1
|
Gregoricchio S, Kojic A, Hoogstraat M, Schuurman K, Stelloo S, Severson TM, O'Mara TA, Droog M, Singh AA, Glubb DM, Wessels LFA, Vermeulen M, van Leeuwen FE, Zwart W. Endometrial tumorigenesis involves epigenetic plasticity demarcating non-coding somatic mutations and 3D-genome alterations. Genome Biol 2025; 26:124. [PMID: 40346709 PMCID: PMC12063248 DOI: 10.1186/s13059-025-03596-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 04/28/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND The incidence and mortality of endometrial cancer (EC) is on the rise. Eighty-five percent of ECs depend on estrogen receptor alpha (ERα) for proliferation, but little is known about its transcriptional regulation in these tumors. RESULTS We generate epigenomics, transcriptomics, and Hi-C datastreams in healthy and tumor endometrial tissues, identifying robust ERα reprogramming and profound alterations in 3D genome organization that lead to a gain of tumor-specific enhancer activity during EC development. Integration with endometrial cancer risk single-nucleotide polymorphisms and whole-genome sequencing data from primary tumors and metastatic samples reveals a striking enrichment of risk variants and non-coding somatic mutations at tumor-enriched ERα sites. Through machine learning-based predictions and interaction proteomics analyses, we identify an enhancer mutation which alters 3D genome conformation, impairing recruitment of the transcriptional repressor EHMT2/G9a/KMT1C, thereby alleviating transcriptional repression of ESR1 in EC. CONCLUSIONS In summary, we identify a complex genomic-epigenomic interplay in EC development and progression, altering 3D genome organization to enhance expression of the critical driver ERα.
Collapse
Affiliation(s)
- Sebastian Gregoricchio
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | - Aleksandar Kojic
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Marlous Hoogstraat
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Karianne Schuurman
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Suzan Stelloo
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Geert Grooteplein Zuid 28, 6525GA, Nijmegen, The Netherlands
| | - Tesa M Severson
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Tracy A O'Mara
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Locked Bag 2000, Brisbane, QLD, 4029, Australia
| | - Marjolein Droog
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Abhishek A Singh
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Dylan M Glubb
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Locked Bag 2000, Brisbane, QLD, 4029, Australia
| | - Lodewyk F A Wessels
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Geert Grooteplein Zuid 28, 6525GA, Nijmegen, The Netherlands
- Division of Molecular Genetics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Flora E van Leeuwen
- Department of Epidemiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
| |
Collapse
|
2
|
Joshua A, Allen KE, Orsi NM. An Overview of Artificial Intelligence in Gynaecological Pathology Diagnostics. Cancers (Basel) 2025; 17:1343. [PMID: 40282519 PMCID: PMC12025868 DOI: 10.3390/cancers17081343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/24/2025] [Accepted: 03/30/2025] [Indexed: 04/29/2025] Open
Abstract
Background: The advent of artificial intelligence (AI) has revolutionised many fields in healthcare. More recently, it has garnered interest in terms of its potential applications in histopathology, where algorithms are increasingly being explored as adjunct technologies that can support pathologists in diagnosis, molecular typing and prognostication. While many research endeavours have focused on solid tumours, gynaecological malignancies have nevertheless been relatively overlooked. The aim of this review was therefore to provide a summary of the status quo in the field of AI in gynaecological pathology by encompassing malignancies throughout the entirety of the female reproductive tract rather than focusing on individual cancers. Methods: This narrative/scoping review explores the potential application of AI in whole slide image analysis in gynaecological histopathology, drawing on both findings from the research setting (where such technologies largely remain confined), and highlights any findings and/or applications identified and developed in other cancers that could be translated to this arena. Results: A particular focus is given to ovarian, endometrial, cervical and vulval/vaginal tumours. This review discusses different algorithms, their performance and potential applications. Conclusions: The effective application of AI tools is only possible through multidisciplinary co-operation and training.
Collapse
Affiliation(s)
- Anna Joshua
- Christian Medical College, Vellore 632004, Tamil Nadu, India;
| | - Katie E. Allen
- Women’s Health Research Group, Leeds Institute of Cancer & Pathology, Wellcome Trust Brenner Building, St James’s University Hospital, Beckett Street, Leeds LS9 7TF, UK;
| | - Nicolas M. Orsi
- Women’s Health Research Group, Leeds Institute of Cancer & Pathology, Wellcome Trust Brenner Building, St James’s University Hospital, Beckett Street, Leeds LS9 7TF, UK;
| |
Collapse
|
3
|
Adjei NN, Bowen MB, Wilke RN, Yates MS, Westin SN. Uterine-Conserving Treatment Options for Atypical Endometrial Hyperplasia and Early Endometrial Cancer. Curr Oncol Rep 2024; 26:1367-1379. [PMID: 39361076 PMCID: PMC11793993 DOI: 10.1007/s11912-024-01603-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2024] [Indexed: 11/21/2024]
Abstract
PURPOSE OF REVIEW This review aims to synthesize available literature on uterine-conserving treatment options for atypical endometrial hyperplasia and grade 1 endometrial carcinoma while highlighting remaining unanswered questions. RECENT FINDINGS The need for uterine-conserving treatment options for atypical endometrial hyperplasia and grade 1 endometrial carcinoma is growing with the increasing number of cases in younger patients or those who cannot undergo surgery. We reviewed the oncological and reproductive outcomes associated with endocrine therapies used for atypical endometrial hyperplasia and grade 1 endometrial carcinoma. The rising prevalence of delayed childbearing, obesity, and diabetes in reproductive-age individuals and of medical comorbidities associated with high surgical risk continues to amplify the demand for uterine-conserving therapies. Appropriate patient selection for such therapies is imperative to maximize likelihood of treatment response. The ideal candidates are patients with atypical endometrial hyperplasia or early-stage, low-grade endometrial cancer with no evidence of myometrial invasion or extrauterine disease. The most accepted conservative therapeutic approach is hormonal therapy with close surveillance, with or without eventual hysterectomy following childbearing or failure of treatment. Further prospective and randomized trials are needed to address optimal patient and treatment selection, as well as the use of molecular profiling for treatment individualization and prognostication.
Collapse
Affiliation(s)
- Naomi N Adjei
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Unit 1362, Houston, TX 77030, CPB6.3279, USA
| | - Mikayla Borthwick Bowen
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Unit 1362, Houston, TX 77030, CPB6.3279, USA
| | - Roni Nitecki Wilke
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Unit 1362, Houston, TX 77030, CPB6.3279, USA
| | - Melinda S Yates
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Shannon N Westin
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Unit 1362, Houston, TX 77030, CPB6.3279, USA.
| |
Collapse
|
4
|
Ribeiro-Santos P, Martins Vieira C, Viana Veloso GG, Vieira Giannecchini G, Parenza Arenhardt M, Müller Gomes L, Zanuncio P, Silva Brandão F, Nogueira-Rodrigues A. Tailoring Endometrial Cancer Treatment Based on Molecular Pathology: Current Status and Possible Impacts on Systemic and Local Treatment. Int J Mol Sci 2024; 25:7742. [PMID: 39062983 PMCID: PMC11276773 DOI: 10.3390/ijms25147742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Endometrial cancer (EC) is a heterogeneous disease with a rising incidence worldwide. The understanding of its molecular pathways has evolved substantially since The Cancer Genome Atlas (TCGA) stratified endometrial cancer into four subgroups regarding molecular features: POLE ultra-mutated, microsatellite instability (MSI) hypermutated, copy-number high with TP53 mutations, and copy-number low with microsatellite stability, also known as nonspecific molecular subtype (NSMP). More recently, the International Federation of Gynecology and Obstetrics (FIGO) updated their staging classification to include information about POLE mutation and p53 status, as the prognosis differs according to these characteristics. Other biomarkers are being identified and their prognostic and predictive role in response to therapies are being evaluated. However, the incorporation of molecular aspects into treatment decision-making is challenging. This review explores the available data and future directions on tailoring treatment based on molecular subtypes, alongside the challenges associated with their testing.
Collapse
Affiliation(s)
- Pedro Ribeiro-Santos
- Oncoclínicas&Co—Medica Scientia Innovation Research (MEDSIR), São Paulo 04542-390, Brazil
- Brazilian Group of Gynecologic Oncology (EVA), Rio de Janeiro 35500-025, Brazil
| | - Carolina Martins Vieira
- Oncoclínicas&Co—Medica Scientia Innovation Research (MEDSIR), São Paulo 04542-390, Brazil
- Brazilian Group of Gynecologic Oncology (EVA), Rio de Janeiro 35500-025, Brazil
| | - Gilson Gabriel Viana Veloso
- Oncoclínicas&Co—Medica Scientia Innovation Research (MEDSIR), São Paulo 04542-390, Brazil
- Department of Oncology, Santa Casa de Belo Horizonte, Belo Horizonte 30150-221, Brazil
| | - Giovanna Vieira Giannecchini
- Oncoclínicas&Co—Medica Scientia Innovation Research (MEDSIR), São Paulo 04542-390, Brazil
- Brazilian Group of Gynecologic Oncology (EVA), Rio de Janeiro 35500-025, Brazil
| | - Martina Parenza Arenhardt
- Oncoclínicas&Co—Medica Scientia Innovation Research (MEDSIR), São Paulo 04542-390, Brazil
- Brazilian Group of Gynecologic Oncology (EVA), Rio de Janeiro 35500-025, Brazil
| | - Larissa Müller Gomes
- Oncoclínicas&Co—Medica Scientia Innovation Research (MEDSIR), São Paulo 04542-390, Brazil
- Brazilian Group of Gynecologic Oncology (EVA), Rio de Janeiro 35500-025, Brazil
| | - Pedro Zanuncio
- Oncoclínicas&Co—Medica Scientia Innovation Research (MEDSIR), São Paulo 04542-390, Brazil
- Department of Radiotherapy, Hospital Beneficência Portuguesa de São Paulo, São Paulo 01323-001, Brazil
| | - Flávio Silva Brandão
- Oncoclínicas&Co—Medica Scientia Innovation Research (MEDSIR), São Paulo 04542-390, Brazil
- Department of Oncology, Santa Casa de Belo Horizonte, Belo Horizonte 30150-221, Brazil
| | - Angélica Nogueira-Rodrigues
- Oncoclínicas&Co—Medica Scientia Innovation Research (MEDSIR), São Paulo 04542-390, Brazil
- Brazilian Group of Gynecologic Oncology (EVA), Rio de Janeiro 35500-025, Brazil
- Department of Medicine, Federal University of Minas Gerais—UFMG, Belo Horizonte 30130-100, Brazil
- DOM Oncologia, Belo Horizonte 30190-111, Brazil
| |
Collapse
|
5
|
Paraghamian SE, Qiu J, Hawkins GM, Zhao Z, Sun W, Fan Y, Zhang X, Suo H, Hao T, Prabhu VV, Allen JE, Zhou C, Bae-Jump V. A novel dopamine receptor D2 antagonist (ONC206) potentiates the effects of olaparib in endometrial cancer. Cancer Biol Ther 2023; 24:2202104. [PMID: 37069726 PMCID: PMC10115124 DOI: 10.1080/15384047.2023.2202104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/10/2023] [Indexed: 04/19/2023] Open
Abstract
Poly ADP-ribose polymerase (PARP) inhibitors are effective therapies for cancer patients with homologous recombination (HR) deficient tumors. The imipridone ONC206 is an orally bioavailable dopamine receptor D2 antagonist and mitochondrial protease ClpP agonist that has anti-tumorigenic effects in endometrial cancer via induction of apoptosis, activation of the integrated stress response and modulation of PI3K/AKT signaling. Both PARP inhibitors and imipridones are being evaluated in endometrial cancer clinical trials but have yet to be explored in combination. In this manuscript, we evaluated the effects of the PARP inhibitor olaparib in combination with ONC206 in human endometrioid endometrial cancer cell lines and in a genetically engineered mouse model of endometrial cancer. Our results showed that simultaneous exposure of endometrial cancer cells to olaparib and ONC206 resulted in synergistic anti-proliferative effects and increased cellular stress and apoptosis in both cell lines, compared to either drug alone. The combination treatment also decreased expression of the anti-apoptotic protein Bcl-2 and reduced phosphorylation of AKT and S6, with greater effects compared to either drug alone. In the transgenic model of endometrial cancer, the combination of olaparib and ONC206 resulted in a more significant reduction in tumor weight in obese and lean mice compared to ONC206 alone or olaparib alone, together with a considerably decreased Ki-67 and enhanced H2AX expression in obese and lean mice. These results suggest that this novel dual therapy may be worthy of further exploration in clinical trials.
Collapse
Affiliation(s)
- Sarah E. Paraghamian
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jianqing Qiu
- Department of Obstetrics and Gynecology, the Second Hospital of Shandong University, Jinan, China
| | - Gabrielle M. Hawkins
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ziyi Zhao
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Wenchuan Sun
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Obstetrics and Gynecology, the Second Hospital of Shandong University, Jinan, China
| | - Yali Fan
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Xin Zhang
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Hongyan Suo
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Tianran Hao
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - Chunxiao Zhou
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Victoria Bae-Jump
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
6
|
Kim T, Lim H, Jun S, Park J, Lee D, Lee JH, Lee JY, Bang D. Globally shared TCR repertoires within the tumor-infiltrating lymphocytes of patients with metastatic gynecologic cancer. Sci Rep 2023; 13:20485. [PMID: 37993659 PMCID: PMC10665396 DOI: 10.1038/s41598-023-47740-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023] Open
Abstract
Gynecologic cancer, including ovarian cancer and endometrial cancer, is characterized by morphological and molecular heterogeneity. Germline and somatic testing are available for patients to screen for pathogenic variants in genes such as BRCA1/2. Tissue expression levels of immunogenomic markers such as PD-L1 are also being used in clinical research. The basic therapeutic approach to gynecologic cancer combines surgery with chemotherapy. Immunotherapy, while not yet a mainstream treatment for gynecologic cancers, is advancing, with Dostarlimab recently receiving approval as a treatment for endometrial cancer. The goal remains to harness stimulated immune cells in the bloodstream to eradicate multiple metastases, a feat currently deemed challenging in a typical clinical setting. For the discovery of novel immunotherapy-based tumor targets, tumor-infiltrating lymphocytes (TILs) give a key insight on tumor-related immune activities by providing T cell receptor (TCR) sequences. Understanding the TCR repertoires of TILs in metastatic tissues and the circulation is important from an immunotherapy standpoint, as a subset of T cells in the blood have the potential to help kill tumor cells. To explore the relationship between distant tissue biopsy regions and blood circulation, we investigated the TCR beta chain (TCRβ) in bulk tumor and matched blood samples from 39 patients with gynecologic cancer. We found that the TCR clones of TILs at different tumor sites were globally shared within patients and had high overlap with the TCR clones in peripheral blood.
Collapse
Affiliation(s)
- Taehoon Kim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Hyeonseob Lim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Soyeong Jun
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Junsik Park
- Department of Obstetrics and Gynecology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Dongin Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Ji Hyun Lee
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| | - Jung-Yun Lee
- Department of Obstetrics and Gynecology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.
| | - Duhee Bang
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.
| |
Collapse
|
7
|
Lekshmy M, Dhanya CR, Smrithi JS, Sindhurani JA, Vandanamthadathil JJ, Veettil JT, Anila L, Lathakumari VS, Nayar AM, Madhavan M. Peptide Vaccines as Therapeutic and Prophylactic Agents for Female-Specific Cancers: The Current Landscape. Pharmaceuticals (Basel) 2023; 16:1054. [PMID: 37513965 PMCID: PMC10383774 DOI: 10.3390/ph16071054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/11/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Breast and gynecologic cancers are significant global threats to women's health and those living with the disease require lifelong physical, financial, and social support from their families, healthcare providers, and society as a whole. Cancer vaccines offer a promising means of inducing long-lasting immune response against the disease. Among various types of cancer vaccines available, peptide vaccines offer an effective strategy to elicit specific anti-tumor immune responses. Peptide vaccines have been developed based on tumor associated antigens (TAAs) and tumor specific neoantigens which can also be of viral origin. Molecular alterations in HER2 and non-HER2 genes are established to be involved in the pathogenesis of female-specific cancers and hence were exploited for the development of peptide vaccines against these diseases, most of which are in the latter stages of clinical trials. However, prophylactic vaccines for viral induced cancers, especially those against Human Papillomavirus (HPV) infection are well established. This review discusses therapeutic and prophylactic approaches for various types of female-specific cancers such as breast cancer and gynecologic cancers with special emphasis on peptide vaccines. We also present a pipeline for the design and evaluation of a multiepitope peptide vaccine that can be active against female-specific cancers.
Collapse
Affiliation(s)
- Manju Lekshmy
- Department of Botany and Biotechnology, St. Xavier’s College, Thumba, Thiruvananthapuram 695586, Kerala, India;
| | | | | | | | | | | | - Leelamma Anila
- Department of Biochemistry, NSS College, Nilamel, Kollam 691535, Kerala, India;
| | - Vishnu Sasidharan Lathakumari
- Department of Biochemistry and Industrial Microbiology, Sree Narayana College for Women, Kollam 691001, Kerala, India;
| | - Adhira M. Nayar
- Department of Zoology, Mahatma Gandhi College, Thiruvananthapuram 695004, Kerala, India;
| | - Maya Madhavan
- Department of Biochemistry, Government College for Women, Thiruvananthapuram 695014, Kerala, India
| |
Collapse
|
8
|
Parrish ML, Broaddus RR, Gladden AB. Mechanisms of mutant β-catenin in endometrial cancer progression. Front Oncol 2022; 12:1009345. [PMID: 36248967 PMCID: PMC9556987 DOI: 10.3389/fonc.2022.1009345] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Endometrial carcinoma (EC) is the most diagnosed gynecological malignancy in Western countries. Both incidence and mortality rates of EC have steadily risen in recent years. Despite generally favorable prognoses for patients with the endometrioid type of EC, a subset of patients has been identified with decreased progression-free survival. Patients in this group are distinguished from other endometrioid EC patients by the presence of exon 3 hotspot mutations in CTNNB1, the gene encoding for the β-catenin protein. β-catenin is an evolutionarily conserved protein with critical functions in both adherens junctions and Wnt-signaling. The exact mechanism by which exon 3 CTNNB1 mutations drive EC progression is not well understood. Further, the potential contribution of mutant β-catenin to adherens junctions' integrity is not known. Additionally, the magnitude of worsened progression-free survival in patients with CTNNB1 mutations is context dependent, and therefore the importance of this subset of patients can be obscured by improper categorization. This review will examine the history and functions of β-catenin, how these functions may change and drive EC progression in CTNNB1 mutant patients, and the importance of this patient group in the broader context of the disease.
Collapse
Affiliation(s)
- Molly L. Parrish
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Pathobiology and Translational Science Graduate Program, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Russell R. Broaddus
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Pathobiology and Translational Science Graduate Program, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Andrew B. Gladden
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Pathobiology and Translational Science Graduate Program, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
9
|
Fang X, Ni N, Wang X, Tian Y, Ivanov I, Rijnkels M, Bayless KJ, Lydon JP, Li Q. EZH2 and Endometrial Cancer Development: Insights from a Mouse Model. Cells 2022; 11:cells11050909. [PMID: 35269532 PMCID: PMC8909840 DOI: 10.3390/cells11050909] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/24/2022] [Accepted: 03/03/2022] [Indexed: 01/26/2023] Open
Abstract
Enhancer of zeste homolog 2 (EZH2), a core component of polycomb repressive complex 2, plays an important role in cancer development. As both oncogenic and tumor suppressive functions of EZH2 have been documented in the literature, the objective of this study is to determine the impact of Ezh2 deletion on the development and progression of endometrial cancer induced by inactivation of phosphatase and tensin homolog (PTEN), a tumor suppressor gene frequently dysregulated in endometrial cancer patients. To this end, we created mice harboring uterine deletion of both Ezh2 and Pten using Cre recombinase driven by the progesterone receptor (Pgr) promoter. Our results showed reduced tumor burden in Ptend/d; Ezh2d/d mice compared with that of Ptend/d mice during early carcinogenesis. The decreased Ki67 index in EZH2 and PTEN-depleted uteri versus that in PTEN-depleted uteri indicated an oncogenic role of EZH2 during early tumor development. However, mice harboring uterine deletion of both Ezh2 and Pten developed unfavorable disease outcome, accompanied by exacerbated epithelial stratification and heightened inflammatory response. The observed effect was non-cell autonomous and mediated by altered immune response evidenced by massive accumulation of intraluminal neutrophils, a hallmark of endometrial carcinoma in Ptend/d; Ezh2d/d mice during disease progression. Hence, these results reveal dual roles of EZH2 in endometrial cancer development.
Collapse
Affiliation(s)
- Xin Fang
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (X.F.); (N.N.); (M.R.)
| | - Nan Ni
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (X.F.); (N.N.); (M.R.)
| | - Xiaofang Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA;
| | - Yanan Tian
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA; (Y.T.); (I.I.)
| | - Ivan Ivanov
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA; (Y.T.); (I.I.)
| | - Monique Rijnkels
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (X.F.); (N.N.); (M.R.)
| | - Kayla J. Bayless
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA;
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Qinglei Li
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (X.F.); (N.N.); (M.R.)
- Correspondence: ; Tel.: +1-979-862-2009; Fax: +1-979-847-8981
| |
Collapse
|
10
|
Mad-Adam N, Rattanaburee T, Tanawattanasuntorn T, Graidist P. Effects of trans-(±)-kusunokinin on chemosensitive and chemoresistant ovarian cancer cells. Oncol Lett 2022; 23:59. [PMID: 34992691 PMCID: PMC8721857 DOI: 10.3892/ol.2021.13177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/10/2021] [Indexed: 11/19/2022] Open
Abstract
Ovarian cancer ranks eighth in cancer incidence and mortality among women worldwide. Cisplatin-based chemotherapy is commonly used for patients with ovarian cancer. However, the clinical efficacy of cisplatin is limited due to the occurrence of adverse side effects and development of cancer chemoresistance during treatment. Trans-(±)-kusunokinin has been previously reported to inhibit cell proliferation and induce cell apoptosis in various cancer cell types, including breast, colon and cholangiocarcinoma. However, the potential effects of (±)-kusunokinin on ovarian cancer remains unknown. In the present study, chemosensitive ovarian cancer cell line A2780 and chemoresistant ovarian cancer cell lines A2780cis, SKOV-3 and OVCAR-3 were treated with trans-(±)-kusunokinin to investigate its potential effects. MTT, colony formation, apoptosis and multi-caspase assays were used to determine cytotoxicity, the ability of single cells to form colonies, induction of apoptosis and multi-caspase activity, respectively. Moreover, western blot analysis was performed to determine the proteins level of topoisomerase II, cyclin D1, CDK1, Bax and p53-upregulated modulator of apoptosis (PUMA). The results demonstrated that trans-(±)-kusunokinin exhibited the strongest cytotoxicity against A2780cis cells with an IC50 value of 3.4 µM whilst also reducing the colony formation of A2780 and A2780cis cells. Trans-(±)-kusunokinin also induced the cells to undergo apoptosis and increased multi-caspase activity in A2780 and A2780cis cells. This compound significantly downregulated topoisomerase II, cyclin D1 and CDK1 expression, but upregulated Bax and PUMA expression in both A2780 and A2780cis cells. In conclusion, trans-(±)-kusunokinin suppressed ovarian cancer cells through the inhibition of colony formation, cell proliferation and the induction of apoptosis. This pure compound could be a potential targeted therapy for ovarian cancer treatment in the future. However, studies in an animal model and clinical trial need to be performed to support the efficacy and safety of this new treatment.
Collapse
Affiliation(s)
- Nadeeya Mad-Adam
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Thidarath Rattanaburee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Tanotnon Tanawattanasuntorn
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Potchanapond Graidist
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
11
|
Español P, Luna R, Soler C, Caruana P, Altés-Arranz A, Rodríguez F, Porta O, Sanchez O, Llurba E, Rovira R, Céspedes MV. Neural plasticity of the uterus: New targets for endometrial cancer? WOMEN'S HEALTH (LONDON, ENGLAND) 2022; 18:17455057221095537. [PMID: 35465787 PMCID: PMC9047769 DOI: 10.1177/17455057221095537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Endometrial carcinoma is the most common gynecological malignancy in Western countries and is expected to increase in the following years because of the high index of obesity in the population. Recently, neural signaling has been recognized as part of the tumor microenvironment, playing an active role in tumor progression and invasion of different solid tumor types. The uterus stands out for the physiological plasticity of its peripheral nerves due to cyclic remodeling brought on by estrogen and progesterone hormones throughout the reproductive cycle. Therefore, a precise understanding of nerve-cancer crosstalk and the contribution of the organ-intrinsic neuroplasticity, mediated by estrogen and progesterone, of the uterine is urgently needed. The development of new and innovative medicines for patients with endometrial cancer would increase their quality of life and health. This review compiles information on the architecture and function of autonomous uterine neural innervations and the influence of hormone-dependent nerves in normal uterus and tumor progression. It also explores new therapeutic possibilities for endometrial cancer using these endocrine and neural advantages.
Collapse
Affiliation(s)
- Pia Español
- Gynecology and Oncology Peritoneal Group, Institut d'Investigacions Biomèdiques Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Department of Obstetrics and Gynecology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Rocio Luna
- Gynecology and Oncology Peritoneal Group, Institut d'Investigacions Biomèdiques Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Department of Obstetrics and Gynecology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Cristina Soler
- Gynecology and Oncology Peritoneal Group, Institut d'Investigacions Biomèdiques Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Department of Obstetrics and Gynecology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Pablo Caruana
- Gynecology and Oncology Peritoneal Group, Institut d'Investigacions Biomèdiques Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Amanda Altés-Arranz
- Gynecology and Oncology Peritoneal Group, Institut d'Investigacions Biomèdiques Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Francisco Rodríguez
- Gynecology and Oncology Peritoneal Group, Institut d'Investigacions Biomèdiques Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Oriol Porta
- Gynecology and Oncology Peritoneal Group, Institut d'Investigacions Biomèdiques Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Department of Obstetrics and Gynecology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Olga Sanchez
- Women and Perinatal Health Research Group, Obstetrics and Gynaecology Department, Hospital Sant Pau and Universitat Autònoma de Barcelona, Barcelona, Spain.,Maternal and Child Health and Development Network, Instituto Salud Carlos III, Madrid, Spain
| | - Elisa Llurba
- Department of Obstetrics and Gynecology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Women and Perinatal Health Research Group, Obstetrics and Gynaecology Department, Hospital Sant Pau and Universitat Autònoma de Barcelona, Barcelona, Spain.,Maternal and Child Health and Development Network, Instituto Salud Carlos III, Madrid, Spain
| | - Ramón Rovira
- Gynecology and Oncology Peritoneal Group, Institut d'Investigacions Biomèdiques Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Department of Obstetrics and Gynecology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - María Virtudes Céspedes
- Gynecology and Oncology Peritoneal Group, Institut d'Investigacions Biomèdiques Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| |
Collapse
|
12
|
Furau AM, Toma MM, Ionescu C, Furau C, Bungau S, Dimitriu M, Tit DM, Furau G, Petre I, Craina M. The Correlation of the IETA Ultrasound Score with the Histopathology Results for Women with Abnormal Bleeding in Western Romania. Diagnostics (Basel) 2021; 11:diagnostics11081342. [PMID: 34441275 PMCID: PMC8394175 DOI: 10.3390/diagnostics11081342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 01/27/2023] Open
Abstract
In the early differential diagnosis of endometrial cancer (EC), decisive and mandatory histological aspects are considered, in addition to obvious clinical manifestations. In addition, sonographic aspects are characteristic in relation to the stage, degree, and histological types of identified cancer. This bi-center retrospective observational study included 594 women with abnormal uterine bleeding outside pregnancy, for which a biopsy was performed in the Obstetrics and Gynecology Departments of the Emergency County Hospitals of Arad and Timis Counties, Romania, between 2015 and 2019. Most of the cases were represented by EC or endometrial hyperplasia (EH). Of the 594 cases, 25.5% (n = 153) were EC at women aged between 41 and 85 years. High International Endometrial Tumor Analysis (IETA) scores (3, 4) were associated with a relative risk of 2.9335 compared with other endometrial lesions (95% CI 2.3046 to 3.734, p < 0.0001, NNT 1.805). Histological aspects and pelvic ultrasound using IETA scores represent valuable noninvasive assets in diagnosing and differentiating endometrial cancer from benign uterine pathology.
Collapse
Affiliation(s)
- Alexandru Marius Furau
- Department of Oncology, “Vasile Goldis” Western University of Arad, 310414 Arad, Romania;
- Doctoral School of Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Mirela Marioara Toma
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Cringu Ionescu
- Clinical Department 13, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 030167 Bucharest, Romania; (C.I.); (M.D.)
| | - Cristian Furau
- Department of Pathophysiology, Faculty of Medicine, “Vasile Goldis” Western University of Arad, 310414 Arad, Romania;
- Department of Obstetrics and Gynecology, Emergency Clinical County Hospital of Arad, 310037 Arad, Romania;
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
- Correspondence: (S.B.); (D.M.T.)
| | - Mihai Dimitriu
- Clinical Department 13, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 030167 Bucharest, Romania; (C.I.); (M.D.)
| | - Delia Mirela Tit
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
- Correspondence: (S.B.); (D.M.T.)
| | - Gheorghe Furau
- Department of Obstetrics and Gynecology, Emergency Clinical County Hospital of Arad, 310037 Arad, Romania;
- Department of Obstetrics and Gynecology, “Vasile Goldis” Western University of Arad, 310414 Arad, Romania
| | - Izabella Petre
- Department of Obstetrics and Gynecology, Faculty of Medicine and Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (I.P.); (M.C.)
| | - Marius Craina
- Department of Obstetrics and Gynecology, Faculty of Medicine and Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (I.P.); (M.C.)
| |
Collapse
|
13
|
In search for biomarkers and potential drug targets for uterine serous endometrial cancer. J Cancer Res Clin Oncol 2021; 147:1647-1658. [PMID: 33754208 PMCID: PMC8076151 DOI: 10.1007/s00432-021-03566-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/10/2021] [Indexed: 01/17/2023]
Abstract
Objective Serous endometrial cancer (USC) is a challenging malignancy associated with metastasis, recurrence and poor outcome. To identify clinically relevant prognostic biomarkers, we focused on a panel of proteins selected after a comprehensive literature review, for tumour profiling of a homogeneous cohort of USC patients.
Methods Protein levels and localization were assessed by immunohistochemistry analysis in 36 hysterectomy samples. Tissue sections were stained with the following antibodies: Aurora A, phospho (T288) Aurora A, BRCA1, CHK1, CIP2A, Cyclin B1, Cyclin E, E2F-1, phospho (S364) E2F-1, FBXW7, FOXM1, phospho (S9) GSK3Beta, PLK1, phospho (T210) PLK1, PPP2R1B, p73, RAD51. Each marker was evaluated as a continuously-scaled variable for association with disease progression and death, using Cox proportional hazards models. The sample consisted of 36 patients with USC, half with stage III or IV disease. Results Results showed that higher CHK1 (Checkpoint kinase 1) expression was associated with a decreased risk of progression and death, after adjusting for stage. Interestingly, analysis of a TCGA data set of 109 USC patients corroborates our results showing a favourable prognostic role of CHEK1 after adjusting for stage. Higher FBXW7 (F-box and WD repeat domain containing 7) expression and higher cytoplasmic expression of PPP2R1B (Protein Phosphatase 2 A, Scaffold Subunit Abeta) were each associated with a decreased risk of progression, after adjusting for stage. Conclusions In conclusion, results from the present study identify new clinically relevant biomarkers and potential drug targets for uterine serous endometrial cancer. Supplementary Information The online version contains supplementary material available at 10.1007/s00432-021-03566-x.
Collapse
|
14
|
Mazloumi Gavgani F, Karlsson T, Tangen IL, Morovicz AP, Arnesen VS, Turcu DC, Ninzima S, Spang K, Krakstad C, Guillermet-Guibert J, Lewis AE. Nuclear upregulation of class I phosphoinositide 3-kinase p110β correlates with high 47S rRNA levels in cancer cells. J Cell Sci 2021; 134:jcs.246090. [PMID: 33536247 DOI: 10.1242/jcs.246090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
The class I phosphoinositide 3-kinase (PI3K) catalytic subunits p110α and p110β are ubiquitously expressed but differently targeted in tumours. In cancer, PIK3CB (encoding p110β) is seldom mutated compared with PIK3CA (encoding p110α) but can contribute to tumorigenesis in certain PTEN-deficient tumours. The underlying molecular mechanisms are, however, unclear. We have previously reported that p110β is highly expressed in endometrial cancer (EC) cell lines and at the mRNA level in primary patient tumours. Here, we show that p110β protein levels are high in both the cytoplasmic and nuclear compartments in EC cells. Moreover, high nuclear:cytoplasmic staining ratios were detected in high-grade primary tumours. High levels of phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P 3] were measured in the nucleus of EC cells, and pharmacological and genetic approaches showed that its production was partly dependent upon p110β activity. Using immunofluorescence staining, p110β and PtdIns(3,4,5)P 3 were localised in the nucleolus, which correlated with high levels of 47S pre-rRNA. p110β inhibition led to a decrease in both 47S rRNA levels and cell proliferation. In conclusion, these results present a nucleolar role for p110β that may contribute to tumorigenesis in EC.This article has an associated First Person interview with Fatemeh Mazloumi Gavgani, joint first author of the paper.
Collapse
Affiliation(s)
| | - Thomas Karlsson
- Department of Biological Sciences, University of Bergen, Bergen 5008, Norway
| | - Ingvild L Tangen
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen 5021, Norway.,Department of Gynaecology and Obstetrics, Haukeland University Hospital, Bergen 5021, Norway
| | | | | | - Diana C Turcu
- Department of Biological Sciences, University of Bergen, Bergen 5008, Norway
| | - Sandra Ninzima
- Department of Biological Sciences, University of Bergen, Bergen 5008, Norway
| | - Katharina Spang
- Department of Biological Sciences, University of Bergen, Bergen 5008, Norway
| | - Camilla Krakstad
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen 5021, Norway.,Department of Gynaecology and Obstetrics, Haukeland University Hospital, Bergen 5021, Norway
| | - Julie Guillermet-Guibert
- Inserm U1037, Centre de Recherches en Cancérologie de Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Université Toulouse III Paul Sabatier, 31037 Toulouse, France
| | - Aurélia E Lewis
- Department of Biological Sciences, University of Bergen, Bergen 5008, Norway
| |
Collapse
|
15
|
Jonusiene V, Sasnauskiene A. Notch and Endometrial Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1287:47-57. [PMID: 33034025 DOI: 10.1007/978-3-030-55031-8_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The human endometrium is a unique, highly dynamic tissue that undergoes cyclic changes of cell proliferation, differentiation, and death. Endometrial cancer is the most common malignancy among women in developed countries. Importantly, the incidence of endometrial cancer is rising in high-income countries. Currently histological classification is used for subtyping of endometrial cancer, while ongoing research is evaluating markers for more accurate molecular classification. Evolutionary conserved Notch signaling pathway regulates diverse cellular processes such as proliferation, differentiation, and cell invasion. Accumulating evidence links aberrant Notch signaling with diseases such as hyperplasia and endometrial cancer. This chapter summarizes the current state of Notch signaling investigations in the endometrium, endometriosis, and endometrial cancer.
Collapse
Affiliation(s)
- Violeta Jonusiene
- Vilnius University, Life Sciences Center, Institute of Biosciences, Vilnius, Lithuania.
| | - Ausra Sasnauskiene
- Vilnius University, Life Sciences Center, Institute of Biosciences, Vilnius, Lithuania
| |
Collapse
|
16
|
Francies FZ, Marima R, Hull R, Molefi T, Dlamini Z. Genomics and splicing events of type II endometrial cancers in the black population: racial disparity, socioeconomic and geographical differences. Am J Cancer Res 2020; 10:3061-3082. [PMID: 33163258 PMCID: PMC7642673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023] Open
Abstract
Endometrial cancer, also known as uterine cancer, is the most common gynaecological malignancy with burgeoning incidence and mortality rates globally. Racial disparity, socioeconomic and geographical differences are important determinants of endometrial cancer incidence and mortality. Endometrial cancer is mainly categorised as type I and type II. Although less prevalent, type II is the most aggressive form of the disease and typically diagnosed at a late stage, contributing to higher mortality. Black women are at higher risk of developing aggressive, type II disease. Type I tumours are related to higher levels of circulating estrogen with lower-grade tumours that have a good prognosis and frequently related to PTEN mutations. In comparison, type II tumours are estrogen-independent, typically have poor prognosis and associated with the p53, HER2, PPP2R1A, FBXW7 and PIK3R1 mutations. The risk of developing type II malignancy is higher in women with Lynch syndrome as a result of mutations in the MMR gene family. Genetic modifications contribute to aberrant alternative splicing events that are related to tumour development, progression and resistance to therapy. Alternative splicing events are rapidly emerging as potential biomarkers and therapeutic targets. Type II endometrial cancer lacks targeted therapy and biomarkers for novel therapeutic strategies. Recent advances have illustrated a number of molecular targets that are currently explored for the treatment of advanced, late-stage endometrial cancer. The aim of this review is to outline 1) the epidemiology of type II endometrial cancer in black women, 2) discuss the correlated risk factors that contribute to the development of type II endometrial cancer and 3) the associated molecular mechanisms and genetic factors underlying the disease, and 4) aberrant splicing events and biomarkers with therapeutic potential as novel drug targets.
Collapse
Affiliation(s)
- Flavia Zita Francies
- SAMRC/UP Precision Prevention & Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Extramural Unit, Pan African Cancer Research Institute (PACRI), University of Pretoria, Faculty of Health SciencesHatfield 0028, South Africa
| | - Rahaba Marima
- SAMRC/UP Precision Prevention & Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Extramural Unit, Pan African Cancer Research Institute (PACRI), University of Pretoria, Faculty of Health SciencesHatfield 0028, South Africa
| | - Rodney Hull
- SAMRC/UP Precision Prevention & Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Extramural Unit, Pan African Cancer Research Institute (PACRI), University of Pretoria, Faculty of Health SciencesHatfield 0028, South Africa
| | - Thulo Molefi
- Department of Medical Oncology, University of Pretoria, Faculty of Health SciencesHatfield 0028, South Africa
| | - Zodwa Dlamini
- SAMRC/UP Precision Prevention & Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Extramural Unit, Pan African Cancer Research Institute (PACRI), University of Pretoria, Faculty of Health SciencesHatfield 0028, South Africa
| |
Collapse
|
17
|
Uterine fibroids may play a protecting role against endometrial carcinoma in Chinese women with gynecological diseases. Biosci Rep 2020; 40:225652. [PMID: 32608475 PMCID: PMC7352044 DOI: 10.1042/bsr20200350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
Background: It has been reported that uterine fibroids (UFs) may increase the risk of endometrial carcinoma (EC) with the underlying mechanism largely unknown. Here, we explore whether UF could be an influential factor for EC. Methods: We have collected and analyzed clinical data from 4537 Chinese patients to study the co-incidence of UF and EC. Then, a large-scale literature-based data mining was conducted to identify genes implicated as UF downstream regulating targets and EC upstream regulators. In addition, a meta-analysis has been conducted for each of the EC-specific genes, using six independent UF expression datasets. The meta-analysis results, together with literature-based pathway analysis, were used to explore the potential explanation of the clinical data. Results: Our results showed that the incidence rate of EC in the case of UF was 50.53% lower than without UF, which suggested a protective role of UF in EC patients. The meta-analysis identified three significantly overexpressed genes (HTRA3, HOPX, and PCNA) in the case of UF, which were implicated as EC inhibitors in the pathway analysis. Multiple linear regression (MLR) analysis showed that, compared with UF, aging might be a stronger influential factor for EC. Conclusion: Among women with gynecological diseases, UFs may play a protecting role against EC in the Chinese population.
Collapse
|
18
|
Next-generation sequencing analysis of endometrial screening liquid-based cytology specimens: a comparative study to tissue specimens. BMC Med Genomics 2020; 13:101. [PMID: 32652986 PMCID: PMC7353725 DOI: 10.1186/s12920-020-00753-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022] Open
Abstract
Background Liquid-based cytology (LBC) is now a widely used method for cytologic screening and cancer diagnosis. Since the cells are fixed with alcohol-based fixatives, and the specimens are stored in a liquid condition, LBC specimens are suitable for genetic analyses. Methods Here, we established a small cancer gene panel, including 60 genes and 17 microsatellite markers for next-generation sequencing, and applied to residual LBC specimens obtained by endometrial cancer screening to compare with corresponding formalin-fixed paraffin-embedded (FFPE) tissues. Results A total of 49 FFPE and LBC specimens (n = 24) were analyzed, revealing characteristic mutations for endometrial cancer, including PTEN, CTNNB1, PIK3CA, and PIK3R1 mutations. Eight cases had higher scores for both tumor mutation burden (TMB) and microsatellite instability (MSI), which agree with defective mismatch repair (MMR) protein expression. Paired endometrial LBC, and biopsied and/or resected FFPE tissues from 7 cases, presented almost identical mutations, TMB, and MSI profiles in all cases. Conclusion These findings demonstrate that our ad hoc cancer gene panel enabled the detection of therapeutically actionable gene mutations in endometrial LBC and FFPE specimens. Endometrial cancer LBC specimens offer an alternative and affordable source of molecular testing materials.
Collapse
|
19
|
Metformin selectively inhibits metastatic colorectal cancer with the KRAS mutation by intracellular accumulation through silencing MATE1. Proc Natl Acad Sci U S A 2020; 117:13012-13022. [PMID: 32444490 PMCID: PMC7293710 DOI: 10.1073/pnas.1918845117] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
CRC patients with KRAS mutations are confronted with limited targeted therapeutic options. In this study, we have shown that the median survival time for KRAS-mutation mCRC patients with diabetes on metformin is 37.8 mo longer than those treated with other hypoglycemic drugs in combination with standard systemic therapy. Metformin is preferentially accumulated in KRAS-mutation CRC cells in both primary cell cultures and patient-derived xenografts. The promising therapeutic activity of metformin has a negative correlation with MATE1 expression, which is proven to eliminate metformin from CRC cells. These findings indicate that KRAS-mutation mCRC patients could benefit from metformin treatment, and somatic KRAS status or MATE1 expression should be recommended to predict the therapeutic response of metformin in CRC. Metastatic colorectal cancer (mCRC) patients have poor overall survival despite using irinotecan- or oxaliplatin-based chemotherapy combined with anti-EGFR (epidermal growth factor receptor) drugs, especially those with the oncogene mutation of KRAS. Metformin has been reported as a potentially novel antitumor agent in many experiments, but its therapeutic activity is discrepant and controversial so far. Inspiringly, the median survival time for KRAS-mutation mCRC patients with diabetes on metformin is 37.8 mo longer than those treated with other hypoglycemic drugs in combination with standard systemic therapy. In contrast, metformin could not improve the survival of mCRC patients with wild-type KRAS. Interestingly, metformin is preferentially accumulated in KRAS-mutation mCRC cells, but not wild-type ones, in both primary cell cultures and patient-derived xenografts, which is in agreement with its tremendous effect in KRAS-mutation mCRC. Mechanistically, the mutated KRAS oncoprotein hypermethylates and silences the expression of multidrug and toxic compound extrusion 1 (MATE1), a specific pump that expels metformin from the tumor cells by up-regulating DNA methyltransferase 1 (DNMT1). Our findings provide evidence that KRAS-mutation mCRC patients benefit from metformin treatment and targeting MATE1 may provide a strategy to improve the anticancer response of metformin.
Collapse
|
20
|
Rho GTPases in Gynecologic Cancers: In-Depth Analysis toward the Paradigm Change from Reactive to Predictive, Preventive, and Personalized Medical Approach Benefiting the Patient and Healthcare. Cancers (Basel) 2020; 12:cancers12051292. [PMID: 32443784 PMCID: PMC7281750 DOI: 10.3390/cancers12051292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/24/2022] Open
Abstract
Rho guanosine triphospatases (GTPases) resemble a conserved family of GTP-binding proteins regulating actin cytoskeleton dynamics and several signaling pathways central for the cell. Rho GTPases create a so-called Ras-superfamily of GTPases subdivided into subgroups comprising at least 20 members. Rho GTPases play a key regulatory role in gene expression, cell cycle control and proliferation, epithelial cell polarity, cell migration, survival, and apoptosis, among others. They also have tissue-related functions including angiogenesis being involved in inflammatory and wound healing processes. Contextually, any abnormality in the Rho GTPase function may result in severe consequences at molecular, cellular, and tissue levels. Rho GTPases also play a key role in tumorigenesis and metastatic disease. Corresponding mechanisms include a number of targets such as kinases and scaffold/adaptor-like proteins initiating GTPases-related signaling cascades. The accumulated evidence demonstrates the oncogenic relevance of Rho GTPases for several solid malignancies including breast, liver, bladder, melanoma, testicular, lung, central nervous system (CNS), head and neck, cervical, and ovarian cancers. Furthermore, Rho GTPases play a crucial role in the development of radio- and chemoresistance e.g. under cisplatin-based cancer treatment. This article provides an in-depth overview on the role of Rho GTPases in gynecological cancers, highlights relevant signaling pathways and pathomechanisms, and sheds light on their involvement in tumor progression, metastatic spread, and radio/chemo resistance. In addition, insights into a spectrum of novel biomarkers and innovative approaches based on the paradigm shift from reactive to predictive, preventive, and personalized medicine are provided.
Collapse
|
21
|
Wadee R, Grayson W. Identification of possible Lynch syndrome in endometrial carcinomas at a public hospital in South Africa. SOUTHERN AFRICAN JOURNAL OF GYNAECOLOGICAL ONCOLOGY 2020. [DOI: 10.1080/20742835.2020.1745461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- R Wadee
- Department of Anatomical Pathology, School of Pathology, University of the Witwatersrand/National Health Laboratory Services (NHLS), Johannesburg, Republic of South Africa
| | - W Grayson
- AMPATH National Laboratories/Department of Anatomical Pathology, School of Pathology, University of the Witwatersrand, Johannesburg, Republic of South Africa
| |
Collapse
|
22
|
Pathogenesis and Clinical Management of Uterine Serous Carcinoma. Cancers (Basel) 2020; 12:cancers12030686. [PMID: 32183290 PMCID: PMC7140057 DOI: 10.3390/cancers12030686] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023] Open
Abstract
Uterine serous carcinoma (USC) is an aggressive variant of endometrial cancer that has not been well characterized. It accounts for less than 10% of all endometrial cancers and 80% of endometrial cancer–related deaths. Currently, staging surgery together with chemotherapy or radiotherapy, especially vaginal cuff brachytherapy, is the main treatment strategy for USC. Whole-exome sequencing combined with preclinical and clinical studies are verifying a series of effective and clinically accessible inhibitors targeting frequently altered genes, such as HER2 and PI3K3CA, in varying USC patient populations. Some progress has also been made in the immunotherapy field. The PD-1/PD-L1 pathway has been found to be activated in many USC patients, and clinical trials of PD-1 inhibitors in USC are underway. This review updates the progress of research regarding the molecular pathogenesis and putative clinical management of USC.
Collapse
|
23
|
Siraj AK, Parvathareddy SK, Bu R, Iqbal K, Siraj S, Masoodi T, Concepcion RM, Ghazwani LO, AlBadawi I, Al-Dayel F, Al-Kuraya KS. Germline POLE and POLD1 proofreading domain mutations in endometrial carcinoma from Middle Eastern region. Cancer Cell Int 2019; 19:334. [PMID: 31866764 PMCID: PMC6907229 DOI: 10.1186/s12935-019-1058-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/04/2019] [Indexed: 12/24/2022] Open
Abstract
Background Endometrial carcinoma (EC) accounts for 5.8% of all cancers in Saudi females. Although most ECs are sporadic, 2–5% tend to be familial, being associated with Lynch syndrome and Cowden syndrome. In this study, we attempted to uncover the frequency, spectrum and phenotype of germline mutations in the proofreading domain of POLE and POLD1 genes in a large cohort of ECs from Middle Eastern region. Methods We performed Capture sequencing and Sanger sequencing to screen for proofreading domains of POLE and POLD1 genes in 432 EC cases, followed by evaluation of protein expression using immunohistochemistry. Variant interpretation was performed using PolyPhen-2, MutationAssessor, SIFT, CADD and Mutation Taster. Results In our cohort, four mutations (0.93%) were identified in 432 EC cases, two each in POLE and POLD1 proofreading domains. Furthermore, low expression of POLE and POLD1 was noted in 41.1% (170/1414) and 59.9% (251/419) of cases, respectively. Both the cases harboring POLE mutation showed high nuclear expression of POLE protein, whereas, of the two POLD1 mutant cases, one case showed high expression and another case showed low expression of POLD1 protein. Conclusions Our study shows that germline mutations in POLE and POLD1 proofreading region are a rare cause of EC in Middle Eastern population. However, it is still feasible to screen multiple cancer related genes in EC patients from Middle Eastern region using multigene panels including POLE and POLD1.
Collapse
Affiliation(s)
- Abdul K Siraj
- 1Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211 Saudi Arabia
| | - Sandeep Kumar Parvathareddy
- 1Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211 Saudi Arabia
| | - Rong Bu
- 1Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211 Saudi Arabia
| | - Kaleem Iqbal
- 1Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211 Saudi Arabia
| | - Sarah Siraj
- 1Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211 Saudi Arabia
| | - Tariq Masoodi
- 1Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211 Saudi Arabia
| | - Rica Micaela Concepcion
- 1Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211 Saudi Arabia
| | - Laila Omar Ghazwani
- 1Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211 Saudi Arabia
| | - Ismail AlBadawi
- 2Department of Obstetrics-Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fouad Al-Dayel
- 3Department of Pathology, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, 11211 Saudi Arabia
| | - Khawla S Al-Kuraya
- 1Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, MBC#98-16, P.O. Box 3354, Riyadh, 11211 Saudi Arabia
| |
Collapse
|
24
|
Kośla K, Orzechowska M, Jędroszka D, Baryła I, Bednarek AK, Płuciennik E. A Novel Set of WNT Pathway Effectors as a Predictive Marker of Uterine Corpus Endometrial Carcinoma-Study Based on Weighted Co-expression Matrices. Front Oncol 2019; 9:360. [PMID: 31134156 PMCID: PMC6524344 DOI: 10.3389/fonc.2019.00360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
Uterine corpus endometrial carcinomas (UCEC) are clinically divided into two subgroups-endometrioid endometrial carcinoma (EEC) or non-endometrioid endometrial carcinoma (NEEC). The first group shows relatively better prognosis. However, the discrimination seems to be insufficient due to the fact that in the mildest EEC are patients with poor treatment response and bad prognosis. Our aim was to examine the molecular background of such phenomenon and whether gene expression patterns might be of importance for the clinic. We focused our analysis on WNT pathway target genes since it is one of the main regulators of endometrial proliferation and differentiation. In silico analysis of TCGA data, including Weighted Co-expression Network Analysis, Principle Component Analysis, and Multiple Factor Analysis, allows to select 28 genes that serve as a predictive markers for UCEC patients. Our study revealed that there is a subgroup of the endometrioid cases that molecularly resembles mixed/serous groups. This may explain the reason for existence of subgroup of patients, that although clinically diagnosed with the mildest endometrioid UCEC type, yet present failure in treatment and aggressive course of the disease. Our study suggests that worse outcome in these patients may be based on a disruption of proper WNT signalling pathway resulting in deregulation of its effector genes. Moreover, we showed that mixed group consisting of tumours containing both endometrioid and serous types of cells, has serous expression profile of WNT targets. The proposed gene set allows to predict progression of the disease trough dividing patients into groups of low or high grade with 70.8% sensitivity and 88.6% specificity (AUC = 0.837) as well as could predict patient prognosis associated with UCEC subtype with 70.1% sensitivity and 86.2% specificity (AUC = 0.855). Relatively small number of implicated genes makes it highly applicable and possibly clinically simple and useful tool.
Collapse
Affiliation(s)
- Katarzyna Kośla
- Department of Molecular Carcinogenesis, Medical University of Łódz, Łódz, Poland
| | | | - Dorota Jędroszka
- Department of Molecular Carcinogenesis, Medical University of Łódz, Łódz, Poland
| | - Izabela Baryła
- Department of Molecular Carcinogenesis, Medical University of Łódz, Łódz, Poland
| | - Andrzej K Bednarek
- Department of Molecular Carcinogenesis, Medical University of Łódz, Łódz, Poland
| | - Elżbieta Płuciennik
- Department of Molecular Carcinogenesis, Medical University of Łódz, Łódz, Poland
| |
Collapse
|
25
|
Miller JE, Metpally RP, Person TN, Krishnamurthy S, Dasari VR, Shivakumar M, Lavage DR, Cook AM, Carey DJ, Ritchie MD, Kim D, Gogoi R. Systematic characterization of germline variants from the DiscovEHR study endometrial carcinoma population. BMC Med Genomics 2019; 12:59. [PMID: 31053132 PMCID: PMC6499978 DOI: 10.1186/s12920-019-0504-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 04/15/2019] [Indexed: 02/02/2023] Open
Abstract
Background Endometrial cancer (EMCA) is the fifth most common cancer among women in the world. Identification of potentially pathogenic germline variants from individuals with EMCA will help characterize genetic features that underlie the disease and potentially predispose individuals to its pathogenesis. Methods The Geisinger Health System’s (GHS) DiscovEHR cohort includes exome sequencing on over 50,000 consenting patients, 297 of whom have evidence of an EMCA diagnosis in their electronic health record. Here, rare variants were annotated as potentially pathogenic. Results Eight genes were identified as having increased burden in the EMCA cohort relative to the non-cancer control cohort. None of the eight genes had an increased burden in the other hormone related cancer cohort from GHS, suggesting they can help characterize the underlying genetic variation that gives rise to EMCA. Comparing GHS to the cancer genome atlas (TCGA) EMCA germline data illustrated 34 genes with potentially pathogenic variation and eight unique potentially pathogenic variants that were present in both studies. Thus, similar germline variation among genes can be observed in unique EMCA cohorts and could help prioritize genes to investigate for future work. Conclusion In summary, this systematic characterization of potentially pathogenic germline variants describes the genetic underpinnings of EMCA through the use of data from a single hospital system. Electronic supplementary material The online version of this article (10.1186/s12920-019-0504-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jason E Miller
- Department of Genetics, Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Raghu P Metpally
- Biomedical & Translational Informatics Institute, Geisinger Health System, Danville, PA, 17822, USA
| | - Thomas N Person
- Biomedical & Translational Informatics Institute, Geisinger Health System, Danville, PA, 17822, USA
| | | | | | - Manu Shivakumar
- Biomedical & Translational Informatics Institute, Geisinger Health System, Danville, PA, 17822, USA
| | - Daniel R Lavage
- Biomedical & Translational Informatics Institute, Geisinger Health System, Danville, PA, 17822, USA
| | - Adam M Cook
- Weis Center for Research, Geisinger Medical Center, Danville, PA, 17822, USA
| | - David J Carey
- Weis Center for Research, Geisinger Medical Center, Danville, PA, 17822, USA
| | - Marylyn D Ritchie
- Department of Genetics, Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dokyoon Kim
- Biomedical & Translational Informatics Institute, Geisinger Health System, Danville, PA, 17822, USA.,Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA.,Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.,Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, USA
| | - Radhika Gogoi
- Weis Center for Research, Geisinger Medical Center, Danville, PA, 17822, USA.
| | | |
Collapse
|
26
|
Chiu HC, Li CJ, Yiang GT, Tsai APY, Wu MY. Epithelial to Mesenchymal Transition and Cell Biology of Molecular Regulation in Endometrial Carcinogenesis. J Clin Med 2019; 8:E439. [PMID: 30935077 PMCID: PMC6518354 DOI: 10.3390/jcm8040439] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 12/15/2022] Open
Abstract
Endometrial carcinogenesis is involved in several signaling pathways and it comprises multiple steps. The four major signaling pathways-PI3K/AKT, Ras/Raf/MEK/ERK, WNT/β-catenin, and vascular endothelial growth factor (VEGF)-are involved in tumor cell metabolism, growth, proliferation, survival, and angiogenesis. The genetic mutation and germline mitochondrial DNA mutations also impair cell proliferation, anti-apoptosis signaling, and epithelial⁻mesenchymal transition by several transcription factors, leading to endometrial carcinogenesis and distant metastasis. The PI3K/AKT pathway activates the ransforming growth factor beta (TGF-β)-mediated endothelial-to-mesenchymal transition (EMT) and it interacts with downstream signals to upregulate EMT-associated factors. Estrogen and progesterone signaling in EMT also play key roles in the prognosis of endometrial carcinogenesis. In this review article, we summarize the current clinical and basic research efforts regarding the detailed molecular regulation in endometrial carcinogenesis, especially in EMT, to provide novel targets for further anti-carcinogenesis treatment.
Collapse
Affiliation(s)
- Hsiao-Chen Chiu
- Department of Obstetrics and Gynecology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei 231, Taiwan.
- Department of Obstetrics and Gynecology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | - Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
| | - Giou-Teng Yiang
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan.
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | - Andy Po-Yi Tsai
- Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan.
| | - Meng-Yu Wu
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan.
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| |
Collapse
|
27
|
Rodriguez AC, Blanchard Z, Maurer KA, Gertz J. Estrogen Signaling in Endometrial Cancer: a Key Oncogenic Pathway with Several Open Questions. Discov Oncol 2019; 10:51-63. [PMID: 30712080 PMCID: PMC6542701 DOI: 10.1007/s12672-019-0358-9] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/16/2019] [Indexed: 01/10/2023] Open
Abstract
Endometrial cancer is the most common gynecological cancer in the developed world, and it is one of the few cancer types that is becoming more prevalent and leading to more deaths in the USA each year. The majority of endometrial tumors are considered to be hormonally driven, where estrogen signaling through estrogen receptor α (ER) acts as an oncogenic signal. The major risk factors and some treatment options for endometrial cancer patients emphasize a key role for estrogen signaling in the disease. Despite the strong connections between estrogen signaling and endometrial cancer, important molecular aspects of ER function remain poorly understood; however, progress is being made in our understanding of estrogen signaling in endometrial cancer. Here, we discuss the evidence for the importance of estrogen signaling in endometrial cancer, details of the endometrial cancer-specific actions of ER, and open questions surrounding estrogen signaling in endometrial cancer.
Collapse
Affiliation(s)
- Adriana C Rodriguez
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.,Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Zannel Blanchard
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.,Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Kathryn A Maurer
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.,Department of Obstetrics and Gynecology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jason Gertz
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA. .,Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
28
|
Althubiti MA. Mutation Frequencies in Endometrial Cancer Patients of Different Ethnicities and Tumor Grades: An Analytical Study. SAUDI JOURNAL OF MEDICINE & MEDICAL SCIENCES 2018; 7:16-21. [PMID: 30787852 PMCID: PMC6381847 DOI: 10.4103/sjmms.sjmms_154_18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: Endometrial carcinoma is a predominant health problem for women worldwide. However, there is a lack of data on genetic mutation frequencies in endometrial cancer patients of different ethnicities and tumor grades. Objective: The objective of this study is to provide data regarding mutation frequencies in endometrial cancer patients of different ethnic groups and tumor grades by analyzing large-scale cancer genomic datasets of a database. Materials and Methods: The following databases of cBioPortal were explored for possible mutation frequency variations in endometrial cancer patients: the Uterine Corpus Endometrial Carcinoma (TCGA, PanCancer Atlas) database for ethnicity-based studies; the Uterine Corpus Endometrial Carcinoma (TCGA, Nature 2013) database for tumor grade-based study; and GDC Data Portal database for calculating survival rates using the Kaplan–Meier method. Results: PTEN mutation frequency was almost identical in all ethnic groups studied (White, Black/African American, Asian, Native Hawaiian or other Pacific Islander, and American Indian or Asian Native). PIK3CA and ARID1A mutation frequencies were higher in White and Asian patients compared with other ethnicities; TP53 and FAT1 mutation frequencies were higher in Black/African Americans; and CTNNB1 and RYR2 mutation frequencies were higher Native Hawaiians or Asian Natives. TTN mutation frequency was lower in Asian patients. With regards to mutation frequencies at different tumor stages, in all genes, >50% of the mutations occurred during the first stage, except in TP53 and POLQ. In terms of prognosis in endometrial cancer considering the 10 most frequently mutated genes, PIK3CA and ARID1A mutations were correlated with good prognosis, whereas TP53 and PIK3R1 mutations were correlated with poor prognosis; mutations in all other genes did not show significant differences. Conclusion: This study revealed a new mutation frequency profile for different ethnicities and tumor grades in endometrial cancer patients. However, because this is a retrospective study, future prospective studies should be conducted including large sample sizes and more controlled measurements.
Collapse
Affiliation(s)
- Mohammad A Althubiti
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
29
|
Yen MS, Chen TH, Ke YM, Hsu KF, Chen JR, Yu MH, Fu HC, Huang CY, Chiang AJ, Chen CY, Hsiao SM, Kan YY, Liu FS. Clinicopathologic Features and Treatment Outcomes in Patients with Stage I, High-Risk Histology or High-Grade Endometrial Cancer after Primary Staging Surgery: A Taiwanese Gynecologic Oncology Group Study. J Clin Med 2018; 7:254. [PMID: 30181460 PMCID: PMC6162812 DOI: 10.3390/jcm7090254] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 01/25/2023] Open
Abstract
To investigate the clinicopathological features and treatment outcomes in patients with stage I, high-risk endometrial cancer. Patients with International Federation of Gynecology and Obstetrics stage I, papillary serous, clear cell, or grade 3 endometrioid carcinoma treated between 2000 and 2012 were analyzed for the clinical and pathological factors in relation to prognosis. A total of 267 patients (stage IA; n = 175, stage IB; n = 92) were included. Among the clinicopathological features, stage and age were significant prognostic factors. The recurrence rate and overall survival for stage IB versus IA were 22.8% versus 9.1% (p = 0.003) and 149.7 months versus 201.8 months (p < 0.001), respectively. The patients >60 years of age also had a higher recurrence rate (21.7% versus 9.7%, p = 0.008) and poorer survival (102.0 months versus 196.8 months, p = 0.001) than those ≤60 years of age. Distant recurrence (64.9%) occurred more frequently than local recurrence (24.3%) and local combined with distant recurrence (10.8%) (p < 0.001). The postoperative treatment modality had no impact on tumor recurrence rate, recurrence site, or overall survival. Distant recurrence is a major cause of treatment failure in patients with stage I, high-risk endometrial cancer. However, current adjuvant treatment appeared to have little effect in preventing its occurrence.
Collapse
Affiliation(s)
- Ming-Shyen Yen
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei 112, Taiwan.
| | - Tze-Ho Chen
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua 500, Taiwan.
| | - Yu-Min Ke
- Department of Obstetrics and Gynecology, Taichung Veterans General Hospital, Taichung 407, Taiwan.
| | - Keng-Fu Hsu
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, Tainan 704, Taiwan.
| | - Jen-Ruei Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei 104, Taiwan.
| | - Mu-Hsien Yu
- Department of Obstetrics and Gynecology, Tri Service General Hospital, Taipei 114, Taiwan.
| | - Hung-Chun Fu
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
| | - Chia-Yen Huang
- Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei 106, Taiwan.
| | - An-Jen Chiang
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
| | - Chao-Yu Chen
- Department of Obstetrics and Gynecology, ChiaYi Chang Gung Memorial Hospital, ChiaYi 613, Taiwan.
| | - Sheng-Mou Hsiao
- Department of Obstetrics and Gynecology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan.
| | - Yuen-Yee Kan
- Department of Obstetrics and Gynecology, Yuan's General Hospital, Kaohsiung 802, Taiwan.
| | - Fu-Shing Liu
- Department of Obstetrics and Gynecology, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
| |
Collapse
|
30
|
Alidousty C, Baar T, Martelotto LG, Heydt C, Wagener S, Fassunke J, Duerbaum N, Scheel AH, Frank S, Holz B, Binot E, Kron A, Merkelbach‐Bruse S, Ihle MA, Wolf J, Buettner R, Schultheis AM. Genetic instability and recurrent MYC amplification in ALK-translocated NSCLC: a central role of TP53 mutations. J Pathol 2018; 246:67-76. [PMID: 29885057 PMCID: PMC6120547 DOI: 10.1002/path.5110] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/30/2018] [Accepted: 06/05/2018] [Indexed: 12/12/2022]
Abstract
The anaplastic lymphoma kinase (ALK) rearrangement defines a distinct molecular subtype of non-small cell lung cancer (NSCLC). Despite the excellent initial efficacy of ALK inhibitors in patients with ALK+ lung cancer, resistance occurs almost inevitably. To date, there is no reliable biomarker allowing the identification of patients at higher risk of relapse. Here, we analysed a subset of 53 ALK+ tumours with and without TP53 mutation and ALK+ NSCLC cell lines by NanoString nCounter technology. We found that the co-occurrence of early TP53 mutations in ALK+ NSCLC can lead to chromosomal instability: 24% of TP53-mutated patients showed amplifications of known cancer genes such as MYC (14%), CCND1 (10%), TERT (5%), BIRC2 (5%), ORAOV1 (5%), and YAP1 (5%). MYC-overexpressing ALK+ TP53-mutated cells had a proliferative advantage compared to wild-type cells. ChIP-Seq data revealed MYC-binding sites within the promoter region of EML4, and MYC overexpression in ALK+ TP53-mutated cells resulted in an upregulation of EML4-ALK, indicating a potential MYC-dependent resistance mechanism in patients with increased MYC copy number. Our study reveals that ALK+ NSCLC represents a more heterogeneous subgroup of tumours than initially thought, and that TP53 mutations in that particular cancer type define a subset of tumours that harbour chromosomal instability, leading to the co-occurrence of pathogenic aberrations. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
| | - Till Baar
- University of Cologne, Faculty of Medicine, Institute of Medical Statistics and Computational BiologyCologneGermany
| | | | - Carina Heydt
- University Hospital Cologne, Institute of PathologyCologneGermany
| | - Svenja Wagener
- University Hospital Cologne, Institute of PathologyCologneGermany
| | - Jana Fassunke
- University Hospital Cologne, Institute of PathologyCologneGermany
| | - Nicolai Duerbaum
- University Hospital Cologne, Institute of PathologyCologneGermany
| | - Andreas H Scheel
- University Hospital Cologne, Institute of PathologyCologneGermany
| | - Sandra Frank
- University Hospital Cologne, Institute of PathologyCologneGermany
| | - Barbara Holz
- University Hospital Cologne, Institute of PathologyCologneGermany
| | - Elke Binot
- University Hospital Cologne, Institute of PathologyCologneGermany
| | - Anna Kron
- Network Genomic MedicineCologneGermany
| | | | - Michaela A Ihle
- University Hospital Cologne, Institute of PathologyCologneGermany
| | - Jürgen Wolf
- Network Genomic MedicineCologneGermany
- Lung Cancer Group Cologne, Department I for Internal MedicineUniversity Hospital of CologneCologneGermany
- Center for Integrated Oncology Cologne BonnGermany
| | - Reinhard Buettner
- University Hospital Cologne, Institute of PathologyCologneGermany
- Network Genomic MedicineCologneGermany
- Lung Cancer Group Cologne, Department I for Internal MedicineUniversity Hospital of CologneCologneGermany
| | | |
Collapse
|
31
|
Remmerie M, Janssens V. Targeted Therapies in Type II Endometrial Cancers: Too Little, but Not Too Late. Int J Mol Sci 2018; 19:E2380. [PMID: 30104481 PMCID: PMC6121653 DOI: 10.3390/ijms19082380] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/02/2018] [Accepted: 08/08/2018] [Indexed: 01/14/2023] Open
Abstract
Type II endometrial carcinomas (ECs) are responsible for most endometrial cancer-related deaths due to their aggressive nature, late stage detection and high tolerance for standard therapies. However, there are no targeted therapies for type II ECs, and they are still treated the same way as the clinically indolent and easily treatable type I ECs. Therefore, type II ECs are in need of new treatment options. More recently, molecular analysis of endometrial cancer revealed phosphorylation-dependent oncogenic signalling in the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways to be most frequently altered in type II ECs. Consequently, clinical trials tested pharmacologic kinase inhibitors targeting these pathways, although mostly with rather disappointing results. In this review, we highlight the most common genetic alterations in type II ECs. Additionally, we reason why most clinical trials for ECs using targeted kinase inhibitors had unsatisfying results and what should be changed in future clinical trial setups. Furthermore, we argue that, besides kinases, phosphatases should no longer be ignored in clinical trials, particularly in type II ECs, where the tumour suppressive phosphatase protein phosphatase type 2A (PP2A) is frequently mutated. Lastly, we discuss the therapeutic potential of targeting PP2A for (re)activation, possibly in combination with pharmacologic kinase inhibitors.
Collapse
Affiliation(s)
- Michiel Remmerie
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), B-3000 Leuven, Belgium.
- Leuven Cancer Institute (LKI), B-3000 Leuven, Belgium.
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), B-3000 Leuven, Belgium.
- Leuven Cancer Institute (LKI), B-3000 Leuven, Belgium.
| |
Collapse
|
32
|
Suhaimi SS, Ab Mutalib NS, Khor SS, Zain RRM, Syafruddin SE, Abu N, Mohd Dali AZH, Jamal R. Targeted Next-Generation Sequencing Identifies Actionable Targets in Estrogen Receptor Positive and Estrogen Receptor Negative Endometriod Endometrial Cancer. Front Pharmacol 2018; 9:750. [PMID: 30057548 PMCID: PMC6053487 DOI: 10.3389/fphar.2018.00750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/20/2018] [Indexed: 12/21/2022] Open
Abstract
Endometrioid endometrial cancer (EEC) is the commonest form of endometrial cancer and can be divided into estrogen receptor (ER) positive and negative subtypes. The mutational profiles of EEC have been shown to aid in tailoring treatment; however, little is known about the differences between the gene mutation profiles between these two subtypes. This study aims to investigate the gene mutation profile in ER positive and negative EEC, and to further elucidate the role of WHSC1 mutations in this cancer. EEC and normal endometrial tissues were obtained from 29 patients and subjected to next-generation sequencing (NGS) using Ion Ampliseq Comprehensive Cancer PanelTM targeting 409 cancer related. A total of 741 non-synonymous alterations were identified from 272 genes in ER positive subtype while 448 non-synonymous variants were identified from 221 genes in ER negative subtype. PTEN is the most frequently altered gene in ER positive subtype (64%, 7/11) while ARID1A is the most frequently altered gene in ER negative subtype (50%, 4/8). We also identified alterations in ERRB3 (36%, 4/11), GNAS (36%, 4/11), and WHSC1 (27%, 3/11) in the ER positive subtype. WHSC1 R1126H and L1268P were shown to significantly increase cell viability, proliferation, migration, and survival. In addition, reduction in ER expression sensitized EEC-1 cell with WHSC1 L1268P mutant to Fulvestrant treatment. We revealed the mutational spectra of ER positive and ER negative EEC that could lead to better understanding of the biological mechanisms of endometrial cancer and may ultimately result in improvement of treatment options and patient prognosis.
Collapse
Affiliation(s)
- Siti Syazani Suhaimi
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, UKM Medical Center, Kuala Lumpur, Malaysia
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, UKM Medical Center, Kuala Lumpur, Malaysia
| | | | - Reena Rahayu Md Zain
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Saiful Effendi Syafruddin
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, UKM Medical Center, Kuala Lumpur, Malaysia
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, UKM Medical Center, Kuala Lumpur, Malaysia
| | - Ahmad Zailani Hatta Mohd Dali
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, UKM Medical Center, Kuala Lumpur, Malaysia
| |
Collapse
|
33
|
Fabi F, Adam P, Vincent K, Demontigny F, Parent S, Joncas FH, Asselin E. Inhibition of CRM1 activity sensitizes endometrial and ovarian cell lines to TRAIL-induced cell death. Cell Commun Signal 2018; 16:39. [PMID: 29973205 PMCID: PMC6033231 DOI: 10.1186/s12964-018-0252-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 06/29/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND CRM1 enrichment has been shown to be indicative of invasive as well as chemoresistant tumors. On the other hand, TRAIL, a powerful and specific anti-tumoral agent, has yet to be used effectively to treat gynecological tumors in patients. In the present study, we examined if CRM1, a nuclear exporter capable of mediating protein transport, could be a relevant target to restore chemosensitivity in chemoresistant cells. We thus explored the hypothesis that CRM1-driven nuclear exclusion of tumor suppressors could lead to chemoresistance and that CRM1 inhibitors could present a novel therapeutic approach, allowing sensitization to chemotherapeutic agents. METHODS Ovarian cancer cell lines, as well as endometrial cancer cell lines, were treated with leptomycin B (LMB), cisplatin and TRAIL, either singly or in combination, in order to induce apoptosis. Western blot and flow cytometry analysis were used to quantify caspases activation and apoptosis induction. Immunofluorescence was used to determine nuclear localization of p53. Colony formation assays were performed to determine therapeutic effectiveness; p53 siRNA were used to establish p53 role in sensitization. Additional information from GEO database and Prognoscan allowed us to contextualise the obtained results. Finally, qRT-PCR was performed to measure apoptotic regulators expression. RESULTS TRAIL and LMB combination therapy lead to cleavage of caspase-3 as well as the appearance of cleaved-PARP, and thus, apoptosis. Further experiments suggested that sensitization was achieved through the synergistic downregulation of multiple inhibitor of apoptosis, as well as the activation of apoptotic pathways. p53 was enriched in the nucleus following LMB treatments, but did not seem to be required for sensitization; additional experiments suggested that p53 opposed the apoptotic effects of LMB and TRAIL. Results obtained from public data repositories suggested that CRM1 was a driver of chemoresistance and poor prognostic; DR5, on the other hand, acted as as a marker of positive prognostic. CONCLUSIONS Taken together, our results suggest that the use of CRM1 inhibitors, in combination to chemotherapeutic compounds, could be highly effective in the treatment of gynecological malignancies.
Collapse
Affiliation(s)
- François Fabi
- Department of Medical Biology, Université du Québec à Trois-Rivières, 3351 boul. Des Forges, Trois-Rivières, Québec, G8Z 4M3 Canada
| | - Pascal Adam
- Department of Medical Biology, Université du Québec à Trois-Rivières, 3351 boul. Des Forges, Trois-Rivières, Québec, G8Z 4M3 Canada
| | - Keven Vincent
- Department of Medical Biology, Université du Québec à Trois-Rivières, 3351 boul. Des Forges, Trois-Rivières, Québec, G8Z 4M3 Canada
| | - Françis Demontigny
- Department of Medical Biology, Université du Québec à Trois-Rivières, 3351 boul. Des Forges, Trois-Rivières, Québec, G8Z 4M3 Canada
| | - Sophie Parent
- Department of Medical Biology, Université du Québec à Trois-Rivières, 3351 boul. Des Forges, Trois-Rivières, Québec, G8Z 4M3 Canada
| | - France-Hélène Joncas
- Department of Medical Biology, Université du Québec à Trois-Rivières, 3351 boul. Des Forges, Trois-Rivières, Québec, G8Z 4M3 Canada
| | - Eric Asselin
- Department of Medical Biology, Université du Québec à Trois-Rivières, 3351 boul. Des Forges, Trois-Rivières, Québec, G8Z 4M3 Canada
| |
Collapse
|
34
|
Identification of micro-RNA expression profile related to recurrence in women with ESMO low-risk endometrial cancer. J Transl Med 2018; 16:131. [PMID: 29783999 PMCID: PMC5963057 DOI: 10.1186/s12967-018-1515-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/12/2018] [Indexed: 12/15/2022] Open
Abstract
Background Actual European pathological classification of early-stage endometrial cancer (EC) may show insufficient accuracy to precisely stratify recurrence risk, leading to potential over or under treatment. Micro-RNAs are post-transcriptional regulators involved in carcinogenic mechanisms, with some micro-RNA patterns of expression associated with EC characteristics and prognosis. We previously demonstrated that downregulation of micro-RNA-184 was associated with lymph node involvement in low-risk EC (LREC). The aim of this study was to evaluate whether micro-RNA signature in tumor tissues from LREC women can be correlated with the occurrence of recurrences. Methods MicroRNA expression was assessed by chip analysis and qRT-PCR in 7 formalin-fixed paraffin-embedded (FFPE) LREC primary tumors from women whose follow up showed recurrences (R+) and in 14 FFPE LREC primary tumors from women whose follow up did not show any recurrence (R−), matched for grade and age. Various statistical analyses, including enrichment analysis and a minimum p-value approach, were performed. Results The expression levels of micro-RNAs-184, -497-5p, and -196b-3p were significantly lower in R+ compared to R− women. Women with a micro-RNA-184 fold change < 0.083 were more likely to show recurrence (n = 6; 66%) compared to those with a micro-RNA-184 fold change > 0.083 (n = 1; 8%), p = 0.016. Women with a micro-RNA-196 fold change < 0.56 were more likely to show recurrence (n = 5; 100%) compared to those with a micro-RNA-196 fold change > 0.56 (n = 2; 13%), p = 0.001. Conclusions These findings confirm the great interest of micro-RNA-184 as a prognostic tool to improve the management of LREC women.
Collapse
|
35
|
Liu D, Zhang XX, Li MC, Cao CH, Wan DY, Xi BX, Tan JH, Wang J, Yang ZY, Feng XX, Ye F, Chen G, Wu P, Xi L, Wang H, Zhou JF, Feng ZH, Ma D, Gao QL. C/EBPβ enhances platinum resistance of ovarian cancer cells by reprogramming H3K79 methylation. Nat Commun 2018; 9:1739. [PMID: 29712898 PMCID: PMC5928165 DOI: 10.1038/s41467-018-03590-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 02/27/2018] [Indexed: 01/27/2023] Open
Abstract
Chemoresistance is a major unmet clinical obstacle in ovarian cancer treatment. Epigenetics plays a pivotal role in regulating the malignant phenotype, and has the potential in developing therapeutically valuable targets that improve the dismal outcome of this disease. Here we show that a series of transcription factors, including C/EBPβ, GCM1, and GATA1, could act as potential modulators of histone methylation in tumor cells. Of note, C/EBPβ, an independent prognostic factor for patients with ovarian cancer, mediates an important mechanism through which epigenetic enzyme modifies groups of functionally related genes in a context-dependent manner. By recruiting the methyltransferase DOT1L, C/EBPβ can maintain an open chromatin state by H3K79 methylation of multiple drug-resistance genes, thereby augmenting the chemoresistance of tumor cells. Therefore, we propose a new path against cancer epigenetics in which identifying and targeting the key regulators of epigenetics such as C/EBPβ may provide more precise therapeutic options in ovarian cancer. In ovarian cancer, the mechanism of chemoresistance is a key question. Here, the authors demonstrate that C/EBPβ and DOT1L together increase methylation of H3K79, which upregulates expression of oncogenic genes and drives poor platinum response and poor survival in ovarian cancer.
Collapse
Affiliation(s)
- Dan Liu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xiao-Xue Zhang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Meng-Chen Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Can-Hui Cao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Dong-Yi Wan
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Bi-Xin Xi
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jia-Hong Tan
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Ji Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Zong-Yuan Yang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xin-Xia Feng
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Fei Ye
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Gang Chen
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Peng Wu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Ling Xi
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Hui Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jian-Feng Zhou
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Zuo-Hua Feng
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Ding Ma
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Qing-Lei Gao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
36
|
Karlsson T, Krakstad C, Tangen IL, Hoivik EA, Pollock PM, Salvesen HB, Lewis AE. Endometrial cancer cells exhibit high expression of p110β and its selective inhibition induces variable responses on PI3K signaling, cell survival and proliferation. Oncotarget 2018; 8:3881-3894. [PMID: 28002804 PMCID: PMC5354802 DOI: 10.18632/oncotarget.13989] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 12/02/2016] [Indexed: 11/25/2022] Open
Abstract
PTEN loss and constitutive activation of the class I phosphoinositide 3-kinase (PI3K) pathway are key drivers of endometrial tumorigenesis. In some cancer types, PTEN-deficient tumors are reliant on class I PI3K p110β (encoded by PIK3CB) activity but little is known about this contribution in endometrial tumorigenesis. In this study, we find that p110β is overexpressed in a panel of 7 endometrial cancer cell lines compared to non-transformed cells. Furthermore, in 234 clinically annotated patient samples, PIK3CB mRNA levels increase significantly in the early phase of tumorigenesis from precursors to low grade primary malignant lesions whereas PIK3CA levels are higher in non-endometrioid compared to endometrioid primary tumors. While high levels of either PIK3CA or PIK3CB associate with poor prognosis, only elevated PIK3CB mRNA levels correlate with a high cell cycle signature score in clinical samples. In cancer cell lines, p110α inhibition reduces cell viability by inducing cell death in PIK3CA mutant cells while p110β inhibition delayed proliferation in PTEN-deficient cells, but not in WT cells. Taken together, our findings suggest that PIK3CB/p110β contributes to some of the pleiotropic functions of PI3K in endometrial cancer, particularly in the early steps by contributing to cell proliferation.
Collapse
Affiliation(s)
- Thomas Karlsson
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Camilla Krakstad
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Biomedicine, University of Bergen, Bergen, Norway.,Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Ingvild Løberg Tangen
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Erling A Hoivik
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | | | - Helga B Salvesen
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Aurélia E Lewis
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
37
|
Cosgrove CM, Tritchler DL, Cohn DE, Mutch DG, Rush CM, Lankes HA, Creasman WT, Miller DS, Ramirez NC, Geller MA, Powell MA, Backes FJ, Landrum LM, Timmers C, Suarez AA, Zaino RJ, Pearl ML, DiSilvestro PA, Lele SB, Goodfellow PJ. An NRG Oncology/GOG study of molecular classification for risk prediction in endometrioid endometrial cancer. Gynecol Oncol 2018; 148:174-180. [PMID: 29132872 PMCID: PMC5756518 DOI: 10.1016/j.ygyno.2017.10.037] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/24/2017] [Accepted: 10/27/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVES The purpose of this study was to assess the prognostic significance of a simplified, clinically accessible classification system for endometrioid endometrial cancers combining Lynch syndrome screening and molecular risk stratification. METHODS Tumors from NRG/GOG GOG210 were evaluated for mismatch repair defects (MSI, MMR IHC, and MLH1 methylation), POLE mutations, and loss of heterozygosity. TP53 was evaluated in a subset of cases. Tumors were assigned to four molecular classes. Relationships between molecular classes and clinicopathologic variables were assessed using contingency tests and Cox proportional methods. RESULTS Molecular classification was successful for 982 tumors. Based on the NCI consensus MSI panel assessing MSI and loss of heterozygosity combined with POLE testing, 49% of tumors were classified copy number stable (CNS), 39% MMR deficient, 8% copy number altered (CNA) and 4% POLE mutant. Cancer-specific mortality occurred in 5% of patients with CNS tumors; 2.6% with POLE tumors; 7.6% with MMR deficient tumors and 19% with CNA tumors. The CNA group had worse progression-free (HR 2.31, 95%CI 1.53-3.49) and cancer-specific survival (HR 3.95; 95%CI 2.10-7.44). The POLE group had improved outcomes, but the differences were not statistically significant. CNA class remained significant for cancer-specific survival (HR 2.11; 95%CI 1.04-4.26) in multivariable analysis. The CNA molecular class was associated with TP53 mutation and expression status. CONCLUSIONS A simple molecular classification for endometrioid endometrial cancers that can be easily combined with Lynch syndrome screening provides important prognostic information. These findings support prospective clinical validation and further studies on the predictive value of a simplified molecular classification system.
Collapse
Affiliation(s)
| | - David L Tritchler
- NRG Oncology Statistics and Data Management Center, Buffalo, NY, United States
| | - David E Cohn
- The Ohio State University, Columbus, OH, United States
| | - David G Mutch
- Washington University School of Medicine, St. Louis, MO, United States
| | - Craig M Rush
- The Ohio State University, Columbus, OH, United States
| | - Heather A Lankes
- Gynecologic Oncology Group Tissue Bank, Biopathology Center, Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - William T Creasman
- Department of Obstetrics & Gynecology, Medical University of South Carolina, Charleston, SC, United States
| | - David S Miller
- Department of Obstetrics & Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Nilsa C Ramirez
- Gynecologic Oncology Group Tissue Bank, Biopathology Center, Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | | | - Matthew A Powell
- Washington University School of Medicine, St. Louis, MO, United States
| | | | - Lisa M Landrum
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | | | | | - Richard J Zaino
- Anatomic Pathology, Penn State Milton S. Hersey Medical Center, Hershey, PA, United States
| | - Michael L Pearl
- Stony Brook University Hospital, Stony Brook, NY, United States
| | - Paul A DiSilvestro
- Women and Infants Hospital of Rhode Island, Providence, RI, United States
| | | | | |
Collapse
|
38
|
Wu RC, Veras E, Lin J, Gerry E, Bahadirli-Talbott A, Baras A, Ayhan A, Shih IM, Wang TL. Elucidating the pathogenesis of synchronous and metachronous tumors in a woman with endometrioid carcinomas using a whole-exome sequencing approach. Cold Spring Harb Mol Case Stud 2017; 3:a001693. [PMID: 29162652 PMCID: PMC5701312 DOI: 10.1101/mcs.a001693] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 07/12/2017] [Indexed: 12/22/2022] Open
Abstract
Synchronous endometrial and ovarian (SEO) carcinomas involve endometrioid neoplasms in both the ovary and uterus at the time of diagnosis. Patients were traditionally classified as having independent primary SEO lesions or as having metastatic endometrioid carcinoma. Recent studies have supported that SEO tumors result from the dissemination of cells from one organ site to another. However, whether this can be considered a "metastasis" or "dissemination" remains unclear. In this report, we performed whole-exome sequencing of tumor samples from a woman with well-differentiated endometrioid SEO tumors and a clinical "recurrent" poorly differentiated peritoneal tumor that was diagnosed 8 years after the complete resection of the SEO tumors. Somatic mutation analysis identified 132, 171, and 1214 nonsynonymous mutations in the endometrial, ovarian, and peritoneal carcinomas, respectively. A unique mutation signature associated with mismatch repair deficiency was observed in all three tumors. The SEO carcinomas shared 57 nonsynonymous mutations, whereas the clinically suspected recurrent carcinoma shared only eight nonsynonymous mutations with the SEO tumors. One of the eight shared somatic mutations involved PTEN; these shared mutations represent the earliest genetic alteration in the ancestor cell clone. Based on analysis of the phylogenetic tree, we predicted that the so-called recurrent peritoneal tumor was derived from the same endometrial ancestor clone as the SEO tumors, and that this clone migrated and established benign peritoneal endometriosis where the peritoneal tumor later arose. This case highlights the usefulness of next-generation sequencing in defining the etiology and clonal relationships of synchronous and metachronous tumors from patients, thus providing valuable insight to aid in the clinical management of rare or ambiguous tumors.
Collapse
Affiliation(s)
- Ren-Chin Wu
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231, USA
- Department of Pathology, Chang-Gung Memorial Hospital and Chang-Gung University, Taoyuan 33305, Taiwan
| | - Ema Veras
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231, USA
| | - Jeffrey Lin
- Department of Gynecology & Obstetrics, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231, USA
| | - Emily Gerry
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231, USA
| | - Asli Bahadirli-Talbott
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231, USA
| | - Alexander Baras
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231, USA
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231, USA
| | - Ayse Ayhan
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231, USA
- Department of Pathology, Seirei Mikatahara Hospital, Hamamatsu 3453, Japan
- Department of Tumor Pathology, Hamamatsu University, Hamamatsu 431-3192, Japan
- Department of Pathology, Hiroshima University, Hiroshima 734-8551, Japan
| | - Ie-Ming Shih
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231, USA
- Department of Gynecology & Obstetrics, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231, USA
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231, USA
| | - Tian-Li Wang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231, USA
- Department of Gynecology & Obstetrics, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231, USA
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231, USA
| |
Collapse
|
39
|
MacKay HJ, Levine DA, Bae-Jump VL, Bell DW, McAlpine JN, Santin A, Fleming GF, Mutch DG, Nephew KP, Wentzensen N, Goodfellow PJ, Dorigo O, Nijman HW, Broaddus R, Kohn EC. Moving forward with actionable therapeutic targets and opportunities in endometrial cancer: NCI clinical trials planning meeting report on identifying key genes and molecular pathways for targeted endometrial cancer trials. Oncotarget 2017; 8:84579-84594. [PMID: 29137450 PMCID: PMC5663622 DOI: 10.18632/oncotarget.19961] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/15/2017] [Indexed: 12/21/2022] Open
Abstract
The incidence and mortality rates from endometrial cancer are increasing. There have been no new drugs approved for the treatment of endometrial cancer in decades. The National Cancer Institute, Gynecologic Cancer Steering Committee identified the integration of molecular and/or histologic stratification into endometrial cancer management as a top strategic priority. Based on this, they convened a group of experts to review the molecular data in this disease. Here we report on the actionable opportunities and therapeutic directions identified for incorporation into future clinical trials.
Collapse
Affiliation(s)
- Helen J. MacKay
- Division of Medical Oncology & Hematology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Douglas A. Levine
- Division of Gynecologic Cancer, Department of OB/GYN, NYU Langone Laura and Isaac Perlmutter Cancer Center, New York, NY, United States
| | - Victoria L. Bae-Jump
- Division of Gynecologic Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, CA, United States
| | - Daphne W. Bell
- Reproductive Cancer Genetics Section, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute/NIH, MSC 8000, Bethesda, ML, United States
| | - Jessica N. McAlpine
- University of British Columbia & BC Cancer Agency, Division of Gynecologic Oncology, Vancouver, British Columbia, Canada
| | - Alessandro Santin
- Department of Gynecology, Obstetrics and Reproductive Sciences, Yale School of Medicine, New Haven, CT, United States
| | - Gini F. Fleming
- Section of Hematology-Oncology, Department of Medicine, The University of Chicago, Chicago, IL, United States
| | - David G. Mutch
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St. Louis, MO, United States
| | - Kenneth P. Nephew
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN, United States
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, ML, United States
| | - Paul J. Goodfellow
- James Comprehensive Cancer Center and The Department of Obstetrics and Gynecology, Ohio State University, Columbus, OH, United States
| | - Oliver Dorigo
- Division Gynecologic Oncology, Department of Obstetrics and Gynecology, Stanford, CA, United States
| | - Hans W. Nijman
- Department of Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Russell Broaddus
- Department of Pathology, Unit 85, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Elise C. Kohn
- Clinical Investigations Branch of The Cancer Therapy Evaluation Program, National Cancer Institute, Rockville, ML, United States
| |
Collapse
|
40
|
Brandt LP, Albers J, Hejhal T, Catalano A, Wild PJ, Frew IJ. Oncogenic HrasG12V expression plus knockdown of Cdkn2a using ecotropic lentiviral vectors induces high-grade endometrial stromal sarcoma. PLoS One 2017; 12:e0186102. [PMID: 28982163 PMCID: PMC5628932 DOI: 10.1371/journal.pone.0186102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/25/2017] [Indexed: 01/29/2023] Open
Abstract
The uterine corpus represents the most common site for tumour development in the female genital system. Uterine neoplasms are categorised as epithelial, mesenchymal, mixed epithelial-mesenchymal or trophoblastic tumours. In this study we employed a mouse genetic approach using the MuLE lentiviral gene regulatory system to functionally test the ability of ecotropic lentiviruses to model epithelial and mesenchymal uterine malignancies ex vivo and in vivo. We discovered that MuLE lentiviruses efficiently infect uterine stromal cells but not endometrial epithelial cells when injected into the uterus of cycling, pseudopregnant or ovarectomized mice. Consistent with this cellular infection spectrum, we show that intra-uterine injection of ecotropic MuLE viruses expressing oncogenic HrasG12V together with knockdown of Cdkn2a induce high-grade endometrial stromal sarcomas. These findings establish this approach as an efficient method of generating autochthonous mouse models of uterine sarcomas and in general for performing genetic manipulations of uterine stromal cells in vivo.
Collapse
Affiliation(s)
- Laura P. Brandt
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Joachim Albers
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Tomas Hejhal
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Antonella Catalano
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Clinic of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Peter J. Wild
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Ian J. Frew
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Clinic of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
41
|
Sun Y, Zou X, He J, Mao Y. Identification of long non-coding RNAs biomarkers associated with progression of endometrial carcinoma and patient outcomes. Oncotarget 2017; 8:52604-52613. [PMID: 28881755 PMCID: PMC5581054 DOI: 10.18632/oncotarget.17537] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/07/2017] [Indexed: 12/16/2022] Open
Abstract
Endometrial carcinoma is a complex disease characterized by both genetic, epigenetic and environmental factors. Increasing evidence has suggested that long non-coding RNAs (lncRNAs) play important roles in the development and progression of cancers. In this study, we performed a comparison analysis for lncRNA expression between patients with early-stage (stage I/II) and those with advanced-stage (stage III/IV) derived from The Cancer Genome Atlas (TCGA) project and identified 17 differentially expressed lncRNAs using student t-test. Five of the 17 differentially expressed lncRNAs were selected as optimal biomarkers that are significantly associated with progression of UCEC using random forest feature selection procedure. A risk classifier of five lncRNAs was developed to as a molecular signature that identifies patients at high risk for progression using support vector machine. Results of five-lncRNA risk classifier achieved high discriminatory performance in distinguishing advanced stage from early stage with 78% prediction accuracy, 96.6% sensitivity and 76.6% specificity. Functional analysis suggested that these five lncRNA biomarkers may play critical roles in the progression of UCEC by participating in important cancer-related biological processes. Our study will help to improve our understanding of underlying mechanisms in the progression of UCEC and provide novel lncRNAs as candidate predictive biomarkers for the identification of patients with high risk for progression.
Collapse
Affiliation(s)
- Yanan Sun
- Department of Gynecology and Obstetrics, Daqing Oilfield General Hospital, Daqing 163000, China
| | - Xiaoyan Zou
- Department of Gynecology and Obstetrics, Daqing Oilfield General Hospital, Daqing 163000, China
| | - Jun He
- Department of Gynecology and Obstetrics, Daqing Oilfield General Hospital, Daqing 163000, China
| | - Yuqin Mao
- Department of Gynecology and Obstetrics, Daqing Oilfield General Hospital, Daqing 163000, China
| |
Collapse
|
42
|
The Genomic Heterogeneity of FIGO Grade 3 Endometrioid Carcinoma Impacts Diagnostic Accuracy and Reproducibility. Int J Gynecol Pathol 2017; 35:16-24. [PMID: 26166718 DOI: 10.1097/pgp.0000000000000212] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Cancer Genome Atlas (TCGA) identified 4 groups of endometrial carcinomas based on an integrated genomic characterization: POLE ultramutated (POLE), microsatellite instability-high, copy number-low (CN-L), and copy number-high (CN-H). In that study, CN-H comprised all of the serous carcinoma cases and 25% of all International Federation of Gynecology and Obstetrics (FIGO) Grade 3 endometrioid carcinoma cases. In this study, 2 expert gynecologic pathologists undertook a morphologic reassessment of the FIGO Grade 3 endometrioid carcinoma subset of the TCGA study cohort, including an analysis for evidence of serous differentiation. Interobserver variability κvalues are reported for the histologic evaluation of all 4 genomic clusters, and diagnostic discrepancies are discussed. Overall, there were 55 agreements, 6 disagreements, and 14 deferrals. Of the 75 cases analyzed, 6 cases had a consensus morphologic diagnosis of serous carcinoma, but only 2 of these cases had a serous carcinoma genotype, whereas the remaining 4 cases were genotypically endometrioid carcinoma. For the CN-H group, 2 of 15 cases were serous carcinoma by morphology and genotype, whereas at least 1 pathologist interpreted the remaining 13 cases as endometrioid carcinoma. The interobserver agreement rate was highest in the CN-L group (90%; κ=0.9), compared with the other genomic groups (POLE: 62%, κ=0.55; microsatellite instability-high: 78%, κ=0.74; and CN-H: 53%, κ=0.48). Our review confirms that most high-grade endometrial carcinomas diagnosed by TCGA as FIGO Grade 3 endometrioid carcinoma are indeed endometrioid carcinomas by morphology and genotype, and that the reproducibility of histologic diagnosis between pathologists varies between the TCGA-integrated genomic clusters.
Collapse
|
43
|
Kim DH, Kwak Y, Kim ND, Sim T. Antitumor effects and molecular mechanisms of ponatinib on endometrial cancer cells harboring activating FGFR2 mutations. Cancer Biol Ther 2016; 17:65-78. [PMID: 26574622 DOI: 10.1080/15384047.2015.1108492] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aberrant mutational activation of FGFR2 is associated with endometrial cancers (ECs). AP24534 (ponatinib) currently undergoing clinical trials has been known to be an orally available multi-targeted tyrosine kinase inhibitor. Our biochemical kinase assay showed that AP24534 is potent against wild-type FGFR1-4 and 5 mutant FGFRs (V561M-FGFR1, N549H-FGFR2, K650E-FGFR3, G697C-FGFR3, N535K-FGFR4) and possesses the strongest kinase-inhibitory activity on N549H-FGFR2 (IC50 of 0.5 nM) among all FGFRs tested. We therefore investigated the effects of AP24534 on endometrial cancer cells harboring activating FGFR2 mutations and explored the underlying molecular mechanisms. AP24534 significantly inhibited the proliferation of endometrial cancer cells bearing activating FGFR2 mutations (N549K, K310R/N549K, S252W) and mainly induced G1/S cell cycle arrest leading to apoptosis. AP24534 also diminished the kinase activity of immunoprecipitated FGFR2 derived from MFE-296 and MFE-280 cells and reduced the phosphorylation of FGFR2 and FRS2 on MFE-296 and AN3CA cells. AP24534 caused substantial reductions in ERK phosphorylation, PLCγ signaling and STAT5 signal transduction on ECs bearing FGFR2 activating mutations. Akt signaling pathway was also deactivated by AP24534. AP24534 causes the chemotherapeutic effect through mainly the blockade of ERK, PLCγ and STAT5 signal transduction on ECs. Moreover, AP24534 inhibited migration and invasion of endometrial cancer cells with FGFR2 mutations. In addition, AP24534 significantly blocked anchorage-independent growth of endometrial cancer cells. We, for the first time, report the molecular mechanisms by which AP24534 exerts antitumor effects on ECs with FGFR2 activating mutations, which would provide mechanistic insight into ongoing clinical investigations of AP24534 for ECs.
Collapse
Affiliation(s)
- Do-Hee Kim
- a Chemical Kinomics Research Center, Korea Institute of Science and Technology , 39-1, Hawolgok-dong, Seongbuk-gu, Seoul , 136-791 , Korea
| | - Yeonui Kwak
- b KU-KIST Graduate School of Converging Science and Technology, Korea University , 145 Anam-ro, Seongbuk-gu, Seoul , 136-713 , Korea
| | - Nam Doo Kim
- c Daegu-Gyeongbuk Medical Innovation Foundation , 2387 dalgubeol-daero, Suseong-gu, Daegu , 706-010 , Korea
| | - Taebo Sim
- a Chemical Kinomics Research Center, Korea Institute of Science and Technology , 39-1, Hawolgok-dong, Seongbuk-gu, Seoul , 136-791 , Korea.,b KU-KIST Graduate School of Converging Science and Technology, Korea University , 145 Anam-ro, Seongbuk-gu, Seoul , 136-713 , Korea
| |
Collapse
|
44
|
McDaniel AS, Stall JN, Hovelson DH, Cani AK, Liu CJ, Tomlins SA, Cho KR. Next-Generation Sequencing of Tubal Intraepithelial Carcinomas. JAMA Oncol 2016; 1:1128-32. [PMID: 26181193 DOI: 10.1001/jamaoncol.2015.1618] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
IMPORTANCE High-grade serous carcinoma (HGSC) is the most prevalent and lethal form of ovarian cancer. HGSCs frequently arise in the distal fallopian tubes rather than the ovary, developing from small precursor lesions called serous tubal intraepithelial carcinomas (TICs, or more specifically, STICs). While STICs have been reported to harbor TP53 mutations, detailed molecular characterizations of these lesions are lacking. OBSERVATIONS We performed targeted next-generation sequencing (NGS) on formalin-fixed, paraffin-embedded tissue from 4 women, 2 with HGSC and 2 with uterine endometrioid carcinoma (UEC) who were diagnosed as having synchronous STICs. We detected concordant mutations in both HGSCs with synchronous STICs, including TP53 mutations as well as assumed germline BRCA1/2 alterations, confirming a clonal association between these lesions. Next-generation sequencing confirmed the presence of a STIC clonally unrelated to 1 case of UEC, and NGS of the other tubal lesion diagnosed as a STIC unexpectedly supported the lesion as a micrometastasis from the associated UEC. CONCLUSIONS AND RELEVANCE We demonstrate that targeted NGS can identify genetic alterations in minute lesions, such as TICs, and confirm TP53 mutations as early driving events for HGSC. Next-generation sequencing also demonstrated unexpected associations between presumed STICs and synchronous carcinomas, providing evidence that some TICs are actually metastases rather than HGSC precursors.
Collapse
Affiliation(s)
- Andrew S McDaniel
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor
| | | | - Daniel H Hovelson
- Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor
| | - Andi K Cani
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor
| | - Chia-Jen Liu
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor
| | - Scott A Tomlins
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor4Department of Urology, University of Michigan, Ann Arbor5Comprehensive Cancer Center, University of Michigan, Ann Arbor
| | - Kathleen R Cho
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor5Comprehensive Cancer Center, University of Michigan, Ann Arbor6Department of Internal Medicine, University of Michigan, Ann Arbor
| |
Collapse
|
45
|
Vierkoetter KR, Kagami LAT, Ahn HJ, Shimizu DM, Terada KY. Loss of Mismatch Repair Protein Expression in Unselected Endometrial Adenocarcinoma Precursor Lesions. Int J Gynecol Cancer 2016; 26:228-32. [PMID: 26807560 PMCID: PMC5648587 DOI: 10.1097/igc.0000000000000606] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE The benefit of evaluating the precursor of endometrial carcinoma, endometrial hyperplasia (intraepithelial neoplasia [EIN]), for loss of mismatch repair (MMR) protein expression and Lynch syndrome has yet to be determined. The present study aims to establish the incidence and type of loss of MMR protein expression in unselected premalignant lesions of endometrial adenocarcinoma, as well as the agreement of immunohistochemical staining in pretreatment endometrial biopsy (EMB) specimens with subsequent uterine resections. METHODS A retrospective review identified 112 endometrial biopsies meeting criteria for endometrial EIN. Slides made from tissue microarray blocks were evaluated using antibodies against MLH1, PMS2, MSH2, and MSH6. Cases with a deficit in MLH1 were evaluated for gene promoter hypermethylation by polymerase chain reaction analysis. Fifty-four subsequent hysterectomy specimens were retrieved and assessed for MMR protein expression. RESULTS Of the 112 endometrial biopsies with EIN, 4.5% (5/112) exhibited loss of MMR protein expression. The majority (4/5) demonstrated a deficit of MLH1, of which all exhibited inactivation via promoter hypermethylation. A single case displayed an absence of MSH6. Age was not significantly associated with MMR deficiency. There was no significant association between MMR status in the EMB and a subsequent diagnosis of cancer. Immunohistochemical staining in all successive hysterectomy cases was concordant with the pattern observed in the EMB specimen. CONCLUSIONS Sporadic hypermethylation of MLH1 seems to be the primary mechanism underlying defective MMR protein expression in EIN. Among our cohort, only 1 patient (<1%) had a mutation suggestive of a hereditary inheritance. Hence, the utility of evaluating EIN for MMR protein expression as a screen for Lynch syndrome is limited, regardless of age.
Collapse
Affiliation(s)
- Koah Robin Vierkoetter
- *Department of Pathology, †Office of Biostatistics and Quantitative Health Sciences, and ‡Department of Obstetrics, Gynecology, and Women's Health, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI
| | | | | | | | | |
Collapse
|
46
|
Chandra V, Kim JJ, Benbrook DM, Dwivedi A, Rai R. Therapeutic options for management of endometrial hyperplasia. J Gynecol Oncol 2015; 27:e8. [PMID: 26463434 PMCID: PMC4695458 DOI: 10.3802/jgo.2016.27.e8] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 07/24/2015] [Accepted: 07/31/2015] [Indexed: 12/24/2022] Open
Abstract
Endometrial hyperplasia (EH) comprises a spectrum of changes in the endometrium ranging from a slightly disordered pattern that exaggerates the alterations seen in the late proliferative phase of the menstrual cycle to irregular, hyperchromatic lesions that are similar to endometrioid adenocarcinoma. Generally, EH is caused by continuous exposure of estrogen unopposed by progesterone, polycystic ovary syndrome, tamoxifen, or hormone replacement therapy. Since it can progress, or often occur coincidentally with endometrial carcinoma, EH is of clinical importance, and the reversion of hyperplasia to normal endometrium represents the key conservative treatment for prevention of the development of adenocarcinoma. Presently, cyclic progestin or hysterectomy constitutes the major treatment option for EH without or with atypia, respectively. However, clinical trials of hormonal therapies and definitive standard treatments remain to be established for the management of EH. Moreover, therapeutic options for EH patients who wish to preserve fertility are challenging and require nonsurgical management. Therefore, future studies should focus on evaluation of new treatment strategies and novel compounds that could simultaneously target pathways involved in the pathogenesis of estradiol-induced EH. Novel therapeutic agents precisely targeting the inhibition of estrogen receptor, growth factor receptors, and signal transduction pathways are likely to constitute an optimal approach for treatment of EH.
Collapse
Affiliation(s)
- Vishal Chandra
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Jong Joo Kim
- School of Biotechnology, Yeungnam University, Gyeongsan, Korea
| | - Doris Mangiaracina Benbrook
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anila Dwivedi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Rajani Rai
- School of Biotechnology, Yeungnam University, Gyeongsan, Korea.
| |
Collapse
|
47
|
Hong B, Le Gallo M, Bell DW. The mutational landscape of endometrial cancer. Curr Opin Genet Dev 2015; 30:25-31. [PMID: 25622247 DOI: 10.1016/j.gde.2014.12.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/14/2014] [Accepted: 12/16/2014] [Indexed: 01/19/2023]
Abstract
Globally, endometrial carcinoma causes about 74000 deaths annually. Endometrial carcinomas can be classified into several histological subtypes including endometrioid and serous histologies. Over the course of the past two years, a number of studies have decoded the exomes of endometrioid and serous endometrial carcinomas revealing novel somatically mutated genes that are likely to drive their development. Moreover, an integrated genomic analysis of these two histological subtypes by The Cancer Genome Atlas has led to their molecular reclassification into four discrete molecular subgroups. Collectively, these genomic advances set the stage for future biological and clinical studies to determine their relevance for patient care.
Collapse
Affiliation(s)
- Bo Hong
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthieu Le Gallo
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daphne W Bell
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
48
|
Chen H, Zhang C, Sheng Y, Yao S, Liu Z, Zhang C, Zhang T. Frequent SOCS3 and 3OST2 promoter methylation and their epigenetic regulation in endometrial carcinoma. Am J Cancer Res 2014; 5:180-190. [PMID: 25628929 PMCID: PMC4300694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/28/2014] [Indexed: 06/04/2023] Open
Abstract
DNA methylation has been considered as an important means of early diagnosis of cancer, which cooperates with histone modifications, playing a crucial role in silencing tumor suppressor genes (TSGs). However, how TSGs are regulated by these epigenetic mechanisms in cancer remains unknown. In this study, we first evaluated 7 TSGs methylation in the early diagnosis of endometrial carcinoma (EC), and then explored the epigenetic mechanisms of their transcriptional regulation. The results showed that SOCS3 and 3OST2 were the most frequently methylated genes in EC (88.3% and 78.3%, respectively), and 3OST2 was correlated with younger patients (< 57 years, P = 0.030) and well-differentiated EC (P = 0.026). Unlike 3OST2, SOCS3 methylation occurred even in complex hyperplasia (53.3%) and atypical hyperplasia (54.2%). 5-aza-2'-deoxycytidine (5-Aza-CdR) or trichostatin A (TSA) alone could partially reverse SOCS3 and 3OST2 methylation, and their combination completely reversed the methylation of both genes. In addition, UHRF1 and methylated H3R8 were enriched on both hypermethylated SOCS3 and 3OST2 promoters, but after 5-Aza-CdR or TSA treatment, the UHRF1 and H3R8me2s enrichment was decreased while H3R8me2a enrichment was increased. In conclusion, we demonstrate for the first time that SOCS3 and 3OST2 methylation plays an important role in endometrial carcinogenesis, and could be directly regulated by UHRF1. Moreover, H3R8me2s acts as a repressive mark, while H3R8me2a was correlated with transcriptional activity in EC.
Collapse
Affiliation(s)
- Haiyan Chen
- Institute of Pathology and Pathophysiology, Shandong University School of MedicineJinan 250012, P R China
- Department of Pathology, Shandong Provincial Chest HospitalJinan 250012, P R China
| | - Cuijuan Zhang
- Institute of Pathology and Pathophysiology, Shandong University School of MedicineJinan 250012, P R China
| | - Yan Sheng
- Institute of Pathology and Pathophysiology, Shandong University School of MedicineJinan 250012, P R China
| | - Shuzhe Yao
- Institute of Pathology and Pathophysiology, Shandong University School of MedicineJinan 250012, P R China
| | - Zhiyan Liu
- Institute of Pathology and Pathophysiology, Shandong University School of MedicineJinan 250012, P R China
| | - Cheng Zhang
- Institute of Pathology and Pathophysiology, Shandong University School of MedicineJinan 250012, P R China
| | - Tingguo Zhang
- Institute of Pathology and Pathophysiology, Shandong University School of MedicineJinan 250012, P R China
| |
Collapse
|
49
|
Di Lorito A, Zappacosta R, Capanna S, Gatta DM, Rosini S, Schmitt FC. Expression of PTEN in endometrial liquid-based cytology. Acta Cytol 2014; 58:495-500. [PMID: 25358681 DOI: 10.1159/000367961] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/27/2014] [Indexed: 01/28/2023]
Abstract
OBJECTIVES Endometrial cytology offers a reliable alternative to biopsy in endometrial cancer detection and it may be useful in obtaining material to study prognostic and predictive markers. Over the years, new sampling devices have been developed. Molecular alterations in endometrial cancers were previously described using formalin-fixed paraffin-embedded tissues with particular attention, in endometrioid carcinomas, to the PTEN-PI3K pathway. PTEN evaluation could be useful in endometrial carcinomas for selecting patients for target therapies. STUDY DESIGN We studied 51 endometrial samples collected using the Endogyn device and 71 obtained with the Endoflower dispositive device, and processed using liquid-based cytology. Most of the cases were matched with a corresponding histological biopsy. The overall accuracy of Endoflower was 100%. Immunohistochemistry (IHC) and immunocytochemistry (ICC) for PTEN were performed using monoclonal antibody 6H2.1 from DAKO. RESULTS The IHC showed PTEN-null glands in 4 cases. The same cancers were negative in ICC. Among the 10 carcinomas on cytology, PTEN-null glands were found in 1 case. All the normal endometrium control cases were positive in cytology and histology. CONCLUSIONS Our results suggest that endometrial devices provide useful material for the diagnosis and evaluation of PTEN expression.
Collapse
Affiliation(s)
- Alessia Di Lorito
- Experimental and Clinical Science, G. d'Annunzio University, Chieti, Italy
| | | | | | | | | | | |
Collapse
|
50
|
Dienstmann R, Rodon J, Prat A, Perez-Garcia J, Adamo B, Felip E, Cortes J, Iafrate AJ, Nuciforo P, Tabernero J. Genomic aberrations in the FGFR pathway: opportunities for targeted therapies in solid tumors. Ann Oncol 2014; 25:552-563. [PMID: 24265351 PMCID: PMC4433501 DOI: 10.1093/annonc/mdt419] [Citation(s) in RCA: 302] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 08/30/2013] [Accepted: 09/02/2013] [Indexed: 12/17/2022] Open
Abstract
The fibroblast growth factor receptor (FGFR) cascade plays crucial roles in tumor cell proliferation, angiogenesis, migration and survival. Accumulating evidence suggests that in some tumor types, FGFRs are bona fide oncogenes to which cancer cells are addicted. Because FGFR inhibition can reduce proliferation and induce cell death in a variety of in vitro and in vivo tumor models harboring FGFR aberrations, a growing number of research groups have selected FGFRs as targets for anticancer drug development. Multikinase FGFR/vascular endothelial growth factor receptor (VEGFR) inhibitors have shown promising activity in breast cancer patients with FGFR1 and/or FGF3 amplification. Early clinical trials with selective FGFR inhibitors, which may overcome the toxicity constraints raised by multitarget kinase inhibition, are recruiting patients with known FGFR(1-4) status based on genomic screens. Preliminary signs of antitumor activity have been demonstrated in some tumor types, including squamous cell lung carcinomas. Rational combination of targeted therapies is expected to further increase the efficacy of selective FGFR inhibitors. Herein, we discuss unsolved questions in the clinical development of these agents and suggest guidelines for management of hyperphosphatemia, a class-specific mechanism-based toxicity. In addition, we propose standardized definitions for FGFR1 and FGFR2 gene amplification based on in situ hybridization methods. Extended access to next-generation sequencing platforms will facilitate the identification of diseases in which somatic FGFR(1-4) mutations, amplifications and fusions are potentially driving cancer cell viability, further strengthening the role of FGFR signaling in cancer biology and providing more possibilities for the therapeutic application of FGFR inhibitors.
Collapse
MESH Headings
- Antibodies, Monoclonal/therapeutic use
- Fibroblast Growth Factor 3/genetics
- Gene Amplification
- Humans
- Hyperphosphatemia/therapy
- Molecular Targeted Therapy
- Neoplasms/drug therapy
- Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Receptor, Fibroblast Growth Factor, Type 4/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 4/genetics
- Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors
Collapse
Affiliation(s)
- R Dienstmann
- Molecular Pathology Lab, Massachusetts General Hospital Cancer Center, Boston, USA
| | | | - A Prat
- Medical Oncology Department; Translational Genomics Lab
| | | | | | | | | | - A J Iafrate
- Molecular Pathology Lab, Massachusetts General Hospital Cancer Center, Boston, USA
| | - P Nuciforo
- Molecular Oncology Lab, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | |
Collapse
|