production early in development can have long-lasting effects. The growth effects observed in the SP-exposed animals suggest a relationship between TH-dependent development and somatic growth in L. sylvaticus tadpoles.
Collapse
Affiliation(s)
- Elizabeth Bulaeva
- Centre for Advanced Research in Environmental Genomics, Biology Department, University of Ottawa, Ontario K1N 6N5, Canada
| | - Chantal Lanctôt
- Centre for Advanced Research in Environmental Genomics, Biology Department, University of Ottawa, Ontario K1N 6N5, Canada
| | - Leslie Reynolds
- Centre for Advanced Research in Environmental Genomics, Biology Department, University of Ottawa, Ontario K1N 6N5, Canada
| | - Vance L Trudeau
- Centre for Advanced Research in Environmental Genomics, Biology Department, University of Ottawa, Ontario K1N 6N5, Canada
| | - Laia Navarro-Martín
- Centre for Advanced Research in Environmental Genomics, Biology Department, University of Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
41
|
Nations S, Long M, Wages M, Maul JD, Theodorakis CW, Cobb GP. Subchronic and chronic developmental effects of copper oxide (CuO) nanoparticles on Xenopus laevis. CHEMOSPHERE 2015; 135:166-174. [PMID: 25950410 DOI: 10.1016/j.chemosphere.2015.03.078] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/13/2015] [Accepted: 03/15/2015] [Indexed: 06/04/2023]
Abstract
Metal oxide nanoparticles, such as copper oxide (CuO), are mass produced for use in a variety of products like coatings and ceramics. Acute exposure to CuO nanoparticles has caused toxicity to many aquatic organisms, yet there is no information on the effect of prolonged CuO nanomaterial exposures. This study examined effects of chronic exposure to CuO nanoparticles on Xenopus laevis growth and development. Experiments included a 14 d subchronic exposure and a 47 d chronic exposure throughout metamorphosis. The subchronic exposure caused mortality in all tested CuO concentrations, and significant growth effects occurred after exposure to 2.5 mg L(-1) CuO. Chronic exposure to 0.3 mg L(-1) CuO elicited significant mortality and affected the rate of metamorphosis. Exposure to lower concentrations of CuO stimulated metamorphosis and growth, indicating that low dose exposure can have hormetic effects.
Collapse
Affiliation(s)
- Shawna Nations
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX 79409, USA
| | - Monique Long
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX 79409, USA
| | - Mike Wages
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX 79409, USA
| | - Jonathan D Maul
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX 79409, USA
| | - Christopher W Theodorakis
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL 62026, USA
| | - George P Cobb
- Department of Environmental Science, Baylor University, Waco, TX 76712, USA.
| |
Collapse
|
42
|
Furin CG, von Hippel FA, Postlethwait J, Buck CL, Cresko WA, O'Hara TM. Developmental timing of perchlorate exposure alters threespine stickleback dermal bone. Gen Comp Endocrinol 2015; 219:36-44. [PMID: 25753171 PMCID: PMC4508210 DOI: 10.1016/j.ygcen.2015.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 02/04/2015] [Accepted: 02/21/2015] [Indexed: 11/23/2022]
Abstract
Adequate levels of thyroid hormone are critical during development and metamorphosis, and for maintaining metabolic homeostasis. Perchlorate, a common contaminant of water sources, inhibits thyroid function in vertebrates. We utilized threespine stickleback (Gasterosteus aculeatus) to determine if timing of perchlorate exposure during development impacts adult dermal skeletal phenotypes. Fish were exposed to water contaminated with perchlorate (30mg/L or 100mg/L) beginning at 0, 3, 7, 14, 21, 42, 154 or 305days post fertilization until sexual maturity at 1year of age. A reciprocal treatment moved stickleback from contaminated to clean water on the same schedule providing for different stages of initial exposure and different treatment durations. Perchlorate exposure caused concentration-dependent significant differences in growth for some bony traits. Continuous exposure initiated within the first 21days post fertilization had the greatest effects on skeletal traits. Exposure to perchlorate at this early stage can result in small traits or abnormal skeletal morphology of adult fish which could affect predator avoidance and survival.
Collapse
Affiliation(s)
- Christoff G Furin
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508, USA; Department of Biology and Wildlife, University of Alaska Fairbanks, 902 N. Koyukuk Dr., P.O. Box 757000, Fairbanks, AK 99775, USA.
| | - Frank A von Hippel
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508, USA.
| | - John Postlethwait
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon 222 Huestis Hall, Eugene, OR 97403, USA.
| | - C Loren Buck
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508, USA.
| | - William A Cresko
- Institute of Ecology and Evolution, University of Oregon, 312 Pacific Hall, Eugene, OR 97403, USA.
| | - Todd M O'Hara
- Department of Veterinary Medicine, University of Alaska Fairbanks, P.O. Box 757750, Fairbanks, AK 99775-7750, USA.
| |
Collapse
|
43
|
Guo Y, Zhou B. Thyroid endocrine system disruption by pentachlorophenol: an in vitro and in vivo assay. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 142-143:138-145. [PMID: 24001430 DOI: 10.1016/j.aquatox.2013.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/02/2013] [Accepted: 08/12/2013] [Indexed: 06/02/2023]
Abstract
The present study aimed to evaluate the disruption caused to the thyroid endocrine system by pentachlorophenol (PCP) using in vitro and in vivo assays. In the in vitro assay, rat pituitary GH3 cells were exposed to 0, 0.1, 0.3, and 1.0 μM PCP. PCP exposure significantly downregulated basal and triiodothyronine (T3)-induced Dio 1 transcription, indicating the antagonistic activity of PCP in vitro. In the in vivo assay, zebrafish embryos were exposed to 0, 1, 3, and 10 μg/L of PCP until 14 days post-fertilization. PCP exposure resulted in decreased thyroxine (T4) levels, but elevated contents of whole-body T3. PCP exposure significantly upregulated the mRNA expression of genes along hypothalamic-pituitary-thyroid (HPT) axis, including those encoding thyroid-stimulating hormone, sodium/iodide symporter, thyroglobulin, Dio 1 and Dio 2, alpha and beta thyroid hormone receptor, and uridinediphosphate-glucuronosyl-transferase. PCP exposure did not influence the transcription of the transthyretin (TTR) gene. The results indicate that PCP potentially disrupts the thyroid endocrine system both in vitro and in vivo.
Collapse
Affiliation(s)
- Yongyong Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | | |
Collapse
|
44
|
Pratt KG, Khakhalin AS. Modeling human neurodevelopmental disorders in the Xenopus tadpole: from mechanisms to therapeutic targets. Dis Model Mech 2013; 6:1057-65. [PMID: 23929939 PMCID: PMC3759326 DOI: 10.1242/dmm.012138] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Xenopus tadpole model offers many advantages for studying the molecular, cellular and network mechanisms underlying neurodevelopmental disorders. Essentially every stage of normal neural circuit development, from axon outgrowth and guidance to activity-dependent homeostasis and refinement, has been studied in the frog tadpole, making it an ideal model to determine what happens when any of these stages are compromised. Recently, the tadpole model has been used to explore the mechanisms of epilepsy and autism, and there is mounting evidence to suggest that diseases of the nervous system involve deficits in the most fundamental aspects of nervous system function and development. In this Review, we provide an update on how tadpole models are being used to study three distinct types of neurodevelopmental disorders: diseases caused by exposure to environmental toxicants, epilepsy and seizure disorders, and autism.
Collapse
Affiliation(s)
- Kara G. Pratt
- University of Wyoming, 1000 E University Avenue, Laramie, WY 82071, USA
| | | |
Collapse
|
45
|
Tietge JE, Degitz SJ, Haselman JT, Butterworth BC, Korte JJ, Kosian PA, Lindberg-Livingston AJ, Burgess EM, Blackshear PE, Hornung MW. Inhibition of the thyroid hormone pathway in Xenopus laevis by 2-mercaptobenzothiazole. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 126:128-136. [PMID: 23178179 DOI: 10.1016/j.aquatox.2012.10.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 10/15/2012] [Accepted: 10/19/2012] [Indexed: 05/28/2023]
Abstract
Determining the effects of chemicals on the thyroid system is an important aspect of evaluating chemical safety from an endocrine disrupter perspective. Since there are numerous chemicals to test and limited resources, prioritizing chemicals for subsequent in vivo testing is critical. 2-Mercaptobenzothiazole (MBT), a high production volume chemical, was tested and shown to inhibit thyroid peroxidase (TPO) enzyme activity in vitro, a key enzyme necessary for the synthesis of thyroid hormone. To determine the thyroid disrupting activity of MBT in vivo, Xenopus laevis larvae were exposed using 7- and 21-day protocols. The 7-day protocol used 18-357 μg/L MBT concentrations and evaluated: metamorphic development, thyroid histology, circulating T4, circulating thyroid stimulating hormone, thyroidal sodium-iodide symporter gene expression, and thyroidal T4, T3, and related iodo-amino acids. The 21-day protocol used 23-435 μg/L MBT concentrations and evaluated metamorphic development and thyroid histology. Both protocols demonstrated that MBT is a thyroid disrupting chemical at the lowest concentrations tested. These studies complement the in vitro study used to identify MBT as a high priority for in vivo testing, supporting the utility/predictive potential of a tiered approach to testing chemicals for TPO activity inhibition. The 7-day study, with more comprehensive, sensitive, and diagnostic endpoints, provides information at intermediate biological levels that enables linking various endpoints in a robust and integrated pathway for thyroid hormone disruption associated with TPO inhibition.
Collapse
Affiliation(s)
- Joseph E Tietge
- US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, Duluth, MN 55804, United States.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hooper MJ, Ankley GT, Cristol DA, Maryoung LA, Noyes PD, Pinkerton KE. Interactions between chemical and climate stressors: a role for mechanistic toxicology in assessing climate change risks. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:32-48. [PMID: 23136056 PMCID: PMC3601417 DOI: 10.1002/etc.2043] [Citation(s) in RCA: 244] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Revised: 05/08/2012] [Accepted: 08/13/2012] [Indexed: 05/20/2023]
Abstract
Incorporation of global climate change (GCC) effects into assessments of chemical risk and injury requires integrated examinations of chemical and nonchemical stressors. Environmental variables altered by GCC (temperature, precipitation, salinity, pH) can influence the toxicokinetics of chemical absorption, distribution, metabolism, and excretion as well as toxicodynamic interactions between chemicals and target molecules. In addition, GCC challenges processes critical for coping with the external environment (water balance, thermoregulation, nutrition, and the immune, endocrine, and neurological systems), leaving organisms sensitive to even slight perturbations by chemicals when pushed to the limits of their physiological tolerance range. In simplest terms, GCC can make organisms more sensitive to chemical stressors, while alternatively, exposure to chemicals can make organisms more sensitive to GCC stressors. One challenge is to identify potential interactions between nonchemical and chemical stressors affecting key physiological processes in an organism. We employed adverse outcome pathways, constructs depicting linkages between mechanism-based molecular initiating events and impacts on individuals or populations, to assess how chemical- and climate-specific variables interact to lead to adverse outcomes. Case examples are presented for prospective scenarios, hypothesizing potential chemical-GCC interactions, and retrospective scenarios, proposing mechanisms for demonstrated chemical-climate interactions in natural populations. Understanding GCC interactions along adverse outcome pathways facilitates extrapolation between species or other levels of organization, development of hypotheses and focal areas for further research, and improved inputs for risk and resource injury assessments.
Collapse
Affiliation(s)
- Michael J Hooper
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Scholz S, Renner P, Belanger SE, Busquet F, Davi R, Demeneix BA, Denny JS, Léonard M, McMaster ME, Villeneuve DL, Embry MR. Alternatives to in vivo tests to detect endocrine disrupting chemicals (EDCs) in fish and amphibians--screening for estrogen, androgen and thyroid hormone disruption. Crit Rev Toxicol 2012. [PMID: 23190036 DOI: 10.3109/10408444.2012.737762] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Endocrine disruption is considered a highly relevant hazard for environmental risk assessment of chemicals, plant protection products, biocides and pharmaceuticals. Therefore, screening tests with a focus on interference with estrogen, androgen, and thyroid hormone pathways in fish and amphibians have been developed. However, they use a large number of animals and short-term alternatives to animal tests would be advantageous. Therefore, the status of alternative assays for endocrine disruption in fish and frogs was assessed by a detailed literature analysis. The aim was to (i) determine the strengths and limitations of alternative assays and (ii) present conclusions regarding chemical specificity, sensitivity, and correlation with in vivo data. Data from 1995 to present were collected related to the detection/testing of estrogen-, androgen-, and thyroid-active chemicals in the following test systems: cell lines, primary cells, fish/frog embryos, yeast and cell-free systems. The review shows that the majority of alternative assays measure effects directly mediated by receptor binding or resulting from interference with hormone synthesis. Other mechanisms were rarely analysed. A database was established and used for a quantitative and comparative analysis. For example, a high correlation was observed between cell-free ligand binding and cell-based reporter cell assays, between fish and frog estrogenic data and between fish embryo tests and in vivo reproductive effects. It was concluded that there is a need for a more systematic study of the predictive capacity of alternative tests and ways to reduce inter- and intra-assay variability.
Collapse
Affiliation(s)
- S Scholz
- Department of Bioanalytical Ecotoxicology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Eisenreich KM, Dean KM, Ottinger MA, Rowe CL. Comparative effects of in ovo exposure to sodium perchlorate on development, growth, metabolism, and thyroid function in the common snapping turtle (Chelydra serpentina) and red-eared slider (Trachemys scripta elegans). Comp Biochem Physiol C Toxicol Pharmacol 2012; 156:166-70. [PMID: 22871607 DOI: 10.1016/j.cbpc.2012.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 07/18/2012] [Accepted: 07/24/2012] [Indexed: 11/24/2022]
Abstract
Perchlorate is a surface and groundwater contaminant found in areas associated with munitions and rocket manufacturing and use. It is a thyroid-inhibiting compound, preventing uptake of iodide by the thyroid gland, ultimately reducing thyroid hormone production. As thyroid hormones influence metabolism, growth, and development, perchlorate exposure during the embryonic period may impact embryonic traits that ultimately influence hatchling performance. We topically exposed eggs of red-eared sliders (Trachemys scripta) and snapping turtles (Chelydra serpentina) to 200 and 177 μg/g of perchlorate (as NaClO(4)), respectively, to determine impacts on glandular thyroxine concentrations, embryonic growth and development, and metabolic rates of hatchlings for a period of 2 months post-hatching. In red-eared sliders, in ovo perchlorate exposure delayed hatching, increased external yolk size at hatching, increased hatchling mortality, and reduced total glandular thyroxine concentrations in hatchlings. In snapping turtles, hatching success and standard metabolic rates were reduced, liver and thyroid sizes were increased, and total glandular thyroxine concentrations in hatchlings were reduced after exposure to perchlorate. While both species were negatively affected by exposure, impacts on red-eared sliders were most severe, suggesting that the slider may be a more sensitive sentinel species for studying effects of perchlorate exposure to turtles.
Collapse
Affiliation(s)
- Karen M Eisenreich
- University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory, PO Box 38, Solomons, MD 20688, USA
| | | | | | | |
Collapse
|
49
|
Miyata K, Ose K. Thyroid Hormone-disrupting Effects and the Amphibian Metamorphosis Assay. J Toxicol Pathol 2012; 25:1-9. [PMID: 22481853 PMCID: PMC3320151 DOI: 10.1293/tox.25.1] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 12/05/2011] [Indexed: 11/19/2022] Open
Abstract
There are continued concerns about endocrine-disrupting chemical effects, and appropriate vertebrate models for assessment of risk are a high priority. Frog tadpoles are very sensitive to environmental substances because of their habitat and the complex processes of metamorphosis regulated by the endocrine system, mainly thyroid hormones. During metamorphosis, marked alteration in hormonal factors occurs, as well as dramatic structural and functional changes in larval tissues. There are a variety of mechanisms determining thyroid hormone balance or disruption directly or indirectly. Direct-acting agents can cause changes in thyroxine synthesis and/or secretion in thyroid through effects on peroxidases, thyroidal iodide uptake, deiodinase, and proteolysis. At the same time, indirect action may result from biochemical processes such as sulfation, deiodination and glucuronidation. Because their potential to disrupt thyroid hormones has been identified as an important consideration for the regulation of chemicals, the OECD and the EPA have each established guidelines that make use of larval African clawed frogs (Xenopus laevis) and frog metamorphosis for screening and testing of potential endocrine disrupters. The guidelines are based on evaluation of alteration in the hypothalamic-pituitary-thyroid axis. One of the primary endpoints is thyroid gland histopathology. Others are mortality, developmental stage, hind limb length, snout-vent length and wet body weight. Regarding histopathological features, the guidelines include core criteria and additional qualitative parameters along with grading. Taking into account the difficulties in evaluating amphibian thyroid glands, which change continuously throughout metamorphosis, histopathological examination has been shown to be a very sensitive approach.
Collapse
Affiliation(s)
- Kaori Miyata
- Environmental Health Science Laboratory, Sumitomo Chemical Company Limited, 1-98 Kasugadenaka 3 chome, Konohana-ku, Osaka 554-8558, Japan
| | | |
Collapse
|
50
|
Schmidt F, Schnurr S, Wolf R, Braunbeck T. Effects of the anti-thyroidal compound potassium-perchlorate on the thyroid system of the zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 109:47-58. [PMID: 22204988 DOI: 10.1016/j.aquatox.2011.11.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 11/13/2011] [Accepted: 11/14/2011] [Indexed: 05/31/2023]
Abstract
The increasing pollution of aquatic habitats with anthropogenic compounds has led to various test strategies to detect hazardous chemicals. However, information on effects of pollutants in the thyroid system in fish, which is essential for growth, development and parts of reproduction, is still scarce. Other vertebrate groups such as amphibians or mammals are well-studied; so the need for further knowledge especially in fish as a favored vertebrate model test organism is evident. Modified early life-stage tests were carried out with zebrafish exposed to the known thyroid inhibitor potassium perchlorate (0, 62.5, 125, 250, 500 and 5000 μg/L) to identify adverse effects on the hypothalamic-pituitary-thyroid axis. Especially higher perchlorate concentrations led to conspicuous alterations in thyroidal tissue architecture and to effects in the pituitary. In the thyroid, severe hyperplasia at concentrations ≥ 500 μg/L together with an increase in follicle number could be detected. The most sensitive endpoint was the colloid, which showed alterations at ≥ 250 μg/L. The tinctorial properties and the texture of the colloid changed dramatically. Interestingly, effects on epithelial cell height were minor. The pituitary revealed significant proliferations of TSH-producing cells resulting in alterations in the ratio of adeno- to neurohypophysis. The liver as the main site of T4 deiodination showed severe glycogen depletion at concentrations ≥ 250 μg/L. In summary, the thyroid system in zebrafish showed effects by perchlorate from concentrations ≥ 250 μg/L, thus documenting a high sensitivity of the zebrafish thyroid gland for goitrogens. In the future, such distinct alterations could lead to a better understanding and identification of potential thyroid-disrupting chemicals.
Collapse
Affiliation(s)
- Florian Schmidt
- Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, D-69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|