1
|
Tan Y, Ouyang Y, Xiao L, Huang J, Li F, Ma Z, Tan C, Feng W, Davis E, Tang Y, Chang X, Li H. Lipopolysaccharide-induced DNA damage response activates DNA-PKcs to drive actin cytoskeleton disruption and cardiac microvascular dysfunction in endotoxemia. Theranostics 2025; 15:5969-5997. [PMID: 40365284 PMCID: PMC12068286 DOI: 10.7150/thno.111266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/05/2025] [Indexed: 05/15/2025] Open
Abstract
Rationale: Sepsis-induced cardiomyopathy is characterized by microvascular injury, which is linked to lipopolysaccharide (LPS)-induced DNA damage response (DDR). This study investigates the role of DNA-PKcs, a key enzyme in the DDR pathway, in driving actin disruption and microvascular dysfunction following LPS exposure. Methods: We analyzed diverse transcriptomic datasets from septic human and murine models using bioinformatics tools to assess DDR pathway activation, correlations, and prognosis. In vivo, LPS-challenged mice were treated with inhibitors of DNA-PKcs or mitochondrial fission, and we evaluated cardiac function, microvascular integrity, mitochondrial status, and actin polymerization. Results: Bioinformatic analyses consistently revealed significant activation of the DDR pathway and upregulation of key genes across diverse septic models. Notably, elevated DDR pathway activity was significantly correlated with poor 28-day survival in human sepsis patients. Single-cell analysis localized this DDR gene upregulation predominantly to cardiac endothelial cells (ECs), fibroblasts, and macrophages during sepsis. Within septic capillary ECs, DDR pathway activity scores strongly correlated spatially and functionally with heightened mitochondrial fission and cytoskeletal remodeling pathway activities. In vivo experiments confirmed that LPS induced severe systolic and diastolic dysfunction, microvascular damage, and mitochondrial fragmentation, as well as significant actin depolymerization. Inhibition of DNA-PKcs with NU7441 markedly attenuated all these LPS-induced pathologies, improving cardiac function, preserving microvascular structure, preventing mitochondrial fragmentation, and normalizing related gene expression and actin cytoskeleton stability. Additionally, inhibiting mitochondrial fission with Mdivi-1 significantly ameliorated LPS-induced cardiac dysfunction and microvascular injury. Conclusions: Our findings suggest that LPS triggers a DNA-PKcs-dependent DDR that promotes mitochondrial fragmentation and actin disruption, particularly in cardiac ECs, contributing to sepsis-induced cardiomyopathy. Targeting DNA-PKcs or mitochondrial fission may hold therapeutic potential for the treatment of sepsis-induced cardiomyopathy.
Collapse
Affiliation(s)
- Ying Tan
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yue Ouyang
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Lushan Xiao
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jianming Huang
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Fuye Li
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zisheng Ma
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Chuhong Tan
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Weibin Feng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Erica Davis
- School of Pharmacy, University of Phoenix, 4035 S Riverpoint Pkwy, Phoenix, AZ 85040, United States
- Faculty of International Education Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Yaoping Tang
- Faculty of International Education Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Xing Chang
- School of Pharmacy, University of Phoenix, 4035 S Riverpoint Pkwy, Phoenix, AZ 85040, United States
- Guang'anmen Hospital of Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Haixia Li
- Guang'anmen Hospital of Chinese Academy of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Xia T, Yu J, Du M, Chen X, Wang C, Li R. Vascular endothelial cell injury: causes, molecular mechanisms, and treatments. MedComm (Beijing) 2025; 6:e70057. [PMID: 39931738 PMCID: PMC11809559 DOI: 10.1002/mco2.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 02/13/2025] Open
Abstract
Vascular endothelial cells form a single layer of flat cells that line the inner surface of blood vessels, extending from large vessels to the microvasculature of various organs. These cells are crucial metabolic and endocrine components of the body, playing vital roles in maintaining circulatory stability, regulating vascular tone, and preventing coagulation and thrombosis. Endothelial cell injury is regarded as a pivotal initiating factor in the pathogenesis of various diseases, triggered by multiple factors, including infection, inflammation, and hemodynamic changes, which significantly compromise vascular integrity and function. This review examines the causes, underlying molecular mechanisms, and potential therapeutic approaches for endothelial cell injury, focusing specifically on endothelial damage in cardiac ischemia/reperfusion (I/R) injury, sepsis, and diabetes. It delves into the intricate signaling pathways involved in endothelial cell injury, emphasizing the roles of oxidative stress, mitochondrial dysfunction, inflammatory mediators, and barrier damage. Current treatment strategies-ranging from pharmacological interventions to regenerative approaches and lifestyle modifications-face ongoing challenges and limitations. Overall, this review highlights the importance of understanding endothelial cell injury within the context of various diseases and the necessity for innovative therapeutic methods to improve patient outcomes.
Collapse
Affiliation(s)
- Tian Xia
- Department of Laboratory MedicineThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Laboratory MedicineMedical School of Chinese PLABeijingChina
| | - Jiachi Yu
- Department of Laboratory MedicineThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Laboratory MedicineMedical School of Chinese PLABeijingChina
| | - Meng Du
- Department of Laboratory MedicineThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Clinical LaboratoryHuaian Hospital of Huaian CityHuaianJiangsuChina
| | - Ximeng Chen
- Department of Laboratory MedicineThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Laboratory MedicineMedical School of Chinese PLABeijingChina
| | - Chengbin Wang
- Department of Laboratory MedicineThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Laboratory MedicineMedical School of Chinese PLABeijingChina
| | - Ruibing Li
- Department of Laboratory MedicineThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Laboratory MedicineMedical School of Chinese PLABeijingChina
| |
Collapse
|
3
|
Sonin DL, Medved MS, Khapchaev AY, Sidorova MV, Palkeeva ME, Kazakova OA, Papayan GV, Mochalov DA, Minasyan SM, Anufriev IE, Mukhametdinova DV, Paramonova NM, Balabanova KM, Lopatina AS, Aleksandrov IV, Semenova NY, Kordyukova AA, Zaichenko KV, Shirinsky VP, Galagudza MM. Antiedemic Effect of the Myosin Light Chain Kinase Inhibitor PIK7 in the Rat Model of Myocardial Ischemia Reperfusion Injury. Curr Issues Mol Biol 2025; 47:33. [PMID: 39852148 PMCID: PMC11763459 DOI: 10.3390/cimb47010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/28/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
Myocardial ischemia-reperfusion injury increases myocardial microvascular permeability, leading to enhanced microvascular filtration and interstitial fluid accumulation that is associated with greater microvascular obstruction and inadequate myocardial perfusion. A burst of reactive oxygen species and inflammatory mediators during reperfusion causes myosin light chain kinase (MLCK)-dependent endothelial hyperpermeability, which is considered a preventable cause of reperfusion injury. In the present study, a single intravenous injection of MLCK peptide inhibitor PIK7 (2.5 mg/kg or 40 mg/kg) was found to suppress the vascular hyperpermeability caused by ischemia/reperfusion injury in an in vivo rat model. The antiedemic effect of PIK7 is transient and ceases within 90 min of reperfusion. The early no-reflow detected for the first time after 30 min ischemia in this model of myocardial infarction reduces the area accessible for PIK7. Electron microscopy has shown membrane-bound blebs of endotheliocytes, which partially or completely obturate the capillary lumen, and few capillaries with signs of intercellular gap formation in samples obtained from the center of the early no-reflow zone in control and PIK7-injected rats. Co-injection of PIK7 with NO donor sodium nitroprusside (SNP) increases blood flow in the zone of early no-reflow, while reducing the increased vascular permeability caused by SNP.
Collapse
Affiliation(s)
- Dmitry L. Sonin
- Institute of Experimental Medicine, Almazov National Medical Research Centre, 15B Parkhomenko Street, 194021 Saint Petersburg, Russia; (M.S.M.); (G.V.P.); (D.A.M.); (I.E.A.); (N.M.P.); (K.M.B.); (A.S.L.); (I.V.A.); (N.Y.S.); (M.M.G.)
- Laboratory of Radio- and Optoelectronic Devices for Early Diagnostics of Living Systems Pathologies, The Institute for Analytical Instrumentation, Russian Academy of Sciences, 31-33A Ivana Chernykh Street, 198095 Saint Petersburg, Russia; (A.A.K.); (K.V.Z.)
| | - Mikhail S. Medved
- Institute of Experimental Medicine, Almazov National Medical Research Centre, 15B Parkhomenko Street, 194021 Saint Petersburg, Russia; (M.S.M.); (G.V.P.); (D.A.M.); (I.E.A.); (N.M.P.); (K.M.B.); (A.S.L.); (I.V.A.); (N.Y.S.); (M.M.G.)
| | - Asker Y. Khapchaev
- Institute of Experimental Cardiology Named after Academician V.N. Smirnov, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (A.Y.K.); (M.V.S.); (M.E.P.); (O.A.K.); (V.P.S.)
| | - Maria V. Sidorova
- Institute of Experimental Cardiology Named after Academician V.N. Smirnov, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (A.Y.K.); (M.V.S.); (M.E.P.); (O.A.K.); (V.P.S.)
| | - Marina E. Palkeeva
- Institute of Experimental Cardiology Named after Academician V.N. Smirnov, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (A.Y.K.); (M.V.S.); (M.E.P.); (O.A.K.); (V.P.S.)
| | - Olga A. Kazakova
- Institute of Experimental Cardiology Named after Academician V.N. Smirnov, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (A.Y.K.); (M.V.S.); (M.E.P.); (O.A.K.); (V.P.S.)
| | - Garry V. Papayan
- Institute of Experimental Medicine, Almazov National Medical Research Centre, 15B Parkhomenko Street, 194021 Saint Petersburg, Russia; (M.S.M.); (G.V.P.); (D.A.M.); (I.E.A.); (N.M.P.); (K.M.B.); (A.S.L.); (I.V.A.); (N.Y.S.); (M.M.G.)
- Scientific and Educational Institute of Biomedicine, Pavlov First Saint Petersburg State Medical University, 6–8 Lev Tolstoy Street, 197022 Saint Petersburg, Russia
| | - Daniil A. Mochalov
- Institute of Experimental Medicine, Almazov National Medical Research Centre, 15B Parkhomenko Street, 194021 Saint Petersburg, Russia; (M.S.M.); (G.V.P.); (D.A.M.); (I.E.A.); (N.M.P.); (K.M.B.); (A.S.L.); (I.V.A.); (N.Y.S.); (M.M.G.)
| | - Sarkis M. Minasyan
- Institute of Experimental Medicine, Almazov National Medical Research Centre, 15B Parkhomenko Street, 194021 Saint Petersburg, Russia; (M.S.M.); (G.V.P.); (D.A.M.); (I.E.A.); (N.M.P.); (K.M.B.); (A.S.L.); (I.V.A.); (N.Y.S.); (M.M.G.)
- Scientific and Educational Institute of Biomedicine, Pavlov First Saint Petersburg State Medical University, 6–8 Lev Tolstoy Street, 197022 Saint Petersburg, Russia
| | - Ilya E. Anufriev
- Institute of Experimental Medicine, Almazov National Medical Research Centre, 15B Parkhomenko Street, 194021 Saint Petersburg, Russia; (M.S.M.); (G.V.P.); (D.A.M.); (I.E.A.); (N.M.P.); (K.M.B.); (A.S.L.); (I.V.A.); (N.Y.S.); (M.M.G.)
- Infochemistry Scientific Center, ITMO University, Lomonosova Str. 9, 191002 Saint-Petersburg, Russia
| | - Daria V. Mukhametdinova
- Institute of Experimental Medicine, Almazov National Medical Research Centre, 15B Parkhomenko Street, 194021 Saint Petersburg, Russia; (M.S.M.); (G.V.P.); (D.A.M.); (I.E.A.); (N.M.P.); (K.M.B.); (A.S.L.); (I.V.A.); (N.Y.S.); (M.M.G.)
| | - Natalia M. Paramonova
- Institute of Experimental Medicine, Almazov National Medical Research Centre, 15B Parkhomenko Street, 194021 Saint Petersburg, Russia; (M.S.M.); (G.V.P.); (D.A.M.); (I.E.A.); (N.M.P.); (K.M.B.); (A.S.L.); (I.V.A.); (N.Y.S.); (M.M.G.)
| | - Ksenia M. Balabanova
- Institute of Experimental Medicine, Almazov National Medical Research Centre, 15B Parkhomenko Street, 194021 Saint Petersburg, Russia; (M.S.M.); (G.V.P.); (D.A.M.); (I.E.A.); (N.M.P.); (K.M.B.); (A.S.L.); (I.V.A.); (N.Y.S.); (M.M.G.)
| | - Anastasia S. Lopatina
- Institute of Experimental Medicine, Almazov National Medical Research Centre, 15B Parkhomenko Street, 194021 Saint Petersburg, Russia; (M.S.M.); (G.V.P.); (D.A.M.); (I.E.A.); (N.M.P.); (K.M.B.); (A.S.L.); (I.V.A.); (N.Y.S.); (M.M.G.)
| | - Ilia V. Aleksandrov
- Institute of Experimental Medicine, Almazov National Medical Research Centre, 15B Parkhomenko Street, 194021 Saint Petersburg, Russia; (M.S.M.); (G.V.P.); (D.A.M.); (I.E.A.); (N.M.P.); (K.M.B.); (A.S.L.); (I.V.A.); (N.Y.S.); (M.M.G.)
| | - Natalya Yu. Semenova
- Institute of Experimental Medicine, Almazov National Medical Research Centre, 15B Parkhomenko Street, 194021 Saint Petersburg, Russia; (M.S.M.); (G.V.P.); (D.A.M.); (I.E.A.); (N.M.P.); (K.M.B.); (A.S.L.); (I.V.A.); (N.Y.S.); (M.M.G.)
| | - Anna A. Kordyukova
- Laboratory of Radio- and Optoelectronic Devices for Early Diagnostics of Living Systems Pathologies, The Institute for Analytical Instrumentation, Russian Academy of Sciences, 31-33A Ivana Chernykh Street, 198095 Saint Petersburg, Russia; (A.A.K.); (K.V.Z.)
| | - Kirill V. Zaichenko
- Laboratory of Radio- and Optoelectronic Devices for Early Diagnostics of Living Systems Pathologies, The Institute for Analytical Instrumentation, Russian Academy of Sciences, 31-33A Ivana Chernykh Street, 198095 Saint Petersburg, Russia; (A.A.K.); (K.V.Z.)
| | - Vladimir P. Shirinsky
- Institute of Experimental Cardiology Named after Academician V.N. Smirnov, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (A.Y.K.); (M.V.S.); (M.E.P.); (O.A.K.); (V.P.S.)
| | - Michael M. Galagudza
- Institute of Experimental Medicine, Almazov National Medical Research Centre, 15B Parkhomenko Street, 194021 Saint Petersburg, Russia; (M.S.M.); (G.V.P.); (D.A.M.); (I.E.A.); (N.M.P.); (K.M.B.); (A.S.L.); (I.V.A.); (N.Y.S.); (M.M.G.)
- Laboratory of Radio- and Optoelectronic Devices for Early Diagnostics of Living Systems Pathologies, The Institute for Analytical Instrumentation, Russian Academy of Sciences, 31-33A Ivana Chernykh Street, 198095 Saint Petersburg, Russia; (A.A.K.); (K.V.Z.)
- Department of Pathophysiology with Clinical Pathophysiology Course, Pavlov First Saint Petersburg State Medical University, 6–8 Lev Tolstoy Street, 197022 Saint Petersburg, Russia
| |
Collapse
|
4
|
Rezaei M, Mehta JL, Zadeh GM, Khedri A, Rezaei HB. Myosin light chain phosphatase is a downstream target of Rho-kinase in endothelin-1-induced transactivation of the TGF-β receptor. Cell Biochem Biophys 2024; 82:1109-1120. [PMID: 38834831 DOI: 10.1007/s12013-024-01262-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Rho-kinase (ROCK) regulates actomyosin contraction, coronary vasospasm, and cytoskeleton dynamics. ROCK and of NADPH oxidase (NOX) play an essential role in cardiovascular disease and proteoglycan synthesis, which promotes atherosclerosis by trapping low density lipoprotein. ROCK is activated by endothelin-1 (ET1) and transactivates the transforming growth factor beta receptor (TGFβR1), intensifying Smad signaling and proteoglycan production. This study aimed to identify the role of myosin light chain phosphatase (MLCP) as a downstream target of ROCK in TβR1 transactivation. METHODS Vascular smooth muscle cells were treated with ET1 and inhibitors of ROCK and MLCP were added. The phosphorylation levels of Smad2C, myosin light chain (MLC), and MLCP were monitored by western blot, and the mRNA expression of chondroitin 4-O-sulfotransferase 1 (C4ST1) was assessed by quantitative real-time PCR. RESULTS We examined ROCK's role in ET1-induced TGFβR1 activation. ROCK phosphorylated MLCP at the MYPT1 T853 residue, blocked by the ROCK inhibitor Y27632. ROCK also increased MLC phosphorylation and actomyosin contraction in response to ET1, enhanced by the phosphatase inhibitor Calyculin A. Calyculin A also increased C4ST1 expression, GAG-chain synthesizing enzymes. CONCLUSIONS This work suggests that ROCK is involved in ET1-mediated TβR1 activation through increased MLCP phosphorylation, which leads to Smad2C phosphorylation and stimulates C4ST1 expression.
Collapse
Affiliation(s)
- Maryam Rezaei
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Jawahar Lal Mehta
- Division of Cardiology, Central Arkansas Veterans Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Ghorban Mohammad Zadeh
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Azam Khedri
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Babaahmadi Rezaei
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
5
|
Wongsawat M, Glaharn S, Srisook C, Dechkhajorn W, Chaisri U, Punsawad C, Techarang T, Chotivanich K, Krudsood S, Viriyavejakul P. Immunofluorescence study of cytoskeleton in endothelial cells induced with malaria sera. Malar J 2024; 23:10. [PMID: 38183117 PMCID: PMC10770940 DOI: 10.1186/s12936-023-04833-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Endothelial cells (ECs) play a major role in malaria pathogenesis, as a point of direct contact of parasitized red blood cells to the blood vessel wall. The study of cytoskeleton structures of ECs, whose main functions are to maintain shape and provide strength to the EC membrane is important in determining the severe sequelae of Plasmodium falciparum malaria. The work investigated the cytoskeletal changes (microfilaments-actin, microtubules-tubulin and intermediate filaments-vimentin) in ECs induced by malaria sera (Plasmodium vivax, uncomplicated P. falciparum and complicated P. falciparum), in relation to the levels of pro-inflammatory cytokines. METHODS Morphology and fluorescence intensity of EC cytoskeleton stimulated with malaria sera were evaluated using immunofluorescence technique. Levels of tumour necrosis factor (TNF) and interferon (IFN)-gamma (γ) were determined using enzyme-linked immunosorbent assay (ELISA). Control experimental groups included ECs incubated with media alone and non-malaria patient sera. Experimental groups consisted of ECs incubated with malaria sera from P. vivax, uncomplicated P. falciparum and complicated P. falciparum. Morphological scores of cytoskeletal alterations and fluorescence intensity were compared across each experiment group, and correlated with TNF and IFN-γ. RESULTS The four morphological changes of cytoskeleton included (1) shrinkage of cytoskeleton and ECs with cortical condensation, (2) appearance of eccentric nuclei, (3) presence of "spiking pattern" of cytoskeleton and EC membrane, and (4) fragmentation and discontinuity of cytoskeleton and ECs. Significant damages were noted in actin filaments compared to tubulin and vimentin filaments in ECs stimulated with sera from complicated P. falciparum malaria. Morphological damages to cytoskeleton was positively correlated with fluorescence intensity and the levels of TNF and IFN-γ. CONCLUSIONS ECs stimulated with sera from complicated P. falciparum malaria showed cytoskeletal alterations and increased in fluorescence intensity, which was associated with high levels of TNF and IFN-γ. Cytoskeletal changes of ECs incubated with complicated P. falciparum malaria sera can lead to EC junctional alteration and permeability changes, which is mediated through apoptotic pathway. The findings can serve as a basis to explore measures to strengthen EC cytoskeleton and alleviate severe malaria complications such as pulmonary oedema and cerebral malaria. In addition, immunofluorescence intensity of cytoskeleton could be investigated as potential prognostic indicator for malaria severity.
Collapse
Affiliation(s)
- Mathusorn Wongsawat
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Supattra Glaharn
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Charit Srisook
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Wilanee Dechkhajorn
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Urai Chaisri
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Chuchard Punsawad
- Department of Medical Science, School of Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Tachpon Techarang
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Kesinee Chotivanich
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Srivicha Krudsood
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Parnpen Viriyavejakul
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand.
| |
Collapse
|
6
|
Waithe OY, Shaji CA, Childs EW, Tharakan B. Determination of Blood-Brain Barrier Hyperpermeability Using Intravital Microscopy. Methods Mol Biol 2024; 2711:117-127. [PMID: 37776453 PMCID: PMC12045329 DOI: 10.1007/978-1-0716-3429-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2023]
Abstract
The blood vessels that vascularize the central nervous system (CNS) exhibit unique properties, termed the blood-brain barrier (BBB). The BBB allows these blood vessels to tightly regulate the movement of ions, molecules, and cells between the blood and the brain. The BBB is held together by tight junctions of the neighboring endothelial cells of the barrier, more specifically by tight junction proteins (TJPs) which can take the form of either integral transmembrane proteins or accessory cytoplasmic membrane proteins. BBB permeability can furthermore be affected by various factors, including but not limited to TJP expression, size, shape, charge, and type of extravascular molecules, as well as the nature of the vascular beds. The BBB is essential for the proper maintenance of CNS function, and its structural integrity has been implicated in several disorders and conditions. For instance, it has been shown that in the cases of traumatic brain injury (TBI), TBI-associated edema, and increased intracranial pressure are primarily caused by cases of hyperpermeability seen because of BBB dysfunction. Intravital microscopy is one of the most reliable methods for measuring BBB hyperpermeability in rodent models of BBB dysfunction in vivo. Here, we describe the surgical and imaging methods to determine the changes in BBB permeability at the level of the pial microvasculature in a mouse model of TBI using intravital microscopy.
Collapse
Affiliation(s)
- O'lisa Yaa Waithe
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA, USA
| | | | - Ed W Childs
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA, USA
| | - Binu Tharakan
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
7
|
Waithe OY, Peng X, Childs EW, Tharakan B. Measurement of Blood-Brain Barrier Hyperpermeability Using Evans Blue Extravasation Assay. Methods Mol Biol 2024; 2711:177-184. [PMID: 37776457 DOI: 10.1007/978-1-0716-3429-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2023]
Abstract
Blood-brain barrier (BBB) dysfunction and hyperpermeability have been implicated in a myriad of brain pathologies. The Evans Blue assay is one of the most popular methods for studying BBB integrity and permeability in rodent models of brain disorders. Under normal physiological conditions, the BBB is impermeable to albumin, so Evans Blue when injected intravenously binds to serum albumin and remains restricted within blood vessels. In traumatic and ischemic injuries, and other brain pathologies that result in BBB hyperpermeability, neighboring endothelial cells partially lose their close contacts to each other, and the BBB becomes permeable to proteins such as albumin. This paracellular leak of Evans blue-bound albumin is considered a reliable indicator of BBB dysfunction and hyperpermeability. Here, we describe the procedures for the evaluation of BBB integrity and hyperpermeability using Evans Blue extravasation assay in a mouse model of traumatic brain injury. The method described here focuses on intravenous injection of Evans Blue followed by Evans Blue dye extraction. This is followed by the measurement of fluorescence intensity of Evans Blue to determine the dye extravasation as a direct indicator of BBB hyperpermeability.
Collapse
Affiliation(s)
- O'lisa Yaa Waithe
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA, USA
| | - Xu Peng
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Ed W Childs
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA, USA
| | - Binu Tharakan
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
8
|
Song J, Gerecht S. Hydrogels to Recapture Extracellular Matrix Cues That Regulate Vascularization. Arterioscler Thromb Vasc Biol 2023; 43:e291-e302. [PMID: 37317849 DOI: 10.1161/atvbaha.122.318235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 05/26/2023] [Indexed: 06/16/2023]
Abstract
The ECM (extracellular matrix) is a 3-dimensional network that supports cellular responses and maintains structural tissue integrity in healthy and pathological conditions. The interactions between ECM and cells trigger signaling cascades that lead to phenotypic changes and structural and compositional turnover of the ECM, which in turn regulates vascular cell behavior. Hydrogel biomaterials are a powerful platform for basic and translational studies and clinical applications due to their high swelling capacity and exceptional versatility in compositions and properties. This review highlights recent developments and uses of engineered natural hydrogel platforms that mimic the ECM and present defined biochemical and mechanical cues for vascularization. Specifically, we focus on modulating vascular cell stimulation and cell-ECM/cell-cell interactions in the microvasculature that are the established biomimetic microenvironment.
Collapse
Affiliation(s)
- Jiyeon Song
- Department of Biomedical Engineering, Duke University, Durham, NC
| | - Sharon Gerecht
- Department of Biomedical Engineering, Duke University, Durham, NC
| |
Collapse
|
9
|
Khan H, Ghulam T, Ahmed N, Rafai Babar M, Calaminus SDJ, Zuhair Yusuf M. Should aspirin be replaced with ADP blockers and anti-GPVI to manage thrombosis? VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2023; 5:e220010. [PMID: 37931411 PMCID: PMC9986383 DOI: 10.1530/vb-22-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/31/2022] [Indexed: 11/08/2023]
Abstract
Platelets have a pivotal role in maintaining cardiovascular homeostasis. They are kept docile by endothelial-derived mediators. Aberration in haemostatic balance predisposes an individual to an elevated risk of a prothrombotic environment. Anti-platelet therapy has been a key component to reduce this risk. However, understanding how these medications affect the balance between the activation and inhibition of platelets is critical. There is no evidence that a key anti-platelet therapy - aspirin, may not be the most efficacious medicine of choice, as it can compromise both platelet inhibition and activation pathways. In this review, the rationale of aspirin as an anti-thrombotic drug has been critically discussed. This review looks at how recently published trials are raising key questions about the efficacy and safety of aspirin in countering cardiovascular diseases. There is an increasing portfolio of evidence that identifies that although aspirin is a very cheap and accessible drug, it may be used in a manner that is not always beneficial to a patient, and a more nuanced and targeted use of aspirin may increase its clinical benefit and maximize patient response. The questions about the use of aspirin raise the potential for changes in its clinical use for dual anti-platelet therapy. This highlights the need to ensure that treatment is targeted in the most effective manner and that other anti-platelet therapies may well be more efficacious and beneficial for CVD patients in their standard and personalized approaches.
Collapse
Affiliation(s)
- Hafsa Khan
- International Centre for Chemical and Biological Sciences (ICCBS), Pakistan
| | | | - Naseer Ahmed
- Institute of Basic Medical Sciences, Khyber Medical University, Pakistan
| | | | | | | |
Collapse
|
10
|
Rates ERD, Almeida CD, Costa EDPF, Farias RJDM, Santos-Oliveira R, Alencar LMR. Layer-by-Layer Investigation of Ultrastructures and Biomechanics of Human Cornea. Int J Mol Sci 2022; 23:ijms23147833. [PMID: 35887181 PMCID: PMC9317547 DOI: 10.3390/ijms23147833] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
The cornea is an avascular, innervated, and transparent tissue composed of five layers: the epithelium, Bowman’s layer, stroma, Descemet’s membrane, and endothelium. It is located in the outermost fraction of the eyeball and is responsible for the refraction of two-thirds of light and protection from external mechanical damage. Although several studies have been done on the cornea on the macroscopic scale, there is a lack of studies on the micro-nanoscopic scale, especially an analysis evaluating the cornea layer by layer. In this study, atomic force microscopy (AFM) was employed to assess four layers that form the cornea, analyzing: adhesion, stiffness, and roughness. The results showed microvilli in the epithelial and endothelial layers, pores in the basement membrane, and collagen fibers in the Stroma. These data increase the knowledge about the human cornea layers’ ultrastructures and adds new information about its biophysical properties.
Collapse
Affiliation(s)
- Erick Rafael Dias Rates
- Laboratory of Biophysics and Nanosystems, Department of Physics, Federal University of Maranhão, Campus Bacanga, São Luís 65080-805, MA, Brazil; (E.R.D.R.); (C.D.A.)
| | - Charles Duarte Almeida
- Laboratory of Biophysics and Nanosystems, Department of Physics, Federal University of Maranhão, Campus Bacanga, São Luís 65080-805, MA, Brazil; (E.R.D.R.); (C.D.A.)
| | - Elaine de Paula Fiod Costa
- Department of Medicine, Federal University of Maranhão, Praça Gonçalves Dias—Centro, São Luís 65020-070, MA, Brazil;
| | - Roberta Jansen de Mello Farias
- Presidente Dutra Unit, University Hospital of the Federal University of Maranhão (HUUFMA), São Luís 65020-070, MA, Brazil;
- San Francisco Eye Institute, São Luís 65076-090, MA, Brazil
| | - Ralph Santos-Oliveira
- Laboratory of Nanoradiopharmaceuticals and Radiopharmacy, Rio de Janeiro State University, Rio de Janeiro 23070-200, RJ, Brazil;
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941-906, RJ, Brazil
| | - Luciana Magalhães Rebelo Alencar
- Laboratory of Biophysics and Nanosystems, Department of Physics, Federal University of Maranhão, Campus Bacanga, São Luís 65080-805, MA, Brazil; (E.R.D.R.); (C.D.A.)
- Correspondence:
| |
Collapse
|
11
|
Mikołajczyk K, Spyt D, Zielińska W, Żuryń A, Faisal I, Qamar M, Świniarski P, Grzanka A, Gagat M. The Important Role of Endothelium and Extracellular Vesicles in the Cellular Mechanism of Aortic Aneurysm Formation. Int J Mol Sci 2021; 22:ijms222313157. [PMID: 34884962 PMCID: PMC8658239 DOI: 10.3390/ijms222313157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Homeostasis is a fundamental property of biological systems consisting of the ability to maintain a dynamic balance of the environment of biochemical processes. The action of endogenous and exogenous factors can lead to internal balance disorder, which results in the activation of the immune system and the development of inflammatory response. Inflammation determines the disturbances in the structure of the vessel wall, connected with the change in their diameter. These disorders consist of accumulation in the space between the endothelium and the muscle cells of low-density lipoproteins (LDL), resulting in the formation of fatty streaks narrowing the lumen and restricting the blood flow in the area behind the structure. The effect of inflammation may also be pathological dilatation of the vessel wall associated with the development of aneurysms. Described disease entities strongly correlate with the increased migration of immune cells. Recent scientific research indicates the secretion of specific vesicular structures during migration activated by the inflammation. The review focuses on the link between endothelial dysfunction and the inflammatory response and the impact of these processes on the development of disease entities potentially related to the secretion of extracellular vesicles (EVs).
Collapse
Affiliation(s)
- Klaudia Mikołajczyk
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.M.); (D.S.); (W.Z.); (A.Ż.); (I.F.); (M.Q.); (A.G.)
| | - Dominika Spyt
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.M.); (D.S.); (W.Z.); (A.Ż.); (I.F.); (M.Q.); (A.G.)
| | - Wioletta Zielińska
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.M.); (D.S.); (W.Z.); (A.Ż.); (I.F.); (M.Q.); (A.G.)
| | - Agnieszka Żuryń
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.M.); (D.S.); (W.Z.); (A.Ż.); (I.F.); (M.Q.); (A.G.)
| | - Inaz Faisal
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.M.); (D.S.); (W.Z.); (A.Ż.); (I.F.); (M.Q.); (A.G.)
| | - Murtaz Qamar
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.M.); (D.S.); (W.Z.); (A.Ż.); (I.F.); (M.Q.); (A.G.)
| | - Piotr Świniarski
- Department of Urology and Andrology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland;
| | - Alina Grzanka
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.M.); (D.S.); (W.Z.); (A.Ż.); (I.F.); (M.Q.); (A.G.)
| | - Maciej Gagat
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.M.); (D.S.); (W.Z.); (A.Ż.); (I.F.); (M.Q.); (A.G.)
- Correspondence:
| |
Collapse
|
12
|
Dao M, MacDonald I, Asaro RJ. Erythrocyte flow through the interendothelial slits of the splenic venous sinus. Biomech Model Mechanobiol 2021; 20:2227-2245. [PMID: 34535857 DOI: 10.1007/s10237-021-01503-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
The flow patterns of red blood cells through the spleen are intimately linked to clearance of senescent RBCs, with clearance principally occurring within the open flow through the red pulp and slits of the venous sinus system that exists in humans, rats, and dogs. Passage through interendothelial slits (IESs) of the sinus has been shown by MacDonald et al. (Microvasc Res 33:118-134, 1987) to be mediated by the caliber, i.e., slit opening width, of these slits. IES caliber within a given slit of a given sinus section has been shown to operate in an asynchronous manner. Here, we describe a model and simulation results that demonstrate how the supporting forces exerted on the sinus by the reticular meshwork of the red pulp, combined with asymmetrical contractility of stress fibers within the endothelial cells comprising the sinus, describe this vital and intriguing behavior. These results shed light on the function of the sinus slits in species such as humans, rats, and dogs that possess sinusoidal sinuses. Instead of assuming a passive mechanical filtering mechanism of the IESs, our proposed model provides a mechanically consistent explanation for the dynamically modulated IES opening/filtering mechanism observed in vivo. The overall perspective provided is also consistent with the view that IES passage serves as a self-protective mechanism in RBC vesiculation and inclusion removal.
Collapse
Affiliation(s)
- Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ian MacDonald
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry Western University, London, ON, Canada
| | - R J Asaro
- Department of Structural Engineering, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
13
|
Godinho-Pereira J, Garcia AR, Figueira I, Malhó R, Brito MA. Behind Brain Metastases Formation: Cellular and Molecular Alterations and Blood-Brain Barrier Disruption. Int J Mol Sci 2021; 22:7057. [PMID: 34209088 PMCID: PMC8268492 DOI: 10.3390/ijms22137057] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BC) brain metastases is a life-threatening condition to which accounts the poor understanding of BC cells' (BCCs) extravasation into the brain, precluding the development of preventive strategies. Thus, we aimed to unravel the players involved in the interaction between BCCs and blood-brain barrier (BBB) endothelial cells underlying BBB alterations and the transendothelial migration of malignant cells. We used brain microvascular endothelial cells (BMECs) as a BBB in vitro model, under conditions mimicking shear stress to improve in vivo-like BBB features. Mixed cultures were performed by the addition of fluorescently labelled BCCs to distinguish individual cell populations. BCC-BMEC interaction compromised BBB integrity, as revealed by junctional proteins (β-catenin and zonula occludens-1) disruption and caveolae (caveolin-1) increase, reflecting paracellular and transcellular hyperpermeability, respectively. Both BMECs and BCCs presented alterations in the expression pattern of connexin 43, suggesting the involvement of the gap junction protein. Myosin light chain kinase and phosphorylated myosin light chain were upregulated, revealing the involvement of the endothelial cytoskeleton in the extravasation process. β4-Integrin and focal adhesion kinase were colocalised in malignant cells, reflecting molecular interaction. Moreover, BCCs exhibited invadopodia, attesting migratory properties. Collectively, hub players involved in BC brain metastases formation were unveiled, disclosing possible therapeutic targets for metastases prevention.
Collapse
Affiliation(s)
- Joana Godinho-Pereira
- iMed.ULisboa—Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (J.G.-P.); (A.R.G.); (I.F.)
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Ana Rita Garcia
- iMed.ULisboa—Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (J.G.-P.); (A.R.G.); (I.F.)
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Inês Figueira
- iMed.ULisboa—Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (J.G.-P.); (A.R.G.); (I.F.)
- Farm-ID—Faculty of Pharmacy Association for Research and Development, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Rui Malhó
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Sciences, Universidade de Lisboa, Campo Grande 016, 1749-016 Lisbon, Portugal;
| | - Maria Alexandra Brito
- iMed.ULisboa—Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (J.G.-P.); (A.R.G.); (I.F.)
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
14
|
Chi Y, Liu X, Chai J. A narrative review of changes in microvascular permeability after burn. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:719. [PMID: 33987417 PMCID: PMC8106041 DOI: 10.21037/atm-21-1267] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/17/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE We aimed to review and discuss some of the latest research results related to post-burn pathophysiological changes and provide some clues for future study. BACKGROUND Burns are one of the most common and serious traumas and consist of a series of pathophysiological changes of thermal injury. Accompanied by thermal damage to skin and soft tissues, inflammatory mediators are released in large quantities. Changes in histamine, bradykinin, and cytokines such as vascular endothelial growth factor (VEGF), metabolic factors such as adenosine triphosphate (ATP), and activated neutrophils all affect the body's vascular permeability. METHODS We searched articles with subject words "microvascular permeability", "burn" "endothelium", and "endothelial barrier" in PubMed in English published from the beginning of database to Dec, 2020. CONCLUSIONS The essence of burn shock is the rapid and extensive fluid transfer in burn and non-burn tissue. After severe burns, the local and systemic vascular permeability increase, causing intravascular fluid extravasation, leading to a progressive decrease in effective circulation volume, an increase in systemic vascular resistance, a decrease in cardiac output, peripheral tissue edema, multiple organ failure, and even death. There are many cells, tissues, mediators and structures involved in the pathophysiological process of the damage to vascular permeability. Ulinastatin is a promising agent for this problem.
Collapse
Affiliation(s)
- Yunfei Chi
- Burn Institute, The Fourth Medical Center of the PLA General Hospital, Beijing, China
| | - Xiangyu Liu
- Burn Institute, The Fourth Medical Center of the PLA General Hospital, Beijing, China
| | - Jiake Chai
- Burn Institute, The Fourth Medical Center of the PLA General Hospital, Beijing, China
| |
Collapse
|
15
|
Chatterjee V, Yang X, Ma Y, Cha B, Meegan JE, Wu M, Yuan SY. Endothelial microvesicles carrying Src-rich cargo impair adherens junction integrity and cytoskeleton homeostasis. Cardiovasc Res 2021; 116:1525-1538. [PMID: 31504252 PMCID: PMC7314637 DOI: 10.1093/cvr/cvz238] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/06/2019] [Accepted: 08/29/2019] [Indexed: 12/12/2022] Open
Abstract
Aims Microvesicles (MVs) conduct intercellular communication and impact diverse biological processes by transferring bioactive cargos to other cells. We investigated whether and how endothelial production of MVs contribute to vascular dysfunction during inflammation. Methods and results We measured the levels and molecular properties of endothelial-derived MVs (EC-MVs) from mouse plasma following a septic injury elicited by cecal ligation and puncture, as well as those from supernatants of cultured endothelial cells stimulated by inflammatory agents including cytokines, thrombin, and complement 5a. The mouse studies showed that sepsis caused a significant increase in total plasma vesicles and VE-cadherin+ EC-MVs compared to sham control. In cultured ECs, different inflammatory agents caused diverse patterns of EC-MV production and cargo contents. When topically applied to endothelial cells, EC-MVs induced a cytoskeleton-junction response characterized by myosin light chain phosphorylation, contractile fibre reorganization, VE-cadherin phosphorylation, and adherens junction dissociation, functionally measured as increased albumin transendothelial flux and decreased barrier resistance. The endothelial response was coupled with protein tyrosine phosphorylation promoted by MV cargo containing c-Src kinase, whereas MVs produced from c-Src deficient cells did not exert barrier-disrupting effects. Additionally, EC-MVs contribute to endothelial inflammatory injury by promoting neutrophil-endothelium adhesion and release of neutrophil extracellular traps containing citrullinated histones and myeloperoxidase, a response unaltered by c-Src knockdown. Conclusion Endothelial-derived microparticles cause endothelial barrier dysfunction by impairing adherens junctions and activating neutrophils. The signalling mechanisms underlying the endothelial cytoskeleton-junction response to EC-MVs involve protein phosphorylation promoted by MV cargo carrying c-Src. However, EC-MV-induced neutrophil activation was not dependent on c-Src.
Collapse
Affiliation(s)
- Victor Chatterjee
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Yonggang Ma
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Byeong Cha
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Jamie E Meegan
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Mack Wu
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA.,Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
16
|
Le Master E, Ahn SJ, Levitan I. Mechanisms of endothelial stiffening in dyslipidemia and aging: Oxidized lipids and shear stress. CURRENT TOPICS IN MEMBRANES 2020; 86:185-215. [PMID: 33837693 PMCID: PMC8168803 DOI: 10.1016/bs.ctm.2020.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Vascular stiffening of the arterial walls is well-known as a key factor in aging and the development of cardiovascular disease; however, the role of endothelial stiffness in vascular dysfunction is still an emerging topic. In this review, the authors discuss the impact of dyslipidemia, oxidized lipids, substrate stiffness, age and pro-atherogenic disturbed flow have on endothelial stiffness. Furthermore, we investigate several mechanistic pathways that are key contributors in endothelial stiffness and discuss their physiological effects in the onset of atherogenesis in the disturbed flow regions of the aortic vasculature. The findings in this chapter describe a novel paradigm of synergistic interaction of plasma dyslipidemia/oxidized lipids and pro-atherogenic disturbed shear stress, as well as aging has on endothelial stiffness and vascular dysfunction.
Collapse
Affiliation(s)
- Elizabeth Le Master
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Sang Joon Ahn
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Irena Levitan
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
17
|
Graybill PM, Davalos RV. Cytoskeletal Disruption after Electroporation and Its Significance to Pulsed Electric Field Therapies. Cancers (Basel) 2020; 12:E1132. [PMID: 32366043 PMCID: PMC7281591 DOI: 10.3390/cancers12051132] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022] Open
Abstract
Pulsed electric fields (PEFs) have become clinically important through the success of Irreversible Electroporation (IRE), Electrochemotherapy (ECT), and nanosecond PEFs (nsPEFs) for the treatment of tumors. PEFs increase the permeability of cell membranes, a phenomenon known as electroporation. In addition to well-known membrane effects, PEFs can cause profound cytoskeletal disruption. In this review, we summarize the current understanding of cytoskeletal disruption after PEFs. Compiling available studies, we describe PEF-induced cytoskeletal disruption and possible mechanisms of disruption. Additionally, we consider how cytoskeletal alterations contribute to cell-cell and cell-substrate disruption. We conclude with a discussion of cytoskeletal disruption-induced anti-vascular effects of PEFs and consider how a better understanding of cytoskeletal disruption after PEFs may lead to more effective therapies.
Collapse
Affiliation(s)
- Philip M. Graybill
- BEMS Lab, Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA;
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Rafael V. Davalos
- BEMS Lab, Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA;
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA
- Virginia Tech–Wake Forest University, School of Biomedical Engineering and Sciences, Blacksburg, VA 24061, USA
| |
Collapse
|
18
|
Martin AC. The Physical Mechanisms of Drosophila Gastrulation: Mesoderm and Endoderm Invagination. Genetics 2020; 214:543-560. [PMID: 32132154 PMCID: PMC7054018 DOI: 10.1534/genetics.119.301292] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/21/2019] [Indexed: 12/14/2022] Open
Abstract
A critical juncture in early development is the partitioning of cells that will adopt different fates into three germ layers: the ectoderm, the mesoderm, and the endoderm. This step is achieved through the internalization of specified cells from the outermost surface layer, through a process called gastrulation. In Drosophila, gastrulation is achieved through cell shape changes (i.e., apical constriction) that change tissue curvature and lead to the folding of a surface epithelium. Folding of embryonic tissue results in mesoderm and endoderm invagination, not as individual cells, but as collective tissue units. The tractability of Drosophila as a model system is best exemplified by how much we know about Drosophila gastrulation, from the signals that pattern the embryo to the molecular components that generate force, and how these components are organized to promote cell and tissue shape changes. For mesoderm invagination, graded signaling by the morphogen, Spätzle, sets up a gradient in transcriptional activity that leads to the expression of a secreted ligand (Folded gastrulation) and a transmembrane protein (T48). Together with the GPCR Mist, which is expressed in the mesoderm, and the GPCR Smog, which is expressed uniformly, these signals activate heterotrimeric G-protein and small Rho-family G-protein signaling to promote apical contractility and changes in cell and tissue shape. A notable feature of this signaling pathway is its intricate organization in both space and time. At the cellular level, signaling components and the cytoskeleton exhibit striking polarity, not only along the apical-basal cell axis, but also within the apical domain. Furthermore, gene expression controls a highly choreographed chain of events, the dynamics of which are critical for primordium invagination; it does not simply throw the cytoskeletal "on" switch. Finally, studies of Drosophila gastrulation have provided insight into how global tissue mechanics and movements are intertwined as multiple tissues simultaneously change shape. Overall, these studies have contributed to the view that cells respond to forces that propagate over great distances, demonstrating that cellular decisions, and, ultimately, tissue shape changes, proceed by integrating cues across an entire embryo.
Collapse
Affiliation(s)
- Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142
| |
Collapse
|
19
|
Cerebral Cavernous Malformation Proteins in Barrier Maintenance and Regulation. Int J Mol Sci 2020; 21:ijms21020675. [PMID: 31968585 PMCID: PMC7013531 DOI: 10.3390/ijms21020675] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 12/18/2022] Open
Abstract
Cerebral cavernous malformation (CCM) is a disease characterized by mulberry shaped clusters of dilated microvessels, primarily in the central nervous system. Such lesions can cause seizures, headaches, and stroke from brain bleeding. Loss-of-function germline and somatic mutations of a group of genes, called CCM genes, have been attributed to disease pathogenesis. In this review, we discuss the impact of CCM gene encoded proteins on cellular signaling, barrier function of endothelium and epithelium, and their contribution to CCM and potentially other diseases.
Collapse
|
20
|
Lee TH, Hsieh ST, Chiang HY. Fibronectin inhibitor pUR4 attenuates tumor necrosis factor α-induced endothelial hyperpermeability by modulating β1 integrin activation. J Biomed Sci 2019; 26:37. [PMID: 31096970 PMCID: PMC6521375 DOI: 10.1186/s12929-019-0529-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 05/05/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The blood-spinal cord barrier (BSCB) is composed of a monolayer of endothelium linked with tight junctions and extracellular matrix (ECM)-rich basement membranes and is surrounded by astrocyte foot processes. Endothelial permeability is regulated by interaction between endothelial cells and ECM proteins. Fibronectin (FN) is a principal ECM component of microvessels. Excessive FN deposition disrupts cell-cell adhesion in fibroblasts through β1 integrin ligation. To determine whether excessive FN deposition contributes to the disruption of endothelial integrity, we used an in vitro model of the endothelial monolayer to investigate whether the FN inhibitor pUR4 prevents FN deposition into the subendothelial matrix and attenuates endothelial leakage. METHODS To correlate the effects of excessive FN accumulation in microvessels on BSCB disruption, spinal nerve ligation-which induces BSCB leakage-was applied, and FN expression in the spinal cord was evaluated through immunohistochemistry and immunoblotting. To elucidate the effects by which pUR4 modulates endothelial permeability, brain-derived endothelial (bEND.3) cells treated with tumor necrosis factor (TNF)-α were used to mimic a leaky BSCB. A bEND.3 monolayer was preincubated with pUR4 before TNF-α treatment. The transendothelial electrical resistance (TEER) measurement and transendothelial permeability assay were applied to assess the endothelial integrity of the bEND.3 monolayer. Immunofluorescence analysis and immunoblotting were performed to evaluate the inhibitory effects of pUR4 on TNF-α-induced FN deposition. To determine the mechanisms underlying pUR4-mediated endothelial permeability, cell morphology, stress fiber formation, myosin light chain (MLC) phosphorylation, and β1 integrin-mediated signaling were evaluated through immunofluorescence analysis and immunoblotting. RESULTS Excessive FN was accumulated in the microvessels of the spinal cord after spinal nerve ligation; moreover, pUR4 inhibited TNF-α-induced FN deposition in the bEND.3 monolayer and maintained intact TEER and endothelial permeability. Furthermore, pUR4 reduced cell morphology alteration, actin stress fiber formation, and MLC phosphorylation, thereby attenuating paracellular gap formation. Moreover, pUR4 reduced β1 integrin activation and downstream signaling. CONCLUSIONS pUR4 reduces TNF-α-induced β1 integrin activation by depleting ECM FN, leading to a decrease in endothelial hyperpermeability and maintenance of monolayer integrity. These findings suggest therapeutic benefits of pUR4 in pathological vascular leakage treatment.
Collapse
Affiliation(s)
- Ting-Hein Lee
- Department of Anatomy, College of Medicine, Chang Gung University, 259 Wenhua 1st Rd., Guishan Dist, Taoyuan City, 33302, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Sung-Tsang Hsieh
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hou-Yu Chiang
- Department of Anatomy, College of Medicine, Chang Gung University, 259 Wenhua 1st Rd., Guishan Dist, Taoyuan City, 33302, Taiwan. .,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan.
| |
Collapse
|
21
|
Bake S, Okoreeh A, Khosravian H, Sohrabji F. Insulin-like Growth Factor (IGF)-1 treatment stabilizes the microvascular cytoskeleton under ischemic conditions. Exp Neurol 2018; 311:162-172. [PMID: 30287160 DOI: 10.1016/j.expneurol.2018.09.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/29/2018] [Accepted: 09/27/2018] [Indexed: 12/17/2022]
Abstract
Our previous studies showed that Insulin-like Growth Factor (IGF)-1 reduced blood brain barrier permeability and decreased infarct volume caused by middle cerebral artery occlusion (MCAo) in middle aged female rats. Similarly, cultures of primary brain microvessel endothelial cells from middle-aged female rats and exposed to stroke-like conditions (oxygen glucose deprivation; OGD) confirmed that IGF-1 reduced dye transfer across this cell monolayer. Surprisingly, IGF-1 did not attenuate endothelial cell death caused by OGD. To reconcile these findings, the present study tested the hypothesis that, at the earliest phase of ischemia, IGF-1 promotes barrier function by increasing anchorage and stabilizing cell geometry of surviving endothelial cells. Cultures of human brain microvessel endothelial cells were subject to oxygen-glucose deprivation (OGD) in the presence of IGF-1, IGF-1 + JB-1 (IGFR inhibitor) or vehicle. OGD disrupted the cell monolayer and reduced cell-cell interactions, which was preserved in IGF-1-treated cultures and reversed by concurrent treatment with JB-1. IGF-1-mediated preservation of the endothelial monolayer was reversed with LY294002 treatment, but not by Rapamycin, indicating that IGF-1 s actions on cell-cell contacts are likely mediated via the PI3K pathway. In vivo, microvessel morphology was evaluated in middle-aged female rats that were subjected to ischemia by MCAo, and treated ICV with IGFI, IGF-1 + JB-1, or artificial CSF (aCSF; vehicle) after reperfusion. Compared to vehicle controls, IGF-1 treated animals displayed larger microvessel diameters in the peri-infarct area and increased staining density for vinculin, an anchorage protein. Both these measures were reversed by concurrent IGF-1 + JB-1 treatment. Moreover these effects were restricted to 24 h after ischemia-reperfusion and no treatment effects were seen at 5d post stroke. Collectively, these data suggest that in the earliest hours during ischemia, IGF-1 promotes receptor-mediated anchorage of endothelial cells, and its actions may be accurately characterized as vasculoprotective.
Collapse
Affiliation(s)
- Shameena Bake
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, Bryan, TX 77807, United States
| | - Andre Okoreeh
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, Bryan, TX 77807, United States
| | - Homa Khosravian
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77840, United States
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, Bryan, TX 77807, United States.
| |
Collapse
|
22
|
Endothelial Protrusions in Junctional Integrity and Barrier Function. CURRENT TOPICS IN MEMBRANES 2018; 82:93-140. [PMID: 30360784 DOI: 10.1016/bs.ctm.2018.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Endothelial cells of the microcirculation form a semi-permeable diffusion barrier between the blood and tissues. This permeability of the endothelium, particularly in the capillaries and postcapillary venules, is a normal physiological function needed for blood-tissue exchange in the microcirculation. During inflammation, microvascular permeability increases dramatically and can lead to tissue edema, which in turn can lead to dysfunction of tissues and organs. The molecular mechanisms that control the barrier function of endothelial cells have been under investigation for several decades and remain an important topic due to the potential for discovery of novel therapeutic strategies to reduce edema. This review highlights current knowledge of the cellular and molecular mechanisms that lead to endothelial hyperpermeability during inflammatory conditions associated with injury and disease. This includes a discussion of recent findings demonstrating temporal protrusions by endothelial cells that may contribute to intercellular junction integrity between endothelial cells and affect the diffusion distance for solutes via the paracellular pathway.
Collapse
|
23
|
Alluri H, Shaji CA, Davis ML, Tharakan B. A Mouse Controlled Cortical Impact Model of Traumatic Brain Injury for Studying Blood-Brain Barrier Dysfunctions. Methods Mol Biol 2018; 1717:37-52. [PMID: 29468582 DOI: 10.1007/978-1-4939-7526-6_4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of death and disability worldwide. It is a silently growing epidemic with multifaceted pathogenesis, and current standards of treatments aim to target only the symptoms of the primary injury, while there is a tremendous need to explore interventions that can halt the progression of the secondary injuries. The use of a reliable animal model to study and understand the various aspects the pathobiology of TBI is extremely important in therapeutic drug development against TBI-associated complications. The controlled cortical impact (CCI) model of TBI described here, uses a mechanical impactor to inflict a mechanical injury into the mouse brain. This method is a reliable and reproducible approach to inflict mild, moderate or severe injuries to the animal for studying TBI-associated blood-brain barrier (BBB) dysfunctions, neuronal injuries, brain edema, neurobehavioral changes, etc. The present method describes how the CCI model could be utilized for determining the BBB dysfunction and hyperpermeability associated with TBI. Blood-brain barrier disruption is a hallmark feature of the secondary injury that occur following TBI, frequently associated with leakage of fluid and proteins into the extravascular space leading to vasogenic edema and elevation of intracranial pressure. The method described here focuses on the development of a CCI-based mouse model of TBI followed by the evaluation of BBB integrity and permeability by intravital microscopy as well as Evans Blue extravasation assay.
Collapse
Affiliation(s)
- Himakarnika Alluri
- Department of Surgery, Texas A&M University Health Science Center, College of Medicine, Baylor Scott and White Research Institute, Temple, TX, USA
| | - Chinchusha Anasooya Shaji
- Department of Surgery, Texas A&M University Health Science Center, College of Medicine, Baylor Scott and White Research Institute, Temple, TX, USA
| | - Matthew L Davis
- Department of Surgery, Texas A&M University Health Science Center, College of Medicine, Baylor Scott and White Research Institute, Temple, TX, USA
| | - Binu Tharakan
- Department of Surgery, Texas A&M University Health Science Center, College of Medicine, Baylor Scott and White Research Institute, Temple, TX, USA.
| |
Collapse
|
24
|
Anti-exudation effects of sodium ferulate and oxymatrine combination via modulation of aquaporin 1. Exp Ther Med 2017; 14:1837-1845. [PMID: 28810657 DOI: 10.3892/etm.2017.4679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 04/21/2017] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to investigate the anti-exudative effects of sodium ferulate combined with oxymatrine in a mouse model of acetic acid-induced peritonitis. Furthermore, the underlying mechanisms were explored by determining the effects of these drugs on the volume and aquaporin 1 (AQP1) expression in vascular endothelial cells on omentum majus and human umbilical vein endothelial cells (HUVEC). Treatment with sodium ferulate combined with oxymatrine was shown to significantly inhibit acetic acid-induced vascular permeability in the peritonitis model mice and furthermore to significantly decrease the optical density of Evans blue, the leukocyte number and the levels of interleukin-6, C-reactive protein and interferon-γ in peritoneal lavage fluid. Pathological analysis of the omentum majus revealed that sodium ferulate and oxymatrine combination treatment significantly alleviated vascular endothelial cell edema and capillary loss. In vitro, flow cytometry revealed that the volume of HUVECs was significantly reduced in the drug treatment groups, as reflected in the forward scatter value. The optical density of AQP1 on the membrane of the vascular endothelial cells on omentum majus and HUVECs were significantly increased in the drug treatment groups compared with the model group. These results indicated that sodium ferulate and oxymatrine combination treatment possessed prominent anti-exudative effects and that the underlying mechanisms are likely to include the improvement of vascular endothelial cellular edema, possibly by upregulation of AQP1 expression on their membrane, which requires further exploration.
Collapse
|
25
|
García Ponce A, Citalán Madrid AF, Vargas Robles H, Chánez Paredes S, Nava P, Betanzos A, Zarbock A, Rottner K, Vestweber D, Schnoor M. Loss of cortactin causes endothelial barrier dysfunction via disturbed adrenomedullin secretion and actomyosin contractility. Sci Rep 2016; 6:29003. [PMID: 27357373 PMCID: PMC4928053 DOI: 10.1038/srep29003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 06/13/2016] [Indexed: 12/28/2022] Open
Abstract
Changes in vascular permeability occur during inflammation and the actin cytoskeleton plays a crucial role in regulating endothelial cell contacts and permeability. We demonstrated recently that the actin-binding protein cortactin regulates vascular permeability via Rap1. However, it is unknown if the actin cytoskeleton contributes to increased vascular permeability without cortactin. As we consistently observed more actin fibres in cortactin-depleted endothelial cells, we hypothesised that cortactin depletion results in increased stress fibre contractility and endothelial barrier destabilisation. Analysing the contractile machinery, we found increased ROCK1 protein levels in cortactin-depleted endothelium. Concomitantly, myosin light chain phosphorylation was increased while cofilin, mDia and ERM were unaffected. Secretion of the barrier-stabilising hormone adrenomedullin, which activates Rap1 and counteracts actomyosin contractility, was reduced in plasma from cortactin-deficient mice and in supernatants of cortactin-depleted endothelium. Importantly, adrenomedullin administration and ROCK1 inhibition reduced actomyosin contractility and rescued the effect on permeability provoked by cortactin deficiency in vitro and in vivo. Our data suggest a new role for cortactin in controlling actomyosin contractility with consequences for endothelial barrier integrity.
Collapse
Affiliation(s)
- Alexander García Ponce
- Department for Molecular Biomedicine, Center of Research and Advanced Studies (CINVESTAV-IPN), 07360 Mexico-City, Mexico
| | - Alí F Citalán Madrid
- Department for Molecular Biomedicine, Center of Research and Advanced Studies (CINVESTAV-IPN), 07360 Mexico-City, Mexico
| | - Hilda Vargas Robles
- Department for Molecular Biomedicine, Center of Research and Advanced Studies (CINVESTAV-IPN), 07360 Mexico-City, Mexico
| | - Sandra Chánez Paredes
- Department for Molecular Biomedicine, Center of Research and Advanced Studies (CINVESTAV-IPN), 07360 Mexico-City, Mexico
| | - Porfirio Nava
- Department for Physiology, Biophysics and Neurosciences, Center of Research and Advanced Studies (CINVESTAV-IPN), 07360 Mexico-City, Mexico
| | - Abigail Betanzos
- Department for Infectomics and Molecular Pathogenesis, Center of Research and Advanced Studies (CINVESTAV-IPN), 07360 Mexico-City, Mexico
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Clinic of Münster, 48149 Münster, Germany
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, TU Braunschweig, 38106 Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Dietmar Vestweber
- Department for Vascular Cell Biology, Max-Planck-Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Michael Schnoor
- Department for Molecular Biomedicine, Center of Research and Advanced Studies (CINVESTAV-IPN), 07360 Mexico-City, Mexico
| |
Collapse
|
26
|
Zhang XE, Adderley SP, Breslin JW. Activation of RhoA, but Not Rac1, Mediates Early Stages of S1P-Induced Endothelial Barrier Enhancement. PLoS One 2016; 11:e0155490. [PMID: 27187066 PMCID: PMC4871357 DOI: 10.1371/journal.pone.0155490] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/30/2016] [Indexed: 12/19/2022] Open
Abstract
Compromised endothelial barrier function is a hallmark of inflammation. Rho family GTPases are critical in regulating endothelial barrier function, yet their precise roles, particularly in sphingosine-1-phosphate (S1P)-induced endothelial barrier enhancement, remain elusive. Confluent cultures of human umbilical vein endothelial cells (HUVEC) or human dermal microvascular endothelial cells (HDMEC) were used to model the endothelial barrier. Barrier function was assessed by determining the transendothelial electrical resistance (TER) using an electrical cell-substrate impedance sensor (ECIS). The roles of Rac1 and RhoA were tested in S1P-induced barrier enhancement. The results show that pharmacologic inhibition of Rac1 with Z62954982 failed to block S1P-induced barrier enhancement. Likewise, expression of a dominant negative form of Rac1, or knockdown of native Rac1 with siRNA, failed to block S1P-induced elevations in TER. In contrast, blockade of RhoA with the combination of the inhibitors Rhosin and Y16 significantly reduced S1P-induced increases in TER. Assessment of RhoA activation in real time using a fluorescence resonance energy transfer (FRET) biosensor showed that S1P increased RhoA activation primarily at the edges of cells, near junctions. This was complemented by myosin light chain-2 phosphorylation at cell edges, and increased F-actin and vinculin near intercellular junctions, which could all be blocked with pharmacologic inhibition of RhoA. The results suggest that S1P causes activation of RhoA at the cell periphery, stimulating local activation of the actin cytoskeleton and focal adhesions, and resulting in endothelial barrier enhancement. S1P-induced Rac1 activation, however, does not appear to have a significant role in this process.
Collapse
Affiliation(s)
- Xun E. Zhang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Shaquria P. Adderley
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Jerome W. Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
27
|
Wu L, Ramirez SH, Andrews AM, Leung W, Itoh K, Wu J, Arai K, Lo EH, Lok J. Neuregulin1-β decreases interleukin-1β-induced RhoA activation, myosin light chain phosphorylation, and endothelial hyperpermeability. J Neurochem 2015; 136:250-7. [PMID: 26438054 DOI: 10.1111/jnc.13374] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/17/2015] [Accepted: 09/03/2015] [Indexed: 12/14/2022]
Abstract
Neuregulin-1 (NRG1) is an endogenous growth factor with multiple functions in the embryonic and postnatal brain. The NRG1 gene is large and complex, transcribing more than twenty transmembrane proteins and generating a large number of isoforms in tissue and cell type-specific patterns. Within the brain, NRG1 functions have been studied most extensively in neurons and glia, as well as in the peripheral vasculature. Recently, NRG1 signaling has been found to be important in the function of brain microvascular endothelial cells, decreasing IL-1β-induced increases in endothelial permeability. In the current experiments, we have investigated the pathways through which the NRG1-β isoform acts on IL-1β-induced endothelial permeability. Our data show that NRG1-β increases barrier function, measured by transendothelial electrical resistance, and decreases IL-1β-induced hyperpermeability, measured by dextran-40 extravasation through a monolayer of brain microvascular endothelial cells plated on transwells. An investigation of key signaling proteins suggests that the effect of NRG1-β on endothelial permeability is mediated through RhoA activation and myosin light chain phosphorylation, events which affect filamentous actin morphology. In addition, AG825, an inhibitor of the erbB2-associated tyrosine kinase, reduces the effect of NRG1-β on IL-1β-induced RhoA activation and myosin light chain phosphorylation. These data add to the evidence that NRG1-β signaling affects changes in the brain microvasculature in the setting of neuroinflammation. We propose the following events for neuregulin-1-mediated effects on Interleukin-1 β (IL-1β)-induced endothelial hyperpermeability: IL-1β leads to RhoA activation, resulting in an increase in phosphorylation of myosin light chain (MLC). Phosphorylation of MLC is known to result in actin contraction and alterations in the f-actin cytoskeletal structure. These changes are associated with increased endothelial permeability. Neuregulin-1β acts through its transmembrane receptors to activate intracellular signaling pathways which inhibit IL-1β-induced RhoA activation and MLC phosphorylation, thereby preserving the f-actin cytoskeletal structure and endothelial barrier function.
Collapse
Affiliation(s)
- Limin Wu
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.,Department of Neurology, the First Bethune Hospital of Jilin University, Changchun, Jilin, China
| | - Servio H Ramirez
- Department of Pathology & Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA.,The Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Allison M Andrews
- Department of Pathology & Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Wendy Leung
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Kanako Itoh
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Jiang Wu
- Department of Neurology, the First Bethune Hospital of Jilin University, Changchun, Jilin, China
| | - Ken Arai
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Eng H Lo
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Josephine Lok
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.,Department of Pediatrics, Pediatric Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Pan CS, Liu YH, Liu YY, Zhang Y, He K, Yang XY, Hu BH, Chang X, Wang MX, Wei XH, Fan JY, Wu XM, Han JY. Salvianolic Acid B Ameliorates Lipopolysaccharide-Induced Albumin Leakage from Rat Mesenteric Venules through Src-Regulated Transcelluar Pathway and Paracellular Pathway. PLoS One 2015; 10:e0126640. [PMID: 25992563 PMCID: PMC4438061 DOI: 10.1371/journal.pone.0126640] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 04/05/2015] [Indexed: 12/15/2022] Open
Abstract
Lipopolysaccharide (LPS) causes microvascular barrier disruption, leading to albumin leakage from microvessels resulting in a range of disastrous sequels. Salvianolic acid B (SalB) is a major water-soluble component derived from Salvia miltiorrhiza. Previous studies showed its potential to attenuate microvascular barrier dysfunction, but the underlying mechanism is not fully understood. The present study was intended to investigate the impact of SalB on endothelial cell barrier in vivo in rat mesenteric venules as well as in vitro in human umbilical vein endothelial cells (HUVECs), aiming at disclosing the mechanism thereof, particularly the role of Src in its action. Male Wistar rats were challenged by infusion of LPS (2 mg/kg/h) through left femoral vein for 90 min. SalB (5 mg/kg/h) was administrated either simultaneously with LPS or 30 min after LPS infusion through the left jugular vein. Vesicles in venular walls were observed by electron microscopy. HUVECs were incubated with LPS with or without SalB. The expression of Zonula occluden-1 (ZO-1), VE-cadherin, caveolin-1 and Src in HUVECs was assessed by Western blot and confocal microscopy, binding of SalB to Src was measured using Surface Plasmon Resonance and BioLayer Interferometry. Treatment with SalB inhibited albumin leakage from rat mesenteric venules and inhibited the increase of vesicle number in venular endothelial cells induced by LPS. In addition, SalB inhibited the degradation of ZO-1, the phosphorylation and redistribution of VE-cadherin, the expression and phosphorylation of caveolin-1, and phosphoirylation of Src in HUVECs exposed to LPS. Furthermore, SalB was found able to bind to Src. This study demonstrates that protection of SalB against microvascular barrier disruption is a process involving both para- and trans-endothelial cell pathway, and highly suggests Src as the key enzyme for SalB to work.
Collapse
Affiliation(s)
- Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
| | - Ying-Hua Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital& Institute, Beijing, China
| | - Yu-Ying Liu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
| | - Yu Zhang
- Department of Integration of Traditional Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
| | - Ke He
- Department of Integration of Traditional Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
| | - Xiao-Yuan Yang
- Department of Integration of Traditional Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
| | - Bai-He Hu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
| | - Xin Chang
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
| | - Ming-Xia Wang
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
| | - Xiao-Hong Wei
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Xin-Min Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital& Institute, Beijing, China
| | - Jing-Yan Han
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Department of Integration of Traditional Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China
- * E-mail:
| |
Collapse
|
29
|
Hu D, Yu Y, Wang C, Li D, Tai Y, Fang L. microRNA-98 mediated microvascular hyperpermeability during burn shock phase via inhibiting FIH-1. Eur J Med Res 2015; 20:51. [PMID: 25903459 PMCID: PMC4411771 DOI: 10.1186/s40001-015-0141-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/13/2015] [Indexed: 12/19/2022] Open
Abstract
Background microRNA is a small non-coding RNA molecule and functions in RNA silencing and post-transcriptional regulation of gene expression. This study was designed to evaluate the role of miR-98 in the development of microvascular permeability and its molecular pathogenesis. Methods Forty-eight healthy adult Wistar rats were divided into the control group (n = 8) and burn group (n = 40) that inflicted with 30% total body surface area third-degree burn. Groups were processed at 2, 4, 8, 12, and 24 h post-burn. Plasma for vascular endothelial cell culture was collected from control and 12 h post-burn rats. Organic microvascular permeability and serum miR-98 level were measured. In vitro, rat aorta endothelial cells were stimulated with burn serum. Level of miR-98 and protein of hypoxia-inducible factor-1 (HIF-1), factor inhibiting HIF-1α (FIH-1), and tight junction-associated proteins were determined. Results Organic microvascular permeability began to rise at 2 h post-burn and maintained the same character throughout the experiment except in lung tissue that was still rising at 12 h; the serum level of miR-98 was elevated (P < 0.05). In vitro, burn serum stimulation increased rat aorta endothelial monolayer cell permeability as well as upregulated miR-98 expression (P < 0.05). As shown in the result of transfection experiment, miR-98 negatively regulated FIH-1 and tight junction-associated protein expression (P < 0.05). Conclusions The findings of the present study suggest severe microvascular permeability due to burns; and the underlying mechanism bases on the promotion of miR-98 level to the extent that it activated HIF-1 gene expression, resulting in junction-associated protein deficiency.
Collapse
Affiliation(s)
- Delin Hu
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui Province, 230022, People's Republic of China.
| | - Youxin Yu
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui Province, 230022, People's Republic of China.
| | - Chunhua Wang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui Province, 230022, People's Republic of China.
| | - Denghui Li
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui Province, 230022, People's Republic of China.
| | - Yuncheng Tai
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui Province, 230022, People's Republic of China.
| | - Linsen Fang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui Province, 230022, People's Republic of China.
| |
Collapse
|
30
|
Endothelial destabilization by angiopoietin-2 via integrin β1 activation. Nat Commun 2015; 6:5962. [PMID: 25635707 PMCID: PMC4316742 DOI: 10.1038/ncomms6962] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 11/24/2014] [Indexed: 02/07/2023] Open
Abstract
Angiopoietins regulate vascular homeostasis via the endothelial Tie receptor tyrosine kinases. Angiopoietin-1 (Ang1) supports endothelial stabilization via Tie2 activation. Angiopoietin-2 (Ang2) functions as a context-dependent Tie2 agonist/antagonist promoting pathological angiogenesis, vascular permeability and inflammation. Elucidating Ang2-dependent mechanisms of vascular destablization is critical for rational design of angiopoietin antagonists that have demonstrated therapeutic efficacy in cancer trials. Here, we report that Ang2, but not Ang1, activates β1-integrin, leading to endothelial destablization. Autocrine Ang2 signalling upon Tie2 silencing, or in Ang2 transgenic mice, promotes β1-integrin-positive elongated matrix adhesions and actin stress fibres, regulating vascular endothelial-cadherin-containing cell–cell junctions. The Tie2-silenced monolayer integrity is rescued by β1-integrin, phosphoinositide-3 kinase or Rho kinase inhibition, and by re-expression of a membrane-bound Tie2 ectodomain. Furthermore, Tie2 silencing increases, whereas Ang2 blocking inhibits transendothelial tumour cell migration in vitro. These results establish Ang2-mediated β1-integrin activation as a promoter of endothelial destablization, explaining the controversial vascular functions of Ang1 and Ang2. Angiopoietin-1 (Ang1) and angiopoietin-2 (Ang2) have opposing effects on vascular stability through their receptor Tie2, but there is evidence for Tie2-independent functions of Ang2. Here, Hakanpaa et al. show that Ang2 directly activates β1-integrin, leading to rearrangement of the actin cytoskeleton and decreased VE-cadherin in cell–cell junctions.
Collapse
|
31
|
Knipe RS, Tager AM, Liao JK. The Rho kinases: critical mediators of multiple profibrotic processes and rational targets for new therapies for pulmonary fibrosis. Pharmacol Rev 2015; 67:103-17. [PMID: 25395505 PMCID: PMC4279074 DOI: 10.1124/pr.114.009381] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by progressive lung scarring, short median survival, and limited therapeutic options, creating great need for new pharmacologic therapies. IPF is thought to result from repetitive environmental injury to the lung epithelium, in the context of aberrant host wound healing responses. Tissue responses to injury fundamentally involve reorganization of the actin cytoskeleton of participating cells, including epithelial cells, fibroblasts, endothelial cells, and macrophages. Actin filament assembly and actomyosin contraction are directed by the Rho-associated coiled-coil forming protein kinase (ROCK) family of serine/threonine kinases (ROCK1 and ROCK2). As would therefore be expected, lung ROCK activation has been demonstrated in humans with IPF and in animal models of this disease. ROCK inhibitors can prevent fibrosis in these models, and more importantly, induce the regression of already established fibrosis. Here we review ROCK structure and function, upstream activators and downstream targets of ROCKs in pulmonary fibrosis, contributions of ROCKs to profibrotic cellular responses to lung injury, ROCK inhibitors and their efficacy in animal models of pulmonary fibrosis, and potential toxicities of ROCK inhibitors in humans, as well as involvement of ROCKs in fibrosis in other organs. As we discuss, ROCK activation is required for multiple profibrotic responses, in the lung and multiple other organs, suggesting ROCK participation in fundamental pathways that contribute to the pathogenesis of a broad array of fibrotic diseases. Multiple lines of evidence therefore indicate that ROCK inhibition has great potential to be a powerful therapeutic tool in the treatment of fibrosis, both in the lung and beyond.
Collapse
Affiliation(s)
- Rachel S Knipe
- Pulmonary and Critical Care Unit and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (R.S.K., A.M.T.); and Section of Cardiology, Department of Medicine, University of Chicago, Chicago, Illinois (J.K.L.)
| | - Andrew M Tager
- Pulmonary and Critical Care Unit and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (R.S.K., A.M.T.); and Section of Cardiology, Department of Medicine, University of Chicago, Chicago, Illinois (J.K.L.)
| | - James K Liao
- Pulmonary and Critical Care Unit and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (R.S.K., A.M.T.); and Section of Cardiology, Department of Medicine, University of Chicago, Chicago, Illinois (J.K.L.)
| |
Collapse
|
32
|
Zhang RL, Zhang JP, Wang QQ. Recombinant Treponema pallidum protein Tp0965 activates endothelial cells and increases the permeability of endothelial cell monolayer. PLoS One 2014; 9:e115134. [PMID: 25514584 PMCID: PMC4267829 DOI: 10.1371/journal.pone.0115134] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 11/19/2014] [Indexed: 02/07/2023] Open
Abstract
The recombinant Treponema pallidum protein Tp0965 (rTp0965), one of the many proteins derived from the genome of T. pallidum subsp. pallidum, shows strong immunogenicity and immunoreactivity. In this study, we investigated the effects of rTp0965 on the endothelial barrier. Treatment of human umbilical vein endothelial cells (HUVECs) with rTp0965 resulted in increased levels of ICAM-1, E-selectin, and MCP-1 mRNA and protein expression. These increases contributed to the adhesion and chemataxis of monocytes (THP-1 cells) to HUVECs preincubated with rTp0965. In addition, rTp0965 induced reorganization of F-actin and decreased expression of claudin-1 in HUVECs. Interestingly, inhibition of the RhoA/ROCK signal pathway protected against rTp0965-induced higher endothelial permeability as well as transendothelial migration of monocytes. These data indicate that Tp0965 protein may play an important role in the immunopathogenesis of syphilis.
Collapse
Affiliation(s)
- Rui-Li Zhang
- Department of Dermatology, Wuxi Second Affiliated Hospital of Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Jing-Ping Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, & National Center for STD Control, China Centers for Diseases Control and Prevention, Nanjing, Jiangsu Province, China
| | - Qian-Qiu Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, & National Center for STD Control, China Centers for Diseases Control and Prevention, Nanjing, Jiangsu Province, China
- * E-mail:
| |
Collapse
|
33
|
Weidert E, Pohler SE, Gomez EW, Dong C. Actinomyosin contraction, phosphorylation of VE-cadherin, and actin remodeling enable melanoma-induced endothelial cell-cell junction disassembly. PLoS One 2014; 9:e108092. [PMID: 25225982 PMCID: PMC4167543 DOI: 10.1371/journal.pone.0108092] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/25/2014] [Indexed: 02/07/2023] Open
Abstract
During melanoma cell extravasation through the vascular endothelium, melanoma cells interact with endothelial cells through secretion of cytokines and by adhesion between proteins displayed on opposing cell surfaces. How these tumor cell associated signals together regulate the dynamics of intracellular signaling pathways within endothelial cells leading to endothelial cell-cell junction disruption is not well understood. Here, we used a combination of experimental and computational approaches to examine the individual and combined effects of activation of the vascular cell adhesion molecule (VCAM)-1, interleukin (IL)-8, and IL-1β signaling pathways on the integrity of vascular junctions. Our simulations predict a multifaceted interplay of signaling resulting from individual activation of VCAM-1, IL-8 and IL-1β pathways that is neither synergistic nor additive compared to all inputs turned on simultaneously. Furthermore, we show that the levels of phosphorylated proteins associated with actinomyosin contractility and junction disassembly peak prior to those related to actin remodeling. The results of this work provide insight into the dynamics of tumor-mediated endothelial junction disassembly and suggest that targeting proteins downstream of several interaction pathways may be the most effective therapeutic approach to reduce melanoma extravasation.
Collapse
Affiliation(s)
- Eric Weidert
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Steven E. Pohler
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Esther W. Gomez
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail: (EWG); (CD)
| | - Cheng Dong
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail: (EWG); (CD)
| |
Collapse
|
34
|
Belvitch P, Adyshev D, Elangovan VR, Brown ME, Naureckas C, Rizzo AN, Siegler JH, Garcia JGN, Dudek SM. Proline-rich region of non-muscle myosin light chain kinase modulates kinase activity and endothelial cytoskeletal dynamics. Microvasc Res 2014; 95:94-102. [PMID: 25072537 DOI: 10.1016/j.mvr.2014.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 07/01/2014] [Accepted: 07/17/2014] [Indexed: 01/11/2023]
Abstract
Disruption of the pulmonary endothelial barrier and subsequent vascular leak is a hallmark of acute lung injury. Dynamic rearrangements in the endothelial cell (EC) peripheral membrane and underlying cytoskeleton are critical determinants of barrier function. The cytoskeletal effector protein non-muscle myosin light chain kinase (nmMLCK) and the actin-binding regulatory protein cortactin are important regulators of the endothelial barrier. In the present study we functionally characterize a proline-rich region of nmMLCK previously identified as the possible site of interaction between nmMLCK and cortactin. A mutant nmMLCK construct deficient in proline residues at the putative sites of cortactin binding (amino acids 973, 976, 1019, 1022) was generated. Co-immunoprecipitation studies in human lung EC transfected with wild-type or mutant nmMLCK demonstrated similar levels of cortactin interaction at baseline and after stimulation with the barrier-enhancing agonist, sphingosine 1-phosphate (S1P). In contrast, binding studies utilizing recombinant nmMLCK fragments containing the wild-type or proline-deficient sequence demonstrated a two-fold increase in cortactin binding (p<0.01) to the mutant construct. Immunofluorescent microscopy revealed an increased stress fiber density in ECs expressing GFP-labeled mutant nmMLCK at baseline (p=0.02) and after thrombin (p=0.01) or S1P (p=0.02) when compared to wild-type. Mutant nmMLCK demonstrated an increase in kinase activity in response to thrombin (p<0.01). Kymographic analysis demonstrated an increased EC membrane retraction distance and velocity (p<0.01) in response to the barrier disrupting agent thrombin in cells expressing the mutant vs. the wild-type nmMLCK construct. These results provide evidence that critical prolines within nmMLCK (amino acids 973, 976, 1019, 1022) regulate cytoskeletal and membrane events associated with pulmonary endothelial barrier function.
Collapse
Affiliation(s)
- Patrick Belvitch
- Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Hospital and Health Science System, Chicago, IL, USA
| | - Djanybek Adyshev
- Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Hospital and Health Science System, Chicago, IL, USA
| | - Venkateswaran R Elangovan
- Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Hospital and Health Science System, Chicago, IL, USA
| | - Mary E Brown
- Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Hospital and Health Science System, Chicago, IL, USA
| | - Caitlin Naureckas
- Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Hospital and Health Science System, Chicago, IL, USA
| | - Alicia N Rizzo
- Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Hospital and Health Science System, Chicago, IL, USA
| | - Jessica H Siegler
- Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Hospital and Health Science System, Chicago, IL, USA
| | - Joe G N Garcia
- University of Arizona Health Sciences Center, Tucson, AZ, USA
| | - Steven M Dudek
- Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Hospital and Health Science System, Chicago, IL, USA.
| |
Collapse
|
35
|
Oakley R, Tharakan B. Vascular hyperpermeability and aging. Aging Dis 2014; 5:114-25. [PMID: 24729937 DOI: 10.14336/ad.2014.0500114] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/31/2014] [Accepted: 02/09/2014] [Indexed: 12/25/2022] Open
Abstract
Vascular hyperpermeability, the excessive leakage of fluid and proteins from blood vessels to the interstitial space, commonly occurs in traumatic and ischemic injuries. This hyperpermeability causes tissue vasogenic edema, which often leads to multiple organ failure resulting in patient death. Vascular hyperpermeability occurs most readily in small blood vessels as their more delicate physical constitution makes them an easy target for barrier dysfunction. A single layer of endothelial cells, linked to one another by cell adhesion molecules, covers the interior surface of each blood vessel. The cell adhesion molecules play a key role in maintaining barrier functions like the regulation of permeability. Aging is a major risk factor for microvascular dysfunction and hyperpermeability. Apart from age-related remodeling of the vascular wall, endothelial barrier integrity and function declines with the advancement of age. Studies that address the physiological and molecular basis of vascular permeability regulation in aging are currently very limited. There have been many cellular and molecular mechanisms proposed to explain aging-related endothelial dysfunction but their true relationship to barrier dysfunction and hyperpermeability is not clearly known. Among the several mechanisms that promote vascular dysfunction and hyperpermeability, the following are considered major contributors: oxidative stress, inflammation, and the activation of apoptotic signaling pathways. In this review we highlighted (a) the physiological, cellular and molecular changes that occur in the vascular system as a product of aging; (b) the potential mechanisms by which aging leads to barrier dysfunction and vascular hyperpermeability in the peripheral and the blood-brain barrier; (c) the mechanisms by which the age-related increases in oxidative stress, inflammatory markers and apoptotic signaling etc. cause endothelial dysfunction and their relationship to hyperpermeability; and (d) the relationship between aging, vascular permeability and traumatic injuries.
Collapse
Affiliation(s)
| | - Binu Tharakan
- Department of Surgery, Texas A&M University Health Science Center College of Medicine & Baylor Scott & White Healthcare, Temple, Texas, USA
| |
Collapse
|
36
|
Rafikov R, Dimitropoulou C, Aggarwal S, Kangath A, Gross C, Pardo D, Sharma S, Jezierska-Drutel A, Patel V, Snead C, Lucas R, Verin A, Fulton D, Catravas JD, Black SM. Lipopolysaccharide-induced lung injury involves the nitration-mediated activation of RhoA. J Biol Chem 2014; 289:4710-22. [PMID: 24398689 DOI: 10.1074/jbc.m114.547596] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Acute lung injury (ALI) is characterized by increased endothelial hyperpermeability. Protein nitration is involved in the endothelial barrier dysfunction in LPS-exposed mice. However, the nitrated proteins involved in this process have not been identified. The activation of the small GTPase RhoA is a critical event in the barrier disruption associated with LPS. Thus, in this study we evaluated the possible role of RhoA nitration in this process. Mass spectroscopy identified a single nitration site, located at Tyr(34) in RhoA. Tyr(34) is located within the switch I region adjacent to the nucleotide-binding site. Utilizing this structure, we developed a peptide designated NipR1 (nitration inhibitory peptide for RhoA 1) to shield Tyr(34) against nitration. TAT-fused NipR1 attenuated RhoA nitration and barrier disruption in LPS-challenged human lung microvascular endothelial cells. Further, treatment of mice with NipR1 attenuated vessel leakage and inflammatory cell infiltration and preserved lung function in a mouse model of ALI. Molecular dynamics simulations suggested that the mechanism by which Tyr(34) nitration stimulates RhoA activity was through a decrease in GDP binding to the protein caused by a conformational change within a region of Switch I, mimicking the conformational shift observed when RhoA is bound to a guanine nucleotide exchange factor. Stopped flow kinetic analysis was used to confirm this prediction. Thus, we have identified a new mechanism of nitration-mediated RhoA activation involved in LPS-mediated endothelial barrier dysfunction and show the potential utility of "shielding" peptides to prevent RhoA nitration in the management of ALI.
Collapse
Affiliation(s)
- Ruslan Rafikov
- From the Program in Pulmonary Vascular Disease, Vascular Biology Center and
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Rigor RR, Shen Q, Pivetti CD, Wu MH, Yuan SY. Myosin light chain kinase signaling in endothelial barrier dysfunction. Med Res Rev 2012; 33:911-33. [PMID: 22886693 DOI: 10.1002/med.21270] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Microvascular barrier dysfunction is a serious problem that occurs in many inflammatory conditions, including sepsis, trauma, ischemia-reperfusion injury, cardiovascular disease, and diabetes. Barrier dysfunction permits extravasation of serum components into the surrounding tissue, leading to edema formation and organ failure. The basis for microvascular barrier dysfunction is hyperpermeability at endothelial cell-cell junctions. Endothelial hyperpermeability is increased by actomyosin contractile activity in response to phosphorylation of myosin light chain by myosin light chain kinase (MLCK). MLCK-dependent endothelial hyperpermeability occurs in response to inflammatory mediators (e.g., activated neutrophils, thrombin, histamine, tumor necrosis factor alpha, etc.), through multiple cell signaling pathways and signaling molecules (e.g., Ca(++) , protein kinase C, Src kinase, nitric oxide synthase, etc.). Other signaling molecules protect against MLCK-dependent hyperpermeability (e.g., sphingosine-1-phosphate or cAMP). In addition, individual MLCK isoforms play specific roles in endothelial barrier dysfunction, suggesting that isoform-specific inhibitors could be useful for treating inflammatory disorders and preventing multiple organ failure. Because endothelial barrier dysfunction depends upon signaling through MLCK in many instances, MLCK-dependent signaling comprises multiple potential therapeutic targets for preventing edema formation and multiple organ failure. The following review is a discussion of MLCK-dependent mechanisms and cell signaling events that mediate endothelial hyperpermeability.
Collapse
Affiliation(s)
- Robert R Rigor
- Department of Surgery, University of California at Davis School of Medicine, Sacramento, California, USA
| | | | | | | | | |
Collapse
|
38
|
Rigor RR, Beard RS, Litovka OP, Yuan SY. Interleukin-1β-induced barrier dysfunction is signaled through PKC-θ in human brain microvascular endothelium. Am J Physiol Cell Physiol 2012; 302:C1513-22. [PMID: 22403784 DOI: 10.1152/ajpcell.00371.2011] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Blood-brain barrier dysfunction is a serious consequence of inflammatory brain diseases, cerebral infections, and trauma. The proinflammatory cytokine interleukin (IL)-1β is central to neuroinflammation and contributes to brain microvascular leakage and edema formation. Although it is well known that IL-1β exposure directly induces hyperpermeability in brain microvascular endothelium, the molecular mechanisms mediating this response are not completely understood. In the present study, we found that exposure of the human brain microvascular endothelium to IL-1β triggered activation of novel PKC isoforms δ, μ, and θ, followed by decreased transendothelial electrical resistance (TER). The IL-1β-induced decrease in TER was prevented by small hairpin RNA silencing of PKC-θ or by treatment with the isoform-selective PKC inhibitor Gö6976 but not by PKC inhibitors that are selective for all PKC isoforms other than PKC-θ. Decreased TER coincided with increased phosphorylation of regulatory myosin light chain and with increased proapoptotic signaling indicated by decreased uptake of mitotracker red in response to IL-1β treatment. However, neither of these observed effects were prevented by Gö6976 treatment, indicating lack of causality with respect to decreased TER. Instead, our data indicated that the mechanism of decreased TER involves PKC-θ-dependent phosphorylation of the tight junction protein zona occludens (ZO)-1. Because IL-1β is a central inflammatory mediator, our interpretation is that inhibition of PKC-θ or inhibition of ZO-1 phosphorylation could be viable strategies for preventing blood-brain barrier dysfunction under a variety of neuroinflammatory conditions.
Collapse
Affiliation(s)
- Robert R Rigor
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., MDC 8, Tampa, FL 33612, USA
| | | | | | | |
Collapse
|
39
|
Wang J, Liu H, Chen B, Li Q, Huang X, Wang L, Guo X, Huang Q. RhoA/ROCK-dependent moesin phosphorylation regulates AGE-induced endothelial cellular response. Cardiovasc Diabetol 2012; 11:7. [PMID: 22251897 PMCID: PMC3280169 DOI: 10.1186/1475-2840-11-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Accepted: 01/17/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The role of advanced glycation end products (AGEs) in the development of diabetes, especially diabetic complications, has been emphasized in many reports. Accumulation of AGEs in the vasculature triggers a series of morphological and functional changes in endothelial cells (ECs) and induces an increase of endothelial permeability. This study was to investigate the involvement of RhoA/ROCK-dependent moesin phosphorylation in endothelial abnormalities induced by AGEs. METHODS Using human dermal microvascular endothelial cells (HMVECs), the effects of human serum albumin modified-AGEs (AGE-HSA) on the endothelium were assessed by measuring monolayer permeability and staining of F-actin in HMVECs. Activations of RhoA and ROCK were determined by a luminescence-based assay and immunoblotting. Transfection of recombinant adenovirus that was dominant negative for RhoA (RhoA N19) was done to down-regulate RhoA expression, while adenovirus with constitutively activated RhoA (RhoA L63) was transfected to cause overexpression of RhoA in HMVECs. H-1152 was employed to specifically block activation of ROCK. Co-immunoprecipitation was used to further confirm the interaction of ROCK and its downstream target moesin. To identify AGE/ROCK-induced phosphorylation site in moesin, two mutants pcDNA3/HA-moesinT(558A) and pcDNA3/HA-moesinT(558D) were applied in endothelial cells. RESULTS The results showed that AGE-HSA increased the permeability of HMVEC monolayer and triggered the formation of F-actin-positive stress fibers. AGE-HSA enhanced RhoA activity as well as phosphorylation of ROCK in a time- and dose-dependent manner. Down-regulation of RhoA expression with RhoA N19 transfection abolished these AGE-induced changes, while transfection of RhoA L63 reproduced the AGE-evoked changes. H-1152 attenuated the AGE-induced alteration in monolayer permeability and cytoskeleton. The results also confirmed the AGE-induced direct interaction of ROCK and moesin. Thr558 was further identified as the phosphorylating site of moesin in AGE-evoked endothelial responses. CONCLUSION These results confirm the involvement of RhoA/ROCK pathway and subsequent moesin Thr558 phosphorylation in AGE-mediated endothelial dysfunction.
Collapse
Affiliation(s)
- Jiping Wang
- Department of Pathophysiology, Key Laboratory for Shock and Microcirculation Research, Southern Medical University, Guangzhou, P R China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Satoh SI, Takayasu M, Kawasaki K, Ikegaki I, Hitomi A, Yano K, Shibuya M, Asano T. Antivasospastic Effects of Hydroxyfasudil, a Rho-Kinase Inhibitor, After Subarachnoid Hemorrhage. J Pharmacol Sci 2012; 118:92-98. [DOI: 10.1254/jphs.11075fp] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 11/15/2011] [Indexed: 10/14/2022] Open
|
41
|
Yuan SY, Shen Q, Rigor RR, Wu MH. Neutrophil transmigration, focal adhesion kinase and endothelial barrier function. Microvasc Res 2011; 83:82-8. [PMID: 21864543 DOI: 10.1016/j.mvr.2011.06.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 06/20/2011] [Accepted: 06/29/2011] [Indexed: 11/30/2022]
Abstract
Neutrophil activation is an essential component of innate immune defense against infection and injury. In response to inflammatory stimulation, circulating neutrophils undergo a series of dynamic and metabolic changes characterized by β2-intergrin mediated adhesion to microvascular endothelium and subsequent transendothelial migration. During this process, neutrophils release granular contents containing digestive enzymes and produce cytotoxic agents such as reactive oxygen species and cytokines. These products target endothelial barriers inducing phosphorylation-triggered junction dissociation, actin stress fiber formation, and actomyosin contraction, manifest as paracellular hyperpermeability. Endothelial cell-matrix focal adhesions play an integral role in this process by providing structural support for endothelial conformational changes that facilitate neutrophil transmigration, as well as by recruiting intracellular molecules that constitute the hyperpermeability signaling cascades. As a central connector of the complex signaling network, focal adhesion kinase (FAK) is activated following neutrophil adhesion, and further mediates the reorganization of endothelial integrin-matrix attachments in a pattern coordinating with cytoskeleton contraction and junction opening. In this review, we present recent experimental evidence supporting the importance of FAK in neutrophil-dependent regulation of endothelial permeability. The discussion focuses on the mechanisms by which neutrophils activate FAK and its downstream effects on endothelial barriers.
Collapse
Affiliation(s)
- Sarah Y Yuan
- Division of Research, Department of Surgery, University of California at Davis School of Medicine, Sacramento, CA 95817, USA
| | | | | | | |
Collapse
|
42
|
|
43
|
Shen Q, Lee ES, Pitts RL, Wu MH, Yuan SY. Tissue inhibitor of metalloproteinase-2 regulates matrix metalloproteinase-2-mediated endothelial barrier dysfunction and breast cancer cell transmigration through lung microvascular endothelial cells. Mol Cancer Res 2010; 8:939-51. [PMID: 20571065 PMCID: PMC5584073 DOI: 10.1158/1541-7786.mcr-09-0523] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Matrix metalloproteinases (MMP) have been implicated in multiple stages of cancer metastasis. Tissue inhibitor of metalloproteinase-2 (TIMP-2) plays an important role in regulating MMP-2 activity. By forming a ternary complex with pro-MMP-2 and its activator MMP-14 on the cell surface, TIMP-2 can either initiate or restrain the cleavage and subsequent activation of MMP-2. Our recent work has shown that breast cancer cell adhesion to vascular endothelial cells activates endothelial MMP-2, promoting tumor cell transendothelial migration (TEM(E)). However, the mechanism of MMP-2 regulation during TEM(E) remains unclear. In the current study, we present evidence that MMP-14 is expressed in both invasive breast cancer cells (MDA-MB-231 and MDA-MB-436) and lung microvascular endothelial cells (HBMVEC-L), whereas TIMP-2 is exclusively expressed and released from the cancer cells. The tumor cell-derived TIMP-2 was further identified as a major determinant of endothelial MMP-2 activity during tumor cell transmigration in the presence of MMP-14. This response was associated with endothelial barrier dysfunction because coculture of MDA-MB-231 or MDA-MB-436 with HBMVEC-L caused a significant decrease in transendothelial electrical resistance concomitantly with endothelial cell-cell junction disruption and tumor cell transmigration. Knockdown of TIMP-2 or inhibition of TIMP-2/MMP-14 attenuated MMP-2-dependent transendothelial electrical resistance response and TEM(E). These findings suggest a novel interactive role of breast cancer cells and vascular endothelial cells in regulating the TIMP-2/MMP-14/MMP-2 pathway during tumor metastasis.
Collapse
Affiliation(s)
- Qiang Shen
- Division of Research, Department of Surgery, University of California at Davis School of Medicine, Sacramento, California 95817, USA
| | | | | | | | | |
Collapse
|
44
|
Shen Q, Rigor RR, Pivetti CD, Wu MH, Yuan SY. Myosin light chain kinase in microvascular endothelial barrier function. Cardiovasc Res 2010; 87:272-80. [PMID: 20479130 DOI: 10.1093/cvr/cvq144] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Microvascular barrier dysfunction is implicated in the initiation and progression of inflammation, posttraumatic complications, sepsis, ischaemia-reperfusion injury, atherosclerosis, and diabetes. Under physiological conditions, a precise equilibrium between endothelial cell-cell adhesion and actin-myosin-based centripetal tension tightly controls the semi-permeability of microvascular barriers. Myosin light chain kinase (MLCK) plays an important role in maintaining the equilibrium by phosphorylating myosin light chain (MLC), thereby inducing actomyosin contractility and weakening endothelial cell-cell adhesion. MLCK is activated by numerous physiological factors and inflammatory or angiogenic mediators, causing vascular hyperpermeability. In this review, we discuss experimental evidence supporting the crucial role of MLCK in the hyperpermeability response to key cell signalling events during inflammation. At the cellular level, in vitro studies of cultured endothelial monolayers treated with MLCK inhibitors or transfected with specific inhibiting peptides have demonstrated that induction of endothelial MLCK activity is necessary for hyperpermeability. Ex vivo studies of live microvessels, enabled by development of the isolated, perfused venule method, support the importance of MLCK in endothelial permeability regulation in an environment that more closely resembles in vivo tissues. Finally, the role of MLCK in vascular hyperpermeability has been confirmed with in vivo studies of animal disease models and the use of transgenic MLCK210 knockout mice. These approaches provide a more complete view of the role of MLCK in vascular barrier dysfunction.
Collapse
Affiliation(s)
- Qiang Shen
- Division of Research, Department of Surgery, University of California at Davis School of Medicine, 4625 2nd Avenue, Sacramento, CA 95817, USA
| | | | | | | | | |
Collapse
|