1
|
Magwebu ZE, Khoza S, Mazinu M, Jordaan E, Ghai M, Chauke CG. The impact of dietary salt on the development of hypertension and gut microbiome dysbiosis in captive-bred vervet monkeys (Chlorocebus aethiops). BMC Vet Res 2025; 21:339. [PMID: 40361148 PMCID: PMC12070606 DOI: 10.1186/s12917-025-04795-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND The study was designed to establish a hypertensive nonhuman primate model to evaluate the role of dietary salt intake on blood pressure levels and gut microbiome regulation. Sixteen adult vervet monkeys were selected and assigned into two groups (control and experimental). The control group was given a maintenance diet (100 g), whereas the diet of the experimental group was supplemented with 1.5 g/day of dietary salt in the mornings for six months (T0-T6), thereafter, the dose was increased to 2 g/day for additional six months (T9-T12). Blood and stool samples were collected for biochemical and 16 S ribosomal RNA gene sequencing. RESULTS The control group was borderline hypertensive (134.7/62.9 mmHg), whereas elevated blood pressure levels (171.3/81.3 mmHg) were observed at T12 indicating the experimental group to be salt sensitive. Furthermore, gut microbiome analysis showed two main phyla, Bacteroidetes and Firmicutes. However, there was no significant difference for alpha and beta diversity for both groups. CONCLUSION These findings suggested that dietary salt intake (1.5-2 g/day) caused alterations in systolic blood pressure levels, chloride and alkaline phosphatase (ALP). However, these changes were not associated with gut microbiome dysbiosis even though significant changes were observed over time for the individual groups.
Collapse
Affiliation(s)
- Zandisiwe Emilia Magwebu
- Primate Unit and Delft Animal Centre (PUDAC), South African Medical Research Council, Tygerberg, Cape Town, South Africa.
| | - Sanele Khoza
- Primate Unit and Delft Animal Centre (PUDAC), South African Medical Research Council, Tygerberg, Cape Town, South Africa
- School of life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville, South Africa
| | - Mikateko Mazinu
- Biostatistics Research Unit, South African Medical Research Council, Tygerberg, Cape Town, South Africa
| | - Esme Jordaan
- Biostatistics Research Unit, South African Medical Research Council, Tygerberg, Cape Town, South Africa
| | - Meenu Ghai
- School of life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville, South Africa
| | - Chesa Gift Chauke
- Primate Unit and Delft Animal Centre (PUDAC), South African Medical Research Council, Tygerberg, Cape Town, South Africa
| |
Collapse
|
2
|
Shenton J, Bousnina I, Oropallo M, David R, Weir L, Baker TK, Dunmore HM, Villenave R, McElroy M, Pettersen B, Kokate T, Fuller CL, Homan KA, Hudry E, Wood C, Gunter S. Opportunities and insights from pharmaceutical companies on the current use of new approach methodologies in nonclinical safety assessment. Drug Discov Today 2025; 30:104328. [PMID: 40086787 DOI: 10.1016/j.drudis.2025.104328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/26/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Sharing New Approach Methodology (NAM)-based regulatory experiences is crucial for improving human risk assessment and reducing animal use in drug safety testing. To foster broader adoption, the Biotechnology Innovation Organization surveyed companies about NAM usage and collected case studies showcasing NAM-based regulatory filings for biotherapeutics, where NAMs replaced large animal studies for safety assessment. These scientifically justified approaches were generally accepted by global health authorities, particularly in the context of species relevance limitations, prior target modulation experience, and/or when addressing severe disease. Despite successes with NAM-based global regulatory filings, there are concerns from companies about global regulatory harmonization and clinical translatability. NAMs have the potential for greater uptake with enhanced guidance and industry-regulatory agency collaboration being key to their adoption.
Collapse
Affiliation(s)
- Jacintha Shenton
- Translational Safety & Bioanalytical Sciences, Amgen, Thousand Oaks, CA, USA.
| | | | | | - Rhiannon David
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | | | - Thomas K Baker
- Investigative Toxicology, Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Remi Villenave
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Mary McElroy
- Discovery Pharmacology and Toxicology, Charles River Laboratories, Tranent, UK
| | | | | | | | - Kimberly A Homan
- Complex in vitro Systems Group, Genentech, South San Francisco, CA, USA
| | - Eloise Hudry
- Novartis Institute for Biomedical Research, Cambridge, MA, USA
| | - Charles Wood
- NonClinical Drug Safety, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - Sam Gunter
- Biotechnology Innovation Organization, Washington, DC, USA
| |
Collapse
|
3
|
Kang J, Kanugovi A, Stella MPJ, Frimand Z, Farup J, Urtasun A, Liu S, Clausen AS, Ishak H, Bui S, Kim S, Ezran C, Botvinnik O, Porpiglia E, Krasnow M, de Morree A, Rando TA. In vivo self-renewal and expansion of quiescent stem cells from a non-human primate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.645793. [PMID: 40196588 PMCID: PMC11974844 DOI: 10.1101/2025.03.27.645793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The development of non-human primate models is essential for the fields of developmental and regenerative biology because those models will more closely approximate human biology than do murine models. Based on single cell RNAseq and fluorescence-activated cell sorting, we report the identification and functional characterization of two quiescent stem cell populations (skeletal muscle stem cells (MuSCs) and mesenchymal stem cells termed fibro-adipogenic progenitors (FAPs)) in the non-human primate Microcebus murinus (the gray mouse lemur). We demonstrate in vivo proliferation, differentiation, and self-renewal of both MuSCs and FAPs. By combining cell phenotyping with cross-species molecular profiling and pharmacological interventions, we show that mouse lemur MuSCs and FAPs are more similar to human than to mouse counterparts. We identify unexpected gene targets involved in regulating primate MuSC proliferation and primate FAP adipogenic differentiation. Moreover, we find that the cellular composition of mouse lemur muscle better models human muscle than does macaque ( Macaca fascicularis ) muscle. Finally, we note that our approach presents as a generalizable pipeline for the identification, isolation, and characterization of stem cell populations in new animal models.
Collapse
|
4
|
Bahrani Fard MR, Chan J, Read AT, Li G, Cheng L, Safa BN, Siadat SM, Jhunjhunwala A, Grossniklaus HE, Emelianov SY, Stamer WD, Kuehn MH, Ethier CR. MAGNETICALLY STEERED CELL THERAPY FOR REDUCTION OF INTRAOCULAR PRESSURE AS A TREATMENT STRATEGY FOR OPEN-ANGLE GLAUCOMA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.13.593917. [PMID: 38798683 PMCID: PMC11118342 DOI: 10.1101/2024.05.13.593917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Trabecular meshwork (TM) cell therapy has been proposed as a next-generation treatment for elevated intraocular pressure (IOP) in glaucoma, the most common cause of irreversible blindness. Using a magnetic cell steering technique with excellent efficiency and tissue-specific targeting, we delivered two types of cells into a mouse model of glaucoma: either human adipose-derived mesenchymal stem cells (hAMSCs) or induced pluripotent cell derivatives (iPSC-TM cells). We observed a 4.5 [3.1, 6.0] mmHg or 27% reduction in intraocular pressure (IOP) for nine months after a single dose of only 1500 magnetically-steered hAMSCs, explained by increased outflow through the conventional pathway and associated with an higher TM cellularity. iPSC-TM cells were also effective, but less so, showing only a 1.9 [0.4, 3.3] mmHg or 13% IOP reduction and increased risk of tumorigenicity. In both cases, injected cells remained detectable in the iridocorneal angle three weeks post-transplantation. Based on the locations of the delivered cells, the mechanism of IOP lowering is most likely paracrine signaling. We conclude that magnetically-steered hAMSC cell therapy has potential for long-term treatment of ocular hypertension in glaucoma. One Sentence Summary A novel magnetic cell therapy provided effective intraocular pressure reduction in a mouse model, motivating future translational studies.
Collapse
|
5
|
Martin LD, Shelton J, Houser LA, MacAllister R, Coleman K. Refinements in Clinical and Behavioral Management for Macaques on Infectious Disease Protocols. Vet Sci 2024; 11:460. [PMID: 39453052 PMCID: PMC11512263 DOI: 10.3390/vetsci11100460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 10/26/2024] Open
Abstract
Providing optimal clinical and behavioral care is a key component of promoting animal welfare for macaques and other nonhuman primates (NHPs) in research. This overlap between critical areas of management is particularly important for NHPs on infectious disease protocols, which often have unique challenges. For example, traditionally these NHPs were often housed alone, which can have behavioral and clinical consequences. However, in the past decade or so, considerable effort has been directed at modifying procedures in an effort to improve animal welfare for this group of NHPs. In this review, we examine some refinements that can positively impact the clinical and behavioral management of macaques on infectious disease studies, including increased social housing and the use of positive reinforcement techniques to train animals to cooperate with procedures such as daily injections or awake blood draws. We also discuss ways to facilitate the implementation of these refinements, as well as to identify logistical considerations for their implementation. Finally, we look to the future and consider what more we can do to improve the welfare of these animals.
Collapse
Affiliation(s)
- Lauren Drew Martin
- Division of Comparative Medicine, Oregon National Primate Research Center, Beaverton, OR 97006, USA; (J.S.); (L.A.H.); (R.M.); (K.C.)
| | | | | | | | | |
Collapse
|
6
|
Charrier M, Leroux I, Pichon J, Schleder C, Larcher T, Hamel A, Magot A, Péréon Y, Lamirault G, Tremblay JP, Skuk D, Rouger K. Human MuStem cells are competent to fuse with nonhuman primate myofibers in a clinically relevant transplantation context: A proof-of-concept study. J Neuropathol Exp Neurol 2024; 83:684-694. [PMID: 38752570 DOI: 10.1093/jnen/nlae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
We previously reported that human muscle-derived stem cells (hMuStem cells) contribute to tissue repair after local administration into injured skeletal muscle or infarcted heart in immunodeficient rodent models. However, extrapolation of these findings to a clinical context is problematic owing to the considerable differences often seen between in vivo findings in humans versus rodents. Therefore, we investigated whether the muscle regenerative behavior of hMuStem cells is maintained in a clinically relevant transplantation context. Human MuStem cells were intramuscularly administered by high-density microinjection matrices into nonhuman primates receiving tacrolimus-based immunosuppression thereby reproducing the protocol that has so far produced the best results in clinical trials of cell therapy in myopathies. Four and 9 weeks after administration, histological analysis of cell injection sites revealed large numbers of hMuStem cell-derived nuclei in all cases. Most graft-derived nuclei were distributed in small myofiber groups in which no signs of a specific immune response were observed. Importantly, hMuStem cells contributed to simian tissue repair by fusing mainly with host myofibers, demonstrating their capacity for myofiber regeneration in this model. Together, these findings obtained in a valid preclinical model provide new insights supporting the potential of hMuStem cells in future cell therapies for muscle diseases.
Collapse
Affiliation(s)
- Marine Charrier
- Oniris, INRAE, PAnTher, Nantes, France
- L'institut du Thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
- Nantes Université, Nantes, France
| | | | | | | | | | - Antoine Hamel
- Service de Chirurgie Infantile, Centre Hospitalier Universitaire (CHU) de Nantes, Nantes, France
| | - Armelle Magot
- Centre de Référence Maladies Neuromusculaires AOC, Filnemus, Euro-NMD, Laboratoire d'Explorations Fonctionnelles, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France
| | - Yann Péréon
- Centre de Référence Maladies Neuromusculaires AOC, Filnemus, Euro-NMD, Laboratoire d'Explorations Fonctionnelles, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France
| | | | - Jacques P Tremblay
- Axe Neurosciences, Research Center of the CHU de Quebec-CHUL and Department of Molecular Medicine, School of Medicine, Laval University, Quebec, Quebec, Canada
| | - Daniel Skuk
- Axe Neurosciences, Research Center of the CHU de Quebec-CHUL and Department of Molecular Medicine, School of Medicine, Laval University, Quebec, Quebec, Canada
| | | |
Collapse
|
7
|
Liang L, Zimmermann Rollin I, Alikaya A, Ho JC, Santini T, Bostan AC, Schwerdt HN, Stauffer WR, Ibrahim TS, Pirondini E, Schaeffer DJ. An open-source MRI compatible frame for multimodal presurgical mapping in macaque and capuchin monkeys. J Neurosci Methods 2024; 407:110133. [PMID: 38588922 PMCID: PMC11127775 DOI: 10.1016/j.jneumeth.2024.110133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/06/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND High-precision neurosurgical targeting in nonhuman primates (NHPs) often requires presurgical anatomical mapping with noninvasive neuroimaging techniques (MRI, CT, PET), allowing for translation of individual anatomical coordinates to surgical stereotaxic apparatus. Given the varied tissue contrasts that these imaging techniques produce, precise alignment of imaging-based coordinates to surgical apparatus can be cumbersome. MRI-compatible stereotaxis with radiopaque fiducial markers offer a straight-forward and reliable solution, but existing commercial options do not fit in conformal head coils that maximize imaging quality. NEW METHOD We developed a compact MRI-compatible stereotaxis suitable for a variety of NHP species (Macaca mulatta, Macaca fascicularis, and Cebus apella) that allows multimodal alignment through technique-specific fiducial markers. COMPARISON WITH EXISTING METHODS With the express purpose of compatibility with clinically available MRI, CT, and PET systems, the frame is no larger than a human head, while allowing for imaging NHPs in the supinated position. This design requires no marker implantation, special software, or additional knowledge other than the operation of a common large animal stereotaxis. RESULTS We demonstrated the applicability of this 3D-printable apparatus across a diverse set of experiments requiring presurgical planning: 1) We demonstrate the accuracy of the fiducial system through a within-MRI cannula insertion and subcortical injection of a viral vector. 2) We also demonstrated accuracy of multimodal (MRI and CT) alignment and coordinate transfer to guide a surgical robot electrode implantation for deep-brain electrophysiology. CONCLUSIONS The computer-aided design files and engineering drawings are publicly available, with the modular design allowing for low cost and manageable manufacturing.
Collapse
Affiliation(s)
- Lucy Liang
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Isabela Zimmermann Rollin
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aydin Alikaya
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Jonathan C Ho
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA; School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tales Santini
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andreea C Bostan
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Helen N Schwerdt
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - William R Stauffer
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Tamer S Ibrahim
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; University of Pittsburgh, Psychiatry, Pittsburgh, PA, USA; University of Pittsburgh, Radiology, Pittsburgh, PA, USA
| | - Elvira Pirondini
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - David J Schaeffer
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
8
|
Monkey business: primates' social life tracked with wireless neuronal recording. Nature 2024:10.1038/d41586-024-00467-0. [PMID: 38811781 DOI: 10.1038/d41586-024-00467-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
|
9
|
Bacon RL, Taylor L, Gray SB, Hodo CL. Analysis of cell populations in the normal rhesus macaque ( Macaca mulatta) lower intestinal tract and diagnostic thresholds for chronic enterocolitis. Vet Pathol 2024; 61:303-315. [PMID: 37818978 PMCID: PMC10804693 DOI: 10.1177/03009858231203315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Rhesus macaques (Macaca mulatta) are used extensively in biomedical research, often with a focus on the gastrointestinal tract, and yet a full characterization of their normal resident intestinal cell populations has not been published. In addition, chronic enterocolitis (CE), also known as idiopathic chronic diarrhea, affects up to 25% of colony-housed rhesus macaques, often requiring euthanasia for welfare concerns and severely limiting their value as a breeding animal or research subject. We aimed to characterize subjective and objective variables in sections of the ileum, cecum, colon, and rectum in 16 healthy rhesus macaques and compare these results with a cohort of 37 animals euthanized for CE to produce relevant diagnostic thresholds and to improve case definitions for future studies. We found neutrophils to be an infrequent but expected component of the large intestinal leukocyte population. Animals with CE had significantly increased total leukocyte populations between crypts in the cecum, colon, and rectum; variable increases in specific cell populations across all levels of the distal intestinal tract; and significantly increased intraepithelial CD3+ T cells in the colon and rectum. Concentrations of enteroendocrine cells, enterochromaffin cells, and intestinal mast cells were not significantly different between healthy and affected individuals. This study characterizes individual leukocyte populations in the rhesus macaque lower intestinal tract, is the first to evaluate rhesus macaque intestinal mast cells, and provides key diagnostic thresholds for evaluating animals with potential CE.
Collapse
Affiliation(s)
| | | | - Stanton B. Gray
- The University of Texas MD Anderson Cancer Center, Bastrop, TX
| | - Carolyn L. Hodo
- The University of Texas MD Anderson Cancer Center, Bastrop, TX
| |
Collapse
|
10
|
Bhoopal B, Gollapelli KK, Damuka N, Miller M, Krizan I, Bansode A, Register T, Frye BM, Kim J, Mintz A, Orr M, Craft S, Whitlow C, Lockhart SN, Shively CA, Solingapuram Sai KK. Preliminary PET Imaging of Microtubule-Based PET Radioligand [ 11C]MPC-6827 in a Nonhuman Primate Model of Alzheimer's Disease. ACS Chem Neurosci 2023; 14:3745-3751. [PMID: 37724996 PMCID: PMC10966409 DOI: 10.1021/acschemneuro.3c00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
The microtubule (MT) instability observed in Alzheimer's disease (AD) is commonly attributed to hyperphosphorylation of the MT-associated protein, tau. In vivo PET imaging offers an opportunity to gain critical information about MT changes with the onset and development of AD and related dementia. We developed the first brain-penetrant MT PET ligand, [11C]MPC-6827, and evaluated its in vivo imaging utility in vervet monkeys. Consistent with our previous in vitro cell uptake and in vivo rodent imaging experiments, [11C]MPC-6827 uptake increased with MT destabilization. Radioactive uptake was inversely related to (cerebrospinal fluid) CSF Aβ42 levels and directly related to age in a nonhuman primate (NHP) model of AD. Additionally, in vitro autoradiography studies also corroborated PET imaging results. Here, we report the preliminary results of PET imaging with [11C]MPC-6827 in four female vervet monkeys with high or low CSF Aβ42 levels, which have been shown to correlate with the Aβ plaque burden, similar to humans.
Collapse
Affiliation(s)
- Bhuvanachandra Bhoopal
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Krishna Kumar Gollapelli
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Naresh Damuka
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Mack Miller
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Ivan Krizan
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Avinash Bansode
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Thomas Register
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Brett M Frye
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Jeongchul Kim
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Akiva Mintz
- Department of Radiology, Columbia University School of Medicine, New York, New York 10032, United States
| | - Miranda Orr
- Department of Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Suzanne Craft
- Department of Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Christopher Whitlow
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Samuel N Lockhart
- Department of Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Carol A Shively
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | | |
Collapse
|
11
|
Eke D, Ogoh G, Knight W, Stahl B. Time to consider animal data governance: perspectives from neuroscience. Front Neuroinform 2023; 17:1233121. [PMID: 37711673 PMCID: PMC10497762 DOI: 10.3389/fninf.2023.1233121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/09/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction Scientific research relies mainly on multimodal, multidimensional big data generated from both animal and human organisms as well as technical data. However, unlike human data that is increasingly regulated at national, regional and international levels, regulatory frameworks that can govern the sharing and reuse of non-human animal data are yet to be established. Whereas the legal and ethical principles that shape animal data generation in many countries and regions differ, the generated data are shared beyond boundaries without any governance mechanism. This paper, through perspectives from neuroscience, shows conceptually and empirically that there is a need for animal data governance that is informed by ethical concerns. There is a plurality of ethical views on the use of animals in scientific research that data governance mechanisms need to consider. Methods Semi-structured interviews were used for data collection. Overall, 13 interviews with 12 participants (10 males and 2 females) were conducted. The interviews were transcribed and stored in NviVo 12 where they were thematically analyzed. Results The participants shared the view that it is time to consider animal data governance due to factors such as differences in regulations, differences in ethical principles, values and beliefs and data quality concerns. They also provided insights on possible approaches to governance. Discussion We therefore conclude that a procedural approach to data governance is needed: an approach that does not prescribe a particular ethical position but allows for a quick understanding of ethical concerns and debate about how different positions differ to facilitate cross-cultural and international collaboration.
Collapse
Affiliation(s)
- Damian Eke
- Centre for Computing and Social Responsibility, De Montfort University, Leicester, United Kingdom
| | - George Ogoh
- School of Computer Science, University of Nottingham, Nottingham, United Kingdom
| | - William Knight
- Centre for Computing and Social Responsibility, De Montfort University, Leicester, United Kingdom
| | - Bernd Stahl
- School of Computer Science, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
12
|
Hugon AM, Golos TG. Non-human primate models for understanding the impact of the microbiome on pregnancy and the female reproductive tract†. Biol Reprod 2023; 109:1-16. [PMID: 37040316 PMCID: PMC10344604 DOI: 10.1093/biolre/ioad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023] Open
Abstract
The microbiome has been shown, or implicated to be involved, in multiple facets of human health and disease, including not only gastrointestinal health but also metabolism, immunity, and neurology. Although the predominant focus of microbiome research has been on the gut, other microbial communities such as the vaginal or cervical microbiome are likely involved in physiological homeostasis. Emerging studies also aim to understand the role of different microbial niches, such as the endometrial or placental microbial communities, on the physiology and pathophysiology of reproduction, including their impact on reproductive success and the etiology of adverse pregnancy outcomes (APOs). The study of the microbiome during pregnancy, specifically how changes in maternal microbial communities can lead to dysfunction and disease, can advance the understanding of reproductive health and the etiology of APOs. In this review, we will discuss the current state of non-human primate (NHP) reproductive microbiome research, highlight the progress with NHP models of reproduction, and the diagnostic potential of microbial alterations in a clinical setting to promote pregnancy health. NHP reproductive biology studies have the potential to expand the knowledge and understanding of female reproductive tract microbial communities and host-microbe or microbe-microbe interactions associated with reproductive health through sequencing and analysis. Furthermore, in this review, we aim to demonstrate that macaques are uniquely suited as high-fidelity models of human female reproductive pathology.
Collapse
Affiliation(s)
- Anna Marie Hugon
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
13
|
Jain AK, Tansey G, Hartig R, Mitchell AS, Basso MA. Trends and Treatment Approaches for Complications in Neuroscience Experiments with Monkey Species. Comp Med 2023; 73:216-228. [PMID: 37208151 PMCID: PMC10290483 DOI: 10.30802/aalas-cm-22-000079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/12/2022] [Accepted: 01/12/2023] [Indexed: 05/21/2023]
Abstract
Our goal in this manuscript is to advance the assessment and treatment of monkey species in neuroscience research. We hope to begin a discussion and establish baseline data on how complications are identified and treated. We surveyed the neuroscience research community working with monkeys and compiled responses to questions about investigator demographics, assessment of animal wellbeing, treatment choices, and approaches to mitigate risks associated with CNS procedures and promote monkey health and wellbeing. The majority of the respondents had worked with nonhuman primates (NHP) for over 15 y. Identification of procedure-related complications and efficacy of treatment generally rely on common behavioral indices. Treatments for localized inflammatory responses are generally successful, whereas the treatment success for meningitis or meningoencephalitis, abscesses, and hemorrhagic stroke are less successful. Behavioral signs of pain are treated successfully with NSAIDs and opioids. Our future plans are to collate treatment protocols and develop best practices that can be shared across the neuroscience community to improve treatment success rates and animal welfare and therefore science. Human protocols can be used to develop best practices, assess outcomes, and promote further refinements in treatment practices for monkeys to enhance research outcomes.
Collapse
Affiliation(s)
- Aarti Kishore Jain
- Fuster Laboratory of Cognitive Neuroscience, Department of Psychiatry and Biobehavioral Sciences Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California
| | - Ginger Tansey
- National Eye Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Renée Hartig
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York; Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Anna S Mitchell
- Department of Experimental Psychology, Oxford University, Tinsley Building, Oxford, United Kingdom; School of Psychology, Speech, and Hearing, University of Canterbury, Christchurch, New Zealand
| | - Michele A Basso
- Fuster Laboratory of Cognitive Neuroscience, Department of Psychiatry and Biobehavioral Sciences Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California; Washington National Primate Research Center, Departments of Biological Structure and Physiology and Biophysics, University of Washington, Seattle, Washington;,
| |
Collapse
|
14
|
Baik J, Ortiz-Cordero C, Magli A, Azzag K, Crist SB, Yamashita A, Kiley J, Selvaraj S, Mondragon-Gonzalez R, Perrin E, Maufort JP, Janecek JL, Lee RM, Stone LH, Rangarajan P, Ramachandran S, Graham ML, Perlingeiro RCR. Establishment of Skeletal Myogenic Progenitors from Non-Human Primate Induced Pluripotent Stem Cells. Cells 2023; 12:1147. [PMID: 37190056 PMCID: PMC10137227 DOI: 10.3390/cells12081147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Pluripotent stem (PS) cells enable the scalable production of tissue-specific derivatives with therapeutic potential for various clinical applications, including muscular dystrophies. Given the similarity to human counterparts, the non-human primate (NHP) is an ideal preclinical model to evaluate several questions, including delivery, biodistribution, and immune response. While the generation of human-induced PS (iPS)-cell-derived myogenic progenitors is well established, there have been no data for NHP counterparts, probably due to the lack of an efficient system to differentiate NHP iPS cells towards the skeletal muscle lineage. Here, we report the generation of three independent Macaca fascicularis iPS cell lines and their myogenic differentiation using PAX7 conditional expression. The whole-transcriptome analysis confirmed the successful sequential induction of mesoderm, paraxial mesoderm, and myogenic lineages. NHP myogenic progenitors efficiently gave rise to myotubes under appropriate in vitro differentiation conditions and engrafted in vivo into the TA muscles of NSG and FKRP-NSG mice. Lastly, we explored the preclinical potential of these NHP myogenic progenitors in a single wild-type NHP recipient, demonstrating engraftment and characterizing the interaction with the host immune response. These studies establish an NHP model system through which iPS-cell-derived myogenic progenitors can be studied.
Collapse
Affiliation(s)
- June Baik
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Alessandro Magli
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Karim Azzag
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sarah B. Crist
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Aline Yamashita
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - James Kiley
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sridhar Selvaraj
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Elizabeth Perrin
- Stem Cell Resources and the Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA
| | - John P. Maufort
- Stem Cell Resources and the Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA
| | - Jody L. Janecek
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rachael M. Lee
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Laura Hocum Stone
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | - Melanie L. Graham
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
15
|
Ohta E. Pathologic characteristics of infectious diseases in macaque monkeys used in biomedical and toxicologic studies. J Toxicol Pathol 2023; 36:95-122. [PMID: 37101957 PMCID: PMC10123295 DOI: 10.1293/tox.2022-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/16/2023] [Indexed: 04/28/2023] Open
Abstract
Nonhuman primates (NHPs), which have many advantages in scientific research and are often the only relevant animals to use in assessing the safety profiles and biological or pharmacological effects of drug candidates, including biologics. In scientific or developmental experiments, the immune systems of animals can be spontaneously compromised possibly due to background infection, experimental procedure-associated stress, poor physical condition, or intended or unintended mechanisms of action of test articles. Under these circumstances, background, incidental, or opportunistic infections can seriously can significantly complicate the interpretation of research results and findings and consequently affect experimental conclusions. Pathologists and toxicologists must understand the clinical manifestations and pathologic features of infectious diseases and the effects of these diseases on animal physiology and experimental results in addition to the spectrum of infectious diseases in healthy NHP colonies. This review provides an overview of the clinical and pathologic characteristics of common viral, bacterial, fungal, and parasitic infectious diseases in NHPs, especially macaque monkeys, as well as methods for definitive diagnosis of these diseases. Opportunistic infections that can occur in the laboratory setting have also been addressed in this review with examples of cases of infection disease manifestation that was observed or influenced during safety assessment studies or under experimental conditions.
Collapse
Affiliation(s)
- Etsuko Ohta
- Global Drug Safety, Eisai Co., Ltd., 5-1-3 Tokodai,
Tsukuba-shi, Ibaraki 300-2635, Japan
- *Corresponding author: E Ohta (e-mail: )
| |
Collapse
|
16
|
Ghandhi SA, Morton SR, Shuryak I, Lee Y, Soni RK, Perrier JR, Bakke J, Gahagan J, Bujold K, Authier S, Amundson SA, Brenner DJ, Nishita D, Chang P, Turner HC. Longitudinal multi-omic changes in the transcriptome and proteome of peripheral blood cells after a 4 Gy total body radiation dose to Rhesus macaques. BMC Genomics 2023; 24:139. [PMID: 36944971 PMCID: PMC10031949 DOI: 10.1186/s12864-023-09230-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Non-human primates, such as Rhesus macaques, are a powerful model for studies of the cellular and physiological effects of radiation, development of radiation biodosimetry, and for understanding the impact of radiation on human health. Here, we study the effects of 4 Gy total body irradiation (TBI) at the molecular level out to 28 days and at the cytogenetic level out to 56 days after exposure. We combine the global transcriptomic and proteomic responses in peripheral whole blood to assess the impact of acute TBI exposure at extended times post irradiation. RESULTS The overall mRNA response in the first week reflects a strong inflammatory reaction, infection response with neutrophil and platelet activation. At 1 week, cell cycle arrest and re-entry processes were enriched among mRNA changes, oncogene-induced senescence and MAPK signaling among the proteome changes. Influenza life cycle and infection pathways initiated earlier in mRNA and are reflected among the proteomic changes during the first week. Transcription factor proteins SRC, TGFβ and NFATC2 were immediately induced at 1 day after irradiation with increased transcriptional activity as predicted by mRNA changes persisting up to 1 week. Cell counts revealed a mild / moderate hematopoietic acute radiation syndrome (H-ARS) reaction to irradiation with expected lymphopenia, neutropenia and thrombocytopenia that resolved within 30 days. Measurements of micronuclei per binucleated cell levels in cytokinesis-blocked T-lymphocytes remained high in the range 0.27-0.33 up to 28 days and declined to 0.1 by day 56. CONCLUSIONS Overall, we show that the TBI 4 Gy dose in NHPs induces many cellular changes that persist up to 1 month after exposure, consistent with damage, death, and repopulation of blood cells.
Collapse
Affiliation(s)
- Shanaz A. Ghandhi
- Center for Radiological Research, Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY 10032 USA
| | - Shad R. Morton
- Center for Radiological Research, Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY 10032 USA
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY 10032 USA
| | - Younghyun Lee
- Center for Radiological Research, Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY 10032 USA
| | - Rajesh K. Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, NY New York, 10032 USA
| | - Jay R. Perrier
- Center for Radiological Research, Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY 10032 USA
| | - James Bakke
- Biosciences Division, SRI, 333 Ravenswood Avenue, Menlo Park, CA 94025 USA
| | - Janet Gahagan
- Biosciences Division, SRI, 333 Ravenswood Avenue, Menlo Park, CA 94025 USA
| | - Kim Bujold
- Charles River Laboratory, 445 Armand-Grappier Blvd, (QC) H7V 4B3 Laval, Canada
| | - Simon Authier
- Charles River Laboratory, 445 Armand-Grappier Blvd, (QC) H7V 4B3 Laval, Canada
| | - Sally A. Amundson
- Center for Radiological Research, Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY 10032 USA
| | - David J. Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY 10032 USA
| | - Denise Nishita
- Biosciences Division, SRI, 333 Ravenswood Avenue, Menlo Park, CA 94025 USA
| | - Polly Chang
- Biosciences Division, SRI, 333 Ravenswood Avenue, Menlo Park, CA 94025 USA
| | - Helen C. Turner
- Center for Radiological Research, Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY 10032 USA
| |
Collapse
|
17
|
Kuoch H, Krotova K, Graham ML, Brantly ML, Aslanidi G. Multiplexing AAV Serotype-Specific Neutralizing Antibodies in Preclinical Animal Models and Humans. Biomedicines 2023; 11:biomedicines11020523. [PMID: 36831059 PMCID: PMC9953293 DOI: 10.3390/biomedicines11020523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/29/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
The accurate assessment of AAV-specific pre-existing humoral immunity due to natural viral infection is critical for the efficient use of clinical gene therapy. The method described in the present study applies equivalent infection conditions to each AAV serotype (AAV1, AAV2, AAV3, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, and AAVAnc80L65). In the current study, we validated the assay by assessing AAV-neutralizing antibody titers in a limited cohort of random human donors and well-established preclinical large animal models, including dogs and non-human primates (NHPs). We achieved a rapid and accurate evaluation of neutralizing titers for each individual subject that can be used for clinical enrollment based on specific AAV serotypes and individualized selection of the most suitable AAV serotype for each specific patient.
Collapse
Affiliation(s)
- Hisae Kuoch
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
| | - Karina Krotova
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
| | - Melanie L. Graham
- Department of Surgery, Medical School, University of Minnesota, Minneapolis, MN 55108, USA
| | - Mark L. Brantly
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Medical School, University of Florida, Gainesville, FL 32610, USA
| | - George Aslanidi
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
- Correspondence: ; Tel.: +1-507-437-9622; Fax: +1-507-437-9606
| |
Collapse
|
18
|
Chmil V, Filipová A, Tichý A. Looking for the phoenix: the current research on radiation countermeasures. Int J Radiat Biol 2023; 99:1148-1166. [PMID: 36745819 DOI: 10.1080/09553002.2023.2173822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/06/2022] [Accepted: 12/26/2022] [Indexed: 02/08/2023]
Abstract
PURPOSE Ionizing radiation (IR) is widely applied in radiotherapy for the treatment of over 50% of cancer patients. IR is also intensively used in medical diagnostics on a daily basis in imaging. Moreover, recent geopolitical events have re-ignited the real threat of the use of nuclear weapons. Medical radiation countermeasures represent one of the effective protection strategies against the effects of IR. The aim of this review was to summarize the most commonly used strategies and procedures in the development of radiation countermeasures and to evaluate the current state of their research, with a focus on those in the clinical trial phase. METHODS Clinical trials for this review were selected in accordance with the preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement. The search was performed in the clinicaltrials.gov database as of May 2022. RESULTS Our search returned 263 studies, which were screened and of which 25 were included in the review. 10 of these studies had been completed, 3 with promising results: KMRC011 increased G-CSF, IL-6, and neutrophil counts suggesting potential for the treatment of hematopoietic acute radiation syndrome (H-ARS); GC4419 reduced the number of patients with severe oral mucositis and its duration; the combination of enoxaparin, pentoxifylline, and ursodeoxycholic acid reduced the incidence of focal radiation-induced liver injury. CONCLUSION The agents discovered so far show significant side effects or low efficacy, and hence most of the tested agents terminate in the early stages of development. In addition, the low profitability of this type of drug demotivates the private sector to invest in such research. To overcome this problem, there is a need to involve more public resources in funding. Among the technological opportunities, a deeper use of in silico approaches seems to be prospective.
Collapse
Affiliation(s)
- Vojtěch Chmil
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Alžběta Filipová
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Aleš Tichý
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
19
|
A framework and resource for global collaboration in non-human primate neuroscience. CURRENT RESEARCH IN NEUROBIOLOGY 2023. [DOI: 10.1016/j.crneur.2023.100079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
|
20
|
Bakker J, Maaskant A, Wegman M, Zijlmans DGM, Hage P, Langermans JAM, Remarque EJ. Reference Intervals and Percentiles for Hematologic and Serum Biochemical Values in Captive Bred Rhesus ( Macaca mulatta) and Cynomolgus Macaques ( Macaca fascicularis). Animals (Basel) 2023; 13:445. [PMID: 36766334 PMCID: PMC9913310 DOI: 10.3390/ani13030445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023] Open
Abstract
Several physiological characteristics and housing conditions are known to affect hematologic and serum biochemical values in macaques. However, the studies that have been conducted either report values calculated based on a small number of animals, were designed specifically to document the effect of a particular condition on the normal range of hematologic and serum biochemical values, or used parametric assumptions to calculate hematologic and serum biochemical reference intervals. We conducted a retrospective longitudinal cohort study to estimate reference intervals for hematologic and serum biochemical values in clinically healthy macaques based on observed percentiles without parametric assumptions. Data were obtained as part of the Biomedical Primate Research Centre (Rijswijk, The Netherlands) health monitoring program between 2018 and 2021. In total, 4009 blood samples from 1475 macaques were analyzed with a maximum of one repeat per year per animal. Data were established by species, gender, age, weight-for-height indices, pregnancy, sedation protocol, and housing conditions. Most of the parameters profoundly affected just some hematologic and serum biochemical values. A significant glucose difference was observed between the ketamine and ketamine-medetomidine sedation protocols. The results emphasize the importance of establishing uniform experimental groups with validated animal husbandry and housing conditions to improve the reproducibility of the experiments.
Collapse
Affiliation(s)
- Jaco Bakker
- Animal Science Department, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| | - Annemiek Maaskant
- Animal Science Department, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
- Department Population Health Sciences, Animals in Science & Society, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Merel Wegman
- Animal Science Department, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| | - Dian G. M. Zijlmans
- Animal Science Department, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| | - Patrice Hage
- Department Population Health Sciences, Animals in Science & Society, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Jan A. M. Langermans
- Animal Science Department, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
- Department Population Health Sciences, Animals in Science & Society, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Edmond J. Remarque
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| |
Collapse
|
21
|
Karal-ogly DD, Shumeev AN, Keburiya VV, Mintel MV, Rybtsov SA. Age-Related Changes in the Clustering of Blood Populations in Cynomolgus Monkeys Depend on Sex and Immune Status. Life (Basel) 2023; 13:life13020316. [PMID: 36836673 PMCID: PMC9965083 DOI: 10.3390/life13020316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Non-anthropoid primates cynomolgus monkeys (Macaca fascicularis), also known as crab-eating macaques, are increasingly used in biomedical and preclinical studies due to their evolutionary proximity to humans, sharing similar diets, infectious and senile diseases. Age-related changes and sexual dimorphism of the immune system of C. monkeys have not been sufficiently characterized in literature, though age and sex differences affect the course of diseases and sensitivity to medications. Aging in C. monkeys is accompanied by an increase in CD3+CD4+CD8+ (DP-T) cells, plasma B-cells, and a decrease in platelets. Erythromyeloid bias has also been noticed in older animals. There was an increase in eosinophils, haematocrit (HCT) and haemoglobin concentration (HGB). Senile decline in the function of the immune system had sex differences. An increase in the number of monocytes, cytotoxic lymphocytes (CTL) and a decrease in the T-helper population were more pronounced in older females. A significant reduction in the number of B-cells and activated T-cells was detected in males only. A moderate correlation with the regression model of aging was established for DP-T, HCT and HGB. The reduction in the B cells count in males and the increase in CTL level in females are moderately correlated with age. Other blood cell populations did not show significant correlations in the regression models due to their high sample variability. The novel cell population CD3-CD20loCD16/CD56+, presumably NK-cells subset, was revealed. This cell population demonstrated an increase trend with age in both sexes. Population-statistical age norms for different sexes for young and very old macaques were established. The blood population clusters associated with sex and immune status in older animals were also identified.
Collapse
Affiliation(s)
| | - Alexander N. Shumeev
- Centre for Cell Technology and Immunology, Sirius University of Science and Technology, 354340 Sochi, Russia
| | | | - Marina V. Mintel
- The Research Institute of Medical Primatology, 354383 Sochi, Russia
| | - Stanislav A. Rybtsov
- Centre for Cell Technology and Immunology, Sirius University of Science and Technology, 354340 Sochi, Russia
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH8 9YL, UK
- Correspondence:
| |
Collapse
|
22
|
Cassidy LC, Bethell EJ, Brockhausen RR, Boretius S, Treue S, Pfefferle D. The Dot-Probe Attention Bias Task as a Method to Assess Psychological Well-Being after Anesthesia: A Study with Adult Female Long-Tailed Macaques (Macaca fascicularis). Eur Surg Res 2023; 64:37-53. [PMID: 34915502 PMCID: PMC9909723 DOI: 10.1159/000521440] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/28/2021] [Indexed: 11/19/2022]
Abstract
Understanding the impact routine research and laboratory procedures have on animals is crucial to improving their well-being and to the success and reproducibility of the research they are involved in. Cognitive measures of welfare offer insight into animals' internal psychological state, but require validation. Attention bias - the tendency to attend to one type of information over another - is a cognitive phenomenon documented in humans and animals that is known to be modulated by affective state (i.e., emotions). Hence, changes in attention bias may offer researchers a deeper perspective of their animals' psychological well-being. The dot-probe task is an established method for quantifying attention bias in humans (by measuring reaction time to a dot-probe replacing pairs of stimuli), but has yet to be validated in animals. We developed a dot-probe task for long-tailed macaques (Macaca fascicularis) to determine if the task can detect changes in attention bias following anesthesia, a context known to modulate attention and trigger physiological arousal in macaques. Our task included the following features: stimulus pairs of threatening and neutral facial expressions of conspecifics and their scrambled counterparts, two stimuli durations (100 and 1,000 ms), and counterbalancing of the dot-probe's position on the touchscreen (left and right) and location relative to the threatening stimulus. We tested 8 group-housed adult females on different days relative to being anesthetized (baseline and 1-, 3-, 7-, and 14-days after). At baseline, monkeys were vigilant to threatening content when stimulus pairs were presented for 100 ms, but not 1,000 ms. On the day immediately following anesthesia, we found evidence that attention bias changed to an avoidance of threatening content. Attention bias returned to threat vigilance by the third day postanesthesia and remained so up to the last day of testing (14-days after anesthesia). We also found that attention bias was independent of the type of stimuli pair (i.e., whole face vs. scrambled counterparts), suggesting that the scrambled stimuli retained aspects of the original stimuli. Nevertheless, whole faces were more salient to the monkeys as responses to these trials were generally slower than to scrambled stimulus pairs. Overall, our study suggests it is feasible to detect changes in attention bias following anesthesia using the dot-probe task in nonhuman primates. Our results also reveal important aspects of stimulus preparation and experimental design.
Collapse
Affiliation(s)
- Lauren C Cassidy
- Welfare and Cognition Group, Cognitive Neuroscience Laboratory, German Primate Center-Leibniz Institute for Primate Research, Goettingen, Germany
- Leibniz-Science Campus Primate Cognition, German Primate Center, University of Goettingen, Goettingen, Germany
| | - Emily J Bethell
- Liverpool John Moores University, Research Centre in Evolutionary Anthropology and Palaeoecology, Liverpool, UK
- Liverpool John Moores University, Research Centre in Brain and Behaviour, Liverpool, UK
| | - Ralf R Brockhausen
- Welfare and Cognition Group, Cognitive Neuroscience Laboratory, German Primate Center-Leibniz Institute for Primate Research, Goettingen, Germany
| | - Susann Boretius
- Leibniz-Science Campus Primate Cognition, German Primate Center, University of Goettingen, Goettingen, Germany
- Functional Imaging Laboratory, German Primate Center-Leibniz Institute for Primate Research, Goettingen, Germany
| | - Stefan Treue
- Welfare and Cognition Group, Cognitive Neuroscience Laboratory, German Primate Center-Leibniz Institute for Primate Research, Goettingen, Germany
- Leibniz-Science Campus Primate Cognition, German Primate Center, University of Goettingen, Goettingen, Germany
| | - Dana Pfefferle
- Welfare and Cognition Group, Cognitive Neuroscience Laboratory, German Primate Center-Leibniz Institute for Primate Research, Goettingen, Germany
- Leibniz-Science Campus Primate Cognition, German Primate Center, University of Goettingen, Goettingen, Germany
| |
Collapse
|
23
|
Janssen P, Isa T, Lanciego J, Leech K, Logothetis N, Poo MM, Mitchell AS. Visualizing advances in the future of primate neuroscience research. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 4:100064. [PMID: 36582401 PMCID: PMC9792703 DOI: 10.1016/j.crneur.2022.100064] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/30/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
Future neuroscience and biomedical projects involving non-human primates (NHPs) remain essential in our endeavors to understand the complexities and functioning of the mammalian central nervous system. In so doing, the NHP neuroscience researcher must be allowed to incorporate state-of-the-art technologies, including the use of novel viral vectors, gene therapy and transgenic approaches to answer continuing and emerging research questions that can only be addressed in NHP research models. This perspective piece captures these emerging technologies and some specific research questions they can address. At the same time, we highlight some current caveats to global NHP research and collaborations including the lack of common ethical and regulatory frameworks for NHP research, the limitations involving animal transportation and exports, and the ongoing influence of activist groups opposed to NHP research.
Collapse
Affiliation(s)
- Peter Janssen
- Laboratory for Neuro- and Psychophysiology, KU Leuven, Belgium
| | - Tadashi Isa
- Graduate School of Medicine, Kyoto University, Japan
| | - Jose Lanciego
- Department Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, CiberNed., Pamplona, Spain
| | - Kirk Leech
- European Animal Research Association, United Kingdom
| | - Nikos Logothetis
- International Center for Primate Brain Research, Shanghai, China
| | - Mu-Ming Poo
- International Center for Primate Brain Research, Shanghai, China
| | - Anna S. Mitchell
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand,Department of Experimental Psychology, University of Oxford, United Kingdom,Corresponding author. School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
24
|
Chandrabhatla AS, Narahari AK, Mehaffey JH, Schaff DL, Kron IL, Brayman K. National Institutes of Health Funding for Abdominal Organ Transplantation Research Has Declined: A 30-year Analysis. Transplantation 2022; 106:1909-1911. [PMID: 35175240 PMCID: PMC9378811 DOI: 10.1097/tp.0000000000004082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
| | | | | | - Dylan L. Schaff
- University of Virginia Health System, Charlottesville, VA 22903
| | - Irving L. Kron
- University of Virginia Health System, Charlottesville, VA 22903
| | - Kenneth Brayman
- University of Virginia Health System, Charlottesville, VA 22903
| |
Collapse
|
25
|
Paterson EA, Turner PV. Challenges with Assessing and Treating Pain in Research Primates: A Focused Survey and Literature Review. Animals (Basel) 2022; 12:2304. [PMID: 36078024 PMCID: PMC9455027 DOI: 10.3390/ani12172304] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Research primates may undergo surgical procedures making effective pain management essential to ensure good animal welfare and unbiased scientific data. Adequate pain mitigation is dependent on whether veterinarians, technicians, researchers, and caregivers can recognize and assess pain, as well as the availability of efficacious therapeutics. A survey was conducted to evaluate primate veterinary approaches to pain assessment and alleviation, as well as expressed challenges for adequately managing primate pain. The survey (n = 93 respondents) collected information regarding institutional policies and procedures for pain recognition, methods used for pain relief, and perceived levels of confidence in primate pain assessment. Results indicated that 71% (n = 60) of respondents worked at institutions that were without formal experimental pain assessment policies. Pain assessment methods were consistent across respondents with the majority evaluating pain based on changes in general activity levels (100%, n = 86) and food consumption (97%, n = 84). Self-reported confidence in recognizing and managing pain ranged from slightly confident to highly confident, and there was a commonly expressed concern about the lack of objective pain assessment tools and science-based evidence regarding therapeutic recommendations of analgesics for research primates. These opinions correspond with significant gaps in the primate pain management literature, including limited specific pharmacokinetic data and efficacy testing for commonly used analgesics in research primate species as well as limited research on objective and specific measures of pain in research primates. These results demonstrate that there are inconsistencies in institutional policies and procedures surrounding pain management in research primates and a lack of objective pain assessment methods. Demonstrating the gaps and challenges in primate pain management can inform guideline development and suggest areas for future research.
Collapse
Affiliation(s)
- Emilie A. Paterson
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 0C4, Canada
| | - Patricia V. Turner
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 0C4, Canada
- Global Animal Welfare and Training, Charles River, Wilmington, MA 01887, USA
| |
Collapse
|
26
|
Procyk E, Meunier M. BioSimia, France CNRS network for nonhuman primate biomedical research in infectiology, immunology, and neuroscience. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100051. [PMID: 36685763 PMCID: PMC9846450 DOI: 10.1016/j.crneur.2022.100051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/08/2022] [Accepted: 08/08/2022] [Indexed: 01/25/2023] Open
Abstract
Research and developments based on nonhuman primate models have a specific place in biomedical sciences, and nonhuman primate species also have a specific place in the public opinion on the use of animal in research. While nonhuman primates are used in very limited number compared to other animal models, they are rightly the focus of deep ethical concerns. The importance of nonhuman primates in neuroscientific fundamental and preclinical discoveries together with the targeting of such research by activist groups well illustrate this fact. Nonhuman primates also highly contribute to other biomedical fields including immunology, virology, or metabolic and respiratory physiology. In all these fields, researchers, engineers and technicians face similar matters and share the same needs for optimal animal welfare, handling, and veterinary care, the same quest for first-rate research infrastructure and funding, and the same yearning for more public understanding and support. In this article, we give an overview of the evolution of human-animal relationships and public attitudes to animal research in France, and we recount the creation of BioSimia, France network for nonhuman primate biomedical research which now links all academic laboratories nationwide in all the domains for which nonhuman primates remain essential. We explain the principles as well as the outcomes of networking across disciplines. As a perspective, we outline the potential benefits of extending such network to a European scale.
Collapse
Affiliation(s)
- Emmanuel Procyk
- University of Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France,Corresponding author.
| | - Martine Meunier
- University of Lyon 1, Integrative Multisensory Perception Action and Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France
| |
Collapse
|
27
|
Johnson AL, Keesler RI, Lewis AD, Reader JR, Laing ST. Common and Not-So-Common Pathologic Findings of the Gastrointestinal Tract of Rhesus and Cynomolgus Macaques. Toxicol Pathol 2022; 50:638-659. [PMID: 35363082 PMCID: PMC9308647 DOI: 10.1177/01926233221084634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rhesus and cynomolgus macaques are the most frequently used nonhuman primate (NHP) species for biomedical research and toxicology studies of novel therapeutics. In recent years, there has been a shortage of laboratory macaques due to a variety of competing factors. This was most recently exacerbated by the surge in NHP research required to address the severe acute respiratory syndrome (SARS)-coronavirus 2 pandemic. Continued support of these important studies has required the use of more varied cohorts of macaques, including animals with different origins, increased exposure to naturally occurring pathogens, and a wider age range. Diarrhea and diseases of the gastrointestinal tract are the most frequently occurring spontaneous findings in macaques of all origins and ages. The purpose of this review is to alert pathologists and scientists involved in NHP research to these findings and their impact on animal health and study endpoints, which may otherwise confound the interpretation of data generated using macaques.
Collapse
Affiliation(s)
| | | | - Anne D Lewis
- Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - J Rachel Reader
- California National Primate Research Center, Davis, California, USA
| | | |
Collapse
|
28
|
Testard C, Brent LJN, Andersson J, Chiou KL, Negron-Del Valle JE, DeCasien AR, Acevedo-Ithier A, Stock MK, Antón SC, Gonzalez O, Walker CS, Foxley S, Compo NR, Bauman S, Ruiz-Lambides AV, Martinez MI, Skene JHP, Horvath JE, Unit CBR, Higham JP, Miller KL, Snyder-Mackler N, Montague MJ, Platt ML, Sallet J. Social connections predict brain structure in a multidimensional free-ranging primate society. SCIENCE ADVANCES 2022; 8:eabl5794. [PMID: 35417242 PMCID: PMC9007502 DOI: 10.1126/sciadv.abl5794] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Reproduction and survival in most primate species reflects management of both competitive and cooperative relationships. Here, we investigated the links between neuroanatomy and sociality in free-ranging rhesus macaques. In adults, the number of social partners predicted the volume of the mid-superior temporal sulcus and ventral-dysgranular insula, implicated in social decision-making and empathy, respectively. We found no link between brain structure and other key social variables such as social status or indirect connectedness in adults, nor between maternal social networks or status and dependent infant brain structure. Our findings demonstrate that the size of specific brain structures varies with the number of direct affiliative social connections and suggest that this relationship may arise during development. These results reinforce proposed links between social network size, biological success, and the expansion of specific brain circuits.
Collapse
Affiliation(s)
- Camille Testard
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren J. N. Brent
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | | | - Kenneth L. Chiou
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Josue E. Negron-Del Valle
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Alex R. DeCasien
- Department of Anthropology, New York University, New York, NY, USA
- New York Consortium in Evolutionary Primatology, NYCEP, New York, NY, USA
- Section on Developmental Neurogenomics, National Institute of Mental Health, Washington, DC, USA
| | | | - Michala K. Stock
- Department of Sociology and Anthropology, Metropolitan State University of Denver, Denver, CO, USA
| | - Susan C. Antón
- Department of Anthropology, New York University, New York, NY, USA
- New York Consortium in Evolutionary Primatology, NYCEP, New York, NY, USA
| | - Olga Gonzalez
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Christopher S. Walker
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Sean Foxley
- Wellcome Integrative Neuroimaging Centre, fMRIB, Oxford, UK
- Department of Radiology, University of Chicago, Chicago, IL, USA
| | - Nicole R. Compo
- Caribbean Primate Research Center, University of Puerto Rico, Sabana Seca, Puerto Rico
- Comparative Medicine, University of South Florida, Tampa, FL, USA
| | - Samuel Bauman
- Caribbean Primate Research Center, University of Puerto Rico, Sabana Seca, Puerto Rico
| | | | - Melween I. Martinez
- Caribbean Primate Research Center, University of Puerto Rico, Sabana Seca, Puerto Rico
| | - J. H. Pate Skene
- Department of Neurobiology, Duke University, Durham, NC, USA
- Institute of Cognitive Science, University of Colorado, Boulder, CO, USA
| | - Julie E. Horvath
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | | | - James P. Higham
- Department of Anthropology, New York University, New York, NY, USA
- New York Consortium in Evolutionary Primatology, NYCEP, New York, NY, USA
| | | | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, USA
| | - Michael J. Montague
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael L. Platt
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
- Marketing Department, University of Pennsylvania, Philadelphia, PA, USA
| | - Jérôme Sallet
- Department of Experimental Psychology, Wellcome Integrative Neuroimaging Centre, Oxford, UK
- Stem Cell and Brain Research Institute, Inserm, Université Lyon 1, Bron U1208, France
| |
Collapse
|
29
|
Ozirmak Lermi N, Gray SB, Bowen CM, Reyes-Uribe L, Dray BK, Deng N, Harris RA, Raveendran M, Benavides F, Hodo CL, Taggart MW, Colbert Maresso K, Sinha KM, Rogers J, Vilar E. Comparative molecular genomic analyses of a spontaneous rhesus macaque model of mismatch repair-deficient colorectal cancer. PLoS Genet 2022; 18:e1010163. [PMID: 35446842 PMCID: PMC9064097 DOI: 10.1371/journal.pgen.1010163] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 05/03/2022] [Accepted: 03/23/2022] [Indexed: 12/02/2022] Open
Abstract
Colorectal cancer (CRC) remains the third most common cancer in the US with 15% of cases displaying Microsatellite Instability (MSI) secondary to Lynch Syndrome (LS) or somatic hypermethylation of the MLH1 promoter. A cohort of rhesus macaques from our institution developed spontaneous mismatch repair deficient (MMRd) CRC with a notable fraction harboring a pathogenic germline mutation in MLH1 (c.1029C
Collapse
Affiliation(s)
- Nejla Ozirmak Lermi
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- School of Health Professions, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Stanton B. Gray
- Michale E. Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Charles M. Bowen
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Laura Reyes-Uribe
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Beth K. Dray
- Charles River Laboratories, Ashland, Ohio, United States of America
| | - Nan Deng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - R. Alan Harris
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Muthuswamy Raveendran
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Fernando Benavides
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Carolyn L. Hodo
- Michale E. Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Melissa W. Taggart
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Karen Colbert Maresso
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Krishna M. Sinha
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Jeffrey Rogers
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| |
Collapse
|
30
|
Quader S, Kataoka K, Cabral H. Nanomedicine for brain cancer. Adv Drug Deliv Rev 2022; 182:114115. [PMID: 35077821 DOI: 10.1016/j.addr.2022.114115] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/18/2021] [Accepted: 01/12/2022] [Indexed: 02/06/2023]
Abstract
CNS tumors remain among the deadliest forms of cancer, resisting conventional and new treatment approaches, with mortality rates staying practically unchanged over the past 30 years. One of the primary hurdles for treating these cancers is delivering drugs to the brain tumor site in therapeutic concentration, evading the blood-brain (tumor) barrier (BBB/BBTB). Supramolecular nanomedicines (NMs) are increasingly demonstrating noteworthy prospects for addressing these challenges utilizing their unique characteristics, such as improving the bioavailability of the payloadsviacontrolled pharmacokinetics and pharmacodynamics, BBB/BBTB crossing functions, superior distribution in the brain tumor site, and tumor-specific drug activation profiles. Here, we review NM-based brain tumor targeting approaches to demonstrate their applicability and translation potential from different perspectives. To this end, we provide a general overview of brain tumor and their treatments, the incidence of the BBB and BBTB, and their role on NM targeting, as well as the potential of NMs for promoting superior therapeutic effects. Additionally, we discuss critical issues of NMs and their clinical trials, aiming to bolster the potential clinical applications of NMs in treating these life-threatening diseases.
Collapse
Affiliation(s)
- Sabina Quader
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 212-0821, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 212-0821, Japan.
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
31
|
Boisson F, Serriere S, Cao L, Bodard S, Pilleri A, Thomas L, Sportelli G, Vercouillie J, Emond P, Tauber C, Belcari N, Lefaucheur JL, Brasse D, Galineau L. Performance evaluation of the IRIS XL-220 PET/CT system, a new camera dedicated to non-human primates. EJNMMI Phys 2022; 9:10. [PMID: 35122556 PMCID: PMC8818072 DOI: 10.1186/s40658-022-00440-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Non-human primates (NHP) are critical in biomedical research to better understand the pathophysiology of diseases and develop new therapies. Based on its translational and longitudinal abilities along with its non-invasiveness, PET/CT systems dedicated to non-human primates can play an important role for future discoveries in medical research. The aim of this study was to evaluate the performance of a new PET/CT system dedicated to NHP imaging, the IRIS XL-220 developed by Inviscan SAS. This was performed based on the National Electrical Manufacturers Association (NEMA) NU 4-2008 standard recommendations (NEMA) to characterize the spatial resolution, the scatter fraction, the sensitivity, the count rate, and the image quality of the system. Besides, the system was evaluated in real conditions with two NHP with 18F-FDG and (-)-[18F]FEOBV which targets the vesicular acetylcholine transporter, and one rat using 18F-FDG. RESULTS The full width at half maximum obtained with the 3D OSEM algorithm ranged between 0.89 and 2.11 mm in the field of view. Maximum sensitivity in the 400-620 keV and 250-750 keV energy windows were 2.37% (22 cps/kBq) and 2.81% (25 cps/kBq), respectively. The maximum noise equivalent count rate (NEC) for a rat phantom was 82 kcps at 75 MBq and 88 kcps at 75 MBq for energy window of 250-750 and 400-620 keV, respectively. For the monkey phantom, the maximum NEC was 18 kcps at 126 MBq and 19 kcps at 126 MBq for energy window of 250-750 and 400-620 keV, respectively. The IRIS XL provided an excellent quality of images in non-human primates and rats using 18F-FDG. The images acquired using (-)-[18F]FEOBV were consistent with those previously reported in non-human primates. CONCLUSIONS Taken together, these results showed that the IRIS XL-220 is a high-resolution system well suited for PET/CT imaging in non-human primates.
Collapse
Affiliation(s)
- Frédéric Boisson
- Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, 23 rue du Loess, 67037, Strasbourg, France.,UMR7178, CNRS, 67037, Strasbourg, France
| | - Sophie Serriere
- UMR 1253, IBrain, Équipe Imagerie, Biomarqueurs et Thérapie, Université de Tours, Inserm, UFR Médecine, 10 boulevard Tonnellé, Bât. Planiol 4ème étage, 37000, Tours, France.,Département d'Imagerie Préclinique, Plateforme Scientifique et Technique Analyse des Systèmes Biologiques, Université de Tours, Tours, France
| | - Liji Cao
- Inviscan SAS, Strasbourg, France
| | - Sylvie Bodard
- UMR 1253, IBrain, Équipe Imagerie, Biomarqueurs et Thérapie, Université de Tours, Inserm, UFR Médecine, 10 boulevard Tonnellé, Bât. Planiol 4ème étage, 37000, Tours, France
| | - Alessandro Pilleri
- Department of Physics, University of Pisa, Largo Bruno Pontecorvo 3, 56127, Pisa, Italy
| | - Lionel Thomas
- Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, 23 rue du Loess, 67037, Strasbourg, France.,UMR7178, CNRS, 67037, Strasbourg, France
| | - Giancarlo Sportelli
- Department of Physics, University of Pisa, Largo Bruno Pontecorvo 3, 56127, Pisa, Italy
| | - Johnny Vercouillie
- UMR 1253, IBrain, Équipe Imagerie, Biomarqueurs et Thérapie, Université de Tours, Inserm, UFR Médecine, 10 boulevard Tonnellé, Bât. Planiol 4ème étage, 37000, Tours, France
| | - Patrick Emond
- UMR 1253, IBrain, Équipe Imagerie, Biomarqueurs et Thérapie, Université de Tours, Inserm, UFR Médecine, 10 boulevard Tonnellé, Bât. Planiol 4ème étage, 37000, Tours, France.,Département d'Imagerie Préclinique, Plateforme Scientifique et Technique Analyse des Systèmes Biologiques, Université de Tours, Tours, France
| | - Clovis Tauber
- UMR 1253, IBrain, Équipe Imagerie, Biomarqueurs et Thérapie, Université de Tours, Inserm, UFR Médecine, 10 boulevard Tonnellé, Bât. Planiol 4ème étage, 37000, Tours, France
| | - Nicola Belcari
- Department of Physics, University of Pisa, Largo Bruno Pontecorvo 3, 56127, Pisa, Italy
| | | | - David Brasse
- Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, 23 rue du Loess, 67037, Strasbourg, France.,UMR7178, CNRS, 67037, Strasbourg, France
| | - Laurent Galineau
- UMR 1253, IBrain, Équipe Imagerie, Biomarqueurs et Thérapie, Université de Tours, Inserm, UFR Médecine, 10 boulevard Tonnellé, Bât. Planiol 4ème étage, 37000, Tours, France. .,Département d'Imagerie Préclinique, Plateforme Scientifique et Technique Analyse des Systèmes Biologiques, Université de Tours, Tours, France.
| |
Collapse
|
32
|
Preimplantation Endometrial Transcriptomics in Natural Conception Cycle of the Rhesus Monkey. REPRODUCTIVE MEDICINE 2022. [DOI: 10.3390/reprodmed3010003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
There is no report on preimplantation phase endometrial transcriptomics in natural conception cycles of primates. In the present study, the whole-genome expression array of endometrium on Days 2, 4, and 6 post-ovulation (pov) in proven natural conception (Group 1; n = 12) and non-mated, ovulatory (Group 2; n = 12) cycles of rhesus monkeys was examined, compared, and validated. Of fifteen (15) genes showing differential expression (>2-fold; pFDR < 0.05), six genes (CHRND, FOXD3, GJD4, MAPK8IP3, MKS1, and NUP50) were upregulated, while eight genes (ADCY5, ADIPOR1, NNMT, PATL1, PIGV, TGFBR2, TOX2, and VWA5B1) were down regulated on Day 6 pov as compared to Day 2 pov in conception cycles. On Day 6 pov, four genes (ADCY5, NNMT, TOX2, and VWA5B1) were down regulated, and AVEN was upregulated in conception cycles compared with the non-conception cycle. These observations were orthogonally validated at protein expression level. Group-specifically expressed unique genes in conception cycles influence the process of induction of immune-tolerance, while the genes expressed in both groups influence processes of protein targeting and metabolism. A triad of timed-actions of progesterone, seminal plasma, and preimplantation embryo putatively regulate several input molecules to CREB, NF-kB, and STAT regulatory networks during secretory phase towards evolution of endometrial receptivity in the rhesus monkey.
Collapse
|
33
|
Shively CA, Lacreuse A, Frye BM, Rothwell ES, Moro M. Nonhuman primates at the intersection of aging biology, chronic disease, and health: An introduction to the American Journal of Primatology Special Issue on aging, cognitive decline, and neuropathology in nonhuman primates. Am J Primatol 2021; 83:e23309. [PMID: 34403529 PMCID: PMC8935964 DOI: 10.1002/ajp.23309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/05/2021] [Indexed: 11/06/2022]
Abstract
Aging across the Primate Order is poorly understood because ages of individuals are often unknown, there is a dearth of aged animals available for study, and because aging is best characterized by longitudinal studies which are difficult to carry out in long-lived species. The human population is aging rapidly, and advanced age is a primary risk factor for several chronic diseases and conditions that impact healthspan. As lifespan has increased, diseases and disorders of the central nervous system (CNS) have become more prevalent, and Alzheimer's disease and related dementias have become epidemic. Nonhuman primate (NHP) models are key to understanding the aging primate CNS. This Special Issue presents a review of current knowledge about NHP CNS aging across the Primate Order. Similarities and differences to human aging, and their implications for the validity of NHP models of aging are considered. Topics include aging-related brain structure and function, neuropathologies, cognitive performance, social behavior and social network characteristics, and physical, sensory, and motor function. Challenges to primate CNS aging research are discussed. Together, this collection of articles demonstrates the value of studying aging in a breadth of NHP models to advance our understanding of human and nonhuman primate aging and healthspan.
Collapse
Affiliation(s)
- Carol A. Shively
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
- Alzheimer’s Disease Research Center, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Agnès Lacreuse
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Brett M. Frye
- Department of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Emily S. Rothwell
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Manuel Moro
- Division of Aging Biology, National Institute on Aging, National Institutes of Health, Maryland, USA
| |
Collapse
|
34
|
Scott JT, Bourne JA. Modelling behaviors relevant to brain disorders in the nonhuman primate: Are we there yet? Prog Neurobiol 2021; 208:102183. [PMID: 34728308 DOI: 10.1016/j.pneurobio.2021.102183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 12/30/2022]
Abstract
Recent years have seen a profound resurgence of activity with nonhuman primates (NHPs) to model human brain disorders. From marmosets to macaques, the study of NHP species offers a unique window into the function of primate-specific neural circuits that are impossible to examine in other models. Examining how these circuits manifest into the complex behaviors of primates, such as advanced cognitive and social functions, has provided enormous insights to date into the mechanisms underlying symptoms of numerous neurological and neuropsychiatric illnesses. With the recent optimization of modern techniques to manipulate and measure neural activity in vivo, such as optogenetics and calcium imaging, NHP research is more well-equipped than ever to probe the neural mechanisms underlying pathological behavior. However, methods for behavioral experimentation and analysis in NHPs have noticeably failed to keep pace with these advances. As behavior ultimately lies at the junction between preclinical findings and its translation to clinical outcomes for brain disorders, approaches to improve the integrity, reproducibility, and translatability of behavioral experiments in NHPs requires critical evaluation. In this review, we provide a unifying account of existing brain disorder models using NHPs, and provide insights into the present and emerging contributions of behavioral studies to the field.
Collapse
Affiliation(s)
- Jack T Scott
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - James A Bourne
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
35
|
Invasive Research on Non-Human Primates-Time to Turn the Page. Animals (Basel) 2021; 11:ani11102999. [PMID: 34680019 PMCID: PMC8532895 DOI: 10.3390/ani11102999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/06/2021] [Accepted: 10/16/2021] [Indexed: 01/01/2023] Open
Abstract
Simple Summary Despite increasing ethical concerns, primates are still often used in invasive research (i.e., laboratory research that causes body manipulations causing them pain or distress and not aimed at directly improving their well-being). Here, we will review previous studies showing that primates have complex behaviour and cognition, and that they suffer long-term consequences after being used in invasive research. We will discuss the ethical problems that invasive research on primates posit, the legal protection that they are, to date, granted in different countries, and summarize the past and current attempts to ban this kind of research on primates. We will conclude why, in our opinion, invasive research on primates should be banned, and non-invasive methods should be considered the only possible approach to the study of primates. Abstract Invasive research on primates (i.e., laboratory research that implies body manipulations causing pain or distress that is not aimed to directly improve the individuals’ well-being) has a long history. Although some invasive studies have allowed answering research questions that we could not have addressed with other methods (or at least not as quickly), the use of primates in invasive research also raises ethical concerns. In this review, we will discuss (i) recent advances in the study of primates that show evidence of complex behaviour and cognition, (ii) welfare issues that might arise when using primates in invasive research, (iii) the main ethical issues that have been raised about invasive research on primates, (iv) the legal protection that primates are granted in several countries, with a special focus on the principle of the 3Rs, and (v) previous and current attempts to ban the use of primates in invasive research. Based on this analysis, we suggest that the importance of a research question cannot justify the costs of invasive research on primates, and that non-invasive methods should be considered the only possible approach in the study of primates.
Collapse
|
36
|
Hvitved AN. Engaging Ethicists in Animal Research Policymaking. ILAR J 2021; 60:318-323. [PMID: 31836879 DOI: 10.1093/ilar/ilz023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 10/27/2019] [Accepted: 10/31/2019] [Indexed: 11/12/2022] Open
Abstract
The significance of ethical considerations for animal research policy has long been acknowledged, but the role of philosophical ethics in the policymaking process has been less clear. By comparing the ethical framework of animal research policy with that for human subjects research, this article considers how the legacies of these two policy areas influence current policy and suggests that ethicists and ethical scholarship have been underutilized in developing animal research policy. An important aspect of policymaking is gathering and responding to input provided by various stakeholders. Given their expertise in a highly relevant area, ethicists should be considered key stakeholders in animal research policy deliberations. This article explores the role of ethicists and ethical scholarship in influencing animal research policy and suggests that a more robust engagement with the professional ethics community throughout the deliberative process is vital for policymakers to adequately account for ethical considerations.
Collapse
Affiliation(s)
- Angela N Hvitved
- William H. Miller III Department of Philosophy, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
37
|
Pomerantz O, Capitanio JP. Temperament Predicts the Quality of Social Interactions in Captive Female Rhesus Macaques ( Macaca mulatta). Animals (Basel) 2021; 11:2452. [PMID: 34438912 PMCID: PMC8388696 DOI: 10.3390/ani11082452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
Previous reports suggest that female macaques with greater similarity in emotionality and nervous temperament, as evaluated in a well-established BioBehavioral Assessment (BBA) at the California National Primate Research Center, were more likely to form successful pairs. We tested whether the same measures can also predict the quality of social interactions among 20 female rhesus macaque pairs. We correlated the pairs' emotionality and nervous temperament scores obtained in infancy and the levels of behaviors recorded systematically during the pairing process years later. Supporting previous findings, partners with similar emotionality scores were more affiliative, and pairs with similar nervous temperament expressed less dominance/submissive behavior. Exploratorily, we found that pairs that were better at processing social information (part of BBA) were also more anxious. Such animals should be prioritized to be introduced in rooms that house calmer, less aggressive animals and provide opportunities for hiding to alleviate their anxiety. Indeed, positive social experiences not only promote animal welfare, but also reduce stress related confounds and unexplained data variability. Therefore, by incorporating the animals' temperament into the pair configuration process we increase the likelihood of forming high-quality pairs, both in terms of welfare and the research of which they are a part.
Collapse
Affiliation(s)
- Ori Pomerantz
- California National Primate Research Center, University of California, Davis, One Shields Ave, Davis, CA 95616, USA;
| | - John P. Capitanio
- California National Primate Research Center, University of California, Davis, One Shields Ave, Davis, CA 95616, USA;
- Department of Psychology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
38
|
Diaz-Del-Pino S, Perez-Wohlfeil E, Trelles O. Unraveling Genome Evolution Throughout Visual Analysis: The XCout Portal. Bioinform Biol Insights 2021; 15:11779322211021422. [PMID: 34163150 PMCID: PMC8191064 DOI: 10.1177/11779322211021422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/01/2021] [Indexed: 11/25/2022] Open
Abstract
Due to major breakthroughs in sequencing technologies throughout the last decades, the time and cost per sequencing experiment have reduced drastically, overcoming the data generation barrier during the early genomic era. Such a shift has encouraged the scientific community to develop new computational methods that are able to compare large genomic sequences, thus enabling large-scale studies of genome evolution. The field of comparative genomics has proven itself invaluable for studying the evolutionary mechanisms and the forces driving genome evolution. In this line, a full genome comparison study between 2 species requires a quadratic number of comparisons in terms of the number of sequences (around 400 chromosome comparisons in the case of mammalian genomes); however, when studying conserved syntenies or evolutionary rearrangements, many sequence comparisons can be skipped for not all will contain significant signals. Subsequently, the scientific community has developed fast heuristics to perform multiple pairwise comparisons between large sequences to determine whether significant sets of conserved similarities exist. The data generation problem is no longer an issue, yet the limitations have shifted toward the analysis of such massive data. Therefore, we present XCout, a Web-based visual analytics application for multiple genome comparisons designed to improve the analysis of large-scale evolutionary studies using novel techniques in Web visualization. XCout enables to work on hundreds of comparisons at once, thus reducing the time of the analysis by identifying significant signals between chromosomes across multiple species. Among others, XCout introduces several techniques to aid in the analysis of large-scale genome rearrangements, particularly (1) an interactive heatmap interface to display comparisons using automatic color scales based on similarity thresholds to ease detection at first sight, (2) an overlay system to detect individual signal contributions between chromosomes, (3) a tracking tool to trace conserved blocks across different species to perform evolutionary studies, and (4) a search engine to search annotations throughout different species.
Collapse
Affiliation(s)
- Sergio Diaz-Del-Pino
- Computer Architecture Department, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Malaga, Malaga, Spain
| | - Esteban Perez-Wohlfeil
- Computer Architecture Department, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Malaga, Malaga, Spain
| | - Oswaldo Trelles
- Computer Architecture Department, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Malaga, Malaga, Spain
| |
Collapse
|
39
|
Pavot V, Prost C, Dubost-Martin G, Thibault-Duprey K, Ramery E. Bronchoalveolar Lavage Fluid Cytology in Healthy Cynomolgus Macaques. Front Vet Sci 2021; 8:679248. [PMID: 34113679 PMCID: PMC8185213 DOI: 10.3389/fvets.2021.679248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/19/2021] [Indexed: 11/18/2022] Open
Abstract
Bronchoalveolar lavage, or BAL, is a minimally invasive procedure frequently used for clinical and non-clinical research, allowing studies of the respiratory system. Macaques are the most widely used non-human primate models in biomedical research. However, very little information is available in the literature concerning BAL cytology in macaques. The purpose of this study was to establish BAL reference values and document an atlas of BAL cytology from healthy cynomolgus macaques. BALs were obtained from 30 macaques and BAL fluid differential cell counts based on 400 nucleated cells/BAL sample were performed by a board-certified clinical pathologist. Results were analyzed using Reference Value Advisor macroinstructions and the effect of blood and oropharyngeal contaminations was investigated. Overall, nucleated cells interval percentages in BAL fluids were 55.8 to 93.7 for macrophages, 1.8 to 37.1 for lymphocytes, 0.4 to 8.7 for neutrophils, and 0.4 to 9.8 for eosinophils. Mild oropharyngeal contamination did not affect BAL differential cell counts, whilst a slight but significant increase of the percentage of lymphocytes was observed in samples with mild blood contamination. Mucus and variable numbers of ciliated epithelial cells were commonly present. Rarely, multinucleated macrophages and mastocytes were also observed. The reference intervals established in this study provide a useful baseline for the assessment of BAL cytological data in cynomolgus macaques.
Collapse
Affiliation(s)
- Vincent Pavot
- Sanofi Pasteur, Research & Development Department, Marcy L'Etoile, France
| | - Christine Prost
- Sanofi Pasteur, Research & Development Department, Marcy L'Etoile, France
| | | | | | - Eve Ramery
- Laboratoire de Biologie Clinique, VetAgro-Sup, Campus vétérinaire Marcy l'Etoile, Marcy L'Etoile, France
| |
Collapse
|
40
|
Mitchell AS, Hartig R, Basso MA, Jarrett W, Kastner S, Poirier C. International primate neuroscience research regulation, public engagement and transparency opportunities. Neuroimage 2021; 229:117700. [PMID: 33418072 PMCID: PMC7994292 DOI: 10.1016/j.neuroimage.2020.117700] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/08/2020] [Accepted: 12/19/2020] [Indexed: 02/07/2023] Open
Abstract
Scientific excellence is a necessity for progress in biomedical research. As research becomes ever more international, establishing international collaborations will be key to advancing our scientific knowledge. Understanding the similarities in standards applied by different nations to animal research, and where the differences might lie, is crucial. Cultural differences and societal values will also contribute to these similarities and differences between countries and continents. Our overview is not comprehensive for all species, but rather focuses on non-human primate (NHP) research, involving New World marmosets and Old World macaques, conducted in countries where NHPs are involved in neuroimaging research. Here, an overview of the ethics and regulations is provided to help assess welfare standards amongst primate research institutions. A comparative examination of these standards was conducted to provide a basis for establishing a common set of standards for animal welfare. These criteria may serve to develop international guidelines, which can be managed by an International Animal Welfare and Use Committee (IAWUC). Internationally, scientists have a moral responsibility to ensure excellent care and welfare of their animals, which in turn, influences the quality of their research. When working with animal models, maintaining a high quality of care ("culture of care") and welfare is essential. The transparent promotion of this level of care and welfare, along with the results of the research and its impact, may reduce public concerns associated with animal experiments in neuroscience research.
Collapse
Affiliation(s)
- Anna S Mitchell
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom.
| | - Renée Hartig
- Centre for Integrative Neurosciences, University of Tübingen, Tübingen, Germany; Max Planck Institute for Biological Cybernetics, Tübingen, Germany; Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michele A Basso
- Fuster Laboratory of Cognitive Neuroscience Department of Psychiatry and Biobehavioral Sciences UCLA Los Angeles 90095, CA United States
| | - Wendy Jarrett
- Understanding Animal Research, London, United Kingdom
| | - Sabine Kastner
- Princeton Neuroscience Institute & Department of Psychology, Princeton University, Princeton, United States
| | - Colline Poirier
- Biosciences Institute & Centre for Behaviour and Evolution, Faculty of Medical Sciences, Newcastle University, United Kingdom
| |
Collapse
|
41
|
Little AG, Pamenter ME, Sitaraman D, Templeman NM, Willmore WG, Hedrick MS, Moyes CD. WITHDRAWN: Utilizing comparative models in biomedical research. Comp Biochem Physiol A Mol Integr Physiol 2021; 256:110938. [PMID: 33737041 DOI: 10.1016/j.cbpa.2021.110938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published in Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, Volume 255, 2021, 110593, https://doi.org/10.1016/j.cbpb.2021.110593. The duplicate article has therefore been withdrawn.
The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
| | | | - Divya Sitaraman
- Department of Psychology, California State University, East Bay, Hayward, CA, USA
| | | | | | - Michael S Hedrick
- Department of Biological Sciences, California State University, East Bay, Hayward, CA, USA.
| | | |
Collapse
|
42
|
Little AG, Pamenter ME, Sitaraman D, Templeman NM, Willmore WG, Hedrick MS, Moyes CD. Utilizing comparative models in biomedical research. Comp Biochem Physiol B Biochem Mol Biol 2021; 255:110593. [PMID: 33779562 DOI: 10.1016/j.cbpb.2021.110593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review serves as an introduction to a Special Issue of Comparative Biochemistry and Physiology, focused on using non-human models to study biomedical physiology. The concept of a model differs across disciplines. For example, several models are used primarily to gain an understanding of specific human pathologies and disease states, whereas other models may be focused on gaining insight into developmental or evolutionary mechanisms. It is often the case that animals initially used to gain knowledge of some unique biochemical or physiological process finds foothold in the biomedical community and becomes an established model. The choice of a particular model for biomedical research is an ongoing process and model validation must keep pace with existing and emerging technologies. While the importance of non-mammalian models, such as Caenorhabditis elegans, Drosophila melanogaster, Danio rerio and Xenopus laevis, is well known, we also seek to bring attention to emerging alternative models of both invertebrates and vertebrates, which are less established but of interest to the comparative biochemistry and physiology community.
Collapse
Affiliation(s)
| | | | - Divya Sitaraman
- Department of Psychology, California State University, East Bay, Hayward, CA, USA
| | | | | | - Michael S Hedrick
- Department of Biological Sciences, California State University, East Bay, Hayward, CA, USA
| | | |
Collapse
|
43
|
Aged Monkeys Fed a High-Fat/High-Sugar Diet Recapitulate Metabolic Disorders and Cardiac Contractile Dysfunction. J Cardiovasc Transl Res 2021; 14:799-815. [PMID: 33591467 DOI: 10.1007/s12265-021-10105-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 01/27/2021] [Indexed: 12/28/2022]
Abstract
Aged nonhuman primate (NHP) models are of great value for studying the pathology of metabolic heart diseases and developing therapeutic strategies. In this study, aged male cynomolgus monkeys were fed a regular diet or a high-fat/high-sugar diet (HFSD) for 8 months. Metabolic disorders were diagnosed by 1H-NMR and serum biochemistry, and cardiac function was evaluated by echocardiography. Our results showed that serum metabolic profiles were altered in aged monkeys fed a HFSD, in line with aortic tissue damage, cardiac remodeling, and contractile dysfunction. This aged monkey model significantly increased expression of proinflammatory cytokines and altered expression and phosphorylation of intracellular signaling proteins in the heart, as compared to aged monkeys on a regular diet. Furthermore, the animals demonstrated increased phosphorylation of cardiac myofilament proteins which are causatively associated with decreased myofilament contractility. We conclude that the aged monkey model fed a HFSD exhibits metabolic disorders and cardiac contractile dysfunction.
Collapse
|
44
|
Liu M, Li N, Qu C, Gao Y, Wu L, Hu LG. Amylin deposition activates HIF1α and 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3 (PFKFB3) signaling in failing hearts of non-human primates. Commun Biol 2021; 4:188. [PMID: 33580152 PMCID: PMC7881154 DOI: 10.1038/s42003-021-01676-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 01/05/2021] [Indexed: 02/08/2023] Open
Abstract
Hyperamylinemia induces amylin aggregation and toxicity in the pancreas and contributes to the development of type-2 diabetes (T2D). Cardiac amylin deposition in patients with obesity and T2D was found to accelerate heart dysfunction. Non-human primates (NHPs) have similar genetic, metabolic, and cardiovascular processes as humans. However, the underlying mechanisms of cardiac amylin in NHPs, particularly related to the hypoxia inducible factor (HIF)1α and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) signaling pathways, are unknown. Here, we demonstrate that in NHPs, amylin deposition in heart failure (HF) contributes to cardiac dysfunction via activation of HIF1α and PFKFB3 signaling. This was confirmed in two in vitro cardiomyocyte models. Furthermore, alterations of intracellular Ca2+, reactive oxygen species, mitochondrial function, and lactate levels were observed in amylin-treated cells. Our study demonstrates a pathological role for amylin in the activation of HIF1α and PFKFB3 signaling in NHPs with HF, establishing amylin as a promising target for heart disease patients.
Collapse
Affiliation(s)
- Miao Liu
- Department of Translational Safety and Bioanalytical Sciences, Amgen R&D (Shanghai) Co. Ltd., Shanghai, China
| | - Nan Li
- Department of Translational Safety and Bioanalytical Sciences, Amgen R&D (Shanghai) Co. Ltd., Shanghai, China
| | - Chun Qu
- Department of Translational Safety and Bioanalytical Sciences, Amgen R&D (Shanghai) Co. Ltd., Shanghai, China
| | - Yilin Gao
- Department of Translational Safety and Bioanalytical Sciences, Amgen R&D (Shanghai) Co. Ltd., Shanghai, China
| | - Lijie Wu
- Department of Translational Safety and Bioanalytical Sciences, Amgen R&D (Shanghai) Co. Ltd., Shanghai, China
| | - Liangbiao George Hu
- Department of Translational Safety and Bioanalytical Sciences, Amgen R&D (Shanghai) Co. Ltd., Shanghai, China.
| |
Collapse
|
45
|
Perry BA, Mason S, Nacef J, Waddle A, Hynes B, Bergmann C, Schmid MC, Petkov CI, Thiele A, Mitchell AS. Protective cranial implant caps for macaques. J Neurosci Methods 2021; 348:108992. [PMID: 33130051 PMCID: PMC7840592 DOI: 10.1016/j.jneumeth.2020.108992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 12/03/2022]
Abstract
BACKGROUND Neuroscience studies with macaque monkeys may require cranial implants to stabilize the head or gain access to the brain for scientific purposes. Wound management that promotes healing after the cranial implant surgery in non-human primates can be difficult as it is not necessarily possible to cover the wound margins. NEW METHOD Here, we developed an easily modifiable head cap that protects the sutured skin margins after cranial implant surgery and contributes to wound healing. The protective head cap was developed in response to monkeys picking at sutured skin margins around an implant, complicating healing. The user-friendly protective cap, made from Klarity- R™ Sheet (3.2 mm thick with 36 % or 42 % perforation) is affixed to the implant post-surgically. Once secured and while the monkey is still anesthetized, the plastic sheeting is molded around the implant. The protective head cap restricts the monkey's finger access to its' wound margins while allowing air to circulate to promote wound healing. RESULTS AND COMPARISON WITH EXISTING METHODS Across two UK primate facilities, the protective head cap promoted wound healing. In monkeys that did not wear the head cap, re-suturing was necessary in ∼30 % of cases. In contrast, none of the monkeys that wore the head cap required re-suturing. The monkeys wearing the head cap also had reduced numbers of days of prescribed antibiotics and analgesia. CONCLUSION This bespoken, easily adaptable, protective head cap supports postoperative wound healing, and enhances the welfare of monkeys involved in neuroscience research.
Collapse
Affiliation(s)
- Brook A.L. Perry
- Department of Experimental Psychology, Oxford University, Tinsley Building, Oxford, OX1 3SR, UK
| | - Stuart Mason
- Department of Experimental Psychology, Oxford University, Tinsley Building, Oxford, OX1 3SR, UK
| | - Jennifer Nacef
- Biosciences Institute, Newcastle University, Henry Wellcome Building, Newcastle upon Tyne, NE2 4HH, UK
| | - Ashley Waddle
- Biosciences Institute, Newcastle University, Henry Wellcome Building, Newcastle upon Tyne, NE2 4HH, UK
| | - Brian Hynes
- Hybex Innovations Inc., 9851 Boulevard Parkway, Anjou, Quebec, H1J 1P3, Canada
| | - Caroline Bergmann
- Biomedical Services Department, Oxford University, Mansfield Road, Oxford, OX1 3TA, UK
| | - Michael C. Schmid
- Biosciences Institute, Newcastle University, Henry Wellcome Building, Newcastle upon Tyne, NE2 4HH, UK,University of Fribourg, Faculty of Science and Medicine, Chemin du Musée 5, 1700, Fribourg, Switzerland
| | - Christopher I. Petkov
- Biosciences Institute, Newcastle University, Henry Wellcome Building, Newcastle upon Tyne, NE2 4HH, UK
| | - Alexander Thiele
- Biosciences Institute, Newcastle University, Henry Wellcome Building, Newcastle upon Tyne, NE2 4HH, UK
| | - Anna S. Mitchell
- Department of Experimental Psychology, Oxford University, Tinsley Building, Oxford, OX1 3SR, UK,Corresponding author.
| |
Collapse
|
46
|
Recommendations for Standardizing Thorax PET-CT in Non-Human Primates by Recent Experience from Macaque Studies. Animals (Basel) 2021; 11:ani11010204. [PMID: 33467761 PMCID: PMC7830664 DOI: 10.3390/ani11010204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 02/07/2023] Open
Abstract
Despite the possibilities of routine clinical measures and assays on readily accessible bio-samples, it is not always essential in animals to investigate the dynamics of disease longitudinally. In this regard, minimally invasive imaging methods provide powerful tools in preclinical research. They can contribute to the ethical principle of gathering as much relevant information per animal as possible. Besides, with an obvious parallel to clinical diagnostic practice, such imaging platforms are potent and valuable instruments leading to a more refined use of animals from a welfare perspective. Non-human primates comprise highly relevant species for preclinical research to enhance our understanding of disease mechanisms and/or the development of improved prophylactic or therapeutic regimen for various human diseases. In this paper, we describe parameters that critically affect the quality of integrated positron emission tomography and computed tomography (PET-CT) in non-human primates. Lessons learned are exemplified by results from imaging experimental infectious respiratory disease in macaques; specifically tuberculosis, influenza, and SARS-CoV-2 infection. We focus on the thorax and use of 18F-fluorodeoxyglucose as a PET tracer. Recommendations are provided to guide various stages of PET-CT-supported research in non-human primates, from animal selection, scan preparation, and operation, to processing and analysis of imaging data.
Collapse
|
47
|
Sorby-Adams AJ, Schneider WT, Goncalves RP, Knolle F, Morton AJ. Measuring executive function in sheep (Ovis aries) using visual stimuli in a semi-automated operant system. J Neurosci Methods 2020; 351:109009. [PMID: 33340554 DOI: 10.1016/j.jneumeth.2020.109009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/27/2020] [Accepted: 11/19/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Cognitive impairment is a distinguishing feature of many neurodegenerative diseases. The intra-dimensional (ID) extra-dimensional (ED) attentional set shift task is part of a clinical battery of tests used to evaluate executive function in Huntington's and Alzheimer's disease patients. The IDED task, however, has not translated well to pre-clinical rodent models of neurological disease. NEW METHOD The ability to perform executive tasks coupled with a long lifespan makes sheep (Ovis aries) an ideal species for modelling cognitive decline in progressive neurodegenerative conditions. We describe the methodology for testing the performance of sheep in the IDED task using a semi-automated system in which visual stimuli are presented as coloured letters on computer screens. RESULTS During each stage of IDED testing, all sheep (n = 12) learned successfully to discriminate between different colours and letters. Sheep were quick to learn the rules of acquisition at each stage. They required significantly more trials to reach criterion (p < 0.05) and made more errors (p < 0.05) following stimulus reversal, with the exception of the ED shift (p > 0.05). COMPARISON WITH EXISTING METHOD(S) Previous research shows that sheep can perform IDED set shifting in a walk-through maze using solid objects with two changeable dimensions (colour and shape) as the stimuli. Presenting the stimuli on computer screens provides better validity, greater task flexibility and higher throughput than the walk-through maze. CONCLUSION All sheep completed each stage of the task, with a range of abilities expected in an outbred population. The IDED task described is ideally suited as a quantifiable and clinically translatable measure of executive function in sheep.
Collapse
Affiliation(s)
- A J Sorby-Adams
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - W T Schneider
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - R P Goncalves
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - F Knolle
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom; Department of Neurology, Klinikum recht der Isar, Technical University Munich, Munich, Germany
| | - A J Morton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, United Kingdom.
| |
Collapse
|
48
|
Skuk D, Tremblay JP. Human Muscle Precursor Cells Form Human-Derived Myofibers in Skeletal Muscles of Nonhuman Primates: A Potential New Preclinical Setting to Test Myogenic Cells of Human Origin for Cell Therapy of Myopathies. J Neuropathol Exp Neurol 2020; 79:1265-1275. [PMID: 33094339 DOI: 10.1093/jnen/nlaa110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This study aimed to verify if human myogenic cells could participate in muscle regeneration in macaques. This experimental setting would grant researchers a model that could better evaluate the effects of cell therapies in myopathies with a better translation to human patients. Human muscle precursor cells (MPCs) were cultured in vitro and transduced with ß-galactosidase. The cells were subsequently injected into 1-cm3 muscle regions of 6 macaques immunosuppressed with tacrolimus and dexamethasone. Allogeneic ß-galactosidase+ MPCs were injected in other regions as positive controls. Some cell-grafted regions were electroporated to induce extensive muscle regeneration. MPC-grafted regions were sampled 1 month later and analyzed by histology. There were ß-galactosidase+ myofibers in both the regions grafted with human and macaque MPCs. Electroporation increased the engraftment of human MPCs in the same way as in macaque allografts. The histological analysis (hematoxylin and eosin, CD8, and CD4 immunodetection) demonstrated an absence of cellular rejection in most MPC-grafted regions, as well as minimal lymphocytic infiltration in the regions transplanted with human MPCs in the individual with the lowest tacrolimus levels. Circulating de novo anti-donor antibodies were not detected. In conclusion, we report the successful engraftment of human myogenic cells in macaques, which was possible using tacrolimus-based immunosuppression.
Collapse
Affiliation(s)
- Daniel Skuk
- From the Axe Neurosciences, Research Center of the CHU de Quebec - CHUL, Quebec, QC, Canada
| | - Jacques P Tremblay
- From the Axe Neurosciences, Research Center of the CHU de Quebec - CHUL, Quebec, QC, Canada
| |
Collapse
|
49
|
Saad P, Shendrik KS, Karroum PJ, Azizi H, Jolayemi A. The Anterior Globus Pallidus Externus of Basal Ganglia as Primarily a Limbic and Associative Territory. Cureus 2020; 12:e11846. [PMID: 33409084 PMCID: PMC7781572 DOI: 10.7759/cureus.11846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
There have been an increasing number of functions attributed to the basal ganglia, such as cognitive, emotional, and motor functions. As a result, there is a growing interest to localize these functions to different subregions of the basal ganglia. Most research on localization has been conducted on animals. The experiments subdivide the basal ganglia regions into motor, limbic, and associative functioning areas. There are sparse reports on the localization of functions in humans. This paper attempts to provide such localization of function with a focus on the globus pallidus externus of the basal ganglia. We present the case of a young man who had impairment in mixed cognitive, perceptual, and mood disturbances. No significant motor symptoms were noted in the patient. Brain imaging demonstrated dense bilateral calcifications in the basal ganglia, bilaterally localizing to the anterior region of the globus pallidus externus. We discuss our findings in light of recent studies that imply that isolated pathology in the anterior region of the globus pallidus externus may be associated with behavioral, mood, and cognitive disturbance without motor symptoms.
Collapse
Affiliation(s)
- Paul Saad
- Psychiatry, American University of Antigua College of Medicine, Coolidge, ATG.,Psychiatry, Interfaith Medical Center, Brooklyn, USA
| | - Karina S Shendrik
- Psychiatry, American University of Antigua College of Medicine, Coolidge, ATG.,Psychiatry, Interfaith Medical Center, Brooklyn, USA
| | - Paul J Karroum
- Psychiatry, American University of Antigua College of Medicine, Coolidge, ATG.,Psychiatry, Interfaith Medical Center, Brooklyn, USA
| | - Heela Azizi
- Psychiatry, American University of Antigua College of Medicine, Coolidge, ATG.,Psychiatry, Interfaith Medical Center, Brooklyn, USA
| | | |
Collapse
|
50
|
Truelove MA, Martin JE, Langford FM, Leach MC. The identification of effective welfare indicators for laboratory-housed macaques using a Delphi consultation process. Sci Rep 2020; 10:20402. [PMID: 33230175 PMCID: PMC7683591 DOI: 10.1038/s41598-020-77437-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/11/2020] [Indexed: 11/23/2022] Open
Abstract
Despite the importance for both animal welfare and scientific integrity of effective welfare assessment in non-human primates, there has been little or no consensus as what should be assessed. A Delphi consultation process was undertaken to identify the animal- and environment-based measures of welfare for laboratory-housed macaques and to determine their relative importance in on-site welfare assessments. One-hundred fifteen potential indictors were identified through a comprehensive literature search, followed by a two-round iterative electronic survey process to collect expert opinion. Stable group response and consensus about the validity, reliability, and feasibility of the proposed indicators (67.5% agreement) was achieved by the completion of Round Two. A substantially higher proportion of environment-based measures (72%: n = 44/61) were considered as valid, reliable, and feasible compared to the animal-based measures (22%: n = 12/54). The indicators that ranked most highly for assessing welfare were the presence of self-harm behaviours and the provision of social enrichment. This study provides an empirical basis upon which these indicators can be validated and then integrated into assessment tools developed for macaques and emphasises the need to include both animal- and environment-based indicators for accurate welfare monitoring.
Collapse
Affiliation(s)
- Melissa A Truelove
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, USA.
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK.
| | - Jessica E Martin
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Fritha M Langford
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK
- Animal and Veterinary Sciences, SRUC, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Matthew C Leach
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| |
Collapse
|