1
|
Zhao Y, Peng H, Sun L, Tong J, Cui C, Bai Z, Yan J, Qin D, Liu Y, Wang J, Wu X, Li B. The application of small intestinal submucosa in tissue regeneration. Mater Today Bio 2024; 26:101032. [PMID: 38533376 PMCID: PMC10963656 DOI: 10.1016/j.mtbio.2024.101032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
The distinctive three-dimensional architecture, biological functionality, minimal immunogenicity, and inherent biodegradability of small intestinal submucosa extracellular matrix materials have attracted considerable interest and found wide-ranging applications in the domain of tissue regeneration engineering. This article presents a comprehensive examination of the structure and role of small intestinal submucosa, delving into diverse preparation techniques and classifications. Additionally, it proposes approaches for evaluating and modifying SIS scaffolds. Moreover, the advancements of SIS in the regeneration of skin, bone, heart valves, blood vessels, bladder, uterus, and urethra are thoroughly explored, accompanied by their respective future prospects. Consequently, this review enhances our understanding of the applications of SIS in tissue and organ repair and keeps researchers up-to-date with the latest research advancements in this area.
Collapse
Affiliation(s)
- Yifan Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Hongyi Peng
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Lingxiang Sun
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Jiahui Tong
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Chenying Cui
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Ziyang Bai
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Jingyu Yan
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Danlei Qin
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Yingyu Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Jue Wang
- The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiuping Wu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Bing Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| |
Collapse
|
2
|
Wang Y, Lu X, Lu J, Hernigou P, Jin F. The role of macrophage polarization in tendon healing and therapeutic strategies: Insights from animal models. Front Bioeng Biotechnol 2024; 12:1366398. [PMID: 38486869 PMCID: PMC10937537 DOI: 10.3389/fbioe.2024.1366398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
Tendon injuries, a common musculoskeletal issue, usually result in adhesions to the surrounding tissue, that will impact functional recovery. Macrophages, particularly through their M1 and M2 polarizations, play a pivotal role in the inflammatory and healing phases of tendon repair. In this review, we explore the role of macrophage polarization in tendon healing, focusing on insights from animal models. The review delves into the complex interplay of macrophages in tendon pathology, detailing how various macrophage phenotypes contribute to both healing and adhesion formation. It also explores the potential of modulating macrophage activity to enhance tendon repair and minimize adhesions. With advancements in understanding macrophage behavior and the development of innovative biomaterials, this review highlights promising therapeutic strategies for tendon injuries.
Collapse
Affiliation(s)
- Yicheng Wang
- Department of Pediatric Orthopedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Lu
- Shanghai Bio-lu Biomaterials Co., Ltd., Shanghai, China
- Shanghai Technology Innovation Center of Orthopedic Biomaterials, Shanghai, China
| | - Jianxi Lu
- Shanghai Bio-lu Biomaterials Co., Ltd., Shanghai, China
- Shanghai Technology Innovation Center of Orthopedic Biomaterials, Shanghai, China
| | - Philippe Hernigou
- University Paris East, Orthopedic Hospital Geoffroy Saint Hilaire, Paris, France
| | - Fangchun Jin
- Department of Pediatric Orthopedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Jiang Y, Zhang LL, Zhang F, Bi W, Zhang P, Yu XJ, Rao SL, Wang SH, Li Q, Ding C, Jin Y, Liu ZM, Yang HT. Dual human iPSC-derived cardiac lineage cell-seeding extracellular matrix patches promote regeneration and long-term repair of infarcted hearts. Bioact Mater 2023; 28:206-226. [PMID: 37274446 PMCID: PMC10236375 DOI: 10.1016/j.bioactmat.2023.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/06/2023] Open
Abstract
Human pluripotent stem cell-derived cardiovascular progenitor cells (hCVPCs) and cardiomyocytes (hCMs) possess therapeutic potential for infarcted hearts; however, their efficacy needs to be enhanced. Here we tested the hypotheses that the combination of decellularized porcine small intestinal submucosal extracellular matrix (SIS-ECM) with hCVPCs, hCMs, or dual of them (Mix, 1:1) could provide better therapeutic effects than the SIS alone, and dual hCVPCs with hCMs would exert synergic effects in cardiac repair. The data showed that the SIS patch well supported the growth of hCVPCs and hCMs. Epicardially implanted SIS-hCVPC, SIS-hCM, or SIS-Mix patches at 7-day post-myocardial infarction significantly ameliorated functional worsening, ventricular dilation and scar formation at 28- and 90-day post-implantation in C57/B6 mice, whereas the SIS only mildly improved function at 90-day post-implantation. Moreover, the SIS and SIS-cell patches improved vascularization and suppressed MI-induced cardiomyocyte hypertrophy and expression of Col1 and Col3, but only the SIS-hCM and the SIS-Mix patches increased the ratio of collagen III/I fibers in the infarcted hearts. Further, the SIS-cell patches stimulated cardiomyocyte proliferation via paracrine action. Notably, the SIS-Mix had better improvements in cardiac function and structure, engraftments, and cardiomyocyte proliferation. Proteomic analysis showed distinct biological functions of exclusive proteins secreted from hCVPCs and hCMs, and more exclusive proteins secreted from co-cultivated hCVPCs and hCMs than mono-cells involving in various functional processes essential for infarct repair. These findings are the first to demonstrate the efficacy and mechanisms of mono- and dual-hCVPC- and hCM-seeding SIS-ECM for repair of infarcted hearts based on the side-by-side comparison.
Collapse
Affiliation(s)
- Yun Jiang
- Translational Medical Center for Stem Cell Therapy & Institute for Heart Failure and Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, PR China
| | - Ling-Ling Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, PR China
| | - Fan Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Wei Bi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, PR China
| | - Peng Zhang
- Translational Medical Center for Stem Cell Therapy & Institute for Heart Failure and Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, PR China
| | - Xiu-Jian Yu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, PR China
| | - Sen-Le Rao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, PR China
| | - Shi-Hui Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, PR China
| | - Qiang Li
- Translational Medical Center for Stem Cell Therapy & Institute for Heart Failure and Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, PR China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Yin Jin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, PR China
| | - Zhong-Min Liu
- Translational Medical Center for Stem Cell Therapy & Institute for Heart Failure and Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Huang-Tian Yang
- Translational Medical Center for Stem Cell Therapy & Institute for Heart Failure and Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, PR China
- Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, PR China
| |
Collapse
|
4
|
Kato A, Go T, Otsuki Y, Yokota N, Soo CS, Misaki N, Yajima T, Yokomise H. Perpendicular implantation of porcine trachea extracellular matrix for enhanced xenogeneic scaffold surface epithelialization in a canine model. Front Surg 2023; 9:1089403. [PMID: 36713663 PMCID: PMC9877415 DOI: 10.3389/fsurg.2022.1089403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/26/2022] [Indexed: 01/13/2023] Open
Abstract
Objective The availability of clinically applied medical materials in thoracic surgery remains insufficient, especially materials for treating tracheal defects. Herein, the potential of porcine extracellular matrix (P-ECM) as a new airway reconstruction material was explored by xenotransplanting it into a canine trachea. Methods P-ECM was first transplanted into the buttocks of Narc Beagle dogs (n = 3) and its overall immuno-induced effects were evaluated. Subsequently, nine dogs underwent surgery to create a tracheal defect that was 1 × 2 cm. In group A, the P-ECM was implanted parallel to the tracheal axis (n = 3), whereas in group B the P-ECM was implanted perpendicular to the tracheal axis (n = 6). The grafts were periodically observed by bronchoscopy and evaluated postoperatively at 1 and 3 months through macroscopic and microscopic examinations. Immunosuppressants were not administered. Statistical evaluation was performed for Bronchoscopic stenosis rate, graft epithelialization rate, shrinkage rate and ECM live-implantation rate. Results No sign of P-ECM rejection was observed after its implantation in the buttocks. Bronchoscopic findings showed no improvement concerning stenosis in group A until 3 months after surgery; epithelialization of the graft site was not evident, and the ECM site appeared scarred and faded. In contrast, stenosis gradually improved in group B, with continuous epithelium within the host tissues and P-ECM. Histologically, the graft site contracted longitudinally and no epithelialization was observed in group A, whereas full epithelialization was observed on the P-ECM in group B. No sign of cartilage regeneration was confirmed in both groups. No statistically significant differences were found in bronchoscopic stenosis rate, shrinkage rate and ECM live-implantation rate, but graft epithelialization rate showed a statistically significant difference (G-A; sporadic (25%) 3, vs. G-B; full covered (100%) 3; p = 0.047). Conclusions P-ECM can support full re-epithelialization without chondrocyte regeneration, with perpendicular implantation facilitating epithelialization of the ECM. Our results showed that our decellularized tracheal matrix holds clinical potential as a biological xenogeneic material for airway defect repair.
Collapse
|
5
|
Albahrawy M, Abouelnasr K, Mosbah E, Zaghloul A, Abass M. Acellular bovine pericardium as a biological dressing for treatment of cutaneous wounds of the distal limb in donkeys (Equus Asinus). Vet Res Commun 2022; 47:587-597. [DOI: 10.1007/s11259-022-10014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
AbstractThis research was performed to determine the impact of repeated topical dressing with acellular bovine pericardium (ABP) on healing distal limb wounds in donkeys. Twelve male clinically healthy donkeys were subjected to general anesthesia, and full-thickness wounds of six cm2 (2 × 3 cm) were created on the middle dorsolateral surface of the metacarpi. Two defects were made on each donkey’s forelimbs; the right limb was considered a control wound, and the left one was considered a treated wound. Moreover, the control wounds were irrigated with saline every three days postoperatively and bandaged with a standard dressing. The treated wounds were covered with ABP dressings. The ABP dressing was reapplied thrice at 7-, 14- and 21-days post-wound induction. In addition, the wound healing process was monitored clinically, histopathologically, and immunohistochemically of tissue as growth factor-β1, epidermal growth factor receptor, and vascular endothelial growth factor. Besides, the gene expression profile of angiogenic and myofibroblastic genes was applied as vascular endothelial growth factor-A, collagen type 3α1, fibroblast growth factor 7, and the transforming growth factor-β1.The results revealed that the wounds treated with ABP healed more quickly than the control wounds. Additionally, the mean days required for healing were significantly shorter in the ABP-treated wounds (p < 0.05; 69.5 ± 1.6) compared to control wounds (86.3 ± 3). Furthermore, immunohistochemical and gene expression analyses were significantly improved in ABP wounds than in control wounds. In conclusion, ABP is considered a natural biomaterial and promotes the healing of distal limb wounds in donkeys if applied weekly during the first three-week post-wound induction.
Collapse
|
6
|
Zhou H, Shen Y, Zhang Z, Liu X, Zhang J, Chen J. Comparison of outcomes of ventral hernia repair using different meshes: a systematic review and network meta-analysis. Hernia 2022; 26:1561-1571. [PMID: 35925502 DOI: 10.1007/s10029-022-02652-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/14/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE We conducted a network meta-analysis to evaluate potential differences in patient outcomes when different meshes, especially biological meshes, were used for ventral hernia repair. METHODS PubMed, Embase, Cochrane Library, and Clinical Trials.gov databases were searched for studies comparing biological meshes with biological or synthetic meshes for ventral hernia repair. The outcomes were hernia recurrence rate, surgical site infection, and seroma. We performed a two-step network meta-analysis to investigate the outcomes of several biological meshes: non-cross-linked human acellular dermal matrix (NCHADM), non-cross-linked porcine ADM (NCPADM), non-cross-linked bovine ADM (NCBADM), cross-linked porcine ADM (CPADM), and porcine small intestinal submucosa (PSIS). RESULTS From 6304 publications, 23 studies involving 2603 patients were finally included. We found no differences between meshes in recurrence at 1-year follow-up and in surgical site infection rate. NCBADM was associated with the lowest recurrence rate and the lowest surgical site infection rate. NCHADM implantation was associated with the lowest rate of seroma. PSIS was associated with a higher risk of seroma than NCHADM (pooled risk ratio 3.89, 95% confidence interval 1.13-13.39) and NCPADM (RR 3.42, 95% CI 1.29-9.06). CONCLUSIONS Our network meta-analysis found no differences in recurrence rate or surgical site infection among different biological meshes. The incidence of postoperative seroma was higher with PSIS than with acellular dermal matrices. We observed large heterogeneity in the studies of ventral hernia repair using biological meshes, and, therefore, well-designed randomized clinical trials are needed.
Collapse
Affiliation(s)
- H Zhou
- The Third Clinical Medical School of Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 100020, China
| | - Y Shen
- Department of Hernia and Abdominal Wall Surgery, Beijing Chaoyang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 100020, China
| | - Z Zhang
- The Third Clinical Medical School of Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 100020, China
| | - X Liu
- Department of Hernia and Abdominal Wall Surgery, Beijing Chaoyang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 100020, China
| | - J Zhang
- Department of General Surgery, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China.
| | - J Chen
- Department of Hernia and Abdominal Wall Surgery, Beijing Chaoyang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
7
|
Woodard DA, Kim G, Nilsson KR. Risk profiles and outcomes of patients receiving antibacterial cardiovascular implantable electronic device envelopes: A retrospective analysis. World J Cardiol 2022; 14:177-186. [PMID: 35432770 PMCID: PMC8968457 DOI: 10.4330/wjc.v14.i3.177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/08/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cardiovascular implantable electronic devices (CIEDs) are implanted in an increasing number of patients each year, which has led to an increase in the risk of CIED infection. Antibacterial CIED envelopes locally deliver antibiotics to the implant site over a short-term period and have been shown to reduce the risk of implant site infection. These envelopes are derived from either biologic or non-biologic materials. There is a paucity of data examining patient risk profiles and outcomes from using these envelope materials in the clinical setting and comparing these results to patients receiving no envelope with their CIED implantation.
AIM To evaluate risk profiles and outcomes of patients who underwent CIED procedures with an antibacterial envelope or no envelope.
METHODS After obtaining Internal Review Board approval, the records of consecutive patients who underwent a CIED implantation procedure by a single physician between March 2017 and December 2019 were retrospectively collected from our hospital. A total of 248 patients within this period were identified and reviewed through 12 mo of follow up. The CIED procedures used either no envelope (n = 57), a biologic envelope (CanGaroo®, Aziyo Biologics) that was pre-hydrated by the physician with vancomycin and gentamicin (n = 89), or a non-biologic envelope (Tyrx™, Medtronic) that was coated with a resorbable polymer containing the drug substances rifampin and minocycline by the manufacturer (n = 102). Patient selection for receiving either no envelope or an envelope (and which envelope to use) was determined by the treating physician. Statistical analyses were performed between the 3 groups (CanGaroo, Tyrx, and no envelope), and also between the No Envelope and Any Envelope groups by an independent, experienced biostatistician.
RESULTS On average, patients who received any envelope (biologic or non-biologic) were younger (70.7 ± 14.0 vs 74.9 ± 10.6, P = 0.017), had a greater number of infection risk factors (81.2% vs 49.1%, P < 0.001), received more high-powered devices (37.2% vs 5.8%, P = 0.004), and were undergoing more reoperative procedures (47.1% vs 0.0%, P < 0.001) than patients who received no envelope. Between the two envelopes, biologic envelopes tended to be used more often in higher risk patients (84.3% vs 78.4%) and reoperative procedures (62.9% vs 33.3%) than non-biologic envelopes. The rate of CIED implant site pocket infection was low (any envelope 0.5% vs no envelope 0.0%) and was statistically equivalent between the two envelope groups. Other reported adverse events (lead dislodgement, lead or pocket revision, device migration or erosion, twiddler’s syndrome, and erythema/fever) were low and statistically equivalent between groups (biologic 2.2%, non-biologic 3.9%, no envelope 1.8%).
CONCLUSION CIED infection rates for biologic and non-biologic antibacterial envelopes are similar. Antibacterial envelopes may benefit patients who are higher risk for infection, however additional studies are warranted to confirm this.
Collapse
Affiliation(s)
- David A Woodard
- Department of Cardiology, Piedmont Heart Institute, Athens, GA 30606, United States
| | - Grace Kim
- Department of Medicine, Augusta University-University of Georgia Medical Partnership, Athens, GA 30606, United States
| | - Kent R Nilsson
- Department of Cardiology, Piedmont Heart Institute, Athens, GA 30606, United States
- Department of Medicine, Augusta University-University of Georgia Medical Partnership, Athens, GA 30606, United States
| |
Collapse
|
8
|
Zhao P, Fang Q, Gao D, Wang Q, Cheng Y, Ao Q, Wang X, Tian X, Zhang Y, Tong H, Yan N, Hu X, Fan J. Klotho functionalization on vascular graft for improved patency and endothelialization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 133:112630. [DOI: 10.1016/j.msec.2021.112630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 10/19/2022]
|
9
|
Edwards JH, Jones GL, Herbert A, Fisher J, Ingham E. Integration and functional performance of a decellularised porcine superflexor tendon graft in an ovine model of anterior cruciate ligament reconstruction. Biomaterials 2021; 279:121204. [PMID: 34736146 PMCID: PMC8683753 DOI: 10.1016/j.biomaterials.2021.121204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 10/10/2021] [Accepted: 10/20/2021] [Indexed: 12/30/2022]
Abstract
The objective was to evaluate the performance of decellularised porcine superflexor tendon (pSFT) as an anterior cruciate ligament (ACL) reconstruction device. The ACL of adult sheep was reconstructed with decellularised pSFT or ovine allograft SFT and animals sacrificed at 4, 12 and 26 weeks (n = 4 per group) for biological evaluation and 26 weeks (n = 6) for biomechanical evaluation of the grafts. Both grafts showed good in vivo performance with no major differences at macroscopic evaluation post euthanasia. Histopathology revealed an inflammatory reaction to both grafts at 4 weeks, which reduced by 26 weeks. There was advanced cellular ingrowth from 12 weeks, ligamentisation of intra-articular grafts, ossification and formation of Sharpey's fibers at the graft/bone junctions. Immunohistochemistry showed that at 4 and 12 weeks, the host response was dominated by CD163+ M2 macrophages and a cell infiltrate comprising α-SMA + myofibroblasts, CD34+ and CD271+ progenitor cells. At 26 weeks the biomechanical properties of decellularised pSFT and oSFT grafts were comparable, with all grafts failing in the intra-articular region. This study provides new insight into constructive remodelling of tendons used for ACL replacement and evidence of integration and functional performance of a decellularised xenogeneic tendon with potential as an alternative for ACL reconstruction.
Collapse
Affiliation(s)
- Jennifer Helen Edwards
- Institute of Medical and Biological Engineering, School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, UK; Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT, UK.
| | - Gemma Louise Jones
- Institute of Medical and Biological Engineering, School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Anthony Herbert
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT, UK.
| | - John Fisher
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT, UK.
| | - Eileen Ingham
- Institute of Medical and Biological Engineering, School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
10
|
Xiao X, Wang M, Qiu X, Ling W, Chu X, Huang Y, Li T. Construction of extracellular matrix-based 3D hydrogel and its effects on cardiomyocytes. Exp Cell Res 2021; 408:112843. [PMID: 34563515 DOI: 10.1016/j.yexcr.2021.112843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/03/2021] [Accepted: 09/22/2021] [Indexed: 01/26/2023]
Abstract
Some discoveries resulted from 2-dimensional (2D) cultured cardiac cells have been disqualified in animal testing and later clinical trials. Extracellular matrix (ECM) plays a vital role in cardiac homeostasis, cardiac ECM (cECM)-based 3D cell cultures can mimics the physiological and pathological conditions in vivo closely, it is hopeful of addressing this challenge. Construction of cECM-based 3-dimensional (3D) hydrogel (cECM3DH) and its effects on cell behaviors were studied here. The results indicated that cellular compartments could be efficiently removed from heart tissue via sodium dodecyl sulfonate (SDS)- and Triton X-100-mediated decellularization, remaining the natural fibrous network structure and major proteins. 3D hydrogel consisted of 1 × 107 cells/mL cells and 75% cECM could promote the proliferation and anti-apoptosis ability of human embryonic kidney (HEK)-293T cells. 0.25% trypsin or 0.20% collagenase was suitable to retrieve these cells from 3D hydrogel for further researches. Compared with 2D culture system, cECM3DH could significantly increase the proportion of GATA 4+ cardiomyocytes (CMs) derived from heart tissue of neonatal mouse or induced differentiation of embryonic stem cells (ESCs) (P < 0.05) The expression levels of mature genes including cTnT, JCN, CaV1.2, MYL2, CASQ2, NCX1, and Cx43 of these CMs in adult pig cECM-based 3D hydrogel (APcECM3DH) were significantly higher than that in 2D culture system and in newborn piglet cECM-based 3D hydrogel (NPcECM3DH), respectively (P < 0.05). Therefore, cECM3DH supports the generation of primary CMs and ESC-derived CMs, APcECM3DH was more conducive to promoting CM maturation, which contributes to building 3D model for pathogenesis exploration, drug screening, and regenerative medicine of heart diseases.
Collapse
Affiliation(s)
- Xiong Xiao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China.
| | - Mingyu Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China; Institute of Laboratory Animal Science, Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, China.
| | - Xiaoyan Qiu
- Department of Animal Husbandry Engineering, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China.
| | - Wenhui Ling
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China.
| | - Xinyue Chu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China.
| | - Yun Huang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China.
| | - Tong Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
11
|
Guo X, Lv H, Fan Z, Duan K, Liang J, Zou L, Xue H, Huang D, Wang Y, Tan M. Effects of hypoxia on Achilles tendon repair using adipose tissue-derived mesenchymal stem cells seeded small intestinal submucosa. J Orthop Surg Res 2021; 16:570. [PMID: 34579755 PMCID: PMC8474963 DOI: 10.1186/s13018-021-02713-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/08/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The study was performed to evaluate the feasibility of utilizing small intestinal submucosa (SIS) scaffolds seeded with adipose-derived mesenchymal stem cells (ADMSCs) for engineered tendon repairing rat Achilles tendon defects and to compare the effects of preconditioning treatments (hypoxic vs. normoxic) on the tendon healing. METHODS Fifty SD rats were randomized into five groups. Group A received sham operation (blank control). In other groups, the Achilles tendon was resected and filled with the original tendon (Group B, autograft), cell-free SIS (Group C), or SIS seeded with ADMSCs preconditioned under normoxic conditions (Group D) or hypoxic conditions (Group E). Samples were collected 4 weeks after operation and analyzed by histology, immunohistochemistry, and tensile testing. RESULTS Histologically, compared with Groups C and D, Group E showed a significant improvement in extracellular matrix production and a higher compactness of collagen fibers. Group E also exhibited a significantly higher peak tensile load than Groups D and C. Additionally, Group D had a significantly higher peak load than Group C. Immunohistochemically, Group E exhibited a significantly higher percentage of MKX + cells than Group D. The proportion of ADMSCs simultaneously positive for both MKX and CM-Dil observed from Group E was also greater than that in Group D. CONCLUSIONS In this animal model, the engineered tendon grafts created by seeding ADMSCs on SIS were superior to cell-free SIS. The hypoxic precondition further improved the expression of tendon-related genes in the seeded cells and increased the rupture load after grafting in the Achilles tendon defects.
Collapse
Affiliation(s)
- Xing Guo
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Provincial Lab of Orthopaedic Engineering, Luzhou, 646000, Sichuan, China
| | - Hui Lv
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Provincial Lab of Orthopaedic Engineering, Luzhou, 646000, Sichuan, China
| | - ZhongWei Fan
- Department of Orthopaedic Surgery, The First People's Hospital of Neijiang, Neijiang, 641100, Sichuan, China
| | - Ke Duan
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Provincial Lab of Orthopaedic Engineering, Luzhou, 646000, Sichuan, China
| | - Jie Liang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Provincial Lab of Orthopaedic Engineering, Luzhou, 646000, Sichuan, China
| | - LongFei Zou
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Provincial Lab of Orthopaedic Engineering, Luzhou, 646000, Sichuan, China
| | - Hao Xue
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Provincial Lab of Orthopaedic Engineering, Luzhou, 646000, Sichuan, China
| | - DengHua Huang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Provincial Lab of Orthopaedic Engineering, Luzhou, 646000, Sichuan, China
| | - YuanHui Wang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Provincial Lab of Orthopaedic Engineering, Luzhou, 646000, Sichuan, China
| | - MeiYun Tan
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Sichuan Provincial Lab of Orthopaedic Engineering, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
12
|
Zhukauskas R, Fischer DN, Deister C, Alsmadi NZ, Mercer D. A Comparative Study of Porcine Small Intestine Submucosa and Cross-Linked Bovine Type I Collagen as a Nerve Conduit. JOURNAL OF HAND SURGERY GLOBAL ONLINE 2021; 3:282-288. [PMID: 35415568 PMCID: PMC8991869 DOI: 10.1016/j.jhsg.2021.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/22/2021] [Indexed: 12/18/2022] Open
Abstract
Purpose We compared 2 commercially available nerve conduits—the Axoguard Nerve Connector, made of porcine small intestine submucosa (SIS), and the NeuraGen Nerve Guide, made of cross-linked bovine type I collagen (Col)—using a rodent model at 4 weeks, specifically focusing on subchronic host responses to the implants. Methods A unilateral 5-mm sciatic nerve defect was created in 18 male Lewis rats and was repaired with SIS or Col conduits. After 4 weeks, histological evaluations of morphology, collagen content, macrophage polarization, vascularization, axonal regeneration, and myelination were conducted. To achieve a blinded examination, an independent qualified pathologist evaluated the images that were stained with hematoxylin-eosin, α-smooth muscle actin, and Masson trichrome stains. Results The results showed a dominant macrophage type 2 (M2) response in the SIS group and a dominant macrophage type 1 (M1) response in the Col group. The SIS group showed deeper implant vascularization and fibroblast ingrowth than the Col group. Collagen deposition was higher within the lumen of the Col group than the SIS group. All Col conduits were surrounded by a colocalized staining of Masson trichrome and α-smooth muscle actin, forming a capsule-like structure. Conclusion Distinctive histological features were identified for each conduit at the cellular level. The SIS conduits had a significantly higher number of host macrophages expressing M2 surface marker CD163, and the Col conduits showed a predominance of host macrophages expressing the M1 surface marker CD80. Data suggest that promoting the M2 response for tissue engineering and regenerative medicine is associated with a remodeling response. In addition, an independent analysis revealed an encapsulation-like appearance around all Col conduits, which is similar to what is seen in breast implant capsules. Clinical relevance The biomaterial choice for conduit material can play an important role in the host tissue response, with the potential to impact adverse events and patient outcomes.
Collapse
Affiliation(s)
| | | | | | | | - Deana Mercer
- Department of Orthopaedics and Rehabilitation, University of New Mexico School of Medicine, Albuquerque, NM
| |
Collapse
|
13
|
Hou N, Xu X, Lv D, Lu Y, Li J, Cui P, Ma R, Luo X, Tang Y, Zheng Y. Tissue-engineered esophagus: recellular esophageal extracellular matrix based on perfusion-decellularized technique and mesenchymal stem cells. Biomed Mater 2021; 16. [PMID: 34384057 DOI: 10.1088/1748-605x/ac1d3d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 08/12/2021] [Indexed: 02/08/2023]
Abstract
Perfusion-decellularization was an interesting technique to generate a natural extracellular matrix (ECM) with the complete three-dimensional anatomical structure and vascular system. In this study, the esophageal ECM (E-ECM) scaffold was successfully constructed by perfusion-decellularized technique through the vascular system for the first time. And the physicochemical and biological properties of the E-ECM scaffolds were evaluated. The bone marrow mesenchymal stem cells (BMSCs) were induced to differentiate into myocytesin vitro. E-ECM scaffolds reseeded with myocytes were implanted into the greater omenta to obtain recellular esophageal ECM (RE-ECM), a tissue-engineered esophagus. The results showed that the cells of the esophagi were completely and uniformly removed after perfusion. E-ECM scaffolds retained the original four-layer organizational structure and vascular system with excellent biocompatibility. And the E-ECM scaffolds had no significant difference in mechanical properties comparing with fresh esophagi,p> 0.05. Immunocytochemistry showed positive expression ofα-sarcomeric actin, suggesting that BMSCs had successfully differentiated into myocytes. Most importantly, we found that in the RE-ECM muscularis, the myocytes regenerated linearly and continuously and migrated to the deep, and the tissue vascularization was obvious. The cell survival rates at 1 week and 2 weeks were 98.5 ± 3.0% and 96.4 ± 4.6%, respectively. It was demonstrated that myocytes maintained the ability for proliferation and differentiation for at least 2 weeks, and the cell activity was satisfactory in the RE-ECM. It follows that the tissue-engineered esophagus based on perfusion-decellularized technique and mesenchymal stem cells has great potential in esophageal repair. It is proposed as a promising alternative for reconstruction of esophageal defects in the future.
Collapse
Affiliation(s)
- Nan Hou
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China.,Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan Province, People's Republic of China
| | - Xiaoli Xu
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan Province, People's Republic of China.,Department of Otorhinolaryngology, University-Town Hospital, Chongqing Medical University, Chongqing Municipality, People's Republic of China
| | - Die Lv
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan Province, People's Republic of China
| | - Yanqing Lu
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan Province, People's Republic of China
| | - Jingzhi Li
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan Province, People's Republic of China
| | - Pengcheng Cui
- Department of Otorhinolaryngology Head and Neck Surgery, Tangdu Hospital, Chinese People's Liberation Army Air Force Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Ruina Ma
- Department of Otorhinolaryngology Head and Neck Surgery, Tangdu Hospital, Chinese People's Liberation Army Air Force Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Xiaoming Luo
- Department of Biomedical Science, Chengdu Medical College, Chengdu, Sichuan Province, People's Republic of China
| | - Ying Tang
- Department of Pathology, First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan Province, People's Republic of China
| | - Yun Zheng
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| |
Collapse
|
14
|
Lee S, Lee HS, Chung JJ, Kim SH, Park JW, Lee K, Jung Y. Enhanced Regeneration of Vascularized Adipose Tissue with Dual 3D-Printed Elastic Polymer/dECM Hydrogel Complex. Int J Mol Sci 2021; 22:ijms22062886. [PMID: 33809175 PMCID: PMC7999751 DOI: 10.3390/ijms22062886] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
A flexible and bioactive scaffold for adipose tissue engineering was fabricated and evaluated by dual nozzle three-dimensional printing. A highly elastic poly (L-lactide-co-ε-caprolactone) (PLCL) copolymer, which acted as the main scaffolding, and human adipose tissue derived decellularized extracellular matrix (dECM) hydrogels were used as the printing inks to form the scaffolds. To prepare the three-dimensional (3D) scaffolds, the PLCL co-polymer was printed with a hot melting extruder system while retaining its physical character, similar to adipose tissue, which is beneficial for regeneration. Moreover, to promote adipogenic differentiation and angiogenesis, adipose tissue-derived dECM was used. To optimize the printability of the hydrogel inks, a mixture of collagen type I and dECM hydrogels was used. Furthermore, we examined the adipose tissue formation and angiogenesis of the PLCL/dECM complex scaffold. From in vivo experiments, it was observed that the matured adipose-like tissue structures were abundant, and the number of matured capillaries was remarkably higher in the hydrogel–PLCL group than in the PLCL-only group. Moreover, a higher expression of M2 macrophages, which are known to be involved in the remodeling and regeneration of tissues, was detected in the hydrogel–PLCL group by immunofluorescence analysis. Based on these results, we suggest that our PLCL/dECM fabricated by a dual 3D printing system will be useful for the treatment of large volume fat tissue regeneration.
Collapse
Affiliation(s)
- Soojin Lee
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (S.L.); (J.J.C.); (S.H.K.)
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea;
| | - Hyun Su Lee
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea;
| | - Justin J. Chung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (S.L.); (J.J.C.); (S.H.K.)
| | - Soo Hyun Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (S.L.); (J.J.C.); (S.H.K.)
- NBIT, KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
| | - Jong Woong Park
- Department of Orthopedic Surgery, Korea University Anam Hospital, Seoul 02841, Korea;
| | - Kangwon Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea
- Correspondence: (K.L.); (Y.J.)
| | - Youngmee Jung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (S.L.); (J.J.C.); (S.H.K.)
- School of Electrical and Electronic Engineering, YU-KIST Institute, Yonsei University, Seoul 03722, Korea
- Correspondence: (K.L.); (Y.J.)
| |
Collapse
|
15
|
Human Bronchial Epithelial Cell Growth on Homologous Versus Heterologous Tissue Extracellular Matrix. J Surg Res 2021; 263:215-223. [PMID: 33691244 DOI: 10.1016/j.jss.2021.01.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Extracellular matrix (ECM) bioscaffolds produced by decellularization of source tissue have been effectively used for numerous clinical applications. However, decellularized tracheal constructs have been unsuccessful due to the immediate requirement of a functional airway epithelium on surgical implantation. ECM can be solubilized to form hydrogels that have been shown to support growth of many different cell types. The purpose of the present study is to compare the ability of airway epithelial cells to attach, form a confluent monolayer, and differentiate on homologous (trachea) and heterologous (urinary bladder) ECM substrates for potential application in full tracheal replacement. MATERIALS AND METHODS Porcine tracheas and urinary bladders were decellularized. Human bronchial epithelial cells (HBECs) were cultured under differentiation conditions on acellular tracheal ECM and urinary bladder matrix (UBM) bioscaffolds and hydrogels and were assessed by histology and immunolabeling for markers of ciliation, goblet cell formation, and basement membrane deposition. RESULTS Both trachea and urinary bladder tissues were successfully decellularized. HBEC formed a confluent layer on both trachea and UBM scaffolds and on hydrogels created from these bioscaffolds. Cells grown on tracheal and UBM hydrogels, but not on bioscaffolds, showed positive-acetylated tubulin staining and the presence of mucus-producing goblet cells. Collagen IV immunolabeling showed basement membrane deposition by these cells on the surface of the hydrogels. CONCLUSIONS ECM hydrogels supported growth and differentiation of HBEC better than decellularized ECM bioscaffolds and show potential utility as substrates for promotion of a mature respiratory epithelium for regenerative medicine applications in the trachea.
Collapse
|
16
|
Allen KB, Adams JD, Badylak SF, Garrett HE, Mouawad NJ, Oweida SW, Parikshak M, Sultan PK. Extracellular Matrix Patches for Endarterectomy Repair. Front Cardiovasc Med 2021; 8:631750. [PMID: 33644135 PMCID: PMC7904872 DOI: 10.3389/fcvm.2021.631750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
Patch repair is the preferred method for arteriotomy closure following femoral or carotid endarterectomy. Choosing among available patch options remains a clinical challenge, as current evidence suggests roughly comparable outcomes between autologous grafts and synthetic and biologic materials. Biologic patches have potential advantages over other materials, including reduced risk for infection, mitigation of an excessive foreign body response, and the potential to remodel into healthy, vascularized tissue. Here we review the use of decellularized extracellular matrix (ECM) for cardiovascular applications, particularly endarterectomy repair, and the capacity of these materials to remodel into native, site-appropriate tissues. Also presented are data from two post-market observational studies of patients undergoing iliofemoral and carotid endarterectomy patch repair as well as one histologic case report in a challenging iliofemoral endarterectomy repair, all with the use of small intestine submucosa (SIS)-ECM. In alignment with previously reported studies, high patency was maintained, and adverse event rates were comparable to previously reported rates of patch angioplasty. Histologic analysis from one case identified constructive remodeling of the SIS-ECM, consistent with the histologic characteristics of the endarterectomized vessel. These clinical and histologic results align with the biologic potential described in the academic ECM literature. To our knowledge, this is the first histologic demonstration of SIS-ECM remodeling into site-appropriate vascular tissues following endarterectomy. Together, these findings support the safety and efficacy of SIS-ECM for patch repair of femoral and carotid arteriotomy.
Collapse
Affiliation(s)
- Keith B Allen
- St. Luke's Hospital of Kansas City, St. Luke's Mid America Heart Institute, Kansas City, MO, United States
| | - Joshua D Adams
- Carilion Clinic Aortic and Endovascular Surgery, Roanoke, VA, United States
| | - Stephen F Badylak
- Department of Bioengineering, Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - H Edward Garrett
- Cardiovascular Surgery Clinic, University of Tennessee, Memphis, Memphis, TN, United States
| | | | | | | | | |
Collapse
|
17
|
Effect of PDGF-B Gene-Activated Acellular Matrix and Mesenchymal Stem Cell Transplantation on Full Thickness Skin Burn Wound in Rat Model. Tissue Eng Regen Med 2020; 18:235-251. [PMID: 33145744 DOI: 10.1007/s13770-020-00302-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/10/2020] [Accepted: 09/16/2020] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND Full thickness burn wounds are lack of angiogenesis, cell migration, epithelialisation and finally scar tissue formation. Tissue engineered composite graft can provide sustained release of growth factor and promote the wound healing by cell migration, early angiogenesis and proliferation of extracellular matrix and wound remodeling. The objective of this study was to evaluate the gene embedded (pDNA-platelet-derived growth factor, PDGF-B) porcine acellular urinary bladder matrix with transfected mesenchymal stem cells (rBMSC) on healing of full thickness burn wound in rat model. METHODS Full thickness burn wound of 2 × 2 cm size was created in dorsum of rat model under general anesthesia. Burn wounds were treated with silver sulfadiazine; porcine acellular urinary bladder matrix (PAUBM); PAUBM transfected with pDNA-PDGF-B; PAUBM seeded with rBMSC; PAUBM seeded with rBMSC transfected with pDNA-PDGF-B in groups A, B, C, D and E respectively. The wound healing was assessed based on clinical, macroscopically, immunologically, histopathological and RT-qPCR parameters. RESULTS Wound was significantly healed in group E and group D with early extracellular matrix deposition, enhanced granulation tissue formation and early angiogenesis compared to all other groups. The immunologic response against porcine acellular matrix showed that PDGF-B gene activated matrix along with stem cell group showed less antibody titer against acellular matrix than other groups in all intervals. PDGF gene activated matrix releasing the PDGF-B and promote the healing of full thickness burn wound with neovascularization and neo tissue formation. PDGF gene also enhances secretion of other growth factors results in PDGF mediated regenerative activities. This was confirmed in RT-qPCR at various time intervals. CONCLUSION Gene activated matrix encoded for PDGF-B protein transfected stem cells have been clinically proven for early acceleration of angiogenesis and tissue regeneration in burn wounds in rat models. Evaluation of PDGF-B gene-activated acellular matrix and mesenchymal stem cell in full thickness skin burn wound in rat.
Collapse
|
18
|
Ip JE, Xu L, Lerman BB. Differences between cardiac implantable electronic device envelopes evaluated in an animal model. J Cardiovasc Electrophysiol 2020; 32:1346-1354. [PMID: 33010088 DOI: 10.1111/jce.14766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/19/2020] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Cardiac implantable electronic device (CIED) pocket related problems such as infection, hematoma, and device erosion cause significant morbidity and the clinical consequences are substantial. Bioabsorbable materials have been developed to assist in the prevention of these complications but there has not been any direct comparison of these adjunctive devices to reduce these complications. We sought to directly compare the TYRX absorbable antibacterial and CanGaroo extracellular matrix (ECM) envelopes in an animal model susceptible to these specific CIED-related complications (i.e., skin erosion and infection). METHODS AND RESULTS Sixteen mice undergoing implantation with biopotential transmitters were divided into three groups (no envelope = 4, TYRX = 5, and CanGaroo = 7) and monitored for device-related complications. Following 12 weeks of implantation, gross and histological analysis of the remaining capsules was performed. Three animals in the CanGaroo group (43%) had device erosion compared to none in the TYRX group. The remaining capsules excised at 12 weeks were qualitatively thicker following CanGaroo compared to TYRX and no envelope and histological evaluation demonstrated increased connective tissue with CanGaroo. CONCLUSION CanGaroo ECM envelopes did not reduce the incidence of device erosion and were associated with qualitatively thicker capsules and connective tissue staining at 12 weeks compared to no envelope or TYRX. Further studies regarding the use of these envelopes to prevent device erosion and their subsequent impact on capsule formation are warranted.
Collapse
Affiliation(s)
- James E Ip
- Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York, USA
| | - Linna Xu
- Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York, USA
| | - Bruce B Lerman
- Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York, USA
| |
Collapse
|
19
|
Kim BS, Das S, Jang J, Cho DW. Decellularized Extracellular Matrix-based Bioinks for Engineering Tissue- and Organ-specific Microenvironments. Chem Rev 2020; 120:10608-10661. [PMID: 32786425 DOI: 10.1021/acs.chemrev.9b00808] [Citation(s) in RCA: 270] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biomaterials-based biofabrication methods have gained much attention in recent years. Among them, 3D cell printing is a pioneering technology to facilitate the recapitulation of unique features of complex human tissues and organs with high process flexibility and versatility. Bioinks, combinations of printable hydrogel and cells, can be utilized to create 3D cell-printed constructs. The bioactive cues of bioinks directly trigger cells to induce tissue morphogenesis. Among the various printable hydrogels, the tissue- and organ-specific decellularized extracellular matrix (dECM) can exert synergistic effects in supporting various cells at any component by facilitating specific physiological properties. In this review, we aim to discuss a new paradigm of dECM-based bioinks able to recapitulate the inherent microenvironmental niche in 3D cell-printed constructs. This review can serve as a toolbox for biomedical engineers who want to understand the beneficial characteristics of the dECM-based bioinks and a basic set of fundamental criteria for printing functional human tissues and organs.
Collapse
Affiliation(s)
- Byoung Soo Kim
- Future IT Innovation Laboratory, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu,, Pohang, Kyungbuk 37673, Republic of Korea.,POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea
| | - Sanskrita Das
- Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea
| | - Jinah Jang
- Future IT Innovation Laboratory, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu,, Pohang, Kyungbuk 37673, Republic of Korea.,Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea.,Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea.,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea.,POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea.,Institute of Convergence Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea.,POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea.,Institute of Convergence Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
20
|
Repair of Tendon Disruption Using a Novel Synthetic Fiber Implant in Dogs and Cats: The Surgical Procedure and Three Case Reports. Vet Med Int 2020; 2020:4146790. [PMID: 32695304 PMCID: PMC7368194 DOI: 10.1155/2020/4146790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 11/21/2022] Open
Abstract
Surgical management of tendon rupture is challenging. One concern is to provide adequate tensile strength to prevent distraction during weight-bearing and gap formation following repair, associated with an increased risk of repair failure. Additional challenges may arise from the nature or the chronicity of the lesion. In the event of avulsion, when the tendon is torn off at the bone insertion, its reinsertion on the bone is generally difficult and may even be impossible in the presence of an avulsion fracture, especially when the bone fragment is too small or fragmented. Repair management is also complicated in chronic cases, as degeneration of the tendon may lead to excessive scar tissue formation, tendon retraction, and muscle atrophy, resulting in a large gap and inadequate tissue for reconstruction. The authors describe the surgical procedure for implanting a novel implant, illustrated by three characteristic clinical cases: (1) an acute Achilles tendon avulsion; (2) a chronic patellar tendon rupture; and (3) a chronic avulsion fracture of the triceps tendon. In these three cases, complete recovery of the function was observed at the last clinical evaluation (6 or 8 months), and no complication was noted. A splinted dressing (6 to 8 weeks) was used successfully in two cases. A resin cast (8 weeks) was preferred in case 1, a very active dog. In conclusion, this novel implant represents a simple procedure for the effective repair of chronic tendon rupture, as well as an effective tendon reinsertion on the bone and adequate support for bone tendon healing in the treatment of tendon avulsion, even in cases of fragmented bone fracture. The thinness of the implant facilitates its insertion into the native tendon, while the bone-screw-implant interface provides immediate and lasting mechanical support. This may facilitate the healing process and potentially shorten the period of immobilization.
Collapse
|
21
|
Cramer MC, Badylak SF. Extracellular Matrix-Based Biomaterials and Their Influence Upon Cell Behavior. Ann Biomed Eng 2020; 48:2132-2153. [PMID: 31741227 PMCID: PMC7231673 DOI: 10.1007/s10439-019-02408-9] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/08/2019] [Indexed: 01/16/2023]
Abstract
Biologic scaffold materials composed of allogeneic or xenogeneic extracellular matrix (ECM) are commonly used for the repair and remodeling of injured tissue. The clinical outcomes associated with implantation of ECM-based materials range from unacceptable to excellent. The variable clinical results are largely due to differences in the preparation of the material, including characteristics of the source tissue, the method and efficacy of decellularization, and post-decellularization processing steps. The mechanisms by which ECM scaffolds promote constructive tissue remodeling include mechanical support, degradation and release of bioactive molecules, recruitment and differentiation of endogenous stem/progenitor cells, and modulation of the immune response toward an anti-inflammatory phenotype. The methods of ECM preparation and the impact of these methods on the quality of the final product are described herein. Examples of favorable cellular responses of immune and stem cells associated with constructive tissue remodeling of ECM bioscaffolds are described.
Collapse
Affiliation(s)
- Madeline C Cramer
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
22
|
吴 唯, 李 博, 刘 玉, 王 新. [Biodegradation properties of multi-laminated small intestinal submucosa]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2020; 52:564-569. [PMID: 32541993 PMCID: PMC7433422 DOI: 10.19723/j.issn.1671-167x.2020.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To study the biodegradation properties of multi-laminated small intestinal submucosa (mSIS) through in vitro and in vivo experiments, comparing with Bio-Gide, the most widely used collagen membrane in guided bone regeneration (GBR) technique, for the purpose of providing basis to investigate whether mSIS meets the requirements of GBR in dental clinics. METHODS The degradation properties were evaluated in vitro and in vivo. In vitro degradation was performed using prepared collagenase solution. Morphology of mSIS and Bio-Gide in degradation solution were observed and the degradation rate was calculated at different time points. In in vivo experiments, nine New Zealand rabbits were used for subcutaneous implantation and were divided into three groups according to observation intervals. Six unconnected subcutaneous pouches were made on the back of each animal and were embedded with mSIS and Bio-Gide respectively. At the end of weeks 4, 8, and 12 after operation, gross observation and HE staining were used to evaluate the degree of degradation and histocompatibility. RESULTS In vitro degradation experiments showed that mSIS membrane was completely degraded at the end of 12 days, while Bio-Gide was degraded at the end of 7 days. Besides, mSIS maintained its shape for longer time in the degradation solution than Bio-Gide, indicating that mSIS possessed longer degradation time, and had better ability to maintain space than Bio-Gide. In vivo biodegradation indicated that after 4 weeks of implantation, mSIS remained intact. Microscopic observation showed that collagen fibers were continuous with a few inflammatory cells that infiltrated around the membrane. Bio-Gide was basically intact and partially adhered with the surrounding tissues. HE staining showed that collagen fibers were partly fused with surrounding tissues with a small amount of inflammatory cells that infiltrated as well. Eight weeks after operation, mSIS was still intact, and was partly integrated with connective tissues, whereas Bio-Gide membrane was mostly broken and only a few residual fibers could be found under microscope. Only a small amount of mSIS debris could be observed 12 weeks after surgery, and Bio-Gide could hardly be found by naked eye and microscopic observation at the same time. CONCLUSION In vitro degradation time of mSIS is longer than that of Bio-Gide, and the space-maintenance ability of mSIS is better. The in vivo biodegradation time of subcutaneous implantation of mSIS is about 12 weeks and Bio-Gide is about 8 weeks, both of which possess good biocompatibility.
Collapse
Affiliation(s)
- 唯伊 吴
- />北京大学口腔医学院·口腔医院,修复科 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室, 北京 100081Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - 博文 李
- />北京大学口腔医学院·口腔医院,修复科 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室, 北京 100081Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - 玉华 刘
- />北京大学口腔医学院·口腔医院,修复科 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室, 北京 100081Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - 新知 王
- />北京大学口腔医学院·口腔医院,修复科 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室, 北京 100081Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| |
Collapse
|
23
|
Gou M, Huang YZ, Hu JG, Jiang YL, Zhang XZ, Su NC, Lei Y, Zhang H, Wang H, Xie HQ. Epigallocatechin-3-gallate Cross-Linked Small Intestinal Submucosa for Guided Bone Regeneration. ACS Biomater Sci Eng 2019; 5:5024-5035. [PMID: 33455250 DOI: 10.1021/acsbiomaterials.9b00920] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Min Gou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of prosthodontics, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section, Ren Min Nan Rd., Chengdu 610041, China
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No.1, Keyuan 4th Rd., Chengdu 610041, China
| | - Yi-Zhou Huang
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No.1, Keyuan 4th Rd., Chengdu 610041, China
| | - Jun-Gen Hu
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No.1, Keyuan 4th Rd., Chengdu 610041, China
| | - Yan-Lin Jiang
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No.1, Keyuan 4th Rd., Chengdu 610041, China
| | - Xiu-Zhen Zhang
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No.1, Keyuan 4th Rd., Chengdu 610041, China
| | - Nai-Chuan Su
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of prosthodontics, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section, Ren Min Nan Rd., Chengdu 610041, China
| | - Yi Lei
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No.1, Keyuan 4th Rd., Chengdu 610041, China
| | - Hai Zhang
- Department of Restorative Dentistry, School of Dentistry, University of Washington, 1959 NE Pacific St., B-307, Seattle, Washington 98195, United States
| | - Hang Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of prosthodontics, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section, Ren Min Nan Rd., Chengdu 610041, China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No.1, Keyuan 4th Rd., Chengdu 610041, China
| |
Collapse
|
24
|
Abstract
Regenerative medicine is gaining more and more space for the treatment of Achilles pathologic conditions. Biologics could play a role in the management of midportion Achilles tendinopathy as a step between conservative and surgical treatment or as an augmentation. Higher-level studies are needed before determining a level of treatment recommendation for biologic strategies for insertional Achilles tendinopathy. Combining imaging with patient's functional requests could be the way to reach a protocol for the use of biologics for the treatment of midportion Achilles tendinopathy and, for this perspective, the authors describe the Foot and Ankle Reconstruction Group algorithm of treatment.
Collapse
Affiliation(s)
- Cristian Indino
- IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi, 4, Milan 20161, Italy.
| | - Riccardo D'Ambrosi
- IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi, 4, Milan 20161, Italy
| | - Federico G Usuelli
- Humanitas San Pio X, via Francesco Nava, 31, 20159 Milano, Lombardia, Italy
| |
Collapse
|
25
|
Cao G, Huang Y, Li K, Fan Y, Xie H, Li X. Small intestinal submucosa: superiority, limitations and solutions, and its potential to address bottlenecks in tissue repair. J Mater Chem B 2019; 7:5038-5055. [PMID: 31432871 DOI: 10.1039/c9tb00530g] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Over the past few decades, small intestinal submucosa (SIS), a naturally occurring decellularized extracellular matrix (ECM), has attracted much attention in tissue repair because it can provide plentiful bioactive factors and a biomimetic three-dimensional microenvironment to induce desired cellular functions. In this article, the state-of-the-art research studies on SIS are reviewed, which are mainly centered on three aspects: (1) main superiority such as remarkable bioactivity, low immunogenicity, satisfactory resorbability and promising recellularization; (2) current efforts to overcome its limitations mainly focusing on reducing the naturally occurring heterogeneity, controlling the degradation rate and improving the mechanical properties; (3) great potential in solving the bottleneck problems encountered in repairing various tissues with particular emphasis on cardiovascular, urogenital, abdominal wall, skin, musculotendinous, gastrointestinal, vaginal, and bone tissues. In addition, future research trends are proposed in the conclusion and perspectives section.
Collapse
Affiliation(s)
- Guangxiu Cao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Yan Huang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Kun Li
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Huiqi Xie
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China.
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
26
|
Cocca CJ, Duffy DJ, Kersh ME, Kim W, Groenewold A, Moore GE. Biomechanical comparison of three epitendinous suture patterns as adjuncts to a core locking loop suture for repair of canine flexor tendon injuries. Vet Surg 2019; 48:1245-1252. [PMID: 31222766 DOI: 10.1111/vsu.13266] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/01/2019] [Accepted: 05/25/2019] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine the effects of different epitendinous sutures (ES) in addition to core locking-loop (LL) sutures on the mechanical properties and gap formation in a canine cadaveric tendon model. STUDY DESIGN Experimental, ex vivo, biomechanical study. SAMPLE POPULATION Seventy-two cadaveric superficial digital flexor tendon specimens. METHODS Superficial digital flexor tendon specimens were divided into four groups (n = 18): sharply transected and repaired with LL, LL + simple continuous ES, LL + Silfverskiöld cross-stitch ES, and LL + interlocking horizontal mattress ES. Constructs were loaded to monotonic failure. Failure modes, gapping, yield, peak, and failure forces were analyzed. Significance was set at P < .05. RESULTS Yield, peak, and failure forces increased by 2.5-fold, two-fold, and twofold, respectively when ES groups were compared with core LL suture patterns alone (P < .0001). Resistance to 1- and 3-mm gap formation was greater in ES groups compared with core LL constructs alone (P < .0001). No differences in yield, peak, failure force, or gapping were observed among ES patterns (P > .827). CONCLUSION Adding an ES reduced gap formation and increased yield, peak, and failure forces of tenorrhaphies. No difference was detected between the epitendinous patterns tested in this study. CLINICAL SIGNIFICANCE The addition of an ES seems more relevant than the specific type of pattern to improve the biomechanical properties of flexor tendon repairs. In vivo studies are warranted to determine the biological implications of the patterns tested here.
Collapse
Affiliation(s)
- Christina J Cocca
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, Illinois
| | - Daniel J Duffy
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Mariana E Kersh
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois
| | - Woojae Kim
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois
| | - Andrew Groenewold
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, Illinois
| | - George E Moore
- Veterinary Administration, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana
| |
Collapse
|
27
|
Cui H, Chai Y, Yu Y. Progress in developing decellularized bioscaffolds for enhancing skin construction. J Biomed Mater Res A 2019; 107:1849-1859. [PMID: 30942934 DOI: 10.1002/jbm.a.36688] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/22/2019] [Accepted: 03/19/2019] [Indexed: 01/11/2023]
Affiliation(s)
- Haomin Cui
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Yimin Chai
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Yaling Yu
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| |
Collapse
|
28
|
Guruswamy Damodaran R, Vermette P. Tissue and organ decellularization in regenerative medicine. Biotechnol Prog 2018; 34:1494-1505. [PMID: 30294883 DOI: 10.1002/btpr.2699] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/30/2018] [Indexed: 12/22/2022]
Abstract
The advancement and improvement in decellularization methods can be attributed to the increasing demand for tissues and organs for transplantation. Decellularized tissues and organs, which are free of cells and genetic materials while retaining the complex ultrastructure of the extracellular matrix (ECM), can serve as scaffolds to subsequently embed cells for transplantation. They have the potential to mimic the native physiology of the targeted anatomic site. ECM from different tissues and organs harvested from various sources have been applied. Many techniques are currently involved in the decellularization process, which come along with their own advantages and disadvantages. This review focuses on recent developments in decellularization methods, the importance and nature of detergents used for decellularization, as well as on the role of the ECM either as merely a physical support or as a scaffold in retaining and providing cues for cell survival, differentiation and homeostasis. In addition, application, status, and perspectives on commercialization of bioproducts derived from decellularized tissues and organs are addressed. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1494-1505, 2018.
Collapse
Affiliation(s)
- Rajesh Guruswamy Damodaran
- Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 Boul. de l'Université, Sherbrooke, QC, J1K 2R1, Canada.,Pharmacology Institute of Sherbrooke, Faculté de médecine et des sciences de la santé, 3001 12ième Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada.,Research Centre on Aging, Institut universitaire de gériatrie de Sherbrooke, 1036 rue Belvédère Sud, Sherbrooke, Québec, J1H 4C4, Canada
| | - Patrick Vermette
- Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 Boul. de l'Université, Sherbrooke, QC, J1K 2R1, Canada.,Pharmacology Institute of Sherbrooke, Faculté de médecine et des sciences de la santé, 3001 12ième Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada.,Research Centre on Aging, Institut universitaire de gériatrie de Sherbrooke, 1036 rue Belvédère Sud, Sherbrooke, Québec, J1H 4C4, Canada
| |
Collapse
|
29
|
Effect of Multilaminate Small Intestinal Submucosa as a Barrier Membrane on Bone Formation in a Rabbit Mandible Defect Model. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3270293. [PMID: 30018978 PMCID: PMC6029487 DOI: 10.1155/2018/3270293] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 04/19/2018] [Accepted: 05/20/2018] [Indexed: 12/14/2022]
Abstract
A barrier membrane (BM) is essential for guided bone regeneration (GBR) procedures. Absorbable BMs based on collagen have been widely applied clinically due to their excellent biocompatibility. The extracellular matrix (ECM) provides certain advantages that can compensate for the rapid degradation and insufficient mechanical strength of pure collagen membrane due to the porous scaffold structure. Recently, small intestinal submucosa (SIS), one of the most widely used ECM materials, has drawn much attention in bone tissue engineering. In this study, we adopted multilaminate SIS (mSIS) as a BM and evaluated its in vivo and in vitro properties. mSIS exhibited a multilaminate structure with a smooth upper surface and a significantly coarser bottom layer according to microscopic observation. Tensile strength was 13.10 ± 2.56 MPa. In in vivo experiments, we selected a rabbit mandibular defect model and subcutaneous implantation to compare osteogenesis and biodegradation properties with one of the most commonly used commercial collagen membranes. mSIS was retained for up to 3 months and demonstrated longer biodegradation time than commercial collagen membrane. Quantification of bone regeneration revealed significant differences in each group. Micro-computed tomography (micro-CT) revealed that the quantity and maturity of bones in the mSIS group were significantly higher than those in the blank control group (P < 0.05) and were similar to those in a commercial collagen membrane group (P > 0.05) at 4 and 12 weeks after surgery. Hematoxylin and eosin staining revealed large amounts of mature lamellar bone at 12 weeks in mSIS and commercial collagen membrane groups. Therefore, we conclude that mSIS has potential as a future biocompatible BM in GBR procedures.
Collapse
|
30
|
Joddar B, Kumar SA, Kumar A. A Contact-Based Method for Differentiation of Human Mesenchymal Stem Cells into an Endothelial Cell-Phenotype. Cell Biochem Biophys 2018; 76:187-195. [PMID: 28942575 PMCID: PMC5866207 DOI: 10.1007/s12013-017-0828-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/18/2017] [Indexed: 12/25/2022]
Abstract
Adult stem cells such as mesenchymal stem cells (MSC) are known to possess the ability to augment neovascularization processes and are thus widely popular as an autologous source of progenitor cells. However there is a huge gap in our current knowledge of mechanisms involved in differentiating MSC into endothelial cells (EC), essential for lining engineered blood vessels. To fill up this gap, we attempted to differentiate human MSC into EC, by culturing the former onto chemically fixed layers of EC or its ECM, respectively. We expected direct contact of MSC when cultured atop fixed EC or its ECM, would coax the former to differentiate into EC. Results showed that human MSC cultured atop chemically fixed EC or its ECM using EC-medium showed enhanced expression of CD31, a marker for EC, compared to other cases. Further in all human MSC cultured using EC-medium, typically characteristic cobble stone shaped morphologies were noted in comparison to cells cultured using MSC medium, implying that the differentiated cells were sensitive to soluble VEGF supplementation present in the EC-medium. Results will enhance and affect therapies utilizing autologous MSC as a cell source for generating vascular cells to be used in a variety of tissue engineering applications.
Collapse
Affiliation(s)
- Binata Joddar
- Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA.
- Border Biomedical Research Center, University of Texas at El Paso, 500W University Avenue, El Paso, TX, 79968, USA.
| | - Shweta Anil Kumar
- Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA
| | - Alok Kumar
- Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA
| |
Collapse
|
31
|
Zellner EM, Hale MJ, Kraus KH. Application of tendon plating to manage failed calcaneal tendon repairs in a dog. Vet Surg 2018; 47:439-444. [DOI: 10.1111/vsu.12775] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/20/2017] [Accepted: 08/09/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Eric M. Zellner
- Department of Clinical Sciences, College of Veterinary Medicine; Iowa State University; Ames Iowa
| | - Michael J. Hale
- Department of Clinical Sciences, College of Veterinary Medicine; Iowa State University; Ames Iowa
| | - Karl H. Kraus
- Department of Clinical Sciences, College of Veterinary Medicine; Iowa State University; Ames Iowa
| |
Collapse
|
32
|
Repair of chronic rupture of the insertion of the gastrocnemius tendon in the dog using a polyethylene terephthalate implant. Vet Comp Orthop Traumatol 2017; 28:282-7. [DOI: 10.3415/vcot-14-08-0133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 03/10/2015] [Indexed: 11/17/2022]
Abstract
SummaryObjectives: Chronic degeneration of the gastrocnemius tendon results in scar tissue formation at the insertion of the tendon, and detachment from the calcaneus. In severe cases, excision of this tissue makes repositioning of the tendon to the calcaneus extremely difficult. A polyethylene terephtha-late implant, used to aide repair by bridging gaps and allowing tissue ingrowth, was evaluated.Methods: In this retrospective study, clinical records were evaluated to assess long-term outcomes and complications. The surgical technique is also described. The implant was sutured proximally into the gastrocnemius at the myotendinous junction, and secured into the calcaneus using an interference screw.Results: The implant was used in 10 patients; of which seven returned to full function. Major complications, due to infection, were identified in two of the 10 patients. Minor complications occurred in five of the 10 patients. These were associated with external coaptation in three of the patients in the immediate postoperative period. One minor infection was reported. These all resolved without further complication. Long-term outcome was available in eight patients, with six of these eight dogs returning to normal exercise.Clinical significance: This implant may be suitable for use in canine patients with severe gastrocnemius tendon degeneration. Ongoing evaluation is warranted.
Collapse
|
33
|
Böhm S, Strauß C, Stoiber S, Kasper C, Charwat V. Impact of Source and Manufacturing of Collagen Matrices on Fibroblast Cell Growth and Platelet Aggregation. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E1086. [PMID: 28914792 PMCID: PMC5615740 DOI: 10.3390/ma10091086] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/01/2017] [Accepted: 09/05/2017] [Indexed: 12/20/2022]
Abstract
Collagen is a main component of the extracellular matrix. It is often used in medical applications to support tissue regeneration, hemostasis, or wound healing. Due to different sources of collagen, the properties and performance of available products can vary significantly. In this in vitro study, a comparison of seven different collagen matrices derived from bovine, equine, and porcine sources was performed. As performance indicators, the scaffold function for fibroblasts and platelet aggregation were used. We found strong variation in platelet aggregation and fibroblast growth on the different collagen materials. The observed variations could not be attributed to species differences alone, but were highly dependent on differences in the manufacturing process.
Collapse
Affiliation(s)
- Stefanie Böhm
- Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany.
| | - Christine Strauß
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria.
| | - Stefan Stoiber
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria.
| | - Cornelia Kasper
- Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany.
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria.
| | - Verena Charwat
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria.
| |
Collapse
|
34
|
Costa A, Naranjo JD, Londono R, Badylak SF. Biologic Scaffolds. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a025676. [PMID: 28320826 DOI: 10.1101/cshperspect.a025676] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Biologic scaffold materials composed of allogeneic or xenogeneic extracellular matrix are commonly used for the repair and functional reconstruction of injured and missing tissues. These naturally occurring bioscaffolds are manufactured by the removal of the cellular content from source tissues while preserving the structural and functional molecular units of the remaining extracellular matrix (ECM). The mechanisms by which these bioscaffolds facilitate constructive remodeling and favorable clinical outcomes include release or creation of effector molecules that recruit endogenous stem/progenitor cells to the site of scaffold placement and modulation of the innate immune response, specifically the activation of an anti-inflammatory macrophage phenotype. The methods by which ECM biologic scaffolds are prepared, the current understanding of in vivo scaffold remodeling, and the associated clinical outcomes are discussed in this article.
Collapse
Affiliation(s)
- Alessandra Costa
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania 15219
| | - Juan Diego Naranjo
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania 15219
| | - Ricardo Londono
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania 15219.,School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania 15219.,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| |
Collapse
|
35
|
Liang R, Knight K, Easley D, Palcsey S, Abramowitch S, Moalli PA. Towards rebuilding vaginal support utilizing an extracellular matrix bioscaffold. Acta Biomater 2017; 57:324-333. [PMID: 28487243 PMCID: PMC5639927 DOI: 10.1016/j.actbio.2017.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 04/25/2017] [Accepted: 05/05/2017] [Indexed: 12/15/2022]
Abstract
As an alternative to polypropylene mesh, we explored an extracellular matrix (ECM) bioscaffold derived from urinary bladder matrix (MatriStem™) in the repair of vaginal prolapse. We aimed to restore disrupted vaginal support simulating application via transvaginal and transabdominal approaches in a macaque model focusing on the impact on vaginal structure, function, and the host immune response. In 16 macaques, after laparotomy, the uterosacral ligaments and paravaginal attachments to pelvic side wall were completely transected (IACUC# 13081928). 6-ply MatriStem was cut into posterior and anterior templates with a portion covering the vagina and arms simulating uterosacral ligaments and paravaginal attachments, respectively. After surgically exposing the correct anatomical sites, in 8 animals, a vaginal incision was made on the anterior and posterior vagina and the respective scaffolds were passed into the vagina via these incisions (transvaginal insertion) prior to placement. The remaining 8 animals underwent the same surgery without vaginal incisions (transabdominal insertion). Three months post implantation, firm tissue bands extending from vagina to pelvic side wall appeared in both MatriStem groups. Experimental endpoints examining impact of MatriStem on the vagina demonstrated that vaginal biochemical and biomechanical parameters, smooth muscle thickness and contractility, and immune responses were similar in the MatriStem no incision group and sham-operated controls. In the MatriStem incision group, a 41% decrease in vaginal stiffness (P=0.042), a 22% decrease in collagen content (P=0.008) and a 25% increase in collagen subtypes III/I was observed vs. Sham. Active MMP2 was increased in both Matristem groups vs. Sham (both P=0.002). This study presents a novel application of ECM bioscaffolds as a first step towards the rebuilding of vaginal support. STATEMENT OF SIGNIFICANCE Pelvic organ prolapse is a common condition related to failure of the supportive soft tissues of the vagina; particularly at the apex and mid-vagina. Few studies have investigated methods to regenerate these failed structures. The overall goal of the study was to determine the feasibility of utilizing a regenerative bioscaffold in prolapse applications to restore apical (level I) and lateral (level II) support to the vagina without negatively impacting vaginal structure and function. The significance of our findings is two fold: 1. Implantation of properly constructed extracellular matrix grafts promoted rebuilding of level I and level II support to the vagina and did not negatively impact the overall functional, morphological and biochemical properties of the vagina. 2. The presence of vaginal incisions in the transvaginal insertion of bioscaffolds may compromise vaginal structural integrity in the short term.
Collapse
Affiliation(s)
- Rui Liang
- Magee Women Research Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Obstetrics, Gynecology, Reproductive Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Katrina Knight
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Deanna Easley
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Stacy Palcsey
- Magee Women Research Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Steven Abramowitch
- Magee Women Research Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Pamela A Moalli
- Magee Women Research Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Obstetrics, Gynecology, Reproductive Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
36
|
Destefani AC, Sirtoli GM, Nogueira BV. Advances in the Knowledge about Kidney Decellularization and Repopulation. Front Bioeng Biotechnol 2017; 5:34. [PMID: 28620603 PMCID: PMC5451511 DOI: 10.3389/fbioe.2017.00034] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/03/2017] [Indexed: 12/15/2022] Open
Abstract
End-stage renal disease (ESRD) is characterized by the progressive deterioration of renal function that may compromise different tissues and organs. The major treatment indicated for patients with ESRD is kidney transplantation. However, the shortage of available organs, as well as the high rate of organ rejection, supports the need for new therapies. Thus, the implementation of tissue bioengineering to organ regeneration has emerged as an alternative to traditional organ transplantation. Decellularization of organs with chemical, physical, and/or biological agents generates natural scaffolds, which can serve as basis for tissue reconstruction. The recellularization of these scaffolds with different cell sources, such as stem cells or adult differentiated cells, can provide an organ with functionality and no immune response after in vivo transplantation on the host. Several studies have focused on improving these techniques, but until now, there is no optimal decellularization method for the kidney available yet. Herein, an overview of the current literature for kidney decellularization and whole-organ recellularization is presented, addressing the pros and cons of the actual techniques already developed, the methods adopted to evaluate the efficacy of the procedures, and the challenges to be overcome in order to achieve an optimal protocol.
Collapse
Affiliation(s)
- Afrânio Côgo Destefani
- Tissue Engineering Core—LUCCAR, Morphology, Federal University of Espírito Santo (UFES), Vitória, Brazil
- Health Sciences Center, Federal University of Espírito Santo (UFES), Vitória, Brazil
- Health Sciences Center, Postgraduate Program in Biotechnology/RENORBIO, Vitória, Brazil
| | - Gabriela Modenesi Sirtoli
- Tissue Engineering Core—LUCCAR, Morphology, Federal University of Espírito Santo (UFES), Vitória, Brazil
- Health Sciences Center, Federal University of Espírito Santo (UFES), Vitória, Brazil
| | - Breno Valentim Nogueira
- Tissue Engineering Core—LUCCAR, Morphology, Federal University of Espírito Santo (UFES), Vitória, Brazil
- Health Sciences Center, Federal University of Espírito Santo (UFES), Vitória, Brazil
- Health Sciences Center, Postgraduate Program in Biotechnology/RENORBIO, Vitória, Brazil
| |
Collapse
|
37
|
Development and Characterization of a Porcine Mitral Valve Scaffold for Tissue Engineering. J Cardiovasc Transl Res 2017; 10:374-390. [PMID: 28462436 DOI: 10.1007/s12265-017-9747-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 04/10/2017] [Indexed: 10/19/2022]
Abstract
Decellularized scaffolds represent a promising alternative for mitral valve (MV) replacement. This work developed and characterized a protocol for the decellularization of whole MVs. Porcine MVs were decellularized with 0.5% (w/v) SDS and 0.5% (w/v) SD and sterilized with 0.1% (v/v) PAA. Decellularized samples were seeded with human foreskin fibroblasts and human adipose-derived stem cells to investigate cellular repopulation and infiltration, and with human colony-forming endothelial cells to investigate collagen IV formation. Histology revealed an acellular scaffold with a generally conserved histoarchitecture, but collagen IV loss. Following decellularization, no significant changes were observed in the hydroxyproline content, but there was a significant reduction in the glycosaminoglycan content. SEM/TEM analysis confirmed cellular removal and loss of some extracellular matrix components. Collagen and elastin were generally preserved. The endothelial cells produced newly formed collagen IV on the non-cytotoxic scaffold. The protocol produced acellular scaffolds with generally preserved histoarchitecture, biochemistry, and biomechanics.
Collapse
|
38
|
Kremer A, Ribitsch I, Reboredo J, Dürr J, Egerbacher M, Jenner F, Walles H. Three-Dimensional Coculture of Meniscal Cells and Mesenchymal Stem Cells in Collagen Type I Hydrogel on a Small Intestinal Matrix—A Pilot Study Toward Equine Meniscus Tissue Engineering. Tissue Eng Part A 2017; 23:390-402. [DOI: 10.1089/ten.tea.2016.0317] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Antje Kremer
- Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Wuerzburg, Wuerzburg, Germany
- Translational Center Wuerzburg ‘Regenerative therapies,’ Wuerzburg Branch of the Fraunhofer IGB, Wuerzburg, Germany
| | - Iris Ribitsch
- Vienna Equine Tissue Engineering and Regenerative Medicine, Equine Clinic, University of Veterinary Medicine Vienna, Vienna, Austria
- Department of Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jenny Reboredo
- Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Wuerzburg, Wuerzburg, Germany
- Translational Center Wuerzburg ‘Regenerative therapies,’ Wuerzburg Branch of the Fraunhofer IGB, Wuerzburg, Germany
| | - Julia Dürr
- Department of Pathobiology, Institute of Histology & Embryology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Monika Egerbacher
- Department of Pathobiology, Institute of Histology & Embryology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Florien Jenner
- Vienna Equine Tissue Engineering and Regenerative Medicine, Equine Clinic, University of Veterinary Medicine Vienna, Vienna, Austria
- Department of Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Heike Walles
- Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Wuerzburg, Wuerzburg, Germany
- Translational Center Wuerzburg ‘Regenerative therapies,’ Wuerzburg Branch of the Fraunhofer IGB, Wuerzburg, Germany
| |
Collapse
|
39
|
Lee E, Milan A, Urbani L, De Coppi P, Lowdell MW. Decellularized material as scaffolds for tissue engineering studies in long gap esophageal atresia. Expert Opin Biol Ther 2017; 17:573-584. [PMID: 28303723 DOI: 10.1080/14712598.2017.1308482] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Esophageal atresia refers to an anomaly in foetal development in which the esophagus terminates in a blind end. Whilst surgical correction is achievable in most patients, when a long gap is present it still represents a major challenge associated with higher morbidity and mortality. In this context, tissue engineering could represent a successful alternative to restore oesophageal function and structure. Naturally derived biomaterials made of decellularized tissues retain native extracellular matrix architecture and composition, providing a suitable bed for the anchorage and growth of relevant cell types. Areas covered: This review outlines the various strategies and challenges in esophageal tissue engineering, highlighting the evolution of ideas in the development of decellularized scaffolds for clinical use. It explores the interplay between clinical needs, ethical dilemmas, and manufacturing challenges in the development of a tissue engineered decellularized scaffold for oesophageal atresia. Expert opinion: Current progress on oesophageal tissue engineering has enabled effective repair of patch defects, whilst the development of a full circumferential construct remains a challenge. Despite the different approaches available and the improvements achieved, a gold standard for fully functional tissue engineered oesophageal constructs has not been defined yet.
Collapse
Affiliation(s)
- Esmond Lee
- a Centre for Cell, Gene & Tissue Therapeutics , Royal Free Hospital , London , UK.,b Institute for Stem Cell Biology and Regenerative Medicine , Stanford University , Stanford , CA , USA.,c Bioprocessing Technology Institute, Agency for Science Technology and Research (A*STAR) , Singapore
| | - Anna Milan
- d Stem Cells and Regenerative Medicine Section , UCL Great Ormond Street Institute of Child Health , London , UK
| | - Luca Urbani
- d Stem Cells and Regenerative Medicine Section , UCL Great Ormond Street Institute of Child Health , London , UK
| | - Paolo De Coppi
- d Stem Cells and Regenerative Medicine Section , UCL Great Ormond Street Institute of Child Health , London , UK
| | - Mark W Lowdell
- a Centre for Cell, Gene & Tissue Therapeutics , Royal Free Hospital , London , UK
| |
Collapse
|
40
|
Bottagisio M, Lovati AB. A review on animal models and treatments for the reconstruction of Achilles and flexor tendons. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:45. [PMID: 28155051 DOI: 10.1007/s10856-017-5858-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 01/19/2017] [Indexed: 06/06/2023]
Abstract
Tendon is a connective tissue mainly composed of collagen fibers with peculiar mechanical properties essential to functional movements. The increasing incidence of tendon traumatic injuries and ruptures-associated or not with the loss of tissue-falls on the growing interest in the field of tissue engineering and regenerative medicine. The use of animal models is mandatory to deepen the knowledge of the tendon healing response to severe damages or acute transections. Thus, the selection of preclinical models is crucial to ensure a successful translation of effective and safe innovative treatments to the clinical practice. The current review is focused on animal models of tendon ruptures and lacerations or defective injuries with large tissue loss that require surgical approaches or grafting procedures. Data published between 2000 and 2016 were examined. The analyzed articles were compiled from Pub Med-NCBI using search terms, including animal model(s) AND tendon augmentation OR tendon substitute(s) OR tendon substitution OR tendon replacement OR tendon graft(s) OR tendon defect(s) OR tendon rupture(s). This article presents the existing preclinical models - considering their advantages and disadvantages-in which translational progresses have been made by using bioactive sutures or tissue engineering that combines biomaterials with cells and growth factors to efficiently treat transections or large defects of Achilles and flexor tendons.
Collapse
Affiliation(s)
- Marta Bottagisio
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute, via R. Galeazzi 4, 20161, Milan, Italy
| | - Arianna B Lovati
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute, via R. Galeazzi 4, 20161, Milan, Italy.
| |
Collapse
|
41
|
Liang R, Knight K, Barone W, Powers RW, Nolfi A, Palcsey S, Abramowitch S, Moalli PA. Extracellular matrix regenerative graft attenuates the negative impact of polypropylene prolapse mesh on vagina in rhesus macaque. Am J Obstet Gynecol 2017; 216:153.e1-153.e9. [PMID: 27615441 DOI: 10.1016/j.ajog.2016.09.073] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 02/03/2023]
Abstract
BACKGROUND The use of wide pore lightweight polypropylene mesh to improve anatomical outcomes in the surgical repair of prolapse has been hampered by mesh complications. One of the prototype prolapse meshes has been found to negatively impact the vagina by inducing a decrease in smooth muscle volume and contractility and the degradation of key structural proteins (collagen and elastin), resulting in vaginal degeneration. Recently, bioscaffolds derived from extracellular matrix have been used to mediate tissue regeneration and have been widely adopted in tissue engineering applications. OBJECTIVE Here we aimed to: (1) define whether augmentation of a polypropylene prolapse mesh with an extracellular matrix regenerative graft in a primate sacrocolpopexy model could mitigate the degenerative changes; and (2) determine the impact of the extracellular matrix graft on vagina when implanted alone. STUDY DESIGN A polypropylene-extracellular matrix composite graft (n = 9) and a 6-layered extracellular matrix graft alone (n = 8) were implanted in 17 middle-aged parous rhesus macaques via sacrocolpopexy and compared to historical data obtained from sham (n = 12) and the polypropylene mesh (n = 12) implanted by the same method. Vaginal function was measured in passive (ball-burst test) and active (smooth muscle contractility) mechanical tests. Vaginal histomorphologic/biochemical assessments included hematoxylin-eosin and trichrome staining, immunofluorescent labeling of α-smooth muscle actin and apoptotic cells, measurement of total collagen, collagen subtypes (ratio III/I), mature elastin, and sulfated glycosaminoglycans. Statistical analyses included 1-way analysis of variance, Kruskal-Wallis, and appropriate post-hoc tests. RESULTS The host inflammatory response in the composite mesh-implanted vagina was reduced compared to that following implantation with the polypropylene mesh alone. The increase in apoptotic cells observed with the polypropylene mesh was blunted in the composite (overall P < .001). Passive mechanical testing showed inferior parameters for both polypropylene mesh alone and the composite compared to sham whereas the contractility and thickness of smooth muscle layer in the composite were improved with a value similar to sham, which was distinct from the decreases observed with polypropylene mesh alone. Biochemically, the composite had similar mature elastin content, sulfated glycosaminoglycan content, and collagen subtype III/I ratio but lower total collagen content when compared to sham (P = .011). Multilayered extracellular matrix graft alone showed overall comparable values to sham in aspects of the biomechanical, histomorphologic, or biochemical endpoints of the vagina. The increased collagen subtype ratio III/I with the extracellular matrix graft alone (P = .033 compared to sham) is consistent with an ongoing active remodeling response. CONCLUSION Mesh augmentation with a regenerative extracellular matrix graft attenuated the negative impact of polypropylene mesh on the vagina. Application of the extracellular matrix graft alone had no measurable negative effects suggesting that the benefits of this extracellular matrix graft occur when used without a permanent material. Future studies will focus on understanding mechanisms.
Collapse
|
42
|
Liu Y, Peng Y, Fang Y, Yao M, Redmond RW, Ni T. No midterm advantages in the middle term using small intestinal submucosa and human amniotic membrane in Achilles tendon transverse tenotomy. J Orthop Surg Res 2016; 11:125. [PMID: 27881176 PMCID: PMC5121975 DOI: 10.1186/s13018-016-0463-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 09/20/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The study was aimed to compare the effects of small intestinal submucosa (SIS) and human amniotic membrane (HAM) on Achilles tendon healing. METHODS A total of 48 New Zealand white rabbits were divided into two groups. A full-thickness transverse tenotomy was made at the right leg of the rabbits. Then, the laceration site was wrapped with HAM (P/A group) or SIS (P/S group). The ultimate stress (US) and Young's modulus (E) of the tendons were detected for biomechanical analysis. Histological evaluation was performed using hematoxylin and eosin, immunohistochemical, and immunofluorescent stain. Expression of collagen I was detected by western blot analysis, and levels of inflammatory cytokines IL-1β, IL-6, and TNF-α were measured. Finally, adhesion formation was evaluated. RESULTS There were no significant differences in filamentous adhesion, cross-sectional areas of the laceration sites, levels of inflammatory response, and collagen type I expression between the P/A and P/S groups (p > 0.05). Compared with the P/A group, the US and E values were significantly higher in the P/S group at day 7 (p < 0.05) and at day 14 (p < 0.05). In addition, vascularity was significantly higher in the P/S group than that in the P/A group at day 3 (p < 0.05), day 7 (p < 0.01), and day 9 (p < 0.05). CONCLUSIONS SIS showed superior biomechanical properties and neovascularization over HAM in treatment of Achilles tendon injury in the early stage of healing.
Collapse
Affiliation(s)
- Yushu Liu
- Department of Burns and Plastic Surgery, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Mohe Road, No. 280, Baoshan District, Shanghai, 201900 People’s Republic of China
| | - Yinbo Peng
- Department of Burns and Plastic Surgery, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Mohe Road, No. 280, Baoshan District, Shanghai, 201900 People’s Republic of China
| | - Yong Fang
- Department of Burns and Plastic Surgery, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Mohe Road, No. 280, Baoshan District, Shanghai, 201900 People’s Republic of China
| | - Min Yao
- Department of Burns and Plastic Surgery, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Mohe Road, No. 280, Baoshan District, Shanghai, 201900 People’s Republic of China
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Robert W. Redmond
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Tao Ni
- Department of Burns and Plastic Surgery, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Mohe Road, No. 280, Baoshan District, Shanghai, 201900 People’s Republic of China
| |
Collapse
|
43
|
Willett NJ, Krishnan L, Li MTA, Guldberg RE, Warren GL. Guidelines for Models of Skeletal Muscle Injury and Therapeutic Assessment. Cells Tissues Organs 2016; 202:214-226. [PMID: 27825151 DOI: 10.1159/000445345] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2016] [Indexed: 11/19/2022] Open
Abstract
Volumetric muscle loss (VML) injuries present a large clinical challenge with a significant need for new interventions. While there have been numerous reviews on muscle injury models, few have critically evaluated VML models. The objective of this review is to discuss current preclinical models of VML in terms of models, analytical outcomes, and therapeutic interventions, and to provide guidelines for the future use of preclinical VML models. This is a work of the US Government and is not subject to copyright protection in the USA. Foreign copyrights may apply. Published by S. Karger AG, Basel.
Collapse
|
44
|
Katayama M. Augmented Repair of an Achilles Tendon Rupture Using the Flexor Digitorum Lateralis Tendon in a Toy Poodle. Vet Surg 2016; 45:1083-1086. [DOI: 10.1111/vsu.12565] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 06/18/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Masaaki Katayama
- Division of Small Animal Surgery, Cooperative Department of Veterinary Medicine, Faculty of Agriculture; Iwate University; Morioka Iwate Japan
| |
Collapse
|
45
|
Mosala Nezhad Z, Poncelet A, de Kerchove L, Fervaille C, Banse X, Bollen X, Dehoux JP, El Khoury G, Gianello P. CorMatrix valved conduit in a porcine model: long-term remodelling and biomechanical characterization. Interact Cardiovasc Thorac Surg 2016; 24:90-98. [PMID: 27659148 DOI: 10.1093/icvts/ivw314] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/29/2016] [Accepted: 08/17/2016] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES Porcine small intestinal submucosa extracellular matrix (CorMatrix; CorMatrix Cardiovascular, Rosewell, GA) is a relatively novel tissue substitute used in cardiovascular applications. We investigated the biological reaction and remodelling of CorMatrix as a tri-leaflet valved conduit in a pig model. We hypothesized that CorMatrix maintains a durable architecture as a valved conduit and remodels to resemble surrounding tissues. METHODS We fashioned the valved conduit using a 7 × 10 cm 4-ply CorMatrix sheet and placed it in the thoracic aorta of seven landrace pigs for 3, 4, 5 and 6 months. Biodegradation, replacement by native tissue, strength and durability were examined by histology, immunohistochemistry and mechanical testing. RESULTS Four pigs, one per time frame, completed the study. The conduit lost its original architecture as a tri-leaflet valve due to cusp immobility, subsequent attachment to the wall segment and consequent maintenance of a thick arterial wall-like structure. Scaffold resorption was incomplete, with disorganized inconsistent spatial and temporal degradation even at 6 months. Fibrosis, scarring and calcification started at 4 months and chronic inflammation persisted. The partially remodelled scaffold did not resemble the aortic wall, suggesting impaired remodelling. Mechanical testing showed progressive weakening of the tissues over time, which were liable to breakage. CONCLUSIONS CorMatrix is biodegradable; however, it failed to remodel in a structured and anatomical fashion in an arterial environment. Progressive mechanical and remodelling failure in this scenario might be explained by the complexity of the conduit design and the host's chronic inflammatory response, leading to early fibrosis and calcification.
Collapse
Affiliation(s)
- Zahra Mosala Nezhad
- Cardiovascular and Thoracic Surgery Department, Saint-Luc University Hospital, Université catholique de Louvain, Brussels, Belgium
| | - Alain Poncelet
- Cardiovascular and Thoracic Surgery Department, Saint-Luc University Hospital, Université catholique de Louvain, Brussels, Belgium
| | - Laurent de Kerchove
- Cardiovascular and Thoracic Surgery Department, Saint-Luc University Hospital, Université catholique de Louvain, Brussels, Belgium
| | - Caroline Fervaille
- Mont-Godinne Hospital-CHU, Laboratory of Anatomy Pathology, Université catholique de Louvain, Mont-Godinne, Belgium, Belgium
| | - Xavier Banse
- Orthopedics and Trauma Surgery, Saint-Luc University Hospital, Université catholique de Louvain, Brussels, Belgium
| | - Xavier Bollen
- Institute of Mechanics, Materials and Civil Engineering, Center for Research in Energy and Mechatronics, Université catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Jean-Paul Dehoux
- Institute of Experimental and Clinical Research (IREC), Laboratory of Experimental Surgery and Transplantation (CHEX), Université catholique de Louvain, Brussels, Belgium
| | - Gebrine El Khoury
- Cardiovascular and Thoracic Surgery Department, Saint-Luc University Hospital, Université catholique de Louvain, Brussels, Belgium
| | - Pierre Gianello
- Institute of Experimental and Clinical Research (IREC), Laboratory of Experimental Surgery and Transplantation (CHEX), Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
46
|
Urinary bladder matrix scaffolds strengthen esophageal hiatus repair. J Surg Res 2016; 204:344-350. [PMID: 27565070 DOI: 10.1016/j.jss.2016.04.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 04/13/2016] [Accepted: 04/20/2016] [Indexed: 01/18/2023]
Abstract
BACKGROUND Laparoscopic repair of the hiatal hernia is associated with a recurrence rate between 12% and 42% depending on the defect size. Although the impact of hiatal reinforcement on long-term recurrence remains controversial, the main limitation of this approach has been the risk of adverse events related with the use of synthetic materials in the vicinity of the esophagus. METHODS A total of 14 female domestic pigs underwent laparoscopic primary hiatal hernia repair of a simulated defect in the esophageal hiatus. Seven of the hiatal repairs were reinforced with an extracellular matrix (ECM) scaffold, whereas the remaining seven served as primary repair controls. Animals were survived for 8 wk. At necropsy, after gross morphologic evaluation, samples were sent for mechanical testing and histology. RESULTS The repaired defect site reinforced with ECM scaffolds showed a robust closure of the crura in all cases with a smooth peritoneal-like structure covering the entire repair. Average load at failure of the treated group was found to be significantly stronger than that of the controls (185.8 ± 149.7 g versus 57.5 ± 57.5 g, P < 0.05). Similarly, the stiffness was significantly higher in the treated animals (57.5 ± 26.9 g/mm versus 19.1 ± 17.5 g/mm; P < 0.01). Interestingly, there was no difference in elongation at failure (7.62 ± 2.02 mm versus 7.87 ± 3.28 mm; P = 0.44). CONCLUSIONS In our animal survival model, we have provided evidence that the addition of an ECM to augment a primary hiatal repair leads to tissue characteristics that may decrease the possibility of early failure of the repair. This may translate to decreased recurrence rates. Further study is necessary.
Collapse
|
47
|
Mosala Nezhad Z, Poncelet A, de Kerchove L, Gianello P, Fervaille C, El Khoury G. Small intestinal submucosa extracellular matrix (CorMatrix®) in cardiovascular surgery: a systematic review. Interact Cardiovasc Thorac Surg 2016; 22:839-50. [PMID: 26912574 DOI: 10.1093/icvts/ivw020] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 01/08/2016] [Indexed: 11/12/2022] Open
Abstract
Extracellular matrix (ECM) derived from small intestinal submucosa (SIS) is widely used in clinical applications as a scaffold for tissue repair. Recently, CorMatrix® porcine SIS-ECM (CorMatrix Cardiovascular, Inc., Roswell, GA, USA) has gained popularity for 'next-generation' cardiovascular tissue engineering due to its ease of use, remodelling properties, lack of immunogenicity, absorbability and potential to promote native tissue growth. Here, we provide an overview of the biology of porcine SIS-ECM and systematically review the preclinical and clinical literature on its use in cardiovascular surgery. CorMatrix® has been used in a variety of cardiovascular surgical applications, and since it is the most widely used SIS-ECM, this material is the focus of this review. Since CorMatrix® is a relatively new product for cardiovascular surgery, some clinical and preclinical studies published lack systematic reporting of functional and pathological findings in sufficient numbers of subjects. There are also emerging reports to suggest that, contrary to expectations, an undesirable inflammatory response may occur in CorMatrix® implants in humans and longer-term outcomes at particular sites, such as the heart valves, may be suboptimal. Large-scale clinical studies are needed driven by robust protocols that aim to quantify the pathological process of tissue repair.
Collapse
Affiliation(s)
- Zahra Mosala Nezhad
- Institute of Experimental and Clinical Research (IREC), Division of Cardiovascular Research (CARD), Université catholique de Louvain, Brussels, Belgium Department of Cardiovascular and Thoracic Surgery, Université catholique de Louvain, Saint-Luc University Hospital, Brussels, Belgium
| | - Alain Poncelet
- Institute of Experimental and Clinical Research (IREC), Division of Cardiovascular Research (CARD), Université catholique de Louvain, Brussels, Belgium Department of Cardiovascular and Thoracic Surgery, Université catholique de Louvain, Saint-Luc University Hospital, Brussels, Belgium
| | - Laurent de Kerchove
- Institute of Experimental and Clinical Research (IREC), Division of Cardiovascular Research (CARD), Université catholique de Louvain, Brussels, Belgium Department of Cardiovascular and Thoracic Surgery, Université catholique de Louvain, Saint-Luc University Hospital, Brussels, Belgium
| | - Pierre Gianello
- Institute of Experimental and Clinical Research (IREC), Division of Experimental Surgery and Transplantation (CHEX), Université catholique de Louvain, Brussels, Belgium
| | - Caroline Fervaille
- Laboratory of Anatomy Pathology, Université catholique de Louvain, Godinne University Hospital-CHU, Yvoir, Belgium
| | - Gebrine El Khoury
- Institute of Experimental and Clinical Research (IREC), Division of Cardiovascular Research (CARD), Université catholique de Louvain, Brussels, Belgium Department of Cardiovascular and Thoracic Surgery, Université catholique de Louvain, Saint-Luc University Hospital, Brussels, Belgium
| |
Collapse
|
48
|
Emerging Implications for Extracellular Matrix-Based Technologies in Vascularized Composite Allotransplantation. Stem Cells Int 2016; 2016:1541823. [PMID: 26839554 PMCID: PMC4709778 DOI: 10.1155/2016/1541823] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/05/2015] [Indexed: 12/21/2022] Open
Abstract
Despite recent progress in vascularized composite allotransplantation (VCA), limitations including complex, high dose immunosuppression regimens, lifelong risk of toxicity from immunosuppressants, acute and most critically chronic graft rejection, and suboptimal nerve regeneration remain particularly challenging obstacles restricting clinical progress. When properly configured, customized, and implemented, biomaterials derived from the extracellular matrix (ECM) retain bioactive molecules and immunomodulatory properties that can promote stem cell migration, proliferation and differentiation, and constructive functional tissue remodeling. The present paper reviews the emerging implications of ECM-based technologies in VCA, including local immunomodulation, tissue repair, nerve regeneration, minimally invasive graft targeted drug delivery, stem cell transplantation, and other donor graft manipulation.
Collapse
|
49
|
Swinehart IT, Badylak SF. Extracellular matrix bioscaffolds in tissue remodeling and morphogenesis. Dev Dyn 2016; 245:351-60. [PMID: 26699796 DOI: 10.1002/dvdy.24379] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/10/2015] [Accepted: 12/14/2015] [Indexed: 12/13/2022] Open
Abstract
During normal morphogenesis the extracellular matrix (ECM) influences cell motility, proliferation, apoptosis, and differentiation. Tissue engineers have attempted to harness the cell signaling potential of ECM to promote the functional reconstruction, if not regeneration, of injured or missing adult tissues that otherwise heal by the formation of scar tissue. ECM bioscaffolds, derived from decellularized tissues, have been used to promote the formation of site appropriate, functional tissues in many clinical applications including skeletal muscle, fibrocartilage, lower urinary tract, and esophageal reconstruction, among others. These scaffolds function by the release or exposure of growth factors and cryptic peptides, modulation of the immune response, and recruitment of progenitor cells. Herein, we describe this process of ECM induced constructive remodeling and examine similarities to normal tissue morphogenesis.
Collapse
Affiliation(s)
- Ilea T Swinehart
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania.,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
50
|
Yannas IV, Tzeranis D, So PT. Surface biology of collagen scaffold explains blocking of wound contraction and regeneration of skin and peripheral nerves. Biomed Mater 2015; 11:014106. [PMID: 26694657 PMCID: PMC5775477 DOI: 10.1088/1748-6041/11/1/014106] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We review the details of preparation and of the recently elucidated mechanism of biological (regenerative) activity of a collagen scaffold (dermis regeneration template, DRT) that has induced regeneration of skin and peripheral nerves (PN) in a variety of animal models and in the clinic. DRT is a 3D protein network with optimized pore size in the range 20-125 µm, degradation half-life 14 ± 7 d and ligand densities that exceed 200 µM α1β1 or α2β1 ligands. The pore has been optimized to allow migration of contractile cells (myofibroblasts, MFB) into the scaffold and to provide sufficient specific surface for cell-scaffold interaction; the degradation half-life provides the required time window for satisfactory binding interaction of MFB with the scaffold surface; and the ligand density supplies the appropriate ligands for specific binding of MFB on the scaffold surface. A dramatic change in MFB phenotype takes place following MFB-scaffold binding which has been shown to result in blocking of wound contraction. In both skin wounds and PN wounds the evidence has shown clearly that contraction blocking by DRT is followed by induction of regeneration of nearly perfect organs. The biologically active structure of DRT is required for contraction blocking; well-matched collagen scaffold controls of DRT, with structures that varied from that of DRT, have failed to induce regeneration. Careful processing of collagen scaffolds is required for adequate biological activity of the scaffold surface. The newly understood mechanism provides a relatively complete paradigm of regenerative medicine that can be used to prepare scaffolds that may induce regeneration of other organs in future studies.
Collapse
Affiliation(s)
- I V Yannas
- Departments of Mechanical and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|