1
|
Pomares-Bri I, Roca M, Borrás F, Wabitsch M, Lahoz A, Micol V, Herranz-López M. Polyphenols reverse hyperglycemia-induced adipocyte dysfunction: A Metabolomic and Lipidomic study of efficacy. Food Res Int 2025; 211:116453. [PMID: 40356124 DOI: 10.1016/j.foodres.2025.116453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/20/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025]
Abstract
Hyperglycemia leads to metabolic dysfunction in human adipocytes, characterized by decreased AKT phosphorylation, downregulation of glycolysis, TCA cycle, and amino acid metabolism, as well as altered lipid profiles. This study aimed to elucidate these metabolic alterations and evaluate the potential therapeutic effects of selected polyphenols. Comprehensive metabolic profiling revealed profound disruptions, including impaired carbon metabolism, amino acids, and lipids associated with obesity. Importantly, treatment with polyphenols, particularly verbascoside and ferulic acid, effectively mitigated these metabolic disturbances, restoring adipocyte homeostasis. The polyphenols increased metabolites from carbon metabolism and amino acids, improving glycolysis, the TCA cycle, and related pathways. They also modulated lipid profiles that are negatively associated with obesity and related diseases. These findings provide valuable insights into the metabolic pathways underlying adipocyte dysfunction in hyperglycemia and highlight the therapeutic potential of polyphenols in ameliorating metabolic disorders.
Collapse
Affiliation(s)
- Irene Pomares-Bri
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández (UMH), 03202 Elche, Spain
| | - Marta Roca
- Analytical Unit, Medical Research Institute-Hospital La Fe, Av. Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Fernando Borrás
- Statistics and Operative Research Department, UMH, Avda, Universidad s/n, 03202, Elche, Spain
| | - Martin Wabitsch
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Endocrinology and Diabetes, Ulm University Medical Center Ulm, Ulm, Germany
| | - Agustín Lahoz
- Biomarkers and Precision Medicine Unit, Health Research Institute-Hospital La Fe, 46026, Valencia, Spain
| | - Vicente Micol
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández (UMH), 03202 Elche, Spain.; CIBER: CB12/03/30038, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain.
| | - María Herranz-López
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández (UMH), 03202 Elche, Spain
| |
Collapse
|
2
|
Chen Y, Gowda SGB, Gowda D, Jayaprakash J, Nath LR, Ikeda A, Bamai YA, Ketema RM, Kishi R, Chiba H, Hui SP. Application of Liquid Chromatography/Tandem Mass Spectrometry for Quantitative Analysis of Plasmalogens in Preadolescent Children-The Hokkaido Study. Diagnostics (Basel) 2025; 15:743. [PMID: 40150086 PMCID: PMC11941332 DOI: 10.3390/diagnostics15060743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/28/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Plasmalogens (Pls) are phospholipids with a unique structure, abundant in the brain and heart. Due to their chemical instability and analytical difficulties, less information is available compared to other phospholipids. The importance of Pls in several cellular processes is known, one of which is their protective effect against oxidative damage. The physiological role of Pls in human development has not been elucidated. Despite their clinical importance, the quantitative analysis of Pls in children's plasma has been limited. Methods: This study aims to determine the plasma levels of Pls in prepubertal children using liquid chromatography/tandem mass spectrometry (LC-MS/MS). The plasma samples used were obtained from 9- to 12-year-old girls (n = 156) and boys (n = 178), n = 334 in total, who participated in the Hokkaido study. Results: Ethanolamine plasmalogen (PlsEtn) and choline plasmalogen (PlsCho), both carrying eicosapentaenoic acid, were significantly lower in girls than in boys. In both sexes, the plasmalogen levels for the 12-year-old children were lower than those for the 9-year-old children. PlsCho (16:0/18:2) was lower in the overweight children than in the normal-weight children for both sexes. PlsEtn (18:0/20:4) was the most abundant ethanolamine-type plasmalogen in both sexes. Conclusions: This study is the first report on plasmalogen levels and molecular types in children's plasma. This study provides the information needed to understand the role of Pls in human developmental processes and may open up new opportunities in the future to control age-related changes in Pls.
Collapse
Affiliation(s)
- Yifan Chen
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan; (Y.C.); (S.G.B.G.); (D.G.); (A.I.); (R.M.K.)
| | - Siddabasave Gowda B. Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan; (Y.C.); (S.G.B.G.); (D.G.); (A.I.); (R.M.K.)
- Graduate School of Global Food Resources, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-0809, Japan; (J.J.); (L.R.N.)
| | - Divyavani Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan; (Y.C.); (S.G.B.G.); (D.G.); (A.I.); (R.M.K.)
| | - Jayashankar Jayaprakash
- Graduate School of Global Food Resources, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-0809, Japan; (J.J.); (L.R.N.)
| | - Lipsa Rani Nath
- Graduate School of Global Food Resources, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-0809, Japan; (J.J.); (L.R.N.)
| | - Atusko Ikeda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan; (Y.C.); (S.G.B.G.); (D.G.); (A.I.); (R.M.K.)
- Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo 060-0812, Japan; (Y.A.B.); (R.K.)
| | - Yu Ait Bamai
- Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo 060-0812, Japan; (Y.A.B.); (R.K.)
| | - Rahel Mesfin Ketema
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan; (Y.C.); (S.G.B.G.); (D.G.); (A.I.); (R.M.K.)
- Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo 060-0812, Japan; (Y.A.B.); (R.K.)
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo 060-0812, Japan; (Y.A.B.); (R.K.)
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma Nishi-4-2-1-15, Higashi-ku, Sapporo 070-0894, Japan;
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan; (Y.C.); (S.G.B.G.); (D.G.); (A.I.); (R.M.K.)
| |
Collapse
|
3
|
Jayaprakash J, Gowda SGB, Gowda D, Ikeda A, Bamai YA, Ketema RM, Kishi R, Chen Y, Chiba H, Hui SP. Plasma Lipidomics of Preadolescent Children: A Hokkaido Study. J Lipids 2025; 2025:3106145. [PMID: 40084067 PMCID: PMC11898111 DOI: 10.1155/jl/3106145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/05/2024] [Indexed: 03/16/2025] Open
Abstract
Lipids are the most abundant biomolecules of human plasma, and their balance plays a significant role in health and disease management. Despite the importance of lipids, the studies focused on the comprehensive determination of the plasma lipidome in children are limited. In this study, we investigated the sex, age, and weight-specific changes in the plasma lipidome of nonfasting preadolescent children aged 9-12 years (n = 342) using a nontargeted liquid chromatography-mass spectrometry technique. A total of 219 lipid species were characterized in the plasma samples. Multivariate analysis revealed that boys and girls have similar lipid profiles, but relatively higher levels of capric acid-composed triacylglycerols (TGs) were observed in plasma samples of boys. Saturated fatty acids are the most abundant fatty acyls followed by mono- and polyunsaturated fatty acids in the plasma of both boys and girls. Sphingolipids such as ceramides, hexosylceramides, sphingomyelin, and a phospholipid (phosphatidylinositol) were relatively higher in the plasma of a 10-year-old group than other age groups. Plasma levels of TG and phosphatidylserine were increased within age from 9 to 12 years. Furthermore, most of the TG molecular species were increased in the plasma of overweight children compared to the normal range groups. The receiver operating characteristic analysis results show that TG (10:0/10:0/18:1) could be a specific marker for childhood obesity (area under the curve (AUC) = 0.72). Overall, this study highlights the altered plasma lipidome in preadolescent children for sex, age, and percentage of overweight. Early detection of lipid markers for obesity would be a promising target for developing therapeutic strategies.
Collapse
Affiliation(s)
- Jayashankar Jayaprakash
- Graduate School of Global Food Resources, Hokkaido University, Kita-9, Nishi-9, Kita-Ku, Sapporo, Japan
| | - Siddabasave Gowda B. Gowda
- Graduate School of Global Food Resources, Hokkaido University, Kita-9, Nishi-9, Kita-Ku, Sapporo, Japan
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Japan
| | - Divyavani Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Japan
| | - Atsuko Ikeda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Japan
- Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo, Japan
| | - Yu Ait Bamai
- Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo, Japan
| | - Rahel Mesfin Ketema
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Japan
- Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo, Japan
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo, Japan
| | - Yifan Chen
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Japan
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma Nishi-4-2-1-15, Higashi-ku, Sapporo, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Japan
| |
Collapse
|
4
|
Upadhyay G, Gowda SGB, Mishra SP, Nath LR, James A, Kulkarni A, Srikant Y, Upendram R, Marimuthu M, Hui SP, Jain S, Vasundhara K, Yadav H, Halade GV. Targeted and untargeted lipidomics with integration of liver dynamics and microbiome after dietary reversal of obesogenic diet targeting inflammation-resolution signaling in aging mice. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159542. [PMID: 39097080 DOI: 10.1016/j.bbalip.2024.159542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Obesity, a global epidemic linked to around 4 million deaths yearly, arises from lifestyle imbalances impacting inflammation-related conditions like non-alcoholic fatty liver disease and gut dysbiosis. But the long-term effects of inflammation caused by lifestyle-related dietary changes remain unexplained. In this study, we used young male C57Bl/6 mice which were fed either an obesogenic diet (OBD) or a control diet (CON) for six months. Later, a group of mice from the OBD group were intervened to the CON diet (OBD-R) for four months, while another OBD group remained on the OBD diet. The OBD induced distinct changes in gut microbial, notably elevating Firmicutes and Actinobacteria, while reducing Bacteroidetes and Tenericutes. OBD-R restored microbial abundance like CON. Analyzing liver, plasma, and fecal samples revealed OBD-induced alterations in various structural and bioactive lipids, which were normalized to CON in the OBD-R, showcasing lipid metabolism flexibility and adaptability to dietary shifts. OBD increased omega 6 fatty acid, Arachidonic Acid (AA) and decreased omega 3-derived lipid mediators in the OBD mimicking non-alcoholic fatty liver disease thus impacting inflammation-resolution pathways. OBD also induced hepatic inflammation via increasing alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and proinflammatory markers CCR2, TNF-α, and IL-1β in liver. Transitioning from OBD to CON mitigated inflammatory gene expression and restored lipid and cholesterol networks. This study underscores the intricate interplay between lifestyle-driven dietary changes, gut microbiota, lipid metabolism, and liver health. Notably, it suggests that shift from an OBD (omega-6 enriched) to CON partially alleviates signs of chronic inflammation during aging. Understanding these microbial, lipidomic, and hepatic inflammatory dynamics reveals potential therapeutic avenues for metabolic disorders induced by diet, emphasizing the pivotal role of diet in sustaining metabolic health.
Collapse
Affiliation(s)
- Gunjan Upadhyay
- Heart Institute, Division of Cardiovascular Sciences, Department of Internal Medicine, University of South Florida, Tampa, FL, USA
| | - Siddabasave Gowda B Gowda
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan; Graduate School of Global Food Resources, Hokkaido University, Sapporo, Japan
| | - Sidharth P Mishra
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida, Tampa, FL, USA
| | - Lipsa Rani Nath
- Graduate School of Global Food Resources, Hokkaido University, Sapporo, Japan
| | - Adewale James
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida, Tampa, FL, USA
| | - Alisha Kulkarni
- Heart Institute, Division of Cardiovascular Sciences, Department of Internal Medicine, University of South Florida, Tampa, FL, USA
| | - Yuktee Srikant
- Heart Institute, Division of Cardiovascular Sciences, Department of Internal Medicine, University of South Florida, Tampa, FL, USA
| | - Rohitram Upendram
- Heart Institute, Division of Cardiovascular Sciences, Department of Internal Medicine, University of South Florida, Tampa, FL, USA
| | - MathanKumar Marimuthu
- Heart Institute, Division of Cardiovascular Sciences, Department of Internal Medicine, University of South Florida, Tampa, FL, USA
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Shalini Jain
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida, Tampa, FL, USA
| | - Kain Vasundhara
- Heart Institute, Division of Cardiovascular Sciences, Department of Internal Medicine, University of South Florida, Tampa, FL, USA
| | - Hariom Yadav
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida, Tampa, FL, USA; Center for Aging and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Ganesh V Halade
- Heart Institute, Division of Cardiovascular Sciences, Department of Internal Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
5
|
Petrovic S, Mouskeftara T, Paunovic M, Deda O, Vucic V, Milosevic M, Gika H. Unveiling Lipidomic Alterations in Metabolic Syndrome: A Study of Plasma, Liver, and Adipose Tissues in a Dietary-Induced Rat Model. Nutrients 2024; 16:3466. [PMID: 39458462 PMCID: PMC11509917 DOI: 10.3390/nu16203466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Metabolic syndrome (MetS) is a complex condition characterized by fat accumulation, dyslipidemia, impaired glucose control and hypertension. In this study, rats were fed a high-fat high-fructose (HFF) diet in order to develop MetS. After ten weeks, the dietary-induced MetS was confirmed by higher body fat percentage, lower HDL-cholesterol and increased blood pressure in the HFF-fed rats compared to the normal-fed control animals. However, the effect of MetS development on the lipidomic signature of the dietary-challenged rats remains to be investigated. To reveal the contribution of specific lipids to the development of MetS, the lipid profiling of rat tissues particularly susceptible to MetS was performed using untargeted UHPLC-QTOF-MS/MS lipidomic analysis. A total of 37 lipid species (mainly phospholipids, triglycerides, sphingolipids, cholesterol esters, and diglycerides) in plasma, 43 lipid species in liver, and 11 lipid species in adipose tissue were identified as dysregulated between the control and MetS groups. Changes in the lipid signature of selected tissues additionally revealed systemic changes in the dietary-induced rat model of MetS.
Collapse
Affiliation(s)
- Snjezana Petrovic
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.P.); (V.V.)
| | - Thomai Mouskeftara
- Laboratory of Forensic Medicine & Toxicology, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Marija Paunovic
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.P.); (V.V.)
| | - Olga Deda
- Laboratory of Forensic Medicine & Toxicology, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece
| | - Vesna Vucic
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.P.); (V.V.)
| | - Maja Milosevic
- Group for Neuroendocrinology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Helen Gika
- Laboratory of Forensic Medicine & Toxicology, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece
| |
Collapse
|
6
|
Vu N, Maile TM, Gollapudi S, Gaun A, Seitzer P, O'Brien JJ, Hackett SR, Zavala-Solorio J, McAllister FE, Kolumam G, Keyser R, Bennett BD. Automated preparation of plasma lipids, metabolites, and proteins for LC/MS-based analysis of a high-fat diet in mice. J Lipid Res 2024; 65:100607. [PMID: 39067520 PMCID: PMC11399584 DOI: 10.1016/j.jlr.2024.100607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024] Open
Abstract
Blood plasma is one of the most commonly analyzed and easily accessible biological samples. Here, we describe an automated liquid-liquid extraction platform that generates accurate, precise, and reproducible samples for metabolomic, lipidomic, and proteomic analyses from a single aliquot of plasma while minimizing hands-on time and avoiding contamination from plasticware. We applied mass spectrometry to examine the metabolome, lipidome, and proteome of 90 plasma samples to determine the effects of age, time of day, and a high-fat diet in mice. From 25 μl of mouse plasma, we identified 907 lipid species from 16 different lipid classes and subclasses, 233 polar metabolites, and 344 proteins. We found that the high-fat diet induced only mild changes in the polar metabolome, upregulated apolipoproteins, and induced substantial shifts in the lipidome, including a significant increase in arachidonic acid and a decrease in eicosapentaenoic acid content across all lipid classes.
Collapse
Affiliation(s)
- Ngoc Vu
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | - Rob Keyser
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | |
Collapse
|
7
|
Santos M, Melo T, Maurício T, Ferreira H, Domingues P, Domingues R. The non-enzymatic oxidation of phosphatidylethanolamine and phosphatidylserine and their intriguing roles in inflammation dynamics and diseases. FEBS Lett 2024; 598:2174-2189. [PMID: 39097985 DOI: 10.1002/1873-3468.14992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/14/2024] [Accepted: 07/05/2024] [Indexed: 08/06/2024]
Abstract
Phosphatidylethanolamine (PE) and phosphatidylserine (PS), along with phosphatidylcholine (PC), are key phospholipids (PL) in cell membranes and lipoproteins, prone to oxidative modifications. Their oxidized forms, OxPE and OxPS, play significant roles in inflammation and immune response. This review explores their structural oxidative changes under non-enzymatic conditions and their roles in physiological and pathological contexts, influencing inflammation, and immunity. Specific oxidations of PE and PS significantly alter their physicochemical properties, leading to enhanced biological functions, reduced activity, or inactivation. OxPE may show pro-inflammatory actions, similar to well-documented OxPC, while the OxPS pro-inflammatory effects are less noted. However, OxPS and OxPE have also shown an antagonistic effect against lipopolysaccharides (LPS), suggesting a protective role against exacerbated immune responses, similar to OxPC. Further research is needed to deepen our understanding of these less-studied OxPL classes. The role of OxPE and OxPS in disease pathogenesis remains largely unexplored, with limited studies linking them to Alzheimer's disease, diabetes, rheumatoid arthritis, traumatic brain injury, and skin inflammation. These findings highlight the potential of OxPE and OxPS as biomarkers for disease diagnosis, monitoring, and therapeutic targeting.
Collapse
Affiliation(s)
- Matilde Santos
- Department of Chemistry, Mass Spectrometry Center, LAQV-REQUIMTE, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Tânia Melo
- Department of Chemistry, Mass Spectrometry Center, LAQV-REQUIMTE, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- Department of Chemistry, CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Tatiana Maurício
- Department of Chemistry, Mass Spectrometry Center, LAQV-REQUIMTE, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Helena Ferreira
- Department of Chemistry, Mass Spectrometry Center, LAQV-REQUIMTE, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Pedro Domingues
- Department of Chemistry, Mass Spectrometry Center, LAQV-REQUIMTE, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Rosário Domingues
- Department of Chemistry, Mass Spectrometry Center, LAQV-REQUIMTE, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- Department of Chemistry, CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| |
Collapse
|
8
|
B Gowda SG, Shekhar C, Gowda D, Chen Y, Chiba H, Hui SP. Mass spectrometric approaches in discovering lipid biomarkers for COVID-19 by lipidomics: Future challenges and perspectives. MASS SPECTROMETRY REVIEWS 2024; 43:1041-1065. [PMID: 37102760 DOI: 10.1002/mas.21848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 03/14/2023] [Accepted: 04/17/2023] [Indexed: 05/09/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has emerged as a global health threat and has rapidly spread worldwide. Significant changes in the lipid profile before and after COVID-19 confirmed the significance of lipid metabolism in regulating the response to viral infection. Therefore, understanding the role of lipid metabolism may facilitate the development of new therapeutics for COVID-19. Owing to their high sensitivity and accuracy, mass spectrometry (MS)-based methods are widely used for rapidly identifying and quantifying of thousands of lipid species present in a small amount of sample. To enhance the capabilities of MS for the qualitative and quantitative analysis of lipids, different platforms have been combined to cover a wide range of lipidomes with high sensitivity, specificity, and accuracy. Currently, MS-based technologies are being established as efficient methods for discovering potential diagnostic biomarkers for COVID-19 and related diseases. As the lipidome of the host cell is drastically affected by the viral replication process, investigating lipid profile alterations in patients with COVID-19 and targeting lipid metabolism pathways are considered to be crucial steps in host-directed drug targeting to develop better therapeutic strategies. This review summarizes various MS-based strategies that have been developed for lipidomic analyzes and biomarker discoveries to combat COVID-19 by integrating various other potential approaches using different human samples. Furthermore, this review discusses the challenges in using MS technologies and future perspectives in terms of drug discovery and diagnosis of COVID-19.
Collapse
Affiliation(s)
- Siddabasave Gowda B Gowda
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
- Graduate School of Global Food Resources, Hokkaido University, Sapporo, Japan
| | - Chandra Shekhar
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Divyavani Gowda
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yifan Chen
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Sapporo, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
9
|
Wu L, Li Y, Chen S, Yang Y, Tang B, Weng M, Shen H, Chen J, Lai P. Widely Targeted Lipidomics and Microbiomics Perspectives Reveal the Mechanism of Auricularia auricula Polysaccharide's Effect of Regulating Glucolipid Metabolism in High-Fat-Diet Mice. Foods 2024; 13:2743. [PMID: 39272508 PMCID: PMC11395039 DOI: 10.3390/foods13172743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
The role of Auricularia auricula polysaccharide (AP) in the regulation of glycolipid metabolism was investigated using a high-fat-diet-induced hyperlipidemic mouse model. In a further step, its potential mechanism of action was investigated using microbiome analysis and widely targeted lipidomics. Compared to high-fat mice, dietary AP supplementation reduced body weight by 13.44%, liver index by 21.30%, epididymal fat index by 50.68%, fasting blood glucose (FBG) by 14.27%, serum total cholesterol (TC) by 20.30%, serum total triglycerides (TGs) by 23.81%, liver non-esterified fatty acid (NEFA) by 20.83%, liver TGs by 20.00%, and liver malondialdehyde (MDA) by 21.05%, and increased liver glutathione oxidase (GSH-PX) activity by 52.24%, total fecal bile acid (TBA) by 46.21%, and fecal TG by 27.16%, which significantly regulated glucose and lipid metabolism. Microbiome analysis showed that AP significantly downregulated the abundance of the Desulfobacterota phylum, as well as the genii Desulfovibrio, Bilophila, and Oscillbacter in the cecum of hyperlipidemic mice, which are positively correlated with high lipid indexes, while it upregulated the abundance of the families Eubacterium_coprostanoligenes_group and Ruminococcaceae, as well as the genii Eubacterum_xylanophilum_group, Lachnospiraceae_NK4A136_group, Eubacterium_siraeum_group, and Parasutterella, which were negatively correlated with high lipid indexes. In addition, AP promoted the formation of SCFAs by 119.38%. Widely targeted lipidomics analysis showed that AP intervention regulated 44 biomarkers in metabolic pathways such as sphingolipid metabolism and the AGE-RAGE signaling pathway in the hyperlipidemic mice (of which 15 metabolites such as unsaturated fatty acids, phosphatidylserine, and phosphatidylethanolamine were upregulated, and 29 metabolites such as phosphatidylcholine, ceramide, carnitine, and phosphatidylinositol were downregulated), thereby correcting glucose and lipid metabolism disorders.
Collapse
Affiliation(s)
- Li Wu
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- National R & D Center of Edible Fungi Processing, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
- Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fuzhou 350003, China
- Fujian Characteristic Agricultural Products Processing Technology and Economic Integration Service Platform, Fuzhou 350003, China
| | - Yibin Li
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- National R & D Center of Edible Fungi Processing, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
- Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fuzhou 350003, China
- Fujian Characteristic Agricultural Products Processing Technology and Economic Integration Service Platform, Fuzhou 350003, China
| | - Shouhui Chen
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- National R & D Center of Edible Fungi Processing, Fuzhou 350003, China
| | - Yanrong Yang
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- National R & D Center of Edible Fungi Processing, Fuzhou 350003, China
| | - Baosha Tang
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- National R & D Center of Edible Fungi Processing, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
- Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fuzhou 350003, China
- Fujian Characteristic Agricultural Products Processing Technology and Economic Integration Service Platform, Fuzhou 350003, China
| | - Minjie Weng
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- National R & D Center of Edible Fungi Processing, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
- Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fuzhou 350003, China
- Fujian Characteristic Agricultural Products Processing Technology and Economic Integration Service Platform, Fuzhou 350003, China
| | - Hengsheng Shen
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- National R & D Center of Edible Fungi Processing, Fuzhou 350003, China
| | - Junchen Chen
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- National R & D Center of Edible Fungi Processing, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
- Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fuzhou 350003, China
- Fujian Characteristic Agricultural Products Processing Technology and Economic Integration Service Platform, Fuzhou 350003, China
| | - Pufu Lai
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- National R & D Center of Edible Fungi Processing, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
- Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fuzhou 350003, China
- Fujian Characteristic Agricultural Products Processing Technology and Economic Integration Service Platform, Fuzhou 350003, China
| |
Collapse
|
10
|
Lékó AH, Gregory-Flores A, Marchette RCN, Gomez JL, Vendruscolo JCM, Repunte-Canonigo V, Choung V, Deschaine SL, Whiting KE, Jackson SN, Cornejo MP, Perello M, You ZB, Eckhaus M, Rasineni K, Janda KD, Zorman B, Sumazin P, Koob GF, Michaelides M, Sanna PP, Vendruscolo LF, Leggio L. Genetic or pharmacological GHSR blockade has sexually dimorphic effects in rodents on a high-fat diet. Commun Biol 2024; 7:632. [PMID: 38796563 PMCID: PMC11127961 DOI: 10.1038/s42003-024-06303-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 05/08/2024] [Indexed: 05/28/2024] Open
Abstract
The stomach-derived hormone ghrelin regulates essential physiological functions. The ghrelin receptor (GHSR) has ligand-independent actions; therefore, GHSR gene deletion may be a reasonable approach to investigate the role of this system in feeding behaviors and diet-induced obesity (DIO). Here, we investigate the effects of a long-term (12-month) high-fat (HFD) versus regular diet on obesity-related measures in global GHSR-KO and wild-type (WT) Wistar male and female rats. Our main findings are that the GHSR gene deletion protects against DIO and decreases food intake during HFD in male but not in female rats. GHSR gene deletion increases thermogenesis and brain glucose uptake in male rats and modifies the effects of HFD on brain glucose metabolism in a sex-specific manner, as assessed with small animal positron emission tomography. We use RNA-sequencing to show that GHSR-KO rats have upregulated expression of genes responsible for fat oxidation in brown adipose tissue. Central administration of a novel GHSR inverse agonist, PF-5190457, attenuates ghrelin-induced food intake, but only in male, not in female mice. HFD-induced binge-like eating is reduced by inverse agonism in both sexes. Our results support GHSR as a promising target for new pharmacotherapies for obesity.
Collapse
Affiliation(s)
- András H Lékó
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
- Center on Compulsive Behaviors, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Adriana Gregory-Flores
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Renata C N Marchette
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Juan L Gomez
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Janaina C M Vendruscolo
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Vez Repunte-Canonigo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Vicky Choung
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Sara L Deschaine
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
| | - Kimberly E Whiting
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Shelley N Jackson
- Translational Analytical Core, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Maria Paula Cornejo
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Argentina
| | - Mario Perello
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Argentina
| | - Zhi-Bing You
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Michael Eckhaus
- Pathology Service, Division of Veterinary Resources, Office of Research Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Karuna Rasineni
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kim D Janda
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Barry Zorman
- Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Pavel Sumazin
- Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - George F Koob
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Michael Michaelides
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Pietro P Sanna
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Leandro F Vendruscolo
- Stress and Addiction Neuroscience Unit, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA.
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA.
- Translational Analytical Core, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, RI, USA.
- Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Neuroscience, Georgetown University Medical Center, Washington DC, USA.
| |
Collapse
|
11
|
Jayaprakash J, B. Gowda SG, K. Shukla P, Gowda D, Nath LR, Chiba H, Rao R, Hui SP. Sex-Specific Effect of Ethanol on Colon Content Lipidome in a Mice Model Using Nontargeted LC/MS. ACS OMEGA 2024; 9:16044-16054. [PMID: 38617688 PMCID: PMC11007720 DOI: 10.1021/acsomega.3c09597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/15/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
Consumption of alcohol has widespread effects on the human body. The organs that are most significantly impacted are the liver and digestive system. When alcohol is consumed, it is absorbed in the intestines and processed by the liver. However, excessive alcohol use may affect gut epithelial integrity, microbiome composition, and lipid metabolism. Despite past studies investigating the effect of ethanol on hepatic lipid metabolism, the focus on colonic lipid metabolism has not been well explored. In this study, we investigated the sex-specific effect of ethanol on the colonic content lipidome in a mouse model using nontargeted liquid chromatography-mass spectrometry. Comprehensive lipidome analysis of colonic flush samples was performed using ethanol-fed (EF) and pair-fed (PF) mice of each sex. Partial least-squares discriminant analysis revealed that ethanol altered colonic lipid composition largely in male mice compared with female mice. A significant increase in free fatty acids, ceramides, and hexosylceramides and decreased phosphatidylglycerols (PG) was observed in the EF group compared to the PF group in male mice. Phosphatidylethanolamine (PE) levels were increased significantly in the EF group of both sexes compared to the PF group. The volcanic plot shows that PG (O-15:1/15:0) and PE (O-18:2/15:0) are common markers that are increased in both sexes of the EF group. In addition, decreased fatty acid esters of hydroxy fatty acids (FAHFA) were observed specifically in the EF group of female mice. Overall, a significant variation in the mice colonic content lipidome between the EF and PF groups was observed. Target pathways, such as sphingolipid metabolism in males, FAHFA in females, and PE metabolism in both sexes, were suggested. This study provides new insight into the sex-dependent lipid change associated with alcohol-induced gut-microbiota dysfunction and its potential health impacts.
Collapse
Affiliation(s)
- Jayashankar Jayaprakash
- Graduate
School of Global Food Resources, Hokkaido
University, Kita-9, Nishi-9, Kita-Ku, Sapporo 060-0809, Japan
| | - Siddabasave Gowda B. Gowda
- Graduate
School of Global Food Resources, Hokkaido
University, Kita-9, Nishi-9, Kita-Ku, Sapporo 060-0809, Japan
- Faculty
of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan
| | - Pradeep K. Shukla
- Department
of Physiology, College of Medicine, University
of Tennessee Health Science Center, 19 S Manassas, Memphis, Tennessee 38163, United States
| | - Divyavani Gowda
- Faculty
of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan
| | - Lipsa Rani Nath
- Graduate
School of Global Food Resources, Hokkaido
University, Kita-9, Nishi-9, Kita-Ku, Sapporo 060-0809, Japan
| | - Hitoshi Chiba
- Department
of Nutrition, Sapporo University of Health
Sciences, Nakanuma, Nishi-4-3-1-15, Higashi-ku, Sapporo 007-0894, Japan
| | - Radhakrishna Rao
- Department
of Physiology, College of Medicine, University
of Tennessee Health Science Center, 19 S Manassas, Memphis, Tennessee 38163, United States
| | - Shu-Ping Hui
- Faculty
of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan
| |
Collapse
|
12
|
Gowda SGB, Hou F, Gowda D, Chiba H, Kawakami K, Fukiya S, Yokota A, Hui SP. Synthesis and quantification of short-chain fatty acid esters of hydroxy fatty acids in rat intestinal contents and fecal samples by LC-MS/MS. Anal Chim Acta 2024; 1288:342145. [PMID: 38220280 DOI: 10.1016/j.aca.2023.342145] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/16/2024]
Abstract
Short-chain fatty acid esters of hydroxy fatty acids (SFAHFAs) are a new class of endogenous lipids belonging to the fatty acid esters of the hydroxy fatty acid family. We previously uncovered their chemical structure and discussed their potential biological significance. We anticipate an increased need for SFAHFA measurements as markers of metabolic and inflammatory health. In this study, we synthesized sixty isomeric SFAHFAs by combining 12 hydroxy fatty acids (C16-C24) and five short-chain fatty acids (C2-C6) including a labelled internal standard. SFAHFA enrichment was achieved by solid-phase extraction and established a sensitive method for their quantitation by targeted LC-MS/MS. The method was applied to profile SFAHFAs in intestinal contents and fecal samples collected from rats fed a high-fat diet (HFD). The results demonstrated a significant decrease in SFAHFAs in the intestinal contents of the HFD group compared with the control group. The fecal time course (0-8 weeks) profile of SFAHFAs showed significant downregulation of acetic and propanoic acid esters in just 2 weeks after HFD administration. This study offers the first synthesis and quantitation method for SFAHFAs, demonstrating their potential use in elucidating SFAHFA sources, their role in various diseases, and potential biochemical signalling pathways.
Collapse
Affiliation(s)
- Siddabasave Gowda B Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, 060-0812, Japan; Graduate School of Global Food Resources, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo, 060-0809, Japan
| | - Fengjue Hou
- Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, 060-0812, Japan
| | - Divyavani Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, 060-0812, Japan
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma, Nishi-4-3-1-15, Higashi-ku, Sapporo, 007-0894, Japan
| | - Kentaro Kawakami
- Research Faculty of Agriculture, Hokkaido University, Kita-9 Nishi-9, Kita-ku, Sapporo, 060-8589, Japan
| | - Satoru Fukiya
- Research Faculty of Agriculture, Hokkaido University, Kita-9 Nishi-9, Kita-ku, Sapporo, 060-8589, Japan
| | - Atsushi Yokota
- Research Faculty of Agriculture, Hokkaido University, Kita-9 Nishi-9, Kita-ku, Sapporo, 060-8589, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
13
|
Leggio L, Leko A, Gregory-Flores A, Marchette R, Gomez J, Vendruscolo J, Repunte-Canonigo V, Chuong V, Deschaine S, Whiting K, Jackson S, Cornejo M, Perello M, You ZB, Eckhaus M, Janda K, Zorman B, Sumazin P, Koob G, Michaelides M, Sanna PP, Vendruscolo L. Genetic or pharmacological GHSR blockade has sexually dimorphic effects in rodents on a high-fat diet. RESEARCH SQUARE 2023:rs.3.rs-3236045. [PMID: 37886546 PMCID: PMC10602167 DOI: 10.21203/rs.3.rs-3236045/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The stomach-derived hormone ghrelin regulates essential physiological functions. The ghrelin receptor (GHSR) has ligand-independent actions, therefore, GHSR gene deletion may be a reasonable approach to investigate the role of this system in feeding behaviors and diet-induced obesity (DIO). Here we investigated the effects of a long-term (12 month) high-fat (HFD) versus regular diet on obesity-related measures in global GHSR-KO and wild type (WT) Wistar male and female rats. Our main findings were that the GHSR gene deletion protects against DIO and decreases food intake during HFD in male but not in female rats. GHSR gene deletion increased thermogenesis and brain glucose uptake in male rats and modified the effects of HFD on brain glucose metabolism in a sex-specific manner, as assessed with small animal positron emission tomography. RNA-sequencing was also used to show that GHSR-KO rats had upregulated expression of genes responsible for fat oxidation in brown adipose tissue. Central administration of a novel GHSR inverse agonist, PF-5190457, attenuated ghrelin-induced food intake, but only in male, not in female mice. HFD-induced binge-like eating was reduced by inverse agonism in both sexes. Our results support GHSR as a promising target for new pharmacotherapies for obesity.
Collapse
|
14
|
Cho YK, Lee S, Lee J, Doh J, Park JH, Jung YS, Lee YH. Lipid remodeling of adipose tissue in metabolic health and disease. Exp Mol Med 2023; 55:1955-1973. [PMID: 37653032 PMCID: PMC10545718 DOI: 10.1038/s12276-023-01071-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 09/02/2023] Open
Abstract
Adipose tissue is a dynamic and metabolically active organ that plays a crucial role in energy homeostasis and endocrine function. Recent advancements in lipidomics techniques have enabled the study of the complex lipid composition of adipose tissue and its role in metabolic disorders such as obesity, diabetes, and cardiovascular disease. In addition, adipose tissue lipidomics has emerged as a powerful tool for understanding the molecular mechanisms underlying these disorders and identifying bioactive lipid mediators and potential therapeutic targets. This review aims to summarize recent lipidomics studies that investigated the dynamic remodeling of adipose tissue lipids in response to specific physiological changes, pharmacological interventions, and pathological conditions. We discuss the molecular mechanisms of lipid remodeling in adipose tissue and explore the recent identification of bioactive lipid mediators generated in adipose tissue that regulate adipocytes and systemic metabolism. We propose that manipulating lipid-mediator metabolism could serve as a therapeutic approach for preventing or treating obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Yoon Keun Cho
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sumin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jaewon Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Junsang Doh
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Institute of Engineering Research, Bio-MAX Institute, Soft Foundry Institute, Seoul National University, Seoul, Republic of Korea
| | - Joo-Hong Park
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young-Suk Jung
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Yun-Hee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Ohno M, Gowda SGB, Sekiya T, Nomura N, Shingai M, Hui SP, Kida H. The elucidation of plasma lipidome profiles during severe influenza in a mouse model. Sci Rep 2023; 13:14210. [PMID: 37648726 PMCID: PMC10469212 DOI: 10.1038/s41598-023-41055-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
Although influenza virus infection has been shown to affect lipid metabolism, details remain unknown. Therefore, we elucidated the kinetic lipid profiles of mice infected with different doses of influenza virus A/Puerto Rico/8/34 (H1N1) (PR8) by measuring multiple lipid molecular species using untargeted lipidomic analysis. C57BL/6 male mice were intranasally infected with PR8 virus at 50 or 500 plaque-forming units to cause sublethal or lethal influenza, respectively. Plasma and tissue samples were collected at 1, 3, and 6 days post-infection (dpi), and comprehensive lipidomic analysis was performed using high-performance liquid chromatography-linear trap quadrupole-Orbitrap mass spectrometry, as well as gene expression analyses. The most prominent feature of the lipid profile in lethally infected mice was the elevated plasma concentrations of phosphatidylethanolamines (PEs) containing polyunsaturated fatty acid (PUFA) at 3 dpi. Furthermore, the facilitation of PUFA-containing phospholipid production in the lungs, but not in the liver, was suggested by gene expression and lipidomic analysis of tissue samples. Given the increased plasma or serum levels of PUFA-containing PEs in patients with other viral infections, especially in severe cases, the elevation of these phospholipids in circulation could be a biomarker of infection and the severity of infectious diseases.
Collapse
Affiliation(s)
- Marumi Ohno
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Kita 20 Nishi 10, Kita-ku, Sapporo, 001-0020, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Siddabasave Gowda B Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-ku, Sapporo, 060-0812, Japan
- Graduate School of Global Food Resources, Hokkaido University, Sapporo, Japan
| | - Toshiki Sekiya
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Kita 20 Nishi 10, Kita-ku, Sapporo, 001-0020, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Naoki Nomura
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Kita 20 Nishi 10, Kita-ku, Sapporo, 001-0020, Japan
| | - Masashi Shingai
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Kita 20 Nishi 10, Kita-ku, Sapporo, 001-0020, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Division of Vaccine Immunology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-ku, Sapporo, 060-0812, Japan.
| | - Hiroshi Kida
- Division of Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Kita 20 Nishi 10, Kita-ku, Sapporo, 001-0020, Japan.
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan.
| |
Collapse
|
16
|
Gangadhara RM, Gowda SGB, Gowda D, Inui K, Hui SP. Lipid Composition Analysis and Characterization of Acyl Sterol Glycosides in Adzuki and Soybean Cultivars by Non-Targeted LC-MS. Foods 2023; 12:2784. [PMID: 37509876 PMCID: PMC10379096 DOI: 10.3390/foods12142784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/12/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Beans, a globally significant economic and nutritional food crop, are rich in polyphenolic chemicals with potential health advantages, providing high protein, fiber, minerals, and vitamins. However, studies on the global profiling of lipids in beans are limited. We applied a non-targeted lipidomic approach based on high-performance liquid chromatography coupled with linear ion trap-Orbitrap mass spectrometry (HPLC/LTQ-Orbitrap-MS) to comprehensively profile and compare the lipids in six distinct bean cultivars, namely, adzuki red beans-adzuki cultivar (ARB-AC), adzuki red beans-Benidainagon cultivar (ARB-BC), adzuki red beans-Erimoshouzu cultivar (ARB-EC), soybean-Fukuyutaka cultivar 2021 (SB-FC21), soybean-Fukuyutaka cultivar 2022 (SB-FC22), and soybean-Oosuzu cultivar (SB-OC). MS/MS analysis defined 144 molecular species from four main lipid groups. Multivariate principal component analysis indicated unique lipid compositions in the cultivars except for ARB-BC and ARB-EC. Evaluation of the concentrations of polyunsaturated fatty acid to saturated fatty acid ratio among all the cultivars showed that SB-FC21 and SB-FC22 had the highest value, suggesting they are the most beneficial for health. Furthermore, lipids such as acyl sterol glycosides were detected and characterized for the first time in these bean cultivars. Hierarchical cluster correlations revealed the predominance of ceramides in ARB-EC, lysophospholipids in SB-FC21, and glycerophospholipids in SB-OC. This study comprehensively investigated lipids and their compositions in beans, indicating their potential utility in the nutritional evaluation of beans as functional foods.
Collapse
Affiliation(s)
- Rachana M Gangadhara
- Graduate School of Global Food Resources, Hokkaido University, Kita-9, Nishi-9, Kita-Ku, Sapporo 060-0809, Japan
| | - Siddabasave Gowda B Gowda
- Graduate School of Global Food Resources, Hokkaido University, Kita-9, Nishi-9, Kita-Ku, Sapporo 060-0809, Japan
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan
| | - Divyavani Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan
| | - Ken Inui
- HIRYU Co., Ltd., Chuo-Cho 2-32, Kashiwa-shi 277-0021, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
17
|
Gautam J, Kumari D, Aggarwal H, Gupta SK, Kasarla SS, Sarkar S, Priya MRK, Kamboj P, Kumar Y, Dikshit M. Characterization of lipid signatures in the plasma and insulin-sensitive tissues of the C57BL/6J mice fed on obesogenic diets. Biochim Biophys Acta Mol Cell Biol Lipids 2023:159348. [PMID: 37285928 DOI: 10.1016/j.bbalip.2023.159348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
Diet-induced obesity mouse models are widely utilized to investigate the underlying mechanisms of dyslipidemia, glucose intolerance, insulin resistance, hepatic steatosis, and type 2 diabetes mellitus (T2DM), as well as for screening potential drug compounds. However, there is limited knowledge regarding specific signature lipids that accurately reflect dietary disorders. In this study, we aimed to identify key lipid signatures using LC/MS-based untargeted lipidomics in the plasma, liver, adipose tissue (AT), and skeletal muscle tissues (SKM) of male C57BL/6J mice that were fed chow, LFD, or obesogenic diets (HFD, HFHF, and HFCD) for a duration of 20 weeks. Furthermore, we conducted a comprehensive lipid analysis to assess similarities and differences with human lipid profiles. The mice fed obesogenic diets exhibited weight gain, glucose intolerance, elevated BMI, glucose and insulin levels, and a fatty liver, resembling characteristics of T2DM and obesity in humans. In total, we identified approximately 368 lipids in plasma, 433 in the liver, 493 in AT, and 624 in SKM. Glycerolipids displayed distinct patterns across the tissues, differing from human findings. However, changes in sphingolipids, phospholipids, and the expression of inflammatory and fibrotic genes showed similarities to reported human findings. Significantly modulated pathways in the obesogenic diet-fed groups included ceramide de novo synthesis, sphingolipid remodeling, and the carboxylesterase pathway, while lipoprotein-mediated pathways were minimally affected.
Collapse
Affiliation(s)
- Jyoti Gautam
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Deepika Kumari
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Hobby Aggarwal
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Sonu Kumar Gupta
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Siva Swapna Kasarla
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Soumalya Sarkar
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - M R Kamla Priya
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Parul Kamboj
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Yashwant Kumar
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India.
| | - Madhu Dikshit
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India.
| |
Collapse
|
18
|
Tomar M, Sharma A, Araniti F, Pateriya A, Shrivastava A, Tamrakar AK. Distinct Metabolomic Profiling of Serum Samples from High-Fat-Diet-Induced Insulin-Resistant Mice. ACS Pharmacol Transl Sci 2023; 6:771-782. [PMID: 37200804 PMCID: PMC10186361 DOI: 10.1021/acsptsci.3c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Indexed: 05/20/2023]
Abstract
High-fat-diet (HFD)-induced obesity is associated with an elevated risk of insulin resistance (IR), which may precede the onset of type 2 diabetes mellitus and associated metabolic complications. Being a heterogeneous metabolic condition, it is pertinent to understand the metabolites and metabolic pathways that are altered during the development and progression of IR toward T2DM. Serum samples were collected from C57BL/6J mice fed with HFD or chow diet (CD) for 16 weeks. Collected samples were analyzed by gas chromatography-tandem mass spectrometry (GC-MS/MS). Data on the identified raw metabolites were evaluated using a combination of univariate and multivariate statistical methods. Mice fed with HFD had glucose and insulin intolerance associated with impairment of insulin signaling in key metabolic tissues. From the GC-MS/MS analysis of serum samples, a total of 75 common annotated metabolites were identified between HFD- and CD-fed mice. In the t-test, 22 significantly altered metabolites were identified. Out of these, 16 metabolites were up-accumulated, whereas 6 metabolites were down-accumulated. Pathway analysis identified 4 significantly altered metabolic pathways. In particular, primary bile acid biosynthesis and linoleic acid metabolism were upregulated, whereas the TCA cycle and pentose and glucuronate interconversion were downregulated in HFD-fed mice in comparison to CD-fed mice. These results show the distinct metabolic profiles associated with the onset of IR that could provide promising metabolic biomarkers for diagnostic and clinical applications.
Collapse
Affiliation(s)
- Manendra
Singh Tomar
- Centre
for Advance Research, Faculty of Medicine, King George’s Medical University, Lucknow 226003, India
| | - Aditya Sharma
- Division
of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Fabrizio Araniti
- Dipartimento
di Scienze Agrarie e Ambientali—Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Ankit Pateriya
- Centre
for Advance Research, Faculty of Medicine, King George’s Medical University, Lucknow 226003, India
| | - Ashutosh Shrivastava
- Centre
for Advance Research, Faculty of Medicine, King George’s Medical University, Lucknow 226003, India
| | - Akhilesh Kumar Tamrakar
- Division
of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| |
Collapse
|
19
|
Pelantová H, Tomášová P, Šedivá B, Neprašová B, Mráziková L, Kuneš J, Železná B, Maletínská L, Kuzma M. Metabolomic Study of Aging in fa/ fa Rats: Multiplatform Urine and Serum Analysis. Metabolites 2023; 13:metabo13040552. [PMID: 37110210 PMCID: PMC10142631 DOI: 10.3390/metabo13040552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/27/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Zucker fatty (fa/fa) rats represent a well-established and widely used model of genetic obesity. Because previous metabolomic studies have only been published for young fa/fa rats up to 20 weeks of age, which can be considered early maturity in male fa/fa rats, the aim of our work was to extend the metabolomic characterization to significantly older animals. Therefore, the urinary profiles of obese fa/fa rats and their lean controls were monitored using untargeted NMR metabolomics between 12 and 40 weeks of age. At the end of the experiment, the rats were also characterized by NMR and LC-MS serum analysis, which was supplemented by a targeted LC-MS analysis of serum bile acids and neurotransmitters. The urine analysis showed that most of the characteristic differences detected in young obese fa/fa rats persisted throughout the experiment, primarily through a decrease in microbial co-metabolite levels, the upregulation of the citrate cycle, and changes in nicotinamide metabolism compared with the age-related controls. The serum of 40-week-old obese rats showed a reduction in several bile acid conjugates and an increase in serotonin. Our study demonstrated that the fa/fa model of genetic obesity is stable up to 40 weeks of age and is therefore suitable for long-term experiments.
Collapse
Affiliation(s)
- Helena Pelantová
- Institute of Microbiology, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Petra Tomášová
- Institute of Microbiology, Czech Academy of Sciences, 142 20 Prague, Czech Republic
- First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic
| | - Blanka Šedivá
- Faculty of Applied Sciences, University of West Bohemia, 306 14 Pilsen, Czech Republic
| | - Barbora Neprašová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic
| | - Lucia Mráziková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic
- Institute of Physiology, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Blanka Železná
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic
| | - Marek Kuzma
- Institute of Microbiology, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| |
Collapse
|
20
|
Classification of Common Food Lipid Sources Regarding Healthiness Using Advanced Lipidomics: A Four-Arm Crossover Study. Int J Mol Sci 2023; 24:ijms24054941. [PMID: 36902372 PMCID: PMC10003363 DOI: 10.3390/ijms24054941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Prospective studies have failed to establish a causal relationship between animal fat intake and cardiovascular diseases in humans. Furthermore, the metabolic effects of different dietary sources remain unknown. In this four-arm crossover study, we investigated the impact of consuming cheese, beef, and pork meat on classic and new cardiovascular risk markers (obtained from lipidomics) in the context of a healthy diet. A total of 33 young healthy volunteers (23 women/10 men) were assigned to one out of four test diets in a Latin square design. Each test diet was consumed for 14 days, with a 2-week washout. Participants received a healthy diet plus Gouda- or Goutaler-type cheeses, pork, or beef meats. Before and after each diet, fasting blood samples were withdrawn. A reduction in total cholesterol and an increase in high density lipoprotein particle size were detected after all diets. Only the pork diet upregulated plasma unsaturated fatty acids and downregulated triglycerides species. Improvements in the lipoprotein profile and upregulation of circulating plasmalogen species were also observed after the pork diet. Our study suggests that, within the context of a healthy diet rich in micronutrients and fiber, the consumption of animal products, in particular pork meat, may not induce deleterious effects, and reducing the intake of animal products should not be regarded as a way of reducing cardiovascular risk in young individuals.
Collapse
|
21
|
Senko D, Gorovaya A, Stekolshchikova E, Anikanov N, Fedianin A, Baltin M, Efimova O, Petrova D, Baltina T, Lebedev MA, Khaitovich P, Tkachev A. Time-Dependent Effect of Sciatic Nerve Injury on Rat Plasma Lipidome. Int J Mol Sci 2022; 23:ijms232415544. [PMID: 36555183 PMCID: PMC9778848 DOI: 10.3390/ijms232415544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/26/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
Neuropathic pain is a condition affecting the quality of life of a substantial part of the population, but biomarkers and treatment options are still limited. While this type of pain is caused by nerve damage, in which lipids play key roles, lipidome alterations related to nerve injury remain poorly studied. Here, we assessed blood lipidome alterations in a common animal model, the rat sciatic nerve crush injury. We analyzed alterations in blood lipid abundances between seven rats with nerve injury (NI) and eight control (CL) rats in a time-course experiment. For these rats, abundances of 377 blood lipid species were assessed at three distinct time points: immediately after, two weeks, and five weeks post injury. Although we did not detect significant differences between NI and CL at the first two time points, 106 lipids were significantly altered in NI five weeks post injury. At this time point, we found increased levels of triglycerides (TGs) and lipids containing esterified palmitic acid (16:0) in the blood plasma of NI animals. Lipids containing arachidonic acid (20:4), by contrast, were significantly decreased after injury, aligning with the crucial role of arachidonic acid reported for NI. Taken together, these results indicate delayed systematic alterations in fatty acid metabolism after nerve injury, potentially reflecting nerve tissue restoration dynamics.
Collapse
Affiliation(s)
- Dmitry Senko
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Anna Gorovaya
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Elena Stekolshchikova
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Nickolay Anikanov
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Artur Fedianin
- Research Laboratory of Mechanobiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Maxim Baltin
- Research Laboratory of Mechanobiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Olga Efimova
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Daria Petrova
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Tatyana Baltina
- Research Laboratory of Mechanobiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Mikhail A. Lebedev
- Faculty of Mechanics and Mathematics, Moscow State University, 119991 Moscow, Russia
- Laboratory of Neurotechnology, I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, 194223 Saint-Petersburg, Russia
| | - Philipp Khaitovich
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Anna Tkachev
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
- Correspondence:
| |
Collapse
|
22
|
Development of a Novel Targeted Metabolomic LC-QqQ-MS Method in Allergic Inflammation. Metabolites 2022; 12:metabo12070592. [PMID: 35888716 PMCID: PMC9319984 DOI: 10.3390/metabo12070592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022] Open
Abstract
The transition from mild to severe allergic phenotypes is still poorly understood and there is an urgent need of incorporating new therapies, accompanied by personalized diagnosis approaches. This work presents the development of a novel targeted metabolomic methodology for the analysis of 36 metabolites related to allergic inflammation, including mostly sphingolipids, lysophospholipids, amino acids, and those of energy metabolism previously identified in non-targeted studies. The methodology consisted of two complementary chromatography methods, HILIC and reversed-phase. These were developed using liquid chromatography, coupled to triple quadrupole mass spectrometry (LC-QqQ-MS) in dynamic multiple reaction monitoring (dMRM) acquisition mode and were validated using ICH guidelines. Serum samples from two clinical models of allergic asthma patients were used for method application, which were as follows: (1) corticosteroid-controlled (ICS, n = 6) versus uncontrolled (UC, n = 4) patients, and immunotherapy-controlled (IT, n = 23) versus biologicals-controlled (BIO, n = 12) patients. The results showed significant differences mainly in lysophospholipids using univariate analyses in both models. Multivariate analysis for model 1 was able to distinguish both groups, while for model 2, the results showed the correct classification of all BIO samples within their group. Thus, this methodology can be of great importance for further understanding the role of these metabolites in allergic diseases as potential biomarkers for disease severity and for predicting patient treatment response.
Collapse
|
23
|
PI(18:1/18:1) is a SCD1-derived lipokine that limits stress signaling. Nat Commun 2022; 13:2982. [PMID: 35624087 PMCID: PMC9142606 DOI: 10.1038/s41467-022-30374-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/27/2022] [Indexed: 02/07/2023] Open
Abstract
Cytotoxic stress activates stress-activated kinases, initiates adaptive mechanisms, including the unfolded protein response (UPR) and autophagy, and induces programmed cell death. Fatty acid unsaturation, controlled by stearoyl-CoA desaturase (SCD)1, prevents cytotoxic stress but the mechanisms are diffuse. Here, we show that 1,2-dioleoyl-sn-glycero-3-phospho-(1’-myo-inositol) [PI(18:1/18:1)] is a SCD1-derived signaling lipid, which inhibits p38 mitogen-activated protein kinase activation, counteracts UPR, endoplasmic reticulum-associated protein degradation, and apoptosis, regulates autophagy, and maintains cell morphology and proliferation. SCD1 expression and the cellular PI(18:1/18:1) proportion decrease during the onset of cell death, thereby repressing protein phosphatase 2 A and enhancing stress signaling. This counter-regulation applies to mechanistically diverse death-inducing conditions and is found in multiple human and mouse cell lines and tissues of Scd1-defective mice. PI(18:1/18:1) ratios reflect stress tolerance in tumorigenesis, chemoresistance, infection, high-fat diet, and immune aging. Together, PI(18:1/18:1) is a lipokine that links fatty acid unsaturation with stress responses, and its depletion evokes stress signaling. Fatty acid unsaturation by stearoyl-CoA desaturase 1 (SCD1) protects against cellular stress through unclear mechanisms. Here the authors show 1,2-dioleoyl-sn-glycero-3-phospho-(1’-myo-inositol) is an SCD1-derived signaling lipid that regulates stress-adaption, protects against cell death and promotes proliferation.
Collapse
|
24
|
Liang C, B. Gowda SG, Gowda D, Sakurai T, Sazaki I, Chiba H, Hui SP. Simple and Sensitive Method for the Quantitative Determination of Lipid Hydroperoxides by Liquid Chromatography/Mass Spectrometry. Antioxidants (Basel) 2022; 11:antiox11020229. [PMID: 35204112 PMCID: PMC8868426 DOI: 10.3390/antiox11020229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 12/17/2022] Open
Abstract
Lipid hydroperoxides (LOOH) are the initial products of the peroxidation of unsaturated lipids and play a crucial role in lipid oxidation due to their ability to decompose into free radicals and cause adverse effects on human health. Thus, LOOHs are commonly considered biomarkers of oxidative stress-associated pathological conditions. Despite their importance, the sensitive and selective analytical method for determination is limited, due to their low abundance, poor stability, and low ionizing efficiency. To overcome these limitations, in this study, we chemically synthesized eight fatty acid hydroperoxides (FAOOH), including FA 18:1-OOH, FA 18:2-OOH, FA 18:3-OOH, FA 20:4-OOH, FA 20:5-OOH, FA 22:1-OOH, FA 22:6-OOH as analytes, and FA 19:1-OOH as internal standard. Then, they were chemically labeled with 2-methoxypropene (2-MxP) to obtain FAOOMxP by one-step derivatization (for 10 min). A selected reaction monitoring assisted targeted analytical method was developed using liquid chromatography/tandem mass spectrometry (LC-MS/MS). The MxP-labelling improved the stability and enhanced the ionization efficiency in positive mode. Application of reverse-phase chromatography allowed coelution of analytes and internal standards with a short analysis time of 6 min. The limit of detection and quantification for FAOOH ranged from 0.1–1 pmol/µL and 1–2.5 pmol/µL, respectively. The method was applied to profile total FAOOHs in chemically oxidized human serum samples (n = 5) and their fractions of low and high-density lipoproteins (n = 4). The linoleic acid hydroperoxide (FA 18:2-OOH) and oleic acid hydroperoxide (FA 18:1-OOH) were the most abundant FAOOHs in human serum and lipoproteins. Overall, our validated LC-MS/MS methodology features enhanced detection and rapid separation that enables facile quantitation of multiple FAOOHs, therefore providing a valuable tool for determining the level of lipid peroxidation with potential diagnostic applications.
Collapse
Affiliation(s)
- Chongsheng Liang
- Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (C.L.); (I.S.)
| | - Siddabasave Gowda B. Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (S.G.B.G.); (D.G.); (T.S.)
- Graduate School of Global Food Resources, Hokkaido University, Kita-9, Nishi-9, Kita-Ku, Sapporo 060-0809, Japan
| | - Divyavani Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (S.G.B.G.); (D.G.); (T.S.)
| | - Toshihiro Sakurai
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (S.G.B.G.); (D.G.); (T.S.)
| | - Iku Sazaki
- Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (C.L.); (I.S.)
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma, Nishi-4-3-1-15, Higashi-Ku, Sapporo 007-0894, Japan;
| | - Shu-Ping Hui
- Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (C.L.); (I.S.)
- Correspondence:
| |
Collapse
|
25
|
Sun SY, Yang WY, Tan Z, Zhang XY, Shen YL, Guo QW, Su GM, Chen X, Lin J, Fang DZ. Serum Levels of Free Fatty Acids in Obese Mice and Their Associations with Routine Lipid Profiles. Diabetes Metab Syndr Obes 2022; 15:331-343. [PMID: 35140491 PMCID: PMC8820261 DOI: 10.2147/dmso.s348800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/21/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To investigate serum levels of free fatty acids (FFAs) and their associations with routine serum lipids in diet-induced obese mice, which have been scantily reported before. METHODS Male C57BL/6 J mice were fed high-fat diets for 12 weeks to induce obesity. Levels of serum FFAs were measured by ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. RESULTS Obese mice had higher serum levels of total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C), but lower triglycerides (TG) than control mice. A total of 30 FFAs were found, and 3 saturated fatty acids (SFAs), all 8 monounsaturated fatty acids (MUFAs) and 7 polyunsaturated fatty acids (PUFAs) decreased in obese mice, but one SFA (C4:0) increased. Differences in the relative levels of individual FFAs to total FFAs, SFAs, MUFAs or PUFAs between obese and control mice were different from each other and from those evaluated by concrete levels except C4:0, C16:1, C19:1 and C18:4. Only the concrete levels of C4:0, C22:3 and C18:4 were associated with routine serum lipids, including C22:3 negatively with TG in control mice, and C4:0 and C18:4 positively with LDL-C in obese mice, although the relative levels of C4:0 to total MUFAs negatively with TC, and C23:3 to total SFAs or MUFAs negatively with TG in control mice. Different relative levels of the remaining FFAs were differently associated with different routine serum lipids in obese and/or control mice. CONCLUSION Obesity may influence serum FFAs profiles. The relationship of individual FFAs and their relative levels to other FFAs with routine serum lipids in obese and control mice suggests that individual FFAs may interact with others and obesity on levels of routine serum lipids. Once confirmed, the interactions may be novel perspectives when fatty acids are used to improve hyperlipidemia in the subjects with obesity.
Collapse
Affiliation(s)
- Shun Yu Sun
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Wei Yi Yang
- Department of Preventive Medicine, West China School of Public health, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Zhuo Tan
- Department of Preventive Medicine, West China School of Public health, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xing Yu Zhang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Yi Lin Shen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Qi Wei Guo
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Guo Ming Su
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xu Chen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Jia Lin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Ding Zhi Fang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, People’s Republic of China
- Correspondence: Ding Zhi Fang, Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, People’s Republic of China, Tel +86 28 85503410, Fax +86 28 85503204, Email
| |
Collapse
|
26
|
Sun R, Wu T, Guo H, Xu J, Chen J, Tao N, Wang X, Zhong J. Lipid profile migration during the tilapia muscle steaming process revealed by a transactional analysis between MS data and lipidomics data. NPJ Sci Food 2021; 5:30. [PMID: 34782644 PMCID: PMC8593017 DOI: 10.1038/s41538-021-00115-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/14/2021] [Indexed: 11/08/2022] Open
Abstract
In this work, lipid profile migration from muscle to juice during the tilapia muscle steaming process was revealed by a transactional analysis of data from ultra-high-performance liquid chromatography coupled with Q Exactive (UHPLC-QE) Orbitrap mass spectrometry (MS) and lipidomics. Firstly, the lipids in tilapia muscles and juices at different steaming time points were extracted and examined by UHPLC-QE Orbitrap mass spectrometry. Secondly, a transactional analysis procedure was developed to analyze the data from UHPLC-QE Orbitrap MS and lipidomics. Finally, the corrected lipidomics data and the normalized MS data were used for lipid migration analysis. The results suggested that the transactional analysis procedure was efficient to significantly decrease UHPLC-QE Orbitrap MS workloads and delete the false-positive data (22.4-36.7%) in lipidomics data, which compensated the disadvantages of the current lipidomics method. The lipid changes could be disappearance, full migration into juice, appearance in juice, appearance in muscle, appearance in both muscle and juice, and retention in the muscle. Moreover, the results showed 9 (compared with 52), 5 (compared with 116), and 10 (compared with 178) of lipid class (compared with individual lipid) variables showed significant differences among the different steaming times (0, 10, 30, and 60 min) in all the muscles, juices, and muscle-juice systems, respectively. These results showed significant lipid profile migration from muscle to juice during the tilapia steaming process.
Collapse
Affiliation(s)
- Rui Sun
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Tingting Wu
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Hao Guo
- Chongqing Institute of Forensic Science, Chongqing, 400021, China
| | - Jiamin Xu
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Jiahui Chen
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Ningping Tao
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Xichang Wang
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Jian Zhong
- National R & D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China.
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, China.
| |
Collapse
|
27
|
Abshirini M, Cabrera D, Fraser K, Siriarchavatana P, Wolber FM, Miller MR, Tian HS, Kruger MC. Mass Spectrometry-Based Metabolomic and Lipidomic Analysis of the Effect of High Fat/High Sugar Diet and Greenshell TM Mussel Feeding on Plasma of Ovariectomized Rats. Metabolites 2021; 11:metabo11110754. [PMID: 34822412 PMCID: PMC8622240 DOI: 10.3390/metabo11110754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/24/2021] [Accepted: 10/27/2021] [Indexed: 12/05/2022] Open
Abstract
This study aimed to examine the changes in lipid and metabolite profiles of ovariectomized (OVX) rats with diet-induced metabolic syndrome-associated osteoarthritis (MetOA) after supplementation with greenshell mussel (GSM) using an untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomics approach. Ninety-six rats were fed with one of four diets: control, control supplemented with GSM + GSM, high fat/high sugar (HFHS), or high fat/high sugar enriched with GSM (HFHS + GSM). After 8 weeks on experimental diets, half of the rats in each group underwent OVX and the other half were sham operated. After being fed for an additional 28 weeks, blood samples were collected for the metabolomics analysis. Lipid and polar metabolites were extracted from plasma and analysed by LC-MS. We identified 29 lipid species from four lipid subclasses (phosphatidylcholine, lysophosphatidylcholine, diacylglycerol, and triacylglycerol) and a set of eight metabolites involved in amino acid metabolism (serine, threonine, lysine, valine, histidine, pipecolic acid, 3-methylcytidine, and cholic acid) as potential biomarkers for the effect of HFHS diet and GSM supplementation. GSM incorporation more specifically in the control diet generated significant alterations in the levels of several lipids and metabolites. Further studies are required to validate these findings that identify potential biomarkers to follow OA progression and to monitor the impact of GSM supplementation.
Collapse
Affiliation(s)
- Maryam Abshirini
- School of Health Sciences, College of Health, Massey University, Palmerston North 4442, New Zealand;
| | - Diana Cabrera
- Food Chemistry and Structure, AgResearch Grasslands, Palmerston North 4442, New Zealand; (D.C.); (K.F.)
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
| | - Karl Fraser
- Food Chemistry and Structure, AgResearch Grasslands, Palmerston North 4442, New Zealand; (D.C.); (K.F.)
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| | - Parkpoom Siriarchavatana
- School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand; (P.S.); (F.M.W.)
| | - Frances M. Wolber
- School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand; (P.S.); (F.M.W.)
- Centre for Metabolic Health Research, Massey University, Palmerston North 4442, New Zealand
| | | | | | - Marlena C. Kruger
- School of Health Sciences, College of Health, Massey University, Palmerston North 4442, New Zealand;
- Correspondence:
| |
Collapse
|
28
|
Untargeted Metabolomics Analysis Revealed Lipometabolic Disorders in Perirenal Adipose Tissue of Rabbits Subject to a High-Fat Diet. Animals (Basel) 2021; 11:ani11082289. [PMID: 34438746 PMCID: PMC8388361 DOI: 10.3390/ani11082289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022] Open
Abstract
Simply Summary A high-fat diet is widely recognized as a significant modifiable risk for metabolic diseases. In this study, untargeted metabolomics, combined with liquid chromatography and high-resolution mass spectrometry, was used to evaluate perirenal adipose tissue metabolic changes. Our study revealed 206 differential metabolites. These metabolites were mainly associated with the biosynthesis of unsaturated fatty acids, the arachidonic acid metabolic pathway, the ovarian steroidogenesis pathway, and the platelet activation pathway. Our study revealed that a high-fat diet causes significant lipometabolic disorders; these metabolites may inhibit oxygen respiration by increasing adipocytes cells and density, cause mitochondrial and endoplasmic reticulum dysfunction, produce inflammation, and finally lead to insulin resistance, thereby increasing the risk of Type 2 diabetes, atherosclerosis, and other metabolic syndromes. Abstract A high-fat diet (HFD) is widely recognized as a significant modifiable risk for insulin resistance, inflammation, Type 2 diabetes, atherosclerosis and other metabolic diseases. However, the biological mechanism responsible for key metabolic disorders in the PAT of rabbits subject to HFD remains unclear. Here, untargeted metabolomics (LC-MS/MS) combined with liquid chromatography (LC) and high-resolution mass spectrometry (MS) were used to evaluate PAT metabolic changes. Histological observations showed that the adipocytes cells and density of PAT were significantly increased in HFD rabbits. Our study revealed 206 differential metabolites (21 up-regulated and 185 down-regulated); 47 differential metabolites (13 up-regulated and 34 down-regulated), comprising mainly phospholipids, fatty acids, steroid hormones and amino acids, were chosen as potential biomarkers to help explain metabolic disorders caused by HFD. These metabolites were mainly associated with the biosynthesis of unsaturated fatty acids, the arachidonic acid metabolic pathway, the ovarian steroidogenesis pathway, and the platelet activation pathway. Our study revealed that a HFD caused significant lipometabolic disorders. These metabolites may inhibit oxygen respiration by increasing the adipocytes cells and density, cause mitochondrial and endoplasmic reticulum dysfunction, produce inflammation, and finally lead to insulin resistance, thus increasing the risk of Type 2 diabetes, atherosclerosis, and other metabolic syndromes.
Collapse
|
29
|
Zhou J, Zhang Y, Wu J, Qiao M, Xu Z, Peng X, Mei S. Proteomic and lipidomic analyses reveal saturated fatty acids, phosphatidylinositol, phosphatidylserine, and associated proteins contributing to intramuscular fat deposition. J Proteomics 2021; 241:104235. [PMID: 33894376 DOI: 10.1016/j.jprot.2021.104235] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 12/15/2022]
Abstract
Intramuscular fat (IMF) content is an important factor in porcine meat quality. Previous studies have screened multiple candidate genes related to IMF deposition, but the lipids that affect IMF deposition and their lipid-protein network remain unknown. In this study, we performed proteomic and lipidomic analyses of the longissimus dorsi (LD) muscle from high-IMF (IMFH) and low-IMF (IMF-L) groups of Xidu black pigs. Eighty-eight proteins and 143 lipids were differentially abundant between the groups. The differentially abundant proteins were found to be involved in cholesterol metabolism, the PPAR signaling pathway, and ferroptosis. The triacylglycerols (TAGs) upregulated in the IMF-H group were mainly shown to be synthesized by saturated fatty acids (SFAs), while the downregulated TAGs were mainly synthesized by polyunsaturated fatty acids (PUFAs). All differentially abundant phosphatidylinositols (PIs) and phosphatidylserines (PSs) were found to be upregulated in the IMF-H group. A correlation analysis of the proteomic and lipidomic revealed candidate proteins (APOA4, VDAC3, PRNP, CTSB, GSPT1) related to TAG, PI, and PS lipids. These results revealed differences in proteins and lipids between the IMF-H and IMF-L groups, which represent new candidate proteins and lipids that should be investigated to determine the molecular mechanisms controlling IMF deposition in pigs. SIGNIFICANCE: Intramuscular fat (IMF) is a key factor affecting meat quality, and meat with a higher IMF content can have a better flavor. In this study, proteomic results show that the ferroptosis pathway, including the PRNP, VDAC3 and CP proteins, affects IMF deposition. Lipid composition is the key factor affecting IMF deposition, but there are few reports on this. In this study, through lipidomic analysis, we suggest that saturated fatty acid (SFA), phosphatidylinositol (PI), and phosphatidylserine (PS) may contribute to IMF deposition. A correlation analysis reveals the potential regulatory network between lipids and proteins. This study clarifies the difference in protein and lipid compositions in longissimus dorsi (LD) muscle with high and low IMF contents. This information suggests that it would be beneficial to increase the intramuscular fat content of pork not only from a genetic perspective but also from a nutritional perspective.
Collapse
Affiliation(s)
- Jiawei Zhou
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding, Wuhan 430064, China
| | - Yu Zhang
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding, Wuhan 430064, China
| | - Junjing Wu
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding, Wuhan 430064, China
| | - Mu Qiao
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding, Wuhan 430064, China
| | - Zhong Xu
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding, Wuhan 430064, China
| | - Xianwen Peng
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding, Wuhan 430064, China
| | - Shuqi Mei
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding, Wuhan 430064, China.
| |
Collapse
|
30
|
B Gowda SG, Minami Y, Gowda D, Furuko D, Chiba H, Hui SP. Lipidomic analysis of non-esterified furan fatty acids and fatty acid compositions in dietary shellfish and salmon by UHPLC/LTQ-Orbitrap-MS. Food Res Int 2021; 144:110325. [PMID: 34053529 DOI: 10.1016/j.foodres.2021.110325] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 01/21/2023]
Abstract
Lipids such as furan fatty acids (F-acids) are the valuable minor bioactive components of food such as fatty fish and plants. They are reported to have positive health benefits, including antioxidant and anti-inflammatory activities. Despite their importance, limited studies are focusing on F-acid determination in dietary seafood. This study aimed to identify and profile non-esterified F-acids and free fatty acids in total lipid extract of seafood such as shellfish and salmon. The lipidomic analysis using liquid chromatography-linear trap quadrupole-orbitrap mass spectrometry led to identifying seven types of free F-acids in shellfish (n = 5) and salmon (n = 4). The identified F-acids were confirmed by their high-resolution masses and acquired mass spectra. The relative concentrations of F-acids in shellfish range from 0.01 to 10.93 mg/100 g of the fillet, and in salmon, 0.01 to 14.21 mg/100 g of the fillet. The results revealed the highest abundance of F-acids in Sakhalin surf clam, Japanese scallop, and a fatty salmon trout. Besides, relative levels of saturated, monounsaturated, and polyunsaturated fatty acids (PUFAs) in these seafoods were compared with each other, suggesting basket clams and salmon trout to have significantly higher levels of PUFAs. The dietary seafoods enriched with F-acids and PUFAs may have possible health benefits. Hence, the applied technique could be a promising tool for rapid detection and analysis of non-esterified fatty acids in food.
Collapse
Affiliation(s)
- Siddabasave Gowda B Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan.
| | - Yusuke Minami
- Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan.
| | - Divyavani Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan.
| | - Daisuke Furuko
- Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan.
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma, Nishi-4-3-1-15, Higashi-ku, Sapporo 007-0894, Japan.
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
31
|
Analysis of serum lysophosphatidylethanolamine levels in patients with non-alcoholic fatty liver disease by liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2020; 413:245-254. [PMID: 33090255 DOI: 10.1007/s00216-020-02996-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022]
Abstract
Lysophosphatidylethanolamines (LysoPEs) are the partial hydrolysis products of phosphatidylethanolamine. Despite the unique in vitro bioactivities of LysoPEs, there are limited reports on the pathophysiological role of LysoPEs in the serum, due to the lack of sensitive analytical methods for determination of each molecular species in clinical samples. Herein, we developed a highly sensitive quantitative method to profile the serum LysoPE species by liquid chromatography-tandem mass spectrometry (LC-MS/MS) with selected reaction monitoring (SRM). The internal standard (IS), chemically synthesized in-house, and the lineup of seven major LysoPE species were used in this study. The limits of detection and quantification for each LysoPE species ranged within 0.5-3.3 pmol/mL and 1.0-5.0 pmol/mL, respectively. The combined concentrations of LysoPEs in the serum from healthy subjects (n = 8) and the patients with non-alcoholic fatty liver diseases (NAFLD) including simple steatosis (SS, n = 9) and non-alcoholic steatohepatitis (NASH, n = 27) were 18.030 ± 3.832, 4.867 ± 1.852, and 5.497 ± 2.495 nmol/mL, respectively. The combined and individual concentrations of LysoPEs, except for LysoPE 18:0, significantly decreased in the patients with NAFLD compared with those for the healthy subjects. However, no significant difference was observed between the SS and NASH groups. Our proposed LC-MS/MS method is valid and has advantages of small sample volume, high sensitivity, and simultaneous absolute quantitation for multiple molecular species. This method may enable diagnostic evaluation and elucidation of the as-yet uncovered pathophysiological role of LysoPEs.
Collapse
|
32
|
|
33
|
B. Gowda SG, Gowda D, Liang C, Li Y, Kawakami K, Fukiya S, Yokota A, Chiba H, Hui SP. Chemical Labeling Assisted Detection and Identification of Short Chain Fatty Acid Esters of Hydroxy Fatty Acid in Rat Colon and Cecum Contents. Metabolites 2020; 10:metabo10100398. [PMID: 33050007 PMCID: PMC7600112 DOI: 10.3390/metabo10100398] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 12/20/2022] Open
Abstract
Branched fatty acid esters of hydroxy fatty acids (FAHFAs) are novel endogenous lipids with important physiological functions in mammals. We previously identified a new type of FAHFAs, named short-chain fatty acid esterified hydroxy fatty acids (SFAHFAs), with acetyl or propyl esters of hydroxy fatty acids of carbon chains, C ≥ 20. However, sensitive determination of SFAHFAs is still a challenge, due to their high structural similarity and low abundance in biological samples. This study employs one-step chemical derivatization following total lipid extraction using 2-dimethylaminoethylamine (DMED) for enhanced detection of SFAHFAs. The labeled extracts were subjected to ultrahigh performance liquid chromatography coupled to linear ion trap quadrupole-Orbitrap mass spectrometry (UHPLC/LTQ-Orbitrap MS). Our results demonstrated that the detection sensitivities of SFAHFAs increased after DMED labeling, and is highly helpful in discovering six additional novel SFAHFAs in the cecum and colon contents of WKAH/HKmSlc rats fed with normal and high-fat diet (HFD). The identified DMED labeled SFAHFAs were characterized by their detailed MS/MS analysis, and their plausible fragmentation patterns were proposed. The concentrations of SFAHFAs were significantly reduced in the cecum of HFD group compared to the control. Hence, the proposed method could be a promising tool to apply for the enhanced detection of SFAHFAs in various biological matrices, which in turn facilitate the understanding of their sources, and physiological functions of these novel lipids.
Collapse
Affiliation(s)
- Siddabasave Gowda B. Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (S.G.B.G.); (D.G.)
- Graduate School of Global Food Resources, Hokkaido University, Kita-9, Nishi-9, Kita-Ku, Sapporo 060-0809, Japan
| | - Divyavani Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (S.G.B.G.); (D.G.)
| | - Chongsheng Liang
- Graduate School of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (C.L.); (Y.L.)
| | - Yonghan Li
- Graduate School of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (C.L.); (Y.L.)
| | - Kentaro Kawakami
- Research Faculty of Agriculture, Hokkaido University, Kita-9 Nishi-9, Kita-ku, Sapporo 060-8589, Japan; (K.K.); (S.F.); (A.Y.)
| | - Satoru Fukiya
- Research Faculty of Agriculture, Hokkaido University, Kita-9 Nishi-9, Kita-ku, Sapporo 060-8589, Japan; (K.K.); (S.F.); (A.Y.)
| | - Atsushi Yokota
- Research Faculty of Agriculture, Hokkaido University, Kita-9 Nishi-9, Kita-ku, Sapporo 060-8589, Japan; (K.K.); (S.F.); (A.Y.)
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma Nishi-4-3-1-15, Higashi-Ku, Sapporo 007-0894, Japan;
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (S.G.B.G.); (D.G.)
- Correspondence: ; Tel.: +8111-706-3692
| |
Collapse
|
34
|
Hori S, Abe T, Lee DG, Fukiya S, Yokota A, Aso N, Shirouchi B, Sato M, Ishizuka S. Association between 12α-hydroxylated bile acids and hepatic steatosis in rats fed a high-fat diet. J Nutr Biochem 2020; 83:108412. [PMID: 32534424 DOI: 10.1016/j.jnutbio.2020.108412] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022]
Abstract
High-fat (HF) diet induces hepatic steatosis that is a risk factor for noncommunicable diseases such as obesity, type 2 diabetes and cardiovascular disease. Previously, we found that HF feeding in rats increases the excretion of fecal bile acids (BAs), specifically 12α-hydroxylated (12αOH) BAs. Although the liver is the metabolic center in our body, the association between hepatic steatosis and 12αOH BAs in HF-fed rats is unclear. Thus, we investigated extensively BA composition in HF-fed rats and evaluated the association between hepatic steatosis and 12αOH BAs. Acclimated male inbred WKAH/HkmSlc rats were divided into two groups and fed either control or HF diet for 8 weeks. Feeding HF diet increased hepatic triglyceride and total cholesterol concentrations, which correlated positively with 12αOH BAs concentrations but not with non-12αOH BAs in the feces, portal plasma and liver. Accompanied by the increase in 12αOH BAs, the rats fed HF diet showed increased fat absorption and higher mRNA expression of liver Cidea. The enhancement of 12αOH BA secretion may contribute to hepatic steatosis by the promotion of dietary fat absorption and hepatic Cidea mRNA expression. The increase in 12αOH BAs was associated with enhanced liver cholesterol 7α-hydroxylase (Cyp7a1) and sterol 12α-hydroxylase (Cyp8b1) mRNA expression. There was a significant increase in 7α-hydroxycholesterol, a precursor of BAs, in the liver of HF-fed rats. Altogether, these data suggest that the HF diet increases preferentially 12αOH BAs synthesis by utilizing the accumulated hepatic cholesterol and enhancing mRNA expression of Cyp7a1 and Cyp8b1 in the liver.
Collapse
Affiliation(s)
- Shota Hori
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Takayuki Abe
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Dong Geun Lee
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Satoru Fukiya
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Atsushi Yokota
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Nao Aso
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Bungo Shirouchi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Masao Sato
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Satoshi Ishizuka
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
| |
Collapse
|