1
|
Wang Y, Gu C, Zhao H, Li Z, Thirupathi A. Redox signaling‑mediated muscle atrophy in ACL injury: Role of physical exercise (Review). Mol Med Rep 2025; 31:119. [PMID: 40052558 PMCID: PMC11904765 DOI: 10.3892/mmr.2025.13484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 02/03/2025] [Indexed: 03/15/2025] Open
Abstract
Muscle atrophy frequently occurs in patients with anterior cruciate ligament (ACL) injury, despite active participation in muscle strengthening programs. Without appropriate countermeasures such as exercise and pharmacological interventions, the atrophy may worsen. At the cellular and molecular levels, various protein synthesis‑related pathways and redox‑dependent molecules regulate processes associated with atrophy by activating or deactivating key signaling pathways. Muscle atrophy and the associated dysfunction can be reversed by physical exercise, which increases protein synthesis, thereby improving muscle strength and function around the ACL. However, the influence of different features of exercise protocols, including exercise type, intensity and duration, as well as the individual capacity of the patient, on the activity of the aforementioned pathways requires further investigation. Additionally, the mechanism by which redox‑sensitive molecules attenuate atrophy in ACL injury remains to be fully understood. The present review discusses exercise, signaling pathways and muscle atrophy in ACL injury, and highlights potential therapeutic strategies. These findings may also have implications for other joint diseases associated with ACL‑related injury.
Collapse
Affiliation(s)
- Yucong Wang
- Department of Joint Surgery, Ningbo No. 9 Hospital, Ningbo, Zhejiang 315020, P.R. China
| | - Chunxiao Gu
- Department of Joint Surgery, Ningbo No. 9 Hospital, Ningbo, Zhejiang 315020, P.R. China
| | - Hui Zhao
- Department of Joint Surgery, Ningbo No. 9 Hospital, Ningbo, Zhejiang 315020, P.R. China
| | - Zhongzheng Li
- Department of Joint Surgery, Ningbo No. 9 Hospital, Ningbo, Zhejiang 315020, P.R. China
| | - Anand Thirupathi
- Faculty of Sports Science, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
2
|
Sherman DA, Beausejour JP, Koohestani M, Stock MS, Norte GE. Quadriceps motor unit properties following ACL reconstruction are associated with corticospinal excitability and motor cortex activations. J Appl Physiol (1985) 2025; 138:1011-1023. [PMID: 40059647 DOI: 10.1152/japplphysiol.00641.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/26/2024] [Accepted: 02/19/2025] [Indexed: 04/09/2025] Open
Abstract
Quadriceps weakness is a primary concern following anterior cruciate ligament reconstruction (ACLR), and neuroimaging studies have revealed higher motor inhibition and structural atrophy of the corticospinal tract. To investigate the contributions of supraspinal mechanisms underlying spinal motoneuron impairments and quadriceps weakness, this study explored the firing patterns of motor units (MUs) in the vastus medialis muscle following ACLR. Twenty individuals with primary ACLR and 20 matched controls performed a unilateral knee extension torque-control task at 50% of maximal voluntary effort. High-density electromyographic activity of the vastus medialis muscle was decomposed into constituent MU action potentials. Electroencephalography was used to localize cortical activity to sensory and motor brain regions. Active motor thresholds were acquired using transcranial magnetic stimulation. We compared motor unit properties, cortical activity, and corticospinal excitability between groups and limbs using mixed-effects models and Cohen's d effect sizes. Participants with ACLR had weaker quadriceps compared with contralateral and control limbs. Strength deficits were accompanied by recruitment of larger MUs with lower firing rates in the involved limb. Those with ACLR also had lower corticospinal excitability and lower contralateral hemisphere motor cortex activations during quadriceps contractions. Lower corticospinal excitability and lower activations in the sensory and motor cortices were weakly associated with smaller MU action potential amplitudes, whereas group was not. Larger, slower-firing quadriceps MUs are recruited at lower absolute and mass-normalized recruitment thresholds, but not relative recruitment thresholds after ACLR. Lower corticospinal excitability and motor cortex activity were associated with the recruitment of smaller MUs irrespective of ACLR.NEW & NOTEWORTHY Individuals with anterior cruciate ligament reconstruction (ACLR) exhibited earlier recruitment of larger MUs with lower firing rates at both absolute and mass-normalized recruitment thresholds in their involved limb when compared with contralateral and control limbs. Individuals with ACLR had lower corticospinal excitability and lower contralateral hemisphere motor cortex activations, which were weakly associated with lower firing rates as larger motor units were recruited. Reduced excitatory cortical drive may contribute to quadriceps motor unit impairments and persistent quadriceps weakness after ACLR.
Collapse
Affiliation(s)
- David A Sherman
- Physical Therapy, Movement, and Rehabilitation Sciences, Northeastern University, Boston, Massachusetts, United States
- Live4 Physical Therapy and Wellness, Acton, Massachusetts, United States
| | - Jonathan P Beausejour
- Cognition, Neuroplasticity, & Sarcopenia (CNS) Lab, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, Florida, United States
| | - Moein Koohestani
- Cognition, Neuroplasticity, & Sarcopenia (CNS) Lab, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, Florida, United States
| | - Matt S Stock
- Cognition, Neuroplasticity, & Sarcopenia (CNS) Lab, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, Florida, United States
| | - Grant E Norte
- Cognition, Neuroplasticity, & Sarcopenia (CNS) Lab, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, Florida, United States
| |
Collapse
|
3
|
Cheillan A, Milho J, Passos P. Inter-limb and inter-agent coordination in an original joint-action game: exploring novel approaches for clinical practice. Front Psychol 2025; 16:1514957. [PMID: 40196205 PMCID: PMC11973364 DOI: 10.3389/fpsyg.2025.1514957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/17/2025] [Indexed: 04/09/2025] Open
Abstract
After identifying a need to develop rehabilitation practices inspired from a systems perspective, we designed a joint-action game that involves both inter-limb and inter-agent coordination. The main specificity of our joint-action game lies in the informational and mechanical couplings that exist between the system elements-i.e., between lower limbs at one scale, and between agents at another scale. The present paper aims to investigate whether our joint-action game can foster the emergence of new coordination patterns at both scales, and discuss whether such patterns, if any, could be clinically relevant. Twelve dyads were asked to stand up on an unstable surface (BOSU) and to jointly manipulate a board on which a ball had to roll along a circular path containing target doors. Ball trajectory as well as lower limb and hand kinematics were obtained using an 8-camera motion capture system. Coordination between left and right knee joint angles was assessed through relative-phase and PCA analyses. Inter-agent coordination was evaluated using UCM analyses. The effects of amount of practice and performance on coordination were investigated. At both scales, significant coordination differences were found over practice and across levels of performance. More specifically, left and right knees were constrained to act as a single unit, while interpersonal synergies were observed in trials with better performance. We discussed how the exploration of coordinative solutions, as well as the dimensional reduction and reciprocal compensation among degrees of freedom that our game supports could be beneficially exploited in rehabilitation.
Collapse
Affiliation(s)
- Anaëlle Cheillan
- Faculdade de Motricidade Humana, Universidade de Lisboa, Lisboa, Portugal
| | - João Milho
- IDMEC, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Lisboa, Portugal
| | - Pedro Passos
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
4
|
Smith MJ, Hoffman NJ, Jose AJS, Burke LM, Opar DA. Nutritional Interventions to Attenuate Quadriceps Muscle Deficits following Anterior Cruciate Ligament Injury and Reconstruction. Sports Med 2025; 55:569-596. [PMID: 39853659 PMCID: PMC11985700 DOI: 10.1007/s40279-025-02174-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2025] [Indexed: 01/26/2025]
Abstract
Following anterior cruciate ligament (ACL) injury, quadriceps muscle atrophy persists despite rehabilitation, leading to loss of lower limb strength, osteoarthritis, poor knee joint health and reduced quality of life. However, the molecular mechanisms responsible for these deficits in hypertrophic adaptations within the quadriceps muscle following ACL injury and reconstruction are poorly understood. While resistance exercise training stimulates skeletal muscle hypertrophy, attenuation of these hypertrophic pathways can hinder rehabilitation following ACL injury and reconstruction, and ultimately lead to skeletal muscle atrophy that persists beyond ACL reconstruction, similar to disuse atrophy. Numerous studies have documented beneficial roles of nutritional support, including nutritional supplementation, in maintaining and/or increasing muscle mass. There are three main mechanisms by which nutritional supplementation may attenuate muscle atrophy and promote hypertrophy: (1) by directly affecting muscle protein synthetic machinery; (2) indirectly increasing an individual's ability to work harder; and/or (3) directly affecting satellite cell proliferation and differentiation. We propose that nutritional support may enhance rehabilitative responses to exercise training and positively impact molecular machinery underlying muscle hypertrophy. As one of the fastest growing knee injuries worldwide, a better understanding of the potential mechanisms involved in quadriceps muscle deficits following ACL injury and reconstruction, and potential benefits of nutritional support, are required to help restore quadriceps muscle mass and/or strength. This review discusses our current understanding of the molecular mechanisms involved in muscle hypertrophy and disuse atrophy, and how nutritional supplements may leverage these pathways to maximise recovery from ACL injury and reconstruction.
Collapse
Affiliation(s)
- Miriam J Smith
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Melbourne, VIC, Australia
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Nolan J Hoffman
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Argell J San Jose
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
- OrthoSport Victoria Institute (OSVi), Richmond, VIC, Australia
| | - Louise M Burke
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - David A Opar
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, VIC, Australia.
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Melbourne, VIC, Australia.
- , Level 1, Daniel Mannix Building, 17 Young Street, Fitzroy, VIC, 3065, Australia.
| |
Collapse
|
5
|
Lu A, Sikes KJ, Guo P, Huard M, Green S, Santangelo K, Singer J, Groesbeck A, Tashman S, Narkar VA, Huard J. Muscle-specific ERRγ activation mitigates muscle atrophy after ACL injury. FASEB J 2025; 39:e70409. [PMID: 39964243 DOI: 10.1096/fj.202402021r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/20/2024] [Accepted: 02/10/2025] [Indexed: 05/10/2025]
Abstract
Anterior cruciate ligament (ACL) injury adversely affects skeletal muscle, leading to muscle atrophy and weakness, significantly impacting clinical outcomes. This study aimed to determine if estrogen-related receptor gamma (ERRγ) overexpression in skeletal muscle could mitigate muscle atrophy after ACL injury. An animal model with selective overexpression of ERRγ in skeletal muscle (ERR-gamma transgenic mice, TG) and WT control mice were used for this study. All the mice received a mechanical ACL rupture and were euthanized at 4- and 8-week post-injury. Muscle histology, atrophy, and function were evaluated and compared between the TG and WT mice. Muscle-specific ERRγ activation in TG mice demonstrated a reduction in muscle fiber atrophy, which consequently ameliorated muscle function loss post-ACL rupture. Less fibrogenic cellular expansion and muscle fibrosis were observed after ACL injury in TG mice compared to WT mice. Both male and female TG mice can maintain their muscle function 4 weeks after ACL rupture with the muscle function of female TG mice declining 8 weeks post-injury. In vivo results revealed that ERRγ activation decreased fibrogenic factors, P65, and myostatin expression, prevented the functional loss of muscle progenitor cells (MPCs), and increased CD31 and VEGF expression. These results suggest that overexpression ERRγ in skeletal muscle has a beneficial effect in preventing muscle atrophy and fibrosis after ACL rupture. This study's results will help to develop a novel rehabilitation approach that can significantly improve outcomes after ACL injury.
Collapse
Affiliation(s)
- Aiping Lu
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Katie J Sikes
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Ping Guo
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Matthieu Huard
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Shelbi Green
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Kelly Santangelo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Jacob Singer
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Ashley Groesbeck
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Scott Tashman
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Vihang A Narkar
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Johnny Huard
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| |
Collapse
|
6
|
Owen AM, Gonzalez-Velez S, Keeble AR, Thomas NT, Fry CS. Fork in the road: therapeutic and pathological actions for fibro-adipogenic progenitors following musculoskeletal injury. J Physiol 2025. [PMID: 39930980 DOI: 10.1113/jp286816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/20/2025] [Indexed: 02/19/2025] Open
Abstract
Musculoskeletal injuries are a substantial source of global disability through weakness and loss of function, which can be attributable, in part, to deficits in skeletal muscle quality. Poor muscle quality, resulting from fibrotic pathology or fatty infiltration, strongly predicts lower rates of patient recovery following injury and higher rates of re-injury. The cellular sources of fibrosis and fatty infiltration within skeletal muscle are mesenchymal fibro-adipogenic progenitors (FAPs), which are central effectors to support muscle homeostasis, regeneration and growth. However, following acute or chronic musculoskeletal injury, FAPs can promote fibro/fatty pathology within muscle that is likely to limit recovery and repair. Given their indispensable role within skeletal muscle, FAPs have emerged as a compelling cellular target to promote tissue recovery following acute and chronic injury. This review provides insight into the aetiology of FAP activity following various musculoskeletal injuries, in addition to signalling components that effect FAP differentiation. Contrasting pathology with therapeutic potential, insight into disease- and injury-specific FAP activation further cements their role as crucial effectors to improve muscle function and enhance patient outcomes.
Collapse
Affiliation(s)
- Allison M Owen
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Sara Gonzalez-Velez
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Alexander R Keeble
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Nicholas T Thomas
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Christopher S Fry
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
7
|
Erickson LN, Owen MK, Casadonte KR, Janatova T, Lucas K, Spencer K, Brightwell BD, Graham MC, White M, Thomas NT, Latham CM, Jacobs C, Conley C, Thompson KL, Johnson DL, Hardy P, Fry CS, Noehren B. The Efficacy of Blood Flow Restriction Training to Improve Quadriceps Muscle Function after Anterior Cruciate Ligament Reconstruction. Med Sci Sports Exerc 2025; 57:227-237. [PMID: 39350350 PMCID: PMC11729412 DOI: 10.1249/mss.0000000000003573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
BACKGROUND Blood flow restriction training (BFRT) is a popular rehabilitation intervention after anterior cruciate ligament reconstruction (ACLR). However, there are a lack of clinical trials establishing the efficacy of using BFRT during rehabilitation to improve quadriceps muscle function. PURPOSE The purpose of this study is to evaluate the efficacy of blood flow restriction training to improve quadriceps muscle strength, morphology, and physiology, and knee biomechanics in individuals after ACLR in a double-blind, randomized, placebo-controlled clinical trial (NCT03364647). METHODS Forty-eight athletes (20 females/28 males) were randomly assigned to low-load strength training with active BFRT or standard of care strength training with a sham unit. Treatment occurred for 1-month pre-surgery and 4 to 5 months post-surgery with both groups following the same standard rehabilitation protocol. Outcome variables were measured at baseline and 4 to 5 months post-surgery. Quadriceps muscle strength (isometric and isokinetic peak torque and rate of torque development) was measured on an isokinetic dynamometer. Quadriceps muscle morphology (physiological cross-sectional area, fibrosis) was determined using magnetic resonance imaging. Quadriceps muscle physiology (fiber type, fiber cross-sectional area, satellite cell abundance, collagen content, fibrogenic/adipogenic progenitor cells) was evaluated with muscle biopsies of the vastus lateralis. Knee extensor moment and knee flexion angle were measured via three-dimensional gait analysis. Change scores were calculated as: post-intervention - baseline. Two-sample t -tests were then used to assess between-group differences for each outcome variable. RESULTS No significant between-group differences were found for any outcome variable. CONCLUSIONS The addition of BFRT to a rehabilitation program for athletes pre- and post-ACLR was no more effective than standard rehabilitation for improving quadriceps muscle function. Clinicians should consider the value of BFRT relative to the cost, time, and discomfort for patients in light of these results.
Collapse
|
8
|
Losciale JM, Le CY, Jansen NEJ, Lu L, Xie H, Mitchell C, Hunt MA, Whittaker JL. Strength Setbacks: The Impact of Youth Sport-Related Knee Joint Injuries on Thigh Muscle Strength. A 24-Month Prospective Cohort Study. J Orthop Sports Phys Ther 2025; 55:137-147. [PMID: 39846422 DOI: 10.2519/jospt.2024.12663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
OBJECTIVE: To compare injured and uninjured limb knee extensor and flexor peak torque between youth who experienced a sport-related, traumatic knee joint injury and comparable uninjured youth, at baseline (≤4 months of injury) and semiannually for 2 years. Differences by injury type and sex were also explored. DESIGN: Prospective cohort study. METHODS: Bilateral knee extensor and flexor concentric isokinetic peak torque at 90° per second was assessed semiannually in 186 youth (106 injured, 80 controls) for 2 years. Between-group differences in strength over time were estimated with generalized estimating equations (95% confidence interval [CI]). Confounding was controlled using inverse probability weighting. Strength differences between those with anterior cruciate ligament (ACL) tears and those with non-ACL tear injuries as well as between male and female participants were explored. RESULTS: Compared to uninjured controls, injured limb knee extensor strength was lowest at baseline (-37.1 Nm; 95% CI, -45.3 to -28.9) and 6-month follow-up (-13.3 Nm; 95% CI, -20.4 to -6.2), with minimal strength gain beyond the 12-month follow-up (1.7 Nm; 95% CI, -14.3 to 17.6). Knee flexor strength of the injured limb was lowest at baseline (-24.6 Nm; 95% CI, -31.5 to -17.8), and there was minimal strength gain beyond 6 months (2.3 Nm; 95% CI, -7.7 to 12.3). The average residual deficit was similar to the knee extensors (10% to 11%) at 24 months. Exploratory analysis suggested no difference based on injury type or sex. CONCLUSION: Injured limb knee extensor and flexor weakness was present after different youth sport-related knee joint injuries. Strength deficits peaked early after injury, improved over time, and plateaued after 12 months, with lingering deficits at 24 months. Thigh muscle strength trajectory was similar across injury types and sex. J Orthop Sports Phys Ther 2025;55(2):1-11. Epub 20 December 2024. doi:10.2519/jospt.2024.12663.
Collapse
|
9
|
Owen MK, Richardson L, Johnson DL, Vandsburger MH, Feiweier T, Thompson KL, Fry CS, Hardy PA, Noehren B. Alterations in whole muscle quality and physiological cross-sectional area measured with quantitative MRI following ACL injury. J Transl Med 2025; 23:79. [PMID: 39825335 PMCID: PMC11740430 DOI: 10.1186/s12967-024-05980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/13/2024] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Emerging evidence suggests that there are morphological and physiological changes to the vastus lateralis after an anterior cruciate ligament (ACL) tear. However, it is unclear whether these alterations are limited to just the vastus lateralis or are more representative of widespread changes across the thigh musculature and/or if these changes precede reconstruction. The purpose of this study was to determine T1ρ relaxation time, a measure of extracellular matrix organization in muscle, and physiological cross-sectional area (PCSA) for muscles of the quadriceps and hamstrings of the ACL-deficient and contralateral limbs soon after ACL injury. METHODS T1ρ and diffusion tensor magnetic resonance imaging were performed on both limbs of 10 participants after primary ACL tear (< 10 weeks). T1ρ relaxation time and PCSA were calculated for all muscles of the quadriceps and hamstrings. Shapiro-Wilks tests were performed to assess normality. Outcomes were compared between limbs for each muscle of interest with paired t-tests or Wilcoxon signed-rank tests with the alpha level set to 0.05. RESULTS T1ρ relaxation times were significantly longer for the vastus lateralis (7.0%), rectus femoris (15.4%), and vastus intermedius (9.4%) of ACL-deficient limb; whereas, relaxation times were similar between limbs for all hamstring muscles. PCSA was smaller for the vastus lateralis (-19.6%), vastus intermedius (-20.9%), vastus medialis (-26.0%), and semitendinosus (-15.0%) of the ACL-deficient limb compared to the contralateral limb. CONCLUSIONS These results provide evidence that morphological and physiological alterations occur within multiple muscles of quadriceps but not the hamstrings prior to ACL reconstruction. Establishing these differences between the quadriceps and hamstrings suggests there is a differential response within the thigh musculature to an ACL injury, providing a framework for more targeted interventions.
Collapse
Affiliation(s)
- Meredith K Owen
- Department of Physical Therapy, University of Kentucky, 900 S Limestone, Lexington, KY, 40536-0284, USA
| | - Lauren Richardson
- Department of Exercise Science, Brigham Young University, Provo, UT, USA
| | - Darren L Johnson
- Department of Orthopaedic Surgery and Sports Medicine, University of Kentucky, Lexington, USA
| | - Moriel H Vandsburger
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | | | - Katherine L Thompson
- Dr. Bing Zang Department of Statistics, University of Kentucky, Lexington, KY, USA
| | - Christopher S Fry
- Departement of Athletic Training & Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Peter A Hardy
- Department of Radiology, University of Kentucky, Lexington, KY, USA
- Magnetic Resonance Imaging and Spectroscopy Center (MRISC), University of Kentucky, Lexington, KY, USA
| | - Brian Noehren
- Department of Physical Therapy, University of Kentucky, 900 S Limestone, Lexington, KY, 40536-0284, USA.
| |
Collapse
|
10
|
Keeble AR, Thomas NT, Balawender PJ, Brightwell CR, Gonzalez-Velez S, O'Daniel MG, Conley CE, Stone AV, Johnson DL, Noehren B, Jacobs CA, Fry CS, Owen AM. CSF1-R inhibition attenuates posttraumatic osteoarthritis and quadriceps atrophy following ligament injury. J Physiol 2024. [PMID: 39709528 DOI: 10.1113/jp286815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/22/2024] [Indexed: 12/23/2024] Open
Abstract
Knee osteoarthritis contributes substantially to worldwide disability. Post-traumatic osteoarthritis (PTOA) develops secondary to joint injury, such as ligament rupture, and there is increasing evidence suggesting a key role for inflammation in the aetiology of PTOA and associated functional deficits. Colony stimulating factor 1 receptor (CSF1-R) has been implicated in the pathogenesis of musculoskeletal degeneration following anterior cruciate ligament (ACL) injury. We sought to assess the efficacy of CSF1-R inhibition to mitigate muscle and joint pathology in a mouse model of PTOA. Four-month-old mice were randomized to receive a CSF1-R inhibitor and studied for 7 or 28 days after joint injury. Additionally, we profiled synovial fluid samples for CSF1-R from patients with injury to their ACL. Transcriptomic analysis of quadriceps muscle and articular cartilage in CSF1-R inhibitor-treated animals at 7 days after injury revealed elevated chondrocyte differentiation within articular cartilage and enhanced metabolic and contractile gene expression within skeletal muscle. At 28 days post-injury, CSF1-R inhibition attenuated PTOA severity and mitigated skeletal muscle atrophy. Patient synovial fluid CSF1-R levels correlated with matrix metalloproteinase 13, a prognostic marker and molecular effector of PTOA. Our findings support an opportunity for CSF1-R targeting to mitigate the severity of PTOA and muscle atrophy after joint injury. KEY POINTS: Posttraumatic osteoarthritis (PTOA) of the knee commonly results from direct injury to the joint, which is characterized by pain, weakness, and disability. Induction of colony stimulating factor one receptor (CSF1-R) is positively associated with knee trauma severity, and the initial acute inflammatory state suppresses muscle recovery and degrades articular cartilage. Skeletal muscle and articular cartilage transcriptomic response following direct joint injury in a murine model of PTOA is rescued by pharmacological inhibition of CSF1-R. CSF1-R inhibition mitigated skeletal muscle atrophy and attenuated PTOA severity and synovitis. Patient synovial fluid CSF1-R levels correlated with matrix metalloproteinase 13, a prognostic marker and molecular effector of PTOA, offering further evidence for CSF1-R as a therapeutic target across musculoskeletal tissues after injury.
Collapse
Affiliation(s)
- Alexander R Keeble
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Nicholas T Thomas
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | | | - Camille R Brightwell
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Sara Gonzalez-Velez
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | | | - Caitlin E Conley
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Austin V Stone
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Darren L Johnson
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Brian Noehren
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Cale A Jacobs
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
- Mass General Brigham Sports Medicine, Harvard Medical School, Boston, MA, USA
| | - Christopher S Fry
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Allison M Owen
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
11
|
Pingon M, Fournier G, Shatrov J, Radafy A, Bernard C, Gondin J, Lustig S, Servien E. Muscle composition is not a prognostic factor for muscle strength recovery after anterior cruciate ligament surgery by hamstring tendon autograft. Orthop Traumatol Surg Res 2024:104111. [PMID: 39710539 DOI: 10.1016/j.otsr.2024.104111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 12/03/2024] [Accepted: 12/13/2024] [Indexed: 12/24/2024]
Abstract
PURPOSE For the athlete, anterior Cruciate Ligament (ACL) rupture and its surgical management are often a turning point in their career. Success and time to return to sport are essential parameters for athletes and their support staff, so it is critical to understand the prognostic factors influencing return to sport after anterior cruciate ligament reconstruction (ACLR). The aim of this study was to determine the influence of hamstring muscle composition on muscle power following ACLR with autogenous hamstring grafts. METHODS 24 patients with chronic torn ACL were included at a single-center over a period of 17 months. They underwent surgical repair and during this procedure grafts were harvested from the gracilis and the semitendinosus. Muscle composition was assessed on the remaining proximal part of the semitendinosus muscle, which is usually discarded, by immunostaining. Muscle power was defined by comparing the strength of the operated leg and the healthy leg on an isokinetic dynamometer at 6 months according a standardized protocol after 6 months of outpatient rehabilitation. Various other intrinsic and extrinsic factors were also studied, such as body mass index (BMI), age, sex, smoking, or sport practiced, to determine factors influencing isokinetic strength test after ACLR. RESULTS No statistical relationship was identified between muscle composition and the muscle power between the operated and healthy leg. Smoking and female gender were associated with worse muscle recovery. Age and BMI had no influence on isokinetic performance at 6 months. CONCLUSION Following ACLR muscle composition is not associated with difference in strength between the two legs at 6 months. Determining muscle fiber composition of the patient does not inform the rehabilitation protocol or predict muscle strength recovery. Larger series data is required to understand the influence of gender or tobacco on muscle fiber characteristic. LEVEL OF EVIDENCE I; Prospective prognostic study.
Collapse
Affiliation(s)
- Maxime Pingon
- Orthopaedics Surgery and Sports Medicine Department, FIFA Medical Center of Excellence, Croix-Rousse Hospital, Lyon University Hospital, Lyon, France.
| | - Gaspard Fournier
- Orthopaedics Surgery and Sports Medicine Department, FIFA Medical Center of Excellence, Croix-Rousse Hospital, Lyon University Hospital, Lyon, France
| | - Jobe Shatrov
- Orthopaedics Surgery and Sports Medicine Department, FIFA Medical Center of Excellence, Croix-Rousse Hospital, Lyon University Hospital, Lyon, France
| | - Ando Radafy
- Orthopaedics Surgery and Sports Medicine Department, FIFA Medical Center of Excellence, Croix-Rousse Hospital, Lyon University Hospital, Lyon, France
| | - Clara Bernard
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, Lyon, France
| | - Julien Gondin
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, Lyon, France
| | - Sébastien Lustig
- Orthopaedics Surgery and Sports Medicine Department, FIFA Medical Center of Excellence, Croix-Rousse Hospital, Lyon University Hospital, Lyon, France; University of Lyon, Claude Bernard Lyon 1 University, IFSTTAR, LBMC UMR_T9406, F69622, Lyon, France
| | - Elvire Servien
- Orthopaedics Surgery and Sports Medicine Department, FIFA Medical Center of Excellence, Croix-Rousse Hospital, Lyon University Hospital, Lyon, France; LIBM - EA 7424, Interuniversity Laboratory of Biology of Mobility, Claude Bernard Lyon 1 University, Lyon, France
| |
Collapse
|
12
|
Sherman DA, Rush J, Glaviano NR, Norte GE. Knee joint pathology and efferent pathway dysfunction: Mapping muscle inhibition from motor cortex to muscle force. Musculoskelet Sci Pract 2024; 74:103204. [PMID: 39426249 DOI: 10.1016/j.msksp.2024.103204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Dysfunction in efferent pathways after knee pathology is tied to long-term impairments in quadriceps and hamstrings muscle performance, daily function, and health-related quality of life. Understanding the underlying etiology is crucial for effective treatment and prevention of poor outcomes, such as post-traumatic osteoarthritis or joint replacement. OBJECTIVES To synthesize recent evidence of efferent pathway dysfunction (i.e., motor cortex, motor units) among individuals with knee pathology. DESIGN Commentary. METHOD We summarize the current literature investigating the motor cortex, corticospinal tract, and motoneuron pool in individuals with three common knee pathologies: anterior cruciate ligament (ACL) injury, anterior knee pain (AKP), and knee osteoarthritis (OA). To offer a complete perspective, we draw from studies applying a range of neuroimaging and neurophysiologic techniques. RESULTS Adaptations within the motor cortices, corticospinal tract, and motoneuron pool are present in those with knee pathology and underline impairments in quadriceps and hamstrings muscle function. Each pathology has evidence of altered motor system excitability and reduced volitional muscle activation and force-generating capacity, but few impairments were common across ACL injury, AKP, and OA studies. These findings underscore the central role of the motor cortex and motor unit behavior in the long-term outcomes of individuals with knee pathology. CONCLUSIONS Adaptations in the efferent pathways underlie persistent muscle dysfunction across three common knee pathologies. This review provides an overview of these changes and summarizes key findings from neurophysiology and neuroimaging studies, offering direction for future research and clinical application in the rehabilitation of joint injuries.
Collapse
Affiliation(s)
- David A Sherman
- Department of Physical Therapy, Movement, and Rehabilitation Sciences, Northeastern University, Boston, MA, USA; Live4 Physical Therapy and Wellness, Acton, MA, USA.
| | - Justin Rush
- Neuromuscular Biomechanics and Health Assessment Lab, College of Health Sciences and Professions, Ohio University, Athens, OH, USA; Ohio Musculoskeletal and Neurological Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
| | - Neal R Glaviano
- Department of Kinesiology, University of Connecticut, Storrs, CT, USA; Institute for Sports Medicine, University of Connecticut, Storrs, CT, USA.
| | - Grant E Norte
- Cognition, Neuroplasticity, & Sarcopenia (CNS) Lab, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
13
|
White MS, Ogier AC, Chenevert TL, Zucker E, Stoneback L, Michel CP, Palmieri-Smith RM, Lepley LK. Beyond weakness: Exploring intramuscular fat and quadriceps atrophy in ACLR recovery. J Orthop Res 2024; 42:2485-2494. [PMID: 38824275 DOI: 10.1002/jor.25910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 04/19/2024] [Accepted: 05/16/2024] [Indexed: 06/03/2024]
Abstract
Muscle weakness following anterior cruciate ligament reconstruction (ACLR) increases the risk of posttraumatic osteoarthritis (OA). However, focusing solely on muscle weakness overlooks other aspects like muscle composition, which could hinder strength recovery. Intramuscular fat is a non-contractile element linked to joint degeneration in idiopathic OA, but its role post-ACLR has not been thoroughly investigated. To bridge this gap, we aimed to characterize quadriceps volume and intramuscular fat in participants with ACLR (male/female = 15/9, age = 22.8 ± 3.6 years, body mass index [BMI] = 23.2 ± 1.9, time since surgery = 3.3 ± 0.9 years) and in controls (male/female = 14/10, age = 22.0 ± 3.1 years, BMI = 23.3 ± 2.6) while also exploring the associations between intramuscular fat and muscle volume with isometric strength. Linear mixed effects models assessed (I) muscle volume, (II) intramuscular fat, and (III) strength between limbs (ACLR vs. contralateral vs. control). Regression analyses were run to determine if intramuscular fat or volume were associated with quadriceps strength. The ACLR limb was 8%-11% smaller than the contralateral limb (p < 0.05). No between-limb differences in intramuscular fat were observed (p = 0.091-0.997). Muscle volume but not intramuscular fat was associated with strength in the ACLR and control limbs (p < 0.001-0.002). We demonstrate that intramuscular fat does not appear to be an additional source of quadriceps dysfunction following ACLR and that muscle size only explains some of the variance in muscle strength.
Collapse
Affiliation(s)
- McKenzie S White
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Augustin C Ogier
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Thomas L Chenevert
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Elizabeth Zucker
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Luke Stoneback
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | - Lindsey K Lepley
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
14
|
Butt J, Ahmed Z. Blood Flow Restriction Training and Its Use in Rehabilitation After Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-Analysis. J Clin Med 2024; 13:6265. [PMID: 39458215 PMCID: PMC11508829 DOI: 10.3390/jcm13206265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Anterior cruciate ligament (ACL) reconstruction (ACLR) is often followed by significant muscle atrophy and subsequent loss of strength. Blood flow restriction training (BFRT) has recently emerged as a potential mode of rehabilitation to mitigate these effects. The goal of this systematic review was to evaluate the efficacy of BFRT in functional recovery when compared to traditional rehabilitation methods. Methods: A literature review was conducted across July and August 2024 using multiple databases that reported randomised controlled trials comparing BFRT to traditional rehabilitation methods. Primary outcomes were changes to thigh muscle mass and knee extensor/flexor strength with secondary outcomes consisting of patient-reported functional measures (IKDC and Lysholm scores). The RoB-2 tool was used to assess the risk of bias. Results: Eight studies met the inclusion criteria; however, substantial heterogeneity prevented a meta-analysis being conducted for the primary outcomes. Three out of the five studies measuring muscle mass reported significant (p < 0.05) findings favouring BFRT. There was variation amongst the strength improvements, but BFRT was generally favoured over the control. Meta analysis of the secondary outcomes showed significant improvements (p < 0.05) favouring BFRT despite moderate heterogeneity. Conclusions: BFRT shows promise for maintaining muscle mass and improving patient reported outcomes following ACL reconstruction. However, the high risk of bias limits the strength of these conclusions. Further high-quality research needs to be conducted to establish optimal BFRT protocols for this cohort and to determine if BFRT has a place in ACL rehabilitation.
Collapse
Affiliation(s)
- Jamaal Butt
- Department of Inflammation and Ageing, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Zubair Ahmed
- Department of Inflammation and Ageing, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
- Department of Neurosurgery, University Hospitals Birmingham NHS Trust, Mindelsohn Way, Edgbaston, Birmingham B15 2GW, UK
| |
Collapse
|
15
|
Bruce Leicht AS, Thompson XD, Queen RM, Rodu JS, Higgins MJ, Cross KM, Werner BC, Resch JE, Hart JM. Analysis of Limb Loading and Lower Extremity Strength Recovery Across Time After Anterior Cruciate Ligament Reconstruction. Sports Health 2024:19417381241285859. [PMID: 39397655 PMCID: PMC11556615 DOI: 10.1177/19417381241285859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Evidence as to how patient thigh muscle strength and limb loading (LL) during a squatting task recovers throughout rehabilitation after anterior cruciate ligament reconstruction (ACLR) is lacking. HYPOTHESIS Patients will improve LL and strength throughout rehabilitation. Changes in LL and strength over time will be positively correlated. STUDY DESIGN Prospective cohort study. LEVEL OF EVIDENCE Level 3. METHODS A total of 60 participants (28 male/32 female; age, 22.5 ± 9.35 years) participated in 2 visits post-ACLR, assessing LL and strength. Using an instrumented pressure mat, patients completed 3 sets of 3 repetitions of bodyweight squats. Peak force (N), unilateral cumulative load (%), and quadriceps and hamstring isokinetic peak torque (N·m) were calculated and recorded bilaterally. LL and peak torque were compared over time and between limbs. RESULTS A significant limb-by-time interaction was observed for LL peak force (N), where patients underloaded the ACLR limb at visit 1 compared with the contralateral limb (P < 0.01). Patients increased their ACLR LL across visits (P = 0.04). A limb-by-time interaction for quadriceps peak torque (N·m) was observed where the ACLR limb increased peak torque across visits (P < 0.01); however, strength deficits persisted at visit 2 (P < 0.01) when compared with the nonoperative limb. Weak correlations were observed between all change scores metrics (r, 0.20-0.25). CONCLUSION Patients recovering from ACLR exhibited more symmetric loading during a squatting task and improved their lower extremity strength over time. Changes in strength were not related to changes in LL during a squatting task over time. CLINICAL RELEVANCE Squatting tasks are safe and easily implemented throughout ACLR recovery. As changes in functional LL and strength recovery are not related, both should be considered in serial postoperative testing for more comprehensive function and strength assessments.
Collapse
Affiliation(s)
- Amelia S. Bruce Leicht
- University of Kentucky, Department of Athletic Training and Clinical Nutrition, Lexington, Kentucky
| | - Xavier D. Thompson
- University of Virginia, Department of Kinesiology, Charlottesville, Virginia
| | - Robin M. Queen
- Virginia Tech, Department of Biomedical Engineering and Mechanics, Blacksburg, Virginia
| | - Jordan S. Rodu
- University of Virginia, Department of Statistics, Charlottesville, Virginia
| | - Michael J. Higgins
- University of Virginia, Department of Kinesiology, Charlottesville, Virginia
| | - Kevin M. Cross
- University of Virginia, Department of Physical Medicine and Rehabilitation, Charlottesville, Virginia
| | - Brian C. Werner
- University of Virginia, Department of Orthopaedic Surgery, Charlottesville, Virginia
| | - Jacob E. Resch
- University of Virginia, Department of Kinesiology, Charlottesville, Virginia
| | - Joe M. Hart
- University of North Carolina at Chapel Hill, Department of Orthopaedics, Chapel Hill, North Carolina
| |
Collapse
|
16
|
Nuccio S, Germer CM, Casolo A, Borzuola R, Labanca L, Rocchi JE, Mariani PP, Felici F, Farina D, Falla D, Macaluso A, Sbriccoli P, Del Vecchio A. Neuroplastic alterations in common synaptic inputs and synergistic motor unit clusters controlling the vastii muscles of individuals with ACL reconstruction. J Appl Physiol (1985) 2024; 137:835-847. [PMID: 39024407 DOI: 10.1152/japplphysiol.00056.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024] Open
Abstract
This cross-sectional study aims to elucidate the neural mechanisms underlying the control of knee extension forces in individuals with anterior cruciate ligament reconstruction (ACLR). Eleven soccer players with ACLR and nine control players performed unilateral isometric knee extensions at 10% and 30% of their maximum voluntary force (MVF). Simultaneous recordings of high-density surface electromyography (HDEMG) and force output were conducted for each lower limb, and HDEMG data from the vastus lateralis (VL) and vastus medialis (VM) muscles were decomposed into individual motor unit spike trains. Force steadiness was estimated using the coefficient of variation of force. An intramuscular coherence analysis was adopted to estimate the common synaptic input (CSI) converging to each muscle. A factor analysis was applied to investigate the neural strategies underlying the control of synergistic motor neuron clusters, referred to as motor unit modes. Force steadiness was similar between lower limbs. However, motor neurons innervating the VL on the reconstructed side received a lower proportion of CSI at low-frequency bandwidths (<5 Hz) compared with the unaffected lower limbs (P < 0.01). Furthermore, the reconstructed side demonstrated a higher proportion of motor units associated with the neural input common to the synergistic muscle, as compared with the unaffected lower limbs (P < 0.01). These findings indicate that the VL muscle of reconstructed lower limbs contribute marginally to force steadiness and that a plastic rearrangement in synergistic clusters of motor units involved in the control of knee extension forces is evident following ACLR.NEW & NOTEWORTHY Chronic quadriceps dysfunction is common after anterior cruciate ligament reconstruction (ACLR). We investigated voluntary force control strategies by estimating common inputs to motor neurons innervating the vastii muscles. Our results showed attenuated common inputs to the vastus lateralis and plastic rearrangements in functional clusters of motor neurons modulating knee extension forces in the reconstructed limb. These findings suggest neuroplastic adjustments following ACLR that may occur to fine-tune the control of quadriceps forces.
Collapse
Affiliation(s)
- Stefano Nuccio
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Carina M Germer
- Departamento de Eletrônica e Engenharia Biomédica, Faculdade de Engenharia Elétrica e de Computação, Universidade Estadual de Campinas, São Paulo, Brazil
- Laboratório de Pesquisa em Neuroengenharia, Centro de Engenharia Biomédica, Universidade Estadual de Campinas, São Paulo, Brazil
| | - Andrea Casolo
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Riccardo Borzuola
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Luciana Labanca
- Physical Medicine and Rehabilitation Unit, IRCSS-Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Jacopo E Rocchi
- Villa Stuart Sport Clinic - FIFA Medical Centre of Excellence, Rome, Italy
| | - Pier Paolo Mariani
- Villa Stuart Sport Clinic - FIFA Medical Centre of Excellence, Rome, Italy
| | - Francesco Felici
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Dario Farina
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Andrea Macaluso
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Paola Sbriccoli
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Alessandro Del Vecchio
- Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
17
|
Sinha U, Sinha S. Magnetic Resonance Imaging Biomarkers of Muscle. Tomography 2024; 10:1411-1438. [PMID: 39330752 PMCID: PMC11436019 DOI: 10.3390/tomography10090106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
This review is focused on the current status of quantitative MRI (qMRI) of skeletal muscle. The first section covers the techniques of qMRI in muscle with the focus on each quantitative parameter, the corresponding imaging sequence, discussion of the relation of the measured parameter to underlying physiology/pathophysiology, the image processing and analysis approaches, and studies on normal subjects. We cover the more established parametric mapping from T1-weighted imaging for morphometrics including image segmentation, proton density fat fraction, T2 mapping, and diffusion tensor imaging to emerging qMRI features such as magnetization transfer including ultralow TE imaging for macromolecular fraction, and strain mapping. The second section is a summary of current clinical applications of qMRI of muscle; the intent is to demonstrate the utility of qMRI in different disease states of the muscle rather than a complete comprehensive survey.
Collapse
Affiliation(s)
- Usha Sinha
- Department of Physics, San Diego State University, San Diego, CA 92182, USA
| | - Shantanu Sinha
- Muscle Imaging and Modeling Lab., Department of Radiology, University of California at San Diego, San Diego, CA 92037, USA
| |
Collapse
|
18
|
Graham MC, Thompson KL, Hawk GS, Fry CS, Noehren B. Muscle Fiber Cross-Sectional Area Is Associated With Quadriceps Strength and Rate of Torque Development After ACL Injury. J Strength Cond Res 2024; 38:e273-e279. [PMID: 38349361 PMCID: PMC11116075 DOI: 10.1519/jsc.0000000000004743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
ABSTRACT Graham, MC, Thompson, KL, Hawk, GS, Fry, CS, and Noehren, B. Muscle fiber cross-sectional area is associated with quadriceps strength and rate of torque development after ACL injury. J Strength Cond Res 38(6): e273-e279, 2024-The purpose of this study was to investigate the relationship between muscle fiber type-specific properties of the vastus lateralis and quadriceps muscle performance in individuals after an anterior cruciate ligament (ACL) tear. 26 subjects (22.0 ± 5.4 years) were included in this cross-sectional study, and all data were collected before ACL reconstruction. Quadriceps peak torque (QPT) and early (0-100 ms) and late (100-200 ms) rate of torque development (RTD) were obtained from maximal voluntary isometric quadriceps strength testing. Muscle fiber cross-sectional area (fCSA) and percent fiber type distribution (FT%) were evaluated through immunohistochemical analysis of a muscle biopsy. Between-limb differences in fiber characteristics were assessed using paired t-tests (with α-level 0.05). Relationships between fiber-specific properties and quadriceps muscle performance were determined using separate multiple linear regression analyses for ACL-injured and noninjured limbs. There were significant differences in fCSA between ACL-injured and noninjured limbs across all fiber types, but no differences in FT%. Type 1 fCSA, type 2a fCSA, and their interaction effect were the explanatory variables with the strongest relationship to all performance outcomes for the ACL-injured limb. The explanatory variables in the ACL-injured limb had a significant relationship to QPT and late RTD, but not early RTD. These findings suggest that QPT and late RTD are more heavily influenced by fCSA than FT% in ACL-injured limbs. This work serves as a foundation for the development of more specific rehabilitation strategies aimed at improving quadriceps muscle function before ACL reconstruction or for individuals electing nonsurgical management.
Collapse
Affiliation(s)
- Megan C Graham
- Department of Physical Therapy, University of Kentucky, Lexington, Kentucky
| | | | - Gregory S Hawk
- Department of Statistics, University of Kentucky, Lexington, Kentucky; and
| | - Christopher S Fry
- Department of Athletic Training & Clinical Nutrition, University of Kentucky, Lexington, Kentucky
| | - Brian Noehren
- Department of Physical Therapy, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
19
|
Graham MC, Reeves KA, Janatova T, Noehren B. The Relationship of Open- and Closed-Kinetic-Chain Rate of Force Development With Jump Performance Following Anterior Cruciate Ligament Reconstruction. Int J Sports Physiol Perform 2024; 19:585-592. [PMID: 38594016 DOI: 10.1123/ijspp.2023-0361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 04/11/2024]
Abstract
PURPOSE To determine between-limbs differences in isometric rate of force development (RFD) measured during open- (OKC) and closed-kinetic-chain (CKC) strength testing and establish which method had the strongest relationship to single-leg vertical-jump performance and knee mechanics after anterior cruciate ligament (ACL) reconstruction. METHODS Subjects (n = 19) 1 to 5 years from ACL reconstruction performed isometric knee extensions (OKC), unilateral isometric midthigh pulls (CKC), and single-leg vertical jumps on the ACL-involved and -noninvolved limbs. Between-limbs differences were assessed using paired t tests, and the relationship between RFD, jump performance, and knee mechanics was assessed using correlation coefficients (r; P ≤ .05). RESULTS There were significant between-limbs differences in OKC RFD (P = .008, d = -0.69) but not CKC RFD. OKC RFD in the ACL-involved limb had a strong association with jump height (r = .64, P = .003), knee-joint power (r = .72, P < .001), and peak knee-flexion angle (r = .72, P = .001). CKC RFD in the ACL-involved limb had a strong association with jump height (r = .65, P = .004) and knee-joint power (r = .67, P = .002) but not peak knee-flexion angle (r = .40, P = .09). CONCLUSIONS While both OKC and CKC RFD were strongly related to jump performance and knee-joint power, OKC RFD was able to detect between-limbs RFD asymmetries and was strongly related to knee-joint kinematics. These findings indicate that isometric knee extension may be optimal for assessing RFD after ACL reconstruction.
Collapse
Affiliation(s)
- Megan C Graham
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
| | - Kelsey A Reeves
- Department of Orthopaedics, University of North Carolina, Chapel Hill, NC, USA
| | - Tereza Janatova
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
| | - Brian Noehren
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
20
|
Johnston CD, Dewig DR, Pietrosimone B, Padua D, Ryan ED, Hart J, Spang J, Blackburn T. Longitudinal Changes in Quadriceps Morphology over the First 3 Months after Anterior Cruciate Ligament Reconstruction. Med Sci Sports Exerc 2024; 56:933-941. [PMID: 38109204 DOI: 10.1249/mss.0000000000003359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
PURPOSE Neuromuscular deficits and atrophy after anterior cruciate ligament reconstruction (ACLR) may be accompanied by changes in muscle composition and poor quadriceps muscle quality (QMQ). Quadriceps atrophy occurs after ACLR but improves within the first three postoperative months, yet this hypertrophy could be attributable to increases in noncontractile tissue (i.e., poor QMQ). The purposes of this study were to evaluate changes in QMQ after ACLR and to determine if changes in QMQ and cross-sectional area (CSA) occur in parallel or independently. METHODS A longitudinal prospective cohort design was implemented to evaluate QMQ and CSA in 20 individuals with ACLR and 12 healthy controls. Participants completed three testing sessions (baseline/presurgery, 1 month, and 3 months) during which ultrasound images were obtained from the vastus lateralis (VL) and rectus femoris (RF). QMQ was calculated as the echo intensity (EI) of each image, with high EI representing poorer QMQ. Anatomical CSA was also obtained from each image. RESULTS RF and VL EI were greater at 1 and 3 months in the ACLR limb compared with baseline and the contralateral limb and did not change between 1 and 3 months. VL and RF CSA in the ACLR limb were smaller at 1 and 3 months compared with the contralateral limb and controls (VL only) but increased from 1 to 3 months. Changes in QMQ and CSA were not correlated. CONCLUSIONS QMQ declines within the first month after ACLR and does not improve by 3 months although hypertrophy occurs, suggesting that these morphological characteristics change independently after ACLR. Poorer QMQ represents greater concentration of noncontractile tissues within the muscle and potentially contributes to chronic quadriceps dysfunction observed after ACLR.
Collapse
Affiliation(s)
| | - Derek R Dewig
- Department of Health and Human Performance, Fairmont State University, Fairmont, WV
| | - Brian Pietrosimone
- Department of Exercise and Sport Science, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Darin Padua
- Department of Exercise and Sport Science, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Eric D Ryan
- Department of Exercise and Sport Science, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Joe Hart
- Department of Orthopaedics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jeffrey Spang
- Department of Orthopaedics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Troy Blackburn
- Department of Exercise and Sport Science, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
21
|
Nilius A, Dewig DR, Johnston CD, Pietrosimone BG, Blackburn JT. Quadriceps composition and function influence downhill gait biomechanics >1 year following anterior cruciate ligament reconstruction. Clin Biomech (Bristol, Avon) 2024; 114:106229. [PMID: 38490072 DOI: 10.1016/j.clinbiomech.2024.106229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Quadriceps dysfunction is common following anterior cruciate ligament reconstruction and contributes to aberrant gait biomechanics. Changes in quadriceps composition also occur in these patients including greater concentrations of non-contractile tissue. The purpose of this study was to evaluate associations between quadriceps composition, function, and gait biomechanics in individuals with anterior cruciate ligament reconstruction. METHODS Forty-eight volunteers with anterior cruciate ligament reconstruction completed gait biomechanics and quadriceps function and composition assessments. Gait biomechanics were sampled during downhill walking (-10° slope) on an instrumented treadmill. Quadriceps function (peak torque and rate of torque development) was assessed via maximal isometric contractions, while composition was evaluated via ultrasound echo intensity. FINDINGS Greater quadriceps peak torque was associated with a greater peak knee extension moment (r = 0.365, p = 0.015). Greater vastus lateralis echo intensity (i.e. poorer muscle quality) was associated with less knee flexion displacement (r = -0.316, p = 0.032). Greater echo intensity of the vastus lateralis (r = -0.298, p = 0.044) and rectus femoris (r = -0.322, p = 0.029) was associated with a more abducted knee angle at heel strike. Quadriceps peak torque explained 11-16% of the variance in echo intensity. INTERPRETATION Both quadriceps function and composition influence aberrant gait biomechanics following anterior cruciate ligament reconstruction. Quadriceps composition appears to provide insight into quadriceps dysfunction independent of muscle strength, as they associated with different gait biomechanics outcomes and shared minimal variance. Future research is necessary to determine the influence of changes in quadriceps composition on joint health outcomes.
Collapse
Affiliation(s)
- Alex Nilius
- Program in Human Movement Science, University of North Carolina at Chapel Hill, USA; MOTION Science Institute, University of North Carolina at Chapel Hill, USA; Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, USA
| | - Derek R Dewig
- College of Education, Health & Human Performance, Fairmont State University, USA
| | | | - Brian G Pietrosimone
- Program in Human Movement Science, University of North Carolina at Chapel Hill, USA; MOTION Science Institute, University of North Carolina at Chapel Hill, USA; Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, USA
| | - J Troy Blackburn
- Program in Human Movement Science, University of North Carolina at Chapel Hill, USA; MOTION Science Institute, University of North Carolina at Chapel Hill, USA; Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, USA.
| |
Collapse
|
22
|
Noh SG, Ahn A, Davi SM, Lepley LK, Kwon OS. Quadriceps muscle atrophy after non-invasive anterior cruciate ligament injury: evidence linking to autophagy and mitophagy. Front Physiol 2024; 15:1341723. [PMID: 38496299 PMCID: PMC10940348 DOI: 10.3389/fphys.2024.1341723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/20/2024] [Indexed: 03/19/2024] Open
Abstract
Introduction: Anterior cruciate ligament (ACL) injury is frequently accompanied by quadriceps muscle atrophy, a process closely linked to mitochondrial health and mitochondria-specific autophagy. However, the temporal progression of key quadricep atrophy-mediating events following ACL injury remains poorly understood. To advance our understanding, we conducted a longitudinal study to elucidate key parameters in quadriceps autophagy and mitophagy. Methods: Long-Evans rats were euthanized at 7, 14, 28, and 56 days after non-invasive ACL injury that was induced via tibial compression overload; controls were not injured. Vastus lateralis muscle was extracted, and subsequent immunoblotting analysis was conducted using primary antibodies targeting key proteins involved in autophagy and mitophagy cellular processes. Results: Our findings demonstrated dynamic changes in autophagy and mitophagy markers in the quadriceps muscle during the recovery period after ACL injury. The early response to the injury was characterized by the induction of autophagy at 14 days (Beclin1), indicating an initial cellular response to the injury. Subsequently, at 14 days we observed increase in the elongation of autophagosomes (Atg4B), suggesting a potential remodeling process. The autophagosome flux was also augmented between 14- and 28 days (LC3-II/LC3-I ratio and p62). Notably, at 56 days, markers associated with the elimination of damaged mitochondria were elevated (PINK1, Parkin, and VDAC1), indicating a possible ongoing cellular repair and restoration process. Conclusion: These data highlight the complexity of muscle recovery after ACL injury and underscore the overlooked but crucial role of autophagy and mitophagy in promoting the recovery process.
Collapse
Affiliation(s)
- Sung Gi Noh
- Department of Kinesiology, University of Connecticut, Storrs, CT, United States
| | - Ahram Ahn
- Department of Kinesiology, University of Connecticut, Storrs, CT, United States
| | - Steven M. Davi
- Department of Kinesiology, University of Connecticut, Storrs, CT, United States
- Cooperative Studies Program Coordinating Center (CSPCC), VA Connecticut Healthcare System, West Haven, CT, United States
| | - Lindsey K. Lepley
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
| | - Oh Sung Kwon
- Department of Kinesiology, University of Connecticut, Storrs, CT, United States
- Department of Orthopaedic Surgery and Center on Aging, University of Connecticut School of Medicine, Farmington, CT, United States
| |
Collapse
|
23
|
Qiu J, Jiang T, Ong MTY, He X, Choi CY, Fu SC, Fong DTP, Yung PSH. Bilateral impairments of quadriceps neuromuscular function occur early after anterior cruciate ligament injury. Res Sports Med 2024; 32:72-85. [PMID: 35635286 DOI: 10.1080/15438627.2022.2079986] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
The study aimed to investigate the impairments in quadriceps neuromuscular function, including strength, rate of torque development (RTD) and activation failure (QAF) early after an ACL injury. A cross-sectional study was conducted. Thirty physically active patients with a primary ACL injury within three months, aged 18 to 40 years old, and who were scheduled for ACL reconstruction were included. Thirty matched healthy controls were also recruited. All the outcomes were measured on an isokinetic dynamometer with knee flexion at 45°. Quadriceps strength was measured by maximal voluntary isometric contractions (MVIC). Early (RTD0-50) and late (RTD100-200) phases of RTD were retrieved from the MVIC test from 0 to 50 ms and 100-200 ms, respectively. QAF was quantified by the central activation ratio (CAR) measured by superimposed burst technique. The results of Mann-Whitney U test showed that compared with the healthy limbs, the injured limbs of the ACL group showed lower quadriceps strength (P < 0.001), RTD0-50 (P < 0.001) and RTD100-200 (P < 0.001); the uninjured limbs showed lower quadriceps strength (P = 0.009), RTD0-50 (P = 0.006) as well as greater QAF (P = 0.010). To conclude, bilateral quadriceps suffered from neuromuscular impairments early after an ACL injury.
Collapse
Affiliation(s)
- Jihong Qiu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tianzhi Jiang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Michael Tim-Yun Ong
- Department of Orthopaedics and Traumatology, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xin He
- Department of Orthopaedics and Traumatology, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chi-Yin Choi
- Department of Orthopaedics and Traumatology, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sai-Chuen Fu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
- Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Daniel T P Fong
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Patrick Shu-Hang Yung
- Department of Orthopaedics and Traumatology, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
- Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
24
|
Sonnery-Cottet B, Hopper GP, Gousopoulos L, Pioger C, Vieira TD, Thaunat M, Fayard JM, Freychet B, Cavaignac E, Saithna A. Incidence of and Risk Factors for Arthrogenic Muscle Inhibition in Acute Anterior Cruciate Ligament Injuries: A Cross-Sectional Study and Analysis of Associated Factors From the SANTI Study Group. Am J Sports Med 2024; 52:60-68. [PMID: 38164669 DOI: 10.1177/03635465231209987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
BACKGROUND Arthrogenic muscle inhibition (AMI) is a process in which neural inhibition after injury or surgery to the knee results in quadriceps activation failure and knee extension deficit. PURPOSE To determine the incidence and spectrum of the severity of AMI after acute anterior cruciate ligament (ACL) injury using the Sonnery-Cottet classification, to determine the interobserver reliability of the classification system, and to investigate potential important factors associated with AMI after ACL injury. STUDY DESIGN Case-control study; Level of evidence, 3. METHODS Consecutive patients who had an acute ACL injury between October 2021 and February 2022 were considered for study inclusion. Eligible patients underwent a standardized physical examination at their first outpatient appointment. This included an assessment of quadriceps inhibition, identification of any extension deficits, and grading of AMI and its reversibility according to the Sonnery-Cottet classification. RESULTS A total of 300 consecutive patients with acute ACL ruptures were prospectively enrolled in the study. Of them, 170 patients (56.7%) had AMI. Patients evaluated with AMI showed a significantly inferior Lysholm score, International Knee Documentation Committee score, Simple Knee Value, and Knee injury and Osteoarthritis Outcome Score than patients without AMI (P < .0001). Multivariate analysis revealed that the presence of effusion, concomitant injuries, and high pain scores were associated with a significantly greater risk of AMI. Additional associations with the presence of AMI included a short duration between injury and evaluation, the use of crutches, and using a pillow as a support at night. In contrast, a previous ACL injury was associated with significantly lower odds of developing AMI (OR, 0.025; 95% CI, 0-0.2; P = .014). Among the 170 patients with AMI, 135 patients (79%) showed a resolution of their inhibition at the end of the consultation after application of simple exercises; the remaining 35 patients required specific rehabilitation. Interobserver reliability of the classification system was almost perfect (95% CI, 0.86-0.99). CONCLUSION AMI occurs in over half of patients with acute ACL injuries. When it occurs, it is easily reversible in the majority of patients with simple exercises targeted at abolishing AMI. The presence of "red flags" should increase the index of suspicion for the presence of AMI, and these include the presence of an effusion, high pain scores, a short time between injury and evaluation, multiligament injuries, the use of crutches, and using a pillow as a support at night. Patients with a history of ipsilateral or contralateral ACL injury are at a significantly lower risk of AMI than those with a first-time ACL injury.
Collapse
Affiliation(s)
- Bertrand Sonnery-Cottet
- Centre Orthopédique Santy, Lyon, France; Hôpital Privé Jean Mermoz, Ramsay-Générale de Santé, Lyon, France
| | | | | | - Charles Pioger
- Department of Orthopedic Surgery, Ambroise Paré Hospital, Paris Saclay University, Paris, France
| | - Thais Dutra Vieira
- Centre Orthopédique Santy, Lyon, France; Hôpital Privé Jean Mermoz, Ramsay-Générale de Santé, Lyon, France
| | - Mathieu Thaunat
- Centre Orthopédique Santy, Lyon, France; Hôpital Privé Jean Mermoz, Ramsay-Générale de Santé, Lyon, France
| | - Jean-Marie Fayard
- Centre Orthopédique Santy, Lyon, France; Hôpital Privé Jean Mermoz, Ramsay-Générale de Santé, Lyon, France
| | - Benjamin Freychet
- Centre Orthopédique Santy, Lyon, France; Hôpital Privé Jean Mermoz, Ramsay-Générale de Santé, Lyon, France
| | - Etienne Cavaignac
- Department of Orthopaedic Surgery, Hôpital Pierre Paul Riquet, CHU de Toulouse, Toulouse, France
| | - Adnan Saithna
- Arizona Brain, Spine & Sports Injuries Center, Scottsdale, Arizona
| |
Collapse
|
25
|
Milutinović A, Jakovljević V, Dabović M, Scanlan AT, Radovanović D, Orlova A, Stojanović E. A comparison in knee flexor and extensor strength following ACL reconstruction in international, male soccer players receiving patellar tendon or hamstrings grafts. Biol Sport 2024; 41:107-117. [PMID: 38188098 PMCID: PMC10765446 DOI: 10.5114/biolsport.2024.129471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/05/2023] [Accepted: 05/18/2023] [Indexed: 01/09/2024] Open
Abstract
The aim of this study was to compare knee extensor and flexor strength recovery following anterior cruciate ligament (ACL) reconstruction between bone-patellar tendon-bone (BPTB) and hamstring tendon (HT) grafts in international male soccer players undergoing comparable 6-month rehabilitation programmes. Seventeen players underwent ACL reconstruction with either an autogenous BPTB graft or HT graft. Knee extensor and flexor peak torques were measured at 3 months and 6 months in the injured and contralateral legs following surgery using isokinetic dynamometry. The moderate-large asymmetries in knee extensor peak torque between legs at 3 months across graft types (BPTB: p = 0.002, g = -0.94; HT: p = 0.02, g = -0.55) were reduced to trivial asymmetries at 6 months (BPTB: p = 0.30, g = -0.19; HT: p = 0.40, g = -0.16), with a non-significant difference in limb symmetry index (LSI) between grafts at 6 months (p = 0.62, g = -0.24). Similarly, moderate-large asymmetries in knee flexor peak torque between legs at 3 months across graft types (BPTB: p = 0.13, g = -0.50; HT: p = 0.01, g = -0.97) were reduced to trivial-small asymmetries at 6 months (BPTB: p = 0.25, g = 0.18; HT: p = 0.01, g = -0.47); however, a superior LSI was evident with BPTB compared to HT grafts at 6 months (p = 0.007, g = 1.43, large). Strength and conditioning professionals working with soccer players who are rehabilitating from ACL reconstruction after receiving a HT graft should give adequate attention to delivering suitable hamstring exercises that ensure optimal strength restoration.
Collapse
Affiliation(s)
- Andreja Milutinović
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir Jakovljević
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Department of Human Pathology, 1 Moscow State Medical University IM Sechenov, Moscow, Russian Federation
| | - Milinko Dabović
- Faculty of Sport and Physical Education, University of Belgrade, Belgrade, Serbia
| | - Aaron T. Scanlan
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Australia
| | | | - Aleksandra Orlova
- Department of Human Pathology, 1 Moscow State Medical University IM Sechenov, Moscow, Russian Federation
| | - Emilija Stojanović
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
26
|
Grozier C, Keen M, Collins K, Tolzman J, Fajardo R, Slade JM, Kuenze C, Harkey MS. Rectus Femoris Ultrasound Echo Intensity Is a Valid Estimate of Percent Intramuscular Fat in Patients Following Anterior Cruciate Ligament Reconstruction. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:2590-2595. [PMID: 37770296 PMCID: PMC10595047 DOI: 10.1016/j.ultrasmedbio.2023.08.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/24/2023] [Accepted: 08/31/2023] [Indexed: 09/30/2023]
Abstract
OBJECTIVE The aim of the work described here was to evaluate quadriceps muscle ultrasound metrics and common demographic variables to create a conversion equation that validly predicts magnetic resonance imaging (MRI) percent intramuscular fat after anterior cruciate ligament reconstruction (ACLR). METHODS We recruited 15 participants between the ages of 18 and 35 y who were 1-5 y post-ACLR. For the MRI assessment, we used an iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) sequence to assess the mid-thigh. A single reader manually segmented the rectus femoris on two consecutive MRI slices using ITK-Snap to estimate the percent intramuscular fat. For the ultrasound assessment, a single investigator captured transverse panoramic ultrasound images of the mid-thigh with the participant positioned supine and the knee flexed to 30°. A separate single reader used ImageJ to manually segment the rectus femoris ultrasound images. Ultrasound metrics included muscle cross-sectional area, echo intensity and subcutaneous fat thickness. A stepwise linear multiple regression was used to develop an equation to predict MRI percent intramuscular fat using the ultrasound metrics and common demographics (i.e., age, sex, height, mass). Additionally, intraclass correlation coefficients (ICC2,k) and Bland-Altman plots were used to assess the agreement between true and estimated percent intramuscular fat. RESULTS Echo intensity and age significantly predicted MRI intramuscular fat percent (p = 0.003, r2 = 0.62). When using the conversion equation, there was high agreement (ICC2,k = 0.87, 95% confidence interval: 0.62-0.96) between the estimated and true percent intramuscular fat. CONCLUSION Our patient population-specific conversion equation that uses quadriceps muscle ultrasound echo intensity and age is a valid estimate of MRI percent intramuscular fat.
Collapse
Affiliation(s)
- Corey Grozier
- Department of Kinesiology, Michigan State University, East Lansing, MI, USA
| | - Megan Keen
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Katherine Collins
- Department of Kinesiology, Michigan State University, East Lansing, MI, USA
| | - Jessica Tolzman
- Department of Kinesiology, Michigan State University, East Lansing, MI, USA
| | | | - Jill M Slade
- Department of Radiology, Michigan State University, East Lansing, MI, USA
| | - Christopher Kuenze
- Department of Kinesiology, University of Virginia, Charlottesville, VA, USA
| | - Matthew S Harkey
- Department of Kinesiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
27
|
Brightwell CR, Latham CM, Keeble AR, Thomas NT, Owen AM, Reeves KA, Long DE, Patrick M, Gonzalez-Velez S, Abed V, Annamalai RT, Jacobs C, Conley CE, Hawk GS, Stone AV, Fry JL, Thompson KL, Johnson DL, Noehren B, Fry CS. GDF8 inhibition enhances musculoskeletal recovery and mitigates posttraumatic osteoarthritis following joint injury. SCIENCE ADVANCES 2023; 9:eadi9134. [PMID: 38019905 PMCID: PMC10686569 DOI: 10.1126/sciadv.adi9134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Musculoskeletal disorders contribute substantially to worldwide disability. Anterior cruciate ligament (ACL) tears result in unresolved muscle weakness and posttraumatic osteoarthritis (PTOA). Growth differentiation factor 8 (GDF8) has been implicated in the pathogenesis of musculoskeletal degeneration following ACL injury. We investigated GDF8 levels in ACL-injured human skeletal muscle and serum and tested a humanized monoclonal GDF8 antibody against a placebo in a mouse model of PTOA (surgically induced ACL tear). In patients, muscle GDF8 was predictive of atrophy, weakness, and periarticular bone loss 6 months following surgical ACL reconstruction. In mice, GDF8 antibody administration substantially mitigated muscle atrophy, weakness, and fibrosis. GDF8 antibody treatment rescued the skeletal muscle and articular cartilage transcriptomic response to ACL injury and attenuated PTOA severity and deficits in periarticular bone microarchitecture. Furthermore, GDF8 genetic deletion neutralized musculoskeletal deficits in response to ACL injury. Our findings support an opportunity for rapid targeting of GDF8 to enhance functional musculoskeletal recovery and mitigate the severity of PTOA after injury.
Collapse
Affiliation(s)
- Camille R. Brightwell
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Christine M. Latham
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Alexander R. Keeble
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Nicholas T. Thomas
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Allison M. Owen
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Kelsey A. Reeves
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Douglas E. Long
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Matthew Patrick
- Department of Biomedical Engineering, College of Engineering, University of Kentucky, Lexington, KY, USA
| | | | - Varag Abed
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Ramkumar T. Annamalai
- Department of Biomedical Engineering, College of Engineering, University of Kentucky, Lexington, KY, USA
| | - Cale Jacobs
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Caitlin E. Conley
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Gregory S. Hawk
- Department of Statistics, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA
| | - Austin V. Stone
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Jean L. Fry
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Katherine L. Thompson
- Department of Statistics, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA
| | - Darren L. Johnson
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Brian Noehren
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Christopher S. Fry
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
28
|
Drigny J, Calmès A, Reboursière E, Hulet C, Gauthier A. Changes in the Force-Velocity Relationship of Knee Muscles After Anterior Cruciate Ligament Reconstruction Using the Isokinetic 2-Point Model. Int J Sports Physiol Perform 2023; 18:1336-1344. [PMID: 37673416 DOI: 10.1123/ijspp.2023-0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 09/08/2023]
Abstract
PURPOSE After anterior cruciate ligament reconstruction (ACL-R), knee muscle strength symmetry is used as part of the return-to-sport criteria. However, little is known about the changes in the force-velocity (F-V) relationship, which could affect athletic performance. This study investigated the F-V relationship of knee muscles at 4 and 8 months after ACL-R, using the 2-point method tested by isokinetic dynamometry. METHODS A total of 103 physically trained individuals (24.6 [9.3] y, 59.2% male) who underwent primary ACL-R were included. Demographic information and surgery characteristics were collected at 6 weeks postoperatively. Isokinetic knee flexors' and extensors' peak torques were measured at 60° and 240° per second in the concentric mode at 4 and 8 months postoperative. Peak torques and angular velocities were converted to force and linear velocity for calculating maximum isometric force (F0) and the slope of the regression line (F-V slope). RESULTS At 4 and 8 months postoperative, F0 was significantly lower and F-V slope was significantly less steep (less negative) on the operated leg compared with the nonoperated leg for knee extensors (P < .001) and flexors (P < .001-.002). The limb symmetry index calculated using F0 was lower than the limb symmetry indexes assessed at 60° and 240° per second, especially for knee flexors (P < .001). The use of patellar tendon grafts was associated with lower F0 and a less steep F-V slope compared with hamstring tendon grafts (P < .010). CONCLUSION The isokinetic 2-point model assessing the F-V relationship provides additional and relevant insight for evaluating knee muscle strength after ACL-R.
Collapse
Affiliation(s)
- Joffrey Drigny
- Service de Médecine Physique et de Réadaptation, Service de Médecine du Sport, CHU de Caen Normandie, Normandie Université, UNICAEN, INSERM, COMETE, GIP CYCERON, Caen, France
| | - Anaelle Calmès
- Service de Médecine du Sport, CHU de Caen Normandie, Normandie Université, UNICAEN, Caen, France
| | - Emmanuel Reboursière
- Service de Médecine du Sport, CHU de Caen Normandie, Normandie Université, UNICAEN, Caen, France
| | - Christophe Hulet
- Département d'orthopédie et de traumatologie, CHU de Caen Normandie, Normandie Université, UNICAEN, INSERM, COMETE, GIP CYCERON, Caen, France
| | - Antoine Gauthier
- Normandie Université, UNICAEN, INSERM, COMETE, GIP CYCERON, Caen, France
| |
Collapse
|
29
|
Sherman DA, Rush J, Stock MS, D. Ingersoll C, E. Norte G. Neural drive and motor unit characteristics after anterior cruciate ligament reconstruction: implications for quadriceps weakness. PeerJ 2023; 11:e16261. [PMID: 37818333 PMCID: PMC10561646 DOI: 10.7717/peerj.16261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/18/2023] [Indexed: 10/12/2023] Open
Abstract
Purpose The purpose of this investigation was to compare the quality of neural drive and recruited quadriceps motor units' (MU) action potential amplitude (MUAPAMP) and discharge rate (mean firing rate (MFR)) relative to recruitment threshold (RT) between individuals with anterior cruciate ligament reconstruction (ACLR) and controls. Methods Fourteen individuals with ACLR and 13 matched controls performed trapezoidal knee extensor contractions at 30%, 50%, 70%, and 100% of their maximal voluntary isometric contraction (MVIC). Decomposition electromyography (dEMG) and torque were recorded concurrently. The Hoffmann reflex (H-reflex) and central activation ratio (CAR) were acquired bilaterally to detail the proportion of MU pool available and volitionally activated. We examined MUAPAMP-RT and MFR-RT relationships with linear regression and extracted the regression line slope, y-intercept, and RT range for each contraction. Linear mixed effect modelling used to analyze the effect of group and limb on regression line slope and RT range. Results Individuals with ACLR demonstrated lower MVIC torque in the involved limb compared to uninvolved limb. There were no differences in H-reflex or CAR between groups or limbs. The ACLR involved limb demonstrated smaller mass-normalized RT range and slower MU firing rates at high contraction intensities (70% and 100% MVIC) compared to uninvolved and control limbs. The ACLR involved limb also demonstrated larger MU action potentials in the VM compared to the contralateral limb. These differences were largely attenuated with relative RT normalization. Conclusions These results suggest that persistent strength deficits following ACLR may be attributable to a diminished quadriceps motor neuron pool and inability to upregulate the firing rate of recruited MUs.
Collapse
Affiliation(s)
- David A. Sherman
- Live4 Physical Therapy and Wellness, Acton, Massachusetts, United States of America
- Chobanian & Avedisian School of Medicine, Boston University, Boston, Massachusetts, United States of America
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Justin Rush
- Division of Physical Therapy, School of Rehabilitation and Communication Sciences, College of Health Sciences and Professions, Ohio University, Athens, Ohio, United States of America
| | - Matt S. Stock
- Cognition, Neuroplasticity, & Sarcopenia (CNS) Lab, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL, United States of America
| | - Christopher D. Ingersoll
- College of Health Professions and Sciences, School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, Florida, United States of America
| | - Grant E. Norte
- Cognition, Neuroplasticity, & Sarcopenia (CNS) Lab, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL, United States of America
| |
Collapse
|
30
|
Johnson AK, Rodriguez KM, Lepley AS, Palmieri-Smith RM. Quadriceps torque complexity before and after anterior cruciate ligament reconstruction. J Sci Med Sport 2023; 26:533-538. [PMID: 37775409 DOI: 10.1016/j.jsams.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 10/01/2023]
Abstract
OBJECTIVES The purpose of this project was to longitudinally examine quadriceps torque complexity in a group of individuals who tore their ACL and underwent ACL reconstruction. DESIGN Cohort analysis. METHODS Thirty-four individuals completed maximal effort bilateral isometric strength testing after ACL injury but pre-surgery, five months' post-surgery (mid-point of rehabilitation), and when cleared to return to activity. Sample entropy, a nonlinear analysis of quadriceps torque control (complexity), was calculated from maximal isometric contractions. Two 3 × 2 repeated measures analysis of variance were used to examine changes over time and between limbs for quadriceps torque complexity and peak torque. RESULTS Quadriceps peak torque was lower in the involved limb when compared to the uninvolved limb at every time point (p < 0.001). Peak torque of the involved limb was decreased at mid-point of rehabilitation compared to before surgery (p = 0.023) and at mid-point compared to return to activity (p = 0.041). Quadriceps sample entropy was higher in the involved limb compared to the uninvolved limb at the mid-point of rehabilitation (p < 0.001) and return to activity (p < 0.001), indicating greater complexity. The involved limb also demonstrated increased torque sample entropy from pre-surgery to mid-point of rehabilitation (p = 0.023), but not from pre-surgery to return to activity (p = 0.169) or from mid-point to return to activity (p = 0.541). CONCLUSIONS Not only does quadriceps strength decline with ACL reconstruction, but quality of the quadriceps muscle contraction is also compromised. Increased torque complexity experienced in the ACL limb after reconstruction may contribute to impaired physical function in individuals following ACL reconstruction.
Collapse
Affiliation(s)
| | | | | | - Riann M Palmieri-Smith
- School of Kinesiology, University of Michigan, USA; Department of Orthopedic Surgery, University of Michigan, USA
| |
Collapse
|
31
|
Kocaman H, Alkan H, Yetİş M, Canli M, Kuzu Ş, Özüdoğru A. Five-times sit-to-stand test following anterior cruciate ligament surgery: a cross-sectional reliability study. Malawi Med J 2023; 35:177-182. [PMID: 38362290 PMCID: PMC10865063 DOI: 10.4314/mmj.v35i3.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
Aims Patients who have had anterior cruciate ligament reconstruction (ACL-R) should periodically have their muscle strength assessed. The five-times sit-to-stand test (FTSST) can evaluate the muscle strength and balance of the lower extremities. This study's primary purpose was to assess the validity and reliability of the FTSST in patients who have undergone ACL-R. Material and Methods Forty-three people who had undergone ACL-R surgery were included in the study. The study's primary outcome measure, the FTSST, was assessed by two different investigators. Secondary outcome measures were body balance, quadriceps muscle strength, Tegner activity score (TAS), and Lysholm score. Results The FTSST's test-retest and inter-rater reliability were both high (ICC: 0.99). The FTSST also showed a strong statistically significant correlation with all secondary outcome measures, including balance, quadriceps muscle strength, TAS, and Lysholm score (p<0.05). Conclusions According to the study results, the FTSST is a tool-free, simple method for assessing muscle strength and the body balance level, mobility level, and functional status of the knee in patients who have undergone ACL-R surgery.
Collapse
Affiliation(s)
- Hikmet Kocaman
- Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Karamanoglu Mehmetbey University, Karaman, Turkey
| | - Halil Alkan
- Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Muş Alparslan University, Muş, Turkey
| | - Mehmet Yetİş
- Department of Orthopaedics and Traumatology Faculty of Medicine, Kırşehir Ahi Evran University, Kırşehir, Turkey
| | - Mehmet Canli
- School of Physical Therapy and Rehabilitation, Kırşehir Ahi Evran University, Kırşehir, Turkey
| | - Şafak Kuzu
- School of Physical Therapy and Rehabilitation, Kırşehir Ahi Evran University, Kırşehir, Turkey
| | - Anıl Özüdoğru
- School of Physical Therapy and Rehabilitation, Kırşehir Ahi Evran University, Kırşehir, Turkey
| |
Collapse
|
32
|
Thompson XD, Bruce Leicht AS, Hopper HM, Kaur M, Diduch DR, Brockmeier SF, Miller MD, Gwathmey FW, Werner BC, Hart JM. Knee extensor torque-velocity relationships following anterior cruciate ligament reconstruction. Clin Biomech (Bristol, Avon) 2023; 108:106058. [PMID: 37531869 DOI: 10.1016/j.clinbiomech.2023.106058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/19/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND The inherent nature of the torque-velocity relationship is the inverse nature between the velocity of muscle contraction and torque production and is an indication of muscle function. The purpose of this study was to characterize the torque-velocity relationship in the quadriceps following anterior cruciate ligament reconstruction compared to healthy limbs. METHODS 681 participants were included, 493 of which were patients at least four months following anterior cruciate ligament reconstruction (23.2 ± 10.08 yr, 6.6 ± 5.37 months post-surgery) and 188 were healthy participants (21.6 ± 3.77 yr). A subset of 175 post-surgical participants completed a repeated visit (8.1 ± 1.71 months post-surgery). Participants completed isokinetic knee extension at 90°/s and 180°/s. A one-way ANOVA was used to compare torque velocity relationships by limb type (surgical, contralateral, healthy). Paired samples t-tests were conducted to analyze the torque-velocity relationship across limbs and across time. FINDINGS There was a large effect for limb type on torque-velocity (F(2, 1173) = 146.08, p < 0.001, η2 = 0.20). Surgical limbs demonstrated significantly lower torque-velocity relationships compared to the contralateral limbs (ACLR: 0.26 Nm/kg, contralateral:0.55 Nm/kg, p < 0.001, d = 1.18). Healthy limbs had similar torque-velocity relationships bilaterally (dominant limb: 0.48 Nm/kg, non-dominant limb: 0.49 Nm/kg, p = 0.45). The torque velocity relationship for the involved limb significantly increased in magnitude over time (+0.11 Nm/kg, p < 0.001, d = -0.61) while the contralateral limb torque-velocity relationship remained stable over time (0.0 Nm/kg difference, p = 0.60). INTERPRETATION Following surgery, the knee extensors appear to have altered torque-velocity relationships compared to contralateral and healthy limbs. This may indicate a specific target for assessment and rehabilitation following surgery.
Collapse
Affiliation(s)
- Xavier D Thompson
- University of Virginia, Department of Kinesiology, Charlottesville, VA, United States of America.
| | - Amelia S Bruce Leicht
- University of Kentucky, Department of Athletic Training and Clinical Nutrition, Lexington, KY, United States of America
| | - Haleigh M Hopper
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States of America
| | - Mandeep Kaur
- Northern Arizona University, Department of Physical Therapy and Athletic Training, Flagstaff, AZ, United States of America
| | - David R Diduch
- University of Virginia, Department of Orthopedic Surgery, Charlottesville, VA, United States of America
| | - Stephen F Brockmeier
- University of Virginia, Department of Orthopedic Surgery, Charlottesville, VA, United States of America
| | - Mark D Miller
- University of Virginia, Department of Orthopedic Surgery, Charlottesville, VA, United States of America
| | - F Winston Gwathmey
- University of Virginia, Department of Orthopedic Surgery, Charlottesville, VA, United States of America
| | - Brian C Werner
- University of Virginia, Department of Orthopedic Surgery, Charlottesville, VA, United States of America
| | - Joe M Hart
- University of North Carolina School of Medicine, Department of Orthopaedics, Chapel Hill, NC, United States of America
| |
Collapse
|
33
|
Lepley LK, Stoneback L, Macpherson PC, Butterfield TA. Eccentric Exercise as a Potent Prescription for Muscle Weakness After Joint Injury. Exerc Sport Sci Rev 2023; 51:109-116. [PMID: 37093645 PMCID: PMC10330137 DOI: 10.1249/jes.0000000000000319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Lengthening contractions (i.e., eccentric contractions) are capable of uniquely triggering the nervous system and signaling pathways to promote tissue health/growth. This mode of exercise may be particularly potent for patients suffering from muscle weakness after joint injury. Here we provide a novel framework for eccentric exercise as a safe, effective mode of exercise prescription for muscle recovery.
Collapse
Affiliation(s)
| | - Luke Stoneback
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Peter C.D. Macpherson
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Timothy A. Butterfield
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
34
|
Pus K, Paravlic AH, Šimunič B. The use of tensiomyography in older adults: a systematic review. Front Physiol 2023; 14:1213993. [PMID: 37398907 PMCID: PMC10311920 DOI: 10.3389/fphys.2023.1213993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction: Aging of skeletal muscles results in a cascade of events negatively affecting muscle mass, strength, and function, leading to reduced mobility, increased risk of falls, disability, and loss of independence. To date, different methods are used to assess muscle mechanical function, tensiomyography (TMG) being one of them. The aim of this review was twofold: to summarize the evidence-based usefulness of tensiomyography in older adults and to establish reference values for the main tensiomyography parameters in older adults. Methods: The PubMed, Web of Science, SPORTDiscus, and tensiomyography databases were searched from inception until 25 December 2022. Studies investigating older adults (aged 60+ years) that reported tensiomyography-derived parameters such as contraction time (Tc) and/or maximal displacement (Dm) were included. Methodological quality was assessed using the Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. Results: In total, eight studies satisfied the inclusion criteria. Tensiomyography has been used on different groups of older adults, including asymptomatic, master athletes, patients with peripheral arterial disease, and patients with end-stage knee osteoarthritis with a mean age of 71.5 ± 5.38 (55.7% male subjects). The most evaluated were leg muscles such as vastus lateralis (VL), gastrocnemius medialis (GM), and biceps femoris (BF). The present review demonstrates that tensiomyography is used to assess neuromuscular function in asymptomatic and diseased older adults. When compared to asymptomatic individuals, power master athletes, knee osteoarthritis patients, and patients diagnosed with peripheral arterial disease have the shortest Tc in BF, VL, and GM muscles, respectively. On the other hand, endurance master athletes showed the longest Tc in all three evaluated muscles. Less mobile, nursing-home residents showed higher Dm in VL and BF, while lower Dm in GM than the asymptomatic group. The knee osteoarthritis group showed the largest Dm in BF and VL while having the smallest Dm in GM. Conclusion: Tensiomyography can serve as a valuable tool for assessing neuromuscular function in older adults. The method is sensitive to muscle composition, architecture, and (pre) atrophic changes of the skeletal muscles and might be responsive to muscle quality changes in aging and diseased populations. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=402345, identifier CRD42023402345.
Collapse
Affiliation(s)
- Katarina Pus
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
- Department of Health Sciences, Alma Mater Europaea—ECM, Maribor, Slovenia
| | - Armin H. Paravlic
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
- Faculty of Sports Studies, Masaryk University, Brno, Czechia
| | - Boštjan Šimunič
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia
| |
Collapse
|
35
|
Brightwell BD, Samaan MA, Johnson D, Noehren B. Dynamic knee joint stiffness during bilateral lower extremity landing 6 months after ACL reconstruction. Knee 2023; 42:73-81. [PMID: 36913865 PMCID: PMC11923589 DOI: 10.1016/j.knee.2023.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/20/2023] [Accepted: 02/26/2023] [Indexed: 03/15/2023]
Abstract
BACKGROUND Anterior cruciate ligament (ACL) reconstructions are associated with long-term functional impairments. Improved understanding of dynamic knee joint stiffness and work may provide insights to help address these poor outcomes. Defining the relationship between knee stiffness, work and quadriceps muscle symmetry may reveal therapeutic targets. The purposes of this study were to investigate between-limb differences in knee stiffness and work during early phase landing 6-months after an ACL reconstruction. Additionally, we investigated relationships among symmetry of knee joint stiffness and work during early-phase landing and quadriceps muscle performance symmetry. METHODS Twenty-nine participants (17 M, 20.0 ± 5.3 years) were tested 6-months after ACL reconstruction. Motion capture analysis was used to assess between-limb differences in knee stiffness and work during the first 60 ms of a double-limb landing. Quadriceps peak strength and rate of torque development (RTD) were assessed with isometric dynamometry. Paired t-tests and Pearson's product moment correlations were used to determine between-limb differences of knee mechanics and correlations of symmetry respectively. FINDINGS Knee joint stiffness and work were significantly reduced (p < 0.01, p < 0.01) in the surgical limb (0.021 ± 0.01 Nm*(deg*kg*m)-1, -0.085 ± 0.06 J*(kg*m) -1) compared to the uninvolved limb (0.045 ± 0.01 Nm*(deg*kg*m)-1, -0.256 ± 0.10 J*(kg*m) -1). Greater knee stiffness (51 ± 22%) and work (35 ± 21%) symmetry were significantly associated with greater RTD symmetry (44.5 ± 19.4%) (r = 0.43, p = 0.02; r = 0.45, p = 0.01) but not peak torque symmetry (62.9 ± 16.1%) (r = 0.32, p = 0.10; r = 0.34, p = 0.10). INTERPRETATION Dynamic stiffness and energy absorption are lower in the surgical knee during landing from a jump. Therapeutic interventions that target increasing quadriceps RTD may help optimize dynamic stability and energy absorption during landing.
Collapse
Affiliation(s)
- Benjamin D Brightwell
- School of Health Professions, University of Texas Medical Branch, Galveston, TX, United States; College of Health Sciences, University of Kentucky, Lexington, KY, United States; College of Education, University of Kentucky, Lexington, KY, United States.
| | - Michael A Samaan
- College of Education, University of Kentucky, Lexington, KY, United States; Orthopedic Surgery, University of Kentucky, Lexington, KY, United States
| | - Darren Johnson
- Orthopedic Surgery, University of Kentucky, Lexington, KY, United States
| | - Brian Noehren
- College of Health Sciences, University of Kentucky, Lexington, KY, United States; College of Education, University of Kentucky, Lexington, KY, United States; Orthopedic Surgery, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
36
|
Bodkin SG, Pethick JT, Dooley EA, Russell SD, Hart JM. Torque complexity of maximal knee extensor isometric contraction in individuals following anterior cruciate ligament reconstruction. Clin Biomech (Bristol, Avon) 2023; 104:105932. [PMID: 36931165 DOI: 10.1016/j.clinbiomech.2023.105932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/19/2023]
Abstract
BACKGROUND Current rehabilitation goals following anterior cruciate ligament reconstruction are structured around the maximal force generating capabilities of the muscle. Force fluctuations, an index of force control, have been observed to alter post- anterior cruciate ligament reconstruction. The temporal structure, or "complexity" of force fluctuations may provide important insight into the post-operative muscular recovery. The aims of this study were 1) to compare quadriceps torque complexity in anterior cruciate ligament reconstructed patients to the contralateral limb and to healthy, controls and 2) to assess the relationships between torque complexity to patient outcomes. METHODS Data from 120 anterior cruciate ligament reconstructed participants (65 Females, 21.0 ± 8.3 years, 5.96 ± 0.48-months post-surgery) and 95 healthy controls (50 Females, 21.5 ± 2.9 years) were collected. A 30-s knee extensor maximal isometric contraction was completed to calculate approximate entropy, a measure of torque complexity. FINDINGS Approximate entropy was found to decrease throughout the 30-s trial (P < .001, Cohen's d = 1.87 [1.64,2.10]). The anterior cruciate ligament reconstructed limb demonstrated greater approximate entropy compared to the contralateral limb or to healthy controls (P < .001, Cohen's d = 0.64 [0.38,0.90]). approximate entropy at the end of the trial demonstrated weak, negatively relationships with peak torque, patient reported outcome measures, and knee extensor fatigue (r = -0.21 to -0.32, P < .05). INTERPRETATION A greater torque complexity in individuals following anterior cruciate ligament reconstruction was weakly related to lower quadriceps strength, lower subjective function, and quadriceps fatigue resistance. The complexity of force fluctuations during a sustained maximal task may draw clinical insight into the recovery of motor function following anterior cruciate ligament reconstruction.
Collapse
Affiliation(s)
- S G Bodkin
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT, USA.
| | - J T Pethick
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, Essex, UK
| | - E A Dooley
- Depatment of Biomedical Engineering, University of Virginia, Charlottesville, VA. USA
| | - S D Russell
- Depatment of Biomedical Engineering, University of Virginia, Charlottesville, VA. USA
| | - J M Hart
- Deparment of Orthopaedic Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
37
|
Kahn RE, Krater T, Larson JE, Encarnacion M, Karakostas T, Patel NM, Swaroop VT, Dayanidhi S. Resident muscle stem cell myogenic characteristics in postnatal muscle growth impairments in children with cerebral palsy. Am J Physiol Cell Physiol 2023; 324:C614-C631. [PMID: 36622072 PMCID: PMC9942895 DOI: 10.1152/ajpcell.00499.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/13/2022] [Accepted: 12/28/2022] [Indexed: 01/10/2023]
Abstract
Children with cerebral palsy (CP), a perinatal brain alteration, have impaired postnatal muscle growth, with some muscles developing contractures. Functionally, children are either able to walk or primarily use wheelchairs. Satellite cells are muscle stem cells (MuSCs) required for postnatal development and source of myonuclei. Only MuSC abundance has been previously reported in contractured muscles, with myogenic characteristics assessed only in vitro. We investigated whether MuSC myogenic, myonuclear, and myofiber characteristics in situ differ between contractured and noncontractured muscles, across functional levels, and compared with typically developing (TD) children with musculoskeletal injury. Open muscle biopsies were obtained from 36 children (30 CP, 6 TD) during surgery; contracture correction for adductors or gastrocnemius, or from vastus lateralis [bony surgery in CP, anterior cruciate ligament (ACL) repair in TD]. Muscle cross sections were immunohistochemically labeled for MuSC abundance, activation, proliferation, nuclei, myofiber borders, type-1 fibers, and collagen content in serial sections. Although MuSC abundance was greater in contractured muscles, primarily in type-1 fibers, their myogenic characteristics (activation, proliferation) were lower compared with noncontractured muscles. Overall, MuSC abundance, activation, and proliferation appear to be associated with collagen content. Myonuclear number was similar between all muscles, but only in contractured muscles were there associations between myonuclear number, MuSC abundance, and fiber cross-sectional area. Puzzlingly, MuSC characteristics were similar between ambulatory and nonambulatory children. Noncontractured muscles in children with CP had a lower MuSC abundance compared with TD-ACL injured children, but similar myogenic characteristics. Contractured muscles may have an intrinsic deficiency in developmental progression for postnatal MuSC pool establishment, needed for lifelong efficient growth and repair.
Collapse
Affiliation(s)
| | | | - Jill E Larson
- Shirley Ryan AbilityLab, Chicago, Illinois
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | | | - Tasos Karakostas
- Shirley Ryan AbilityLab, Chicago, Illinois
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Neeraj M Patel
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Vineeta T Swaroop
- Shirley Ryan AbilityLab, Chicago, Illinois
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Sudarshan Dayanidhi
- Shirley Ryan AbilityLab, Chicago, Illinois
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
38
|
Keeble AR, Brightwell CR, Latham CM, Thomas NT, Mobley CB, Murach KA, Johnson DL, Noehren B, Fry CS. Depressed Protein Synthesis and Anabolic Signaling Potentiate ACL Tear-Resultant Quadriceps Atrophy. Am J Sports Med 2023; 51:81-96. [PMID: 36475881 PMCID: PMC9813974 DOI: 10.1177/03635465221135769] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Anterior cruciate ligament (ACL) tear (ACLT) leads to protracted quadriceps muscle atrophy. Protein turnover largely dictates muscle size and is highly responsive to injury and loading. Regulation of quadriceps molecular protein synthetic machinery after ACLT has largely been unexplored, limiting development of targeted therapies. PURPOSE To define the effect of ACLT on (1) the activation of protein synthetic and catabolic signaling within quadriceps biopsy specimens from human participants and (2) the time course of alterations to protein synthesis and its molecular regulation in a mouse ACL injury model. STUDY DESIGN Descriptive laboratory study. METHODS Muscle biopsy specimens were obtained from the ACL-injured and noninjured vastus lateralis of young adult humans after an overnight fast (N = 21; mean ± SD, 19 ± 5 years). Mice had their limbs assigned to ACLT or control, and whole quadriceps were collected 6 hours or 1, 3, or 7 days after injury with puromycin injected before tissue collection for assessment of relative protein synthesis. Muscle fiber size and expression and phosphorylation of protein anabolic and catabolic signaling proteins were assessed at the protein and transcript levels (RNA sequencing). RESULTS Human quadriceps showed reduced phosphorylation of ribosomal protein S6 (-41%) in the ACL-injured limb (P = .008), in addition to elevated phosphorylation of eukaryotic initiation factor 2α (+98%; P = .006), indicative of depressed protein anabolic signaling in the injured limb. No differences in E3 ubiquitin ligase expression were noted. Protein synthesis was lower at 1 day (P = .01 vs control limb) and 3 days (P = .002 vs control limb) after ACLT in mice. Pathway analyses revealed shared molecular alterations between human and mouse quadriceps after ACLT. CONCLUSION (1) Global protein synthesis and anabolic signaling deficits occur in the quadriceps in response to ACL injury, without notable changes in measured markers of muscle protein catabolism. (2) Importantly, these deficits occur before the onset of significant atrophy, underscoring the need for early intervention. CLINICAL RELEVANCE These findings suggest that blunted protein anabolism as opposed to increased catabolism likely mediates quadriceps atrophy after ACL injury. Thus, future interventions should aim to restore muscle protein anabolism rapidly after ACLT.
Collapse
Affiliation(s)
- Alexander R. Keeble
- Department of Physiology, College of Medicine, University of Kentucky
- Center for Muscle Biology, University of Kentucky
| | - Camille R. Brightwell
- Center for Muscle Biology, University of Kentucky
- Department of Athletic Training and Clinical Nutrition, University of Kentucky
| | - Christine M. Latham
- Center for Muscle Biology, University of Kentucky
- Department of Athletic Training and Clinical Nutrition, University of Kentucky
| | - Nicholas T. Thomas
- Center for Muscle Biology, University of Kentucky
- Department of Athletic Training and Clinical Nutrition, University of Kentucky
| | - C. Brooks Mobley
- Department of Physiology, College of Medicine, University of Kentucky
- Center for Muscle Biology, University of Kentucky
| | - Kevin A. Murach
- Center for Muscle Biology, University of Kentucky
- Department of Physical Therapy, University of Kentucky
| | - Darren L. Johnson
- Department of Orthopaedic Surgery & Sports Medicine, University of Kentucky
| | - Brian Noehren
- Center for Muscle Biology, University of Kentucky
- Department of Physical Therapy, University of Kentucky
- Department of Orthopaedic Surgery & Sports Medicine, University of Kentucky
| | - Christopher S. Fry
- Center for Muscle Biology, University of Kentucky
- Department of Athletic Training and Clinical Nutrition, University of Kentucky
| |
Collapse
|
39
|
Time, graft, sex, geographic location, and isokinetic speed influence the degree of quadriceps weakness after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc 2022; 30:3367-3376. [PMID: 35224649 DOI: 10.1007/s00167-022-06906-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
PURPOSE Although quadriceps weakness after ACL reconstruction (ACLR) is well documented, the magnitude of reported weakness varies considerably. Such variation raises the possibility that certain patients may be more susceptible to quadriceps weakness after ACLR. This meta-analysis identified factors explaining between-study variability in quadriceps weakness post-ACLR. METHODS Studies between 2010 and 2020 were screened for the following criteria: human subjects, unilateral ACLR, and strength reported both for the ACLR leg and the uninjured or healthy-control leg. 122 studies met the criteria, resulting in 303 and 152 Cohen's d effect sizes (ESs) comparing ACLR legs to uninjured legs (a total of 4135 ACLR subjects) and to healthy controls (a total of 1,507 ACLR subjects vs. 1-193 healthy controls), respectively. Factors (time, graft, sex, activity, mass/height, geographic area, concomitant injury, and type of strength testing) that may affect study ES were examined. RESULTS Meta-regressions indicated an association between time post-ACLR and study ESs (P < 0.001) and predicted full recovery (ES = 0) to occur at 54-59 months post-ACLR. When compared to uninjured legs, patients with patellar tendon autografts had greater deficits than studies using hamstring tendon autografts (P = 0.023). When compared to uninjured legs, studies including only males reported greater deficits than studies combining males and females (P = 0.045); whereas when compared to healthy controls, studies combining males and females reported greater deficits than studies with males (P = 0.013). When compared to controls, studies from USA reported greater deficits than studies from Europe (P = 0.003). Increased isokinetic-testing speed was associated with smaller deficits (P ≤ 0.025). Less than 25% of patients achieved a between-limb symmetry in quadriceps strength > 90% between 6 and 12 months post-ACLR. CONCLUSION Time post-surgery, graft, sex, geographic location, and isokinetic speed influenced the magnitude of post-ACLR quadriceps weakness. Patients with patellar tendon autografts demonstrated greater between-limb asymmetry in quadriceps strength, while female strength deficits were underestimated to a greater extent. A slower isokinetic speed provided a more sensitive assessment of quadriceps strength post-ACLR. The overwhelming majority of patients were returning to sport with significantly impaired quadriceps strength. LEVEL OF EVIDENCE III.
Collapse
|
40
|
Rahmati M, McCarthy JJ, Malakoutinia F. Myonuclear permanence in skeletal muscle memory: a systematic review and meta-analysis of human and animal studies. J Cachexia Sarcopenia Muscle 2022; 13:2276-2297. [PMID: 35961635 PMCID: PMC9530508 DOI: 10.1002/jcsm.13043] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/24/2022] [Accepted: 06/13/2022] [Indexed: 12/09/2022] Open
Abstract
One aspect of skeletal muscle memory is the ability of a previously trained muscle to hypertrophy more rapidly following a period of detraining. Although the molecular basis of muscle memory remains to be fully elucidated, one potential mechanism thought to mediate muscle memory is the permanent retention of myonuclei acquired during the initial phase of hypertrophic growth. However, myonuclear permanence is debated and would benefit from a meta-analysis to clarify the current state of the field for this important aspect of skeletal muscle plasticity. The objective of this study was to perform a meta-analysis to assess the permanence of myonuclei associated with changes in physical activity and ageing. When available, the abundance of satellite cells (SCs) was also considered given their potential influence on changes in myonuclear abundance. One hundred forty-seven peer-reviewed articles were identified for inclusion across five separate meta-analyses; (1-2) human and rodent studies assessed muscle response to hypertrophy; (3-4) human and rodent studies assessed muscle response to atrophy; and (5) human studies assessed muscle response with ageing. Skeletal muscle hypertrophy was associated with higher myonuclear content that was retained in rodents, but not humans, with atrophy (SMD = -0.60, 95% CI -1.71 to 0.51, P = 0.29, and MD = 83.46, 95% CI -649.41 to 816.32, P = 0.82; respectively). Myonuclear and SC content were both lower following atrophy in humans (MD = -11, 95% CI -0.19 to -0.03, P = 0.005, and SMD = -0.49, 95% CI -0.77 to -0.22, P = 0.0005; respectively), although the response in rodents was affected by the type of muscle under consideration and the mode of atrophy. Whereas rodent myonuclei were found to be more permanent regardless of the mode of atrophy, atrophy of ≥30% was associated with a reduction in myonuclear content (SMD = -1.02, 95% CI -1.53 to -0.51, P = 0.0001). In humans, sarcopenia was accompanied by a lower myonuclear and SC content (MD = 0.47, 95% CI 0.09 to 0.85, P = 0.02, and SMD = 0.78, 95% CI 0.37-1.19, P = 0.0002; respectively). The major finding from the present meta-analysis is that myonuclei are not permanent but are lost during periods of atrophy and with ageing. These findings do not support the concept of skeletal muscle memory based on the permanence of myonuclei and suggest other mechanisms, such as epigenetics, may have a more important role in mediating this aspect of skeletal muscle plasticity.
Collapse
Affiliation(s)
- Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human SciencesLorestan UniversityKhorramabadIran
| | - John J. McCarthy
- Department of PhysiologyUniversity of KentuckyLexingtonKYUSA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKYUSA
| | - Fatemeh Malakoutinia
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human SciencesLorestan UniversityKhorramabadIran
| |
Collapse
|
41
|
Toth MJ, Savage PD, Voigt TB, Anair BM, Bunn JY, Smith IB, Tourville TW, Blankstein M, Stevens-Lapsley J, Nelms NJ. Effects of total knee arthroplasty on skeletal muscle structure and function at the cellular, organellar, and molecular levels. J Appl Physiol (1985) 2022; 133:647-660. [PMID: 35900327 PMCID: PMC9467475 DOI: 10.1152/japplphysiol.00323.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022] Open
Abstract
Total knee arthroplasty (TKA) is an important treatment option for knee osteoarthritis (OA) that improves self-reported pain and physical function, but objectively measured physical function typically remains reduced for years after surgery due, in part, to precipitous reductions in lower extremity neuromuscular function early after surgery. The present study examined intrinsic skeletal muscle adaptations during the first 5 weeks post-TKA to identify skeletal muscle attributes that may contribute to functional disability. Patients with advanced stage knee OA were evaluated prior to TKA and 5 weeks after surgery. Biopsies of the vastus lateralis were performed to assess muscle fiber size, contractility, and mitochondrial content, along with assessments of whole muscle size and function. TKA was accompanied by marked reductions in whole muscle size and strength. At the fiber (i.e., cellular) level, TKA caused profound muscle atrophy that was approximately twofold higher than that observed at the whole muscle level. TKA markedly reduced muscle fiber force production, contractile velocity, and power production, with force deficits persisting in myosin heavy chain (MHC) II fibers after expression relative to fiber size. Molecular level assessments suggest reduced strongly bound myosin-actin cross bridges and myofilament lattice stiffness as a mechanism underlying reduced force per unit fiber size. Finally, marked reductions in mitochondrial content were apparent and more prominent in the subsarcolemmal compartment. Our study represents the most comprehensive evaluation of skeletal muscle cellular adaptations to TKA and uncovers novel effects of TKA on muscle fiber size and intrinsic contractility early after surgery that may contribute to functional disability.NEW & NOTEWORTHY We report the first evaluation of the effects of total knee arthroplasty (TKA) on skeletal muscle at the cellular and subcellular levels. We found marked effects of TKA to cause skeletal muscle fiber atrophy and contractile dysfunction in older adults, as well as molecular mechanisms underlying impaired contractility. Our results reveal profound effects of TKA on muscle fiber size and intrinsic contractility early after surgery that may contribute to functional disability.
Collapse
Affiliation(s)
- Michael J Toth
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont
- Department of Orthopedics and Rehabilitation, College of Medicine, University of Vermont, Burlington, Vermont
| | - Patrick D Savage
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Thomas B Voigt
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Bradley M Anair
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Janice Y Bunn
- Department of Medical Biostatistics, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, Vermont
- Department of Mathematics and Statistics, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, Vermont
| | - Isaac B Smith
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Timothy W Tourville
- Department of Orthopedics and Rehabilitation, College of Medicine, University of Vermont, Burlington, Vermont
- Department of Rehabilitation and Movement Science, College of Nursing and Health Sciences, University of Vermont, Burlington, Vermont
| | - Michael Blankstein
- Department of Orthopedics and Rehabilitation, College of Medicine, University of Vermont, Burlington, Vermont
| | - Jennifer Stevens-Lapsley
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- VA Eastern Colorado Geriatric Research Education and Clinical Center, Aurora, Colorado
| | - Nathaniel J Nelms
- Department of Orthopedics and Rehabilitation, College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
42
|
Beynnon BD, Pius AK, Tourville TW, Endres NK, Failla MJ, Choquette RH, DeSarno M, Toth MJ. The Duration of Thigh Tourniquet Use Associated With Anterior Cruciate Ligament Reconstruction Does Not Produce Cellular-Level Contractile Dysfunction of the Quadriceps Muscle at 3 Weeks After Surgery. Am J Sports Med 2022; 50:2925-2934. [PMID: 35980007 DOI: 10.1177/03635465221115823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Anterior cruciate ligament (ACL) trauma and ACL reconstruction (ACLR) are associated with the loss of strength and function of the muscles that span the knee joint. The underlying mechanism associated with this is not completely understood. PURPOSE To determine whether the duration of tourniquet use during ACLR has an effect on knee extensor muscle contractile function and size at the cellular (ie, fiber) level 3 weeks after surgery and at the whole-muscle level at 6 months after surgery. STUDY DESIGN Descriptive laboratory study and case series; Level of evidence, 4. METHODS Study participants sustained an acute, first-time ACL injury. All participants underwent ACLR with the use of a tourniquet placed in a standardized location on the thigh; the tourniquet was inflated (pressure range, 250-275 mm Hg), and the time of tourniquet use during surgery was documented. Participants were evaluated 1 week before surgery (to measure patient function, strength, and subjective outcome with the Knee injury and Osteoarthritis Outcome Score [KOOS] and International Knee Documentation Committee [IKDC] score), at 3 weeks after ACLR surgery (to obtain muscle biopsy specimens of the vastus lateralis and assess muscle fiber cross-sectional area, contractile function, and mitochondrial content and morphometry), and at 6 months after ACLR (to evaluate patient function, strength, and subjective outcomes via KOOS and IKDC scores). Data were acquired on both the injured/surgical limb and the contralateral, normal side to facilitate the use of a within-subjects study design. Results are based on additional analysis of data acquired from previous research that had common entry criteria, treatments, and follow-up protocols. RESULTS At 3 weeks after ACLR, the duration of tourniquet use at the time of surgery did not explain the variation in single-muscle fiber contractile function or cross-sectional area (myosin heavy chain [MHC] I and II fibers) or subsarcolemmal and intermyofibrillar mitochondrial content or morphometry. At 6 months after ACLR, the duration of tourniquet use was not associated with the peak isometric and isokinetic torque measurements, patient function, or patient-reported outcomes. CONCLUSION The duration of tourniquet use at the time of ACLR surgery did not explain variation in muscle fiber size, contractile function, or mitochondrial content at 3 weeks after surgery or strength of the quadriceps musculature or patient-reported function or quality of life at 6-month follow-up.
Collapse
Affiliation(s)
- Bruce D Beynnon
- Department Orthopedics and Rehabilitation, Robert Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
- Department of Mechanical Engineering, University of Vermont, Burlington, Vermont, USA
- Department of Electrical and Biomedical Engineering, University of Vermont, Burlington, Vermont, USA
| | - Alexa K Pius
- Department Orthopedics and Rehabilitation, Robert Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Timothy W Tourville
- Department Orthopedics and Rehabilitation, Robert Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
- Department of Rehabilitation and Movement Science, College of Nursing and Health Sciences, University of Vermont, Burlington, Vermont, USA
| | - Nathan K Endres
- Department Orthopedics and Rehabilitation, Robert Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Mathew J Failla
- Department Orthopedics and Rehabilitation, Robert Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
- Department of Rehabilitation and Movement Science, College of Nursing and Health Sciences, University of Vermont, Burlington, Vermont, USA
| | - Rebecca H Choquette
- Department Orthopedics and Rehabilitation, Robert Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Mike DeSarno
- Department of Medical Biostatistics, Robert Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Michael J Toth
- Department Orthopedics and Rehabilitation, Robert Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
- Department of Medicine, Robert Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
- Department of Molecular Physiology and Biophysics, Robert Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
43
|
Tourville TW, Voigt TB, Choquette RH, Failla MJ, Endres NK, Slauterbeck JR, Beynnon BD, Toth MJ. Skeletal muscle cellular contractile dysfunction after anterior cruciate ligament reconstruction contributes to quadriceps weakness at 6-month follow-up. J Orthop Res 2022; 40:727-737. [PMID: 33969521 PMCID: PMC8578585 DOI: 10.1002/jor.25065] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/18/2021] [Accepted: 04/26/2021] [Indexed: 02/04/2023]
Abstract
Muscle dysfunction following anterior cruciate ligament reconstruction (ACLR) may evolve from alterations in muscle contractility at the myofilament protein level. Using a prospective, within-subject case-control design, we evaluated cellular-level contractility, cross-sectional area (CSA), and myosin heavy chain (MHC) isoform expression on single muscle fibers 3 weeks post ACLR, and evaluated their relationship to whole muscle strength and patient-oriented outcomes 6 months post operation. Biopsies of the vastus lateralis were performed 3 weeks post ACLR in 11 subjects (5 females, mean age ± SD = 24.7 ± 6.5 years, height = 172.7 ± 8.2 cm, mass = 75.7 ± 12.5 kg) following first-time ACL rupture and whole muscle strength and self-reported pain, function, and quality of life assessed 6 months post ACLR. At 3 weeks post ACLR, force production was reduced (p < 0.01) in MHC I (-36%) and IIA (-48%) fibers compared with the non-injured leg. When force production was expressed relative to CSA to account for fiber atrophy, reductions remained in MHC IIA fibers (-40%; p < 0.001), but MHC I fibers showed only a trend toward being lower (-13%; p = 0.09). Finally, skeletal muscle fiber functional deficits at 3 weeks post ACLR were associated with whole muscle weakness and less favorable patient-reported outcomes at 6-month follow-up. Thus, ACLR promotes early cellular contractile dysfunction that may contribute to decreased whole muscle strength and patient function, and increased patient-reported symptoms, at 6-month follow-up.
Collapse
Affiliation(s)
- Timothy W. Tourville
- Department of Rehabilitation and Movement Science, University of Vermont, Burlington, VT, USA.,Department of Orthopaedics and Rehabilitation, University of Vermont, Burlington, VT, USA
| | - Thomas B. Voigt
- Department of Medicine, University of Vermont, Burlington, VT, USA
| | - Rebecca H. Choquette
- Department of Orthopaedics and Rehabilitation, University of Vermont, Burlington, VT, USA
| | - Mathew J. Failla
- Department of Rehabilitation and Movement Science, University of Vermont, Burlington, VT, USA
| | - Nathan K. Endres
- Department of Orthopaedics and Rehabilitation, University of Vermont, Burlington, VT, USA
| | - James R. Slauterbeck
- Department of Orthopaedics and Rehabilitation, University of Vermont, Burlington, VT, USA
| | - Bruce D. Beynnon
- Department of Orthopaedics and Rehabilitation, University of Vermont, Burlington, VT, USA
| | - Michael J. Toth
- Department of Orthopaedics and Rehabilitation, University of Vermont, Burlington, VT, USA,Department of Medicine, University of Vermont, Burlington, VT, USA,Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, USA
| |
Collapse
|
44
|
Arthrogenic Muscle Inhibition Following Anterior Cruciate Ligament Injury. J Sport Rehabil 2022; 31:694-706. [PMID: 35168201 DOI: 10.1123/jsr.2021-0128] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/06/2021] [Accepted: 10/28/2021] [Indexed: 11/18/2022]
Abstract
Arthrogenic muscle inhibition (AMI) is a common impairment in individuals who sustain an anterior cruciate ligament (ACL) injury. The AMI causes decreased muscle activation, which impairs muscle strength, leading to aberrant movement biomechanics. The AMI is often resistant to traditional rehabilitation techniques, which leads to persistent neuromuscular deficits following ACL reconstruction. To better treat AMI following ACL injury and ACL reconstruction, it is important to understand the specific neural pathways involved in AMI pathogenesis, as well as the changes in muscle function that may impact movement biomechanics and long-term structural alterations to joint tissue. Overall, AMI is a critical factor that limits optimal rehabilitation outcomes following ACL injury and ACL reconstruction. This review discusses the current understanding of the: (1) neural pathways involved in the AMI pathogenesis following ACL injury; (2) consequence of AMI on muscle function, joint biomechanics, and patient function; and (3) development of posttraumatic osteoarthritis. Finally, the authors review the evidence for interventions specifically used to target AMI following ACL injury.
Collapse
|
45
|
Vlok A, van Dyk N, Coetzee D, Grindem H. Exercise Descriptors That Determine Muscle Strength Gains Are Missing From Reported Anterior Cruciate Ligament Reconstruction Rehabilitation Programs: A Scoping Review of 117 Exercises in 41 Studies. J Orthop Sports Phys Ther 2022; 52:100-112. [PMID: 34784243 DOI: 10.2519/jospt.2022.10651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To (1) describe which strength training exercise descriptors are reported in anterior cruciate ligament reconstruction (ACLR) rehabilitation research, and (2) compare the current standards of reporting ACLR strength training exercise descriptors to international best-practice strength training guidelines. DESIGN Scoping review. LITERATURE SEARCH We searched the MEDLINE, PsycINFO, CINAHL, SPORTDiscus, Academic Search, ERIC, Health Source: Nursing, Health Source: Consumer, MasterFILE, and Africa-Wide Information databases. STUDY SELECTION CRITERIA We included level I to IV studies of ACLR rehabilitation programs with 1 or more reported strength training exercise descriptors. We used a predefined list of 19 exercise descriptors, based on the American College of Sports Medicine (ACSM) exercise recommendations, the Consensus on Exercise Reporting Template (CERT), and the Toigo and Boutellier exercise descriptor framework. DATA SYNTHESIS Completeness and the standard of reporting exercise descriptors in ACLR rehabilitation programs were assessed by means of international best-practice strength training standards. RESULTS We extracted data on 117 exercises from 41 studies. A median of 7 of the 19 possible exercise descriptors were reported (range, 3-16). Reporting of specific exercise descriptors varied across studies, from 95% (name of the strength training exercise) to 5% (exercise aim, exercise order). On average, 46%, 35%, and 43% of the exercise descriptors included in the ACSM, CERT, and Toigo and Boutellier guidelines were reported, respectively. CONCLUSION Key exercise descriptors for muscle strength gains are not reported in studies on ACLR rehabilitation. Only the exercise name, number of exercises, frequency, and experimental period were reported in most of the studies. J Orthop Sports Phys Ther 2022;52(2):100-112. Epub 16 Nov 2021. doi:10.2519/jospt.2022.10651.
Collapse
|
46
|
Davi SM, Ahn A, White MS, Butterfield TA, Kosmac K, Kwon OS, Lepley LK. Long-Lasting Impairments in Quadriceps Mitochondrial Health, Muscle Size, and Phenotypic Composition Are Present After Non-invasive Anterior Cruciate Ligament Injury. Front Physiol 2022; 13:805213. [PMID: 35153832 PMCID: PMC8832056 DOI: 10.3389/fphys.2022.805213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionDespite rigorous rehabilitation aimed at restoring muscle health, anterior cruciate ligament (ACL) injury is often hallmarked by significant long-term quadriceps muscle weakness. Derangements in mitochondrial function are a common feature of various atrophying conditions, yet it is unclear to what extent mitochondria are involved in the detrimental sequela of quadriceps dysfunction after ACL injury. Using a preclinical, non-invasive ACL injury rodent model, our objective was to explore the direct effect of an isolated ACL injury on mitochondrial function, muscle atrophy, and muscle phenotypic transitions.MethodsA total of 40 male and female, Long Evans rats (16-week-old) were exposed to non-invasive ACL injury, while 8 additional rats served as controls. Rats were euthanized at 3, 7, 14, 28, and 56 days after ACL injury, and vastus lateralis muscles were extracted to measure the mitochondrial respiratory control ratio (RCR; state 3 respiration/state 4 respiration), mitochondrial reactive oxygen species (ROS) production, fiber cross sectional area (CSA), and fiber phenotyping. Alterations in mitochondrial function and ROS production were detected using two-way (sex:group) analyses of variance. To determine if mitochondrial characteristics were related to fiber atrophy, individual linear mixed effect models were run by sex.ResultsMitochondria-derived ROS increased from days 7 to 56 after ACL injury (30–100%, P < 0.05), concomitant with a twofold reduction in RCR (P < 0.05). Post-injury, male rats displayed decreases in fiber CSA (days 7, 14, 56; P < 0.05), loss of IIa fibers (day 7; P < 0.05), and an increase in IIb fibers (day 7; P < 0.05), while females displayed no changes in CSA or phenotyping (P > 0.05). Males displayed a positive relationship between state 3 respiration and CSA at days 14 and 56 (P < 0.05), while females only displayed a similar trend at day 14 (P = 0.05).ConclusionLong-lasting impairments in quadriceps mitochondrial health are present after ACL injury and play a key role in the dysregulation of quadriceps muscle size and composition. Our preclinical data indicate that using mitoprotective therapies may be a potential therapeutic strategy to mitigate alterations in muscle size and characteristic after ACL injury.
Collapse
Affiliation(s)
- Steven M. Davi
- Department of Kinesiology, University of Connecticut, Storrs, CT, United States
- Department of Orthopedic Surgery, John A. Feagin Jr Sports Medicine Fellowship, Keller Army Hospital, West Point, NY, United States
| | - Ahram Ahn
- Department of Kinesiology, University of Connecticut, Storrs, CT, United States
| | - McKenzie S. White
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
| | - Timothy A. Butterfield
- Center for Muscle Biology, University of Kentucky, Lexington, KY, United States
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, United States
| | - Kate Kosmac
- Center for Muscle Biology, University of Kentucky, Lexington, KY, United States
- Department of Physical Therapy, University of Kentucky, Lexington, KY, United States
| | - Oh Sung Kwon
- Department of Kinesiology, University of Connecticut, Storrs, CT, United States
- Department of Orthopaedic Surgery and Center on Aging, University of Connecticut School of Medicine, Farmington, CT, United States
- *Correspondence: Oh Sung Kwon,
| | - Lindsey K. Lepley
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
- Lindsey K. Lepley,
| |
Collapse
|
47
|
Hunt ER, Davi SM, Parise CN, Clark K, Van Pelt DW, Confides AL, Buckholts KA, Jacobs CA, Lattermann C, Dupont-Versteegden EE, Butterfield TA, Lepley LK. Temporal disruption of neuromuscular communication and muscle atrophy following noninvasive ACL injury in rats. J Appl Physiol (1985) 2022; 132:46-57. [PMID: 34762530 PMCID: PMC8742731 DOI: 10.1152/japplphysiol.00070.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Many patients with anterior cruciate ligament (ACL) injuries have persistent quadriceps muscle atrophy, even after considerable time in rehabilitation. Understanding the factors that regulate muscle mass, and the time course of atrophic events, is important for identifying therapeutic interventions. With a noninvasive animal model of ACL injury, a longitudinal study was performed to elucidate key parameters underlying quadriceps muscle atrophy. Male Long-Evans rats were euthanized at 6, 12, 24, or 48 h or 1, 2, or 4 wk after ACL injury that was induced via tibial compression overload; controls were not injured. Vastus lateralis muscle size was determined by wet weight and fiber cross-sectional area (CSA). Evidence of disrupted neuromuscular communication was assessed via the expression of neural cell adhesion molecule (NCAM) and genes associated with denervation and neuromuscular junction instability. Abundance of muscle RING-finger protein-1 (MuRF-1), muscle atrophy F-box (MAFbx), and 45 s pre-rRNA along with 20S proteasome activity were determined to investigate mechanisms related to muscle atrophy. Finally, muscle damage-related parameters were assessed by measuring IgG permeability, centronucleation, CD68 mRNA, and satellite cell abundance. When compared with controls, we observed a greater percentage of NCAM-positive fibers at 6 h postinjury, followed by higher MAFbx abundance 48 h postinjury, and higher 20S proteasome activity at 1 wk postinjury. A loss of muscle wet weight, smaller fiber CSA, and the elevated expression of run-related transcription factor 1 (Runx1) were also observed at the 1 wk postinjury timepoint relative to controls. There also were no differences observed in any damage markers. These results indicate that alterations in neuromuscular communication precede the upregulation of atrophic factors that regulate quadriceps muscle mass early after noninvasive ACL injury.NEW & NOTEWORTHY A novel preclinical model of ACL injury was used to establish that acute disruptions in neuromuscular communication precede atrophic events. These data help to establish the time course of muscle atrophy after ACL injury, suggesting that clinical care may benefit from the application of acute neurogenic interventions and early gait reloading strategies.
Collapse
Affiliation(s)
- Emily R. Hunt
- 1Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Steven M. Davi
- 2Department of Kinesiology, University of Connecticut, Storrs, Connecticut
| | - Cassandra N. Parise
- 3Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, Kentucky
| | - Kaleigh Clark
- 4Department of Physical Therapy, University of Kentucky, Lexington, Kentucky,5Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Douglas W. Van Pelt
- 4Department of Physical Therapy, University of Kentucky, Lexington, Kentucky,5Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Amy L. Confides
- 4Department of Physical Therapy, University of Kentucky, Lexington, Kentucky,5Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Kimberly A. Buckholts
- 3Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, Kentucky
| | - Cale A. Jacobs
- 6Department of Orthopedic Surgery, University of Kentucky, Lexington, Kentucky
| | - Christian Lattermann
- 1Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Esther E. Dupont-Versteegden
- 4Department of Physical Therapy, University of Kentucky, Lexington, Kentucky,5Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Timothy A. Butterfield
- 3Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, Kentucky,5Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | | |
Collapse
|
48
|
Parkinson AO, Apps CL, Morris JG, Barnett CT, Lewis MGC. The Calculation, Thresholds and Reporting of Inter-Limb Strength Asymmetry: A Systematic Review. J Sports Sci Med 2021; 20:594-617. [PMID: 35321131 PMCID: PMC8488821 DOI: 10.52082/jssm.2021.594] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022]
Abstract
The prevalence of inter-limb strength differences is well documented in the literature however, there are inconsistencies related to measurement and reporting, and the normative values and effects associated with inter-limb asymmetry. Therefore, the aims of this systematic review were to: 1) assess the appropriateness of existing indices for the calculation of asymmetry, 2) interrogate the evidence basis for literature reported thresholds used to define asymmetry and 3) summarise normative levels of inter-limb strength asymmetry and their effects on injury and performance. To conduct this systematic review, scientific databases (PubMed, Scopus, SPORTDiscus and Web of Science) were searched and a total of 3,594 articles were retrieved and assessed for eligibility and article quality. The robustness of each identified asymmetry index was assessed, and the evidence-basis of the identified asymmetry thresholds was appraised retrospectively using the references provided. Fifty-three articles were included in this review. Only four of the twelve identified indices were unaffected by the limitations associated with selecting a reference limb. Eighteen articles applied a threshold to original research to identify "abnormal" asymmetry, fifteen of which utilised a threshold between 10-15%, yet this threshold was not always supported by appropriate evidence. Asymmetry scores ranged between and within populations from approximate symmetry to asymmetries larger than 15%. When reporting the effects of strength asymmetries, increased injury risk and detriments to performance were often associated with larger asymmetry, however the evidence was inconsistent. Limitations of asymmetry indices should be recognised, particularly those that require selection of a reference limb. Failure to reference the origin of the evidence for an asymmetry threshold reinforces doubt over the use of arbitrary thresholds, such as 10-15%. Therefore, an individual approach to defining asymmetry may be necessary to refine robust calculation methods and to establish appropriate thresholds across various samples and methodologies that enable appropriate conclusions to be drawn.
Collapse
Affiliation(s)
- Amy O Parkinson
- Nottingham Trent University, School of Science and Technology, Nottingham, United Kingdom
| | - Charlotte L Apps
- Nottingham Trent University, School of Science and Technology, Nottingham, United Kingdom
| | - John G Morris
- Nottingham Trent University, School of Science and Technology, Nottingham, United Kingdom
| | - Cleveland T Barnett
- Nottingham Trent University, School of Science and Technology, Nottingham, United Kingdom
| | - Martin G C Lewis
- Nottingham Trent University, School of Science and Technology, Nottingham, United Kingdom
- University of Derby, School of Human Sciences, Derby, United Kingdom
| |
Collapse
|
49
|
Larson D, Vu V, Ness BM, Wellsandt E, Morrison S. A Multi-Systems Approach to Human Movement after ACL Reconstruction: The Musculoskeletal System. Int J Sports Phys Ther 2021; 17:27-46. [PMID: 35237463 PMCID: PMC8856762 DOI: 10.26603/001c.29456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several negative adaptations to the musculoskeletal system occur following anterior cruciate ligament (ACL) injury and ACL reconstruction (ACLR) such as arthrogenic muscle inhibition, decreased lower extremity muscle size, strength, power, as well as alterations to bone and cartilage. These changes have been associated with worse functional outcomes, altered biomechanics, and increased risk for re-injury and post-traumatic osteoarthritis. After ACL injury and subsequent ACLR, examination and evaluation of the musculoskeletal system is paramount to guiding clinical decision making during the rehabilitation and the return to sport process. The lack of access many clinicians have to devices necessary for gold standard assessment of muscle capacities and force profiles is often perceived as a significant barrier to best practices. Fortunately, testing for deficits can be accomplished with methods available to the clinician without access to costly equipment or time-intensive procedures. Interventions to address musculoskeletal system deficits can be implemented with a periodized program. This allows for restoration of physical capacities by adequately developing and emphasizing physical qualities beginning with mobility and movement, and progressing to work capacity and neuromuscular re-education, strength, explosive strength, and elastic or reactive strength. Additional considerations to aid in addressing strength deficits will be discussed such as neuromuscular electrical stimulation, volume and intensity, eccentric training, training to failure, cross-education, and biomechanical considerations. The American Physical Therapy Association adopted a new vision statement in 2013 which supported further development of the profession's identity by promoting the movement system, yet validation of the movement system has remained a challenge. Application of a multi-physiologic systems approach may offer a unique understanding of the musculoskeletal system and its integration with other body systems after ACLR. The purpose of this clinical commentary is to highlight important musculoskeletal system considerations within a multi-physiologic system approach to human movement following ACLR. LEVEL OF EVIDENCE 5.
Collapse
Affiliation(s)
| | - Vien Vu
- Samaritan Athletic Medicine; Oregon State University Athletics Department
| | - Brandon M Ness
- Doctor of Physical Therapy Program, Tufts University School of Medicine
| | - Elizabeth Wellsandt
- Division of Physical Therapy Education, University of Nebraska Medical Center; Department of Orthopaedic Surgery and Rehabilitation, University of Nebraska Medical Center
| | - Scot Morrison
- PhysioPraxis PLLC; Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona
| |
Collapse
|
50
|
Noehren B, Hardy PA, Andersen A, Brightwell CR, Fry JL, Vandsburger MH, Thompson KL, Fry CS. T1ρ imaging as a non-invasive assessment of collagen remodelling and organization in human skeletal muscle after ligamentous injury. J Physiol 2021; 599:5229-5242. [PMID: 34714551 PMCID: PMC8764566 DOI: 10.1113/jp281964] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/12/2021] [Indexed: 11/08/2022] Open
Abstract
Dysregulation and fibrosis of the extracellular matrix (ECM) in skeletal muscle is a consequence of injury. Current ECM assessment necessitates muscle biopsies to evaluate alterations to the muscle ECM, which is often not practical in humans. The goal of this study was to evaluate the potential of a magnetic resonance imaging sequence that quantifies T1ρ relaxation time to predict ECM collagen composition and organization. T1ρ imaging was performed and muscle biopsies obtained from the involved and non-involved vastus lateralis muscle on 27 subjects who had an anterior cruciate ligament (ACL) tear. T1ρ times were quantified via monoexponential decay curve fitted to a series of T1ρ-weighted images. Several ECM indices, including collagen content and organization, were obtained using immunohistochemistry and histochemistry in addition to hydroxyproline. Model selection with multiple linear regression was used to evaluate the relationships between T1ρ times and ECM composition. Additionally, the ACL-deficient and healthy limb were compared to determine sensitivity of T1ρ to detect early adaptations in the muscle ECM following injury. We show that T1ρ relaxation time was strongly associated with collagen unfolding (t = 4.093, P = 0.0007) in the ACL-deficient limb, and collagen 1 abundance in the healthy limb (t = 2.75, P = 0.014). In addition, we show that T1ρ relaxation time is significantly longer in the injured limb, coinciding with significant differences in several indices of collagen content and remodelling in the ACL-deficient limb. These results support the use of T1ρ to evaluate ECM composition in skeletal muscle in a non-invasive manner. KEY POINTS: Dysregulation and fibrotic transformation of the skeletal muscle extracellular matrix (ECM) is a common pathology associated with injury and ageing. Studies of the muscle ECM in humans have necessitated the use of biopsies, which are impractical in many settings. Non-invasive MRI T1ρ relaxation time was validated to predict ECM collagen composition and organization with aligned T1ρ imaging and biopsies of the vastus lateralis in the healthy limb and anterior cruciate ligament (ACL)-deficient limb of 27 subjects. T1ρ relaxation time was strongly associated with collagen abundance and unfolding in the ACL-deficient limb, and T1ρ relaxation time was strongly associated with total collagen abundance in the healthy limb. T1ρ relaxation time was significantly longer in the ACL-deficient limb, coinciding with significant increases in several indices of muscle collagen content and remodelling supporting the use of T1ρ to non-invasively evaluate ECM composition and pathology in skeletal muscle.
Collapse
Affiliation(s)
- Brian Noehren
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
- Department of Orthopaedic Surgery and Sports Medicine, University of Kentucky, Lexington, KY, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Peter A Hardy
- Department of Radiology, University of Kentucky, Lexington, KY, USA
- Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky, Lexington, KY, USA
| | - Anders Andersen
- Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky, Lexington, KY, USA
- Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY, USA
| | - Camille R Brightwell
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Jean L Fry
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Moriel H Vandsburger
- Department of Bioengineering, University of California at Berkeley, Berkeley, CA, USA
| | | | - Christopher S Fry
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| |
Collapse
|