1
|
Zhang J, Jiang S, Liu H, Wang Z, Cai X, Tan S. Fabrication of a ZnO/Polydopamine/ε-Polylysine Coating with Good Corrosion Resistance and a Joint Antibacterial Pathway on the Surface of Medical Stainless Steel. ACS Biomater Sci Eng 2025. [PMID: 40418020 DOI: 10.1021/acsbiomaterials.5c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
Medical stainless steel (SS) is a widely used alloy in orthopedic and dental implant applications. However, SS can cause local corrosion in the body, which may affect cell proliferation and differentiation, and is prone to related bacterial infection. Therefore, surface modification is required to improve the corrosion resistance and antibacterial performance of SS to extend its service life. To achieve this goal, a new type of composite coating was established on the surface of SS. First, zinc oxide (ZnO) nanoparticles were deposited on the surface of SS by electrochemical deposition. Then, polydopamine (PDA) was formed through the self-polymerization of dopamine. Finally, the Michael addition reaction between ε-polylysine (ε-PL) and PDA was used to chemically graft a cationic antimicrobial peptide (AMP), namely, ε-PL, constructing a corrosion-resistant and antibacterial ZnO/PDA/ε-PL coating on the surface of the SS (SZP/ε-PL). The results indicated that the obtained composite coating could significantly improve the corrosion resistance of SS because of the introduction of ZnO. After being irradiated with near-infrared (NIR) light (wavelength: 1064 nm, power: 1 W/cm2) for 8 min, the temperature of SZP/ε-PL increased from 22.4 to 57.8 °C. Moreover, there was no significant temperature decay after four cycles, which indicated the good photothermal performance and stability of SZP/ε-PL owing to the function of PDA. Combining photothermal sterilization and AMP contact sterilization, the antibacterial rates of SZP/ε-PL against Escherichia coli and Staphylococcus aureus both reached nearly 100%. In addition, SZP/ε-PL has excellent blood compatibility. With the above advantages, SZP/ε-PL was expected to become a safe and efficient implant material.
Collapse
Affiliation(s)
- Jinglin Zhang
- School of Light Industry and Materials, Guangdong Polytechnic, Foshan 528041, P. R. China
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Shuoyan Jiang
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Huidi Liu
- Department of Science and Technology, Guangdong Polytechnic, Foshan 528041, P. R. China
| | - Zengxi Wang
- School of Light Industry and Materials, Guangdong Polytechnic, Foshan 528041, P. R. China
| | - Xiang Cai
- School of Light Industry and Materials, Guangdong Polytechnic, Foshan 528041, P. R. China
| | - Shaozao Tan
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
2
|
Barkhade T, Nigam K, Ravi G, Rawat S, Nema SK. Investigating the effects of microwave plasma on bacterial cell structures, viability, and membrane integrity. Sci Rep 2025; 15:18052. [PMID: 40410288 PMCID: PMC12102320 DOI: 10.1038/s41598-025-02312-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 05/13/2025] [Indexed: 05/25/2025] Open
Abstract
Plasma-mediated bacterial inactivation holds great promise but presents several challenges. This study investigates the antibacterial effect of 2.45 GHz non-thermal microwave (MW) plasma on Staphylococcus aureus (S. aureus) and Salmonella abony (S. abony) suspended in phosphate-buffered saline (PBS). A 6-log reduction in both bacterial strains was achieved within 300 s of plasma exposure. The enhanced inactivation is attributed to elevated levels of reactive oxygen species (ROS), particularly ·OH (30.30% in S. aureus, 40.13% in S. abony) and H2O2 (173.27% in S. aureus, and 391.84% in S. abony), which caused oxidative stress and membrane depolarization, detected via fluorescence spectrofluorometry. Morphological changes were confirmed through field emission scanning electron microscopy (FE-SEM). Membrane impairment led to leakage of intracellular contents such as proteins, lipids, and nucleic acids. DNA damage was evident from hyperchromic effects observed at 260 nm. Confocal microscopy revealed a qualitative increase in red fluorescent (dead) cells with longer exposure. Flow cytometry further quantified the dead cells at 88% in S. aureus and 95% in S. abony. These findings provide comprehensive insight into the bacterial inactivation mechanism and demonstrate the strong potential of non-thermal MW plasma for applications in sterilization, infection control, and food safety.
Collapse
Affiliation(s)
- Tejal Barkhade
- Facilitation Centre for Industrial Plasma Technologies, Institute for Plasma Research, Gandhinagar, Gujarat, 382428, India.
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, 391760, India.
| | - Kushagra Nigam
- Facilitation Centre for Industrial Plasma Technologies, Institute for Plasma Research, Gandhinagar, Gujarat, 382428, India
| | - Ganesh Ravi
- Facilitation Centre for Industrial Plasma Technologies, Institute for Plasma Research, Gandhinagar, Gujarat, 382428, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Seema Rawat
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India
| | - Sudhir Kumar Nema
- Facilitation Centre for Industrial Plasma Technologies, Institute for Plasma Research, Gandhinagar, Gujarat, 382428, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| |
Collapse
|
3
|
Li L, Xu K, Wang K, Huang C, Xu Y. A Self-Circulated Microenvironment-Adaptive Nanozyme for Wound Healing Acceleration. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40371925 DOI: 10.1021/acsami.5c02743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Nanozyme-mediated reactive oxygen species (ROS) homeostasis regulation in vivo is a promising strategy for accelerating the healing of pathogen-infected wounds. It is detrimental in nanozyme preparation to strike a balance between ROS production and scavenging, being adaptive to the wound microenvironment, especially to overcome the irreversible and inevitable inactivation caused by the enzymatic active center loss. Herein, with adjusting ligands and metal charge transfer, we prepared a nanozyme with a regenerated Fe(II) active center, which endowed cyclic and continuous oxidoreductase reactions of peroxidase, superoxide dismutase, catalase, and oxidase under the same neutral pH environment. The versatile enzymatic activity could be easily triggered with oxygen/ROS and cascaded into controllable and reversible ROS generation and scavenging, as well as oxygen release for acceleration of sterilization during infected wound recovery. Under ultralow dosage of Fe-DHB, remarkable effectiveness against 1.0 × 106 drug-resistant bacteria and a wound-healing rate of around 6.3 mm2 per day were realized. Our work presents a key breakthrough in nanozyme-based wound healing strategy design.
Collapse
Affiliation(s)
- Limin Li
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Kaikai Xu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Kaiyi Wang
- School of Martial Arts, Shanghai University of Sport, Shanghai 200438, China
| | - Chao Huang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Yuanhong Xu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| |
Collapse
|
4
|
Gunasekera TS, Bowen LL, Alger JC. Metabolic characterization of alkane monooxygenases and the growth phenotypes of Pseudomonas aeruginosa ATCC 33988 on hydrocarbons. J Bacteriol 2025; 207:e0050824. [PMID: 40067022 PMCID: PMC12004949 DOI: 10.1128/jb.00508-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/21/2025] [Indexed: 04/18/2025] Open
Abstract
There is a demand and widespread interest in evaluating microbial community structures and metabolic processes in hydrocarbon environments. The current work aims to detect microbial subgroups (phenotypic subsets) and their metabolic processes, such as substrate specificity and expression of niche-associated genes. In this study, we were able to discriminate different cell types in real time from a complex sample matrix to allow the detection of live, dead, and injured cell populations in jet fuels. We found that the expression of alkB1 and alkB2 genes is induced in a growth-dependent manner and alkB2 induction started before alkB1. This indicates that as an early response of Pseudomonas aeruginosa cells' exposure to alkanes, cells activate alkB2 gene induction. Deletion of alkB1 and alkB2 genes completely inhibited P. aeruginosa ATCC 33988 growth in jet fuel, suggesting that two alkane monooxygenases are responsible for the degradation of alkanes and jet fuel. Interestingly, the AlkB2 has a broader (n-C8-n-C16) substrate range compared to AlkB1 (n-C12-n-C16). The data indicate that two alkane utilization pathways can coexist in P. aeruginosa ATCC 33988, and they are differentially expressed in response to n-C6-n-C16 alkanes found in jet fuel. This study provided additional information on the heterogeneity and phenotypic diversity within the same species after exposure to hydrocarbons. This work advances our understanding of microbial community structures and provides new insight into the alkane metabolism of P. aeruginosa.IMPORTANCEAlkane degradation allows for the natural breakdown of hydrocarbons found in crude oil, which can significantly contribute to environmental remediation. The metabolic process of microbes to hydrocarbons and the expression of niche-associated genes are not well understood. Pseudomonas aeruginosa ATCC 33988, originally isolated from a jet fuel tank, degrades hydrocarbons effectively and outcompetes the type strain Pseudomonas aeruginosa PAO1. In this study, we found differential expression of alkB1 and alkB2 alkane monooxygenase genes and the relative importance of these genes in alkane degradation. We found different phenotypic subsets within the same genotype, which are influenced by hydrocarbon stress. Overall, the research conducted in this study significantly contributes to our knowledge about microbial processes and community structure in hydrocarbon environments.
Collapse
Affiliation(s)
- Thusitha S. Gunasekera
- Fuels and Energy Branch, Aerospace Systems Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Loryn L. Bowen
- University of Dayton Research Institute, University of Dayton, Dayton, Ohio, USA
| | - Jhoanna C. Alger
- University of Dayton Research Institute, University of Dayton, Dayton, Ohio, USA
| |
Collapse
|
5
|
Ahmed Nawaz Qureshi YZ, Li M, Chang H, Song Y. Microfluidic chip systems for color-based antimicrobial susceptibility test a review. Biosens Bioelectron 2025; 273:117160. [PMID: 39827743 DOI: 10.1016/j.bios.2025.117160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 12/22/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Clinical bacteria pose a significant public health threat, underscoring the need for reliable and rapid diagnostic methods for early disease detection, which can facilitate patient recovery. Current diagnostic methods for rapid pathogen detection often take hours to days and require numerous reagents and lengthy protocols. Microfluidic chip system offers a promising solution for clinical microbiology detection by reducing detection time with minimal setup and providing a point-of-care solution for patients. These systems are also easier to handle and, with advancements in technology, offer more conclusive observations. This review focuses on recent developments in microfluidic chip-based systems that use colored fluorescent and non-fluorescent dyes for phenotypic tests in clinical pathogen detection. Recent advancements in non-conventional observation methods, such as smartphones and software combined with microscopy, are paving the way for microfluidic systems to revolutionize point-of-care devices. Significant challenges for these systems include antimicrobial susceptibility testing protocols, which depend on color formation, observation methods, and reducing detection time. In the future, working with live cultures remains a major hurdle in developing efficient and accurate microfluidic diagnostic systems for antimicrobial susceptibility testing.
Collapse
Affiliation(s)
- Yasmeen Zamir Ahmed Nawaz Qureshi
- Department of Marine Engineering, Dalian Maritime University, Dalian, 116026, China; Department of Maritime Sciences, Bahria University Karachi Campus, Karachi, 75260, Pakistan
| | - Mengqi Li
- Department of Marine Engineering, Dalian Maritime University, Dalian, 116026, China.
| | - Hui Chang
- Department of Marine Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Yongxin Song
- Department of Marine Engineering, Dalian Maritime University, Dalian, 116026, China.
| |
Collapse
|
6
|
Athukoralalage SSA, Datson Z, Darwish N, Zhu Y, Chung KHK, Chew K, Rowan AE, Amiralian N. Dual-Functional Antimicrobial and Low-Fouling Cellulose Coatings. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16027-16039. [PMID: 40017042 DOI: 10.1021/acsami.4c21252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Surfaces contaminated with pathogens raise significant concerns due to their potential role in increasing the risk of disease transmission and subsequent infection. Existing surface coatings face several challenges that undermine their effectiveness and their broader applicability. These include the impact of surface topography on pathogen adhesion, which leads to biofouling, high production costs, scalability issues, as well as environmental concerns stemming from the utilization of toxic antifoulants and biocides. Here, we report dual-functional surface coatings with intrinsic antimicrobial and low fouling properties that are synergistic. The coatings are a porous reactive cellulose fibers network with dialdehyde functionality that demonstrates high antibacterial and antiviral performance against Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, Escherichia coli, and influenza A/H1N1 virus. Furthermore, we showed that the wettability of the coating significantly reduces the adhesion and colony formation of bacteria and their dead debris after inactivation by dialdehyde groups. The reactive cellulose fibers did not demonstrate any acute toxicity on L929 cells, which can meet the safe use of coating on the contact surfaces. The cellulose fibers coating derived from agricultural waste is cost-effective, eco-friendly, and highly scalable and is promising for use in packaging, household products, public facilities, and medical settings surfaces.
Collapse
Affiliation(s)
- Sandya S A Athukoralalage
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, 4072 St Lucia, Queensland, Australia
| | - Zane Datson
- School of Molecular and Life Sciences, Curtin University, 6102 Bentley, Western Australia, Australia
| | - Nadim Darwish
- School of Molecular and Life Sciences, Curtin University, 6102 Bentley, Western Australia, Australia
| | - Yanshan Zhu
- School of Chemistry and Molecular Biosciences, The University of Queensland, 4072 St Lucia, Queensland, Australia
| | - Ka H K Chung
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, 4072 St Lucia, Queensland, Australia
| | - Keng Chew
- School of Chemistry and Molecular Biosciences, The University of Queensland, 4072 St Lucia, Queensland, Australia
| | - Alan E Rowan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, 4072 St Lucia, Queensland, Australia
| | - Nasim Amiralian
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, 4072 St Lucia, Queensland, Australia
| |
Collapse
|
7
|
Park H, Patil TV, Lee J, Kim H, Cho SJ, Lim KT. NIR-activated catechol-functionalized nanodiamond nanofibers for accelerating on-demand MRSA and E. coli biofilm eradication. J Biol Eng 2025; 19:2. [PMID: 39905514 DOI: 10.1186/s13036-024-00469-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/12/2024] [Indexed: 02/06/2025] Open
Abstract
The rise of antibiotic resistance has made bacterial infections a persistent global health issue. In particular, extracellular polymeric substances (EPS) secreted by bacteria limit the effectiveness of conventional antibiotics, making biofilm removal challenging. To address this, we created ND@PDA nanoparticles by coating the surface of nanodiamonds (ND) with polydopamine (PDA). These nanoparticles were then integrated into polyvinyl alcohol to fabricate PVA/ND@PDA nanofiber scaffolds, resulting in an innovative platform with enhanced photothermal, antibacterial and antibiofilm properties. Upon exposure to near-infrared (NIR) light, the scaffolds exhibited a significant photothermal activity, oxidative stress and effectively damaging key bacterial components, such as biofilm, bacterial membranes, and proteins. Additionally, the catechol groups in PDA provided strong cell adhesion and high biocompatibility on the nanofiber surface. Our research proposes a platform that not only effectively addresses antibiotic-resistant infections but also contributes to advancements in wound healing therapies by enabling controlled antibacterial action with minimal toxicity.
Collapse
Affiliation(s)
- Hyeonseo Park
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Jieun Lee
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Hojin Kim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Seong-Jun Cho
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea.
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea.
- Institute of Forest Science, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea.
| |
Collapse
|
8
|
Yang R, Cui L, Xu T, Zhong Y, Hu S, Liu J, Qin S, Wang X, Guo Y. Discovery of membrane-targeting amphiphilic honokiol derivatives containing an oxazolethione moiety to combat methicillin-resistant Staphylococcus aureus (MRSA) infections. Eur J Med Chem 2024; 279:116868. [PMID: 39270450 DOI: 10.1016/j.ejmech.2024.116868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/27/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has emerged as a major pathogen causing infections in hospitals and the community, and there is an urgent need for the development of novel antibacterials to combat MRSA infections. Herein, a series of amphiphilic honokiol derivatives containing an oxazolethione moiety were prepared and evaluated for their in vitro antibacterial and hemolytic activities. The screened optimal derivative, I3, exhibited potent in vitro antibacterial activity against S. aureus and clinical MRSA isolates with MIC values of 2-4 μg/mL, which was superior to vancomycin in terms of its rapid bactericidal properties and was less susceptible to the development of resistance. The SARs analysis indicated that amphiphilic honokiol derivatives with fluorine substituents had better antibacterial activity than those with chlorine and bromine substituents. In vitro and in vivo toxicity studies revealed that I3 has relatively low toxicity. In a MRSA-infected mouse skin abscess model, I3 (5 mg/kg) effectively killed MRSA at the infected site and attenuated the inflammation effects, comparable to vancomycin. In a MRSA-infected mouse sepsis model, I3 (12 mg/kg) was found to significantly reduce the bacterial load in infected mice and increase survival of infected mice. Mechanistic studies indicated that I3 has membrane targeting properties and can interact with phosphatidylglycerol (PG) and cardiolipin (CL) of MRSA cell membranes, thereby disrupting MRSA cell membranes, further inducing the increase of reactive oxygen species (ROS), protein and DNA leakage to achieve rapid bactericidal effects. Finally, we hope that I3 is a potential candidate molecule for the development of antibiotics to conquer superbacteria-related infections.
Collapse
Affiliation(s)
- Ruige Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Liping Cui
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Ting Xu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
| | - Yan Zhong
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
| | - Songlin Hu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
| | - Jifeng Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Xiaoliu Wang
- Department of Dermatology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China.
| | - Yong Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China.
| |
Collapse
|
9
|
Jena B, Singh SS, Chakrabortty S, Behera SK, Tripathy SK, Lundborg CS, Kumar R, Ali Khan M, Jeon BH, Mishra A. Understanding the antibacterial mechanism of a phytochemical derived from Urginea indica against Methicillin-Resistant Staphylococcus aureus: A phytochemical perspective to impede antibiotics resistance. J IND ENG CHEM 2024; 139:213-224. [DOI: 10.1016/j.jiec.2024.04.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
10
|
Huang Z, Zhang L, Xuan J, Zhao T, Peng W. Antibacterial and Antiallergic Effects of Three Tea Extracts on Histamine-Induced Dermatitis. Pharmaceuticals (Basel) 2024; 17:1181. [PMID: 39338343 PMCID: PMC11435320 DOI: 10.3390/ph17091181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/24/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Atopic dermatitis (AD) is a persistent and recurrent inflammatory skin condition with a genetic basis. However, the fundamental reasons and mechanisms behind this phenomenon remain incompletely understood. While tea extracts are known to reduce histamine-induced skin allergies and inflammation, the specific mechanisms by which various types of Chinese tea provide their protective effects are still not fully elucidated. In this study, a model of skin itching induced by histamine is used to explore the functions and mechanisms of three types of tea extract (Keemun black tea (HC), Hangzhou green tea (LC), and Fujian white tea (BC)) in alleviating histamine-induced dermatitis. The components of three tea extracts are identified by UPLC-Q-TOF-MS, and we found that their main components are alkaloids, fatty acyls, flavonoids, organic acids, and phenols. The inhibitory effects of three types of tea extract on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) in skin injury are investigated by MIC and flow cytometry. The three types of tea extract have an inhibitory effect on the growth of bacterial flora, with HC showing the best inhibitory activity. The effect of the three types of tea extract on histamine-induced dermatitis is also evaluated. Furthermore, itchy skin experiments, HE staining, toluidine blue staining, and immunohistochemical staining of mouse skin tissues were performed to determine the variations of scratching, epidermal thickness, mast cell number, IL-1β, and NGF content after the administration of the tea extracts. The three types of tea extracts all alleviate and inhibit skin itching, epidermal hyperplasia, and allergic dermatitis. BC effectively alleviates epidermal hyperplasia caused by skin allergies, and LC significantly downregulates NGF. HC reduces histamine-induced mast cell infiltration and downregulates IL-1β to alleviate skin itching. Consequently, tea emerges a potent natural product that can inhibit the growth of skin wound bacterial flora and exhibit skin repair effects on histamine-induced allergic dermatitis.
Collapse
Affiliation(s)
- Zeting Huang
- Guangzhou Zhongzhuang Meiye Cosmetics Co., Ltd., Guangzhou 510006, China
| | - Lanyue Zhang
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Jie Xuan
- Guangzhou Zhongzhuang Meiye Cosmetics Co., Ltd., Guangzhou 510006, China
| | - Tiantian Zhao
- Key Laboratory of Functional Foods, Guangdong Key Laboratory of Agricultural Products Processing, Sericulture & Agri-food Research Institute, Guangdong Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Guangzhou 510610, China
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Weihua Peng
- Guangzhou Zhongzhuang Meiye Cosmetics Co., Ltd., Guangzhou 510006, China
| |
Collapse
|
11
|
Turicea B, Sahoo DK, Allbaugh RA, Stinman CC, Kubai MA. Novel treatment of infectious keratitis in canine corneas using ultraviolet C (UV-C) light. Vet Ophthalmol 2024. [PMID: 39118265 DOI: 10.1111/vop.13265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVE To investigate the therapeutic effect of 275 nm wavelength ultraviolet C (UV-C) light for treatment of bacterial keratitis in canine corneas using an affordable, broadly available modified handheld device. METHODS UV-C therapy (UVCT) was evaluated in two experiments: in vitro using triplicates of three bacterial genera (Staphylococcus, Streptococcus, Pseudomonas spp., and a mix of all species) where the UVCT was performed at a distance of 10, 15, and 20 mm with 1 or 2 doses (4 h apart) for 5, 15, or 30 s; ex vivo model where healthy canine corneal buttons were inoculated superficially and deep (330 μm) with the same bacterial isolates and treated at a 10 mm distance for 15 s with one dose of 22.5 mJ/cm2. Fluorescent marker (STYO9-PI) was used to label (green = live bacteria, red = dead bacteria), and confocal microscopy was used to image the bacteria. RESULTS In vitro results showed all plates treated with UVCT had 100% bactericidal effect for all isolates with single dose of 15 s at 10 mm distance or two doses, 4 h apart at 15 mm and was ineffective with single dose at 15-20 mm. The ex vivo results confirmed a significant decrease in bacterial load for all isolates on samples inoculated superficially but were inconclusive for intrastromal ones. CONCLUSIONS UVCT confirmed the therapeutic potential for all tested isolates, for both in vitro and ex vivo experiments using a single exposure of 15 s. While safety studies are underway, clinical trials are warranted.
Collapse
Affiliation(s)
- Bactelius Turicea
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Dipak K Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Rachel A Allbaugh
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Chloe C Stinman
- Veterinary Diagnostic Laboratory, Iowa State University, Ames, Iowa, USA
| | - Melissa A Kubai
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
12
|
Méndez LR, Rodríguez-Cornejo T, Rodríguez-Ramos T, Al-Hussinee L, Velázquez J, Campbell JH, Carpio Y, Estrada MP, Dixon B. PACAP sequence modifications modulate the peptide antimicrobial activity against bacterial pathogens affecting aquaculture. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109512. [PMID: 38499216 DOI: 10.1016/j.fsi.2024.109512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
The global aquaculture industry has significant losses each year due to disease outbreaks. Antibiotics are one of the common methods to treat fish infections, but prolonged use can lead to the emergence of resistant strains. Aeromonas spp. Infections are a common and problematic disease in fish, and members of this genera can produce antibiotic resistant strains. Antimicrobial peptides (AMPs) have emerged as an alternative method to treat and prevent infections and pituitary adenylate cyclase activating polypeptide (PACAP) is a prominent member of this family. The objective of this research was to study PACAP's direct antimicrobial activity and its toxicity in fish cells. Four synthetic variants of the natural PACAP from Clarias gariepinus were tested in addition to the natural variant. The experimental results show a different antimicrobial activity against A. salmonicida and A. hydrophila of each PACAP variant, and for the first time show dependence on the culture broth used. Furthermore, the results suggest that the underlying mechanism of PACAP antimicrobial activity includes a bacterial membrane permeabilizing effect, classifying PACAP as a membrane disruptive AMP. This study also demonstrated that the five PACAP variants evaluated showed low toxicity in vitro, at concentrations relevant for in vivo applications. Therefore, PACAP could be a promising alternative to antibiotics in the aquaculture sector.
Collapse
Affiliation(s)
- Laura Rivera Méndez
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada
| | | | - Tania Rodríguez-Ramos
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada
| | - Lowia Al-Hussinee
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada; Animal Health Laboratory, OVC, Guelph University, Canada
| | - Janet Velázquez
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - James Hugh Campbell
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada
| | - Yamila Carpio
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - Mario Pablo Estrada
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Havana, 10600, Cuba
| | - Brian Dixon
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada.
| |
Collapse
|
13
|
Miller LA, Buckingham-Meyer K, Goeres DM. Simulated aging of draught beer line tubing increases biofilm contamination. Int J Food Microbiol 2024; 415:110630. [PMID: 38401380 DOI: 10.1016/j.ijfoodmicro.2024.110630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/26/2024]
Abstract
Craft brewing is continually gaining popularity in the United States. Craft brewers are committed to producing a wide variety of products and have a vested interest in product quality. Therefore, these brewers have the expectation that the beer poured at the tap will match the quality product that left the brewery. The presence of biofilm in draught lines is hypothesized as a contributing factor when this expectation is not achieved. Clean in place strategies based on the Sinner's Circle of Cleaning are used to remediate organic and inorganic accumulation in beer draught lines, including controlling biofilm accumulation. A study was conducted to determine if repeated exposure to chemical cleaning of vinyl beer tubing impacted biofilm growth, kill/removal, and subsequent regrowth of a mixed species biofilm. The tubing was conditioned to simulate one, two, and five years of use. The data collected demonstrates a clear trend between simulated age of the tubing and biofilm accumulation on the surface. Bacterial log densities ranged from 5.6 Log10(CFU/cm2) for the new tubing to 6.6 Log10(CFU/cm2) for tubing aged to simulate five years of use. The counts for the yeast were similar. Caustic cleaning of the tubing, regardless of starting biofilm coverage, left less than 2.75 Log10(CFU/cm2) viable bacteria and yeast cells remaining on the tubing surface. This demonstrated the effectiveness of the caustic at controlling biofilm accumulation in the simulated beer draught line. The biofilm that accumulated in the five-year aged tubing was able to recover more quickly, reaching 3.6 Log10(CFU/cm2) within 24 h indicating the treatment did not fully eradicate the biofilm, suggesting that the strong chemistry used in this study would cease to be as effective over time.
Collapse
Affiliation(s)
- Lindsey A Miller
- Center for Biofilm Engineering, Montana State University, 366 Barnard Hall, Bozeman, MT 59717, United States of America
| | - Kelli Buckingham-Meyer
- Center for Biofilm Engineering, Montana State University, 366 Barnard Hall, Bozeman, MT 59717, United States of America
| | - Darla M Goeres
- Center for Biofilm Engineering, Montana State University, 366 Barnard Hall, Bozeman, MT 59717, United States of America.
| |
Collapse
|
14
|
Liu Y, Xu Y, Wen Q. Carbon dots for staining bacterial dead cells and distinguishing dead/alive bacteria. Anal Biochem 2024; 687:115432. [PMID: 38113980 DOI: 10.1016/j.ab.2023.115432] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023]
Abstract
The small molecular dyes such as propidium iodide (PI) always suffer from photo-bleaching and potential toxicity. To tackle the problems, a type of nontoxic carbon dots (CDs) was obtained for dead/alive bacterial distinguishing. This kind of carbon dots has an average size of 1.91 nm and owns carboxyl groups, emerging as excellent candidates for imaging bacterial cells. The negative charges of carboxyl groups lead their avoidance of alive cells while their small size facilitates penetration of dead cells. This kind of nontoxic CDs has effectively differentiated between and alive ones, presenting a highly promising green dye comparing with traditional small molecular dyes.
Collapse
Affiliation(s)
- Yuting Liu
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao, 266071, China
| | - Yuanhong Xu
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao, 266071, China
| | - Qin Wen
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
15
|
Sakai K, Hidayat F, Maeda K, Sakake A, Fujishima K, Ojima M, Jinya K, Tashiro Y. Different traits for cold tolerance of extremely thermophilic Calditerricola strains isolated from mesothermal municipal sewage sludge and its hyperthermal compost. J Biosci Bioeng 2024; 137:290-297. [PMID: 38310038 DOI: 10.1016/j.jbiosc.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 02/05/2024]
Abstract
Extreme thermophiles Calditerricola satsumensis DD2 and D3 were isolated from mesothermal municipal sludge, a material used for hyperthermal composting. To understand the ecologically anomalous findings, their behavior at various temperatures, membrane fatty acid composition, and draft genome sequences were compared with those of C. satsumensis YMO81T and Calditerricola yamamurae YMO722T, already isolated from hyperthermal compost. All four strains grew between 56 and 83 °C. However, strains DD2 and D3 were stable for ≥48 h at a wide range of temperatures (20-75 °C), while strains YMO81T and YMO722T were highly labile at lower temperatures. The former strains maintained their colony-forming ability for >180 days at 20 °C, while the latter strains lost it within 1 d. All four strains showed similar composition of membrane fatty acid, which were not affected by 20 °C treatment. Comparative draft genome analyses showed that 13 candidate genes were present only in strains DD2 and D3, and the specific expression of six gene homologs was confirmed. A DNA chaperone, site-specific recombinase XerD homolog, had tetra adenine sequence at its upper gene region, and was up-regulated by 20 °C treatment in DD2 and D3, suggesting a possible role in the cold tolerance of sludge-derived strains. In addition, the lack of another possible DNA chaperone, a homolog of the ATP-dependent DNA helicase, in the compost-derived strains may accelerate their sensitivity to cold shock. In conclusion, we speculate that the specific phenotypic and genotypic characteristics of sludge-derived strains are responsible for their unusual ecological distribution at ambient temperatures.
Collapse
Affiliation(s)
- Kenji Sakai
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan; Laboratory of Microbial Environmental Protection, Tropical Microbiology Unit, Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Fandi Hidayat
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan; Indonesian Oil Palm Research Institute, Jl. Brigjen Katamso No. 51, Kampung Baru, Medan, North Sumatra 20158, Indonesia
| | - Kazushi Maeda
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Ai Sakake
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Keisuke Fujishima
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Maise Ojima
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Kouta Jinya
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Yukihiro Tashiro
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan; Laboratory of Microbial Environmental Protection, Tropical Microbiology Unit, Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
16
|
Rosciardi V, Bandelli D, Bassu G, Casu I, Baglioni P. Highly biocidal poly(vinyl alcohol)-hydantoin/starch hybrid gels: A "Trojan Horse" for Bacillus subtilis. J Colloid Interface Sci 2024; 657:788-798. [PMID: 38081113 DOI: 10.1016/j.jcis.2023.11.142] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 01/02/2024]
Abstract
HYPOTHESIS Poly (vinyl alcohol) (PVA) cryogels can be functionalized with n-Halamines to confer biocidal features useful for their application as wound-dressing tools. Their efficacy can be boosted by stably embedding a polymeric bacterial food source (e.g., starch) in the gel matrix. The bioavailability of the food source lures bacteria inside the gel network via chemotactic mechanisms, promoting their contact with the biocidal functionalities and their consequent inactivation. EXPERIMENTS The synthesis of a novel hydantoin-functionalized PVA (H-PVA-hyd) is proposed. The newly synthesized H-PVA-hyd polymer was introduced in the formulation of H-PVA-based cryogels. To promote the cryogelation of the systems we exploited phase-separation mechanisms employing either a PVA carrying residual acetate groups (L-PVA) or starch as phase-segregating components. The permanence of the biocidal functionality after swelling was investigated via proton nuclear magnetic resonance (1H NMR) and Fourier transform infrared (FT-IR) microscopy. The activated H-PVA-hyd cryogels have been tested against bacteria with amylolytic activity (Bacillus subtilis) and the outcomes were analyzed by direct observation via confocal laser scanning microscopy (CLSM). FINDINGS The cryogels containing starch resulted in being the most effective (up to 90% bacterial killing), despite carrying a lower amount of hydantoin groups than their starch-free counterparts, suggesting that their improved efficacy relies on a "Trojan Horse" type of mechanism.
Collapse
Affiliation(s)
- Vanessa Rosciardi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy; CSGI, Center for Colloids and Surface Science, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy.
| | - Damiano Bandelli
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy.
| | - Gavino Bassu
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy; CSGI, Center for Colloids and Surface Science, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy.
| | - Ilaria Casu
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy.
| | - Piero Baglioni
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy; CSGI, Center for Colloids and Surface Science, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy.
| |
Collapse
|
17
|
do Carmo Santos ML, Santos TA, Dos Santos Lopes N, Macedo Ferreira M, Martins Alves AM, Pirovani CP, Micheli F. The selenium-independent phospholipid hydroperoxide glutathione peroxidase from Theobroma cacao (TcPHGPX) protects plant cells against damages and cell death. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108332. [PMID: 38224638 DOI: 10.1016/j.plaphy.2023.108332] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/02/2023] [Accepted: 12/31/2023] [Indexed: 01/17/2024]
Abstract
Proteins from the glutathione peroxidase (GPX) family, such as GPX4 or PHGPX in animals, are extensively studied for their antioxidant functions and apoptosis inhibition. GPXs can be selenium-independent or selenium-dependent, with selenium acting as a potential cofactor for GPX activity. However, the relationship of plant GPXs to these functions remains unclear. Recent research indicated an upregulation of Theobroma cacao phospholipid hydroperoxide glutathione peroxidase gene (TcPHGPX) expression during early witches' broom disease stages, suggesting the use of antioxidant mechanisms as a plant defense strategy to reduce disease progression. Witches' broom disease, caused by the hemibiotrophic fungus Moniliophthora perniciosa, induces cell death through elicitors like MpNEP2 in advanced infection stages. In this context, in silico and in vitro analyses of TcPHGPX's physicochemical and functional characteristics may elucidate its antioxidant potential and effects against cell death, enhancing understanding of plant GPXs and informing strategies to control witches' broom disease. Results indicated TcPHGPX interaction with selenium compounds, mainly sodium selenite, but without improving the protein function. Protein-protein interaction network suggested cacao GPXs association with glutathione and thioredoxin metabolism, engaging in pathways like signaling, peroxide detection for ABA pathway components, and anthocyanin transport. Tests on tobacco cells revealed that TcPHGPX reduced cell death, associated with decreased membrane damage and H2O2 production induced by MpNEP2. This study is the first functional analysis of TcPHGPX, contributing to knowledge about plant GPXs and supporting studies for witches' broom disease control.
Collapse
Affiliation(s)
- Maria Luíza do Carmo Santos
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Km 16, 45662-900, Ilhéus, BA, Brazil
| | - Taís Araújo Santos
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Km 16, 45662-900, Ilhéus, BA, Brazil
| | - Natasha Dos Santos Lopes
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Km 16, 45662-900, Ilhéus, BA, Brazil
| | - Monaliza Macedo Ferreira
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Km 16, 45662-900, Ilhéus, BA, Brazil
| | - Akyla Maria Martins Alves
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Km 16, 45662-900, Ilhéus, BA, Brazil
| | - Carlos Priminho Pirovani
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Km 16, 45662-900, Ilhéus, BA, Brazil
| | - Fabienne Micheli
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Km 16, 45662-900, Ilhéus, BA, Brazil; CIRAD, UMR AGAP, F-34398, Montpellier, France.
| |
Collapse
|
18
|
Modi K, Modi K, Bhatt K, Patel N, Parikh J, Mohan B, Bajaj N, Vyas A, Kothari F. Illuminating Bacterial Contamination in Water Sources: The Power of Fluorescence-Based Methods. J Fluoresc 2024; 34:139-147. [PMID: 37310589 DOI: 10.1007/s10895-023-03297-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/05/2023] [Indexed: 06/14/2023]
Abstract
Bacterial contamination of water sources is a significant public health concern, and therefore, it is important to have accurate and efficient methods for monitoring bacterial concentration in water samples. Fluorescence-based methods, such as SYTO 9 and PI staining, have emerged as a promising approach for real-time bacterial quantification. In this review, we discuss the advantages of fluorescence-based methods over other bacterial quantification methods, including the plate count method and the most probable number (MPN) method. We also examine the utility of fluorescence arrays and linear regression models in improving the accuracy and reliability of fluorescence-based methods. Overall, fluorescence-based methods offer a faster, more sensitive, and more specific option for real-time bacterial quantification in water samples.
Collapse
Affiliation(s)
- Kinjal Modi
- Department of Chemistry, Faculty of Science, Ganpat University, Kherva, Mehsana, 384012, Gujarat, India
| | - Krunal Modi
- Department of Humanity and Sciences, School of engineering, Indrashil university, Kadi, Mehsana, 382740, Gujarat, India.
| | - Keyur Bhatt
- Department of Chemistry, Faculty of Science, Ganpat University, Kherva, Mehsana, 384012, Gujarat, India.
| | - Nihal Patel
- Department of Chemistry, Faculty of Science, Ganpat University, Kherva, Mehsana, 384012, Gujarat, India
| | - Jaymin Parikh
- Department of Chemistry, Faculty of Science, Ganpat University, Kherva, Mehsana, 384012, Gujarat, India
| | - Brij Mohan
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, 1049-001, Portugal
| | - Namrata Bajaj
- Department of Humanity and Sciences, School of engineering, Indrashil university, Kadi, Mehsana, 382740, Gujarat, India
| | - Amish Vyas
- Department of Chemical and Biochemical Engineering, School of Engineering, Indrashil University, Mehsana, 382740, Gujarat, India
| | - Flory Kothari
- Department of Biotechnology, Faculty of Science, Ganpat University, Kherva, Mehsana, 384012, Gujarat, India
| |
Collapse
|
19
|
Kim G, Zhu R, Zhang Y, Jeon H, Wang Y. Fluorescent Chiral Quantum Dots to Unveil Origin-Dependent Exosome Uptake and Cargo Release. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572689. [PMID: 38187632 PMCID: PMC10769435 DOI: 10.1101/2023.12.20.572689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Exosomes are promising nanocarriers for drug delivery. Yet, it is challenging to apply exosomes in clinical use due to the limited understanding of their physiological functions. While cellular uptake of exosomes is generally known through endocytosis and/or membrane fusion, the mechanisms of origin-dependent cellular uptake and subsequent cargo release of exosomes into recipient cells are still unclear. Herein, we investigated the intricate mechanisms of exosome entry into recipient cells and the intracellular cargo release. In this study, we utilized chiral graphene quantum dots (GQDs) as representatives of exosomal cargo, taking advantage of the superior permeability of chiral GQDs into lipid membranes, as well as their excellent optical properties for tracking analysis. We observed a higher uptake rate of exosomes in their parental recipient cells. However, these exosomes were predominantly entrapped in lysosomes through endocytosis (intraspecies endocytic uptake). On the other hand, in non-parental recipient cells, exosomes exhibited a greater inclination for cellular uptake through membrane fusion, followed by direct cargo release into the cytosol (cross-species direct fusion uptake). We revealed the underlying mechanisms involved in the cellular uptake and the subsequent cargo release of exosomes depending on their cell-of-origin and recipient cell types. This study envisions valuable insights into further advancements in the effective drug delivery using exosomes, as well as a comprehensive understanding of cellular communication, including disease pathogenesis.
Collapse
|
20
|
Xu Z, Xu Z, Gu J, Zhou J, Sha G, Huang Y, Wang T, Fan L, Zhang Y, Xi J. In situ formation of ferrous sulfide in glycyrrhizic acid hydrogels to promote healing of multi-drug resistant Staphylococcus aureus-infected diabetic wounds. J Colloid Interface Sci 2023; 650:1918-1929. [PMID: 37517191 DOI: 10.1016/j.jcis.2023.07.141] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/16/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023]
Abstract
Diabetic wound treatment faces great challenges in clinic. Staphylococcus aureus (S. aureus) is one of the most frequently isolated pathogens from the diabetic infections, which can severely impede wound healing time. Herein, ferrous sulfide (FeS) nanoparticles were fabricated through an in situ reaction between Fe2+ and S2- in glycyrrhizic acid (GA) solution. As the FeS nanoparticles aged, the solution gradually transformed into a gel, exhibiting excellent mechanical strength, injectability, and biocompatibility as a wound dressing. In addition to its own pharmacological effects, GA could act as the protector for FeS from oxidation of air. It also provided a weak acidic microenvironment, facilitating the pH-dependent dissolution reaction of FeS to release H2S and Fe2+. Notably, the effective antibacterial performance of the FeS/GA hydrogels towards S. aureus and multi-drug resistant S. aureus (MRSA) was achieved via the degradedly released Fe2+ and H2S through combination of ferroptosis damage and energy metabolism disruption. Moreover, FeS/GA hydrogels effectively modulated the proportion of M1/M2 macrophages, reduced the secretion of inflammatory cytokines, and significantly enhanced the proliferation and migration of fibroblasts in vitro. Importantly, in an MRSA-infected diabetic wound model, the FeS/GA hydrogels efficiently eradicated bacteria and regulated the inflammatory microenvironment, thereby promoting the diabetic wound repair. Overall, our study establishes a novel strategy for developing multifunctional hydrogels that serve as an effective therapeutic platform for managing bacteria-infected diabetic wounds.
Collapse
Affiliation(s)
- Zhuobin Xu
- School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, Jiangsu 225009, China
| | - Ze Xu
- School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jiake Gu
- School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Juan Zhou
- School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Gengyu Sha
- School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Ying Huang
- School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Tong Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Lei Fan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China.
| | - Yanfeng Zhang
- Nantong Tongzhou District Hospital of Traditional Chinese Medicine, Nantong, Jiangsu 226399, China.
| | - Juqun Xi
- School of Medicine, Institute of Translational Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
21
|
Jordal PL, Diaz MG, Morazzoni C, Allesina S, Zogno D, Cattivelli D, Galletti S, Guidesi E, Warzée JP, Pane M. Collaborative cytometric inter-laboratory ring test for probiotics quantification. Front Microbiol 2023; 14:1285075. [PMID: 38029213 PMCID: PMC10667725 DOI: 10.3389/fmicb.2023.1285075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Probiotics are live microorganisms that, when administered in adequate amounts, confer a health benefit on the host. From this definition, accurate enumeration of probiotic products is a necessity. Nonetheless, this definition does not specify the methods for assessing such viability. Colony forming units is the de facto gold standard for enumerating viable in probiotic products. The notion of microbial viability has been anchored in the concept of cultivability, which refers to a cell's capacity to replicate and form colonies on agar media. However, there is a growing consensus that the term "viability" should not be exclusively tied to the ability to cultivate cells. For example, bacterial cells can exist in a Viable But Non-Culturable (VBNC) state, characterized by the maintenance of characteristics such as membrane integrity, enzymatic activity, pH gradients, and elevated levels of rRNA, despite losing the ability to form colonies. Methods Herein we present the results of a collaborative inter-laboratory ring test for cytometric bacterial quantification. Specifically, membrane integrity fluorescence flow cytometry (FFC) method and the newer impedance flow cytometry (IFC) method have been used. Both methods interrogate single cells in solution for the presence of intact membranes. FFC exploits fluorochromes that reflect the presence or absence of an intact membrane. IFC probes membrane integrity in a label-free approach by detecting membrane-induced hindrances to the propagation of electricity. Results A performance ring-test and comparison design on the FFC method showed that the method is robust against the exchange of equipment, procedures, materials, and operators. After initial method optimization with assessments of rehydration medium, wake-up duration, and phase shift gating on the individual strains, the IFC method showed good agreement with the FFC results. Specifically, we tested 6 distinct species of probiotic bacteria (3 Lactobacillus and 3 Bifidobacterium strains) finding good agreement between FFC and IFC results in terms of total and live cells. Discussion Together, these results demonstrate that flow cytometry is a reliable, precise, and user-friendly culture-independent method for bacterial enumeration.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Serena Galletti
- AAT – Advanced Analytical Technologies, Fiorenzuola d’Arda, Italy
| | - Elena Guidesi
- AAT – Advanced Analytical Technologies, Fiorenzuola d’Arda, Italy
| | - Jean-Pol Warzée
- European Scientific League for Probiotics, Brussels, Belgium
| | | |
Collapse
|
22
|
Wang Y, Liu Y, Zhao Y, Sun Y, Duan M, Wang H, Dai R, Liu Y, Li X, Jia F. Bactericidal efficacy difference between air and nitrogen cold atmospheric plasma on Bacillus cereus: Inactivation mechanism of Gram-positive bacteria at the cellular and molecular level. Food Res Int 2023; 173:113204. [PMID: 37803533 DOI: 10.1016/j.foodres.2023.113204] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 10/08/2023]
Abstract
As an emerging food processing technology, cold atmospheric plasma (CAP) has attracted great attention in the field of microbial inactivation. Although CAP has been proven to effectively inactivate a variety of foodborne pathogens, there is less research on the inactivation of Bacillus cereus, and the exact inactivation mechanism is still unclear. Elucidating the inactivation mechanism will help to develop and optimize this sterilization method, with the prospective application in industrialized food production. This study aims to explore the bactericidal efficacy difference between air and nitrogen CAP on B. cereus, a typical Gram-positive bacterium, and reveals the inactivation mechanism of CAP at the cellular and molecular level, by observing the change of the cell membrane, cell morphological damage, intracellular antioxidant enzyme activity and cellular biomacromolecules changes. The results showed that both air CAP and nitrogen CAP could effectively inactivate B. cereus, which was due to the reactive oxygen and nitrogen species (RONS) generated by the plasma causing bacterial death. The damage pathways of CAP on Gram-positive bacteria could be explained by disrupting the bacterial cell membrane and cell morphology, disturbing the intracellular redox homeostasis, and destroying biomacromolecules in the cells. The differences in active species generated by the plasma were the main reason for the different bactericidal efficiencies of air CAP and nitrogen CAP, where air CAP producing RONS with stronger oxidative capacity in a shorter time. This study indicates that air CAP is an effective, inexpensive and green technology for B. cereus inactivation, providing a basis for industrial application in food processing.
Collapse
Affiliation(s)
- Yuhan Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yana Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yijie Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yingying Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Miaolin Duan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Han Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ruitong Dai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yi Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xingmin Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Fei Jia
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
23
|
Chung E, Ren G, Johnston I, Matharu RK, Ciric L, Walecka A, Cheong YK. Applied Methods to Assess the Antimicrobial Activity of Metallic-Based Nanoparticles. Bioengineering (Basel) 2023; 10:1259. [PMID: 38002383 PMCID: PMC10669044 DOI: 10.3390/bioengineering10111259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
With the rise of antibiotic resistance, the drive to discover novel antimicrobial substances and standard testing methods with the aim of controlling transmissive diseases are substantially high. In healthcare sectors and industries, although methods for testing antibiotics and other aqueous-based reagents are well established, methods for testing nanomaterials, non-polar and other particle-based suspensions are still debatable. Hence, utilities of ISO standard validations of such substances have been recalled where corrective actions had to be taken. This paper reports a serial analysis obtained from testing the antimicrobial activities of 10 metallic-based nanomaterials against 10 different pathogens using five different in vitro assays, where the technique, limitation and robustness of each method were evaluated. To confirm antimicrobial activities of metallic-based nanomaterial suspensions, it was found that at least two methods must be used, one being the agar well diffusion method, which was found to be the most reliable method. The agar well diffusion method provided not only information on antimicrobial efficacy through the size of the inhibitory zones, but it also identified antimicrobial ions and synergistic effects released by the test materials. To ascertain the effective inhibitory concentration of nanoparticles, the resazurin broth dilution method is recommended, as MIC can be determined visually without utilising any equipment. This method also overcomes the limit of detection (LoD) and absorbance interference issues, which are often found in the overexpression of cell debris and nanoparticles or quantum dots with optical profiles. In this study, bimetallic AgCu was found to be the most effective antimicrobial nanoparticle tested against across the bacterial (MIC 7 µg/mL) and fungal (MIC 62.5 µg/mL) species.
Collapse
Affiliation(s)
- Etelka Chung
- Centre for Engineering Research, University of Hertfordshire, Hatfield AL10 9AB, UK; (E.C.); (I.J.)
| | - Guogang Ren
- Centre for Engineering Research, University of Hertfordshire, Hatfield AL10 9AB, UK; (E.C.); (I.J.)
| | - Ian Johnston
- Centre for Engineering Research, University of Hertfordshire, Hatfield AL10 9AB, UK; (E.C.); (I.J.)
| | - Rupy Kaur Matharu
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK;
- Department of Civil, Environmental and Geomatic Engineering, University College London, Gower Street, London WC1E 6BT, UK;
| | - Lena Ciric
- Department of Civil, Environmental and Geomatic Engineering, University College London, Gower Street, London WC1E 6BT, UK;
| | - Agnieszka Walecka
- Intensive Care Unit, Royal Free Hospital, Royal Free London NHS Foundation Trust, Pond Street, London NW3 2QG, UK;
| | - Yuen-Ki Cheong
- Centre for Engineering Research, University of Hertfordshire, Hatfield AL10 9AB, UK; (E.C.); (I.J.)
| |
Collapse
|
24
|
Wang H, Zhang Y, Dai L, Bo X, Liu X, Zhao X, Yu J, Kwok LY, Bao Q. Metabolomic Differences between Viable but Nonculturable and Recovered Lacticaseibacillus paracasei Zhang. Foods 2023; 12:3472. [PMID: 37761181 PMCID: PMC10527867 DOI: 10.3390/foods12183472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
The fermentation process can be affected when the starter culture enters the viable but nonculturable (VBNC) state. Therefore, it is of interest to investigate how VBNC cells change physiologically. Lacticaseibacillus (L.) paracasei Zhang is both a probiotic and a starter strain. This study aimed to investigate the metabolomic differences between VBNC and recovered L. paracasei Zhang cells. First, L. paracasei Zhang was induced to enter the VBNC state by keeping the cells in a liquid de Man-Rogosa-Sharpe (MRS) medium at 4 °C for 220 days. Flow cytometry was used to sort the induced VBNC cells, and three different types of culture media (MRS medium, skim milk with 1% yeast extract, and skim milk) were used for cell resuscitation. Cell growth responses in the three types of recovery media suggested that the liquid MRS medium was the most effective in reversing the VBNC state in L. paracasei Zhang. Metabolomics analysis revealed 25 differential metabolites from five main metabolite classes (amino acid, carbohydrate, lipid, vitamin, and purine and pyrimidine). The levels of L-cysteine, L-alanine, L-lysine, and L-arginine notably increased in the revived cells, while cellulose, alginose, and guanine significantly decreased. This study confirmed that VBNC cells had an altered physiology.
Collapse
Affiliation(s)
- Huiying Wang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.W.); (Y.Z.); (L.D.); (X.B.); (X.L.); (X.Z.); (J.Y.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yuhong Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.W.); (Y.Z.); (L.D.); (X.B.); (X.L.); (X.Z.); (J.Y.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lixia Dai
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.W.); (Y.Z.); (L.D.); (X.B.); (X.L.); (X.Z.); (J.Y.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiaoyu Bo
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.W.); (Y.Z.); (L.D.); (X.B.); (X.L.); (X.Z.); (J.Y.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiangyun Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.W.); (Y.Z.); (L.D.); (X.B.); (X.L.); (X.Z.); (J.Y.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xin Zhao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.W.); (Y.Z.); (L.D.); (X.B.); (X.L.); (X.Z.); (J.Y.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jie Yu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.W.); (Y.Z.); (L.D.); (X.B.); (X.L.); (X.Z.); (J.Y.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.W.); (Y.Z.); (L.D.); (X.B.); (X.L.); (X.Z.); (J.Y.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Qiuhua Bao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.W.); (Y.Z.); (L.D.); (X.B.); (X.L.); (X.Z.); (J.Y.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
25
|
Ma Y, Xu S, Yue P, Cao H, Zou Y, Wang L, Long H, Wu S, Ye Q. Synthesis and evaluation of water-soluble imidazolium salt chitin with broad-spectrum antimicrobial activity and excellent biocompatibility for infected wound healing. Carbohydr Polym 2023; 306:120575. [PMID: 36746566 DOI: 10.1016/j.carbpol.2023.120575] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023]
Abstract
Infections caused by bacteria have long constituted a major threat to human health and the economy. Therefore, there is an urgent need to design broad-spectrum antibacterial materials possessing good biocompatibility to treat such infections. Herein, inspired by the good biocompatibility of chitin and antibacterial properties of imidazolium salts, a polysaccharide-based material, imidazolium salt chitin (IMSC), was homogeneously prepared using a facile method with epichlorohydrin as a chemical crosslinker to combine chitin with imidazole to enhance Staphylococcus aureus (S. aureus)-infected wound healing. The characteristics, antimicrobial properties, and biosafety of IMSC were evaluated. The results demonstrated successful grafting of imidazole onto chitin. Furthermore, IMSC exhibited good water solubility, broad-spectrum antimicrobial activity, hemocompatibility, and biocompatibility. Moreover, IMSC enabled complete healing of S. aureus-infected wound in Sprague-Dawley rats within 15 days of application, thus demonstrating that IMSC could reduce wound inflammation and remarkably accelerate wound healing owing to its efficient antibacterial activity and ability to promote collagen deposition in and around the wound area. Therefore, this study provides a promising and potential therapeutic strategy for infected wound healing by synthesizing a water-soluble and broad-spectrum antimicrobial material exhibiting good biocompatibility.
Collapse
Affiliation(s)
- Yongsheng Ma
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, Hubei, PR China
| | - Shuyi Xu
- Wuhan University School of Nursing, Wuhan 430071, Hubei, PR China
| | - Pengpeng Yue
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, Hubei, PR China
| | - Hankun Cao
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, Hubei, PR China
| | - Yongkang Zou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, Hubei, PR China
| | - Lizhe Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, Hubei, PR China
| | - Haitao Long
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, Hubei, PR China
| | - Shuangquan Wu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, Hubei, PR China.
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, Hubei, PR China; The Third Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha 410013, Hunan, PR China.
| |
Collapse
|
26
|
Jia L, Shao L, Zhao Y, Sun Y, Li X, Dai R. Inactivation effects and mechanism of ohmic heating on Bacillus cereus. Int J Food Microbiol 2023; 390:110125. [PMID: 36774686 DOI: 10.1016/j.ijfoodmicro.2023.110125] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/28/2022] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
The inactivation effects and mechanism of ohmic heating (OH) on Bacillus cereus ATCC 11778 were investigated in this study, conventional heating (CH) was also carried out and served as control. All OH treatments (10 V/cm 50 Hz, 10 V/cm 500 Hz, 5 V/cm 50 Hz and 5 V/cm 500 Hz) could achieve a comparable inactivation effect with CH, while OH treatments significantly shortened the processing time. OH treated cells exhibited significantly higher leakage of metal ions (Mg2+ and K+) and biomacromolecules (nucleic acids and proteins) than those treated with CH when bacterial suspensions were heated to the same temperature. Moreover, OH treatment caused more damage on membrane structure, greatly decreased the cell membrane potential and endogenous enzyme activity than that of CH. The results of this study indicated that OH is more efficient in the inactivation of bacteria.
Collapse
Affiliation(s)
- Lihong Jia
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Lele Shao
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Yijie Zhao
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Yingying Sun
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Xingmin Li
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Ruitong Dai
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China.
| |
Collapse
|
27
|
Current Perspectives on Viable but Non-Culturable Foodborne Pathogenic Bacteria: A Review. Foods 2023; 12:foods12061179. [PMID: 36981106 PMCID: PMC10048424 DOI: 10.3390/foods12061179] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
Foodborne diseases caused by foodborne pathogens pose risks to food safety. Effective detection and efficient inactivation of pathogenic bacteria has always been a research hotspot in the field of food safety. Complicating these goals, bacteria can be induced to adopt a viable but non-culturable (VBNC) state under adverse external environmental stresses. When in the VBNC state, pathogens cannot form visible colonies during traditional culture but remain metabolically active and toxic. The resulting false negative results in growth-related assays can jeopardize food safety. This review summarizes the latest research on VBNC foodborne pathogens, including induction conditions, detection methods, mechanism of VBNC formation, and possible control strategies. It is hoped that this review can provide ideas and methods for future research on VBNC foodborne pathogenic bacteria.
Collapse
|
28
|
Han SY, Nguyen DT, Kim BJ, Kim N, Kang EK, Park JH, Choi IS. Cytoprotection of Probiotic Lactobacillus acidophilus with Artificial Nanoshells of Nature-Derived Eggshell Membrane Hydrolysates and Coffee Melanoidins in Single-Cell Nanoencapsulation. Polymers (Basel) 2023; 15:polym15051104. [PMID: 36904345 PMCID: PMC10007236 DOI: 10.3390/polym15051104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
One-step fabrication method for thin films and shells is developed with nature-derived eggshell membrane hydrolysates (ESMHs) and coffee melanoidins (CMs) that have been discarded as food waste. The nature-derived polymeric materials, ESMHs and CMs, prove highly biocompatible with living cells, and the one-step method enables cytocompatible construction of cell-in-shell nanobiohybrid structures. Nanometric ESMH-CM shells are formed on individual probiotic Lactobacillus acidophilus, without any noticeable decrease in viability, and the ESMH-CM shells effectively protected L. acidophilus in the simulated gastric fluid (SGF). The cytoprotection power is further enhanced by Fe3+-mediated shell augmentation. For example, after 2 h of incubation in SGF, the viability of native L. acidophilus is 30%, whereas nanoencapsulated L. acidophilus, armed with the Fe3+-fortified ESMH-CM shells, show 79% in viability. The simple, time-efficient, and easy-to-process method developed in this work would contribute to many technological developments, including microbial biotherapeutics, as well as waste upcycling.
Collapse
Affiliation(s)
- Sang Yeong Han
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Duc Tai Nguyen
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Beom Jin Kim
- Department of Chemistry, University of Ulsan, Ulsan 44776, Republic of Korea
- Correspondence: (B.J.K.); (I.S.C.)
| | - Nayoung Kim
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Eunhye K. Kang
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Ji Hun Park
- Department of Science Education, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Insung S. Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
- Correspondence: (B.J.K.); (I.S.C.)
| |
Collapse
|
29
|
Wang Q, Kim H, Halvorsen TM, Chen S, Hayes CS, Buie CR. Leveraging microfluidic dielectrophoresis to distinguish compositional variations of lipopolysaccharide in E. coli. Front Bioeng Biotechnol 2023; 11:991784. [PMID: 36873367 PMCID: PMC9979706 DOI: 10.3389/fbioe.2023.991784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
Lipopolysaccharide (LPS) is the unique feature that composes the outer leaflet of the Gram-negative bacterial cell envelope. Variations in LPS structures affect a number of physiological processes, including outer membrane permeability, antimicrobial resistance, recognition by the host immune system, biofilm formation, and interbacterial competition. Rapid characterization of LPS properties is crucial for studying the relationship between these LPS structural changes and bacterial physiology. However, current assessments of LPS structures require LPS extraction and purification followed by cumbersome proteomic analysis. This paper demonstrates one of the first high-throughput and non-invasive strategies to directly distinguish Escherichia coli with different LPS structures. Using a combination of three-dimensional insulator-based dielectrophoresis (3DiDEP) and cell tracking in a linear electrokinetics assay, we elucidate the effect of structural changes in E. coli LPS oligosaccharides on electrokinetic mobility and polarizability. We show that our platform is sufficiently sensitive to detect LPS structural variations at the molecular level. To correlate electrokinetic properties of LPS with the outer membrane permeability, we further examined effects of LPS structural variations on bacterial susceptibility to colistin, an antibiotic known to disrupt the outer membrane by targeting LPS. Our results suggest that microfluidic electrokinetic platforms employing 3DiDEP can be a useful tool for isolating and selecting bacteria based on their LPS glycoforms. Future iterations of these platforms could be leveraged for rapid profiling of pathogens based on their surface LPS structural identity.
Collapse
Affiliation(s)
- Qianru Wang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Hyungseok Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Tiffany M. Halvorsen
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Sijie Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Christopher S. Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Cullen R. Buie
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
30
|
Antimicrobial activity and mechanism of preservatives against Alicyclobacillus acidoterrestris and its application in apple juice. Int J Food Microbiol 2023; 386:110039. [PMID: 36473316 DOI: 10.1016/j.ijfoodmicro.2022.110039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
Alicyclobacillus acidoterrestris has great influence on the quality of apple juice products. In this study, the antibacterial activity of five preservatives (ε-polylysine, propylparaben, monocaprin, octyl gallate and heptylparaben) against A. acidoterrestris and its underlying mechanism were investigated. Results showed that these five preservatives all exerted antibacterial activity through a multiple bactericidal mechanism, and monocaprin and octyl gallate had the highest antibacterial activity, with the minimum inhibitory concentration (MIC) values of 22.5 and 6.25 mg/L, respectively. Five preservatives all changed the permeability of the cell membrane and destroyed the complete cell morphology, with the leakages of the intracellular electrolytes. Moreover, the treatment of ε-polylysine, propylparaben and monocaprin increased the leakage of intracellular protein; propylparaben and octyl gallate reduced the levels of cellular adenosine triphosphate. Also, monocaprin and octyl gallate may stimulate bacteria to release a large amount of reactive oxygen species, so that certain oxidative damage can kill the bacteria. Furthermore, monocaprin and octyl gallate could effectively inactivate the contamination of A. acidoterrestris in apple juices, with the slightly decrease of soluble sugars and organic acids, without significant adverse effects on total sugars and titratable acids. This research highlights the great promise of using monocaprin and octyl gallate as the safe multi-functionalized food additives for food preservations.
Collapse
|
31
|
Ali MS, Ho TC, Razack SA, Haq M, Roy VC, Park JS, Kang HW, Chun BS. Oligochitosan recovered from shrimp shells through subcritical water hydrolysis: Molecular size reduction and biological activities. J Supercrit Fluids 2023. [DOI: 10.1016/j.supflu.2023.105868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
32
|
Liu Y, Zhong D, Yu L, Shi Y, Xu Y. Primary Amine Functionalized Carbon Dots for Dead and Alive Bacterial Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:437. [PMID: 36770398 PMCID: PMC9920602 DOI: 10.3390/nano13030437] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Small molecular dyes are commonly used for bacterial imaging, but they still meet a bottleneck of biological toxicity and fluorescence photobleaching. Carbon dots have shown high potential for bio-imaging due to their low cost and negligible toxicity and anti-photobleaching. However, there is still large space to enhance the quantum yield of the carbon quantum dots and to clarify their mechanisms of bacterial imaging. Using carbon dots for dyeing alive bacteria is difficult because of the thick density and complicated structure of bacterial cell walls. In this work, both dead or alive bacterial cell imaging can be achieved using the primary amine functionalized carbon dots based on their small size, excellent quantum yield and primary amine functional groups. Four types of carbon quantum dots were prepared and estimated for the bacterial imaging. It was found that the spermine as one of precursors can obviously enhance the quantum yield of carbon dots, which showed a high quantum yield of 66.46% and high fluorescence bleaching-resistance (70% can be maintained upon 3-h-irradiation). Furthermore, a mild modifying method was employed to bound ethylenediamine on the surface of the spermine-carbon dots, which is favorable for staining not only the dead bacterial cells but also the alive ones. Investigations of physical structure and chemical groups indicated the existence of primary amine groups on the surface of spermine-carbon quantum dots (which own a much higher quantum yield) which can stain alive bacterial cells visibly. The imaging mechanism was studied in detail, which provides a preliminary reference for exploring efficient and environment-friendly carbon dots for bacterial imaging.
Collapse
Affiliation(s)
- Yuting Liu
- Institute of Biomedical Engineering, College of Life Science, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Di Zhong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, No. 308 Ningxia Road, Qingdao 266000, China
| | - Lei Yu
- Institute of Biomedical Engineering, College of Life Science, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Yanfeng Shi
- Institute of Biomedical Engineering, College of Life Science, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Yuanhong Xu
- Institute of Biomedical Engineering, College of Life Science, Basic Medical College, Qingdao University, Qingdao 266071, China
| |
Collapse
|
33
|
Jena B, Singh SS, Behera SK, Mishra S, Chakrabortty S, Meher D, Mulia B, Tripathy SK, Kumar R, Jeon BH, Lundborg CS, Mishra A. To decipher the phytochemical agent and mechanism for Urginea indica mediated green synthesis of Ag nanoparticles and investigation of its antibacterial activity against Methicillin-resistant Staphylococcus aureus. ENVIRONMENTAL RESEARCH 2023; 216:114700. [PMID: 36370814 DOI: 10.1016/j.envres.2022.114700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/22/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Globally, Methicillin-Resistant Staphylococcus aureus bacteraemia is one of the commonest bloodstream infections associated with clinical complications and high mortality. Thence, devising effective and targeted biogenic silver based strategies are in great demand. However, limited insights regarding the biosynthesis methodologies impedes the possible scale up and commercial potentials. We, hereby demonstrate the biosynthesis of Ag nanoparticles using the phytochemical agent extracted and purified from bulb extract of Urginea indica. The chemical structure of the phytochemical agent is investigated by various chromatographic and spectroscopic techniques and was found closely relatable to N-ethylacetamide. Ag nanoparticles synthesis by this agent was found to have a strong Surface Plasmon band at 402 nm. X-ray diffraction and transmission electron microscopy further validated the formation of Ag nanoparticles with face-centred cubic structure with a size range of 20-30 nm. The biogenic metal nanoparticles have shown potential antibacterial activity against S. aureus and MRSA (within a range of 10-50 μg/mL). The nanoparticles have also shown promising anti-biofim activity against the above mentioned strains. The nanoparticles were expected to induce ROS mediated bactericidal mechamism. Cell viability and in-vitro infection studies advocate noticeable biocompatibility and future clinical potential of the developed nanoparticles against Staphylococcus infections.
Collapse
Affiliation(s)
- Bhumika Jena
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India
| | - Swati Sucharita Singh
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India
| | - Susanta Kumar Behera
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India; IMGENIX India Pvt. Ltd., Bhubaneswar, 751024, India
| | - Smrutirekha Mishra
- School of Chemical Technology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India
| | - Sankha Chakrabortty
- School of Chemical Technology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India
| | - Dayanidhi Meher
- Kalinga Institute of Medical Sciences, Bhubaneswar, 751024, India
| | - Bansidhar Mulia
- Kalinga Institute of Medical Sciences, Bhubaneswar, 751024, India
| | - Suraj K Tripathy
- School of Chemical Technology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India
| | - Ramesh Kumar
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | | | - Amrita Mishra
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India.
| |
Collapse
|
34
|
Pütz E, Gazanis A, Keltsch NG, Jegel O, Pfitzner F, Heermann R, Ternes TA, Tremel W. Communication Breakdown: Into the Molecular Mechanism of Biofilm Inhibition by CeO 2 Nanocrystal Enzyme Mimics and How It Can Be Exploited. ACS NANO 2022; 16:16091-16108. [PMID: 36174231 DOI: 10.1021/acsnano.2c04377] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Bacterial biofilm formation is a huge problem in industry and medicine. Therefore, the discovery of anti-biofilm agents may hold great promise. Biofilm formation is usually a consequence of bacterial cell-cell communication, a process called quorum sensing (QS). CeO2 nanocrystals (NCs) have been established as haloperoxidase (HPO) mimics and ecologically beneficial biofilm inhibitors. They were suggested to interfere with QS, a mechanism termed quorum quenching (QQ), but their molecular mechanism remained elusive. We show that CeO2 NCs are effective QQ agents, inactivating QS signals by bromination. Catalytic bromination of 3-oxo-C12-AHL a QS signaling compound used by Pseudomonas aeruginosa, was detected in the presence of CeO2 NCs, bromide ions, and hydrogen peroxide. Brominated acyl-homoserine lactones (AHLs) no longer act as QS signals but were not detected in the bacterial cultures. Externally added brominated AHLs also disappeared in P. aeruginosa cultures within minutes of their addition, indicating that they are rapidly degraded by the bacteria. Moreover, we detected the catalytic bromination of 2-heptyl-1-hydroxyquinolin-4(1H)-one (HQNO), a multifunctional non-AHL QS signal from P. aeruginosa with antibacterial and algicidal properties controlling the expression of many virulence genes. Brominated HQNO was not degraded by the bacteria in vivo. The repression of the Pseudomonas quinolone signal (PQS) production and biofilm formation in P. aeruginosa through the catalytic formation of Br-HQNO on surfaces with coatings containing CeO2 enzyme mimics validates the non-toxic strategy for the development of anti-infectives.
Collapse
Affiliation(s)
- Eva Pütz
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Athanasios Gazanis
- Mikrobiologie und Biotechnologie, Institut für Molekulare PhysiologieJohannes Gutenberg-Universität Mainz, Biozentrum II, Hanns-Dieter-Hüsch-Weg 17, D-55128 Mainz, Germany
| | - Nils Gert Keltsch
- Bundesanstalt für Gewässerkunde, Am Mainzer Tor 1, D-56068 Koblenz, Germany
| | - Olga Jegel
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Felix Pfitzner
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Ralf Heermann
- Mikrobiologie und Biotechnologie, Institut für Molekulare PhysiologieJohannes Gutenberg-Universität Mainz, Biozentrum II, Hanns-Dieter-Hüsch-Weg 17, D-55128 Mainz, Germany
| | - Thomas A Ternes
- Bundesanstalt für Gewässerkunde, Am Mainzer Tor 1, D-56068 Koblenz, Germany
| | - Wolfgang Tremel
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| |
Collapse
|
35
|
Sharma G, Alle M, Son H, Kim JC. Dialdehyde modification of laminarin for facile synthesis of ultrafine silver nanoparticles with excellent antibacterial and wound healing properties. Int J Biol Macromol 2022; 222:1364-1375. [PMID: 36179872 DOI: 10.1016/j.ijbiomac.2022.09.228] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/24/2022] [Accepted: 09/24/2022] [Indexed: 11/05/2022]
Abstract
Laminarin is a promising marine biopolymer that is abundant, non-toxic, and biodegradable. However, laminarin has a weak reduction potential for metal ions, resulting in the synthesis of a lower content of large-sized silver nanoparticles (AgNPs). Here, we showed that after the introduction of aldehyde groups, the reduction potential of laminarin increased, decreasing the synthesis time and increasing the density of AgNPs. 1H NMR and FT-IR confirmed the addition of aldehyde groups on laminarin. The dialdehyde-modified laminarin (DLAM) showed in situ, simple, and rapid synthesis of ultrasmall-sized spherical AgNPs (<10 nm), as revealed by TEM images. The aldehyde and carboxyl groups of DLAM act as synchronized reducing and anchoring agents. The conversion of Ag ions into AgNPs-DLAM was confirmed by UV-Vis spectrophotometer, FTIR, XRD, and XPS analysis. The AgNPs-DLAM showed significantly enhanced antibacterial activities than silver ions against Escherichia coli and Staphylococcus aureus via causing morphological changes and pore formations in bacterial cells. The AgNPs-DLAM also inhibited bacterial biofilm formation. In contrast, the AgNPs-DLAM showed negligible toxicity toward human keratinocytes. Furthermore, AgNPs-DLAM increased the migration of human keratinocytes, indicating efficient wound healing properties. Thus, signifying the importance of AgNPs-DLAM in clinical applications.
Collapse
Affiliation(s)
- Garima Sharma
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Madhusudhan Alle
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyeonki Son
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jin-Chul Kim
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
36
|
Ihadjadene Y, Walther T, Krujatz F. Optimized Protocol for Microalgae DNA Staining with SYTO9/SYBR Green I, Based on Flow Cytometry and RSM Methodology: Experimental Design, Impacts and Validation. Methods Protoc 2022; 5:76. [PMID: 36287048 PMCID: PMC9612149 DOI: 10.3390/mps5050076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Multiple fluorochromes are extensively used to investigate different microalgal aspects, such as viability and physiology. Some of them can be used to stain nucleic acids (DNA). Well-known examples are SYBR Green I and SYTO 9, the latter of which offers several advantages, especially when combined with flow cytometry (FCM)—a powerful method for studying microalgal population heterogeneity and analyzing their cell cycles. However, the effects of these dyes on the microalgae cell physiology have not been fully elucidated yet. A statistical experimental design, using response surface methodology (RSM) with FCM was applied in this study to optimize the DNA staining of a non-conventional microalgae, Chromochloris zofingiensis, with SYBR Green I and SYTO 9, and to optimize the variables affecting staining efficiency, i.e., the dye concentration, incubation time and staining temperature. We found that none of these factors affects the staining efficiency, which was not less than 99.65%. However, for both dyes, the dye concentration was shown to be the most significant factor causing cell damage (p-values: 0.0003; <0.0001) for SYBR Green I and SYTO 9, respectively. The staining temperature was only significant for SYTO 9 (p-value: 0.0082), and no significant effect was observed regarding the incubation time for both dyes. The values of the optimized parameters (0.5 µM, 05 min and 25 °C) for SYTO 9 and (0.5 X, 5 min and 25 °C) for SYBR Green I resulted in the maximum staining efficiency (99.8%; 99.6%), and the minimum damaging effects (12.86%; 13.75%) for SYTO 9 and SYBR Green I, respectively. These results offer new perspectives for improving the use of DNA staining fluorochromes and provides insights into their possible side effects on microalgae.
Collapse
Affiliation(s)
- Yob Ihadjadene
- Institute of Natural Materials Technology, Technische Universität Dresden, 01069 Dresden, Germany
| | - Thomas Walther
- Institute of Natural Materials Technology, Technische Universität Dresden, 01069 Dresden, Germany
| | - Felix Krujatz
- Institute of Natural Materials Technology, Technische Universität Dresden, 01069 Dresden, Germany
- Biotopa gGmbH—Center for Applied Aquaculture & Bioeconomy, 01454 Radeberg, Germany
- Faculty of Natural and Environmental Sciences, University of Applied Sciences Zittau/Görlitz, 02763 Zittau, Germany
| |
Collapse
|
37
|
Wang RF, Wang R. Modification of polyacrylonitrile-derived carbon nanofibers and bacteriophages on screen-printed electrodes: A portable electrochemical biosensor for rapid detection of Escherichia coli. Bioelectrochemistry 2022; 148:108229. [PMID: 35987062 DOI: 10.1016/j.bioelechem.2022.108229] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/16/2022] [Accepted: 08/09/2022] [Indexed: 11/02/2022]
Abstract
A facile method was developed for fabricating a disposable phage-based electrochemical biosensor for the detection of Escherichia coli. Bare screen-printed electrodes (SPEs) were modified using a two-step drop-casting method, in which polyacrylonitrile-derived electrospun carbon nanofibers (CNFs) were deposited, followed by E. coli bacteriophage immobilization. The deposition of CNFs increased the surface area for bacteriophage immobilization while maintaining a conductive link for ferro/ferricyanide redox transitions. Cyclic voltammetry and electrochemical impedance spectroscopy confirmed that the CNF modification increased the electron-transfer rate, whereas bacteriophages and E. coli blocked electron transfer at the electrode. The biosensor achieved a response within 10 min and a linear response in the E. coli concentration range of 102-106 CFU/mL. A limit of detection (LOD) of 36 CFU/mL in phosphate-buffered saline was achieved, which is the lowest LOD reported thus far for phage-based disposable SPE sensors. The biosensor exhibited recovery rates between 106 % and 119 % for E. coli detection in apple juice. The proposed fabrication method allowed electrodes to be obtained from different production batches with remarkable consistency and reproducibility, and they remained stable at room temperature for one month. Thus, a phage-based disposable SPE that can be used for bacterial detection was developed for the first time.
Collapse
Affiliation(s)
- Ruo-Fan Wang
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Reuben Wang
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei, Taiwan; Master of Public Health Program, College of Public Health, National Taiwan University, Taipei, Taiwan; Global Innovation Joint-Degree Program (GIP)-TRIAD, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
38
|
Antibacterial and Antibiofilm Potency of Menadione Against Multidrug-Resistant S. aureus. Curr Microbiol 2022; 79:282. [PMID: 35934752 DOI: 10.1007/s00284-022-02975-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/11/2022] [Indexed: 11/03/2022]
Abstract
Menadione is an analogue of 1,4-naphthoquinone (1,4-NQ) that possesses enormous pharmaceutical potential. The minimum inhibitory concentration (MIC) of menadione was determined against eighteen pathogens of the ESKAPE category, including thirteen multidrug-resistant (MDR) and five standard strains. From a total of eighteen pathogens, five strains of S. aureus (four: MDR and one: Standard strain) were considered further for detailed studies. This study included the determination of minimum bactericidal concentration (MBC), time-kill assay, scanning electron microscopic technique (SEM), and detection of reactive oxygen species (ROS). Additionally, the effect of menadione on biofilms of three strains of S. aureus was performed through crystal violet assay, SEM, and confocal laser scanning microscopy (CLSM). Menadione exerted substantial antibacterial activity against S. aureus (S8, S9, NCIM 5021) at a lower MIC (64 µg/mL). Whereas, the MIC of 256 µg/mL was displayed against J2 and J4 (MDR and biofilm-forming strains). The time-killing effect of menadione against S. aureus strains was observed after 9 h at MBCs of 64 µg/mL (NCIM 5021), 128 µg/mL (S8, S9), and 512 µg/mL (J2, J4). Enhanced levels of ROS in all five S. aureus were observed in presence of menadione (MICs and MBCs). The relation of enhanced ROS due to menadione activity invigorated us to explore its effect on S. aureus biofilms. We report menadione-mediated inhibition (> 90%) of biofilm formation (at respective MICs) and effect on preformed biofilms (> 85%) at 1024 µg/mL. Menadione possessing antibacterial and antibiofilm potentials are imperative in the era of multidrug resistance developed by bacterial pathogens.
Collapse
|
39
|
Zhu Y, Liu L, Chen S, Han D, Wang C. Silver Ion Loaded Agarose-Hyaluronic Acid Hydrogel as a Potential Antibacterial Wound Dressing. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Wound infection, especially chronic ones, not only increases the opportunity to generate superbacteria but also imposes significant burden, both physically and mentally, on the patients. Therefore, the development of suitable wound addressing is an important way to deal with this matter.
Here in this study, we employed the good gelling property of agarose (AR) and the wound healing promotion effect of hyaluronic acid (HA) to prepare an agarose-hyaluronic acid hydrogel. The AR-HA gel was loaded with silver ion (Ag+ from AgNO3) upon gelling (AR-HA/Ag) and
finally applied as a potential wound dressing for antibacterial treatment and healing promotion of wounds. Our results suggested that the AR-HA/Ag hydrogel maintained the antibacterial efficacy of Ag+ while significantly promoted the healing of human umbilical vein endothelial cells
(HUVEC) due to the cell proliferation promotion effect of HA. Taken together, AR-HA/Ag might be a potential antibacterial wound dressing for future application in clinic.
Collapse
Affiliation(s)
- Yun Zhu
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Li Liu
- School of Pharmacy, School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, People’s Republic of China
| | - Shaoqing Chen
- The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, People’s Republic of China
| | - Dan Han
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Cheng Wang
- The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213000, People’s Republic of China
| |
Collapse
|
40
|
Tian L, Wu M, Li H, Gong G. Transcriptome Analysis of
Micrococcus luteus
in Response to Treatment with Protocatechuic acid. J Appl Microbiol 2022; 133:3139-3149. [DOI: 10.1111/jam.15743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Lu Tian
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi'an shaanxi China
| | - Mi Wu
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi'an shaanxi China
| | - Hui Li
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi'an shaanxi China
| | - Guoli Gong
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi'an shaanxi China
| |
Collapse
|
41
|
Perliński P, Mudryk ZJ, Zdanowicz M, Kubera Ł. Abundance of Live and Dead Bacteriopsammon Inhabiting Sandy Ecosystems of Recreational Marine Beaches of the Southern Baltic Sea. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02079-5. [PMID: 35876854 DOI: 10.1007/s00248-022-02079-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The study was carried out on four non-tidal sandy marine beaches located on the Polish part of the southern Baltic Sea coast. We applied a LIVE/DEAD™ BacLight™ Bacterial Viability Kit (Invitrogen™) method to determine the abundance of live and dead bacteriopsammon. Live psammon bacteria cells constituted 31-53% of the total number of bacteria inhabiting sand of the studied beaches. Abundance of live and dead psammon bacteria generally differed along the horizontal profile in all beaches. The maximum density of bacteria was noted in the dune and the middle part of the beach (dry zones) and the minimum in wet zones, i.e., under seawater surface and at the swash zone. Generally along the vertical profile, the highest numbers of two studied bacterial groups were noted in the surface sand layer, while with increasing sediment depth their numbers significantly decreased. The abundance of live and dead bacteria showed a distinct seasonal variation.
Collapse
Affiliation(s)
- Piotr Perliński
- Department of Experimental Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Arciszewskiego 22B str, 76-200, Słupsk, Poland.
| | - Zbigniew Jan Mudryk
- Department of Experimental Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Arciszewskiego 22B str, 76-200, Słupsk, Poland
| | - Marta Zdanowicz
- Department of Experimental Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Arciszewskiego 22B str, 76-200, Słupsk, Poland
| | - Łukasz Kubera
- Department of Microbiology and Immunobiology, Faculty of Biological Sciences, Kazimierz Wielki University, Al. Powstańców Wielkopolskich 10, 85-090, Bydgoszcz, Poland
| |
Collapse
|
42
|
Jin N, Liu Y, Wang X, Yang K, Zhang D, Ding A. In-vitro toxicity assessment of Eucalyptus robusta Smith extracts via whole-cell bioreporter. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 240:113704. [PMID: 35653968 DOI: 10.1016/j.ecoenv.2022.113704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/07/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Eucalyptus is widely planted in China for wood industries, and there are increasing concerns about its ecotoxicity in the environment. This study explored the in-vitro toxicity of Eucalyptus extracts by assessing the impacts of water-soluble and dimethylsulfoxide (DMSO)-soluble fractions via a whole-cell bioreporter, Acinetobacter baylyi ADPWH_recA. Compounds identified in Eucalyptus extracts included one tannin, two phenolic acids, four terpenoids, four glycosides, and five flavonoids. The leaf extracts contained more biological-active components than barks and roots. Genotoxicity induced by Eucalyptus extracts was mainly associated with water extracts (e.g., flavonoids, phenolic acids) instead of DMSO extracts. The significant cytotoxicity was explained by programmed cell death (PCD), suggested by the results of propidium iodide (PI) and 2',7'-dichlorofluorescein-diacetate (DCFH-DA) assays. Generally, water-soluble fractions contributed more toxicities than DMSO-soluble fractions, particularly at high concentrations. A robust linear regression was built between the compromised toxicity and PCD index (Compromised toxicity = -2.192 × PCD index + 2.219; R2 = 0.8886), suggesting a PCD-dependent compromised toxicity which was greatly underestimated. Our results implied non-neglectable ecotoxicological risks of Eucalyptus extracts, hinting at the possible magnified ecological impacts of its large-scale plantation and the potential adverse outcomes to the surrounding ecosystems.
Collapse
Affiliation(s)
- Naifu Jin
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Yueqiao Liu
- Experiment and Practice Innovation Education Center, Beijing Normal University at Zhuhai, Zhuhai 519087, PR China
| | - Xinzi Wang
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Kai Yang
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Dayi Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Changchun 130021, PR China; College of New Energy and Environment, Jilin University, Changchun 130021, PR China.
| | - Aizhong Ding
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
43
|
Ndukwe ARN, Wiedbrauk S, Boase NRB, Fairfull‐Smith KE. Strategies to Improve the Potency of Oxazolidinones towards Bacterial Biofilms. Chem Asian J 2022; 17:e202200201. [PMID: 35352479 PMCID: PMC9321984 DOI: 10.1002/asia.202200201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Indexed: 11/29/2022]
Abstract
Biofilms are part of the natural lifecycle of bacteria and are known to cause chronic infections that are difficult to treat. Most antibiotics are developed and tested against bacteria in the planktonic state and are ineffective against bacterial biofilms. The oxazolidinones, including the last resort drug linezolid, are one of the main classes of synthetic antibiotics progressed to clinical use in the last 50 years. They have a unique mechanism of action and only develop low levels of resistance in the clinical setting. With the aim of providing insight into strategies to design more potent antibiotic compounds with activity against bacterial biofilms, we review the biofilm activity of clinically approved oxazolidinones and report on structural modifications to oxazolidinones and their delivery systems which lead to enhanced anti-biofilm activity.
Collapse
Affiliation(s)
- Audrey R. N. Ndukwe
- School of Chemistry and Physics, Faculty of ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
- Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
| | - Sandra Wiedbrauk
- School of Chemistry and Physics, Faculty of ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
- Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
| | - Nathan R. B. Boase
- School of Chemistry and Physics, Faculty of ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
- Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
| | - Kathryn E. Fairfull‐Smith
- School of Chemistry and Physics, Faculty of ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
- Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueensland4001Australia
| |
Collapse
|
44
|
Wang M, Ateia M, Hatano Y, Miyanaga K, Yoshimura C. Novel fluorescence-based method for rapid quantification of live bacteria in river water and treated wastewater. ENVIRONMENTAL SCIENCE. ADVANCES 2022; 1:30-36. [PMID: 36778842 PMCID: PMC9909780 DOI: 10.1039/d1va00017a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Monitoring bacteria is essential for ensuring microbial safety of water sources, including river water and treated wastewater. The plate count method is common for monitoring bacterial abundance, although it cannot detect all live bacteria such as viable but non-culturable bacteria, causing underestimation of microbial risks. Live/Dead BacLight kit, involving fluorochromes SYTO 9 and propidium iodide (PI), provides an alternative to assess bacterial viability using flow cytometry or microscopy. However, its application is limited due to the high cost of flow cytometry and the inapplicability of microscopy to most environmental waters. Thus, this study introduces the combination of BacLight kit and fluorescence spectroscopy for quantifying live bacteria in river water and treated wastewater. Mixtures of live and dead Escherichia coli (E. coli) with various ratios and total cell concentrations were stained with SYTO 9 and PI and measured by fluorescence spectroscopy. The fluorescence emission peak area of SYTO 9 in the range of 500-510 nm at the excitation wavelength of 470 nm correlates linearly with the viable cell counts (R 2 > 0.99, p < 0.0001) with only slight variations in the complex water matrix. The tested method can quantify the live E. coli from 3.67 × 104 to 2.70 × 107 cells per mL. This method is simple, sensitive and reliable for quantifying live bacteria in environmental water, which can be later integrated into real-time monitoring systems.
Collapse
Affiliation(s)
- Manna Wang
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Mohamed Ateia
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
- United States Environmental Protection Agency, Center for Environmental Solutions & Emergency Response, Cincinnati, OH, USA
| | - Yuta Hatano
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Kazuhiko Miyanaga
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Chihiro Yoshimura
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| |
Collapse
|
45
|
Wang H, You W, Wu B, Nie X, Xia L, Wang C, You YZ. Phenylboronic acid-functionalized silver nanoparticles for highly efficient and selective bacterial killing. J Mater Chem B 2022; 10:2844-2852. [PMID: 35293932 DOI: 10.1039/d2tb00320a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
With the widespread use of antibiotics, the number of severe infections caused by unknown pathogens is increasing and novel antibacterial agents with high antibacterial efficiency and selective bacterial killing are urgently needed. In this work, we developed a new kind of functional material based on silver nanoparticles (AgNPs), whose surfaces were functionalized with phenylboronic acid (AgNPs-PBAn). The phenylboronic acid groups on the surface of AgNPs-PBAn could form covalent bonds with the cis-diol groups of lipopolysaccharide or teichoic acid on the bacterial surface, which highly promoted the interaction between AgNPs-PBAn and bacteria, resulting in a very strong enhancement of their antibacterial action via membrane disruption. The scanning electron microscopy images revealed that the accumulation of phenylboronic acid-functionalized AgNPs on the bacterial surface is much more than that of the nonfunctionalized AgNPs. Importantly, the antibacterial efficiency of the phenylboronic acid-functionalized AgNPs on a series of bacteria is 32 times higher than that of bare AgNPs. Moreover, AgNPs-PBAn showed a high selectivity toward bacteria with an IC50 (half maximal inhibitory concentration to mammalian cells) more than 160 times its MBC (minimum bactericidal concentration). In a model of an E. coli-infected wound in vivo, AgNPs-PBAn could effectively kill the bacteria with an accelerated wound healing rate. This study demonstrates that phenylboronic acid surface functionalization is an efficient way to drastically promote the antibacterial activity of AgNPs, improving the selectivity of silver-based nanoparticles against a variety of bacteria.
Collapse
Affiliation(s)
- Haili Wang
- The Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China. .,CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Wei You
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Bin Wu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Xuan Nie
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Lei Xia
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Changhui Wang
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China.
| | - Ye-Zi You
- The Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China. .,CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
46
|
Abstract
Members of the genus Kocuria are often found in soils contaminated with toxic metals or exposed to high levels of ionizing radiation. The use of classical cultivation technics often leads to the isolation of Kocuria sp. from underground spring waters. These bacterial isolates have to adapt their metabolism to survive in such extreme environments. Four bacterial isolates of the genus Kocuria (Kocuria sp. 101, 208, 301, and 401) were obtained from radon spring water (Jachymov, Czech Republic). These isolates were tested for their ability to withstand stress and extreme conditions. Growth was observed at a temperature range of 10–45 °C with optimal growth temperature between 20 and 30 °C. The content of polyunsaturated fatty acids in all four isolates was proved to be temperature-dependent. The strain Kocuria sp. 301 showed high resistance to all studied extreme conditions (UV radiation, desiccation, and free radicals in medium). The results suggest that isolates from radioactive springs might have developed mechanisms that help them survive under several extreme conditions and could be used in biotechnological production.
Collapse
|
47
|
Jegel O, Pfitzner F, Gazanis A, Oberländer J, Pütz E, Lange M, von der Au M, Meermann B, Mailänder V, Klasen A, Heermann R, Tremel W. Transparent polycarbonate coated with CeO 2 nanozymes repel Pseudomonas aeruginosa PA14 biofilms. NANOSCALE 2021; 14:86-98. [PMID: 34897345 DOI: 10.1039/d1nr03320d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Highly transparent CeO2/polycarbonate surfaces were fabricated that prevent adhesion, proliferation, and the spread of bacteria. CeO2 nanoparticles with diameters of 10-15 nm and lengths of 100-200 nm for this application were prepared by oxidizing aqueous dispersions of Ce(OH)3 with H2O2 in the presence of nitrilotriacetic acid (NTA) as the capping agent. The surface-functionalized water-dispersible CeO2 nanorods showed high catalytic activity in the halogenation reactions, which makes them highly efficient functional mimics of haloperoxidases. These enzymes are used in nature to prevent the formation of biofilms through the halogenation of signaling compounds that interfere with bacterial cell-cell communication ("quorum sensing"). Bacteria-repellent CeO2/polycarbonate plates were prepared by dip-coating plasma-treated polycarbonate plates in aqueous CeO2 particle dispersions. The quasi-enzymatic activity of the CeO2 coating was demonstrated using phenol red enzyme assays. The monolayer coating of CeO2 nanorods (1.6 μg cm-2) and the bacteria repellent properties were demonstrated by atomic force microscopy, biofilm assays, and fluorescence measurements. The engineered polymer surfaces have the ability to repel biofilms as green antimicrobials on plastics, where H2O2 is present in humid environments such as automotive parts, greenhouses, or plastic containers for rainwater.
Collapse
Affiliation(s)
- Olga Jegel
- Johannes Gutenberg-Universität Mainz, Department Chemie, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - Felix Pfitzner
- Johannes Gutenberg-Universität Mainz, Department Chemie, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - Athanasios Gazanis
- Johannes-Gutenberg-Universität Mainz, Institut für Molekulare Physiologie, Biozentrum II, Mikrobiologie und Weinforschung, Hanns-Dieter-Hüsch-Weg 17, D-55128 Mainz, Germany.
| | | | - Eva Pütz
- Johannes Gutenberg-Universität Mainz, Department Chemie, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - Martin Lange
- Johannes Gutenberg-Universität Mainz, Department Chemie, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - Marcus von der Au
- Bundesanstalt für Materialforschung und -prüfung (BAM), Abteilung I: Analytische Chemie, Referenzmaterialien, Anorganische Spurenanalytik, D-12489 Berlin, Germany
| | - Björn Meermann
- Bundesanstalt für Materialforschung und -prüfung (BAM), Abteilung I: Analytische Chemie, Referenzmaterialien, Anorganische Spurenanalytik, D-12489 Berlin, Germany
| | - Volker Mailänder
- Max Planck Institute for Polymer Research, D-551128 Mainz, Germany
| | - Alexander Klasen
- Park Systems Europe GmbH, Schildkroetstraße 15, DE-68199 Mannheim, Germany
| | - Ralf Heermann
- Johannes-Gutenberg-Universität Mainz, Institut für Molekulare Physiologie, Biozentrum II, Mikrobiologie und Weinforschung, Hanns-Dieter-Hüsch-Weg 17, D-55128 Mainz, Germany.
| | - Wolfgang Tremel
- Johannes Gutenberg-Universität Mainz, Department Chemie, Duesbergweg 10-14, D-55128 Mainz, Germany.
| |
Collapse
|
48
|
Evaluation of the Membrane Damage Mechanism of Chlorogenic Acid against Yersinia enterocolitica and Enterobacter sakazakii and Its Application in the Preservation of Raw Pork and Skim Milk. Molecules 2021; 26:molecules26216748. [PMID: 34771154 PMCID: PMC8587693 DOI: 10.3390/molecules26216748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022] Open
Abstract
Plant-derived antimicrobial agents have adequate antimicrobial effects on food-borne pathogens, which can be used as food preservatives. The purpose of this study was to evaluate the antibacterial mechanism of chlorogenic acid (CA) against Yersinia enterocolitica and Enterobacter sakazakii. The minimum inhibitory concentration (MIC) of CA was determined by employing the broth microdilution method. Then, the cell function and morphological changes of Y. enterocolitica and E. sakazakii treated with CA were characterized. Finally, the growth inhibition models of Y. enterocolitica in raw pork and E. sakazakii in skim milk were constructed through the response surface methodology. The results demonstrated that CA has a satisfactory inhibitory effect against Y. enterocolitica and E. sakazakii with a MIC of 2.5 mg/mL. In addition, CA inhibited the growth of Y. enterocolitica and E. sakazakii via cell membrane damage, such as depolarization of the cell membrane, reduction in intracellular adenosine triphosphate (ATP) and pH levels, and destruction of cell morphology. Moreover, CA reduced two log cycles of Y. enterocolitica in raw pork and E. sakazakii in skim milk at a certain temperature. According to the corresponding findings, CA has the potential to be developed as an effective preservative to control Y. enterocolitica and E. sakazakii-associated foodborne diseases.
Collapse
|
49
|
Preliminary Study on Citrus Oils Antibacterial Activity Measured by Flow Cytometry: A Step-by-Step Development. Antibiotics (Basel) 2021; 10:antibiotics10101218. [PMID: 34680799 PMCID: PMC8533024 DOI: 10.3390/antibiotics10101218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 11/17/2022] Open
Abstract
Essential oils of Citrus sinensis and Citrus latifolia have shown biological functions as antiseptics, anti-inflammatories, antioxidants, antifungal and antimutagenic, so the evaluation of their antibacterial capacity, by themselves or in combination with standard antibiotics, presents an alternative for infection treatment. Flow cytometry opens the door for the design of faster and more accurate measurement of antibacterial activity. We use a SYTO9/PI staining system on E. coli ATCC 25922 to determine antibacterial activity by counting live and dead cells through flow cytometry. We found that dual staining showed highly variable results due to wavelength overlapping and instead we used fluorochrome individual staining that highly correlated with viable counts. Chloramphenicol and cefotaxime treatments did not present a dose-response behavior, rendered diffuse readings and/or gave filament formation on fluorescence microscopy. Amikacin was a better comparison standard because it presented a dose-response behavior. Essential oils had low antibacterial activity as compared to amikacin, with a maximum of 10% and 20% for C. latifolia and C. sinensis, respectively. Combinations of essential oils with antibiotic resulted in an unforeseen strong inhibition of amikacin activity. Although a low antibacterial activity was found, a series of standardization steps are proposed for antibacterial activity measurement by flow cytometry.
Collapse
|
50
|
Carrascosa C, Raheem D, Ramos F, Saraiva A, Raposo A. Microbial Biofilms in the Food Industry-A Comprehensive Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18042014. [PMID: 33669645 PMCID: PMC7922197 DOI: 10.3390/ijerph18042014] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/16/2022]
Abstract
Biofilms, present as microorganisms and surviving on surfaces, can increase food cross-contamination, leading to changes in the food industry’s cleaning and disinfection dynamics. Biofilm is an association of microorganisms that is irreversibly linked with a surface, contained in an extracellular polymeric substance matrix, which poses a formidable challenge for food industries. To avoid biofilms from forming, and to eliminate them from reversible attachment and irreversible stages, where attached microorganisms improve surface adhesion, a strong disinfectant is required to eliminate bacterial attachments. This review paper tackles biofilm problems from all perspectives, including biofilm-forming pathogens in the food industry, disinfectant resistance of biofilm, and identification methods. As biofilms are largely responsible for food spoilage and outbreaks, they are also considered responsible for damage to food processing equipment. Hence the need to gain good knowledge about all of the factors favouring their development or growth, such as the attachment surface, food matrix components, environmental conditions, the bacterial cells involved, and electrostatic charging of surfaces. Overall, this review study shows the real threat of biofilms in the food industry due to the resistance of disinfectants and the mechanisms developed for their survival, including the intercellular signalling system, the cyclic nucleotide second messenger, and biofilm-associated proteins.
Collapse
Affiliation(s)
- Conrado Carrascosa
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain;
- Correspondence: (C.C.); (A.R.)
| | - Dele Raheem
- Northern Institute for Environmental and Minority Law (NIEM), Arctic Centre, University of Lapland, 96101 Rovaniemi, Finland;
| | - Fernando Ramos
- Pharmacy Faculty, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, R. D. Manuel II, 55142 Apartado, Portugal
| | - Ariana Saraiva
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain;
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
- Correspondence: (C.C.); (A.R.)
| |
Collapse
|