1
|
Zhou S, Zhang M, Wang J, Chen X, Xu Z, Yan Y, Li Y. Nanofibers in Glioma Therapy: Advances, Applications, and Overcoming Challenges. Int J Nanomedicine 2025; 20:4677-4703. [PMID: 40255668 PMCID: PMC12008729 DOI: 10.2147/ijn.s510363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/31/2025] [Indexed: 04/22/2025] Open
Abstract
Despite relentless effort to study glioma treatment, the prognosis for glioma patients remains poor. The main obstacles include the high rate of recurrence and the difficulty of passing the blood-brain barrier (BBB) for therapeutic drugs. Nanomaterials owing to their special physicochemical properties have been used in a wide range of fields thus far. The nanodrug delivery system (NDDS) with the ability of crossing the BBB, targeting glioma site, maintaining drug stability and controlling drug release, has significantly enhanced the anti-tumor therapeutic effect, improving the prognosis of glioma patients. Aligned nanofibers (NFs) are ideal materials to establish in vitro models of glioma microenvironment (GME), enabling the exploration of the mechanism of glioma cell migration and invasion to discover novel therapeutic targets. Moreover, NFs are now widely used in glioma applications such as radiotherapy, phototherapy, thermotherapy and immunotherapy. Despite the absolute dominance of NFs in anti-glioma applications, there are still some problems such as the further optimization of NDDS, and the impact of interactions between nanofibers and the protein corona (PC) on glioma therapy. This paper will shed light on the latest glioma applications of NFs in drug delivery systems and mimicking the tumor microenvironment (TME), and discuss how to further optimize the NDDS and eliminate or utilize the nanomedicine-PC interactions.
Collapse
Affiliation(s)
- Shangjun Zhou
- Department of Pediatric Surgery, Hunan Children’s Hospital, Changsha, Hunan, People’s Republic of China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Mingcheng Zhang
- Center of Endoscopy, The Second Affiliated Hospital of Shandong First Medical University Tai’an, Shandong, People’s Republic of China
| | - Jiayu Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Yong Li
- Department of Pediatric Surgery, Hunan Children’s Hospital, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
2
|
Erickson A, Jackson LR, Camphausen K, Krauze AV. Mucins as Precision Biomarkers in Glioma: Emerging Evidence for Their Potential in Biospecimen Analysis and Outcome Prediction. Biomedicines 2024; 12:2806. [PMID: 39767713 PMCID: PMC11673638 DOI: 10.3390/biomedicines12122806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Despite attempts at improving survival by employing novel therapies, progression in glioma is nearly universal. Precision biomarkers are critical to advancing outcomes; however, biomarkers for glioma are currently unknown. Most data on which the field can draw for biomarker identification comprise tissue-based analysis requiring the biospecimen to be removed from the tumor. Non-invasive specimen-based precision biomarkers are needed. Mucins are captured in tissue and blood and are increasingly studied in cancer, with several studies exploring their role as biomarkers to detect disease and monitor disease progression. CA125, also known as MUC16, is implemented as a biomarker in the clinic for ovarian cancer. Similarly, several mucins are membrane-bound, facilitating downstream signaling associated with tumor resistance and hallmarks of cancer. Evidence supports mucin expression in glioma cells with relationships to tumor detection, progression, resistance, and patient outcomes. The differential expression of mucins across tissues and organs could also provide a means of attributing signals measured in serum or plasma. In this review, we compiled existing research on mucins as candidate precision biomarkers in glioma, focusing on promising mucins in relationship to glioma and leading to a framework for mucin analysis in biospecimens as well as avenues for validation as data evolve.
Collapse
|
3
|
Li PC, Yun DB, Huang YX, Huang QY. Prognostic significance of oligodendrocyte transcription factor 2 expression in glioma patients: A systematic review and meta-analysis. World J Clin Cases 2024; 12:5739-5748. [PMID: 39247740 PMCID: PMC11263059 DOI: 10.12998/wjcc.v12.i25.5739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/27/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Gliomas are the most common primary central nervous system neoplasm. Despite recent advances in the diagnosis and treatment of gliomas, patient prognosis remains dismal. Therefore, it is imperative to identify novel diagnostic biomarkers and therapeutic targets of glioma to effectively improve treatment outcomes. AIM To investigate the association between oligodendrocyte transcription factor 2 (Olig2) expression and the outcomes of glioma patients. METHODS The PubMed, Embase, Cochrane Library, and China National Knowledge Infrastructure databases were searched for studies (published up to October 2023) that investigated the relationship between Olig2 expression and prognosis of glioma patients. The quality of the studies was assessed using the Newcastle Ottawa Scale. Data analyses were performed using Stata Version 12.0 software. RESULTS A total of 1205 glioma patients from six studies were included in the meta-analysis. High Olig2 expression was associated with better outcomes in glioma patients [hazard ratio (HR): 0.81; 95% (confidence interval) CI: 0.51-1.27; P = 0.000]. Furthermore, the results of subgroup meta-analysis showed that high expression of Olig2 was associated with poor overall survival in European patients (HR: 1.34; 95%CI: 0.79-2.27) and better prognosis in Asian patients (HR: 0.43; 95%CI: 0.22-0.84). The sensitivity analysis showed that no single study had a significant effect on pooled HR, and there was also no indication of publication bias according to the Egger's and Begger's P value test or funnel plot test. CONCLUSION High Olig2 expression may have a positive impact on the prognosis of glioma patients, and should be investigated further as a prognostic biomarker and therapeutic target for glioma.
Collapse
Affiliation(s)
- Peng-Cheng Li
- Department of Neurosurgery, The Affiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - De-Bo Yun
- Department of Neurosurgery, The Affiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Ya-Xin Huang
- Department of Transfusion, The Affiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Qian-Yi Huang
- Department of Transfusion, The Affiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| |
Collapse
|
4
|
Karabacak M, Schupper AJ, Carr MT, Hickman ZL, Margetis K. From Text to Insight: A Natural Language Processing-Based Analysis of Topics and Trends in Neurosurgery. Neurosurgery 2024; 94:679-689. [PMID: 37988054 DOI: 10.1227/neu.0000000000002763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/02/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Neurosurgical research is a rapidly evolving field, with new research topics emerging continually. To provide a clearer understanding of the evolving research landscape, our study aimed to identify and analyze the prevalent research topics and trends in Neurosurgery. METHODS We used BERTopic, an advanced natural language processing-based topic modeling approach, to analyze papers published in the journal Neurosurgery . Using this method, topics were identified based on unique sets of keywords that encapsulated the core themes of each article. Linear regression models were then trained on the topic probabilities to identify trends over time, allowing us to identify "hot" (growing in prominence) and "cold" (decreasing in prominence) topics. We also performed a focused analysis of the trends in the current decade. RESULTS Our analysis led to the categorization of 12 438 documents into 49 distinct topics. The topics covered a wide range of themes, with the most commonly identified topics being "Spinal Neurosurgery" and "Treatment of Cerebral Ischemia." The hottest topics of the current decade were "Peripheral Nerve Surgery," "Unruptured Aneurysms," and "Endovascular Treatments" while the cold topics were "Chiari Malformations," "Thromboembolism Prophylaxis," and "Infections." CONCLUSION Our study underscores the dynamic nature of neurosurgical research and the evolving focus of the field. The insights derived from the analysis can guide future research directions, inform policy decisions, and identify emerging areas of interest. The use of natural language processing in synthesizing and analyzing large volumes of academic literature demonstrates the potential of advanced analytical techniques in understanding the research landscape, paving the way for similar analyses across other medical disciplines.
Collapse
Affiliation(s)
- Mert Karabacak
- Department of Neurosurgery, Mount Sinai Health System, New York , New York , USA
| | | | | | | | | |
Collapse
|
5
|
Mohtasebi M, Huang C, Zhao M, Mazdeyasna S, Liu X, Haratbar SR, Fathi F, Sun J, Pittman T, Yu G. A Wearable Fluorescence Imaging Device for Intraoperative Identification of Human Brain Tumors. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2023; 12:225-232. [PMID: 38196823 PMCID: PMC10776094 DOI: 10.1109/jtehm.2023.3338564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/02/2023] [Accepted: 11/27/2023] [Indexed: 01/11/2024]
Abstract
Malignant glioma (MG) is the most common type of primary malignant brain tumors. Surgical resection of MG remains the cornerstone of therapy and the extent of resection correlates with patient survival. A limiting factor for resection, however, is the difficulty in differentiating the tumor from normal tissue during surgery. Fluorescence imaging is an emerging technique for real-time intraoperative visualization of MGs and their boundaries. However, most clinical grade neurosurgical operative microscopes with fluorescence imaging ability are hampered by low adoption rates due to high cost, limited portability, limited operation flexibility, and lack of skilled professionals with technical knowledge. To overcome the limitations, we innovatively integrated miniaturized light sources, flippable filters, and a recording camera to the surgical eye loupes to generate a wearable fluorescence eye loupe (FLoupe) device for intraoperative imaging of fluorescent MGs. Two FLoupe prototypes were constructed for imaging of Fluorescein and 5-aminolevulinic acid (5-ALA), respectively. The wearable FLoupe devices were tested on tumor-simulating phantoms and patients with MGs. Comparable results were observed against the standard neurosurgical operative microscope (PENTERO® 900) with fluorescence kits. The affordable and wearable FLoupe devices enable visualization of both color and fluorescence images with the same quality as the large and expensive stationary operative microscopes. The wearable FLoupe device allows for a greater range of movement, less obstruction, and faster/easier operation. Thus, it reduces surgery time and is more easily adapted to the surgical environment than unwieldy neurosurgical operative microscopes. Clinical and Translational Impact Statement-The affordable and wearable fluorescence imaging device developed in this study enables neurosurgeons to observe brain tumors with the same clarity and greater flexibility compared to bulky and costly operative microscopes.
Collapse
Affiliation(s)
- Mehrana Mohtasebi
- Department of Biomedical EngineeringUniversity of KentuckyLexingtonKY40506USA
| | - Chong Huang
- Department of Biomedical EngineeringUniversity of KentuckyLexingtonKY40506USA
| | - Mingjun Zhao
- Department of Biomedical EngineeringUniversity of KentuckyLexingtonKY40506USA
| | - Siavash Mazdeyasna
- Department of Biomedical EngineeringUniversity of KentuckyLexingtonKY40506USA
| | - Xuhui Liu
- Department of Biomedical EngineeringUniversity of KentuckyLexingtonKY40506USA
| | | | - Faraneh Fathi
- Department of Biomedical EngineeringUniversity of KentuckyLexingtonKY40506USA
| | | | - Thomas Pittman
- Department of NeurosurgeryUniversity of KentuckyLexingtonKY40506USA
| | - Guoqiang Yu
- Department of Biomedical EngineeringUniversity of KentuckyLexingtonKY40506USA
| |
Collapse
|
6
|
Papi Z, Fathi S, Dalvand F, Vali M, Yousefi A, Tabatabaei MH, Amouheidari A, Abedi I. Auto-Segmentation and Classification of Glioma Tumors with the Goals of Treatment Response Assessment Using Deep Learning Based on Magnetic Resonance Imaging. Neuroinformatics 2023; 21:641-650. [PMID: 37458971 DOI: 10.1007/s12021-023-09640-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 10/18/2023]
Abstract
Glioma is the most common primary intracranial neoplasm in adults. Radiotherapy is a treatment approach in glioma patients, and Magnetic Resonance Imaging (MRI) is a beneficial diagnostic tool in treatment planning. Treatment response assessment in glioma patients is usually based on the Response Assessment in Neuro Oncology (RANO) criteria. The limitation of assessment based on RANO is two-dimensional (2D) manual measurements. Deep learning (DL) has great potential in neuro-oncology to improve the accuracy of response assessment. In the current research, firstly, the BraTS 2018 Challenge dataset included 210 HGG and 75 LGG were applied to train a designed U-Net network for automatic tumor and intra-tumoral segmentation, followed by training of the designed classifier with transfer learning for determining grading HGG and LGG. Then, designed networks were employed for the segmentation and classification of local MRI images of 49 glioma patients pre and post-radiotherapy. The results of tumor segmentation and its intra-tumoral regions were utilized to determine the volume of different regions and treatment response assessment. Treatment response assessment demonstrated that radiotherapy is effective on the whole tumor and enhancing region with p-value ≤ 0.05 with a 95% confidence level, while it did not affect necrosis and peri-tumoral edema regions. This work demonstrated the potential of using deep learning in MRI images to provide a beneficial tool in the automated treatment response assessment so that the patient can obtain the best treatment.
Collapse
Affiliation(s)
- Zahra Papi
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sina Fathi
- Department of Health Information Management, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Dalvand
- Department of Medical Radiation, Shahid Beheshti University, Tehran, Iran
| | - Mahsa Vali
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Ali Yousefi
- Department of Management- Operations Research, University of Isfahan, Isfahan, Iran
| | | | | | - Iraj Abedi
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
7
|
Özdemir İ, Kamson DO, Etyemez S, Blair L, Lin DDM, Barker PB. Downfield Proton MRSI at 3 Tesla: A Pilot Study in Human Brain Tumors. Cancers (Basel) 2023; 15:4311. [PMID: 37686587 PMCID: PMC10486526 DOI: 10.3390/cancers15174311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
PURPOSE To investigate the use of 3D downfield proton magnetic resonance spectroscopic imaging (DF-MRSI) for evaluation of tumor recurrence in patients with glioblastoma (GBM). METHODS Seven patients (4F, age range 44-65 and mean ± standard deviation 59.3 ± 7.5 years) with previously treated GBM were scanned using a recently developed 3D DF-MRSI sequence at 3T. Short TE 3D DF-MRSI and water reference 3D-MRSI scans were collected with a nominal spatial resolution of 0.7 cm3. DF volume data in eight slices covered 12 cm of brain in the cranio-caudal axis. Data were analyzed using the 'LCModel' program and a basis set containing nine peaks ranging in frequency between 6.83 to 8.49 ppm. The DF8.18 (assigned to amides) and DF7.90 peaks were selected for the creation of metabolic images and statistical analysis. Longitudinal MR images and clinical history were used to classify brain lesions as either recurrent tumor or treatment effect, which may include necrosis. DF-MRSI data were compared between lesion groups (recurrent tumor, treatment effect) and normal-appearing brain. RESULTS Of the seven brain tumor patients, two were classified as having recurrent tumor and the rest were classified as treatment effect. Amide metabolite levels from recurrent tumor regions were significantly (p < 0.05) higher compared to both normal-appearing brain and treatment effect regions. Amide levels in lesion voxels classified as treatment effect were significantly lower than normal brain. CONCLUSIONS 3D DF-MRSI in human brain tumors at 3T is feasible and was well tolerated by all patients enrolled in this preliminary study. Amide levels measured by 3D DF-MRSI were significantly different between treatment effect and tumor regrowth.
Collapse
Affiliation(s)
- İpek Özdemir
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David O. Kamson
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Semra Etyemez
- Department of Obstetrics & Gynecology, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lindsay Blair
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Doris D. M. Lin
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Peter B. Barker
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- F.M. Kirby Center for Functional Brain MRI, The Kennedy Krieger Institute, Baltimore, MD 21205, USA
| |
Collapse
|
8
|
Liu J, Xu Y, Tang H, Liu X, Sun Y, Wu T, Gao M, Chen P, Hong H, Huang G, Zhou Y. miR‑137 is a diagnostic tumor‑suppressive miRNA that targets SPHK2 to promote M1‑type tumor‑associated macrophage polarization. Exp Ther Med 2023; 26:397. [PMID: 37533491 PMCID: PMC10390856 DOI: 10.3892/etm.2023.12096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/05/2023] [Indexed: 08/04/2023] Open
Abstract
The present study investigated the expression level of microRNA (miR)-137 in glioma tissues and cell lines and explored its potential diagnostic significance as well as its function effects on glioma cells. miR-137 expression level was detected in glioma tissues using in situ hybridization, and in glioma cell lines using reverse transcription-quantitative PCR (RT-qPCR). The diagnostic significance of miR-137 in glioma was assessed using receiver operating characteristic curve analyses. Quantibody® Human Inflammation Array 1 was used to evaluate the impact of ectopic miR-137 expression on release of cytokines in glioma cell lines. IL-13, TNF-α and IFN-γ levels were detected using ELISA. To confirm that sphingosine kinase 2 (SPHK2) is a target of miR-137, RT-qPCR, western blot analysis and dual-luciferase assay were adopted. The results demonstrated that miR-137 expression was downregulated in both glioma tissues and cell lines. Downregulation of miR-137 was significantly associated with high grade gliomas. Additionally, it was found that overexpression of miR-137 reduced IL-13, but promoted TNFα and IFN-γ production. SPHK2 knockdown inhibited IL-13 release, promoted TNF-α and IFN-γ production. SPHK2 was a direct target of miR-137. Collectively, the results of the present study indicated that miR-137 expression plays a tumor-suppressive role in glioma. It is downregulated in glioma and may promote M1-type TAMs polarization, and may be a diagnostic biomarker and potential therapeutic strategy for glioma treatment in the future.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pathology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518000, P.R. China
| | - Yanwen Xu
- Translational Medicine Institute, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518000, P.R. China
| | - Han Tang
- Department of Neurosurgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xia Liu
- Department of Pathology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518000, P.R. China
| | - Yanhua Sun
- Department of Pathology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518000, P.R. China
| | - Tingting Wu
- Department of Pathology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518000, P.R. China
| | - Ming Gao
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang Uyghur Autonomous Region 830017, P.R. China
| | - Peng Chen
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang Uyghur Autonomous Region 830017, P.R. China
| | - Huixia Hong
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang Uyghur Autonomous Region 830017, P.R. China
| | - Guodong Huang
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang Uyghur Autonomous Region 830017, P.R. China
| | - Yanxia Zhou
- Department of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518000, P.R. China
| |
Collapse
|
9
|
Rahimpour M, Boellaard R, Jentjens S, Deckers W, Goffin K, Koole M. A multi-label CNN model for the automatic detection and segmentation of gliomas using [ 18F]FET PET imaging. Eur J Nucl Med Mol Imaging 2023; 50:2441-2452. [PMID: 36933075 DOI: 10.1007/s00259-023-06193-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 03/07/2023] [Indexed: 03/19/2023]
Abstract
PURPOSE The aim of this study was to develop a convolutional neural network (CNN) for the automatic detection and segmentation of gliomas using [18F]fluoroethyl-L-tyrosine ([18F]FET) PET. METHODS Ninety-three patients (84 in-house/7 external) who underwent a 20-40-min static [18F]FET PET scan were retrospectively included. Lesions and background regions were defined by two nuclear medicine physicians using the MIM software, such that delineations by one expert reader served as ground truth for training and testing the CNN model, while delineations by the second expert reader were used to evaluate inter-reader agreement. A multi-label CNN was developed to segment the lesion and background region while a single-label CNN was implemented for a lesion-only segmentation. Lesion detectability was evaluated by classifying [18F]FET PET scans as negative when no tumor was segmented and vice versa, while segmentation performance was assessed using the dice similarity coefficient (DSC) and segmented tumor volume. The quantitative accuracy was evaluated using the maximal and mean tumor to mean background uptake ratio (TBRmax/TBRmean). CNN models were trained and tested by a threefold cross-validation (CV) using the in-house data, while the external data was used for an independent evaluation to assess the generalizability of the two CNN models. RESULTS Based on the threefold CV, the multi-label CNN model achieved 88.9% sensitivity and 96.5% precision for discriminating between positive and negative [18F]FET PET scans compared to a 35.3% sensitivity and 83.1% precision obtained with the single-label CNN model. In addition, the multi-label CNN allowed an accurate estimation of the maximal/mean lesion and mean background uptake, resulting in an accurate TBRmax/TBRmean estimation compared to a semi-automatic approach. In terms of lesion segmentation, the multi-label CNN model (DSC = 74.6 ± 23.1%) demonstrated equal performance as the single-label CNN model (DSC = 73.7 ± 23.2%) with tumor volumes estimated by the single-label and multi-label model (22.9 ± 23.6 ml and 23.1 ± 24.3 ml, respectively) closely approximating the tumor volumes estimated by the expert reader (24.1 ± 24.4 ml). DSCs of both CNN models were in line with the DSCs by the second expert reader compared with the lesion segmentations by the first expert reader, while detection and segmentation performance of both CNN models as determined with the in-house data were confirmed by the independent evaluation using external data. CONCLUSION The proposed multi-label CNN model detected positive [18F]FET PET scans with high sensitivity and precision. Once detected, an accurate tumor segmentation and estimation of background activity was achieved resulting in an automatic and accurate TBRmax/TBRmean estimation, such that user interaction and potential inter-reader variability can be minimized.
Collapse
Affiliation(s)
- Masoomeh Rahimpour
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, UZ, KU Leuven, Herestraat 49 - Box 7003, 3000, Leuven, Belgium.
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Cancer Centre Amsterdam, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | | | - Wies Deckers
- Division of Nuclear Medicine, UZ Leuven, Leuven, Belgium
| | - Karolien Goffin
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, UZ, KU Leuven, Herestraat 49 - Box 7003, 3000, Leuven, Belgium
- Division of Nuclear Medicine, UZ Leuven, Leuven, Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, UZ, KU Leuven, Herestraat 49 - Box 7003, 3000, Leuven, Belgium
| |
Collapse
|
10
|
Paeoniflorin Regulates NEDD4L/STAT3 Pathway to Induce Ferroptosis in Human Glioma Cells. JOURNAL OF ONCOLOGY 2022; 2022:6093216. [PMID: 36618071 PMCID: PMC9812627 DOI: 10.1155/2022/6093216] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 06/04/2022] [Accepted: 12/10/2022] [Indexed: 12/29/2022]
Abstract
Background Paeoniflorin is an active component of a widely used traditional Chinese medicine with antitumor activity through ferroptosis induction. It has been reported recently that ferroptosis is emerging in certain types of cancer; however, its relevance in glioma is still not well studied. Methods CCK8 assay was performed for cell proliferation. Expression of mRNA and protein was tested by qPCR and western blot, respectively. Clinical section samples were detected by IHC. The relationship between NEDD4L and STAT3 was validated by a coimmunoprecipitation assay. Apoptosis was identified by TUNEL assay. A xenograft mouse model was utilized to validate the potential of paeoniflorin toward glioma cancer cells. Results The data suggested that paeoniflorin could increase NEDD4L expression in glioma cells. The NEDD4L expression level was lower in glioma cancer tissues compared to adjacent normal tissues, and it correlates with poor prognosis. Meanwhile, NEDD4L mediates the ubiquitination of STAT3. Furthermore, increased NEDD4L significantly inhibited cell viability and induced accumulation of intracellular ROS levels, accompanied by decreased expression of key ferroptosis factors Nrl2 and GPX4, while NEDD4L knockdown had a reverse effect, suggesting that ferroptosis could be involved. NEDD4L-induced ferroptosis could be rescued by forced expression of STAT3. A xenograft nude mouse model showed that paeoniflorin inhibits tumor growth and further sensitizes glioma cells to RSL3, another well-known ferroptosis inducer. Conclusions In summary, this study demonstrated that paeoniflorin might function as an effective drug for glioma by inducing ferroptosis via upregulation of NEDD4L and repression of Nrl2, GPX4, and STAT3.
Collapse
|
11
|
Chen F, Chao M, Huang T, Guo S, Zhai Y, Wang Y, Wang N, Xie X, Wang L, Ji P. The role of preoperative inflammatory markers in patients with central nervous system tumors, focus on glioma. Front Oncol 2022; 12:1055783. [PMID: 36483052 PMCID: PMC9723353 DOI: 10.3389/fonc.2022.1055783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND CNS tumors, particularly gliomas, are associated with a high rate of disability and lethality, and are typically diagnosed with histopathology and immunohistochemistry. Our research aims to develop a minimally invasive method for diagnosing, grading and molecular typing glioma. METHODS We collected patients who underwent surgery for glioma, Trigeminal neuralgia/Hemifacial spasm, schwannoma, pituitary adenomas and meningioma at our hospital from June 2019 to June 2021. Preoperative WBCs, neutrophils, lymphocytes, monocytes, platelet counts and albumin levels were collected. Preoperative NLR, dNLR, PLR, LMR and PNI were calculated, and the correlation between them and glioma diagnosis as well as grading was analyzed. We also evaluated the diagnostic significance of NLR, dNLR, PLR, LMR, PNI and their combinations for gliomas, particularly GBM, as well as the diagnostic significance of IDH molecular typing of gliomas. RESULTS There were 182 healthy samples and 3101 diseased samples in our study. Compared with other groups, glioma patients had significantly higher preoperative NLR, dNLR and PLR values, but lower LMR and PNI values. Further analysis showed that NLR, dNLR, and PLR were positively correlated with glioma grading, while LMR and PNI were negatively correlated with glioma grading. For the diagnosis of glioma, NLR showed a maximum AUC value of 0.8099 (0.7823-0.8374). For GBM, NLR showed a maximum AUC value of 0.9585 (0.9467-0.9703). In the combination, NLR+dNLR showed the highest AUC value of 0.8070(0.7849-0.8291). NLR showed significant statistical significance in all grades of glioma IDH molecular typing, while PLR did not show statistical significance. CONCLUSIONS NLR has the greatest value for the diagnosis, differential diagnosis, grading and molecular typing of gliomas. The NLR+dNLR combination also showed high sensitivity and specificity. We believe that inflammatory parameters may serve as economical and specific markers for glioma diagnosis, grading, molecular typing, and progression.
Collapse
Affiliation(s)
- Fan Chen
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi’an, China
| | - Min Chao
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi’an, China
| | - Tao Huang
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi’an, China
| | - Shaochun Guo
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi’an, China
| | - Yulong Zhai
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi’an, China
| | - Yuan Wang
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi’an, China
| | - Na Wang
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi’an, China
| | - Xuan Xie
- Reproductive Medicine Center, Department of Gynecology & Obstetrics, Xijing Hospital of Fourth Military Medical University, Xi’an, China
| | - Liang Wang
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi’an, China
| | - Peigang Ji
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi’an, China
| |
Collapse
|
12
|
Allen NC, Chauhan R, Bates PJ, O’Toole MG. Optimization of Tumor Targeting Gold Nanoparticles for Glioblastoma Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3869. [PMID: 36364644 PMCID: PMC9653665 DOI: 10.3390/nano12213869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Glioblastoma brain tumors represent an aggressive form of gliomas that is hallmarked by being extremely invasive and aggressive due to intra and inter-tumoral heterogeneity. This complex tumor microenvironment makes even the newer advancements in glioblastoma treatment less effective long term. In developing newer treatment technologies against glioblastoma, one should tailor the treatment to the tumor microenvironment, thus allowing for a more robust and sustained anti-glioblastoma effect. Here, we present a novel gold nanoparticle therapy explicitly designed for bioactivity against glioblastoma representing U87MG cell lines. We employ standard conjugation techniques to create oligonucleotide-coated gold nanoparticles exhibiting strong anti-glioblastoma behavior and optimize their design to maximize bioactivity against glioblastoma. Resulting nanotherapies are therapy specific and show upwards of 75% inhibition in metabolic and proliferative activity with stark effects on cellular morphology. Ultimately, these gold nanotherapies are a good base for designing more multi-targeted approaches to fighting against glioblastoma.
Collapse
Affiliation(s)
- Nicholas C. Allen
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA
| | - Rajat Chauhan
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA
| | - Paula J. Bates
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Martin G. O’Toole
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
13
|
Simińska D, Korbecki J, Kojder K, Jeżewski D, Tarnowski M, Tomasiak P, Piotrowska K, Masztalewicz M, Kolasa A, Chlubek D, Baranowska-Bosiacka I. Androgen Receptor Expression in the Various Regions of Resected Glioblastoma Multiforme Tumors and in an In Vitro Model. Int J Mol Sci 2022; 23:13004. [PMID: 36361793 PMCID: PMC9655141 DOI: 10.3390/ijms232113004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 09/26/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a malignant glioma, difficult to detect and with the lowest survival rates among gliomas. Its greater incidence among men and its higher survival rate among premenopausal women suggest that it may be associated with the levels of androgens. As androgens stimulate the androgen receptor (AR), which acts as a transcription factor, the aim of this study was the investigate the role of AR in the progression of GBM. The study was conducted on tissues collected from three regions of GBM tumors (tumor core, enhancing tumor region, and peritumoral area). In addition, an in vitro experiment was conducted on U-87 cells under various culture conditions (necrotic, hypoxic, and nutrient-deficient), mimicking the conditions in a tumor. In both of the models, androgen receptor expression was determined at the gene and protein levels, and the results were confirmed by confocal microscopy and immunohistochemistry. AR mRNA expression was higher under nutrient-deficient conditions and lower under hypoxic conditions in vitro. However, there were no differences in AR protein expression. No differences in AR mRNA expression were observed between the tested tumor structures taken from patients. No differences in AR mRNA expression were observed between the men and women. However, AR protein expression in tumors resected from patients was higher in the enhancing tumor region and in the peritumoral area than in the tumor core. In women, higher AR expression was observed in the peritumoral area than in the tumor core. AR expression in GBM tumors did not differ significantly between men and women, which suggests that the higher incidence of GBM in men is not associated with AR expression. In the group consisting of men and women, AR expression varied between the regions of the tumor: AR expression was higher in the enhancing tumor region and in the peritumoral area than in the tumor core, showing a dependence on tumor conditions (hypoxia and insufficient nutrient supply).
Collapse
Affiliation(s)
- Donata Simińska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Klaudyna Kojder
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Dariusz Jeżewski
- Department of Neurosurgery and Pediatric Neurosurgery Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
- Department of Applied Neurocognitivistics, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Maciej Tarnowski
- Department of Physiology in Health Sciences, Pomeranian Medical University in Szczecin, Żołnierska 54, 70-210 Szczecin, Poland
| | - Patrycja Tomasiak
- Institute of Physical Culture Sciences, University of Szczecin, 70-453 Szczecin, Poland
| | - Katarzyna Piotrowska
- Department of Physiology, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Marta Masztalewicz
- Department of Neurology, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Agnieszka Kolasa
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
14
|
Zhang L, Chu M, Ji C, Tan J, Yuan Q. Preparation, applications, and challenges of functional DNA nanomaterials. NANO RESEARCH 2022; 16:3895-3912. [PMID: 36065175 PMCID: PMC9430014 DOI: 10.1007/s12274-022-4793-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
As a carrier of genetic information, DNA is a versatile module for fabricating nanostructures and nanodevices. Functional molecules could be integrated into DNA by precise base complementary pairing, greatly expanding the functions of DNA nanomaterials. These functions endow DNA nanomaterials with great potential in the application of biomedical field. In recent years, functional DNA nanomaterials have been rapidly investigated and perfected. There have been reviews that classified DNA nanomaterials from the perspective of functions, while this review primarily focuses on the preparation methods of functional DNA nanomaterials. This review comprehensively introduces the preparation methods of DNA nanomaterials with functions such as molecular recognition, nanozyme catalysis, drug delivery, and biomedical material templates. Then, the latest application progress of functional DNA nanomaterials is systematically reviewed. Finally, current challenges and future prospects for functional DNA nanomaterials are discussed.
Collapse
Affiliation(s)
- Lei Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Mengge Chu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Cailing Ji
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| |
Collapse
|
15
|
Chaulagain D, Smolanka V, Smolanka A, Munakomi S. The Impact of Extent of Resection on the Prognosis of Glioblastoma Multiforme: A Systematic Review and Meta-analysis. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Purpose:
To investigate the predictor factors of mortality describing the prognosis of primary surgical resection of Glioblastoma Multiforme (GBM).
Materials and Methods:
A systemic search was conducted from electronic databases (PubMed/Medline, Cochrane Library, and Google Scholar) from inception to 12th September 2021. All statistical analysis was conducted in Review Manager 5.4.1. Studies meeting inclusion criteria were selected. A random-effect model was used when heterogeneity was seen to pool the studies, and the result were reported in the Hazards Ratio (HR) and corresponding 95% Confidence interval (CI).
Result:
Twenty-three cohort studies were selected for meta-analysis. There was statistically significant effect of extent of resection on prognosis of surgery in GBM patients (HR= 0.90 [0.86, 0.95]; p< 0.0001; I2= 96%), male gender (HR= 1.19 [1.06, 1.34]; p= 0.002; I2= 0%) and decrease Karnofsky Performance Status (HR= 0.97 [0.95, 0.99]; p= 0.003; I2= 90%). Age and tumor volume was also analyzed in the study.
Conclusion:
The results of our meta-analysis suggested that age, gender, pre-operative KPS score and extent of resection have significant effects on the post-surgical mortality rate, therefore, these factors can be used significant predictor of mortality in GBM patients.
Collapse
|
16
|
Uludağ D, Bay S, Sucu BO, Şavluğ İpek Ö, Mohr T, Güzel M, Karakaş N. Potential of Novel Methyl Jasmonate Analogs as Anticancer Agents to Metabolically Target HK-2 Activity in Glioblastoma Cells. Front Pharmacol 2022; 13:828400. [PMID: 35677429 PMCID: PMC9168889 DOI: 10.3389/fphar.2022.828400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Change in the energy metabolism of cancer cells, which display significant differences compared to normal cells, is a rising phenomenon in developing new therapeutic approaches against cancers. One of the metabolic enzymes, hexokinase-II (HK-II) is involved in glycolysis, and inhibiting the HK-II activity may be a potential metabolic target for cancer therapy as most of the drugs in clinical use act on DNA damage. Methyl jasmonate (MJ) is one of the compounds blocking HK-II activity in cancer cells. In a previous study, we showed that the novel MJ analogs inhibit HK-II activity through VDAC detachment from the mitochondria. In this study, to evaluate the potential of targeting HK-2 activity, through patient cohort analysis, we first determined HK-2 expression levels and prognostic significance in highly lethal glioblastoma (GBM) brain tumor. We then examined the in vitro therapeutic effects of the novel analogs in the GBM cells. Here, we report that, among all, compound-10 (C-10) showed significant in vitro therapeutic efficacy as compared to MJ which is in use for preclinical and clinical studies. Afterward, we analyzed cell death triggered by C-10 in two different GBM cell lines. We found that C-10 treatment increased the apoptotic/necrotic cells and autophagy in GBM cells. The newly developed analog, C-10, was found to be lethal against GBM by the activation of cell death authorities, mostly in a necrotic and autophagic fashion at the early stages of the treatment. Considering that possibly decreased intracellular ATP levels by C-10 mediated inhibition of HK-2 activity and disabled VDAC interaction, a more detailed analysis of HK-2 inhibition-mediated cell death can provide a deep understanding of the mechanism of action on the oncosis/necroptosis axis. These findings provide an option to design clinically relevant and effective novel HK-II inhibitors and suggest novel MJ analogs to further study them as potential anticancer agents against GBM.
Collapse
Affiliation(s)
- Damla Uludağ
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, İstanbul, Turkey
| | - Sadık Bay
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, İstanbul, Turkey
| | - Bilgesu Onur Sucu
- Center of Drug Discovery and Development, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, İstanbul, Turkey,Medical Laboratory Techniques, Vocational School of Health Services, Istanbul Medipol University, Istanbul, Turkey
| | - Özgecan Şavluğ İpek
- Center of Drug Discovery and Development, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, İstanbul, Turkey
| | - Thomas Mohr
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria,ScienceConsult—DI Thomas Mohr KG, Vienna, Austria
| | - Mustafa Güzel
- Center of Drug Discovery and Development, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, İstanbul, Turkey,Department of Medical Pharmacology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey,*Correspondence: Mustafa Güzel, ; Nihal Karakaş,
| | - Nihal Karakaş
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, İstanbul, Turkey,Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, İstanbul, Turkey,Department of Medical Biology, School of Medicine, İstanbul Medipol University, İstanbul, Turkey,*Correspondence: Mustafa Güzel, ; Nihal Karakaş,
| |
Collapse
|
17
|
Matsumae M, Nishiyama J, Kuroda K. Intraoperative MR Imaging during Glioma Resection. Magn Reson Med Sci 2022; 21:148-167. [PMID: 34880193 PMCID: PMC9199972 DOI: 10.2463/mrms.rev.2021-0116] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/11/2021] [Indexed: 11/09/2022] Open
Abstract
One of the major issues in the surgical treatment of gliomas is the concern about maximizing the extent of resection while minimizing neurological impairment. Thus, surgical planning by carefully observing the relationship between the glioma infiltration area and eloquent area of the connecting fibers is crucial. Neurosurgeons usually detect an eloquent area by functional MRI and identify a connecting fiber by diffusion tensor imaging. However, during surgery, the accuracy of neuronavigation can be decreased due to brain shift, but the positional information may be updated by intraoperative MRI and the next steps can be planned accordingly. In addition, various intraoperative modalities may be used to guide surgery, including neurophysiological monitoring that provides real-time information (e.g., awake surgery, motor-evoked potentials, and sensory evoked potential); photodynamic diagnosis, which can identify high-grade glioma cells; and other imaging techniques that provide anatomical information during the surgery. In this review, we present the historical and current context of the intraoperative MRI and some related approaches for an audience active in the technical, clinical, and research areas of radiology, as well as mention important aspects regarding safety and types of devices.
Collapse
Affiliation(s)
- Mitsunori Matsumae
- Department of Neurosurgery, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Jun Nishiyama
- Department of Neurosurgery, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Kagayaki Kuroda
- Department of Human and Information Sciences, School of Information Science and Technology, Tokai University, Hiratsuka, Kanagawa, Japan
| |
Collapse
|
18
|
Wang C, Liu Y, Chen R, Wang X, Wang Y, Wei J, Zhang K, Zhang C. Electrochemical biosensing of circulating microRNA-21 in cerebrospinal fluid of medulloblastoma patients through target-induced redox signal amplification. Mikrochim Acta 2022; 189:105. [DOI: 10.1007/s00604-022-05210-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/30/2022] [Indexed: 12/21/2022]
|
19
|
Diagnosis of Glioblastoma by Immuno-Positron Emission Tomography. Cancers (Basel) 2021; 14:cancers14010074. [PMID: 35008238 PMCID: PMC8750680 DOI: 10.3390/cancers14010074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Neuroimaging has transformed the way brain tumors are diagnosed and treated. Although different non-invasive modalities provide very helpful information, in some situations, they present a limited value. By merging the specificity of antibodies with the resolution, sensitivity, and quantitative capabilities of positron emission tomography (PET), “Immuno-PET” allows us to conduct the non-invasive diagnosis and monitoring of patients over time using antibody-based probes as an in vivo, integrated, quantifiable, 3D, full-body “immunohistochemistry”, like a “virtual biopsy”. This review provides and focuses on immuno-PET applications and future perspectives of this promising imaging approach for glioblastoma. Abstract Neuroimaging has transformed neuro-oncology and the way that glioblastoma is diagnosed and treated. Magnetic Resonance Imaging (MRI) is the most widely used non-invasive technique in the primary diagnosis of glioblastoma. Although MRI provides very powerful anatomical information, it has proven to be of limited value for diagnosing glioblastomas in some situations. The final diagnosis requires a brain biopsy that may not depict the high intratumoral heterogeneity present in this tumor type. The revolution in “cancer-omics” is transforming the molecular classification of gliomas. However, many of the clinically relevant alterations revealed by these studies have not yet been integrated into the clinical management of patients, in part due to the lack of non-invasive biomarker-based imaging tools. An innovative option for biomarker identification in vivo is termed “immunotargeted imaging”. By merging the high target specificity of antibodies with the high spatial resolution, sensitivity, and quantitative capabilities of positron emission tomography (PET), “Immuno-PET” allows us to conduct the non-invasive diagnosis and monitoring of patients over time using antibody-based probes as an in vivo, integrated, quantifiable, 3D, full-body “immunohistochemistry” in patients. This review provides the state of the art of immuno-PET applications and future perspectives on this imaging approach for glioblastoma.
Collapse
|
20
|
Identification of Hub Gene GRIN1 Correlated with Histological Grade and Prognosis of Glioma by Weighted Gene Coexpression Network Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4542995. [PMID: 34840971 PMCID: PMC8626183 DOI: 10.1155/2021/4542995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/11/2021] [Accepted: 11/02/2021] [Indexed: 12/01/2022]
Abstract
The function of glutamate ionotropic receptor NMDA type subunit 1 (GRIN1) in neurodegenerative diseases has been widely reported; however, its role in the occurrence of glioma remains less explored. We obtained clinical data and transcriptome data from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). Hub gene's expression differential analysis and survival analysis were conducted by browsing the Gene Expression Profiling Interactive Analysis (GEPIA) database, Human Protein Atlas database, and LOGpc database. We conducted a variation analysis of datasets obtained from GEO and TCGA and performed a weighted gene coexpression network analysis (WGCNA) using the R programming language (3.6.3). Kaplan-Meier (KM) analysis was used to calculate the prognostic value of GRIN1. Finally, we conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Using STRING, we constructed a protein–protein interaction (PPI) network. Cytoscape software, a prerequisite of visualizing core genes, was installed, and CytoHubba detected the 10 most tumor-related core genes. We identified 185 differentially expressed genes (DEGs). GO and KEGG enrichment analyses illustrated that the identified DEGs are imperative in different biological functions and ascertained the potential pathways in which the DEGs may be enriched. The overall survival calculated by KM analysis showed that patients with lower expression of GRIN1 had worse prognoses than patients with higher expression of GRIN1 (p = 0.004). The GEPIA and LOGpc databases were used to verify the expression difference of GRIN1 among GBM, LGG, and normal brain tissues. Ultimately, immunohistochemical assay results showed that GRIN1 was detected in normal tissue and not in the tumor specimens. Our results highlight a potential target for glioma treatment and will further our understanding of the molecular mechanisms underlying the treatment of glioma.
Collapse
|
21
|
Wu Y, Guo Y, Ma J, Sa Y, Li Q, Zhang N. Research Progress of Gliomas in Machine Learning. Cells 2021; 10:cells10113169. [PMID: 34831392 PMCID: PMC8622230 DOI: 10.3390/cells10113169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/29/2022] Open
Abstract
In the field of gliomas research, the broad availability of genetic and image information originated by computer technologies and the booming of biomedical publications has led to the advent of the big-data era. Machine learning methods were applied as possible approaches to speed up the data mining processes. In this article, we reviewed the present situation and future orientations of machine learning application in gliomas within the context of workflows to integrate analysis for precision cancer care. Publicly available tools or algorithms for key machine learning technologies in the literature mining for glioma clinical research were reviewed and compared. Further, the existing solutions of machine learning methods and their limitations in glioma prediction and diagnostics, such as overfitting and class imbalanced, were critically analyzed.
Collapse
|
22
|
Liu Y, Du Z, Xu Z, Jin T, Xu K, Huang M, Wang S, Zheng Y, Liu M, Xu H. Overexpressed GNA13 induces temozolomide sensitization via down-regulating MGMT and p-RELA in glioma. Am J Transl Res 2021; 13:11413-11426. [PMID: 34786068 PMCID: PMC8581860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Temozolomide (TMZ), one of the few effective drugs used during adjuvant therapy, could effectively prolong the overall survival (OS) of glioma patients. In our previous study, the mRNA level of G Protein Subunit Alpha 13 (GNA13) was found to be inversely correlated with OS and was therefore identified as a potential biomarker for the prognosis of glioma. Henceforth, this study aims to identify the molecular mechanism of GNA13 in enhancing TMZ sensitization through bioinformatic analyses of GSE80729 and GSE43452 and other experiments. In glioma, overexpression of GNA13 downregulated PRKACA, which is a subunit of PKA, hence reducing phosphorylated RELA and MGMT. Since p-RELA and MGMT were proven to be closely associated with TMZ resistance, we therefore investigated whether thetwo signaling pathways, "GNA13/PRKACA/p-RELA", and "GNA13/PRKACA/MGMT", were involved in the molecular mechanism of GNA13 in TMZ sensitization. Our conclusion was that, GNA13 overexpression in glioma cells were more sensitive in TMZ treatment.
Collapse
Affiliation(s)
- Yan Liu
- Department of Neurosurgery, Shantou Central HospitalShantou 515041, China
| | - Zepeng Du
- Department of Pathology, Shantou Central HospitalShantou 515041, China
| | - Zhennan Xu
- Department of Neurosurgery, Shantou Central HospitalShantou 515041, China
| | - Tao Jin
- Department of Neurosurgery, Shantou Central HospitalShantou 515041, China
| | - Ke Xu
- Department of Neurosurgery, Shantou Central HospitalShantou 515041, China
| | - Meihui Huang
- Department of Pathology, Shantou Central HospitalShantou 515041, China
| | - Shaohong Wang
- Department of Pathology, Shantou Central HospitalShantou 515041, China
| | - Yuyu Zheng
- Department of Pathology, Shantou Central HospitalShantou 515041, China
| | - Mingfa Liu
- Department of Neurosurgery, Shantou Central HospitalShantou 515041, China
| | - Haixiong Xu
- Department of Neurosurgery, Shantou Central HospitalShantou 515041, China
| |
Collapse
|
23
|
Walsh JJ, Parent M, Akif A, Adam LC, Maritim S, Mishra SK, Khan MH, Coman D, Hyder F. Imaging Hallmarks of the Tumor Microenvironment in Glioblastoma Progression. Front Oncol 2021; 11:692650. [PMID: 34513675 PMCID: PMC8426346 DOI: 10.3389/fonc.2021.692650] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/05/2021] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma progression involves multifaceted changes in vascularity, cellularity, and metabolism. Capturing such complexities of the tumor niche, from the tumor core to the periphery, by magnetic resonance imaging (MRI) and spectroscopic imaging (MRSI) methods has translational impact. In human-derived glioblastoma models (U87, U251) we made simultaneous and longitudinal measurements of tumor perfusion (Fp), permeability (Ktrans), and volume fractions of extracellular (ve) and blood (vp) spaces from dynamic contrast enhanced (DCE) MRI, cellularity from apparent diffusion coefficient (ADC) MRI, and extracellular pH (pHe) from an MRSI method called Biosensor Imaging of Redundant Deviation in Shifts (BIRDS). Spatiotemporal patterns of these parameters during tumorigenesis were unique for each tumor. While U87 tumors grew faster, Fp, Ktrans, and vp increased with tumor growth in both tumors but these trends were more pronounced for U251 tumors. Perfused regions between tumor periphery and core with U87 tumors exhibited higher Fp, but Ktrans of U251 tumors remained lowest at the tumor margin, suggesting primitive vascularization. Tumor growth was uncorrelated with ve, ADC, and pHe. U87 tumors showed correlated regions of reduced ve and lower ADC (higher cellularity), suggesting ongoing proliferation. U251 tumors revealed that the tumor core had higher ve and elevated ADC (lower cellularity), suggesting necrosis development. The entire tumor was uniformly acidic (pHe 6.1-6.8) early and throughout progression, but U251 tumors were more acidic, suggesting lower aerobic glycolysis in U87 tumors. Characterizing these cancer hallmarks with DCE-MRI, ADC-MRI, and BIRDS-MRSI will be useful for exploring tumorigenesis as well as timely therapies targeted to specific vascular and metabolic aspects of the tumor microenvironment.
Collapse
Affiliation(s)
- John J Walsh
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Maxime Parent
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States.,Magnetic Resonance Research Center, Yale University, New Haven, CT, United States
| | - Adil Akif
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Lucas C Adam
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States.,Magnetic Resonance Research Center, Yale University, New Haven, CT, United States
| | - Samuel Maritim
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Sandeep K Mishra
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States.,Magnetic Resonance Research Center, Yale University, New Haven, CT, United States
| | - Muhammad H Khan
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Daniel Coman
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States.,Magnetic Resonance Research Center, Yale University, New Haven, CT, United States
| | - Fahmeed Hyder
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States.,Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States.,Magnetic Resonance Research Center, Yale University, New Haven, CT, United States
| |
Collapse
|
24
|
Comparison of In Vivo and Ex Vivo Magnetic Resonance Imaging in a Rat Model for Glioblastoma-Associated Epilepsy. Diagnostics (Basel) 2021; 11:diagnostics11081311. [PMID: 34441246 PMCID: PMC8393600 DOI: 10.3390/diagnostics11081311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 11/17/2022] Open
Abstract
Magnetic resonance imaging (MRI) is frequently used for preclinical treatment monitoring in glioblastoma (GB). Discriminating between tumors and tumor-associated changes is challenging on in vivo MRI. In this study, we compared in vivo MRI scans with ex vivo MRI and histology to estimate more precisely the abnormal mass on in vivo MRI. Epileptic seizures are a common symptom in GB. Therefore, we used a recently developed GB-associated epilepsy model from our group with the aim of further characterizing the model and making it useful for dedicated epilepsy research. Ten days after GB inoculation in rat entorhinal cortices, in vivo MRI (T2w and mean diffusivity (MD)), ex vivo MRI (T2w) and histology were performed, and tumor volumes were determined on the different modalities. The estimated abnormal mass on ex vivo T2w images was significantly smaller compared to in vivo T2w images, but was more comparable to histological tumor volumes, and might be used to estimate end-stage tumor volumes. In vivo MD images displayed tumors as an outer rim of hyperintense signal with a core of hypointense signal, probably reflecting peritumoral edema and tumor mass, respectively, and might be used in the future to distinguish the tumor mass from peritumoral edema—associated with reactive astrocytes and activated microglia, as indicated by an increased expression of immunohistochemical markers—in preclinical models. In conclusion, this study shows that combining imaging techniques using different structural scales can improve our understanding of the pathophysiology in GB.
Collapse
|
25
|
Bolcaen J, Kleynhans J, Nair S, Verhoeven J, Goethals I, Sathekge M, Vandevoorde C, Ebenhan T. A perspective on the radiopharmaceutical requirements for imaging and therapy of glioblastoma. Theranostics 2021; 11:7911-7947. [PMID: 34335972 PMCID: PMC8315062 DOI: 10.7150/thno.56639] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/29/2021] [Indexed: 11/26/2022] Open
Abstract
Despite numerous clinical trials and pre-clinical developments, the treatment of glioblastoma (GB) remains a challenge. The current survival rate of GB averages one year, even with an optimal standard of care. However, the future promises efficient patient-tailored treatments, including targeted radionuclide therapy (TRT). Advances in radiopharmaceutical development have unlocked the possibility to assess disease at the molecular level allowing individual diagnosis. This leads to the possibility of choosing a tailored, targeted approach for therapeutic modalities. Therapeutic modalities based on radiopharmaceuticals are an exciting development with great potential to promote a personalised approach to medicine. However, an effective targeted radionuclide therapy (TRT) for the treatment of GB entails caveats and requisites. This review provides an overview of existing nuclear imaging and TRT strategies for GB. A critical discussion of the optimal characteristics for new GB targeting therapeutic radiopharmaceuticals and clinical indications are provided. Considerations for target selection are discussed, i.e. specific presence of the target, expression level and pharmacological access to the target, with particular attention to blood-brain barrier crossing. An overview of the most promising radionuclides is given along with a validation of the relevant radiopharmaceuticals and theranostic agents (based on small molecules, peptides and monoclonal antibodies). Moreover, toxicity issues and safety pharmacology aspects will be presented, both in general and for the brain in particular.
Collapse
Affiliation(s)
- Julie Bolcaen
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town, South Africa
| | - Janke Kleynhans
- Nuclear Medicine Research Infrastructure NPC, Pretoria, South Africa
- Nuclear Medicine Department, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
| | - Shankari Nair
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town, South Africa
| | | | - Ingeborg Goethals
- Ghent University Hospital, Department of Nuclear Medicine, Ghent, Belgium
| | - Mike Sathekge
- Nuclear Medicine Research Infrastructure NPC, Pretoria, South Africa
- Nuclear Medicine Department, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
| | - Charlot Vandevoorde
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town, South Africa
| | - Thomas Ebenhan
- Nuclear Medicine Research Infrastructure NPC, Pretoria, South Africa
- Nuclear Medicine Department, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
26
|
Tseng YY, Chen TY, Liu SJ. Role of Polymeric Local Drug Delivery in Multimodal Treatment of Malignant Glioma: A Review. Int J Nanomedicine 2021; 16:4597-4614. [PMID: 34267515 PMCID: PMC8275179 DOI: 10.2147/ijn.s309937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/21/2021] [Indexed: 12/29/2022] Open
Abstract
Malignant gliomas (MGs) are the most common and devastating primary brain tumor. At present, surgical interventions, radiotherapy, and chemotherapy are only marginally effective in prolonging the life expectancy of patients with MGs. Inherent heterogeneity, aggressive invasion and infiltration, intact physical barriers, and the numerous mechanisms underlying chemotherapy and radiotherapy resistance contribute to the poor prognosis for patients with MGs. Various studies have investigated methods to overcome these obstacles in MG treatment. In this review, we address difficulties in MG treatment and focus on promising polymeric local drug delivery systems. In contrast to most local delivery systems, which are directly implanted into the residual cavity after intratumoral injection or the surgical removal of a tumor, some rapidly developing and promising nanotechnological methods—including surface-decorated nanoparticles, magnetic nanoparticles, and focused ultrasound assist transport—are administered through (systemic) intravascular injection. We also discuss further synergistic and multimodal strategies for heightening therapeutic efficacy. Finally, we outline the challenges and therapeutic potential of these polymeric drug delivery systems.
Collapse
Affiliation(s)
- Yuan-Yun Tseng
- Department of Neurosurgery, New Taipei Municipal Tu-Cheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei City, Taiwan
| | - Tai-Yuan Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shih-Jung Liu
- Department of Mechanical Engineering, Chang Gung University, Tao-Yuan, Taiwan.,Department of Orthopedic Surgery, Chang Gung Memorial Hospital-Linkuo, Tao-Yuan, Taiwan
| |
Collapse
|
27
|
Zhu Y, Jia J, Zhao G, Huang X, Wang L, Zhang Y, Zhang L, Konduru N, Xie J, Yu R, Liu H. Multi-responsive nanofibers composite gel for local drug delivery to inhibit recurrence of glioma after operation. J Nanobiotechnology 2021; 19:198. [PMID: 34217325 PMCID: PMC8255008 DOI: 10.1186/s12951-021-00943-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022] Open
Abstract
Background The postoperative recurrence of malignant gliomas has presented a clinical conundrum currently. Worse, there is no standard treatment for these recurrent tumours. Therefore, novel promising methods of clinical treatment are urgently needed. Methods In this study, we synthesized reactive oxygen species (ROS)-triggered poly(propylene sulfide)60 (PPS60) mixed with matrix metalloproteinases (MMPs)-responsive triglycerol monostearate (T) lipids and TMZ. The mixed solution could self-assemble at 50 ℃ to generate hydrogels with MMPs- and ROS-responsiveness. We explored whether the T/PPS + TMZ hydrogel could achieve the MMP- and ROS-responsive delivery of TMZ and exert anti-glioma regrowth effects in vitro and in vivo. These results demonstrated that the T/PPS + TMZ hydrogel significantly improved the curative effect of TMZ to inhibit postsurgical recurrent glioma. Results The results confirmed the responsive release of TMZ encapsulated in the T/PPS + TMZ hydrogel, and the hydrogel showed excellent performance against glioma in an incomplete glioma operation model, which indicated that the T/PPS + TMZ hydrogel effectively inhibited the growth of recurrent glioma. Conclusion In summary, we successfully developed injectable MMPs- and ROS-responsive hydrogels that could achieve the sustained release of TMZ in the surgical cavity to inhibit local recurrent glioma after surgery. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00943-z.
Collapse
Affiliation(s)
- Yufu Zhu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Jun Jia
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China
| | - Gang Zhao
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China
| | - Xuyang Huang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China
| | - Lansheng Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China
| | - Yongkang Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China
| | - Long Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China
| | - Naveena Konduru
- Institute of International Education, Xuzhou Medical University, Xuzhou, 221002, China
| | - Jun Xie
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China. .,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
| | - Hongmei Liu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, China. .,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China. .,Department of Neurosurgery, The Third People's Hospital Affiliated of Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|
28
|
Liu Y, Chen S, Peng G, Liao Y, Fan X, Zhang Z, Shen C. CircRNA NALCN acts as an miR-493-3p sponge to regulate PTEN expression and inhibit glioma progression. Cancer Cell Int 2021; 21:307. [PMID: 34112159 PMCID: PMC8194043 DOI: 10.1186/s12935-021-02001-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/31/2021] [Indexed: 01/16/2023] Open
Abstract
Background An increasing number of studies have shown that circular RNAs (circRNAs) play important roles in the regulation of tumor progression. Therefore, we explored the expression characteristics, function, and related mechanism of the newly identified circNALCN in glioma. Methods RNA sequencing was used to analyze the expression profiles of circRNAs in brain tissue from five glioma cases and four normal controls. Quantitative real-time polymerase chain reaction was implemented to examine the levels of circNALCN, miR-493-3p, and phosphatase and tensin homolog (PTEN). Cell counting kit 8 assays were performed to analyze cell proliferation, and cell migration was assessed by the wound healing test and Transwell assay. Dual-luciferase reporter, fluorescence in situ hybridization, and RNA pulldown assays were performed to confirm the role of circNALCN as an miR-493-3p sponge, weakening the inhibitory effect of miR-493-3p on target PTEN expression. Results The downregulated expression of circNALCN was observed in both glioma tissues and cell lines. CircNALCN expression was negatively correlated with World Health Organization grade and overall survival in patients with glioma. Functionally, the overexpression of circNALCN significantly inhibited the proliferation and migration of glioma cells, whereas miR-493-3p mimics counteracted these effects. The mechanistic analysis demonstrated that circNALCN acted as a competing endogenous RNA for miR-493-3p to relieve the repressive effects of miR-493-3p on its target, PTEN, suppressing glioma tumorigenesis. Conclusions CircNALCN inhibits the progression of glioma through the miR-493-3p/PTEN axis, providing a developable biomarker and therapeutic target for glioma patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02001-y.
Collapse
Affiliation(s)
- Yi Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Simin Chen
- School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Gang Peng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yiwei Liao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuegong Fan
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zuping Zhang
- School of Basic Medicine, Central South University, Changsha, Hunan, China.
| | - Chenfu Shen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
29
|
Nanogels as a Versatile Drug Delivery System for Brain Cancer. Gels 2021; 7:gels7020063. [PMID: 34073626 PMCID: PMC8162335 DOI: 10.3390/gels7020063] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022] Open
Abstract
Chemotherapy and radiation remain as mainstays in the treatment of a variety of cancers globally, yet some therapies exhibit limited specificity and result in harsh side effects in patients. Brain tissue differs from other tissue due to restrictions from the blood-brain barrier, thus systemic treatment options are limited. The focus of this review is on nanogels as local and systemic drug delivery systems in the treatment of brain cancer. Nanogels are a unique local or systemic drug delivery system that is tailorable and consists of a three-dimensional polymeric network formed via physical or chemical assembly. For example, thermosensitive nanogels show promise in their ability to incorporate therapeutic agents in nano-structured matrices, be applied in the forms of sprays or sols to the area from which a tumor has been removed, form adhesive gels to fill the cavity and deliver treatment locally. Their usage does come with complications, such as handling, storage, chemical stability, and degradation. Despite these limitations, the current ongoing development of nanogels allows patient-centered treatment that can be considered as a promising tool for the management of brain cancer.
Collapse
|
30
|
Bolcaen J, Descamps B, Deblaere K, De Vos F, Boterberg T, Hallaert G, Van den Broecke C, Vanhove C, Goethals I. Assessment of the effect of therapy in a rat model of glioblastoma using [18F]FDG and [18F]FCho PET compared to contrast-enhanced MRI. PLoS One 2021; 16:e0248193. [PMID: 33667282 PMCID: PMC7935304 DOI: 10.1371/journal.pone.0248193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/19/2021] [Indexed: 12/31/2022] Open
Abstract
Objective We investigated the potential of [18F]fluorodeoxyglucose ([18F]FDG) and [18F]Fluoromethylcholine ([18F]FCho) PET, compared to contrast-enhanced MRI, for the early detection of treatment response in F98 glioblastoma (GB) rats. Methods When GB was confirmed on T2- and contrast-enhanced T1-weighted MRI, animals were randomized into a treatment group (n = 5) receiving MRI-guided 3D conformal arc micro-irradiation (20 Gy) with concomitant temozolomide, and a sham group (n = 5). Effect of treatment was evaluated by MRI and [18F]FDG PET on day 2, 5, 9 and 12 post-treatment and [18F]FCho PET on day 1, 6, 8 and 13 post-treatment. The metabolic tumor volume (MTV) was calculated using a semi-automatic thresholding method and the average tracer uptake within the MTV was converted to a standard uptake value (SUV). Results To detect treatment response, we found that for [18F]FDG PET (SUVmean x MTV) is superior to MTV only. Using (SUVmean x MTV), [18F]FDG PET detects treatment effect starting as soon as day 5 post-therapy, comparable to contrast-enhanced MRI. Importantly, [18F]FDG PET at delayed time intervals (240 min p.i.) was able to detect the treatment effect earlier, starting at day 2 post-irradiation. No significant differences were found at any time point for both the MTV and (SUVmean x MTV) of [18F]FCho PET. Conclusions Both MRI and particularly delayed [18F]FDG PET were able to detect early treatment responses in GB rats, whereas, in this study this was not possible using [18F]FCho PET. Further comparative studies should corroborate these results and should also include (different) amino acid PET tracers.
Collapse
Affiliation(s)
- Julie Bolcaen
- Radiation Biophysics Division, Department of Nuclear Medicine, National Research Foundation iThemba LABS, Faure, South Africa
- * E-mail:
| | - Benedicte Descamps
- Department of Electronics and Information Systems, IBiTech-MEDISIP, Ghent University, Ghent, Belgium
| | - Karel Deblaere
- Department of Radiology, Ghent University Hospital, Ghent, Belgium
| | - Filip De Vos
- Department of Radiopharmacy, Ghent University, Ghent, Belgium
| | - Tom Boterberg
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | - Giorgio Hallaert
- Department of Neurosurgery, Ghent University Hospital, Ghent, Belgium
| | | | - Christian Vanhove
- Department of Electronics and Information Systems, IBiTech-MEDISIP, Ghent University, Ghent, Belgium
| | - Ingeborg Goethals
- Department of Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
31
|
Simińska D, Korbecki J, Kojder K, Kapczuk P, Fabiańska M, Gutowska I, Machoy-Mokrzyńska A, Chlubek D, Baranowska-Bosiacka I. Epidemiology of Anthropometric Factors in Glioblastoma Multiforme-Literature Review. Brain Sci 2021; 11:116. [PMID: 33467126 PMCID: PMC7829953 DOI: 10.3390/brainsci11010116] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/23/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Although glioblastoma multiforme (GBM) is a widely researched cancer of the central nervous system, we still do not know its full pathophysiological mechanism and we still lack effective treatment methods as the current combination of surgery, radiotherapy, and chemotherapy does not bring about satisfactory results. The median survival time for GBM patients is only about 15 months. In this paper, we present the epidemiology of central nervous system (CNS) tumors and review the epidemiological data on GBM regarding gender, age, weight, height, and tumor location. The data indicate the possible influence of some anthropometric factors on the occurrence of GBM, especially in those who are male, elderly, overweight, and/or are taller. However, this review of single and small-size epidemiological studies should not be treated as definitive due to differences in the survey methods used. Detailed epidemiological registers could help identify the main at-risk groups which could then be used as homogenous study groups in research worldwide. Such research, with less distortion from various factors, could help identify the pathomechanisms that lead to the development of GBM.
Collapse
Affiliation(s)
- Donata Simińska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (D.S.); (J.K.); (P.K.); (D.C.)
| | - Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (D.S.); (J.K.); (P.K.); (D.C.)
| | - Klaudyna Kojder
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1 St., 71-281 Szczecin, Poland;
| | - Patrycja Kapczuk
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (D.S.); (J.K.); (P.K.); (D.C.)
| | - Marta Fabiańska
- Institute of Philosophy and Cognitive Science, University of Szczecin, Krakowska 71–79, 71-017 Szczecin, Poland;
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Anna Machoy-Mokrzyńska
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (D.S.); (J.K.); (P.K.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (D.S.); (J.K.); (P.K.); (D.C.)
| |
Collapse
|
32
|
Qu S, Chen Z, Liu B, Liu J, Wang H. N6-methyladenine-related genes affect biological behavior and the prognosis of glioma. Cancer Med 2020; 10:98-108. [PMID: 33264518 PMCID: PMC7826482 DOI: 10.1002/cam4.3574] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/12/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Background Although aberrant expression of N6‐methyladenine (m6A) methylation‐related genes contribute to tumorigenesis in many solid tumors, the prognostic value of the m6A‐related genes and their correlation with clinicopathological features in gliomas need advanced study. Methods The clinical and sequencing data of 288 patients with glioma were extracted from Chinese Glioma Genome Atlas database. By univariate and multivariable Cox regression analysis, the m6A‐related prognostic genes were identified, and their correlation with clinicopathological features was further analysis. A nomogram was constructed by R software and the performance of it was assessed by calibration and time‐dependent receiver operating characteristic curve. Results Nine m6A‐related genes were identified as independent prognostic factors, which were mostly enriched in RNA splicing, regulation of immune response and vesicle‐mediated transport. By expression value and regression coefficient of these genes, we constructed risk score of each patient, which was highly associated with clinicopathological features. Kaplan–Meier curve showed that the prognosis of patients with high‐risk scores was significantly worse than that with low‐risk scores (HR = 4.30, 95% CI = 3.16–5.85, p < 0.0001). A nomogram was constructed based on the nine m6A‐related genes signature and clinicopathological features with well‐fitted calibration curves (c‐index = 0.82), showing high specificity and sensitivity (area under the curve for 1‐, 3‐, and 5‐years survival probability = 0.874, 0.918, and 0.934). Conclusions A nine m6A‐related genes signature was identified in gliomas. The m6A‐related risk score is a novel prognostic factor for patients with glioma, and is associated with clinicopathological features. Moreover, the nomogram based on the nine m6A‐related genes signature and clinicopathological features had good efficacy in predicting the survival probability.
Collapse
Affiliation(s)
- Shanqiang Qu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhixin Chen
- Department of Emergency Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Liu
- Department of Orthopedic, Lishui People's Hospital (The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Jin Liu
- Department of Neurosurgery, Lishui People's Hospital (The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Huafu Wang
- Department of Clinical Pharmacy, Lishui People's Hospital (The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| |
Collapse
|
33
|
Zhao G, Jia J, Wang L, Zhang Y, Yang H, Lu Y, Yu R, Liu H, Zhu Y. Local Delivery of Minocycline and Vorinostat Targets the Tumor Microenvironment to Inhibit the Recurrence of Glioma. Onco Targets Ther 2020; 13:11397-11409. [PMID: 33192073 PMCID: PMC7655508 DOI: 10.2147/ott.s273527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/29/2020] [Indexed: 01/06/2023] Open
Abstract
Background Postoperative recurrence is the main reason for poor clinical outcomes in glioma patients, so preventing tumor recurrence is crucial in the management of gliomas. Methods In this study, the expression of matrix metalloproteinases (MMPs) in normal tissues was detected via RNA-seq analysis. Glioma cases from the public databases (The Cancer Genome Atlas (TCGA), the Chinese Glioma Genome Atlas (CGGA)) were included in this study. The hydrogel contains minocycline (Mino) and vorinostat (Vor) (G/Mino+Vor) was formed under 365 nm when the photoinitiator was added. High-performance liquid chromatography (HPLC) was used to assess the release of drugs in the G/Mino+Vor hydrogel. An MTT assay was used to explore the biosecurity of GelMA. Immunohistochemistry, ELISA, and TUNEL assays were used to demonstrate the antitumor effect of the G/Mino+Vor hydrogel. Results We successfully developed a G/Mino+Vor hydrogel. The experiments in vitro and in vivo confirmed the MMPs-responsive delivery of minocycline and vorinostat in hydrogel and the anti-glioma effect on an incomplete tumor operation model, which indicated that the G/Mino+Vor hydrogel effectively inhibited the recurrence of glioma after surgery. Conclusion In summary, the G/Mino+Vor hydrogel could continuously release drugs and improve the therapy effects against recurrent glioma.
Collapse
Affiliation(s)
- Gang Zhao
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Jun Jia
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Lansheng Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Yongkang Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Han Yang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Yang Lu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, People's Republic of China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Hongmei Liu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, People's Republic of China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China.,Department of Neurosurgery, The Third People's Hospital Affiliated of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Yufu Zhu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, People's Republic of China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| |
Collapse
|
34
|
Li D, Patel CB, Xu G, Iagaru A, Zhu Z, Zhang L, Cheng Z. Visualization of Diagnostic and Therapeutic Targets in Glioma With Molecular Imaging. Front Immunol 2020; 11:592389. [PMID: 33193439 PMCID: PMC7662122 DOI: 10.3389/fimmu.2020.592389] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/08/2020] [Indexed: 02/04/2023] Open
Abstract
Gliomas, particularly high-grade gliomas including glioblastoma (GBM), represent the most common and malignant types of primary brain cancer in adults, and carry a poor prognosis. GBM has been classified into distinct subgroups over the years based on cellular morphology, clinical characteristics, biomarkers, and neuroimaging findings. Based on these classifications, differences in therapeutic response and patient outcomes have been established. Recently, the identification of complex molecular signatures of GBM has led to the development of diverse targeted therapeutic regimens and translation into multiple clinical trials. Chemical-, peptide-, antibody-, and nanoparticle-based probes have been designed to target specific molecules in gliomas and then be visualized with multimodality molecular imaging (MI) techniques including positron emission tomography (PET), single-photon emission computed tomography (SPECT), near-infrared fluorescence (NIRF), bioluminescence imaging (BLI), and magnetic resonance imaging (MRI). Thus, multiple molecules of interest can now be noninvasively imaged to guide targeted therapies with a potential survival benefit. Here, we review developments in molecular-targeted diagnosis and therapy in glioma, MI of these targets, and MI monitoring of treatment response, with a focus on the biological mechanisms of these advanced molecular probes. MI probes have the potential to noninvasively demonstrate the pathophysiologic features of glioma for diagnostic, treatment, and response assessment considerations for various targeted therapies, including immunotherapy. However, most MI tracers are in preclinical development, with only integrin αVβ3 and isocitrate dehydrogenase (IDH)-mutant MI tracers having been translated to patients. Expanded international collaborations would accelerate translational research in the field of glioma MI.
Collapse
Affiliation(s)
- Deling Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
| | - Chirag B. Patel
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, United States
- Division of Neuro-Oncology, Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| | - Guofan Xu
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Andrei Iagaru
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Zhaohui Zhu
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
35
|
Silvaggi F, Leonardi M, Raggi A, Eigenmann M, Mariniello A, Silvani A, Lamperti E, Schiavolin S. Employment and Work Ability of Persons With Brain Tumors: A Systematic Review. Front Hum Neurosci 2020; 14:571191. [PMID: 33192403 PMCID: PMC7658191 DOI: 10.3389/fnhum.2020.571191] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/28/2020] [Indexed: 01/21/2023] Open
Abstract
Brain tumors (BT) are between the eight most common cancers among persons aged 40 years, with an average survival time of 10 years for patients affected by non-malignant brain tumor. Some patients continue to work, reporting difficulties in work-related activities, or even job loss. The purpose of the present study was to review the existing information about the ability people with BT to return to work and to identify factors associated with job loss. We performed a systematic review on SCOPUS and EMBASE for peer-reviewed papers that reported studies assessing work ability in patients with BT that were published in the period from January 2010 to January 2020. Out of 800 identified records, 7 articles were selected for analysis, in which 1,507 participants with BT were enrolled overall. Three main themes emerged: the impact of neuropsychological functioning on work productivity, the change of employment status for long-term survivors and issues related to return to work processes. Based on the results of selected studies, it can be concluded that the impact of BT on workforce participation is determined by depressive symptoms and cognitive deficits, as well as by high short-term mortality but also on environmental barriers. Vocational Rehabilitation programs should be implemented to help patients wishing to return to or maintain their current work, as much as possible.
Collapse
Affiliation(s)
- Fabiola Silvaggi
- Unità Operativa Complessa Neurologia, Salute Pubblica, Disabilità, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta, Milan, Italy
| | - Matilde Leonardi
- Unità Operativa Complessa Neurologia, Salute Pubblica, Disabilità, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alberto Raggi
- Unità Operativa Complessa Neurologia, Salute Pubblica, Disabilità, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta, Milan, Italy
| | - Michela Eigenmann
- Unità Operativa Complessa Neurologia, Salute Pubblica, Disabilità, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta, Milan, Italy
| | - Arianna Mariniello
- Unità Operativa Complessa Neurologia, Salute Pubblica, Disabilità, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta, Milan, Italy
| | - Antonio Silvani
- Unità Operativa Complessa Neurologia 2 – Neuro-Oncologia Clinica, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elena Lamperti
- Unità Operativa Complessa Neurologia 2 – Neuro-Oncologia Clinica, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta, Milan, Italy
| | - Silvia Schiavolin
- Unità Operativa Complessa Neurologia, Salute Pubblica, Disabilità, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
36
|
Ammer LM, Vollmann-Zwerenz A, Ruf V, Wetzel CH, Riemenschneider MJ, Albert NL, Beckhove P, Hau P. The Role of Translocator Protein TSPO in Hallmarks of Glioblastoma. Cancers (Basel) 2020; 12:cancers12102973. [PMID: 33066460 PMCID: PMC7602186 DOI: 10.3390/cancers12102973] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The translocator protein (TSPO) has been under extensive investigation as a specific marker in positron emission tomography (PET) to visualize brain lesions following injury or disease. In recent years, TSPO is increasingly appreciated as a potential novel therapeutic target in cancer. In Glioblastoma (GBM), the most malignant primary brain tumor, TSPO expression levels are strongly elevated and scientific evidence accumulates, hinting at a pivotal role of TSPO in tumorigenesis and glioma progression. The aim of this review is to summarize the current literature on TSPO with respect to its role both in diagnostics and especially with regard to the critical hallmarks of cancer postulated by Hanahan and Weinberg. Overall, our review contributes to a better understanding of the functional significance of TSPO in Glioblastoma and draws attention to TSPO as a potential modulator of treatment response and thus an important factor that may influence the clinical outcome of GBM. Abstract Glioblastoma (GBM) is the most fatal primary brain cancer in adults. Despite extensive treatment, tumors inevitably recur, leading to an average survival time shorter than 1.5 years. The 18 kDa translocator protein (TSPO) is abundantly expressed throughout the body including the central nervous system. The expression of TSPO increases in states of inflammation and brain injury due to microglia activation. Not least due to its location in the outer mitochondrial membrane, TSPO has been implicated with a broad spectrum of functions. These include the regulation of proliferation, apoptosis, migration, as well as mitochondrial functions such as mitochondrial respiration and oxidative stress regulation. TSPO is frequently overexpressed in GBM. Its expression level has been positively correlated to WHO grade, glioma cell proliferation, and poor prognosis of patients. Several lines of evidence indicate that TSPO plays a functional part in glioma hallmark features such as resistance to apoptosis, invasiveness, and proliferation. This review provides a critical overview of how TSPO could regulate several aspects of tumorigenesis in GBM, particularly in the context of the hallmarks of cancer proposed by Hanahan and Weinberg in 2011.
Collapse
Affiliation(s)
- Laura-Marie Ammer
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany; (L.-M.A.); (A.V.-Z.)
| | - Arabel Vollmann-Zwerenz
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany; (L.-M.A.); (A.V.-Z.)
| | - Viktoria Ruf
- Center for Neuropathology and Prion Research, Ludwig Maximilians University of Munich, 81377 Munich, Germany;
| | - Christian H. Wetzel
- Molecular Neurosciences, Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany;
| | | | - Nathalie L. Albert
- Department of Nuclear Medicine, Ludwig-Maximilians-University Munich, 81377 Munich, Germany;
| | - Philipp Beckhove
- Regensburg Center for Interventional Immunology (RCI) and Department Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Peter Hau
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany; (L.-M.A.); (A.V.-Z.)
- Correspondence:
| |
Collapse
|
37
|
Gao M, Huang S, Pan X, Liao X, Yang R, Liu J. Machine Learning-Based Radiomics Predicting Tumor Grades and Expression of Multiple Pathologic Biomarkers in Gliomas. Front Oncol 2020; 10:1676. [PMID: 33014836 PMCID: PMC7516282 DOI: 10.3389/fonc.2020.01676] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The grading and pathologic biomarkers of glioma has important guiding significance for the individual treatment. In clinical, it is often necessary to obtain tumor samples through invasive operation for pathological diagnosis. The present study aimed to use conventional machine learning algorithms to predict the tumor grades and pathologic biomarkers on magnetic resonance imaging (MRI) data. METHODS The present study retrospectively collected a dataset of 367 glioma patients, who had pathological reports and underwent MRI scans between October 2013 and March 2019. The radiomic features were extracted from enhanced MRI images, and three frequently-used machine-learning models of LC, Support Vector Machine (SVM), and Random Forests (RF) were built for four predictive tasks: (1) glioma grades, (2) Ki67 expression level, (3) GFAP expression level, and (4) S100 expression level in gliomas. Each sub dataset was split into training and testing sets at a ratio of 4:1. The training sets were used for training and tuning models. The testing sets were used for evaluating models. According to the area under curve (AUC) and accuracy, the best classifier was chosen for each task. RESULTS The RF algorithm was found to be stable and consistently performed better than Logistic Regression and SVM for all the tasks. The RF classifier on glioma grades achieved a predictive performance (AUC: 0.79, accuracy: 0.81). The RF classifier also achieved a predictive performance on the Ki67 expression (AUC: 0.85, accuracy: 0.80). The AUC and accuracy score for the GFAP classifier were 0.72 and 0.81. The AUC and accuracy score for S100 expression levels are 0.60 and 0.91. CONCLUSION The machine-learning based radiomics approach can provide a non-invasive method for the prediction of glioma grades and expression levels of multiple pathologic biomarkers, preoperatively, with favorable predictive accuracy and stability.
Collapse
Affiliation(s)
- Min Gao
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Siying Huang
- School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Xuequn Pan
- Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, MD, United States
| | - Xuan Liao
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Ru Yang
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jun Liu
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
38
|
Abdalla G, Hammam A, Anjari M, D'Arco DF, Bisdas DS. Glioma surveillance imaging: current strategies, shortcomings, challenges and outlook. BJR Open 2020; 2:20200009. [PMID: 33178973 PMCID: PMC7594888 DOI: 10.1259/bjro.20200009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 01/11/2023] Open
Abstract
Inaccurate assessment of surveillance imaging to assess response to glioma therapy may have life-changing consequences. Varied management plans including chemotherapy, radiotherapy or immunotherapy may all contribute to heterogeneous post-treatment appearances and the overlap between the morphological features of pseudoprogression, pseudoresponse and radiation necrosis can make their discrimination very challenging. Therefore, there has been a drive to develop objective strategies for post-treatment assessment of brain gliomas. This review discusses the most important of these approaches such as the RANO "Response Assessment in Neuro-Oncology", iRANO "Immunotherapy Response Assessment in Neuro-Oncology" and RAPNO "Response Assessment in Paediatric Neuro-Oncology" models. In addition to these systematic approaches for glioma surveillance, the relatively limited information provided by conventional imaging modalities alone has motivated the development of novel advanced magnetic resonance (MR) and metabolic imaging methods for further discrimination between viable tumour and treatment induced changes. Multiple clinical trials and meta-analyses have investigated the diagnostic performance of these novel techniques in the follow up of brain gliomas, including both single modality descriptive studies and comparative imaging assessment. In this manuscript, we review the literature and discuss the promises and pitfalls of frequently studied modalities in glioma surveillance imaging, including MR perfusion, MR diffusion and MR spectroscopy. In addition, we evaluate other promising MR techniques such as chemical exchange saturation transfer as well as fludeoxyglucose and non-FDG positron emission tomography techniques.
Collapse
Affiliation(s)
- Gehad Abdalla
- Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, London, UK
| | - Ahmed Hammam
- Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, London, UK
| | - Mustafa Anjari
- Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust, London, UK
| | - Dr. Felice D'Arco
- Department of Neuroradiology, Great Ormond Street Hospital for Children, London, UK
| | | |
Collapse
|
39
|
Peres de Oliveira A, Kazuo Issayama L, Betim Pavan IC, Riback Silva F, Diniz Melo-Hanchuk T, Moreira Simabuco F, Kobarg J. Checking NEKs: Overcoming a Bottleneck in Human Diseases. Molecules 2020; 25:molecules25081778. [PMID: 32294979 PMCID: PMC7221840 DOI: 10.3390/molecules25081778] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/02/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
In previous years, several kinases, such as phosphoinositide 3-kinase (PI3K), mammalian target of rapamycin (mTOR), and extracellular-signal-regulated kinase (ERK), have been linked to important human diseases, although some kinase families remain neglected in terms of research, hiding their relevance to therapeutic approaches. Here, a review regarding the NEK family is presented, shedding light on important information related to NEKs and human diseases. NEKs are a large group of homologous kinases with related functions and structures that participate in several cellular processes such as the cell cycle, cell division, cilia formation, and the DNA damage response. The review of the literature points to the pivotal participation of NEKs in important human diseases, like different types of cancer, diabetes, ciliopathies and central nervous system related and inflammatory-related diseases. The different known regulatory molecular mechanisms specific to each NEK are also presented, relating to their involvement in different diseases. In addition, important information about NEKs remains to be elucidated and is highlighted in this review, showing the need for other studies and research regarding this kinase family. Therefore, the NEK family represents an important group of kinases with potential applications in the therapy of human diseases.
Collapse
Affiliation(s)
- Andressa Peres de Oliveira
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
| | - Luidy Kazuo Issayama
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
| | - Isadora Carolina Betim Pavan
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
- Laboratório Multidisciplinar em Alimentos e Saúde, Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, São Paulo 13484-350, Brazil;
| | - Fernando Riback Silva
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
| | - Talita Diniz Melo-Hanchuk
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
| | - Fernando Moreira Simabuco
- Laboratório Multidisciplinar em Alimentos e Saúde, Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, São Paulo 13484-350, Brazil;
| | - Jörg Kobarg
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
- Correspondence: ; Tel.: +55-19-3521-8143
| |
Collapse
|
40
|
Li X, Wang D, Liao S, Guo L, Xiao X, Liu X, Xu Y, Hua J, Pillai JJ, Wu Y. Discrimination between Glioblastoma and Solitary Brain Metastasis: Comparison of Inflow-Based Vascular-Space-Occupancy and Dynamic Susceptibility Contrast MR Imaging. AJNR Am J Neuroradiol 2020; 41:583-590. [PMID: 32139428 DOI: 10.3174/ajnr.a6466] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 02/03/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Accurate differentiation between glioblastoma and solitary brain metastasis is of vital importance clinically. This study aimed to investigate the potential value of the inflow-based vascular-space-occupancy MR imaging technique, which has no need for an exogenous contrast agent, in differentiating glioblastoma and solitary brain metastasis and to compare it with DSC MR imaging. MATERIALS AND METHODS Twenty patients with glioblastoma and 22 patients with solitary brain metastasis underwent inflow-based vascular-space-occupancy and DSC MR imaging with a 3T clinical scanner. Two neuroradiologists independently measured the maximum inflow-based vascular-space-occupancy-derived arteriolar CBV and DSC-derived CBV values in intratumoral regions and peritumoral T2-hyperintense regions, which were normalized to the contralateral white matter (relative arteriolar CBV and relative CBV, inflow-based vascular-space-occupancy relative arteriolar CBV, and DSC-relative CBV). The intraclass correlation coefficient, Student t test, or Mann-Whitney U test and receiver operating characteristic analysis were performed. RESULTS All parameters of both regions had good or excellent interobserver reliability (0.74∼0.89). In peritumoral T2-hyperintese regions, DSC-relative CBV (P < .001), inflow-based vascular-space-occupancy arteriolar CBV (P = .001), and relative arteriolar CBV (P = .005) were significantly higher in glioblastoma than in solitary brain metastasis, with areas under the curve of 0.94, 0.83, and 0.72 for discrimination, respectively. In the intratumoral region, both inflow-based vascular-space-occupancy arteriolar CBV and relative arteriolar CBV were significantly higher in glioblastoma than in solitary brain metastasis (both P < .001), with areas under the curve of 0.91 and 0.90, respectively. Intratumoral DSC-relative CBV showed no significant difference (P = .616) between the 2 groups. CONCLUSIONS Inflow-based vascular-space-occupancy has the potential to discriminate glioblastoma from solitary brain metastasis, especially in the intratumoral region.
Collapse
Affiliation(s)
- X Li
- From the Department of Medical Imaging (X. Li, S.L., L.G., X.X., X. Liu, Y.X., Y.W.), Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - D Wang
- School of Biomedical Engineering (D.W.), Shanghai Jiao Tong University, Shanghai, P.R. China
| | - S Liao
- From the Department of Medical Imaging (X. Li, S.L., L.G., X.X., X. Liu, Y.X., Y.W.), Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
- Division of CT and MR, Radiology Department (S.L.), First Affiliated Hospital of Gannan Medical University, Ganzhou, P.R. China
| | - L Guo
- From the Department of Medical Imaging (X. Li, S.L., L.G., X.X., X. Liu, Y.X., Y.W.), Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - X Xiao
- From the Department of Medical Imaging (X. Li, S.L., L.G., X.X., X. Liu, Y.X., Y.W.), Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - X Liu
- From the Department of Medical Imaging (X. Li, S.L., L.G., X.X., X. Liu, Y.X., Y.W.), Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Y Xu
- From the Department of Medical Imaging (X. Li, S.L., L.G., X.X., X. Liu, Y.X., Y.W.), Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - J Hua
- Neurosection, Division of MR Research (J.H.)
- F.M. Kirby Research Center for Functional Brain Imaging (J.H.), Kennedy Krieger Institute, Baltimore, Maryland
| | - J J Pillai
- Division of Neuroradiology (J.P.); Russell H. Morgan Department of Radiology and Radiological Science and
- Department of Neurosurgery (J.P.), Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Y Wu
- From the Department of Medical Imaging (X. Li, S.L., L.G., X.X., X. Liu, Y.X., Y.W.), Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
41
|
Circular RNA SMO sponges miR-338-3p to promote the growth of glioma by enhancing the expression of SMO. Aging (Albany NY) 2019; 11:12345-12360. [PMID: 31895689 PMCID: PMC6949074 DOI: 10.18632/aging.102576] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 11/26/2019] [Indexed: 02/07/2023]
Abstract
Glioma is one of the most common tumors in the brain and complete cure still a challenge. The present research aimed to investigate the molecular mechanism of circular RNA SMO (circSMO742) in glioma, via targeting miR-338-3p and regulating SMO expression. QRT-PCR was utilized to examine the expression profiles of circSMO742 and microRNA-338-3p (miR-338-3p) in glioma. SMO protein in glioma was tested via western blot. RNA pulldown assay and dual luciferase reporter assays were used to explore the targeting correlation between RNAs. MTT assay, transwell assays and flow cytometry were used to investigate cell proliferation, migration and invasion, and apoptosis, respectively. Tumor xenograft was done to ascertain the effect of circSMO742 knocking down on tumor growth. CircSMO742 and SMO were highly expressed in glioma tissues, while miR-338-3p expression was reduced. CircSMO742 together with SMO could promote cells proliferation, migration and invasion while inhibit cells apoptosis, whereas miR-338-3p showed negative impacts on the cell activity. Knocking down of circSMO742 suppressed glioma growing in vivo. CircSMO742 promoted glioma growth by sponging miR-338-3p to regulate SMO expression. Our research revealed a new molecular mechanism of glioma growth and provide a fresh perspective on circRNAs in glioma progression.
Collapse
|
42
|
Integrin αvβ3-Specific Hydrocyanine for Cooperative Targeting of Glioblastoma with High Sensitivity and Specificity. Anal Chem 2019; 91:12587-12595. [PMID: 31496223 DOI: 10.1021/acs.analchem.9b03725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Glioblastoma is a highly malignant brain tumor with poor prognosis and survival rate because of a lack of effective diagnostic methods. Hydrocyanines are a type of reactive oxygen species (ROS)-responsive fluorescent probes, allowing for distinguishing tumor cells from normal cells based on their different intracellular levels of ROS. However, their diagnostic applications for glioblastoma have been limited because of the inability to discriminate between tumor cells and other tissues with high ROS production, leading to high false-positive diagnosis. Therefore, tumor-responsive and -specific hydrocyanines with cooperative targeting ability have great potential for improving the diagnosis and treatment of glioblastoma. Integrin αvβ3 plays a critical role in the progression and angiogenesis of glioblastoma and has become a promising target for diagnosing glioblastoma. Herein, we identify a specific peptide ligand for integrin αvβ3, Arg-Trp-(d-Arg)-Asn-Arg (RWrNR), which shows high binding affinity to human glioblastoma U87MG cells. Importantly, hydro-Cy5-RWrNR conjugation allowed for distinguishing U87MG cells from normal cells in response to intracellular ROS. Particularly, hydro-Cy5-RWrNR could not only selectively accumulate in orthotopic U87MG tumor with minimal background fluorescence but also effectively discriminate between glioblastoma and inflammatory tissues for the first time, leading to detection of glioblastoma in vivo with high target-to-background ratios and minimal background fluorescence. Therefore, hydro-Cy5-RWrNR is the first integrin αvβ3-specific hydrocyanine probe and has great potential in precise tumor diagnosis because of its cooperative targeting of integrin αvβ3 and ROS.
Collapse
|
43
|
Yin Y, Li B, Mou K, Khan MT, Kaushik AC, Wei D, Zhang YJ. Stoichioproteomics reveal oxygen usage bias, key proteins and pathways in glioma. BMC Med Genomics 2019; 12:125. [PMID: 31464612 PMCID: PMC6716898 DOI: 10.1186/s12920-019-0571-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/12/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The five-year survival rate and therapeutic effect of malignant glioma is low. Identification of key/associated proteins and pathways in glioma is necessary for developing effective diagnosis and targeted therapy of glioma. In addition, Glioma involves hypoxia-specific microenvironment, whether hypoxia restriction influences the stoichioproteomic characteristics of expressed proteins is unknown. METHODS In this study, we analyzed the most comprehensive immunohistochemical data from 12 human glioma samples and 4 normal cell types of cerebral cortex, identified differentially expressed proteins (DEPs), and researched the oxygen contents of DEPs, highly and lowly expressed proteins. Further we located key genes on human genome to determine their locations and enriched them for key functional pathways. RESULTS Our results showed that although no difference was detected on whole proteome, the average oxygen content of highly expressed proteins is 6.65% higher than that of lowly expressed proteins in glioma. A total of 1480 differentially expressed proteins were identified in glioma, including 226 up regulated proteins and 1254 down regulated proteins. The average oxygen content of up regulated proteins is 2.56% higher than that of down regulated proteins in glioma. The localization of differentially expressed genes on human genome showed that most genes were on chromosome 1 and least on Y. The up regulated proteins were significantly enriched in pathways including cell cycle, pathways in cancer, oocyte meiosis, DNA replication etc. Functional dissection of the up regulated proteins with high oxygen contents showed that 51.28% of the proteins were involved in cell cycle and cyclins. CONCLUSIONS Element signature of oxygen limitation could not be detected in glioma, just as what happened in plants and microbes. Unsaved use of oxygen by the highly expressed proteins and DEPs were adapted to the fast division of glioma cells. This study can help to reveal the molecular mechanism of glioma, and provide a new approach for studies of cancer-related biomacromolecules. In addition, this study lays a foundation for application of stoichioproteomics in precision medicine.
Collapse
Affiliation(s)
- Yongqin Yin
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Shapingba, University City, Chongqing, 401331 People’s Republic of China
| | - Bo Li
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Shapingba, University City, Chongqing, 401331 People’s Republic of China
| | - Kejie Mou
- Department of Neurosurgery, Bishan Hospital, Bishan, Chongqing, 402760 China
| | - Muhammad T. Khan
- Shanghai Jiao Tong University, Shanghai, China
- Capital University of Science & Technology, Islamabad, Pakistan
| | | | - Dongqing Wei
- Shanghai Jiao Tong University, Shanghai, China
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong 518055 China
| | - Yu-Juan Zhang
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Shapingba, University City, Chongqing, 401331 People’s Republic of China
| |
Collapse
|
44
|
Costabile JD, Thompson JA, Alaswad E, Ormond DR. Biopsy Confirmed Glioma Recurrence Predicted by Multi-Modal Neuroimaging Metrics. J Clin Med 2019; 8:E1287. [PMID: 31450732 PMCID: PMC6780506 DOI: 10.3390/jcm8091287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/13/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022] Open
Abstract
Histopathological verification is currently required to differentiate tumor recurrence from treatment effects related to adjuvant therapy in patients with glioma. To bypass the complications associated with collecting neural tissue samples, non-invasive classification methods are needed to alleviate the burden on patients while providing vital information to clinicians. However, uncertainty remains as to which tissue features on magnetic resonance imaging (MRI) are useful. The primary objective of this study was to quantitatively assess the reliability of combining MRI and diffusion tensor imaging metrics to discriminate between tumor recurrence and treatment effects in histopathologically identified biopsy samples. Additionally, this study investigates the noise adjuvant radiation therapy introduces when discriminating between tissue types. In a sample of 41 biopsy specimens, from a total of 10 patients, we derived region-of-interest samples from MRI data in the ipsilateral hemisphere that encompassed biopsies obtained during resective surgery. This study compares normalized intensity values across histopathology classifications and contralesional volumes reflected across the midline. Radiation makes noninvasive differentiation of abnormal-nontumor tissue to tumor recurrence much more difficult. This is because radiation exhibits opposing behavior on key MRI modalities: specifically, on post-contrast T1, FLAIR, and GFA. While radiation makes noninvasive differentiation of tumor recurrence more difficult, using a novel analysis of combined MRI metrics combined with clinical annotation and histopathological correlation, we observed that it is possible to successfully differentiate tumor tissue from other tissue types. Additional work will be required to expand upon these findings.
Collapse
Affiliation(s)
- Jamie D Costabile
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - John A Thompson
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Elsa Alaswad
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - D Ryan Ormond
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
45
|
Alinezhad A, Jafari F. Novel management of glioma by molecular therapies, a review article. Eur J Transl Myol 2019; 29:8209. [PMID: 31579472 PMCID: PMC6767997 DOI: 10.4081/ejtm.2019.8209] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 05/18/2019] [Indexed: 11/22/2022] Open
Abstract
The most frequent type of brain tumors is Glioma which commonly appears initially in the neuroglia in the central nervous system. They grow steadily and generally do not outspread to neighboring tissue of the brain. By applying dominant remedial regimens, the patients would have negligible survival rates. Despite the achieved advances in conventional glioma therapy, it proved that a proper medication for glioma is not easily reachable. The glioma penetration nature and accumulate resistance considerably limit the remedial options. Superior explanation of the glioma complex pathobiology and characterization of biological proteogenomic may finally open new approaches for the outlining of extra artificial and impressive combination regimens. This aim could be achieved by exclusively outfitting advanced techniques of neuroimaging, terminating synthesis of DNA via genes that activated via prodrugs, experimental technique of gene therapy via conciliating genes of gliomagenesis, targeting miRNA-mRNA activity of oncogenic, applying stem cell therapy for combining inhibitors of Hedgehog-Gli, adaptive transmission of chimeric immunoreceptors T cells, incorporate inhibitors of regulators of the immune system with conventional remedial modalities and additionally using tumor cell lysates as sources of antigen for efficient evacuation of particular stem cells of tumor via cytotoxic T lymphocytes. Consequently, in this study the authors trying to survey the latest progressions related to the molecular procedures connected with the formation of glial tumors in addition to the radiation, surgery and chemotherapy limitations. Additionally, the novel strategies of molecular remedies and their procedure for the prosperous treatment of glioma will be discussed.
Collapse
Affiliation(s)
- Amin Alinezhad
- Department of Clinical Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Jafari
- Information Technology Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
| |
Collapse
|
46
|
Sotoudeh H, Shafaat O, Bernstock JD, Brooks MD, Elsayed GA, Chen JA, Szerip P, Chagoya G, Gessler F, Sotoudeh E, Shafaat A, Friedman GK. Artificial Intelligence in the Management of Glioma: Era of Personalized Medicine. Front Oncol 2019; 9:768. [PMID: 31475111 PMCID: PMC6702305 DOI: 10.3389/fonc.2019.00768] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022] Open
Abstract
Purpose: Artificial intelligence (AI) has accelerated novel discoveries across multiple disciplines including medicine. Clinical medicine suffers from a lack of AI-based applications, potentially due to lack of awareness of AI methodology. Future collaboration between computer scientists and clinicians is critical to maximize the benefits of transformative technology in this field for patients. To illustrate, we describe AI-based advances in the diagnosis and management of gliomas, the most common primary central nervous system (CNS) malignancy. Methods: Presented is a succinct description of foundational concepts of AI approaches and their relevance to clinical medicine, geared toward clinicians without computer science backgrounds. We also review novel AI approaches in the diagnosis and management of glioma. Results: Novel AI approaches in gliomas have been developed to predict the grading and genomics from imaging, automate the diagnosis from histopathology, and provide insight into prognosis. Conclusion: Novel AI approaches offer acceptable performance in gliomas. Further investigation is necessary to improve the methodology and determine the full clinical utility of these novel approaches.
Collapse
Affiliation(s)
- Houman Sotoudeh
- Department of Neuroradiology, University of Alabama, Birmingham, AL, United States
| | - Omid Shafaat
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Joshua D Bernstock
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Michael David Brooks
- Department of Neuroradiology, University of Alabama, Birmingham, AL, United States
| | - Galal A Elsayed
- Department of Neurosurgery, University of Alabama, Birmingham, AL, United States
| | - Jason A Chen
- Medical Scientist Training Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Paul Szerip
- Senior Research Scientist, Uber AI Labs, San Francisco, CA, United States
| | - Gustavo Chagoya
- Department of Neurosurgery, University of Alabama, Birmingham, AL, United States
| | - Florian Gessler
- Department of Neurosurgery, Goethe University, Frankfurt, Germany
| | - Ehsan Sotoudeh
- Department of Surgery, Iranian Hospital, Dubai, United Arab Emirates
| | - Amir Shafaat
- Department of Mechanical Engineering, Arak University of Technology, Arak, Iran
| | - Gregory K Friedman
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama, Birmingham, AL, United States
| |
Collapse
|
47
|
Current and Future Trends on Diagnosis and Prognosis of Glioblastoma: From Molecular Biology to Proteomics. Cells 2019; 8:cells8080863. [PMID: 31405017 PMCID: PMC6721640 DOI: 10.3390/cells8080863] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma multiforme is the most aggressive malignant tumor of the central nervous system. Due to the absence of effective pharmacological and surgical treatments, the identification of early diagnostic and prognostic biomarkers is of key importance to improve the survival rate of patients and to develop new personalized treatments. On these bases, the aim of this review article is to summarize the current knowledge regarding the application of molecular biology and proteomics techniques for the identification of novel biomarkers through the analysis of different biological samples obtained from glioblastoma patients, including DNA, microRNAs, proteins, small molecules, circulating tumor cells, extracellular vesicles, etc. Both benefits and pitfalls of molecular biology and proteomics analyses are discussed, including the different mass spectrometry-based analytical techniques, highlighting how these investigation strategies are powerful tools to study the biology of glioblastoma, as well as to develop advanced methods for the management of this pathology.
Collapse
|
48
|
Novy Z, Stepankova J, Hola M, Flasarova D, Popper M, Petrik M. Preclinical Evaluation of Radiolabeled Peptides for PET Imaging of Glioblastoma Multiforme. Molecules 2019; 24:molecules24132496. [PMID: 31288488 PMCID: PMC6651196 DOI: 10.3390/molecules24132496] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/02/2019] [Accepted: 07/07/2019] [Indexed: 01/09/2023] Open
Abstract
In this study, we have compared four 68Ga-labeled peptides (three Arg-Gly-Asp (RGD) peptides and substance-P) with two 18F-tracers clinically approved for tumor imaging. We have studied in vitro and in vivo characteristics of selected radiolabeled tracers in a glioblastoma multiforme tumor model. The in vitro part of the study was mainly focused on the evaluation of radiotracers stability under various conditions. We have also determined in vivo stability of studied 68Ga-radiotracers by analysis of murine urine collected at various time points after injection. The in vivo behavior of tested 68Ga-peptides was evaluated through ex vivo biodistribution studies and PET/CT imaging. The obtained data were compared with clinically used 18F-tracers. 68Ga-RGD peptides showed better imaging properties compared to 18F-tracers, i.e., higher tumor/background ratios and no accumulation in non-target organs except for excretory organs.
Collapse
Affiliation(s)
- Zbynek Novy
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic.
| | - Jana Stepankova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic
| | - Michaela Hola
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic
| | - Dominika Flasarova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic
| | - Miroslav Popper
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic
| | - Milos Petrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic.
| |
Collapse
|
49
|
Yang Y, He MZ, Li T, Yang X. MRI combined with PET-CT of different tracers to improve the accuracy of glioma diagnosis: a systematic review and meta-analysis. Neurosurg Rev 2019; 42:185-195. [PMID: 28918564 PMCID: PMC6503074 DOI: 10.1007/s10143-017-0906-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 12/18/2022]
Abstract
Based on studies focusing on positron emission tomography (PET)-computed tomography (CT) combined with magnetic resonance imaging (MRI) in the diagnosis of glioma, we conducted a systematic review and meta-analysis evaluating the pros and cons and the accuracy of different examinations. PubMed and Cochrane Library were searched. The search was conducted until April 2017. Two reviewers independently conducted the literature search according to the criteria set initially. Based on the exclusion criteria, 15 articles are included in this study. Of all studies that used MRI examination, there are five involving 18F-fluorodeoxyglucose-PET, five involving 11C-methionine-PET, five involving 18F-fluoro-ethyl-tyrosine-PET, and three involving 18F-fluorothymidine-PET. Due to the limitations such as lack of data, small sample size, and unrepresentative studies, we use a non-quantitative methodology. MRI examination can provide the anatomy information of glioma more clearly. PET-CT examinations based on tumor metabolism using different tracers have more advantages in determining the degree of glioma malignancy and boundaries. However, information provided by PET-CT of different tracers is not the same. With respect to the novel hybrid MRI/PET examination equipment proposed in recent years, the combination of MRI and PET-CT can definitively improve the diagnostic accuracy of glioma.
Collapse
Affiliation(s)
- Yihan Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Mike Z He
- Columbia University Mailman School of Public Health, New York, NY, USA
| | - Tao Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Xuejun Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
50
|
Assessment of Residual Tumor After Resection of Glioma: A Magnetic Resonance Spectroscopic Study. ARCHIVES OF NEUROSCIENCE 2019. [DOI: 10.5812/ans.88159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|