1
|
Ullah R, Farias J, Feyissa BA, Tsui MTK, Chow A, Williams C, Karanfil T, Ligaba-Osena A. Combined effects of polyamide microplastic and sulfamethoxazole in modulating the growth and transcriptome profile of hydroponically grown rice (Oryza sativa L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175909. [PMID: 39233070 DOI: 10.1016/j.scitotenv.2024.175909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
The use of reclaimed water from wastewater treatment plants for irrigation has a risk of introducing micropollutants such as microplastics (MPs) and antimicrobials (AMs) into the agroecosystem. This study was conducted to investigate the effects of single and combined treatment of 0.1 % polyamide (PA ∼15 μm), and varying sulfamethoxazole (SMX) levels 0, 10, 50, and 150 mg/L on rice seedlings (Oryza sativa L.) for 12 days. The study aimed to assess the impact of these contaminants on the morphological, physiological, and biochemical parameters of the rice plants. The findings revealed that rice seedlings were not sensitive to PA alone. However, SMX alone or in combination with PA, significantly inhibited shoot and root growth, total biomass, and affected photosynthetic pigments. Higher concentrations of SMX increased antioxidant enzyme activity, indicating oxidative stress. The roots had a higher SMX content than the shoots, and the concentration of minerals such as iron, copper, and magnesium were reduced in roots treated with SMX. RNA-seq analysis showed changes in the expression of genes related to stress, metabolism, and transport in response to the micropollutants. Overall, this study provides valuable insights on the combined impacts of MPs and AMs on food crops, the environment, and human health in future risk assessments and management strategies in using reclaimed water.
Collapse
Affiliation(s)
- Raza Ullah
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27402, USA
| | - Julia Farias
- USDA-ARS, US Arid Land Agricultural Research Center, 21881 N. Cardon Ln, Maricopa, AZ 85138, USA
| | | | - Martin Tsz-Ki Tsui
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27402, USA; School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, Shatin, New Territories, China; Earth and Environmental Sciences Program, The Chinese University of Hong Kong, Hong Kong SAR, Shatin, China
| | - Alex Chow
- Earth and Environmental Sciences Program, The Chinese University of Hong Kong, Hong Kong SAR, Shatin, China
| | - Clinton Williams
- USDA-ARS, US Arid Land Agricultural Research Center, 21881 N. Cardon Ln, Maricopa, AZ 85138, USA
| | - Tanju Karanfil
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
| | - Ayalew Ligaba-Osena
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27402, USA.
| |
Collapse
|
2
|
Shafiq M, Obinwanne Okoye C, Nazar M, Ali Khattak W, Algammal AM. Ecological consequences of antimicrobial residues and bioactive chemicals on antimicrobial resistance in agroecosystems. J Adv Res 2024:S2090-1232(24)00467-3. [PMID: 39414225 DOI: 10.1016/j.jare.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/30/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND The widespread use of antimicrobials in agriculture, coupled with bioactive chemicals like pesticides and growth-promoting agents, has accelerated the global crisis of antimicrobial resistance (AMR). Agroecosystems provides a platform in the evolution and dissemination of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs), which pose significant threats to both environmental and public health. AIM OF REVIEW This review explores the ecological consequences of antimicrobial residues and bioactive chemicals in agroecosystems, with a focus on their role in shaping AMR. It delves into the mechanisms by which these substances enter agricultural environments, their interactions with soil microbiomes, and the subsequent impacts on microbial community structure. KEY SCIENTIFIC CONCEPTS OF REVIEW Evidence indicates that the accumulation of antimicrobials promotes resistance gene transfer among microorganisms, potentially compromising ecosystem health and agricultural productivity. By synthesizing current research, we identify critical gaps in knowledge and propose strategies for mitigating the ecological risks associated with antimicrobial residues. Moreover, this review highlights the urgent need for integrated management approaches to preserve ecosystem health and combat the spread of AMR in agricultural settings.
Collapse
Affiliation(s)
- Muhammad Shafiq
- Research Institute of Clinical Pharmacy, Department of Pharmacology, Shantou University Medical College, Shantou 515041, China.
| | - Charles Obinwanne Okoye
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China; School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; Department of Zoology & Environmental Biology, University of Nigeria, Nsukka 410001, Nigeria
| | - Mudasir Nazar
- Institute of Animal Science, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| | - Wajid Ali Khattak
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Abdelazeem M Algammal
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
3
|
Oliveira M, Antunes W, Mota S, Madureira-Carvalho Á, Dinis-Oliveira RJ, Dias da Silva D. An Overview of the Recent Advances in Antimicrobial Resistance. Microorganisms 2024; 12:1920. [PMID: 39338594 PMCID: PMC11434382 DOI: 10.3390/microorganisms12091920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Antimicrobial resistance (AMR), frequently considered a major global public health threat, requires a comprehensive understanding of its emergence, mechanisms, advances, and implications. AMR's epidemiological landscape is characterized by its widespread prevalence and constantly evolving patterns, with multidrug-resistant organisms (MDROs) creating new challenges every day. The most common mechanisms underlying AMR (i.e., genetic mutations, horizontal gene transfer, and selective pressure) contribute to the emergence and dissemination of new resistant strains. Therefore, mitigation strategies (e.g., antibiotic stewardship programs-ASPs-and infection prevention and control strategies-IPCs) emphasize the importance of responsible antimicrobial use and surveillance. A One Health approach (i.e., the interconnectedness of human, animal, and environmental health) highlights the necessity for interdisciplinary collaboration and holistic strategies in combating AMR. Advancements in novel therapeutics (e.g., alternative antimicrobial agents and vaccines) offer promising avenues in addressing AMR challenges. Policy interventions at the international and national levels also promote ASPs aiming to regulate antimicrobial use. Despite all of the observed progress, AMR remains a pressing concern, demanding sustained efforts to address emerging threats and promote antimicrobial sustainability. Future research must prioritize innovative approaches and address the complex socioecological dynamics underlying AMR. This manuscript is a comprehensive resource for researchers, policymakers, and healthcare professionals seeking to navigate the complex AMR landscape and develop effective strategies for its mitigation.
Collapse
Affiliation(s)
- Manuela Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Research Unit on Applied Molecular Biosciences, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Wilson Antunes
- Instituto Universitário Militar, CINAMIL, Unidade Militar Laboratorial de Defesa Biológica e Química, Avenida Doutor Alfredo Bensaúde, 4 piso, do LNM, 1849-012 Lisbon, Portugal
| | - Salete Mota
- ULSEDV—Unidade Local De Saúde De Entre Douro Vouga, Unidade de Santa Maria da Feira e Hospital S. Sebastião, Rua Dr. Cândido Pinho, 4520-211 Santa Maria da Feira, Portugal
| | - Áurea Madureira-Carvalho
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Applied Molecular Biosciences Unit, Forensics and Biomedical Sciences Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
- Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Research Unit on Applied Molecular Biosciences, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
- Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- FOREN—Forensic Science Experts, Avenida Dr. Mário Moutinho 33-A, 1400-136 Lisbon, Portugal
| | - Diana Dias da Silva
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Applied Molecular Biosciences Unit, Forensics and Biomedical Sciences Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
- REQUIMTE/LAQV, ESS, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
4
|
Lu Y, Wu J, Li J, Du Z, Zhang C, Chai Y, Jin Z, Li Z, Meng J, Zhuang H, Ping L, Wong MH, Zheng G, Shan S. Investigation of high-risk antibiotic resistance bacteria and their associated antibiotic resistance genes in different agricultural soils with biogas slurry from China. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134775. [PMID: 38824772 DOI: 10.1016/j.jhazmat.2024.134775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
High-risk antibiotic-resistant bacteria (ARB) and their accompanying antibiotic resistance genes (ARGs) seriously threaten public health. As a crucial medium for ARB and ARGs spread, soils with biogas slurry have been widely investigated. However, few studies focused on high-risk multi-drug resistant bacteria (MDRB) and their associated ARGs. This study examined ARB distribution in different agricultural soils with biogas slurry across 12 districts in China. It identified high-risk MDRB in various soil backgrounds, elucidating their resistance and spread mechanism. The findings revealed that diverse cultured ARB were enriched in soils with biogas slurry, especially soil ciprofloxacin ARB, which were enriched (>2.5 times) in 68.4 % of sampling sites. Four high-risk MDRB isolated from Hebei, Zhejiang, Shanxi, and Gansu districts were identified as severe or opportunistic pathogens, which carried abundant mobile genetic elements (MGEs) and 14 known high risk ARGs, including aac(3)-IId, aac(6')-Ib3, aph(6)-Id, aac(6')-Ib3, aadA1, blaOXA-10, blaTEM-1B, dfrA12, dfrA14, cmlA1, sul1, floR, tet(M) and tet(L). The antibiotics accumulation, diverse ARGs and MGEs enrichment, and proliferation of pathogenic bacteria could be potential driving factors of their occurrence and spread. Therefore, the coexistence of the high-risk MDRB and ARGs combined with the associated MGEs in soils with biogas slurry should be further investigated to develop technology and policy for reducing their negative influences on the effectiveness of clinical antibiotics.
Collapse
Affiliation(s)
- Yi Lu
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Junhui Wu
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Jiwei Li
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Zailin Du
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Changai Zhang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Yanjun Chai
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Zewen Jin
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Zichuan Li
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Jun Meng
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Haifeng Zhuang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Lifeng Ping
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Ming Hung Wong
- Consortium on Health, Environment, Education, and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong SAR, China
| | - Guanyu Zheng
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengdao Shan
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| |
Collapse
|
5
|
Franklin AM, Weller DL, Durso LM, Bagley M, Davis BC, Frye JG, Grim CJ, Ibekwe AM, Jahne MA, Keely SP, Kraft AL, McConn BR, Mitchell RM, Ottesen AR, Sharma M, Strain EA, Tadesse DA, Tate H, Wells JE, Williams CF, Cook KL, Kabera C, McDermott PF, Garland JL. A one health approach for monitoring antimicrobial resistance: developing a national freshwater pilot effort. FRONTIERS IN WATER 2024; 6:10.3389/frwa.2024.1359109. [PMID: 38855419 PMCID: PMC11157689 DOI: 10.3389/frwa.2024.1359109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Antimicrobial resistance (AMR) is a world-wide public health threat that is projected to lead to 10 million annual deaths globally by 2050. The AMR public health issue has led to the development of action plans to combat AMR, including improved antimicrobial stewardship, development of new antimicrobials, and advanced monitoring. The National Antimicrobial Resistance Monitoring System (NARMS) led by the United States (U.S) Food and Drug Administration along with the U.S. Centers for Disease Control and U.S. Department of Agriculture has monitored antimicrobial resistant bacteria in retail meats, humans, and food animals since the mid 1990's. NARMS is currently exploring an integrated One Health monitoring model recognizing that human, animal, plant, and environmental systems are linked to public health. Since 2020, the U.S. Environmental Protection Agency has led an interagency NARMS environmental working group (EWG) to implement a surface water AMR monitoring program (SWAM) at watershed and national scales. The NARMS EWG divided the development of the environmental monitoring effort into five areas: (i) defining objectives and questions, (ii) designing study/sampling design, (iii) selecting AMR indicators, (iv) establishing analytical methods, and (v) developing data management/analytics/metadata plans. For each of these areas, the consensus among the scientific community and literature was reviewed and carefully considered prior to the development of this environmental monitoring program. The data produced from the SWAM effort will help develop robust surface water monitoring programs with the goal of assessing public health risks associated with AMR pathogens in surface water (e.g., recreational water exposures), provide a comprehensive picture of how resistant strains are related spatially and temporally within a watershed, and help assess how anthropogenic drivers and intervention strategies impact the transmission of AMR within human, animal, and environmental systems.
Collapse
Affiliation(s)
- Alison M. Franklin
- United States (U.S.) Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, United States
| | - Daniel L. Weller
- U.S. Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Lisa M. Durso
- U.S. Department of Agriculture, Agricultural Research Service (USDA, ARS), Agroecosystem Management Research, Lincoln, NE, United States
| | - Mark Bagley
- United States (U.S.) Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, United States
| | - Benjamin C. Davis
- United States (U.S.) Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, United States
| | - Jonathan G. Frye
- USDA ARS, U.S. National Poultry Research Center, Poultry Microbiological Safety and Processing Research Unit, Athens, GA, United States
| | - Christopher J. Grim
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States
| | - Abasiofiok M. Ibekwe
- USDA, ARS, Agricultural Water Efficiency and Salinity Research Unit, Riverside, CA, United States
| | - Michael A. Jahne
- United States (U.S.) Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, United States
| | - Scott P. Keely
- United States (U.S.) Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, United States
| | - Autumn L. Kraft
- Oak Ridge Institute for Science and Education, USDA, ARS, Beltsville, MD, United States
| | - Betty R. McConn
- Oak Ridge Institute for Science and Education, USDA, ARS, Beltsville, MD, United States
| | - Richard M. Mitchell
- Environmental Protection Agency, Office of Water, Washington, DC, United States
| | - Andrea R. Ottesen
- Center for Veterinary Medicine, National Antimicrobial Resistance Monitoring System (NARMS), U.S. Food and Drug Administration, Laurel, MD, United States
| | - Manan Sharma
- USDA, ARS Environmental Microbial and Food Safety Laboratory, Beltsville, MD, United States
| | - Errol A. Strain
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States
| | - Daniel A. Tadesse
- Center for Veterinary Medicine, National Antimicrobial Resistance Monitoring System (NARMS), U.S. Food and Drug Administration, Laurel, MD, United States
| | - Heather Tate
- Center for Veterinary Medicine, National Antimicrobial Resistance Monitoring System (NARMS), U.S. Food and Drug Administration, Laurel, MD, United States
| | - Jim E. Wells
- USDA, ARS, U.S. Meat Animal Research Center, Meat Safety and Quality, Clay Center, NE, United States
| | - Clinton F. Williams
- USDA, ARS, US Arid-Land Agricultural Research Center, Maricopa, AZ, United States
| | - Kim L. Cook
- USDA, ARS Nutrition, Food Safety and Quality National Program Staff, Beltsville, MD, United States
| | - Claudine Kabera
- Center for Veterinary Medicine, National Antimicrobial Resistance Monitoring System (NARMS), U.S. Food and Drug Administration, Laurel, MD, United States
| | - Patrick F. McDermott
- Center for Veterinary Medicine, National Antimicrobial Resistance Monitoring System (NARMS), U.S. Food and Drug Administration, Laurel, MD, United States
| | - Jay L. Garland
- United States (U.S.) Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, United States
| |
Collapse
|
6
|
Oluwakoya OM, Okoh AI. Prevalence of multidrug-resistant Campylobacter species in wastewater effluents: A menace of environmental and public health concern. Helicobacter 2024; 29:e13095. [PMID: 38798008 DOI: 10.1111/hel.13095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/18/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
The prevalence of multidrug-resistant Campylobacter species in wastewater effluents presents a formidable challenge at the intersection of environmental sustainability and public health. This study examined the presence of multidrug-resistant Campylobacter in wastewater effluents in the Eastern Cape Province, South Africa, and its implications for environmental ecosystems and public health. Forty-five samples from household effluent (HHE) and wastewater treatment plant effluent (WWTPE) were collected at different geographical locations within the province between April and September 2022. The counts of the presumptive Campylobacter genus ranged from 5.2 × 103 to 6.03 × 104 CFU/mL for HHE and 4.93 × 103 to 1.04 × 104 CFU/mL for WWTPE. About 42.55% of the samples were positive for Campylobacter species. Five virulence determinants including the cadF and wlaN were detected in all the isolates; however, flgR (19.23%), ciaB, and ceuE (15.38%) were less prevalent. The antibiogram profiles of confirmed Campylobacter isolates revealed high resistance (>55%) against all tested antibiotics ranging from 55.77% (nalidixic acid) to 92.30% (erythromycin), and resistance against the other antibiotics followed the order ciprofloxacin (51.92%), azithromycin (50%), and levofloxacin (48.08%). On the contrary, gentamicin was sensitive against 61.54% of the isolates, followed by imipenem (57.69%) and streptomycin (51.92%). The WWTPE's antibiotic resistance index (ARI) was 0.19, lower than the permitted Krumperman threshold of 0.2; and HHE's ARIs were higher. The isolates' respective multiple antibiotic resistance indexes (MARI) varied between 0.08 and 1.00. Among the phenotypically resistant Campylobacter isolates examined, 21 resistance determinants encoding resistance against β-lactam, carbapenems, aminoglycosides, phenicol, quinolones, tetracyclines, and macrolides were detected, which explains the phenotypic resistance observed in the study. This study concludes that the wastewaters in the study areas are important reservoirs of multidrug-resistant and potentially pathogenic Campylobacter species, suggesting the need for proper treatment of the wastewaters to eliminate the organisms in the effluents before discharge the final effluent to the receiving watershed.
Collapse
Affiliation(s)
- Olufunmilayo Modupe Oluwakoya
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| |
Collapse
|
7
|
Arnold KE, Laing G, McMahon BJ, Fanning S, Stekel DJ, Pahl O, Coyne L, Latham SM, McIntyre KM. The need for One Health systems-thinking approaches to understand multiscale dissemination of antimicrobial resistance. Lancet Planet Health 2024; 8:e124-e133. [PMID: 38331529 DOI: 10.1016/s2542-5196(23)00278-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/29/2023] [Accepted: 12/15/2023] [Indexed: 02/10/2024]
Abstract
Although the effects of antimicrobial resistance (AMR) are most obvious at clinical treatment failure, AMR evolution, transmission, and dispersal happen largely in environmental settings, for example within farms, waterways, livestock, and wildlife. We argue that systems-thinking, One Health approaches are crucial for tackling AMR, by understanding and predicting how anthropogenic activities interact within environmental subsystems, to drive AMR emergence and transmission. Innovative computational methods integrating big data streams (eg, from clinical, agricultural, and environmental monitoring) will accelerate our understanding of AMR, supporting decision making. There are challenges to accessing, integrating, synthesising, and interpreting such complex, multidimensional, heterogeneous datasets, including the lack of specific metrics to quantify anthropogenic AMR. Moreover, data confidentiality, geopolitical and cultural variation, surveillance gaps, and science funding cause biases, uncertainty, and gaps in AMR data and metadata. Combining systems-thinking with modelling will allow exploration, scaling-up, and extrapolation of existing data. This combination will provide vital understanding of the dynamic movement and transmission of AMR within and among environmental subsystems, and its effects across the greater system. Consequently, strategies for slowing down AMR dissemination can be modelled and compared for efficacy and cost-effectiveness.
Collapse
Affiliation(s)
- Kathryn E Arnold
- Department of Environment and Geography, University of York, York, UK.
| | | | - Barry J McMahon
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Dublin, Ireland
| | - Dov J Stekel
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK; Department of Mathematics and Applied Mathematics, University of Johannesburg, Johannesburg, South Africa
| | - Ole Pahl
- Department of Civil Engineering and Environmental Management, School of Computing, Engineering and Built Environment, Glasgow Caledonian University, Glasgow, UK
| | - Lucy Coyne
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK; National Office of Animal Health, Stevenage, UK
| | - Sophia M Latham
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - K Marie McIntyre
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK; Modelling, Evidence and Policy group, School of Natural and Environmental Sciences, Newcastle University, Newcastle, UK
| |
Collapse
|
8
|
Gama GSP, Pimenta AS, Feijó FMC, de Azevedo TKB, de Melo RR, de Andrade GS. The Potential of Wood Vinegar to Replace Antimicrobials Used in Animal Husbandry-A Review. Animals (Basel) 2024; 14:381. [PMID: 38338024 PMCID: PMC10854697 DOI: 10.3390/ani14030381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/16/2023] [Accepted: 12/27/2023] [Indexed: 02/12/2024] Open
Abstract
The indiscriminate use of antimicrobials in animal husbandry can result in various types of environmental contamination. Part of the dose of these products is excreted, still active, in the animals' feces and urine. These excreta are widely used as organic fertilizers, which results in contamination with antimicrobial molecules. The impacts can occur in several compartments, such as soil, groundwater, and surface watercourses. Also, contamination by antimicrobials fed or administrated to pigs, chickens, and cattle can reach the meat, milk, and other animal products, which calls into question the sustainability of using these products as part of eco-friendly practices. Therefore, a search for alternative natural products is required to replace the conventional antimicrobials currently used in animal husbandry, aiming to mitigate environmental contamination. We thus carried out a review addressing this issue, highlighting wood vinegar (WV), also known as pyroligneous acid, as an alternative antimicrobial with good potential to replace conventional products. In this regard, many studies have demonstrated that WV is a promising product. WV is a nontoxic additive widely employed in the food industry to impart a smoked flavor to foods. Studies have shown that, depending on the WV concentration, good results can be achieved using it as an antimicrobial against pathogenic bacteria and fungi and a valuable growth promoter for poultry and pigs.
Collapse
Affiliation(s)
- Gil Sander Próspero Gama
- Graduate Program in Forest Sciences, Forest Engineering, Universidade Federal do Rio Grande do Norte, Rodovia RN 160, km 03 s/n, Distrito de Jundiaí, Macaíba CEP 59.280-000, Brazil; (G.S.P.G.); (A.S.P.); (T.K.B.d.A.); (G.S.d.A.)
| | - Alexandre Santos Pimenta
- Graduate Program in Forest Sciences, Forest Engineering, Universidade Federal do Rio Grande do Norte, Rodovia RN 160, km 03 s/n, Distrito de Jundiaí, Macaíba CEP 59.280-000, Brazil; (G.S.P.G.); (A.S.P.); (T.K.B.d.A.); (G.S.d.A.)
| | - Francisco Marlon Carneiro Feijó
- Graduate Program in Environment, Technology, and Society—PPGATS, Laboratory of Veterinary Microbiology and Laboratory of Wood Technology, Universidade Federal Rural do Semiárido—UFERSA, Av. Francisco Mota, 572—Bairro Costa e Silva, Mossoró CEP 59.625-900, Brazil;
| | - Tatiane Kelly Barbosa de Azevedo
- Graduate Program in Forest Sciences, Forest Engineering, Universidade Federal do Rio Grande do Norte, Rodovia RN 160, km 03 s/n, Distrito de Jundiaí, Macaíba CEP 59.280-000, Brazil; (G.S.P.G.); (A.S.P.); (T.K.B.d.A.); (G.S.d.A.)
| | - Rafael Rodolfo de Melo
- Graduate Program in Environment, Technology, and Society—PPGATS, Laboratory of Veterinary Microbiology and Laboratory of Wood Technology, Universidade Federal Rural do Semiárido—UFERSA, Av. Francisco Mota, 572—Bairro Costa e Silva, Mossoró CEP 59.625-900, Brazil;
| | - Gabriel Siqueira de Andrade
- Graduate Program in Forest Sciences, Forest Engineering, Universidade Federal do Rio Grande do Norte, Rodovia RN 160, km 03 s/n, Distrito de Jundiaí, Macaíba CEP 59.280-000, Brazil; (G.S.P.G.); (A.S.P.); (T.K.B.d.A.); (G.S.d.A.)
| |
Collapse
|
9
|
Singh B, Bhat A, Dutta L, Pati KR, Korpan Y, Dahiya I. Electrochemical Biosensors for the Detection of Antibiotics in Milk: Recent Trends and Future Perspectives. BIOSENSORS 2023; 13:867. [PMID: 37754101 PMCID: PMC10527191 DOI: 10.3390/bios13090867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023]
Abstract
Antibiotics have emerged as ground-breaking medications for the treatment of infectious diseases, but due to the excessive use of antibiotics, some drugs have developed resistance to microorganisms. Because of their structural complexity, most antibiotics are excreted unchanged, polluting the water, soil, and natural resources. Additionally, food items are being polluted through the widespread use of antibiotics in animal feed. The normal concentrations of antibiotics in environmental samples typically vary from ng to g/L. Antibiotic residues in excess of these values can pose major risks the development of illnesses and infections/diseases. According to estimates, 300 million people will die prematurely in the next three decades (by 2050), and the WHO has proclaimed "antibiotic resistance" to be a severe economic and sociological hazard to public health. Several antibiotics have been recognised as possible environmental pollutants (EMA) and their detection in various matrices such as food, milk, and environmental samples is being investigated. Currently, chromatographic techniques coupled with different detectors (e.g., HPLC, LC-MS) are typically used for antibiotic analysis. Other screening methods include optical methods, ELISA, electrophoresis, biosensors, etc. To minimise the problems associated with antibiotics (i.e., the development of AMR) and the currently available analytical methods, electrochemical platforms have been investigated, and can provide a cost-effective, rapid and portable alternative. Despite the significant progress in this field, further developments are necessary to advance electrochemical sensors, e.g., through the use of multi-functional nanomaterials and advanced (bio)materials to ensure efficient detection, sensitivity, portability, and reliability. This review summarises the use of electrochemical biosensors for the detection of antibiotics in milk/milk products and presents a brief introduction to antibiotics and AMR followed by developments in the field of electrochemical biosensors based on (i) immunosensor, (ii) aptamer (iii) MIP, (iv) enzyme, (v) whole-cell and (vi) direct electrochemical approaches. The role of nanomaterials and sensor fabrication is discussed wherever necessary. Finally, the review discusses the challenges encountered and future perspectives. This review can serve as an insightful source of information, enhancing the awareness of the role of electrochemical biosensors in providing information for the preservation of the health of the public, of animals, and of our environment, globally.
Collapse
Affiliation(s)
- Baljit Singh
- MiCRA Biodiagnostics Technology Gateway, Technological University Dublin (TU Dublin), D24 FKT9 Dublin, Ireland
- Centre of Applied Science for Health, Technological University Dublin (TU Dublin), D24 FKT9 Dublin, Ireland
| | - Abhijnan Bhat
- Centre of Applied Science for Health, Technological University Dublin (TU Dublin), D24 FKT9 Dublin, Ireland
| | - Lesa Dutta
- Department of Chemistry, Central University of Punjab, VPO Ghudda, Bathinda 151401, Punjab, India
| | - Kumari Riya Pati
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Yaroslav Korpan
- Institute of Molecular Biology and Genetics NAS of Ukraine, Department of Biomolecular Electronics, 03143 Kyiv, Ukraine
| | - Isha Dahiya
- Centre for Biotechnology, Maharshi Dayanand University (MDU), Rohtak 124001, Haryana, India
| |
Collapse
|
10
|
Ayub F, Khan TM, Amin MU, Baig MR, Bukhsh A, Zaman K, Afzal A, Bibi S, Javed MU, Naheed F, Alam J, Ahmad HI. Comparison of General Use of Antibiotics between Medical and Nonmedical University Students of Lahore. BIOMED RESEARCH INTERNATIONAL 2023; 2023:8534944. [PMID: 39282107 PMCID: PMC11401652 DOI: 10.1155/2023/8534944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/05/2022] [Accepted: 03/31/2023] [Indexed: 09/18/2024]
Abstract
Objective To compare the knowledge of antibiotic resistance between medical and nonmedical university students of Lahore. Methodology. An observational cross-sectional survey-based study was conducted among students of Lahore, Pakistan, from November 12, 2021, to December 13, 2021. The convenience sampling method was used to select students. Descriptive analysis and chi-square test were performed using Statistical Package for Social Sciences version 25.0. Results 52.9% medical and 42.25% nonmedical students knew about antibiotics. 24.1% medical and 18.3% nonmedical students do not take antibiotics without a prescription. 40.6% medical and only 19.3% nonmedical students knew about the course of antibiotics. Medical students let the minor ailments recover naturally compared to nonmedical students who visit the doctor more often. Both groups complete the course of antibiotics without a significant difference. 49% medical and 27.9% nonmedical students knew that bacteria can develop resistance against antibiotics. Most nonmedical students responded that antibiotics can work even after resistance. Medical students have better knowledge about the relationship of resistance with overuse and misuse. Conclusion The knowledge of antibiotics and compliance to therapy of the nonmedical students were less than those of the medical students. Medical students were aware of the pattern of taking antibiotics because of their educational background. There is a dire need for awareness regarding antibiotic use in this group to conserve treatment options for future use.
Collapse
Affiliation(s)
- Fiza Ayub
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Tahir Mehmood Khan
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | | | - Mirza Rafi Baig
- Department of Clinical Pharmacy & Pharmacotherapeutics, Dubai Pharmacy College for Girls, Al Mizhar Dubai, UAE
| | - Allah Bukhsh
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Khadija Zaman
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Asma Afzal
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Sana Bibi
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | | | - Fouzia Naheed
- Rural Health Center, Basirpur, Tehsil Depalpur District Okara, Punjab, Pakistan
| | - Jamshaid Alam
- Rural Health Center Khayaban-E-Sir Syed Rawalpindi, Pakistan
| | - Hafiz Ishfaq Ahmad
- Department of Animal Breeding and Genetics, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
11
|
Antimicrobial Susceptibility Profile of Pathogenic and Commensal Bacteria Recovered from Cattle and Goat Farms. Antibiotics (Basel) 2023; 12:antibiotics12020420. [PMID: 36830330 PMCID: PMC9952079 DOI: 10.3390/antibiotics12020420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
The use of antibiotics in food animals results to antimicrobial resistant bacteria that complicates the ability to treat infections. The purpose of this study was to investigate the prevalence of pathogenic and commensal bacteria in soil, water, manure, and milk from cattle and goat farms. A total of 285 environmental and 81 milk samples were analyzed for Enterobacteriaceae by using biochemical and PCR techniques. Susceptibility to antibiotics was determined by the Kirby-Bauer disk diffusion technique. A total of 15 different Enterobacteriaceae species were identified from goat and cattle farms. Manure had significantly higher (p < 0.05) Enterobacteriaceae (52.0%) than soil (37.2%), trough water (5.4%), and runoff water (5.4%). There was a significant difference (p < 0.05) in Enterobacteriaceae in goat milk (53.9%) and cow milk (46.2%). Enterobacteriaceae from environment showed 100% resistance to novobiocin, erythromycin, and vancomycin E. coli O157:H7, Salmonella spp., Enterococcus spp., and Listeria monocytogenes displayed three, five, six, and ten. AMR patterns, respectively. NOV-TET-ERY-VAN was the most common phenotype observed in all isolates. Our study suggest that cattle and goat farms are reservoirs of multidrug-resistant bacteria. Food animal producers should be informed on the prudent use of antimicrobials, good agricultural practices, and biosecurity measures.
Collapse
|
12
|
Gros M, Mas-Pla J, Sànchez-Melsió A, Čelić M, Castaño M, Rodríguez-Mozaz S, Borrego CM, Balcázar JL, Petrović M. Antibiotics, antibiotic resistance and associated risk in natural springs from an agroecosystem environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159202. [PMID: 36208750 DOI: 10.1016/j.scitotenv.2022.159202] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
This study investigates the occurrence, transport, and risks associated to antibiotic residues, antibiotic resistance genes (ARGs) and antibiotic resistant Escherichia coli (AR-E. coli) in eleven natural springs in an agroecosystem environment with intense livestock production, where groundwater nitrate concentration usually sets above 50 mg L-1. Out of 23 multiple-class antibiotics monitored, tetracycline and sulfonamide residues were the most ubiquitous, and they were detected at concentrations ranging from ng L-1 to μg L-1. Five ARGs were monitored, conferring resistance to the antibiotic classes of major use in livestock production. Thus, genes conferring resistance to sulfonamides (sul1 and sul2) and tetracyclines (tetW) as well as a gene proxy for anthropogenic pollution (intI1) were present in most springs. sul1 was the most abundant, with absolute concentrations ranging from 4 × 102 to 5.6 × 106 gene copies L-1 water. AR-E. coli showing resistance to sulfonamides and tetracyclines was also detected, with a prevalence up to approximately 40 % in some sites but with poor correlations with the concentration of antibiotic residues and ARGs. The occurrence of antibiotics, ARGs and AR-E. coli was characterized by large seasonal variations which were mostly associated to both hydrological factors and reactive transport processes. Finally, a risk assessment approach pointed out towards low risk for both the groundwater environment and human health, when spring water is used for direct human consumption, associated with the occurrence of antibiotics, ARGs and AR-E. coli. However, long-term effects cannot be neglected, and proper actions must be taken to preserve groundwater quality.
Collapse
Affiliation(s)
- Meritxell Gros
- Catalan Institute for Water Research (ICRA), Spain; University of Girona (UdG), Spain.
| | - Josep Mas-Pla
- Catalan Institute for Water Research (ICRA), Spain; Grup de Recerca GAiA-Geocamb, Department of Environmental Sciences, University of Girona, Spain
| | | | - Mira Čelić
- Catalan Institute for Water Research (ICRA), Spain; University of Girona (UdG), Spain
| | - Marc Castaño
- Catalan Institute for Water Research (ICRA), Spain; University of Girona (UdG), Spain
| | - Sara Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA), Spain; University of Girona (UdG), Spain
| | - Carles M Borrego
- Catalan Institute for Water Research (ICRA), Spain; Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, Spain
| | - José Luis Balcázar
- Catalan Institute for Water Research (ICRA), Spain; University of Girona (UdG), Spain
| | - Mira Petrović
- Catalan Institute for Water Research (ICRA), Spain; Catalan Institution for Research and Advanced Studies (ICREA), Spain
| |
Collapse
|
13
|
Agatha TM, Wibawati PA, Izulhaq RI, Agustono B, Prastiya RA, Wardhana DK, Abdramanov A, Lokapirnasari WP, Lamid M. Antibiotic resistance of Escherichia coli from the milk of Ettawa crossbred dairy goats in Blitar Regency, East Java, Indonesia. Vet World 2023; 16:168-174. [PMID: 36855371 PMCID: PMC9967718 DOI: 10.14202/vetworld.2023.168-174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/02/2022] [Indexed: 01/29/2023] Open
Abstract
Background and Aim Antimicrobial resistance, especially antibiotic resistance, is one of the most severe public health challenges. Antibiotic resistance occurs when bacteria avoid and fight the mechanism of action of antibiotic drugs. This study aimed to determine the resistance of Escherichia coli from the milk of Ettawa crossbreed dairy goat at Blitar Regency, East Java, Indonesia, with the antibiotics streptomycin, sulfonamides, and trimethoprim. Materials and Methods A total of 34 milk samples of Ettawa crossbreed dairy goats were used in this study. The initial stages of this research included tests of the physical properties, isolation, and identification of E. coli. Then, the E. coli isolates were tested for antibiotic resistance using the Kirby-Bauer method. Results The results showed that all samples were positive for E. coli. The physical properties of milk, namely, color, odor, flavor, and consistency, were normal. The results of the alcohol test showed normal acidity, and the specific gravity of goat milk met the criteria, with an average specific gravity of 1.0295 g/mL. The results of the antibiotic resistance test showed that 4 (12%) samples were resistant to streptomycin, 5 (15%) to sulfonamide, and 3% to trimethoprim. Conclusion The prevalence of E. coli from Ettawa crossbreed dairy goats in Blitar Regency, East Java, Indonesia, was 100%. Furthermore, this E. coli isolate exhibited resistance to antibiotics streptomycin, sulfonamides, and trimethoprim. The use of antibiotics in the dairy goat industry in Indonesia should be controlled to prevent the spread of resistant E. coli from animals to humans through the food chain and prevent the emergence of multidrug-resistant E. coli.
Collapse
Affiliation(s)
- Tweedekharis Marlin Agatha
- Department of Veterinary Medicine, School of Health and Life Sciences (SIKIA), Universitas Airlangga, Surabaya 60115, Indonesia
| | - Prima Ayu Wibawati
- Department of Veterinary Medicine, School of Health and Life Sciences (SIKIA), Universitas Airlangga, Surabaya 60115, Indonesia,Corresponding author: Prima Ayu Wibawati, e-mail: Co-authors: TMA: , RII: , BA: , RAP: , DKW: , AA: , WPL: , ML:
| | - Reza Ikhza Izulhaq
- Department of Veterinary Medicine, School of Health and Life Sciences (SIKIA), Universitas Airlangga, Surabaya 60115, Indonesia
| | - Bodhi Agustono
- Department of Veterinary Medicine, School of Health and Life Sciences (SIKIA), Universitas Airlangga, Surabaya 60115, Indonesia
| | - Ragil Angga Prastiya
- Department of Veterinary Medicine, School of Health and Life Sciences (SIKIA), Universitas Airlangga, Surabaya 60115, Indonesia
| | - Dhandy Koesoemo Wardhana
- Department of Veterinary Science, Division of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Abzal Abdramanov
- Department of Veterinary Sanitary Expertise and Hygiene, Faculty of Veterinary medicine, Kazakh National Agrarian Research University, Almaty, Kazakhstan
| | - Widya Paramita Lokapirnasari
- Department of Veterinary Science, Division of Animal Husbandry, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Mirni Lamid
- Department of Veterinary Science, Division of Animal Husbandry, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
14
|
Khalid A, Khalid F, Mahreen N, Hussain SM, Shahzad MM, Khan S, Wang Z. Effect of Spore-Forming Probiotics on the Poultry Production: A Review. Food Sci Anim Resour 2022; 42:968-980. [PMID: 36415574 PMCID: PMC9647184 DOI: 10.5851/kosfa.2022.e41] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 09/16/2023] Open
Abstract
Due to the bad aspects associated with the use of antibiotics, the pressure on poultry production prompted the efforts to find out suitable growth-promoting and disease-preventing alternatives. Although many cost-effective alternatives have been developed, currently, one of the most auspicious alternatives for poultry feed is spore-forming probiotics, which can exert more beneficial effects as compared to normal probiotics, because of their ability to withstand the harsh external and internal conditions which result in increased viability. Many studies have already used spore-forming probiotics to improve different parameters of poultry production. Our laboratory has recently isolated a spore-forming bacterial strain, which has the potential to be used as a probiotic. So, to provide a detailed understanding, the current review aimed to collect valuable references to describe the mechanism of action of spore-forming probiotics and their effect on all the key aspects of poultry production.
Collapse
Affiliation(s)
- Anam Khalid
- College of Life Science, Anhui
Agricultural University, Hefei 230036, China
| | - Fatima Khalid
- College of Life Science, Anhui
Agricultural University, Hefei 230036, China
| | - Nida Mahreen
- Department of Horticulture, Ayub Research
Institute, Faisalabad 38850, Pakistan
| | | | - Muhammad Mudassar Shahzad
- Department of Zoology, Division of Science
and Technology, University of Education, Lahore 54770,
Pakistan
| | - Salman Khan
- College of Life Science, Anhui
Agricultural University, Hefei 230036, China
| | - Zaigui Wang
- College of Life Science, Anhui
Agricultural University, Hefei 230036, China
| |
Collapse
|
15
|
A Comprehensive Study of the Microbiome, Resistome, and Physical and Chemical Characteristics of Chicken Waste from Intensive Farms. Biomolecules 2022; 12:biom12081132. [PMID: 36009027 PMCID: PMC9406075 DOI: 10.3390/biom12081132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022] Open
Abstract
The application of chicken waste to farmland could be detrimental to public health. It may contribute to the dissemination of antibiotic-resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) from feces and their subsequent entry into the food chain. The present study analyzes the metagenome and resistome of chicken manure and litter obtained from a commercial chicken farm in Poland. ARB were isolated, identified, and screened for antibiogram fingerprints using standard microbiological and molecular methods. The physicochemical properties of the chicken waste were also determined. ARGs, integrons, and mobile genetic elements (MGE) in chicken waste were analyzed using high-throughput SmartChip qPCR. The results confirm the presence of many ARGs, probably located in MGE, which can be transferred to other bacteria. Potentially pathogenic or opportunistic microorganisms and phytopathogens were isolated. More than 50% of the isolated strains were classified as being multi-drug resistant, and the remainder were resistant to at least one antibiotic class; these pose a real risk of entering the groundwater and contaminating the surrounding environment. Our results indicate that while chicken manure can be sufficient sources of the nutrients essential for plant growth, its microbiological aspects make this material highly dangerous to the environment.
Collapse
|
16
|
Li Q, Li Z, Wang Y, Chen Y, Sun J, Yang Y, Si H. Antimicrobial Resistance and Transconjugants Characteristics of sul3 Positive Escherichia coli Isolated from Animals in Nanning, Guangxi Province. Animals (Basel) 2022; 12:ani12080976. [PMID: 35454223 PMCID: PMC9025041 DOI: 10.3390/ani12080976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 01/27/2023] Open
Abstract
Sulfonamides are the second most popular antibiotic in many countries, which leads to the widespread emergence of sulfonamides resistance. sul3 is a more recent version of the gene associated with sulfonamide resistance, whose research is relatively little. In order to comprehend the prevalence of sul3 positive E. coli from animals in Nanning, a total of 146 strains of E. coli were identified from some farms and pet hospitals from 2015 to 2017. The drug resistance and prevalence of sul3 E. coli were analyzed by polymerase chain reaction (PCR) identification, multi-site sequence typing (MLST), drug sensitivity test, and drug resistance gene detection, and then the plasmid containing sul3 was conjugated with the recipient strain (C600). The effect of sul3 plasmid on the recipient was analyzed by stability, drug resistance, and competitive test. In this study, forty-six sul3 positive E. coli strains were separated. A total of 12 ST types were observed, and 1 of those was a previously unknown type. The ST350 is the most numerous type. All isolates were multidrug-resistant E. coli, with high resistant rates to penicillin, ceftriaxone sodium, streptomycin, tetracycline, ciprofloxacin, gatifloxacin, and chloramphenicol (100%, 73.9%, 82.6%, 100%, 80.4%, 71.7%, and 97.8%, respectively). They had at least three antibiotic resistance genes (ARGs) in addition to sul3. The plasmids transferred from three sul3-positive isolates to C600, most of which brought seven antimicrobial resistance (AMR) and increased ARGs to C600. The transferred sul3 gene and the plasmid carrying sul3 could be stably inherited in the recipient bacteria for at least 20 days. These plasmids had no effect on the growth of the recipient bacteria but greatly reduced the competitiveness of the strain at least 60 times in vitro. In Nanning, these sul3-positive E. coli had such strong AMR, and the plasmid carrying sul3 had the ability to transfer multiple resistance genes that long-term monitoring was necessary. Since the transferred plasmid would greatly reduce the competitiveness of the strain in vitro, we could consider limiting the spread of drug-resistant isolates in this respect.
Collapse
|
17
|
Koyun OY, Callaway TR, Nisbet DJ, Anderson RC. Innovative Treatments Enhancing the Functionality of Gut Microbiota to Improve Quality and Microbiological Safety of Foods of Animal Origin. Annu Rev Food Sci Technol 2022; 13:433-461. [DOI: 10.1146/annurev-food-100121-050244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The gastrointestinal tract, or gut, microbiota is a microbial community containing a variety of microorganisms colonizing throughout the gut that plays a crucial role in animal health, growth performance, and welfare. The gut microbiota is closely associated with the quality and microbiological safety of foods and food products originating from animals. The gut microbiota of the host can be modulated and enhanced in ways that improve the quality and safety of foods of animal origin. Probiotics—also known as direct-fed microbials—competitive exclusion cultures, prebiotics, and synbiotics have been utilized to achieve this goal. Reducing foodborne pathogen colonization in the gut prior to slaughter and enhancing the chemical, nutritional, or sensory characteristics of foods (e.g., meat, milk, and eggs) are two of many positive outcomes derived from the use of these competitive enhancement–based treatments in food-producing animals. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Osman Y. Koyun
- Department of Animal and Dairy Science, University of Georgia, Athens, Georgia, USA
| | - Todd R. Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, Georgia, USA
| | - David J. Nisbet
- Food and Feed Safety Research Unit, Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, College Station, Texas, USA
| | - Robin C. Anderson
- Food and Feed Safety Research Unit, Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, College Station, Texas, USA
| |
Collapse
|
18
|
Wet-dry cycles protect surface-colonizing bacteria from major antibiotic classes. THE ISME JOURNAL 2022; 16:91-100. [PMID: 34253853 PMCID: PMC8692528 DOI: 10.1038/s41396-021-01051-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
Diverse antibiotic compounds are abundant in microbial habitats undergoing recurrent wet-dry cycles, such as soil, root and leaf surfaces, and the built environment. These antibiotics play a central role in microbial warfare and competition, thus affecting population dynamics and the composition of natural microbial communities. Yet, the impact of wet-dry cycles on bacterial response to antibiotics has been scarcely explored. Using the bacterium E. coli as a model organism, we show through a combination of experiments and computational modeling, that wet-dry cycles protect bacteria from beta-lactams. This is due to the combined effect of several mechanisms including tolerance induced by high salt concentrations and slow cell-growth, which are inherently associated with microscopic surface wetness-a hydration state typical to 'dry' periods. Moreover, we find evidence for a cross-protection effect, where lethal doses of antibiotic considerably increase bacterial survival during the dry periods. This work focuses on beta-lactams, yet similar protection was observed for additional major antibiotic classes. Our findings shed new light on how we understand bacterial response to antibiotics, with broad implications for population dynamics, interspecies interactions, and the evolution of antibiotic resistance in vast terrestrial microbial habitats.
Collapse
|
19
|
Howe AC, Soupir ML. Antimicrobial resistance in integrated agroecosystems: State of the science and future opportunities. JOURNAL OF ENVIRONMENTAL QUALITY 2021; 50:1255-1265. [PMID: 34528726 DOI: 10.1002/jeq2.20289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
As the Journal of Environmental Quality (JEQ) celebrates 50 years of publication, the division of environmental microbiology is one of the newest additions to the journal. During this time, significant advances in understanding of the interconnected microbial community and impact of the microbiome on natural and designed environmental systems have occurred. In this review, we highlight the intractable challenge of antimicrobial resistance (AMR) on humans, animals, and the environment, with particular emphasis on the role of integrated agroecosystems and by highlighting contributions published in JEQ. From early studies of phenotypic resistance of indicator organisms in waters systems to current calls for integrating AMR assessment across "One Health," publications in JEQ have advanced our understanding of AMR. As we reflect on the state of the science, we emphasize future opportunities. First, integration of phenotypic and molecular tools for assessing environmental spread of AMR and human health risk continues to be an urgent research need for a one health approach to AMR. Second, monitoring AMR levels in manure is recommended to understand inputs and potential spread through agroecosystems. Third, baseline knowledge of AMR levels is important to realize the impact of manure inputs on water quality and public health risk; this can be achieved through background monitoring or identifying the source-related genes or organisms. And finally, conservation practices designed to meet nutrient reduction goals should be explored for AMR reduction potential.
Collapse
Affiliation(s)
- Adina C Howe
- Dep. of Agricultural and Biosystems Engineering, Iowa State Univ., Ames, IA, 50011, USA
| | - Michelle L Soupir
- Dep. of Agricultural and Biosystems Engineering, Iowa State Univ., Ames, IA, 50011, USA
| |
Collapse
|
20
|
The role of chemotaxis and efflux pumps on nitrate reduction in the toxic regions of a ciprofloxacin concentration gradient. THE ISME JOURNAL 2021; 15:2920-2932. [PMID: 33927341 PMCID: PMC8443623 DOI: 10.1038/s41396-021-00975-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/17/2021] [Accepted: 04/06/2021] [Indexed: 02/03/2023]
Abstract
Spatial concentration gradients of antibiotics are prevalent in the natural environment. Yet, the microbial response in these heterogeneous systems remains poorly understood. We used a microfluidic reactor to create an artificial microscopic ecosystem that generates diffusive gradients of solutes across interconnected microenvironments. With this reactor, we showed that chemotaxis toward a soluble electron acceptor (nitrate) allowed Shewanella oneidensis MR-1 to inhabit and sustain metabolic activity in highly toxic regions of the antibiotic ciprofloxacin (>80× minimum inhibitory concentration, MIC). Acquired antibiotic resistance was not observed for cells extracted from the reactor, so we explored the role of transient adaptive resistance by probing multidrug resistance (MDR) efflux pumps, ancient elements that are important for bacterial physiology and virulence. Accordingly, we constructed an efflux pump deficient mutant (∆mexF) and used resistance-nodulation-division (RND) efflux pump inhibitors (EPIs). While batch results showed the importance of RND efflux pumps for microbial survival, microfluidic studies indicated that these pumps were not necessary for survival in antibiotic gradients. Our work contributes to an emerging body of knowledge deciphering the effects of antibiotic spatial heterogeneity on microorganisms and highlights differences of microbial response in these systems versus well-mixed batch conditions.
Collapse
|
21
|
Dungan RS, Bjorneberg DL. Antimicrobial Resistance in Escherichia coli and Enterococcal Isolates From Irrigation Return Flows in a High-Desert Watershed. Front Microbiol 2021; 12:660697. [PMID: 34054760 PMCID: PMC8149595 DOI: 10.3389/fmicb.2021.660697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/13/2021] [Indexed: 11/25/2022] Open
Abstract
Irrigation return flows (IRFs) collect surface runoff and subsurface drainage, causing them to have elevated contaminant and bacterial levels, and making them a potential source of pollutants. The purpose of this study was to determine antimicrobial susceptibility among Escherichia coli and enterococcal isolates that were collected from IRFs in a south-central Idaho watershed. Environmental isolates can be a potentially important source of antimicrobial resistance (AMR) and IRFs may be one way resistance genes are transported out of agroecosystems. Water samples were collected from nine IRFs and one background site (canal water from Snake River) on a biweekly basis during 2018. Escherichia coli and enterococci were enumerated via a most probable number (MPN) technique, then subsamples were plated on selective media to obtain isolates. Isolates of E. coli (187) or enterococci (185) were tested for antimicrobial susceptibility using Sensititre broth microdilution plates. For E. coli, 13% (25/187) of isolates were resistant to tetracycline, with fewer numbers being resistant to 13 other antimicrobials, with none resistant to gentamicin. While 75% (141/187) of the E. coli isolates were pan-susceptible, 12 multidrug resistance (MDR) patterns with 17 isolates exhibiting resistance to up to seven drug classes (10 antimicrobials). For the enterococcal species, only 9% (16/185) of isolates were pan-susceptible and the single highest resistance was to lincomycin (138/185; 75%) followed by nitrofurantoin (56/185; 30%) and quinupristin/dalfopristin (34/185; 18%). In addition, 13 enterococcal isolates belonging to Enterococcus faecalis, Enterococcus faecium, Enterococcus casseliflavus, and Enterococcus thailandicus, were determined to be MDR to up to six different antimicrobial drug classes. None of the enterococcal isolates were resistant to gentamycin, linezolid, tigecycline, and vancomycin.
Collapse
Affiliation(s)
- Robert S Dungan
- Northwest Irrigation and Soils Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Kimberly, ID, United States
| | - David L Bjorneberg
- Northwest Irrigation and Soils Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Kimberly, ID, United States
| |
Collapse
|
22
|
Alternatives to Antibiotics: A Symposium on the Challenges and Solutions for Animal Health and Production. Antibiotics (Basel) 2021; 10:antibiotics10050471. [PMID: 33918995 PMCID: PMC8142984 DOI: 10.3390/antibiotics10050471] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 12/17/2022] Open
Abstract
Antibiotics have improved the length and quality of life of people worldwide and have had an immeasurable influence on agricultural animal health and the efficiency of animal production over the last 60 years. The increased affordability of animal protein for a greater proportion of the global population, in which antibiotic use has played a crucial part, has resulted in a substantial improvement in human quality of life. However, these benefits have come with major unintended consequences, including antibiotic resistance. Despite the inherent benefits of restricting antibiotic use in animal production, antibiotics remain essential to ensuring animal health, necessitating the development of novel approaches to replace the prophylactic and growth-promoting benefits of antibiotics. The third International Symposium on “Alternatives to Antibiotics: Challenges and Solutions in Animal Health and Production” in Bangkok, Thailand was organized by the USDA Agricultural Research Service, Faculty of Veterinary Science, Chulalongkorn University and Department of Livestock Development-Thailand Ministry of Agriculture and Cooperative; supported by OIE World Organization for Animal Health; and attended by more than 500 scientists from academia, industry, and government from 32 nations across 6 continents. The focus of the symposium was on ensuring human and animal health, food safety, and improving food animal production efficiency as well as quality. Attendees explored six subject areas in detail through scientific presentations and panel discussions with experts, and the major conclusions were as follows: (1) defining the mechanisms of action of antibiotic alternatives is paramount to enable their effective use, whether they are used for prevention, treatment, or to enhance health and production; (2) there is a need to integrate nutrition, health, and disease research, and host genetics needs to be considered in this regard; (3) a combination of alternatives to antibiotics may need to be considered to achieve optimum health and disease management in different animal production systems; (4) hypothesis-driven field trials with proper controls are needed to validate the safety, efficacy, and return of investment (ROI) of antibiotic alternatives.
Collapse
|
23
|
Orevi T, Kashtan N. Life in a Droplet: Microbial Ecology in Microscopic Surface Wetness. Front Microbiol 2021; 12:655459. [PMID: 33927707 PMCID: PMC8076497 DOI: 10.3389/fmicb.2021.655459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/19/2021] [Indexed: 12/16/2022] Open
Abstract
While many natural and artificial surfaces may appear dry, they are in fact covered by thin liquid films and microdroplets invisible to the naked eye known as microscopic surface wetness (MSW). Central to the formation and the retention of MSW are the deliquescent properties of hygroscopic salts that prevent complete drying of wet surfaces or that drive the absorption of water until dissolution when the relative humidity is above a salt-specific level. As salts are ubiquitous, MSW occurs in many microbial habitats, such as soil, rocks, plant leaf, and root surfaces, the built environment, and human and animal skin. While key properties of MSW, including very high salinity and segregation into droplets, greatly affect microbial life therein, it has been scarcely studied, and systematic studies are only in their beginnings. Based on recent findings, we propose that the harsh micro-environment that MSW imposes, which is very different from bulk liquid, affects key aspects of bacterial ecology including survival traits, antibiotic response, competition, motility, communication, and exchange of genetic material. Further research is required to uncover the fundamental principles that govern microbial life and ecology in MSW. Such research will require multidisciplinary science cutting across biology, physics, and chemistry, while incorporating approaches from microbiology, genomics, microscopy, and computational modeling. The results of such research will be critical to understand microbial ecology in vast terrestrial habitats, affecting global biogeochemical cycles, as well as plant, animal, and human health.
Collapse
Affiliation(s)
- Tomer Orevi
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Institute of Environmental Sciences, Hebrew University, Rehovot, Israel
| | - Nadav Kashtan
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Institute of Environmental Sciences, Hebrew University, Rehovot, Israel
| |
Collapse
|
24
|
Panikkar B, Barrett MK. Precarious Essential Work, Immigrant Dairy Farmworkers, and Occupational Health Experiences in Vermont. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18073675. [PMID: 33915975 PMCID: PMC8038053 DOI: 10.3390/ijerph18073675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/25/2022]
Abstract
Migrant dairy workers in Vermont face a wide range of occupational and health hazards at work. This research examines the environmental risks, occupational health hazards, and health outcomes experienced by migrant dairy farm workers in Vermont. This research draws on a triangulation of sources including analysis of data—surveys and interviews with migrant dairy farmworkers gathered by the organization Migrant Justice since 2015 as well as relevant key informant interviews with community organizations across the state to characterize the occupational health experiences of migrant dairy workers in Vermont. Our results show that Vermont migrant dairy farmworkers received poor health and safety training and lacked sufficient protective gear. Over three quarters of the respondents reported experiencing harm from chemical and biological risks. Close to half the survey respondents reported headaches, itchy eyes and cough; a quarter reported breathing difficulties; three fourths reported being hurt by animal-related risks. These exposures and existing health concerns are avoidable. Migrant workers require better social representation and advocates to negotiate better work-related protection and training, access to health services, and social welfare to ensure their health and safety.
Collapse
Affiliation(s)
- Bindu Panikkar
- Bindu Panikkar, Environmental Studies Program and the Rubenstein School of the Environment and Natural Resources, University of Vermont, 81 Carrigan Dr., Burlington, VT 05405, USA
- Correspondence:
| | - Mary-Kate Barrett
- College of Agriculture and Life Sciences, University of Vermont, 146 University Place, Morril Hall, Burlington, VT 05405, USA;
| |
Collapse
|
25
|
Franklin AM, Brinkman NE, Jahne MA, Keely SP. Twenty-first century molecular methods for analyzing antimicrobial resistance in surface waters to support One Health assessments. J Microbiol Methods 2021; 184:106174. [PMID: 33774111 DOI: 10.1016/j.mimet.2021.106174] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/03/2021] [Accepted: 02/17/2021] [Indexed: 12/26/2022]
Abstract
Antimicrobial resistance (AMR) in the environment is a growing global health concern, especially the dissemination of AMR into surface waters due to human and agricultural inputs. Within recent years, research has focused on trying to understand the impact of AMR in surface waters on human, agricultural and ecological health (One Health). While surface water quality assessments and surveillance of AMR have historically utilized culture-based methods, culturing bacteria has limitations due to difficulty in isolating environmental bacteria and the need for a priori information about the bacteria for selective isolation. The use of molecular techniques to analyze AMR at the genetic level has helped to overcome the difficulties with culture-based techniques since they do not require advance knowledge of the bacterial population and can analyze uncultivable environmental bacteria. The aim of this review is to provide an overview of common contemporary molecular methods available for analyzing AMR in surface waters, which include high throughput real-time polymerase chain reaction (HT-qPCR), metagenomics, and whole genome sequencing. This review will also feature how these methods may provide information on human and animal health risks. HT-qPCR works at the nanoliter scale, requires only a small amount of DNA, and can analyze numerous gene targets simultaneously, but may lack in analytical sensitivity and the ability to optimize individual assays compared to conventional qPCR. Metagenomics offers more detailed genomic information and taxonomic resolution than PCR by sequencing all the microbial genomes within a sample. Its open format allows for the discovery of new antibiotic resistance genes; however, the quantity of DNA necessary for this technique can be a limiting factor for surface water samples that typically have low numbers of bacteria per sample volume. Whole genome sequencing provides the complete genomic profile of a single environmental isolate and can identify all genetic elements that may confer AMR. However, a main disadvantage of this technique is that it only provides information about one bacterial isolate and is challenging to utilize for community analysis. While these contemporary techniques can quickly provide a vast array of information about AMR in surface waters, one technique does not fully characterize AMR nor its potential risks to human, animal, or ecological health. Rather, a combination of techniques (including both molecular- and culture-based) are necessary to fully understand AMR in surface waters from a One Health perspective.
Collapse
Affiliation(s)
- A M Franklin
- Office of Research and Development, Center for Environmental Measurement and Modeling, US Environmental Protection Agency, 26 Martin Luther King West, Cincinnati, OH 45268, USA.
| | - N E Brinkman
- Office of Research and Development, Center for Environmental Solutions and Emergency Response, US Environmental Protection Agency, 26 Martin Luther King West, Cincinnati, OH 45268, USA
| | - M A Jahne
- Office of Research and Development, Center for Environmental Solutions and Emergency Response, US Environmental Protection Agency, 26 Martin Luther King West, Cincinnati, OH 45268, USA
| | - S P Keely
- Office of Research and Development, Center for Environmental Measurement and Modeling, US Environmental Protection Agency, 26 Martin Luther King West, Cincinnati, OH 45268, USA
| |
Collapse
|
26
|
Oliver JP, Hurst JJ, Gooch CA, Stappenbeck A, Sassoubre L, Aga DS. On-farm screw press and rotary drum treatment of dairy manure-associated antibiotic residues and resistance. JOURNAL OF ENVIRONMENTAL QUALITY 2021; 50:134-143. [PMID: 33438205 DOI: 10.1002/jeq2.20161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/22/2020] [Accepted: 09/09/2020] [Indexed: 06/12/2023]
Abstract
An on-farm solid-liquid separator (SLS) and rotary drum composter (RD) manure treatment system was monitored for its impact on antibiotic residues and antibiotic resistance genes (ARGs). Administered antibiotics were tracked, and treatment system mass flows were quantified. Total amounts of antibiotic residues and ARGs were calculated from measured concentrations and mass flows. Only oxytetracycline (OTC) and sulfadimethoxine (SDM) were detected in the manure treatment system influent. No β-lactams were measured despite comprising ∼25% of the antibiotics administered. Nearly 80% of OTC and >90% of SDM partitioned into SLS liquid effluent (SL). The RD reduced the mass of OTC remaining in the SLS solid effluent (SS) significantly by 50%, whereas the mass of SDM appeared to increase after RD treatment. All four ARGs tested were detected in influent, with >70% of the sul1, blaOXA-1 , and intI1 genes (normalized by the 16S ribosomal RNA gene) partitioning into the SL. In contrast, about eight times more normalized tetO gene copies partitioned into the SS than in the SL. All ARGs remaining in the SS were significantly reduced by the RD treatment, with a noteworthy 98% reduction in normalized tetO gene copies. This study provides insight into on-farm levels of antibiotic residues and ARGs in dairy manure, their partitioning during SLS treatment, and their fate after a high-temperature RD treatment reaching 72.2 ± 0.18 °C near the outlet. It also notes the importance of mass-flow standardization of data, and the need to work towards standardization of manure system sampling protocols for antibiotic residues and ARGs.
Collapse
Affiliation(s)
- Jason P Oliver
- Animal Science, PRO-DAIRY Dairy Environmental Systems Program, Cornell Univ., Ithaca, NY, 14853, USA
- Agricultural Sciences, Groton Central School District, Groton, NY, 13073, USA
| | - Jerod J Hurst
- Chemistry, Univ. at Buffalo, The State Univ. of New York, Buffalo, NY, 14260, USA
| | - Curt A Gooch
- Animal Science, PRO-DAIRY Dairy Environmental Systems Program, Cornell Univ., Ithaca, NY, 14853, USA
| | - Ashley Stappenbeck
- Animal Science, PRO-DAIRY Dairy Environmental Systems Program, Cornell Univ., Ithaca, NY, 14853, USA
| | - Lauren Sassoubre
- Civil, Structural & Environmental Engineering, Univ. of Buffalo, The State Univ. of New York, Buffalo, NY, 14260, USA
- Dep. of Engineering, Univ. of San Francisco, San Francisco, CA, 94117, USA
| | - Diana S Aga
- Chemistry, Univ. at Buffalo, The State Univ. of New York, Buffalo, NY, 14260, USA
| |
Collapse
|
27
|
Miller DN, Jurgens ME, Durso LM, Schmidt AM. Simulated Winter Incubation of Soil With Swine Manure Differentially Affects Multiple Antimicrobial Resistance Elements. Front Microbiol 2020; 11:611912. [PMID: 33391241 PMCID: PMC7772212 DOI: 10.3389/fmicb.2020.611912] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/25/2020] [Indexed: 11/29/2022] Open
Abstract
Gastrointestinal bacteria that harbor antibiotic resistance genes (ARG) become enriched with antibiotic use. Livestock manure application to cropland for soil fertility presents a concern that ARG and bacteria may proliferate and be transported in the environment. In the United States, manure applications typically occur during autumn with slow mineralization until spring planting season. A laboratory soil incubation study was conducted mimicking autumn swine manure application to soils with concentrations of selected ARG monitored during simulated 120-day winter incubation with multiple freeze-thaw events. Additionally, the effects of two soil moistures [10 and 30% water holding capacity (WHC)] and two manure treatments [raw versus hydrated lime alkaline stabilization (HLAS)] were assessed. Fourteen tetracycline resistance genes were evaluated; tet(D), tet(G), and tet(L) were detected in background soil while swine manure contained tet(A), tet(B), tet(C), tet(G), tet(M), tet(O), tet(Q), and tet(X). By day 120, the manure-borne tet(M) and tet(O) were still detected while tet(C), tet(D), tet(L), and tet(X) genes were detected less frequently. Other tet resistance genes were detected rarely, if at all. The sum of unique tet resistance genes among all treatments decreased during the incubation from an average of 8.9 to 3.8 unique tet resistance genes. Four resistance elements, intI1, blactx–m–32, sul(I), erm(B), and 16s rRNA genes were measured using quantitative PCR. ARG abundances relative to 16S abundance were initially greater in the raw manure compared to background soil (−1.53 to −3.92 log abundance in manure; −4.02 to <−6.7 log abundance in soil). In the mixed manure/soil, relative abundance of the four resistance elements decreased (0.87 to 1.94 log abundance) during the incubation largely because 16S rRNA genes increased by 1.21 log abundance. Throughout the incubation, the abundance of intI1, blactx–m–32, sul(I), and erm(B) per gram in soil amended with HLAS-treated manure was lower than in soil amended with raw manure. Under low initial soil moisture conditions, HLAS treatment reduced the abundance of intI1 and resulted in loss of blactx–m–32, sul(I), and erm(B)] compared to other treatment-moisture combinations. Although one might expect antibiotic resistance to be relatively unchanged after simulated winter manure application to soil, a variety of changes in diversity and relative abundance can be expected.
Collapse
Affiliation(s)
- Daniel N Miller
- USDA-ARS, Agroecosystem Management Research Unit, Lincoln, NE, United States
| | | | - Lisa M Durso
- USDA-ARS, Agroecosystem Management Research Unit, Lincoln, NE, United States
| | - Amy M Schmidt
- Department of Biological Systems Engineering, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
28
|
Pitta DW, Indugu N, Toth JD, Bender JS, Baker LD, Hennessy ML, Vecchiarelli B, Aceto H, Dou Z. The distribution of microbiomes and resistomes across farm environments in conventional and organic dairy herds in Pennsylvania. ENVIRONMENTAL MICROBIOME 2020; 15:21. [PMID: 33902716 PMCID: PMC8066844 DOI: 10.1186/s40793-020-00368-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/20/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND Antimicrobial resistance is a serious concern. Although the widespread use of antimicrobials in livestock has exacerbated the emergence and dissemination of antimicrobial resistance genes (ARG) in farm environments, little is known about whether antimicrobial use affects distribution of ARG in livestock systems. This study compared the distribution of microbiomes and resistomes (collections of ARG) across different farm sectors in dairy herds that differed in their use of antimicrobials. Feces from heifers, non-lactating, and lactating cows, manure storage, and soil from three conventional (antimicrobials used to treat cows) and three organic (no antimicrobials used for at least four years) farms in Pennsylvania were sampled. Samples were extracted for genomic DNA, processed, sequenced on the Illumina NextSeq platform, and analyzed for microbial community and resistome profiles using established procedures. RESULTS Microbial communities and resistome profiles clustered by sample type across all farms. Overall, abundance and diversity of ARG in feces was significantly higher in conventional herds compared to organic herds. The ARG conferring resistance to betalactams, macrolide-lincosamide-streptogramin (MLS), and tetracyclines were significantly higher in fecal samples of dairy cows from conventional herds compared to organic herds. Regardless of farm type, all manure storage samples had greater diversity (albeit low abundance) of ARG conferring resistance to aminoglycosides, tetracyclines, MLS, multidrug resistance, and phenicol. All soil samples had lower abundance of ARG compared to feces, manure, and lagoon samples and were comprised of ARG conferring resistance to aminoglycosides, glycopeptides, and multi-drug resistance. The distribution of ARG is likely driven by the composition of microbiota in the respective sample types. CONCLUSIONS Antimicrobial use on farms significantly influenced specific groups of ARG in feces but not in manure storage or soil samples.
Collapse
Affiliation(s)
- Dipti W. Pitta
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA USA
| | - Nagaraju Indugu
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA USA
| | - John D. Toth
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA USA
| | - Joseph S. Bender
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA USA
| | - Linda D. Baker
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA USA
| | - Meagan L. Hennessy
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA USA
| | - Bonnie Vecchiarelli
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA USA
| | - Helen Aceto
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA USA
| | - Zhengxia Dou
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA USA
| |
Collapse
|
29
|
Zhang R, Gu J, Wang X, Li Y. Antibiotic resistance gene transfer during anaerobic digestion with added copper: Important roles of mobile genetic elements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140759. [PMID: 32659562 DOI: 10.1016/j.scitotenv.2020.140759] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
The abuse of heavy metals as feed additives in livestock is widespread and it might aggravate the spread of antibiotic resistance genes (ARGs) in the environment. However, the mechanisms that allow heavy metals to increase the transmission of ARGs in the environment remain unclear. Cu is the heavy metal present at the highest concentration in livestock manure, and thus Cu was selected to investigate the responses of ARGs to heavy metals. The effects of the microbial communities, mobile genetic elements (MGEs), and heavy metal resistance genes (HMRGs) on ARGs were determined in the presence of 75 and 227 mg L-1 Cu in a swine manure anaerobic digestion (AD) system. In the AD products, the presence of residual Cu (75 and 227 mg L-1) increased the total ARGs, HMRGs, and some MGEs, and the higher Cu selected more ARGs than the lower Cu treatment. The results demonstrated that Cu could promote the co-selection of HMRGs, ARGs, and MGEs. The different levels of Cu did not change the bacterial community composition, but they influenced the abundances of bacteria during AD. Network analysis showed that the presence of Cu increased the co-occurrence of specific bacteria containing ARGs, HMRGs, and MGEs. Furthermore, the co-occurrence of MGEs and ARGs increased greatly compared with that of HMRGs and ARGs. Therefore, compared HMRGs, the increased MGEs had the main effect on increasing of ARGs.
Collapse
Affiliation(s)
- Ranran Zhang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Li
- KLACP, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi 710061, China
| |
Collapse
|
30
|
Gudda FO, Waigi MG, Odinga ES, Yang B, Carter L, Gao Y. Antibiotic-contaminated wastewater irrigated vegetables pose resistance selection risks to the gut microbiome. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114752. [PMID: 32417582 DOI: 10.1016/j.envpol.2020.114752] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Wastewater reuse in food crop irrigation has led to agroecosystem pollution concerns and human health risks. However, there is limited attention on the relationship of sub-lethal antibiotic levels in vegetables and resistance selection. Most risk assessment studies show non-significant toxicity, but overlook the link between antibiotics in crops and propagation of gut microbiome resistance selection. The review highlights the risk of antibiotics in treated water used for irrigation, uptake, and accumulation in edible vegetable parts. Moreover, it elucidates the risks to the adaptive resistance selection of the gut microbiome from sub-lethal antibiotic levels, as a result of dietary contaminated vegetables. Experiments have reported that bacterial resistance selection is possible at concentrations that are several hundred-folds lower than lethal effect levels on susceptible cells. Consequently, mutants selected at low antibiotic levels, such as those from vegetables, are fitter and more resistant compared to those selected at high concentrations. Necessary standardization, such as the development of minimum acceptable antibiotic limits allowable in food crop irrigation water, with a focus on minimum selection concentration, and not only toxicity, has been proposed. Wastewater irrigation offers environmental benefits and can contribute to food security, but it has non-addressed risks. Research gaps, future perspectives, and frameworks of mitigating the potential risks are discussed.
Collapse
Affiliation(s)
- Fredrick Owino Gudda
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Faculty of Environment and Resource Development, Department of Environmental Sciences, Egerton University, Box 536, Egerton, 20115, Kenya
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Emmanuel Stephen Odinga
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bing Yang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Laura Carter
- School of Geography, University of Leeds, Leeds, LS2 9JT, UK
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
31
|
Iwu CD, Korsten L, Okoh AI. The incidence of antibiotic resistance within and beyond the agricultural ecosystem: A concern for public health. Microbiologyopen 2020; 9:e1035. [PMID: 32710495 PMCID: PMC7520999 DOI: 10.1002/mbo3.1035] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 12/18/2022] Open
Abstract
The agricultural ecosystem creates a platform for the development and dissemination of antimicrobial resistance, which is promoted by the indiscriminate use of antibiotics in the veterinary, agricultural, and medical sectors. This results in the selective pressure for the intrinsic and extrinsic development of the antimicrobial resistance phenomenon, especially within the aquaculture‐animal‐manure‐soil‐water‐plant nexus. The existence of antimicrobial resistance in the environment has been well documented in the literature. However, the possible transmission routes of antimicrobial agents, their resistance genes, and naturally selected antibiotic‐resistant bacteria within and between the various niches of the agricultural environment and humans remain poorly understood. This study, therefore, outlines an overview of the discovery and development of commonly used antibiotics; the timeline of resistance development; transmission routes of antimicrobial resistance in the agro‐ecosystem; detection methods of environmental antimicrobial resistance determinants; factors involved in the evolution and transmission of antibiotic resistance in the environment and the agro‐ecosystem; and possible ways to curtail the menace of antimicrobial resistance.
Collapse
Affiliation(s)
- Chidozie D Iwu
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Lise Korsten
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| |
Collapse
|
32
|
Dungan RS, Strausbaugh CA, Leytem AB. Survey of selected antibiotic resistance genes in agricultural and non-agricultural soils in south-central Idaho. FEMS Microbiol Ecol 2020; 95:5497921. [PMID: 31121020 DOI: 10.1093/femsec/fiz071] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 05/22/2019] [Indexed: 01/21/2023] Open
Abstract
Improving our understanding of antibiotic resistance in soils is important for the protection of human, animal and ecological health. In south-central Idaho, antibiotic resistance genes (ARGs) [blaCTX-M-1, erm(B), sul1, tet(B), tet(M) and tet(X)] and a class 1 integron-integrase gene (intI1) were quantified in agricultural and non-agricultural soils (96 total sites) under various land use practices (cropland, forestland, inactive cropland, pastureland, rangeland, recreational, residential). We hypothesized that gene occurrence and abundance would be greater in intensively managed agricultural soils. The ARGs (except blaCTX-M-1) and intI1 gene were detected in many of the soils (15 to 58 out of 96 samples), with sul1 and intI1 being detected the most frequently (60% of samples). All of the genes were detected more frequently in the cropland soils (46 sites) and at statistically greater relative abundances (per 16S rRNA gene) than in soils from the other land use categories. When the cropland gene data was separated by sites that had received dairy manure, dairy wastewater, and/or biosolids (27 sites), it was revealed that the genes [except tet(B)] were found at statistically greater abundances (7- to 22-fold higher on average) than in soils that were not treated. The results from this study provide convincing evidence that manure/biosolids use in Idaho cropland soils increases the expansion of antibiotic resistance-related determinants.
Collapse
Affiliation(s)
- Robert S Dungan
- United States Department of Agriculture-Agricultural Research Service, Northwest Irrigation & Soils Research Laboratory, 3793 North 3600 East, Kimberly, ID 83341, USA
| | - Carl A Strausbaugh
- United States Department of Agriculture-Agricultural Research Service, Northwest Irrigation & Soils Research Laboratory, 3793 North 3600 East, Kimberly, ID 83341, USA
| | - April B Leytem
- United States Department of Agriculture-Agricultural Research Service, Northwest Irrigation & Soils Research Laboratory, 3793 North 3600 East, Kimberly, ID 83341, USA
| |
Collapse
|
33
|
Lu W, Wang M, Wu J, Jiang Q, Jin J, Jin Q, Yang W, Chen J, Wang Y, Xiao M. Spread of chloramphenicol and tetracycline resistance genes by plasmid mobilization in agricultural soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:113998. [PMID: 31991360 DOI: 10.1016/j.envpol.2020.113998] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Spread of antibiotic resistance genes (ARGs) poses a worldwide threat to public health and food safety. However, ARG spread by plasmid mobilization, a broad host range transfer system, in agricultural soil has received little attention. Here, we investigated the spread of chloramphenicol resistance gene (CRG) and tetracycline resistance gene (TRG) in agricultural soil by mobilization of pSUP106 under different conditions, including different concentrations of nutrients, temperatures, soil depths, rhizosphere soils, and soil types. The number of resistant bacteria isolated in non-sterilized soil from the experiments was approximately 104 to 107 per gram of soil, belonging to 5-10 species from four genera, including nonpathogen, opportunistic pathogen, pathogen bacteria, and gram-positive and gram-negative bacteria, depending on the experiment conditions. In sterilized soil, higher levels of nutrients and higher temperatures promoted plasmid mobilization and ARG expression. Topsoil and deep soil might not support the spread of antibiotic resistance, while ARG dissemination by plasmid mobilization was better supported by maize rhizosphere and loam soils. All these factors might change bacterial growth and the activity of bacteria and lead to the above influence. Introduction of only the donor and helper, or the donor alone also resulted in the transfer of ARGs and large numbers of antibiotic resistant bacteria (ARB), indicating that some indigenous bacteria contain the elements necessary for plasmid mobilization. Our results showed that plasmid mobilization facilitated dissemination of ARGs and ARB in soil, which led to the disturbance of indigenous bacterial communities. It is important to clear ARG dissemination routes and inhibit the spread of ARGs.
Collapse
Affiliation(s)
- Wenwei Lu
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Min Wang
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Jianqiang Wu
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Qiuyan Jiang
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jieren Jin
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qing Jin
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Wenwu Yang
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jun Chen
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yujing Wang
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Ming Xiao
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai, 200240, China.
| |
Collapse
|
34
|
Furlan JPR, Dos Santos LDR, Ramos MS, Gallo IFL, Stehling EG. Fecal cultivable aerobic microbiota of dairy cows and calves acting as reservoir of clinically relevant antimicrobial resistance genes. Braz J Microbiol 2020; 51:1377-1382. [PMID: 32246396 DOI: 10.1007/s42770-020-00265-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 03/21/2020] [Indexed: 11/25/2022] Open
Abstract
Antimicrobial resistance has become a global threat to public health since multidrug-resistant (MDR) bacteria have been reported worldwide carrying different antimicrobial resistance genes (ARGs), and animals have been described as a reservoir of ARGs. The presence of antimicrobial-resistant bacteria and ARGs in the food matrix is a risk to public health. This study aimed to research the presence of clinically relevant ARGs for important antimicrobials and genetic elements in fecal samples from dairy cows and calves on a Brazilian farm. In this study, a total of 21 fecal samples were collected, and then, the DNA of cultivable aerobic bacteria was extracted. Fifty-seven ARGs and twenty-three genetic elements were researched by PCR and confirmed by sequencing. Several ARGs that confer resistance to β-lactams, tetracyclines, fluoroquinolones, sulphonamides, phenicols, aminoglycoside, glycopeptides, and macrolides were detected. A total of 200 amplicons from 23 ARGs (blaCTX-M-Gp2, blaCMY, blaSHV, tetA, tetB, tetC, qepA, qnrB, qnrS, oqxA, oqxB, vanC1, vanC2/3, aadA, sul1, sul2, sul3, ermB, mefAE, floR, cmlA, aadA, aph(3')-Ia, aac(3')-Ia), and 145 amplicons from 12 genetic elements (IncF, IncFIA, IncFIB, IncI1, IncY, IncU, IncK, IncP, IncR, IncHI1, ColE-like, intI1) were detected. The results presented in this study call attention to the monitoring of antimicrobial resistance in dairy farms worldwide. MDR bacteria and ARGs can spread to different sources, including milk products, which are one of the most consumed products worldwide, representing a potential risk to human health.
Collapse
Affiliation(s)
- João Pedro Rueda Furlan
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | - Lucas David Rodrigues Dos Santos
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | - Micaela Santana Ramos
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | - Inara Fernanda Lage Gallo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | - Eliana Guedes Stehling
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil.
- , Ribeirão Preto, Brazil.
| |
Collapse
|
35
|
Oliver JP, Gooch CA, Lansing S, Schueler J, Hurst JJ, Sassoubre L, Crossette EM, Aga DS. Invited review: Fate of antibiotic residues, antibiotic-resistant bacteria, and antibiotic resistance genes in US dairy manure management systems. J Dairy Sci 2020; 103:1051-1071. [DOI: 10.3168/jds.2019-16778] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/24/2019] [Indexed: 01/03/2023]
|
36
|
Lucas JM, Gora E, Salzberg A, Kaspari M. Antibiotics as chemical warfare across multiple taxonomic domains and trophic levels in brown food webs. Proc Biol Sci 2019; 286:20191536. [PMID: 31551054 PMCID: PMC6784713 DOI: 10.1098/rspb.2019.1536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022] Open
Abstract
Bacteria and fungi secrete antibiotics to suppress and kill other microbes, but can these compounds be agents of competition against macroorganisms? We explore how one competitive tactic, antibiotic production, can structure the composition and function of brown food webs. This aspect of warfare between microbes and invertebrates is particularly important today as antibiotics are introduced into ecosystems via anthropogenic activities, but the ecological implications of these introductions are largely unknown. We hypothesized that antimicrobial compounds act as agents of competition against invertebrate and microbial competitors. Using field-like mesocosms, we tested how antifungal and antibacterial compounds influence microbes, invertebrates, and decomposition in the brown food web. Both antibiotics changed prokaryotic microbial community composition, but only the antibacterial changed invertebrate composition. Antibacterials reduced the abundance of invertebrate detritivores by 34%. However, the addition of antimicrobials did not ramify up the food web as predator abundances were unaffected. Decomposition rates did not change. To test the mechanisms of antibiotic effects, we provided antibiotic-laden water to individual invertebrate detritivores in separate microcosm experiments. We found that the antibiotic compounds can directly harm invertebrate taxa, probably through a disruption of endosymbionts. Combined, our results show that antibiotic compounds could be an effective weapon for microbes to compete against both microbial and invertebrate competitors. In the context of human introductions, the detrimental effects of antibiotics on invertebrate communities indicates that the scope of this anthropogenic disturbance is much greater than previously expected.
Collapse
Affiliation(s)
- Jane M. Lucas
- Department of Soil and Water Systems, University of Idaho, Moscow, ID 83843, USA
- Department of Biology, Graduate Program in Ecology and Evolutionary Biology, University of Oklahoma, Norman, OK 73069, USA
| | - Evan Gora
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Annika Salzberg
- Department of Entomology, Cornell University, Ithaca, NY 14850, USA
| | - Michael Kaspari
- Department of Biology, Graduate Program in Ecology and Evolutionary Biology, University of Oklahoma, Norman, OK 73069, USA
| |
Collapse
|
37
|
Cabral L, Noronha MF, de Sousa STP, Lacerda-Júnior GV, Richter L, Fostier AH, Andreote FD, Hess M, Oliveira VMD. The metagenomic landscape of xenobiotics biodegradation in mangrove sediments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 179:232-240. [PMID: 31051396 DOI: 10.1016/j.ecoenv.2019.04.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/08/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
Metagenomics is a powerful approach to study microorganisms present in any given environment and their potential to maintain and improve ecosystem health without the need of cultivating these microorganisms in the laboratory. In this study, we combined a cultivation-independent metagenomics approach with functional assays to identify the detoxification potential of microbial genes evaluating their potential to contribute to xenobiotics resistance in oil-impacted mangrove sediments. A metagenomic fosmid library containing 12,960 clones from highly contaminated mangrove sediment was used in this study. For assessment of metal resistance, clones were grown in culture medium with increasing concentrations of mercury. The analyses metagenomic library sequences revealed the presence of genes related to heavy metals and antibiotics resistance in the oil-impacted mangrove microbiome. The taxonomic profiling of these sequences suggests that at the genus level, Geobacter was the most abundant genus in our dataset. A functional screening assessment of the metagenomic library successfully detected 24 potential heavy metal tolerant clones, six of which were capable of growing with increased concentrations of mercury. The genetic characterization of selected clones allowed the detection of genes related to detoxification processes, such as chromate transport protein ChrA, haloacid dehalogenase-like hydrolase, lipopolysaccharide transport system, and 3-oxoacyl-[acyl-carrier-protein] reductase. Clones were capable of growing in medium containing increased concentrations of metals and antibiotics, but none manifested strong mercury removal from culture medium characteristic of mercuric reductase activity. These results suggest that resistance to xenobiotic stress varies greatly and that additional studies to elucidate the potential of metal biotransformation need to be carried out with the goal of improving bioremediation application.
Collapse
Affiliation(s)
- Lucélia Cabral
- Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Institute of Biology (IB)- University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Melline Fontes Noronha
- Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Institute of Biology (IB)- University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Sanderson Tarciso Pereira de Sousa
- Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Institute of Biology (IB)- University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gileno Vieira Lacerda-Júnior
- Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Institute of Biology (IB)- University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Larissa Richter
- Institute of Chemistry - University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Anne Hélène Fostier
- Institute of Chemistry - University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fernando Dini Andreote
- Department of Soil Science, ''Luiz de Queiroz'' College of Agriculture, University of Sao Paulo, Piracicaba, São Paulo, Brazil
| | - Matthias Hess
- University of California, Davis, Department of Animal Science, Davis, CA, USA
| | - Valéria Maia de Oliveira
- Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
38
|
Durso LM, Cook KL. One Health and Antibiotic Resistance in Agroecosystems. ECOHEALTH 2019; 16:414-419. [PMID: 29541967 PMCID: PMC6858902 DOI: 10.1007/s10393-018-1324-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 05/23/2023]
Abstract
Agriculture reflects One Health principals, with the job of the farmer being to sustainably balance human, animal, and soil health. It is imperative to include an agricultural perspective when addressing antibiotic resistance (AR) from a One Health perspective, as the farmers, ranchers, and agricultural professionals have an intimate working knowledge of these complex systems, and they will be on the front lines of implementing on-farm control measures. Currently, communication across the One Health triad (humans, animals, environment) regarding agricultural AR is hindered by ambiguous language, complicated by cultural and linguistic differences that can lead to the conclusion that the other participant is not aware of the facts, or has ulterior motives. This work explores and identifies the language and vocabulary of AR in the context of supporting strategic short- and long-term problem solving in a One Health context.
Collapse
Affiliation(s)
- Lisa M Durso
- USDA, ARS, Agroecosystem Management Research Unit, 251 Filley Hall, UNL East Campus, Lincoln, NE, 68583, USA.
| | - Kimberly L Cook
- USDA, ARS, Bacterial Epidemiology and Antimicrobial Resistance Research Unit, 950 College Station Rd., Athens, GA, 30605, USA
| |
Collapse
|
39
|
Ascunce MS, Shin K, Huguet-Tapia JC, Poudel R, Garrett KA, van Bruggen AHC, Goss EM. Penicillin Trunk Injection Affects Bacterial Community Structure in Citrus Trees. MICROBIAL ECOLOGY 2019; 78:457-469. [PMID: 30506480 DOI: 10.1007/s00248-018-1302-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/23/2018] [Indexed: 05/25/2023]
Abstract
Huanglongbing (HLB), caused by Candidatus Liberibacter asiaticus (CLas), an uncultured α-proteobacterium, is the most destructive disease of citrus trees worldwide. In previous studies, trunk injections of penicillin reduced CLas titers and HLB symptoms in citrus. However, antibiotic effects on the whole plant microbial community, which include effects on taxa that interact with CLas, have not yet been addressed. In this study, we investigated the effects of penicillin injection (0, 1000, and 6000 mg L-1) on rhizospheric and endophytic bacterial communities of grapefruit trees in field and greenhouse experiments through culture-independent high-throughput sequencing. DNA extractions from petioles and roots were subjected to 16S rRNA high-throughput sequencing, and reads were clustered by sequence similarity into operational taxonomic units (OTUs). Principal coordinates analysis based on weighted-UniFrac distances did not reveal differences in bacterial communities among treatments in any of the sample sources. However, pairwise linear discriminant analysis indicated significant differences in relative abundance of some taxa (including CLas) among treatments. Network analysis showed that penicillin produced major changes in root bacterial community structure by affecting interspecific microbial associations. This study provides new knowledge of the effect of antimicrobial treatments on interspecific relationships in citrus microbial communities.
Collapse
Affiliation(s)
- Marina S Ascunce
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA.
| | - Keumchul Shin
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | | | - Ravin Poudel
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
- Institute for Sustainable Food Systems, University of Florida, Gainesville, FL, USA
| | - Karen A Garrett
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
- Institute for Sustainable Food Systems, University of Florida, Gainesville, FL, USA
| | - Ariena H C van Bruggen
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Erica M Goss
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
40
|
Zhang J, Lu T, Chai Y, Sui Q, Shen P, Wei Y. Which animal type contributes the most to the emission of antibiotic resistance genes in large-scale swine farms in China? THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 658:152-159. [PMID: 30577014 DOI: 10.1016/j.scitotenv.2018.12.175] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/29/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
Modern swine farms generally contain several animal types and rely extensively on the feed additives, including antibiotics and heavy metals, to augment animal growth. Nonetheless, as an important reservoir of antibiotic resistance genes (ARGs) in the environment, the ARGs emission of each animal type from swine farms has not been characterized. The goal of this study is to determine which animal type contributes the most to the ARGs emission into the environment in typical swine farms of China. Results showed that chlortetracycline (CTC), Cu and Zn were the typical feed additives, and the concentrations of antibiotics and heavy metals in the feed and swine manure were generally higher in nursery pigs (NP) than other animal types, while the gene copies of ARGs from gestation sows (GS) were the most abundant. GS released the most of antibiotics, ARGs and mobile genetic elements (MGEs) per head per day compared to other animal types. A typical swine farms with the feedstock of 10,000 pigs could release about 4.0±1.3×1017 gene copies of ARGs per day, and concerning the breeding ratio and manure production coefficient, growing and fattening pigs (GFP) released the most of ARGs and antibiotics, whereas gestation sows (GS) released the most of MGEs. The different distribution of ARGs in different animal types was mainly determined by the discrepancy of microbial community composition reflected by mantel test and partial redundancy analysis (pRDA). The dominant phylum in swine manure were Firmicutes and Bacteroidetes, but Proteobacteria, Bacteroidetes and Spirochaetae played the dominant role in shaping the ARGs profiles. Antibiotics and heavy metals could have generated and maintained the ARGs profiles, whereas the proliferation and spread of ARGs could be mainly attributed to microbial community in swine manure.
Collapse
Affiliation(s)
- Junya Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 100049 Beijing, China.
| | - Tiedong Lu
- College of Life Science and Technology, Guangxi University, Nanning 530005, Guangxi, China
| | - Yufeng Chai
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Qianwen Sui
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Peihong Shen
- College of Life Science and Technology, Guangxi University, Nanning 530005, Guangxi, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 100049 Beijing, China.
| |
Collapse
|
41
|
Ramakrishnan B, Venkateswarlu K, Sethunathan N, Megharaj M. Local applications but global implications: Can pesticides drive microorganisms to develop antimicrobial resistance? THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 654:177-189. [PMID: 30445319 DOI: 10.1016/j.scitotenv.2018.11.041] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/02/2018] [Accepted: 11/03/2018] [Indexed: 05/07/2023]
Abstract
Pesticides are an important agricultural input, and the introduction of new active ingredients with increased efficiencies drives their higher production and consumption worldwide. Inappropriate application and storage of these chemicals often contaminate plant tissues, air, water, or soil environments. The presence of pesticides can lead to developing tolerance, resistance or persistence and even the capabilities to degrade them by the microbiomes of theses environments. The pesticide-degrading microorganisms gain and employ several mechanisms for attraction (chemotaxis), membrane transport systems, efflux pumps, enzymes and genetical make-up with plasmid and chromosome encoded catabolic genes for degradation. Even the evolution and the mechanisms of inheritance for pesticide-degradation as a functional trait in several microorganisms are beginning to be understood. Because of the commonalities in the microbial responses of sensing and uptake, and adaptation due to the selection pressures of pesticides and antimicrobial substances including antibiotics, the pesticide-degraders have higher chances of possessing antimicrobial resistance as a surplus functional trait. This review critically examines the probabilities of pesticide contamination of soil and foliage, the knowledge gaps in the regulation and storage of pesticide chemicals, and the human implications of pesticide-degrading microorganisms with antimicrobial resistance in the global strategy of 'One Health'.
Collapse
Affiliation(s)
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapur 515055, India
| | - Nambrattil Sethunathan
- Flat No. 103, Ushodaya Apartments, Sri Venkateswara Officers Colony, Ramakrishnapuram, Secunderabad 500056, India
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER) and Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, ATC Building, Callaghan, NSW 2308, Australia.
| |
Collapse
|
42
|
McKinney CW, Dungan RS, Moore A, Leytem AB. Occurrence and abundance of antibiotic resistance genes in agricultural soil receiving dairy manure. FEMS Microbiol Ecol 2019; 94:4817531. [PMID: 29360961 DOI: 10.1093/femsec/fiy010] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/18/2018] [Indexed: 01/29/2023] Open
Abstract
Animal manures are commonly used to enhance soil fertility, but there are growing concerns over the impact of this practice on the development and dissemination of antibiotic resistance. The aim of this field study was to determine the effect of annual dairy manure applications on the occurrence and abundance of antibiotic resistance genes (ARGs) in an agricultural soil during four years of crop production. Treatments included (i) control (no fertilizer or manure), (ii) inorganic fertilizer and (iii) dairy manure at three application rates. Quantitative PCR was used to determine absolute (per g dry soil) and relative (per 16S rRNA gene) abundances of ARGs in DNA extracted from soils. Six ARGs and one class 1 integron were targeted. This study found that (i) manure application increases ARG abundances above background soil levels; (ii) the higher the manure application rate, the higher the ARG abundance in soil; (iii) the amount of manure applied is more important than reoccurring annual applications of the same amount of manure; (iv) absolute abundance and occurrence of ARGs decreases with increasing soil depth, but relative abundances remained constant. This study demonstrated that dairy manure applications to soil significantly increase the abundance of clinically relevant ARGs when compared to control and inorganic fertilized plots.
Collapse
Affiliation(s)
- Chad W McKinney
- USDA-Agricultural Research Service, Northwest Irrigation and Soils Research Laboratory, Kimberly, ID 83341, USA
| | - Robert S Dungan
- USDA-Agricultural Research Service, Northwest Irrigation and Soils Research Laboratory, Kimberly, ID 83341, USA
| | - Amber Moore
- University of Idaho, Twin Falls Research and Extension Center, Twin Falls, ID 83303, USA
| | - April B Leytem
- USDA-Agricultural Research Service, Northwest Irrigation and Soils Research Laboratory, Kimberly, ID 83341, USA
| |
Collapse
|
43
|
Agga GE, Cook KL, Netthisinghe AMP, Gilfillen RA, Woosley PB, Sistani KR. Persistence of antibiotic resistance genes in beef cattle backgrounding environment over two years after cessation of operation. PLoS One 2019; 14:e0212510. [PMID: 30768641 PMCID: PMC6377141 DOI: 10.1371/journal.pone.0212510] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/04/2019] [Indexed: 11/18/2022] Open
Abstract
Confined animal feeding operations can facilitate the spread of genes associated with antibiotic resistance. It is not known how cattle removal from beef cattle backgrounding operation affects the persistence of antibiotic resistance genes (ARGs) in the environment. We investigated the effect of cessation of beef cattle backgrounding operation on the persistence and distribution of ARGs in the beef cattle backgrounding environment. The study was conducted at a pasture-feedlot type beef cattle backgrounding operation which consisted of feeding and grazing areas that were separated by a fence with an access gate. Backgrounding occurred for seven years before cattle were removed from the facility. Soil samples (n = 78) from 26 georeferenced locations were collected at the baseline before cattle were removed, and then one year and two years after cattle were removed. Metagenomic DNA was extracted from the soil samples and total bacterial population (16S rRNA), total Enterococcus species and class 1 integrons (intI1), and erythromycin (ermB and ermF), sulfonamide (sul1 and sul2) and tetracycline (tetO, tetW and tetQ) resistance genes were quantified. Concentrations of total bacteria, Enterococcus spp., class 1 integrons, and ARGs were higher in the feeding area and its immediate vicinity (around the fence and the gate) followed by a gradient decline along the grazing area. Although the concentrations of total bacteria, Enterococcus spp., class 1 integrons and ARGs in the feeding area significantly decreased two years after cattle removal, their concentrations were still higher than that observed in the grazing area. Higher concentrations over two years in the feeding area when compared to the grazing area suggest a lasting effect of confined beef cattle production system on the persistence of bacteria and ARGs in the soil.
Collapse
Affiliation(s)
- Getahun E. Agga
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, Bowling Green, Kentucky, United States of America
- * E-mail:
| | - Kimberly L. Cook
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, Bowling Green, Kentucky, United States of America
| | - Annesly M. P. Netthisinghe
- Department of Agriculture, Western Kentucky University, Bowling Green, Kentucky, United States of America
| | - Rebecca A. Gilfillen
- Department of Agriculture, Western Kentucky University, Bowling Green, Kentucky, United States of America
| | - Paul B. Woosley
- Department of Agriculture, Western Kentucky University, Bowling Green, Kentucky, United States of America
| | - Karamat R. Sistani
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, Bowling Green, Kentucky, United States of America
| |
Collapse
|
44
|
Ezzariai A, Hafidi M, Khadra A, Aemig Q, El Fels L, Barret M, Merlina G, Patureau D, Pinelli E. Human and veterinary antibiotics during composting of sludge or manure: Global perspectives on persistence, degradation, and resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2018; 359:465-481. [PMID: 30071464 DOI: 10.1016/j.jhazmat.2018.07.092] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/09/2018] [Accepted: 07/24/2018] [Indexed: 05/23/2023]
Abstract
Wastewater treatment plant effluent, sludge and manure are the main sources of contamination by antibiotics in the whole environment compartments (soil, sediment, surface and underground water). One of the major consequences of the antibiotics discharge into the environment could be the prevalence of a bacterial resistance to antibiotic. In this review, four groups of antibiotics (Tetracyclines, Fluoroquinolones, Macrolides and Sulfonamides) were focused for the background on their wide spread occurrence in sludge and manure and for their effects on several target and non-target species. The antibiotics concentrations range between 1 and 136,000 μg kg-1 of dry matter in sludge and manure, representing a potential risk for the human health and the environment. Composting of sludge or manure is a well-known and used organic matter stabilization technology, which could be effective in reducing the antibiotics levels as well as the antibiotic resistance genes. During sludge or manure composting, the antibiotics removals range between 17-100%. The deduced calculated half-lives range between 1-105 days for most of the studied antibiotics. Nevertheless, these removals are often based on the measurement of concentration without considering the matter removal (lack of matter balance) and very few studies are emphasized on the removal mechanisms (biotic/abiotic, bound residues formation) and the potential presence of more or less hazardous transformation products. The results from the few studies on the fate of the antibiotic resistance genes during sludge or manure composting are still inconsistent showing either decrease or increase of their concentration in the final product. Whether for antibiotic or antibiotic resistance genes, additional researches are needed, gathering chemical, microbiological and toxicological data to better understand the implied removal mechanisms (chemical, physical and biological), the interactions between both components and the environmental matrices (organic, inorganic bearing phases) and how composting process could be optimized to reduce the discharge of antibiotics and antibiotic resistance genes into the environment.
Collapse
Affiliation(s)
- Amine Ezzariai
- Laboratoire Ecologie et Environnement (Unité associée au CNRST, URAC 32), Faculté des Sciences Semlalia, Université Cadi Ayyad, BP 2390 Marrakech, Morocco; EcoLab, Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France
| | - Mohamed Hafidi
- Laboratoire Ecologie et Environnement (Unité associée au CNRST, URAC 32), Faculté des Sciences Semlalia, Université Cadi Ayyad, BP 2390 Marrakech, Morocco; Agrobiosciences & Fertlizers Program, University Mohammed IV Polytechnic (UM6P), Benguerir, Morocco
| | - Ahmed Khadra
- Laboratoire Ecologie et Environnement (Unité associée au CNRST, URAC 32), Faculté des Sciences Semlalia, Université Cadi Ayyad, BP 2390 Marrakech, Morocco
| | - Quentin Aemig
- LBE, Université de Montpellier, INRA, Narbonne, France
| | - Loubna El Fels
- Laboratoire Ecologie et Environnement (Unité associée au CNRST, URAC 32), Faculté des Sciences Semlalia, Université Cadi Ayyad, BP 2390 Marrakech, Morocco; Higher Institute of Nursing Professions and Health Techniques, Marrakech-Safi, Morocco
| | - Maialen Barret
- EcoLab, Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France
| | - Georges Merlina
- EcoLab, Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France
| | | | - Eric Pinelli
- EcoLab, Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France.
| |
Collapse
|
45
|
Dungan RS, McKinney CW, Leytem AB. Tracking antibiotic resistance genes in soil irrigated with dairy wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:1477-1483. [PMID: 29710598 DOI: 10.1016/j.scitotenv.2018.04.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/31/2018] [Accepted: 04/01/2018] [Indexed: 06/08/2023]
Abstract
The application of dairy wastewater to agricultural soils is a widely used practice to irrigate crops and recycle nutrients. In this study, small-scale field plots were irrigated monthly (6 times) with dairy wastewater (100%), wastewater diluted to 50% with irrigation (canal) water, and diluted wastewater spiked with copper sulfate (50 mg Cu L-1), while control plots were irrigated with canal water. In addition, half of all plots were either planted with wheat or were left as bare soil. Biweekly soil samples were collected during this period and processed to determine the occurrence and abundance of antibiotic resistance genes [blaCTX-M-1, erm(B), sul1, tet(B), tet(M), and tet(X)] and a class 1 integron-integrase gene (intI1) via quantitative real-time PCR (qPCR). Only sul1 and tet(X) were detected in soil (3 out of 32 samples) before the wastewater treatments were applied. However, the occurrence and relative abundance (normalized to 16S rRNA gene copies) of most genes [erm(B), intI1, sul1, and tet(M)] increased dramatically after wastewater irrigation and levels were maintained during the entire study period. blaCTX-M-1 was the only gene not detected in wastewater-treated soils, which is likely related to its absence in the dairy wastewater. Relative gene levels in soil were found to be statistically similar among the treatments in most cases, regardless of the wastewater percentage applied and presence or absence of plants. The key result from this study is that dairy wastewater irrigation significantly enlarges the reservoir of ARGs and intI1 in soils, while detection of these genes rarely occurred in soil irrigated only with canal water. In addition, elevated levels of Cu in the wastewater and treated soil did not produce a concomitant increase of the ARG levels.
Collapse
Affiliation(s)
- Robert S Dungan
- USDA-Agricultural Research Service, Northwest Irrigation & Soils Research Laboratory, 3793 North 3600 East, Kimberly, ID 83341, United States.
| | - Chad W McKinney
- USDA-Agricultural Research Service, Northwest Irrigation & Soils Research Laboratory, 3793 North 3600 East, Kimberly, ID 83341, United States
| | - April B Leytem
- USDA-Agricultural Research Service, Northwest Irrigation & Soils Research Laboratory, 3793 North 3600 East, Kimberly, ID 83341, United States
| |
Collapse
|
46
|
Schwake-Anduschus C, Langenkämper G. Chlortetracycline and related tetracyclines: detection in wheat and rye grain. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:4542-4549. [PMID: 29484666 DOI: 10.1002/jsfa.8982] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 02/19/2018] [Accepted: 02/21/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Antibiotic drugs are excreted to a large proportion by livestock. Thus, antibiotics are distributed on fields with slurry and can be taken up by plants. In the present study, hydroponic experiments were performed to reveal whether the widely administered chlortetracycline is taken up into wheat grain in a concentration-dependent manner. A further goal was to determine (chlor)tetracyclines in wheat and rye grain from agricultural practice. RESULTS Increasing chlortetracycline deposition in wheat grain was observed with a rising chlortetracycline spiking level in the hydroponic solution. In 371 selected wheat and rye samples from three growing years of agricultural practice, the overall detection frequency was 21% for tetracyclines. In the most highly contaminated sample, tetracyclines occurred at 18.2 μg kg-1 . Tetracycline residues were also found in rye grain. Conversion and degradation products of (chlor)tetracycline such as tetracycline, doxycycline and demeclocycline were detected in grains from hydroponic experiments and from agricultural practice. CONCLUSION Concentrations of tetracyclines found in wheat and rye grains were of no concern with respect to toxicity regarding human consumption. However, antibiotic concentrations below the minimum inhibitory concentration can select for antibiotic resistance in bacteria. Thus, low levels of different tetracycline residues contained in food should be taken into account regarding risk assessment. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Georg Langenkämper
- Department of Safety and Quality of Cereals, Max Rubner-Institut, Detmold, Germany
| |
Collapse
|
47
|
Watson JE, Robb T, Andrews-Brown D, Miller M. Wastewater Irrigation Impacts on Soil Hydraulic Conductivity: Coupled Field Sampling and Laboratory Determination of Saturated Hydraulic Conductivity. J Vis Exp 2018. [PMID: 30175993 DOI: 10.3791/57181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Since the early 1960s, an alternative wastewater discharge practice at The Pennsylvania State University has been researched and its impacts monitored. Rather than discharging treated wastewater to a stream, and thereby directly impacting the stream quality, the effluent is applied to forested and cropped land managed by the University. Concerns related to reductions in soil hydraulic conductivity occur when considering wastewater reuse. The methodology described in this manuscript, matching soil sample size with the size of the laboratory-based hydraulic conductivity measurement apparatus, provides the benefits of a relatively rapid collection of samples with the benefits of controlled laboratory boundary conditions. The results suggest that there may have been some impact of wastewater reuse on the soil's ability to transmit water at deeper depths in the depressional areas of the site. Most of the reductions in the soil hydraulic conductivity in the depressions appear to be related to the depth from which the sample was collected, and by inference, associated with the soil structural and textural differences.
Collapse
Affiliation(s)
- Jack E Watson
- Department of Ecosystem Science and Management, Pennsylvania State University;
| | - Tyson Robb
- Department of Geography and Environmental Sustainability, State University of New York, Oneonta
| | | | - Melissa Miller
- Department of Ecosystem Science and Management, Pennsylvania State University
| |
Collapse
|
48
|
Blaustein RA, Lorca GL, Teplitski M. Challenges for Managing Candidatus Liberibacter spp. (Huanglongbing Disease Pathogen): Current Control Measures and Future Directions. PHYTOPATHOLOGY 2018; 108:424-435. [PMID: 28990481 DOI: 10.1094/phyto-07-17-0260-rvw] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Huanglongbing (HLB; "citrus greening" disease) has caused significant damages to the global citrus industry as it has become well established in leading citrus-producing regions and continues to spread worldwide. Insecticidal control has been a critical component of HLB disease management, as there is a direct relationship between vector control and Candidatus Liberibacter spp. (i.e., the HLB pathogen) titer in HLB-infected citrus trees. In recent years, there have been substantial efforts to develop practical strategies for specifically managing Ca. Liberibacter spp.; however, a literature review on the outcomes of such attempts is still lacking. This work summarizes the greenhouse and field studies that have documented the effects and implications of chemical-based treatments (i.e., applications of broad-spectrum antibiotics, small molecule compounds) and nonchemical measures (i.e., applications of plant-beneficial compounds, applications of inorganic fertilizers, biological control, thermotherapy) for phytopathogen control. The ongoing challenges associated with mitigating Ca. Liberibacter spp. populations at the field-scale, such as the seasonality of the phytopathogen and associated HLB disease symptoms, limitations for therapeutics to contact the phytopathogen in planta, adverse impacts of broad-spectrum treatments on plant-beneficial microbiota, and potential implications on public and ecosystem health, are also discussed.
Collapse
Affiliation(s)
- Ryan A Blaustein
- First and third authors: Department of Soil and Water Sciences, Genetics Institute, University of Florida, Gainesville; and second author: Department of Microbiology and Cell Science, Genetics Institute, University of Florida, Gainesville
| | - Graciela L Lorca
- First and third authors: Department of Soil and Water Sciences, Genetics Institute, University of Florida, Gainesville; and second author: Department of Microbiology and Cell Science, Genetics Institute, University of Florida, Gainesville
| | - Max Teplitski
- First and third authors: Department of Soil and Water Sciences, Genetics Institute, University of Florida, Gainesville; and second author: Department of Microbiology and Cell Science, Genetics Institute, University of Florida, Gainesville
| |
Collapse
|
49
|
Manyi-Loh C, Mamphweli S, Meyer E, Okoh A. Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications. Molecules 2018; 23:E795. [PMID: 29601469 PMCID: PMC6017557 DOI: 10.3390/molecules23040795] [Citation(s) in RCA: 742] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/14/2018] [Accepted: 03/02/2018] [Indexed: 01/08/2023] Open
Abstract
Due to the increased demand of animal protein in developing countries, intensive farming is instigated, which results in antibiotic residues in animal-derived products, and eventually, antibiotic resistance. Antibiotic resistance is of great public health concern because the antibiotic-resistant bacteria associated with the animals may be pathogenic to humans, easily transmitted to humans via food chains, and widely disseminated in the environment via animal wastes. These may cause complicated, untreatable, and prolonged infections in humans, leading to higher healthcare cost and sometimes death. In the said countries, antibiotic resistance is so complex and difficult, due to irrational use of antibiotics both in the clinical and agriculture settings, low socioeconomic status, poor sanitation and hygienic status, as well as that zoonotic bacterial pathogens are not regularly cultured, and their resistance to commonly used antibiotics are scarcely investigated (poor surveillance systems). The challenges that follow are of local, national, regional, and international dimensions, as there are no geographic boundaries to impede the spread of antibiotic resistance. In addition, the information assembled in this study through a thorough review of published findings, emphasized the presence of antibiotics in animal-derived products and the phenomenon of multidrug resistance in environmental samples. This therefore calls for strengthening of regulations that direct antibiotic manufacture, distribution, dispensing, and prescription, hence fostering antibiotic stewardship. Joint collaboration across the world with international bodies is needed to assist the developing countries to implement good surveillance of antibiotic use and antibiotic resistance.
Collapse
Affiliation(s)
- Christy Manyi-Loh
- Fort Hare Institute of Technology, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa.
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa.
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa.
| | - Sampson Mamphweli
- Fort Hare Institute of Technology, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa.
| | - Edson Meyer
- Fort Hare Institute of Technology, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa.
| | - Anthony Okoh
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa.
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa.
| |
Collapse
|
50
|
Yang L, Wu L, Liu W, Huang Y, Luo Y, Christie P. Dissipation of antibiotics in three different agricultural soils after repeated application of biosolids. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:104-114. [PMID: 27873114 DOI: 10.1007/s11356-016-8062-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
Application of biosolids to agricultural soils is one of the pathways by which antibiotics can be introduced into agricultural ecosystems. A pot experiment was conducted with repeated soil amendment with biosolids to examine the concentrations of four classes of antibiotics (tetracyclines, sulfonamides, fluoroquinolones, and macrolides) and their dissipation in three different soil types in wheat-rice rotations. Antibiotics accumulate in the soils after repeated application of biosolids. Fluoroquinolones showed stronger accumulation and persistence in the test soils than the other three classes of antibiotics. The maximum residual antibiotic concentration was that of norfloxacin at 155 ± 16 μg kg-1 in the Typic Hapli-Stagnic Anthrosols (paddy soil). Predicted half-lives were up to 3.69 years, a much longer period than that between biosolid applications (twice each year on average). Antibiotic accumulation followed the rough order fluoroquinolones > tetracyclines > macrolides > sulfonamides, and the sulfonamides were seldom encountered. When biosolid application was suspended, the dissipation rate accelerated. Antibiotic dissipation was slightly slower when biosolids with high heavy metal concentrations were applied and microbial degradation may have been the main mechanism of dissipation. Norfloxacin persistence was positively correlated with its soil adsorption capacity. Cation exchange capacity and soil organic matter content may have vital roles in the soil adsorption of fluoroquinolones. Because of their persistence, the fluoroquinolones must be taken into account in the planning of biosolid applications in agricultural practice.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Longhua Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Wuxing Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yujuan Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Peter Christie
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|