1
|
Cui Y, Shao S, Zhang L, Wu J, Ma F, Cai X, Zhou K, Wang C. The effects of glucocorticoids on cardiac function of patients with Duchenne muscular dystrophy: benefit or not? Eur J Pediatr 2025; 184:313. [PMID: 40285799 PMCID: PMC12033201 DOI: 10.1007/s00431-025-06141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/16/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive, incurable X-linked neuromuscular disease caused by mutations in the dystrophin gene, resulting in functional dystrophin deficiency. Currently, cardiovascular complications are the leading cause of death in patients with DMD. Glucocorticoids are considered the gold standard treatment for children with DMD. Long-term glucocorticoid therapy can delay the loss of independent ambulation, improve lung function, and extend lifespan. However, the effects of glucocorticoids on cardiac function in patients with DMD remain controversial. This scoping review aims to summarize and analyze published clinical studies investigating the effects of glucocorticoids on cardiac function in children with DMD. A comprehensive search was conducted using PubMed, Web of Science, and Embase databases with relevant search terms. Abstracts and full texts of retrieved studies were reviewed. The studies were categorized into four themes: glucocorticoid use, Types of glucocorticoids, administration methods, and timing of glucocorticoid initiation. A total of 21 studies were included. Of these, 18 studies investigated the effects of glucocorticoids on cardiac function in patients with DMD, and the study of Koeks et al. reported both effective and non-effective outcomes of glucocorticoids on cardiac function stratified by age group, respectively. One study examined the impact of different glucocorticoid types, one study assessed the effects of glucocorticoid administration methods and one study evaluated the timing of glucocorticoid initiation. Among the 21 studies, 13 studies (n = 1814 patients) indicated that glucocorticoids could delay the progression of cardiac dysfunction in patients with DMD. Six studies (n = 6294 patients) reported no significant effects of glucocorticoids on cardiac function, while one study (n = 111 patients) suggested that early glucocorticoid therapy increased the risk of cardiomyopathy. CONCLUSION It has been suggested that corticoids may delay the deterioration of cardiac function in patients with DMD. However, limited data exist on the long-term effects of early glucocorticoid therapy on cardiac function, leading to inconclusive findings. Prospective longitudinal studies are needed to determine the optimal timing, dose regimen, and long-term impact of glucocorticoid therapy in patients with DMD. WHAT IS KNOWN • The effects of glucocorticoids on cardiac function in patients with DMD remain controversial. WHAT IS NEW • Glucocorticoids can delay the deterioration of cardiac function in DMD patients. However, prospective longitudinal studies are still needed to determine the optimal timing, dose regimen, and long-term effect of glucocorticoid therapy in DMD patients.
Collapse
Affiliation(s)
- Yaru Cui
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan, China
- West China Medical School of Sichuan University, Chengdu, Sichuan, China
| | - Shuran Shao
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan, China
- The Cardiac Development and Early Intervention Unit, Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, West ChinaSichuan, China
| | - Linling Zhang
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan, China
- The Cardiac Development and Early Intervention Unit, Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, West ChinaSichuan, China
| | - Jiangping Wu
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan, China
- West China Medical School of Sichuan University, Chengdu, Sichuan, China
| | - Fan Ma
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan, China
- The Cardiac Development and Early Intervention Unit, Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, West ChinaSichuan, China
| | - Xiaotang Cai
- Department of Rehabilitation Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan, China.
| | - Kaiyu Zhou
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan, China.
- The Cardiac Development and Early Intervention Unit, Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, West ChinaSichuan, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education Chengdu, Sichuan, China.
- Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Chuan Wang
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan, China.
- The Cardiac Development and Early Intervention Unit, Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, West ChinaSichuan, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education Chengdu, Sichuan, China.
- Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
K J, Santiago R. Quantitative Structure-Property Relationship Modeling with the Prediction of Physicochemical Properties of Some Novel Duchenne Muscular Dystrophy Drugs. ACS OMEGA 2025; 10:3640-3651. [PMID: 39926532 PMCID: PMC11800030 DOI: 10.1021/acsomega.4c08572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/25/2024] [Accepted: 12/18/2024] [Indexed: 02/11/2025]
Abstract
Duchenne muscular dystrophy is a critical, progressively worsening, and ultimately deadly illness characterized by the deterioration of skeletal muscles, respiratory failure, and heart disease. The pharmaceutical industries are persistently innovating drug design processes to address the rise of infections and effectively treat emerging syndromes or genetically based disorders with the help of quantitative structure-property relationship models. These models are mathematical tools that correlate molecular structures with their physicochemical properties through structural characteristics. Different models can be generated based on the various structural features of the compounds, and topological indices are one such significant structural feature generated from the molecular graph and are key tools used in these models. This study focuses on creating quantitative structure-property relationship models using degree-based topological indices, which are highly effective in quantitative structure-property relationship analysis to explore the diverse physicochemical properties of Duchenne muscular dystrophy drugs with the prediction of properties of a recently approved drug givinostat. Furthermore, the drug discovery and development activities can be accelerated using the developed models to forecast the possible productiveness of novel Duchenne muscular dystrophy treatment drugs.
Collapse
Affiliation(s)
- Jyothish K
- Department of Mathematics,
School of Advanced Sciences, Vellore Institute
of Technology, Vellore 632014, India
| | - Roy Santiago
- Department of Mathematics,
School of Advanced Sciences, Vellore Institute
of Technology, Vellore 632014, India
| |
Collapse
|
3
|
Hurley-Novatny A, Chang D, Murakami K, Wang L, Li H. Poor bone health in Duchenne muscular dystrophy: a multifactorial problem beyond corticosteroids and loss of ambulation. Front Endocrinol (Lausanne) 2024; 15:1398050. [PMID: 39669499 PMCID: PMC11634624 DOI: 10.3389/fendo.2024.1398050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/31/2024] [Indexed: 12/14/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive, fatal muscle wasting disease caused by X-linked mutations in the dystrophin gene. Alongside the characteristic muscle weakness, patients face a myriad of skeletal complications, including osteoporosis/osteopenia, high susceptibility to vertebral and long bone fractures, fat embolism post-fracture, scoliosis, and growth retardation. Those skeletal abnormalities significantly compromise quality of life and are sometimes life-threatening. These issues were traditionally attributed to loss of ambulation and chronic corticosteroid use, but recent investigations have unveiled a more intricate etiology. Factors such as vitamin D deficiency, hormonal imbalances, systemic inflammation, myokine release from dystrophic muscle, and vascular dysfunction are emerging as significant contributors as well. This expanded understanding illuminates the multifaceted pathogenesis underlying skeletal issues in DMD. Present therapeutic options are limited and lack specificity. Advancements in understanding the pathophysiology of bone complications in DMD will offer promising avenues for novel treatment modalities. In this review, we summarize the current understanding of factors contributing to bone problems in DMD and delineate contemporary and prospective multidisciplinary therapeutic approaches.
Collapse
Affiliation(s)
- Amelia Hurley-Novatny
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, United States
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, United States
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - David Chang
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Katsuhiro Murakami
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, United States
| | - Ling Wang
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, United States
| | - Hongshuai Li
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, United States
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
4
|
Hernandez-Torres F, Matias-Valiente L, Alzas-Gomez V, Aranega AE. Macrophages in the Context of Muscle Regeneration and Duchenne Muscular Dystrophy. Int J Mol Sci 2024; 25:10393. [PMID: 39408722 PMCID: PMC11477283 DOI: 10.3390/ijms251910393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Macrophages are essential to muscle regeneration, as they regulate inflammation, carry out phagocytosis, and facilitate tissue repair. These cells exhibit phenotypic switching from pro-inflammatory (M1) to anti-inflammatory (M2) states during muscle repair, influencing myoblast proliferation, differentiation, and myofiber formation. In Duchenne Muscular Dystrophy (DMD), asynchronous muscle injuries disrupt the normal temporal stages of regeneration, leading to fibrosis and failed regeneration. Altered macrophage activity is associated with DMD progression and physiopathology. Gaining insight into the intricate relationship between macrophages and muscle cells is crucial for creating effective therapies aimed at treating this muscle disorder. This review explores the dynamic functions of macrophages in muscle regeneration and their implications in DMD.
Collapse
Affiliation(s)
- Francisco Hernandez-Torres
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, 18016 Granada, Spain;
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain; (L.M.-V.); (V.A.-G.)
| | - Lidia Matias-Valiente
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain; (L.M.-V.); (V.A.-G.)
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, 23071 Jaen, Spain
| | - Virginia Alzas-Gomez
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain; (L.M.-V.); (V.A.-G.)
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, 23071 Jaen, Spain
| | - Amelia Eva Aranega
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain; (L.M.-V.); (V.A.-G.)
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, 23071 Jaen, Spain
| |
Collapse
|
5
|
Slick RA, Sutton J, Haberman M, O'Brien BS, Tinklenberg JA, Mardikar A, Prom MJ, Beatka M, Gartz M, Vanden Avond MA, Siebers E, Mack DL, Gonzalez JP, Ebert AD, Nagaraju K, Lawlor MW. High mobility group box 1 (HMGB1) is a potential disease biomarker in cell and mouse models of Duchenne muscular dystrophy. Biol Open 2024; 13:bio060542. [PMID: 39158383 PMCID: PMC11391821 DOI: 10.1242/bio.060542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle wasting disorder affecting 1:3500 male births and is associated with myofiber degeneration, regeneration, and inflammation. Glucocorticoid treatments have been the standard of care due to immunomodulatory/immunosuppressive properties but novel genetic approaches, including exon skipping and gene replacement therapy, are currently being developed. The identification of additional biomarkers to assess DMD-related inflammatory responses and the potential efficacy of these therapeutic approaches are thus of critical importance. The current study uses RNA sequencing of skeletal muscle from two mdx mouse models to identify high mobility group box 1 (HMGB1) as a candidate biomarker potentially contributing to DMD-related inflammation. HMGB1 protein content was increased in a human iPSC-derived skeletal myocyte model of DMD and microdystrophin treatment decreased HMGB1 back to control levels. In vivo, HMGB1 protein levels were increased in vehicle treated B10-mdx skeletal muscle compared to B10-WT and significantly decreased in B10-mdx animals treated with adeno-associated virus (AAV)-microdystrophin. However, HMGB1 protein levels were not increased in D2-mdx skeletal muscle compared to D2-WT, demonstrating a strain-specific difference in DMD-related immunopathology.
Collapse
Affiliation(s)
- Rebecca A. Slick
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Clinical and Translational Science Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jessica Sutton
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Diverge Translational Science Laboratory, Milwaukee, WI 53204, USA
| | - Margaret Haberman
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Diverge Translational Science Laboratory, Milwaukee, WI 53204, USA
| | - Benjamin S. O'Brien
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jennifer A. Tinklenberg
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Clinical and Translational Science Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Aashay Mardikar
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mariah J. Prom
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Diverge Translational Science Laboratory, Milwaukee, WI 53204, USA
| | - Margaret Beatka
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Diverge Translational Science Laboratory, Milwaukee, WI 53204, USA
| | - Melanie Gartz
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mark A. Vanden Avond
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Emily Siebers
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - David L. Mack
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98104, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98104, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98104, USA
| | | | - Allison D. Ebert
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kanneboyina Nagaraju
- AGADA BioSciences Inc., Halifax, Nova Scotia, B3H0A8, Canada
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, SUNY. Binghamton, NY 13902, USA
| | - Michael W. Lawlor
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Diverge Translational Science Laboratory, Milwaukee, WI 53204, USA
| |
Collapse
|
6
|
Gandhi S, Sweeney G, Perry CGR. Recent Advances in Pre-Clinical Development of Adiponectin Receptor Agonist Therapies for Duchenne Muscular Dystrophy. Biomedicines 2024; 12:1407. [PMID: 39061981 PMCID: PMC11274162 DOI: 10.3390/biomedicines12071407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by genetic mutations in the cytoskeletal-sarcolemmal anchor protein dystrophin. Repeated cycles of sarcolemmal tearing and repair lead to a variety of secondary cellular and physiological stressors that are thought to contribute to weakness, atrophy, and fibrosis. Collectively, these stressors can contribute to a pro-inflammatory milieu in locomotor, cardiac, and respiratory muscles. Given the many unwanted side effects that accompany current anti-inflammatory steroid-based approaches for treating DMD (e.g., glucocorticoids), there is a need to develop new therapies that address inflammation and other cellular dysfunctions. Adiponectin receptor (AdipoR) agonists, which stimulate AdipoR1 and R2 isoforms on various cell types, have emerged as therapeutic candidates for DMD due to their anti-inflammatory, anti-fibrotic, and pro-myogenic properties in pre-clinical human and rodent DMD models. Although these molecules represent a new direction for therapeutic intervention, the mechanisms through which they elicit their beneficial effects are not yet fully understood, and DMD-specific data is limited. The overarching goal of this review is to investigate how adiponectin signaling may ameliorate pathology associated with dystrophin deficiency through inflammatory-dependent and -independent mechanisms and to determine if current data supports their future progression to clinical trials.
Collapse
Affiliation(s)
- Shivam Gandhi
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada;
| | - Gary Sweeney
- Department of Biology and Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada;
| | - Christopher G. R. Perry
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada;
| |
Collapse
|
7
|
Jin M, Lin J, Li H, Li Z, Yang D, Wang Y, Yu Y, Shao Z, Chen L, Wang Z, Zhang Y, Zhang X, Wang N, Xu C, Yang H, Chen WJ, Li G. Correction of human nonsense mutation via adenine base editing for Duchenne muscular dystrophy treatment in mouse. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102165. [PMID: 38571746 PMCID: PMC10988125 DOI: 10.1016/j.omtn.2024.102165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/04/2024] [Indexed: 04/05/2024]
Abstract
Duchenne muscular dystrophy (DMD) is the most prevalent herediatry disease in men, characterized by dystrophin deficiency, progressive muscle wasting, cardiac insufficiency, and premature mortality, with no effective therapeutic options. Here, we investigated whether adenine base editing can correct pathological nonsense point mutations leading to premature stop codons in the dystrophin gene. We identified 27 causative nonsense mutations in our DMD patient cohort. Treatment with adenine base editor (ABE) could restore dystrophin expression by direct A-to-G editing of pathological nonsense mutations in cardiomyocytes generated from DMD patient-derived induced pluripotent stem cells. We also generated two humanized mouse models of DMD expressing mutation-bearing exons 23 or 30 of human dystrophin gene. Intramuscular administration of ABE, driven by ubiquitous or muscle-specific promoters could correct these nonsense mutations in vivo, albeit with higher efficiency in exon 30, restoring dystrophin expression in skeletal fibers of humanized DMD mice. Moreover, a single systemic delivery of ABE with human single guide RNA (sgRNA) could induce body-wide dystrophin expression and improve muscle function in rotarod tests of humanized DMD mice. These findings demonstrate that ABE with human sgRNAs can confer therapeutic alleviation of DMD in mice, providing a basis for development of adenine base editing therapies in monogenic diseases.
Collapse
Affiliation(s)
- Ming Jin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350004, China
| | - Jiajia Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350004, China
| | - Haisen Li
- HuidaGene Therapeutics Co., Ltd, Shanghai 200131, China
- School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Zhifang Li
- Lingang Laboratory, Shanghai 200031, China
| | - Dong Yang
- HuidaGene Therapeutics Co., Ltd, Shanghai 200131, China
| | - Yin Wang
- HuidaGene Therapeutics Co., Ltd, Shanghai 200131, China
| | - Yuyang Yu
- HuidaGene Therapeutics Co., Ltd, Shanghai 200131, China
| | - Zhurui Shao
- HuidaGene Therapeutics Co., Ltd, Shanghai 200131, China
| | - Long Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350004, China
| | - Zhiqiang Wang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350004, China
| | - Yu Zhang
- HuidaGene Therapeutics Co., Ltd, Shanghai 200131, China
| | - Xiumei Zhang
- HuidaGene Therapeutics Co., Ltd, Shanghai 200131, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350004, China
| | - Chunlong Xu
- Lingang Laboratory, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China
| | - Hui Yang
- HuidaGene Therapeutics Co., Ltd, Shanghai 200131, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China
| | - Wan-Jin Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350004, China
| | - Guoling Li
- HuidaGene Therapeutics Co., Ltd, Shanghai 200131, China
| |
Collapse
|
8
|
Shimizu Y, Hamada K, Guo T, Hasegawa C, Kuga Y, Takeda K, Yagi T, Koyama H, Takagi H, Aotani D, Kataoka H, Tanaka T. Role of PPARα in inflammatory response of C2C12 myotubes. Biochem Biophys Res Commun 2024; 694:149413. [PMID: 38141556 DOI: 10.1016/j.bbrc.2023.149413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
Recent studies have shown a role of inflammation in muscle atrophy and sarcopenia. However, no anti-inflammatory pharmacotherapy has been established for the treatment of sarcopenia. Here, we investigate the potential role of PPARα and its ligands on inflammatory response and PGC-1α gene expression in LPS-treated C2C12 myotubes. Knockdown of PPARα, whose expression was upregulated upon differentiation, augmented IL-6 or TNFα gene expression. Conversely, PPARα overexpression or its activation by ligands suppressed 2-h LPS-induced cytokine expression, with pemafibrate attenuating NF-κB or STAT3 phosphorylation. Of note, reduction of PGC-1α gene expression by LPS treatment for 24 hours was partially reversed by fenofibrate. Our data demonstrate a critical inhibitory role of PPARα in inflammatory response of C2C12 myotubes and suggest a future possibility of PPARα ligands as a candidate for anti-inflammatory therapy against sarcopenia.
Collapse
Affiliation(s)
- Yuki Shimizu
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 457-8601, Japan
| | - Keiko Hamada
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 457-8601, Japan
| | - Tingting Guo
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 457-8601, Japan
| | - Chie Hasegawa
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 457-8601, Japan
| | - Yusuke Kuga
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 457-8601, Japan
| | - Katsushi Takeda
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 457-8601, Japan
| | - Takashi Yagi
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 457-8601, Japan
| | - Hiroyuki Koyama
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 457-8601, Japan
| | - Hiroshi Takagi
- Department of Endocrinology and Diabetology, Nagoya City University East Medical Center, 1-2-23 Wakamizu, Chikusa-ku, Nagoya, 464-8547, Japan
| | - Daisuke Aotani
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 457-8601, Japan
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 457-8601, Japan
| | - Tomohiro Tanaka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 457-8601, Japan.
| |
Collapse
|
9
|
De Paepe B. What Nutraceuticals Can Do for Duchenne Muscular Dystrophy: Lessons Learned from Amino Acid Supplementation in Mouse Models. Biomedicines 2023; 11:2033. [PMID: 37509672 PMCID: PMC10377666 DOI: 10.3390/biomedicines11072033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Duchenne muscular dystrophy (DMD), the severest form of muscular dystrophy, is characterized by progressive muscle weakness with fatal outcomes most often before the fourth decade of life. Despite the recent addition of molecular treatments, DMD remains a disease without a cure, and the need persists for the development of supportive therapies aiming to help improve patients' quality of life. This review focuses on the therapeutical potential of amino acid and derivative supplements, summarizing results obtained in preclinical studies in murine disease models. Several promising compounds have emerged, with L-arginine, N-acetylcysteine, and taurine featuring among the most intensively investigated. Their beneficial effects include reduced inflammatory, oxidative, fibrotic, and necrotic damage to skeletal muscle tissues. Improvement of muscle strength and endurance have been reported; however, mild side effects have also surfaced. More explorative, placebo-controlled and long-term clinical trials would need to be conducted in order to identify amino acid formulae that are safe and of true benefit to DMD patients.
Collapse
Affiliation(s)
- Boel De Paepe
- Department of Neurology, Ghent University & Neuromuscular Reference Center, Ghent University Hospital, Route 830, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| |
Collapse
|
10
|
Dowling P, Gargan S, Zweyer M, Swandulla D, Ohlendieck K. Extracellular Matrix Proteomics: The mdx-4cv Mouse Diaphragm as a Surrogate for Studying Myofibrosis in Dystrophinopathy. Biomolecules 2023; 13:1108. [PMID: 37509144 PMCID: PMC10377647 DOI: 10.3390/biom13071108] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The progressive degeneration of the skeletal musculature in Duchenne muscular dystrophy is accompanied by reactive myofibrosis, fat substitution, and chronic inflammation. Fibrotic changes and reduced tissue elasticity correlate with the loss in motor function in this X-chromosomal disorder. Thus, although dystrophinopathies are due to primary abnormalities in the DMD gene causing the almost-complete absence of the cytoskeletal Dp427-M isoform of dystrophin in voluntary muscles, the excessive accumulation of extracellular matrix proteins presents a key histopathological hallmark of muscular dystrophy. Animal model research has been instrumental in the characterization of dystrophic muscles and has contributed to a better understanding of the complex pathogenesis of dystrophinopathies, the discovery of new disease biomarkers, and the testing of novel therapeutic strategies. In this article, we review how mass-spectrometry-based proteomics can be used to study changes in key components of the endomysium, perimysium, and epimysium, such as collagens, proteoglycans, matricellular proteins, and adhesion receptors. The mdx-4cv mouse diaphragm displays severe myofibrosis, making it an ideal model system for large-scale surveys of systematic alterations in the matrisome of dystrophic fibers. Novel biomarkers of myofibrosis can now be tested for their appropriateness in the preclinical and clinical setting as diagnostic, pharmacodynamic, prognostic, and/or therapeutic monitoring indicators.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Margit Zweyer
- Department of Neonatology and Paediatric Intensive Care, Children's Hospital, German Center for Neurodegenerative Diseases, University of Bonn, D53127 Bonn, Germany
| | - Dieter Swandulla
- Institute of Physiology, Medical Faculty, University of Bonn, D53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
11
|
Hahn D, Quick JD, Thompson BR, Crabtree A, Hackel BJ, Bates FS, Metzger JM. Rapid restitution of contractile dysfunction by synthetic copolymers in dystrophin-deficient single live skeletal muscle fibers. Skelet Muscle 2023; 13:9. [PMID: 37208786 PMCID: PMC10197332 DOI: 10.1186/s13395-023-00318-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/05/2023] [Indexed: 05/21/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by the lack of dystrophin, a cytoskeletal protein essential for the preservation of the structural integrity of the muscle cell membrane. DMD patients develop severe skeletal muscle weakness, degeneration, and early death. We tested here amphiphilic synthetic membrane stabilizers in mdx skeletal muscle fibers (flexor digitorum brevis; FDB) to determine their effectiveness in restoring contractile function in dystrophin-deficient live skeletal muscle fibers. After isolating FDB fibers via enzymatic digestion and trituration from thirty-three adult male mice (9 C57BL10, 24 mdx), these were plated on a laminin-coated coverslip and treated with poloxamer 188 (P188; PEO75-PPO30-PEO75; 8400 g/mol), architecturally inverted triblock (PPO15-PEO200-PPO15, 10,700 g/mol), and diblock (PEO75-PPO16-C4, 4200 g/mol) copolymers. We assessed the twitch kinetics of sarcomere length (SL) and intracellular Ca2+ transient by Fura-2AM by field stimulation (25 V, 0.2 Hz, 25 °C). Twitch contraction peak SL shortening of mdx FDB fibers was markedly depressed to 30% of the dystrophin-replete control FDB fibers from C57BL10 (P < 0.001). Compared to vehicle-treated mdx FDB fibers, copolymer treatment robustly and rapidly restored the twitch peak SL shortening (all P < 0.05) by P188 (15 μM = + 110%, 150 μM = + 220%), diblock (15 μM = + 50%, 150 μM = + 50%), and inverted triblock copolymer (15 μM = + 180%, 150 μM = + 90%). Twitch peak Ca2+ transient from mdx FDB fibers was also depressed compared to C57BL10 FDB fibers (P < 0.001). P188 and inverted triblock copolymer treatment of mdx FDB fibers increased the twitch peak Ca2+ transient (P < 0.001). This study shows synthetic block copolymers with varied architectures can rapidly and highly effectively enhance contractile function in live dystrophin-deficient skeletal muscle fibers.
Collapse
Affiliation(s)
- Dongwoo Hahn
- Department of Integrative Biology & Physiology, Medical School, University of Minnesota, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Joseph D Quick
- Department of Integrative Biology & Physiology, Medical School, University of Minnesota, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Brian R Thompson
- Department of Integrative Biology & Physiology, Medical School, University of Minnesota, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Adelyn Crabtree
- Chemical Engineering & Materials Science, University of Minnesota, 151 Amundson Hall, 421 Washington Avenue SE, Minneapolis, MN, 55455, USA
| | - Benjamin J Hackel
- Chemical Engineering & Materials Science, University of Minnesota, 151 Amundson Hall, 421 Washington Avenue SE, Minneapolis, MN, 55455, USA
| | - Frank S Bates
- Chemical Engineering & Materials Science, University of Minnesota, 151 Amundson Hall, 421 Washington Avenue SE, Minneapolis, MN, 55455, USA
| | - Joseph M Metzger
- Department of Integrative Biology & Physiology, Medical School, University of Minnesota, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
12
|
Ishizuka T, Komaki H, Asahina Y, Nakamura H, Motohashi N, Takeshita E, Shimizu‐Motohashi Y, Ishiyama A, Yonee C, Maruyama S, Hida E, Aoki Y. Systemic administration of the antisense oligonucleotide
NS
‐089/
NCNP
‐02 for skipping of exon 44 in patients with Duchenne muscular dystrophy: Study protocol for a phase I/
II
clinical trial. Neuropsychopharmacol Rep 2023. [DOI: 10.1002/npr2.12335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Affiliation(s)
- Takami Ishizuka
- Clinical Research and Education Promotion Division National Center Hospital, National Center of Neurology and Psychiatry Tokyo Japan
| | - Hirofumi Komaki
- Clinical Research and Education Promotion Division National Center Hospital, National Center of Neurology and Psychiatry Tokyo Japan
- Department of Child Neurology National Center Hospital, National Center of Neurology and Psychiatry Tokyo Japan
| | - Yasuko Asahina
- Clinical Research and Education Promotion Division National Center Hospital, National Center of Neurology and Psychiatry Tokyo Japan
| | - Harumasa Nakamura
- Clinical Research and Education Promotion Division National Center Hospital, National Center of Neurology and Psychiatry Tokyo Japan
| | - Norio Motohashi
- Department of Molecular Therapy National Institute of Neuroscience, National Center of Neurology and Psychiatry Tokyo Japan
| | - Eri Takeshita
- Department of Child Neurology National Center Hospital, National Center of Neurology and Psychiatry Tokyo Japan
| | - Yuko Shimizu‐Motohashi
- Department of Child Neurology National Center Hospital, National Center of Neurology and Psychiatry Tokyo Japan
| | - Akihiko Ishiyama
- Department of Child Neurology National Center Hospital, National Center of Neurology and Psychiatry Tokyo Japan
| | - Chihiro Yonee
- Department of Pediatrics, Graduate School of Medical and Dental Sciences Kagoshima University Kagoshima City Kagoshima Japan
| | - Shinsuke Maruyama
- Department of Pediatrics, Graduate School of Medical and Dental Sciences Kagoshima University Kagoshima City Kagoshima Japan
| | - Eisuke Hida
- Department of Biostatistics and Data Science, Graduate School of Medicine Osaka University Osaka Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy National Institute of Neuroscience, National Center of Neurology and Psychiatry Tokyo Japan
| |
Collapse
|
13
|
Grounds MD, Lloyd EM. Considering the Promise of Vamorolone for Treating Duchenne Muscular Dystrophy. J Neuromuscul Dis 2023; 10:1013-1030. [PMID: 37927274 PMCID: PMC10657680 DOI: 10.3233/jnd-230161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 11/07/2023]
Abstract
This commentary provides an independent consideration of data related to the drug vamorolone (VBP15) as an alternative steroid proposed for treatment of Duchenne muscular dystrophy (DMD). Glucocorticoids such as prednisone and deflazacort have powerful anti-inflammatory benefits and are the standard of care for DMD, but their long-term use can result in severe adverse side effects; thus, vamorolone was designed as a unique dissociative steroidal anti-inflammatory drug, to retain efficacy and minimise these adverse effects. Extensive clinical trials (ongoing) have investigated the use of vamorolone for DMD, with two trials also for limb-girdle muscular dystrophies including dysferlinopathy (current), plus a variety of pre-clinical trials published. Vamorolone looks very promising, with similar efficacy and some reduced adverse effects (e.g., related to height) compared with other glucocorticoids, specifically prednisone/prednisolone, although it has not yet been directly compared with deflazacort. Of particular interest to clarify is the optimal clinical dose and other aspects of vamorolone that are proposed to provide additional benefits for membranes of dystrophic muscle: to stabilise and protect the sarcolemma from damage and enhance repair. The use of vamorolone (and other glucocorticoids) needs to be evaluated in terms of overall long-term efficacy and cost, and also in comparison with many candidate non-steroidal drugs with anti-inflammatory and other benefits for DMD.
Collapse
Affiliation(s)
- Miranda D. Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Erin M. Lloyd
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
14
|
Fujikura Y, Yamanouchi K, Sugihara H, Hatakeyama M, Abe T, Ato S, Oishi K. Ketogenic diet containing medium-chain triglyceride ameliorates transcriptome disruption in skeletal muscles of rat models of duchenne muscular dystrophy. Biochem Biophys Rep 2022; 32:101378. [PMID: 36386439 PMCID: PMC9661647 DOI: 10.1016/j.bbrep.2022.101378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/25/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a myopathy characterized by progressive muscle weakness caused by a mutation in the dystrophin gene on the X chromosome. We recently showed that a medium-chain triglyceride-containing ketogenic diet (MCTKD) improves skeletal muscle myopathy in a CRISPR/Cas9 gene-edited rat model of DMD. We examined the effects of the MCTKD on transcription profiles in skeletal muscles of the model rats to assess the underlying mechanism of the MCTKD-induced improvement in DMD. DMD rats were fed MCTKD or normal diet (ND) from weaning to 9 months, and wild-type rats were fed with the ND, then tibialis anterior muscles were sampled for mRNA-seq analysis. Pearson correlation heatmaps revealed a one-node transition in the expression profile between DMD and wild-type rats. A total of 10,440, 11,555 and 11,348 genes were expressed in the skeletal muscles of wild-type and ND-fed DMD rats the MCTKD-fed DMD rats, respectively. The MCTKD reduced the number of DMD-specific mRNAs from 1624 to 1350 and increased the number of mRNAs in common with wild-type rats from 9931 to 9998. Among 2660 genes were differentially expressed in response to MCTKD intake, the mRNA expression of 1411 and 1249 of them was respectively increased and decreased. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses suggested that the MCTKD significantly suppressed the mRNA expression of genes associated with extracellular matrix organization and inflammation. This suggestion was consistent with our previous findings that the MCTKD significantly suppressed fibrosis and inflammation in DMD rats. In contrast, the MCTKD significantly increased the mRNA expression of genes associated with oxidative phosphorylation and ATP production pathways, suggesting altered energy metabolism. The decreased and increased mRNA expression of Sln and Atp2a1 respectively suggested that Sarco/endoplasmic reticulum Ca2+-ATPase activation is involved in the MCTKD-induced improvement of skeletal muscle myopathy in DMD rats. This is the first report to examine transcription profiles in the skeletal muscle of CRISPR/Cas9 gene-edited DMD model rats and the effect of MCTKD feeding on it. We evaluated the effects of an MCTKD on the global transcriptome of DMD rats. DMD rats are suitable models of human DMD for assessing transcriptome changes. MCTKD suppressed fibrosis and inflammatory pathways at the transcriptional level. MCTKD upregulated oxidative phosphorylation and ATP production pathways. MCTKD might activate SERCA at the transcriptional level.
Collapse
Affiliation(s)
- Yuri Fujikura
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan
| | - Keitaro Yamanouchi
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
- Corresponding author. Laboratory of Veterinary Physiology, Graduate School of Agricultural & Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Hidetoshi Sugihara
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | | | - Tomoki Abe
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan
| | - Satoru Ato
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Katsutaka Oishi
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan
- Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, Chiba, Noda, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Kashiwa, Japan
- School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Corresponding author. Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| |
Collapse
|
15
|
Guo Z, Geng M, Huang Y, Han G, Jing R, Lin C, Zhang X, Zhang M, Fan G, Wang F, Yin H. Upregulation of Wilms' Tumor 1 in epicardial cells increases cardiac fibrosis in dystrophic mice. Cell Death Differ 2022; 29:1928-1940. [PMID: 35306537 PMCID: PMC9525265 DOI: 10.1038/s41418-022-00979-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/09/2022] Open
Abstract
Cardiomyopathy is a primary cause of mortality in Duchenne muscular dystrophy (DMD) patients. Mechanistic understanding of cardiac fibrosis holds the key to effective DMD cardiomyopathy treatments. Here we demonstrate that upregulation of Wilms' tumor 1 (Wt1) gene in epicardial cells increased cardiac fibrosis and impaired cardiac function in 8-month old mdx mice lacking the RNA component of telomerase (mdx/mTR-/-). Levels of phosphorylated IƙBα and p65 significantly rose in mdx/mTR-/- dystrophic hearts and Wt1 expression declined in the epicardium of mdx/mTR-/- mice when nuclear factor κB (NF-κB) and inflammation were inhibited by metformin. This demonstrates that Wt1 expression in epicardial cells is dependent on inflammation-triggered NF-κB activation. Metformin effectively prevented cardiac fibrosis and improved cardiac function in mdx/mTR-/- mice. Our study demonstrates that upregulation of Wt1 in epicardial cells contributes to fibrosis in dystrophic hearts and metformin-mediated inhibition of NF-κB can ameliorate the pathology, and thus showing clinical potential for dystrophic cardiomyopathy. Translational Perspective: Cardiomyopathy is a major cause of mortality in Duchenne muscular dystrophy (DMD) patients. Promising exon-skipping treatments are moving to the clinic, but getting sufficient dystrophin expression in the heart has proven challenging. The present study shows that Wilms' Tumor 1 (Wt1) upregulation in epicardial cells is primarily responsible for cardiac fibrosis and dysfunction of dystrophic mice and likely of DMD patients. Metformin effectively prevents cardiac fibrosis and improves cardiac function in dystrophic mice, thus representing a treatment option for DMD patients on top of existing therapies.
Collapse
Affiliation(s)
- Zhenglong Guo
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases & School of Medical Technology & Department of Cell Biology, Tianjin Medical University, Guangdong Road, Tianjin, 300203, China
- Medical Genetic Institute of Henan Province, Henan Provincial Key laboratory of Genetic Diseases and Functional Genomics, National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Mengyuan Geng
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases & School of Medical Technology & Department of Cell Biology, Tianjin Medical University, Guangdong Road, Tianjin, 300203, China
| | - Yuting Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Changling Road, Xiqing District, Tianjin, 300193, China
| | - Gang Han
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases & School of Medical Technology & Department of Cell Biology, Tianjin Medical University, Guangdong Road, Tianjin, 300203, China
| | - Renwei Jing
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases & School of Medical Technology & Department of Cell Biology, Tianjin Medical University, Guangdong Road, Tianjin, 300203, China
| | - Caorui Lin
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases & School of Medical Technology & Department of Cell Biology, Tianjin Medical University, Guangdong Road, Tianjin, 300203, China
| | - Xiaoning Zhang
- Department of Genetics, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Miaomiao Zhang
- Department of Genetics, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Changling Road, Xiqing District, Tianjin, 300193, China
| | - Feng Wang
- Department of Genetics, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - HaiFang Yin
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases & School of Medical Technology & Department of Cell Biology, Tianjin Medical University, Guangdong Road, Tianjin, 300203, China.
- Department of Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
16
|
CRISPR-Based Therapeutic Gene Editing for Duchenne Muscular Dystrophy: Advances, Challenges and Perspectives. Cells 2022; 11:cells11192964. [PMID: 36230926 PMCID: PMC9564082 DOI: 10.3390/cells11192964] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/19/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe neuromuscular disease arising from loss-of-function mutations in the dystrophin gene and characterized by progressive muscle degeneration, respiratory insufficiency, cardiac failure, and premature death by the age of thirty. Albeit DMD is one of the most common types of fatal genetic diseases, there is no curative treatment for this devastating disorder. In recent years, gene editing via the clustered regularly interspaced short palindromic repeats (CRISPR) system has paved a new path toward correcting pathological mutations at the genetic source, thus enabling the permanent restoration of dystrophin expression and function throughout the musculature. To date, the therapeutic benefits of CRISPR genome-editing systems have been successfully demonstrated in human cells, rodents, canines, and piglets with diverse DMD mutations. Nevertheless, there remain some nonignorable challenges to be solved before the clinical application of CRISPR-based gene therapy. Herein, we provide an overview of therapeutic CRISPR genome-editing systems, summarize recent advancements in their applications in DMD contexts, and discuss several potential obstacles lying ahead of clinical translation.
Collapse
|
17
|
Deng J, Zhang J, Shi K, Liu Z. Drug development progress in duchenne muscular dystrophy. Front Pharmacol 2022; 13:950651. [PMID: 35935842 PMCID: PMC9353054 DOI: 10.3389/fphar.2022.950651] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/28/2022] [Indexed: 12/22/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe, progressive, and incurable X-linked disorder caused by mutations in the dystrophin gene. Patients with DMD have an absence of functional dystrophin protein, which results in chronic damage of muscle fibers during contraction, thus leading to deterioration of muscle quality and loss of muscle mass over time. Although there is currently no cure for DMD, improvements in treatment care and management could delay disease progression and improve quality of life, thereby prolonging life expectancy for these patients. Furthermore, active research efforts are ongoing to develop therapeutic strategies that target dystrophin deficiency, such as gene replacement therapies, exon skipping, and readthrough therapy, as well as strategies that target secondary pathology of DMD, such as novel anti-inflammatory compounds, myostatin inhibitors, and cardioprotective compounds. Furthermore, longitudinal modeling approaches have been used to characterize the progression of MRI and functional endpoints for predictive purposes to inform Go/No Go decisions in drug development. This review showcases approved drugs or drug candidates along their development paths and also provides information on primary endpoints and enrollment size of Ph2/3 and Ph3 trials in the DMD space.
Collapse
Affiliation(s)
- Jiexin Deng
- School of Nursing and Health, Henan University, Kaifeng, China
- *Correspondence: Jiexin Deng, ; Zhigang Liu,
| | - Junshi Zhang
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Keli Shi
- School of Medicine, Henan University, Kaifeng, China
| | - Zhigang Liu
- Department of Orthopedics, First Affiliated Hospital of Henan University, Kaifeng, China
- *Correspondence: Jiexin Deng, ; Zhigang Liu,
| |
Collapse
|
18
|
Yang S, Yang J, Zhao H, Deng R, Fan H, Zhang J, Yang Z, Zeng H, Kuang B, Shao L. The Protective Effects of γ-Tocotrienol on Muscle Stem Cells Through Inhibiting Reactive Oxidative Stress Production. Front Cell Dev Biol 2022; 10:820520. [PMID: 35372342 PMCID: PMC8965065 DOI: 10.3389/fcell.2022.820520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/01/2022] [Indexed: 11/25/2022] Open
Abstract
Pseudotrophic muscular dystrophy is a common clinical skeletal muscle necrotic disease, among which Duchenne muscular dystrophy (DMD) is the predominant. For such diseases, there is no clinically effective treatment, which is only symptomatic or palliative treatment. Oxidative stress and chronic inflammation are common pathological features of DMD. In recent years, it has been found that the pathophysiological changes of skeletal muscle in DMD mice are related to muscle stem cell failure. In the present study, we established a DMD mice model and provided tocotrienol (γ-tocotrienol, GT3), an antioxidant compound, to explore the relationship between the physiological state of muscle stem cells and oxidative stress. The results showed that the application of GT3 can reduce ROS production and cellular proliferation in the muscle stem cells of DMD mice, which is beneficial to promote the recovery of muscle stem cell function in DMD mice. GT3 treatment improved the differentiation ability of muscle stem cells in DMD mice with increasing numbers of MyoD+ cells. GT3 application significantly decreased percentages of CD45+ cells and PDGFRα+ fibro-adipogenic progenitors in the tibialis anterior of DMD mice, indicating that the increased inflammation and fibro-adipogenic progenitors were attenuated in GT3-treated DMD mice. These data suggest that increased ROS production causes dysfunctional muscle stem cell in DMD mice, which might provide a new avenue to treat DMD patients in the clinic.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
| | - Juan Yang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
| | - Huiwen Zhao
- Department of Biological Genetics, School of Basic Medicine, Nanchang University, Nanchang, China
| | - Rong Deng
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
| | - Hancheng Fan
- Department of Histology and Embryology, School of Basic Medicine, Nanchang University, Nanchang, China
| | - Jinfu Zhang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
| | - Zihao Yang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
| | - Huihong Zeng
- Department of Histology and Embryology, School of Basic Medicine, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, Nanchang, China
| | - Bohai Kuang
- Department of Biological Genetics, School of Basic Medicine, Nanchang University, Nanchang, China
| | - Lijian Shao
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, Nanchang, China
- *Correspondence: Lijian Shao,
| |
Collapse
|
19
|
Kaziród K, Myszka M, Dulak J, Łoboda A. Hydrogen sulfide as a therapeutic option for the treatment of Duchenne muscular dystrophy and other muscle-related diseases. Cell Mol Life Sci 2022; 79:608. [PMID: 36441348 PMCID: PMC9705465 DOI: 10.1007/s00018-022-04636-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/25/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
Hydrogen sulfide (H2S) has been known for years as a poisoning gas and until recently evoked mostly negative associations. However, the discovery of its gasotransmitter functions suggested its contribution to various physiological and pathological processes. Although H2S has been found to exert cytoprotective effects through modulation of antioxidant, anti-inflammatory, anti-apoptotic, and pro-angiogenic responses in a variety of conditions, its role in the pathophysiology of skeletal muscles has not been broadly elucidated so far. The classical example of muscle-related disorders is Duchenne muscular dystrophy (DMD), the most common and severe type of muscular dystrophy. Mutations in the DMD gene that encodes dystrophin, a cytoskeletal protein that protects muscle fibers from contraction-induced damage, lead to prominent dysfunctions in the structure and functions of the skeletal muscle. However, the main cause of death is associated with cardiorespiratory failure, and DMD remains an incurable disease. Taking into account a wide range of physiological functions of H2S and recent literature data on its possible protective role in DMD, we focused on the description of the 'old' and 'new' functions of H2S, especially in muscle pathophysiology. Although the number of studies showing its essential regulatory action in dystrophic muscles is still limited, we propose that H2S-based therapy has the potential to attenuate the progression of DMD and other muscle-related disorders.
Collapse
Affiliation(s)
- Katarzyna Kaziród
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Kraków, Poland
| | - Małgorzata Myszka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Kraków, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Kraków, Poland
| | - Agnieszka Łoboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
20
|
The Immune System in Duchenne Muscular Dystrophy Pathogenesis. Biomedicines 2021; 9:biomedicines9101447. [PMID: 34680564 PMCID: PMC8533196 DOI: 10.3390/biomedicines9101447] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 12/24/2022] Open
Abstract
Growing evidence demonstrates the crosstalk between the immune system and the skeletal muscle in inflammatory muscle diseases and dystrophic conditions such as Duchenne Muscular Dystrophy (DMD), as well as during normal muscle regeneration. The rising of inflammation and the consequent activation of the immune system are hallmarks of DMD: several efforts identified the immune cells that invade skeletal muscle as CD4+ and CD8+ T cells, Tregs, macrophages, eosinophils and natural killer T cells. The severity of muscle injury and inflammation dictates the impairment of muscle regeneration and the successive replacement of myofibers with connective and adipose tissue. Since immune system activation was traditionally considered as a consequence of muscular wasting, we recently demonstrated a defect in central tolerance caused by thymus alteration and the presence of autoreactive T-lymphocytes in DMD. Although the study of innate and adaptive immune responses and their complex relationship in DMD attracted the interest of many researchers in the last years, the results are so far barely exhaustive and sometimes contradictory. In this review, we describe the most recent improvements in the knowledge of immune system involvement in DMD pathogenesis, leading to new opportunities from a clinical point-of-view.
Collapse
|
21
|
Tulangekar A, Sztal TE. Inflammation in Duchenne Muscular Dystrophy-Exploring the Role of Neutrophils in Muscle Damage and Regeneration. Biomedicines 2021; 9:biomedicines9101366. [PMID: 34680483 PMCID: PMC8533596 DOI: 10.3390/biomedicines9101366] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 12/13/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe and progressive, X-linked, neuromuscular disorder caused by mutations in the dystrophin gene. In DMD, the lack of functional dystrophin protein makes the muscle membrane fragile, leaving the muscle fibers prone to damage during contraction. Muscle degeneration in DMD patients is closely associated with a prolonged inflammatory response, and while this is important to stimulate regeneration, inflammation is also thought to exacerbate muscle damage. Neutrophils are one of the first immune cells to be recruited to the damaged muscle and are the first line of defense during tissue injury or infection. Neutrophils can promote inflammation by releasing pro-inflammatory cytokines and compounds, including myeloperoxidase (MPO) and neutrophil elastase (NE), that lead to oxidative stress and are thought to have a role in prolonging inflammation in DMD. In this review, we provide an overview of the roles of the innate immune response, with particular focus on mechanisms used by neutrophils to exacerbate muscle damage and impair regeneration in DMD.
Collapse
|
22
|
Panza E, Vellecco V, Iannotti FA, Paris D, Manzo OL, Smimmo M, Mitilini N, Boscaino A, de Dominicis G, Bucci M, Di Lorenzo A, Cirino G. Duchenne's muscular dystrophy involves a defective transsulfuration pathway activity. Redox Biol 2021; 45:102040. [PMID: 34174560 PMCID: PMC8246642 DOI: 10.1016/j.redox.2021.102040] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/20/2021] [Accepted: 06/07/2021] [Indexed: 12/19/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is the most frequent X chromosome-linked disease caused by mutations in the gene encoding for dystrophin, leading to progressive and unstoppable degeneration of skeletal muscle tissues. Despite recent advances in the understanding of the molecular processes involved in the pathogenesis of DMD, there is still no cure. In this study, we aim at investigating the potential involvement of the transsulfuration pathway (TSP), and its by-end product namely hydrogen sulfide (H2S), in primary human myoblasts isolated from DMD donors and skeletal muscles of dystrophic (mdx) mice. In myoblasts of DMD donors, we demonstrate that the expression of key genes regulating the H2S production and TSP activity, including cystathionine γ lyase (CSE), cystathionine beta-synthase (CBS), 3 mercaptopyruvate sulfurtransferase (3-MST), cysteine dioxygenase (CDO), cysteine sulfonic acid decarboxylase (CSAD), glutathione synthase (GS) and γ -glutamylcysteine synthetase (γ-GCS) is reduced. Starting from these findings, using Nuclear Magnetic Resonance (NMR) and quantitative Polymerase Chain Reaction (qPCR) we show that the levels of TSP-related metabolites such as methionine, glycine, glutathione, glutamate and taurine, as well as the expression levels of the aforementioned TSP related genes, are significantly reduced in skeletal muscles of mdx mice compared to healthy controls, at both an early (7 weeks) and overt (17 weeks) stage of the disease. Importantly, the treatment with sodium hydrosulfide (NaHS), a commonly used H2S donor, fully recovers the impaired locomotor activity in both 7 and 17 old mdx mice. This is an effect attributable to the reduced expression of pro-inflammatory markers and restoration of autophagy in skeletal muscle tissues. In conclusion, our study uncovers a defective TSP pathway activity in DMD and highlights the role of H2S-donors for novel and safe adjuvant therapy to treat symptoms of DMD.
Collapse
Affiliation(s)
- E Panza
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - V Vellecco
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - F A Iannotti
- Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli (NA), Italy
| | - D Paris
- Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli (NA), Italy
| | - O L Manzo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy; Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - M Smimmo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - N Mitilini
- UOSC, Pathological Anatomy, A. Cardarelli Hospital, Naples, Italy
| | - A Boscaino
- UOSC, Pathological Anatomy, A. Cardarelli Hospital, Naples, Italy
| | - G de Dominicis
- UOSC, Pathological Anatomy, A. Cardarelli Hospital, Naples, Italy
| | - M Bucci
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy.
| | - A Di Lorenzo
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - G Cirino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
23
|
Lai X, Chen J. C-X-C motif chemokine ligand 12: a potential therapeutic target in Duchenne muscular dystrophy. Bioengineered 2021; 12:5428-5439. [PMID: 34424816 PMCID: PMC8806931 DOI: 10.1080/21655979.2021.1967029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive disease caused by a mutant dystrophin protein. DMD patients undergo gradual progressive paralysis until death. Chronic glucocorticoid therapy remains one of the main treatments for DMD, despite the significant side effects. However, its mechanisms of action remain largely unknown. We used bioinformatics tools to identify pathogenic genes involved in DMD and glucocorticoid target genes. Two gene expression profiles containing data from DMD patients and healthy controls (GSE38417 and GSE109178) were downloaded for further analysis. Differentially expressed genes (DEGs) between DMD patients and controls were identified using GEO2R, and glucocorticoid target genes were predicted from the Pharmacogenetics and Pharmacogenomics Knowledge Base. Surprisingly, only one gene, CXCL12 (C-X-C motif chemokine ligand 12), was both a glucocorticoid target and a DEG. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, Gene Ontology term enrichment analysis, and gene set enrichment analysis were performed. A protein-protein interaction network was constructed and hub genes identified using the Search Tool for the Retrieval of Interacting Genes (STRING) database and Cytoscape. Enriched pathways involving the DEGs, including CXCL12, were associated with the immune response and inflammation. Levels of CXCL12 and its receptor CXCR4 (C-X-C motif chemokine receptor 4) were increased in X-linked muscular dystrophy (mdx) mice (DMD models) but became significantly reduced after prednisone treatment. Metformin also reduced the expression of CXCL12 and CXCR4 in mdx mice. In conclusion, the CXCL12-CXCR4 pathway may be a potential target for DMD therapy.
Collapse
Affiliation(s)
- Xinsheng Lai
- School of Life Science, Nanchang University, Nanchang, Jiangxi, China.,Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Jie Chen
- School of Life Science, Nanchang University, Nanchang, Jiangxi, China.,Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
24
|
Dias RM, Hoshi RA, Vanderlei LCM, Monteiro CBDM, Alvarez MPB, Crocetta TB, Grossklauss LF, Fernani DCGL, Dantas MTAP, Martins FPA, Garner DM, Abreu LC, Ferreira C, da Silva TD. Influence of Different Types of Corticosteroids on Heart Rate Variability of Individuals with Duchenne Muscular Dystrophy-A Pilot Cross Sectional Study. Life (Basel) 2021; 11:752. [PMID: 34440496 PMCID: PMC8398672 DOI: 10.3390/life11080752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 11/18/2022] Open
Abstract
Individuals with Duchenne Muscular Dystrophy (DMD) have an impairment of cardiac autonomic function categorized by parasympathetic reduction and sympathetic predominance. The objective of this study was to assess the cardiac autonomic modulation of individuals with DMD undergoing therapy with Prednisone/Prednisolone and Deflazacort and compare with individuals with DMD without the use of these medications and a typically developed control group. Methods: A cross-sectional study was completed, wherein 40 boys were evaluated. The four treatment groups were: Deflazacort; Prednisone/Prednisolone; no corticoid use; and typical development. Heart Rate Variability (HRV) was investigated via linear indices (Time Domain and Frequency Domain) and non-linear indices Results: The results of this study revealed that individuals with DMD undertaking pharmacotherapies with Prednisolone demonstrated HRV comparable to the Control Typically Developed (CTD) group. In contrast, individuals with DMD undergoing pharmacotherapies with Deflazacort achieved lower HRV, akin to individuals with DMD without any medications, as demonstrated in the metrics: RMSSD; LF (n.u.), HF (n.u.), LF/HF; SD1, α1, and α1/α2, and a significant effect for SD1/SD2; %DET and Ratio; Shannon Entropy, 0 V%, 2 LV% and 2 ULV%. Conclusions: Corticosteroids have the potential to affect the cardiac autonomic modulation in adolescents with DMD. The use of Prednisone/Prednisolone appears to promote improved responses in terms of sympathovagal activity as opposed to Deflazacort.
Collapse
Affiliation(s)
- Rodrigo Martins Dias
- Postgraduate Program in Medicine (Cardiology) at Paulista School of Medicine, Federal University of São Paulo (EPM/UNIFESP), São Paulo 04024-002, Brazil; (C.F.); (T.D.d.S.)
| | | | | | - Carlos Bandeira de Mello Monteiro
- Postgraduate Program in Rehabilitation Sciences, Faculty of Medicine, University of São Paulo (FMUSP), São Paulo 05360-160, Brazil; (C.B.d.M.M.); (M.P.B.A.)
| | - Mayra Priscila Boscolo Alvarez
- Postgraduate Program in Rehabilitation Sciences, Faculty of Medicine, University of São Paulo (FMUSP), São Paulo 05360-160, Brazil; (C.B.d.M.M.); (M.P.B.A.)
- Department of Health Sciences, Anhanguera College- Campus of Jundiaí, Jundiaí 13209-355, Brazil
| | - Tânia Brusque Crocetta
- Laboratório de Psicologia do Esporte e do Exercício, Centro de Ciências da Saúde e do Esporte, Universidade do Estado de Santa Catarina, Florianópolis 88035-001, Brazil;
| | - Luis Fernando Grossklauss
- Department of Neurology/Neurosurgery, Neuropediatrist at the Federal University of São Paulo, São Paulo 04039-002, Brazil;
| | | | - Maria Tereza Artero Prado Dantas
- Department of Health Sciences, University of Western Paulista (UNOESTE), Presidente Prudente 19050-920, Brazil; (D.C.G.L.F.); (M.T.A.P.D.)
| | | | - David M. Garner
- Cardiorespiratory Research Group, Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Headington Campus, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK;
| | - Luiz Carlos Abreu
- Department of Integrated Health Education, Federal University of Espírito Santo (UFES), Vitória 29040-090, Brazil;
| | - Celso Ferreira
- Postgraduate Program in Medicine (Cardiology) at Paulista School of Medicine, Federal University of São Paulo (EPM/UNIFESP), São Paulo 04024-002, Brazil; (C.F.); (T.D.d.S.)
| | - Talita Dias da Silva
- Postgraduate Program in Medicine (Cardiology) at Paulista School of Medicine, Federal University of São Paulo (EPM/UNIFESP), São Paulo 04024-002, Brazil; (C.F.); (T.D.d.S.)
- Postgraduate Program in Rehabilitation Sciences, Faculty of Medicine, University of São Paulo (FMUSP), São Paulo 05360-160, Brazil; (C.B.d.M.M.); (M.P.B.A.)
- Faculty of Medicine, University of Sao Paulo City (UNICID), São Paulo 03071-000, Brazil
| |
Collapse
|
25
|
Péladeau C, Sandhu JK. Aberrant NLRP3 Inflammasome Activation Ignites the Fire of Inflammation in Neuromuscular Diseases. Int J Mol Sci 2021; 22:ijms22116068. [PMID: 34199845 PMCID: PMC8200055 DOI: 10.3390/ijms22116068] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/24/2022] Open
Abstract
Inflammasomes are molecular hubs that are assembled and activated by a host in response to various microbial and non-microbial stimuli and play a pivotal role in maintaining tissue homeostasis. The NLRP3 is a highly promiscuous inflammasome that is activated by a wide variety of sterile triggers, including misfolded protein aggregates, and drives chronic inflammation via caspase-1-mediated proteolytic cleavage and secretion of proinflammatory cytokines, interleukin-1β and interleukin-18. These cytokines further amplify inflammatory responses by activating various signaling cascades, leading to the recruitment of immune cells and overproduction of proinflammatory cytokines and chemokines, resulting in a vicious cycle of chronic inflammation and tissue damage. Neuromuscular diseases are a heterogeneous group of muscle disorders that involve injury or dysfunction of peripheral nerves, neuromuscular junctions and muscles. A growing body of evidence suggests that dysregulation, impairment or aberrant NLRP3 inflammasome signaling leads to the initiation and exacerbation of pathological processes associated with neuromuscular diseases. In this review, we summarize the available knowledge about the NLRP3 inflammasome in neuromuscular diseases that affect the peripheral nervous system and amyotrophic lateral sclerosis, which affects the central nervous system. In addition, we also examine whether therapeutic targeting of the NLRP3 inflammasome components is a viable approach to alleviating the detrimental phenotype of neuromuscular diseases and improving clinical outcomes.
Collapse
Affiliation(s)
- Christine Péladeau
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada;
| | - Jagdeep K. Sandhu
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Correspondence: ; Tel.: +1-613-993-5304
| |
Collapse
|
26
|
Raimondo TM, Mooney DJ. Anti-inflammatory nanoparticles significantly improve muscle function in a murine model of advanced muscular dystrophy. SCIENCE ADVANCES 2021; 7:7/26/eabh3693. [PMID: 34162554 PMCID: PMC8221619 DOI: 10.1126/sciadv.abh3693] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/10/2021] [Indexed: 05/24/2023]
Abstract
Chronic inflammation contributes to the pathogenesis of all muscular dystrophies. Inflammatory T cells damage muscle, while regulatory T cells (Tregs) promote regeneration. We hypothesized that providing anti-inflammatory cytokines in dystrophic muscle would promote proregenerative immune phenotypes and improve function. Primary T cells from dystrophic (mdx) mice responded appropriately to inflammatory or suppressive cytokines. Subsequently, interleukin-4 (IL-4)- or IL-10-conjugated gold nanoparticles (PA4, PA10) were injected into chronically injured, aged, mdx muscle. PA4 and PA10 increased T cell recruitment, with PA4 doubling CD4+/CD8- T cells versus controls. Further, 50% of CD4+/CD8- T cells were immunosuppressive Tregs following PA4, versus 20% in controls. Concomitant with Treg recruitment, muscles exhibited increased fiber area and fourfold increases in contraction force and velocity versus controls. The ability of PA4 to shift immune responses, and improve dystrophic muscle function, suggests that immunomodulatory treatment may benefit many genetically diverse muscular dystrophies, all of which share inflammatory pathology.
Collapse
Affiliation(s)
- Theresa M Raimondo
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
27
|
Mareedu S, Million ED, Duan D, Babu GJ. Abnormal Calcium Handling in Duchenne Muscular Dystrophy: Mechanisms and Potential Therapies. Front Physiol 2021; 12:647010. [PMID: 33897454 PMCID: PMC8063049 DOI: 10.3389/fphys.2021.647010] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/02/2021] [Indexed: 12/18/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked muscle-wasting disease caused by the loss of dystrophin. DMD is associated with muscle degeneration, necrosis, inflammation, fatty replacement, and fibrosis, resulting in muscle weakness, respiratory and cardiac failure, and premature death. There is no curative treatment. Investigations on disease-causing mechanisms offer an opportunity to identify new therapeutic targets to treat DMD. An abnormal elevation of the intracellular calcium (Cai2+) concentration in the dystrophin-deficient muscle is a major secondary event, which contributes to disease progression in DMD. Emerging studies have suggested that targeting Ca2+-handling proteins and/or mechanisms could be a promising therapeutic strategy for DMD. Here, we provide an updated overview of the mechanistic roles the sarcolemma, sarcoplasmic/endoplasmic reticulum, and mitochondria play in the abnormal and sustained elevation of Cai2+ levels and their involvement in DMD pathogenesis. We also discuss current approaches aimed at restoring Ca2+ homeostasis as potential therapies for DMD.
Collapse
Affiliation(s)
- Satvik Mareedu
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Emily D Million
- Department of Molecular Microbiology and Immunology, The University of Missouri, Columbia, MO, United States
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, The University of Missouri, Columbia, MO, United States.,Department of Biomedical, Biological & Chemical Engineering, The University of Missouri, Columbia, MO, United States
| | - Gopal J Babu
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| |
Collapse
|
28
|
Beneficial Role of Exercise in the Modulation of mdx Muscle Plastic Remodeling and Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10040558. [PMID: 33916762 PMCID: PMC8066278 DOI: 10.3390/antiox10040558] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/02/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive progressive lethal disorder caused by the lack of dystrophin, which determines myofibers mechanical instability, oxidative stress, inflammation, and susceptibility to contraction-induced injuries. Unfortunately, at present, there is no efficient therapy for DMD. Beyond several promising gene- and stem cells-based strategies under investigation, physical activity may represent a valid noninvasive therapeutic approach to slow down the progression of the pathology. However, ethical issues, the limited number of studies in humans and the lack of consistency of the investigated training interventions generate loss of consensus regarding their efficacy, leaving exercise prescription still questionable. By an accurate analysis of data about the effects of different protocol of exercise on muscles of mdx mice, the most widely-used pre-clinical model for DMD research, we found that low intensity exercise, especially in the form of low speed treadmill running, likely represents the most suitable exercise modality associated to beneficial effects on mdx muscle. This protocol of training reduces muscle oxidative stress, inflammation, and fibrosis process, and enhances muscle functionality, muscle regeneration, and hypertrophy. These conclusions can guide the design of appropriate studies on human, thereby providing new insights to translational therapeutic application of exercise to DMD patients.
Collapse
|
29
|
Ma J, Beers B, Manohar R, Roe S, Colacino JM, Kong R. In vitro cytochrome P450- and transporter-mediated drug interaction potential of 6β-hydroxy-21-desacetyl deflazacort-A major human metabolite of deflazacort. Pharmacol Res Perspect 2021; 9:e00748. [PMID: 33749127 PMCID: PMC7982320 DOI: 10.1002/prp2.748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/16/2021] [Indexed: 11/06/2022] Open
Abstract
6β-Hydroxy-21-desacetyl deflazacort (6β-OH-21-desDFZ) is a major circulating but not biologically active metabolite of deflazacort (DFZ). In vitro studies were performed to evaluate cytochrome P450 (CYP)- and transporter-mediated drug interaction potentials of 6β-OH-21-desDFZ. Up to 50 µM, the highest soluble concentration in the test system, 6β-OH-21-desDFZ weakly inhibited (IC50 > 50 µM) the enzyme activity of CYPs 1A2, 2B6, 2C8, 2C9, and 2D6, while moderately inhibiting CYP2C19 and CYP3A4 with IC50 values of approximately 50 and 35 μM, respectively. The inhibition was neither time-dependent nor metabolism-based. Incubation of up to 50 µM 6β-OH-21-desDFZ with plated cryopreserved human hepatocytes for 48 h resulted in no meaningful concentration-dependent induction of either mRNA levels or enzyme activity of CYP1A2, CYP2B6, or CYP3A4. In transporter inhibition assays, 6β-OH-21-desDFZ, up to 50 µM, did not show interaction with human OAT1, OAT3, and OCT2 transporters. It weakly inhibited (IC50 > 50 µM) human MATE1, MATE2-K, and OCT1 transporter activity, and moderately inhibited human MDR1, OATP1B1, and OATP1B3 transporter activity with IC50 values of 19.81 μM, 37.62 μM, and 42.22 μM, respectively. 14 C-6β-OH-21-desDFZ was biosynthesized using bacterial biotransformation and the subsequent study showed that 6β-OH-21-desDFZ was not a substrate for human BCRP, MDR1, MATE1, MATE2-K, OAT1, OATP1B1, OATP1B3, and OCT2 transporters, but appeared to be an in vitro substrate for the human OAT3 uptake transporter. At plasma concentrations of 6β-OH-21-desDFZ seen in the clinic, CYP- and transporter-mediated drug-drug interactions are not expected following administration of a therapeutic dose of DFZ in Duchenne muscular dystrophy (DMD) patients.
Collapse
Affiliation(s)
- Jiyuan Ma
- PTC Therapeutics Inc., South Plainfield, NJ, USA
| | - Brian Beers
- PTC Therapeutics Inc., South Plainfield, NJ, USA
| | | | | | | | - Ronald Kong
- PTC Therapeutics Inc., South Plainfield, NJ, USA
| |
Collapse
|
30
|
Howard ZM, Lowe J, Blatnik AJ, Roberts D, Burghes AHM, Bansal SS, Rafael-Fortney JA. Early Inflammation in Muscular Dystrophy Differs between Limb and Respiratory Muscles and Increases with Dystrophic Severity. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:730-747. [PMID: 33497702 DOI: 10.1016/j.ajpath.2021.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/16/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a genetic, degenerative, striated muscle disease exacerbated by chronic inflammation. Mdx mice in the genotypic DMD model poorly represent immune-mediated pathology observed in patients. Improved understanding of innate immunity in dystrophic muscles is required to develop specific anti-inflammatory treatments. Here, inflammation in mdx mice and the more fibrotic utrn+/-;mdx Het model was comprehensively investigated. Unbiased analysis showed that mdx and Het mice contain increased levels of numerous chemokines and cytokines, with further increased in Het mice. Chemokine and chemokine receptor gene expression levels were dramatically increased in 4-week-old dystrophic quadriceps muscles, and to a lesser extent in diaphragm during the early injury phase, and had a small but consistent increase at 8 and 20 weeks. An optimized direct immune cell isolation method prevented loss of up to 90% of macrophages with density-dependent centrifugation previously used for mdx flow cytometry. Het quadriceps contain higher proportions of neutrophils and infiltrating monocytes than mdx, and higher percentages of F4/80Hi, but lower percentages of F4/80Lo cells and patrolling monocytes compared with Het diaphragms. These differences may restrict regenerative potential of dystrophic diaphragms, increasing pathologic severity. Fibrotic and inflammatory gene expression levels are higher in myeloid cells isolated from Het compared with mdx quadriceps, supporting Het mice may represent an improved model for testing therapeutic manipulation of inflammation in DMD.
Collapse
Affiliation(s)
- Zachary M Howard
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Jeovanna Lowe
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Anton J Blatnik
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Deztani Roberts
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Arthur H M Burghes
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Shyam S Bansal
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio; Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio.
| | - Jill A Rafael-Fortney
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio; Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
31
|
A Phase 1/2 Study of Flavocoxid, an Oral NF-κB Inhibitor, in Duchenne Muscular Dystrophy. Brain Sci 2021; 11:brainsci11010115. [PMID: 33467104 PMCID: PMC7830560 DOI: 10.3390/brainsci11010115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 12/15/2022] Open
Abstract
Flavocoxid is a blended extract containing baicalin and catechin with potent antioxidant and anti-inflammatory properties due to the inhibition of the cyclooxygenase (COX) and 5-lipoxygenase (5-LOX) enzymes, nuclear factor-κB (NF-κB), tumor necrosis factor (TNF)-alpha, and the mitogen-activated protein kinases (MAPKs) pathways. This phase 1/2 study was designed to assess the safety and tolerability of flavocoxid in patients with Duchenne muscular dystrophy (DMD). Thirty-four patients were recruited: 17 were treated with flavocoxid at an oral dose of 250 or 500 mg, according to body weight, for one year; 17 did not receive flavocoxid and served as controls. The treatment was well tolerated and nobody dropped out. Flavocoxid induced a significant reduction in serum interleukin (IL)-1 beta and TNF-alpha only in the group of DMD boys on add-on therapy (flavocoxid added to steroids for at least six months). The decrease in IL-1 beta was higher in younger boys. The serum H2O2 concentrations significantly decreased in patients treated with flavocoxid alone with a secondary reduction of serum glutathione peroxidase (GPx) levels, especially in younger boys. The exploratory outcome measures failed to show significant effects but there was a trend showing that the younger boys who received treatment were faster at performing the Gowers' maneuver, while the older boys who received treatment were faster at doing the 10-m walk test (10MWT). Therefore, a double-blind, placebo-controlled study for at least two/three years is warranted to verify flavocoxid as a steroid substitute or as add-on therapy to steroids.
Collapse
|
32
|
Sasaki E, Hayashi Y, Kimura Y, Sashida S, Hamano N, Nirasawa K, Hamada K, Katagiri F, Kikkawa Y, Sakai T, Yoshida A, Kawada M, Hirashima SI, Miura T, Endo-Takahashi Y, Nomizu M, Negishi Y. Alpha-dystroglycan binding peptide A2G80-modified stealth liposomes as a muscle-targeting carrier for Duchenne muscular dystrophy. J Control Release 2021; 329:1037-1045. [PMID: 33080271 DOI: 10.1016/j.jconrel.2020.10.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/07/2020] [Accepted: 10/16/2020] [Indexed: 01/16/2023]
Abstract
Safe and efficient gene therapy for the treatment of Duchenne muscular dystrophy (DMD), a genetic disorder, is required. For this, the muscle-targeting delivery system of genes and nucleic acids is ideal. In this study, we focused on the A2G80 peptide, which has an affinity for α-dystroglycan expressed on muscle cell membranes, as a muscle targeted nanocarrier for DMD and developed A2G80-modified liposomes. We also prepared A2G80-modified liposomes coated with long- and short-chain PEG, called A2G80-LSP-Lip, to improve the blood circulation of liposomes using microfluidics. The liposomes had a particle size of approximately 80 nm. A2G80-LSP-Lip showed an affinity for the muscle tissue section of mice by overlay assay. When the liposomes were administered to DMD model mice (mdx mice) via the tail vein, A2G80-LSP-Lip accumulated efficiently in muscle tissue compared to control liposomes. These results suggest that A2G80-LSP-Lip can function as a muscle-targeting liposome for DMD via systemic administration, and may be a useful tool for DMD treatment.
Collapse
Affiliation(s)
- Eri Sasaki
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yoshihiro Hayashi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yuka Kimura
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Sanae Sashida
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Nobuhito Hamano
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Kei Nirasawa
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Keisuke Hamada
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Fumihiko Katagiri
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Yamato Kikkawa
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Takaaki Sakai
- Department of Pharmaceutical Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Akihiro Yoshida
- Department of Pharmaceutical Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Masahiro Kawada
- Department of Pharmaceutical Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Shin-Ichi Hirashima
- Department of Pharmaceutical Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Tsuyoshi Miura
- Department of Pharmaceutical Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yoko Endo-Takahashi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Motoyoshi Nomizu
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| |
Collapse
|
33
|
Łoboda A, Dulak J. Muscle and cardiac therapeutic strategies for Duchenne muscular dystrophy: past, present, and future. Pharmacol Rep 2020; 72:1227-1263. [PMID: 32691346 PMCID: PMC7550322 DOI: 10.1007/s43440-020-00134-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a severe X-linked neuromuscular childhood disorder that causes progressive muscle weakness and degeneration and results in functional decline, loss of ambulation and early death of young men due to cardiac or respiratory failure. Although the major cause of the disease has been known for many years-namely mutation in the DMD gene encoding dystrophin, one of the largest human genes-DMD is still incurable, and its treatment is challenging. METHODS A comprehensive and systematic review of literature on the gene, cell, and pharmacological experimental therapies aimed at restoring functional dystrophin or to counteract the associated processes contributing to disease progression like inflammation, fibrosis, calcium signaling or angiogenesis was carried out. RESULTS Although some therapies lead to satisfying effects in skeletal muscle, they are highly ineffective in the heart; therefore, targeting defective cardiac and respiratory systems is vital in DMD patients. Unfortunately, most of the pharmacological compounds treat only the symptoms of the disease. Some drugs addressing the underlying cause, like eteplirsen, golodirsen, and ataluren, have recently been conditionally approved; however, they can correct only specific mutations in the DMD gene and are therefore suitable for small sub-populations of affected individuals. CONCLUSION In this review, we summarize the possible therapeutic options and describe the current status of various, still imperfect, strategies used for attenuating the disease progression.
Collapse
Affiliation(s)
- Agnieszka Łoboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
34
|
Zschüntzsch J, Jouvenal PV, Zhang Y, Klinker F, Tiburcy M, Liebetanz D, Malzahn D, Brinkmeier H, Schmidt J. Long-term human IgG treatment improves heart and muscle function in a mouse model of Duchenne muscular dystrophy. J Cachexia Sarcopenia Muscle 2020; 11:1018-1031. [PMID: 32436338 PMCID: PMC7432639 DOI: 10.1002/jcsm.12569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/10/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease caused by mutations in the dystrophin gene, which leads to structural instability of the dystrophin-glycoprotein-complex with subsequent muscle degeneration. In addition, muscle inflammation has been implicated in disease progression and therapeutically addressed with glucocorticosteroids. These have numerous adverse effects. Treatment with human immunoglobulin G (IgG) improved clinical and para-clinical parameters in the early disease phase in the well-established mdx mouse model. The aim of the present study was to confirm the efficacy of IgG in a long-term pre-clinical study in mdx mice. METHODS IgG (2 g/kg body weight) or NaCl solution as control was administered monthly over 18 months by intraperitoneal injection in mdx mice beginning at 3 weeks of age. Several clinical outcome measures including endurance, muscle strength, and echocardiography were assessed. After 18 months, the animals were sacrificed, blood was collected for analysis, and muscle samples were obtained for ex vivo muscle contraction tests, quantitative PCR, and histology. RESULTS IgG significantly improved the daily voluntary running performance (1.9 m more total daily running distance, P < 0.0001) and slowed the decrease in grip strength by 0.1 mN, (P = 0.018). IgG reduced fatigability of the diaphragm (improved ratio to maximum force by 0.09 ± 0.04, P = 0.044), but specific tetanic force remained unchanged in the ex vivo muscle contraction test. Cardiac function was significantly better after IgG, especially fractional area shortening (P = 0.012). These results were accompanied by a reduction in cardiac fibrosis and the infiltration of T cells (P = 0.0002) and macrophages (P = 0.0027). In addition, treatment with IgG resulted in a significant reduction of the infiltration of T cells (P ≤ 0.036) in the diaphragm, gastrocnemius, quadriceps, and a similar trend in tibialis anterior and macrophages (P ≤ 0.045) in gastrocnemius, quadriceps, tibialis anterior, and a similar trend in the diaphragm, as well as a decrease in myopathic changes as reflected by a reduced central nuclear index in the diaphragm, tibialis anterior, and quadriceps (P ≤ 0.002 in all). CONCLUSIONS The present study underscores the importance of an inflammatory contribution to the disease progression of DMD. The data demonstrate the long-term efficacy of IgG in the mdx mouse. IgG is well tolerated by humans and could preferentially complement gene therapy in DMD. The data call for a clinical trial with IgG in DMD.
Collapse
Affiliation(s)
- Jana Zschüntzsch
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Pia Vanessa Jouvenal
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Yaxin Zhang
- Institute of Pathophysiology, University Medicine Greifswald, Karlsburg, Germany
| | - Florian Klinker
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Malte Tiburcy
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - David Liebetanz
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Dörthe Malzahn
- Department of Genetic Epidemiology, University Medical Center Göttingen, Göttingen, Germany.,mzBiostatistics, Statistical Consultancy, Göttingen, Germany
| | - Heinrich Brinkmeier
- Institute of Pathophysiology, University Medicine Greifswald, Karlsburg, Germany
| | - Jens Schmidt
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
35
|
Danilov KA, Vassilieva SG, Polikarpova AV, Starikova AV, Shmidt AA, Galkin II, Tsitrina AA, Egorova TV, Orlov SN, Kotelevtsev YV. In vitro assay for the efficacy assessment of AAV vectors expressing microdystrophin. Exp Cell Res 2020; 392:112033. [PMID: 32360435 DOI: 10.1016/j.yexcr.2020.112033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/23/2020] [Accepted: 04/21/2020] [Indexed: 12/26/2022]
Abstract
AAV-delivered microdystrophin genes hold great promise for Duchenne muscular dystrophy (DMD) treatment. It is anticipated that the optimization of engineered dystrophin genes will be required to increase the efficacy and reduce the immunogenicity of transgenic proteins. An in vitro system is required for the efficacy testing of genetically engineered dystrophin genes. We report here on the proof of concept for an in vitro assay based on the assessment of sarcolemma damage after repetitively applied electrical stimuli. The primary cell culture of myoblasts was established from wild-type C57BL/10ScSnJ and dystrophin-deficient mdx mice. The preparation parameters and the differentiation of contractile myotubes were optimized. DAPI and TO-PRO-3 dyes were used to assess myotubular membrane permeability in response to electrical pulse stimulation (EPS). Myotubes derived from mdx mice exhibited a greater increase in membrane damage, as assessed by TO-PRO-3-measured permeability after EPS, than was exhibited by the healthy control myotubes. AAV-DJ particles carrying the microdystrophin gene were used to transduce mdx-derived differentiated myotubes. Microdystrophin delivery ameliorated the disease phenotype and reduced the EPS-induced membrane damage to a level comparable to that of the healthy controls. Thus, the in vitro system was shown to be capable of supporting studies on DMD gene therapy.
Collapse
Affiliation(s)
- Kirill A Danilov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia; Atlas Biomed Group Limited, Tintagel House, 92 Albert Embankment, Lambeth, SE1 7TY, London, United Kingdom.
| | - Svetlana G Vassilieva
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia; Marlin Biotech LLC, Moscow, 143026, Russia.
| | - Anna V Polikarpova
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia; Marlin Biotech LLC, Moscow, 143026, Russia.
| | - Anna V Starikova
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia; Marlin Biotech LLC, Moscow, 143026, Russia.
| | - Anna A Shmidt
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia; Marlin Biotech LLC, Moscow, 143026, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Ivan I Galkin
- Marlin Biotech LLC, Moscow, 143026, Russia; A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia.
| | - Alexandra A Tsitrina
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Tatiana V Egorova
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia; Marlin Biotech LLC, Moscow, 143026, Russia.
| | - Sergei N Orlov
- M.V. Lomonosov Moscow State University, Moscow, 119234, Russia; National Research Tomsk State University, Tomsk, 634050, Russia.
| | - Yuri V Kotelevtsev
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia.
| |
Collapse
|
36
|
Péladeau C, Adam N, Bronicki LM, Coriati A, Thabet M, Al-Rewashdy H, Vanstone J, Mears A, Renaud JM, Holcik M, Jasmin BJ. Identification of therapeutics that target eEF1A2 and upregulate utrophin A translation in dystrophic muscles. Nat Commun 2020; 11:1990. [PMID: 32332749 PMCID: PMC7181625 DOI: 10.1038/s41467-020-15971-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/06/2020] [Indexed: 01/10/2023] Open
Abstract
Up-regulation of utrophin in muscles represents a promising therapeutic strategy for the treatment of Duchenne Muscular Dystrophy. We previously demonstrated that eEF1A2 associates with the 5’UTR of utrophin A to promote IRES-dependent translation. Here, we examine whether eEF1A2 directly regulates utrophin A expression and identify via an ELISA-based high-throughput screen, FDA-approved drugs that upregulate both eEF1A2 and utrophin A. Our results show that transient overexpression of eEF1A2 in mouse muscles causes an increase in IRES-mediated translation of utrophin A. Through the assessment of our screen, we reveal 7 classes of FDA-approved drugs that increase eEF1A2 and utrophin A protein levels. Treatment of mdx mice with the 2 top leads results in multiple improvements of the dystrophic phenotype. Here, we report that IRES-mediated translation of utrophin A via eEF1A2 is a critical mechanism of regulating utrophin A expression and reveal the potential of repurposed drugs for treating DMD via this pathway. One potential approach for the treatment of Duchenne muscular dysrophy is to increase expression of the dystrophin homolog utrophin. Here, the authors show that eEF1A2 regulates utrophin expression, and show that 2 FDA-approved drugs upregulate eEIF1A2 and utrophin level in mice, leading to improvement of the dystrophic phenotype.
Collapse
Affiliation(s)
- Christine Péladeau
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.,Centre for Neuromuscular Disease, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Nadine Adam
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.,Centre for Neuromuscular Disease, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Lucas M Bronicki
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.,Centre for Neuromuscular Disease, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Adèle Coriati
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Mohamed Thabet
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Hasanen Al-Rewashdy
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.,Centre for Neuromuscular Disease, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Jason Vanstone
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 5B2, Canada
| | - Alan Mears
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 5B2, Canada
| | - Jean-Marc Renaud
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Martin Holcik
- Department of Health Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada. .,Centre for Neuromuscular Disease, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
37
|
Jin Y, Shen Y, Su X, Weintraub NL, Tang Y. Effective restoration of dystrophin expression in iPSC Mdx-derived muscle progenitor cells using the CRISPR/Cas9 system and homology-directed repair technology. Comput Struct Biotechnol J 2020; 18:765-773. [PMID: 32280431 PMCID: PMC7132053 DOI: 10.1016/j.csbj.2020.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/14/2020] [Accepted: 03/17/2020] [Indexed: 12/20/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive myopathic disease caused by mutations in the gene encoding dystrophin protein that eventually leads to the exhaustion of myogenic progenitor cells (MPC). Autologous induced pluripotent stem cells (iPSCs) provide an endless source of MPC, which can potentially replenish the progenitor cell pool, repair muscle damage, and prevent DMD progression. Deletion of mutant exon 23 (ΔEx23) with clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9) gene-editing technology can correct dystrophin gene expression in iPSCs. However, successful exon23 deletion and clonal isolation are very inefficient (~3%), and manual selection of each iPSC clone and genotyping to identify ΔEx23 is labor-intensive. To overcome these obstacles, we added a homology-directed repair (HDR) donor vector, which carries floxed fluorescent protein and antibiotic selection genes, thus allowing us to identify ΔEx23 iPSC with donor selective gene integration. Our results indicate that the HDR-mediated targeted integration enables ΔEx23 iPSC identification; the HDR donor vector increased the recognition efficiency of clonal isolation (>90% as confirmed by Sanger sequencing). After removal of the inserted genes by Cre-mediated recombination followed by doxycycline (Dox)-induced MyoD induction, ΔEx23 iPSC differentiated into MPC with restored dystrophin expression in vitro. Importantly, transplanted ΔEx23 iPSC-MPC express dystrophin in the muscles of a mouse model of DMD (Mdx mice). In conclusion, the use of HDR donor vector increased the efficiency of ΔEx23 gene correction by CRISPR/Cas9, and facilitate the identification of successfully edited iPSC clones for cell therapy of DMD.
Collapse
Affiliation(s)
| | | | | | | | - Yaoliang Tang
- Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
38
|
Transcriptomic Analysis Reveals Involvement of the Macrophage Migration Inhibitory Factor Gene Network in Duchenne Muscular Dystrophy. Genes (Basel) 2019; 10:genes10110939. [PMID: 31752120 PMCID: PMC6896047 DOI: 10.3390/genes10110939] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/11/2019] [Accepted: 11/15/2019] [Indexed: 01/04/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive hereditary muscular disease with X-linked recessive inheritance, that leads patients to premature death. The loss of dystrophin determines membrane instability, causing cell damage and inflammatory response. Macrophage migration inhibitory factor (MIF) is a cytokine that exerts pleiotropic properties and is implicated in the pathogenesis of a variety of diseases. Recently, converging data from independent studies have pointed to a possible role of MIF in dystrophic muscle disorders, including DMD. In the present study, we have investigated the modulation of MIF and MIF-related genes in degenerative muscle disorders, by making use of publicly available whole-genome expression datasets. We show here a significant enrichment of MIF and related genes in muscle samples from DMD patients, as well as from patients suffering from Becker’s disease and limb-girdle muscular dystrophy type 2B. On the other hand, transcriptomic analysis of in vitro differentiated myotubes from healthy controls and DMD patients revealed no significant alteration in the expression levels of MIF-related genes. Finally, by analyzing DMD samples as a time series, we show that the modulation of the genes belonging to the MIF network is an early event in the DMD muscle and does not change with the increasing age of the patients, Overall, our analysis suggests that MIF may play a role in vivo during muscle degeneration, likely promoting inflammation and local microenvironment reaction.
Collapse
|
39
|
Reyngoudt H, Lopez Kolkovsky AL, Carlier PG. Free intramuscular Mg 2+ concentration calculated using both 31 P and 1 H NMRS-based pH in the skeletal muscle of Duchenne muscular dystrophy patients. NMR IN BIOMEDICINE 2019; 32:e4115. [PMID: 31184793 DOI: 10.1002/nbm.4115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 04/03/2019] [Accepted: 04/23/2019] [Indexed: 06/09/2023]
Abstract
Early studies have demonstrated that (total) magnesium was decreased in skeletal muscle of Duchenne muscular dystrophy (DMD) patients. Free intramuscular Mg2+ can be derived from 31 P NMRS measurements. The value of free intramuscular magnesium concentration ([Mg2+ ]) is highly dependent on precise knowledge of intracellular pH, which is abnormally alkaline in dystrophic muscle, possibly due to an expanded interstitial space, potentially causing an underestimation of [Mg2+ ]. We have recently shown that intracellular pH can be derived using 1 H NMRS of carnosine. Our aim was to determine whether 31 P NMRS-based [Mg2+ ] is, in fact, abnormally low in DMD patients, taking advantage of the 1 H NMRS-based pH. A comparative analysis was, therefore, made between [Mg2+ ] values calculated with both 1 H and 31 P NMRS-based approaches to determine pH in 25 DMD patients, on a 3-T clinical NMR scanner. [Mg2+ ] was also assessed with 31 P NMRS only in (forearm or leg) skeletal muscle of 60 DMD patients and 63 age-matched controls. Additionally, phosphodiester levels as well as quantitative NMRI indices including water T2 , fat fraction, contractile cross-sectional area and one-year changes were evaluated. The main finding was that the significant difference in [Mg2+ ] between DMD patients and controls was preserved even when the intracellular pH determined with 1 H NMRS was similar in both groups. Consequently, we observed that [Mg2+ ] is significantly lower in DMD patients compared with controls in the larger database where only 31 P NMRS data were obtained. Significant yet weak correlations existed between [Mg2+ ] and PDE, water T2 and fat fraction. We concluded that low [Mg2+ ] is an actual finding in DMD, whether intracellular pH is normal or alkaline, and that it is a likely consequence of membrane leakiness. The response of Mg2+ to therapeutic treatment remains to be investigated in neuromuscular disorders. Free [Mg2+ ] determination with 31 P NMRS is highly dependent on a precise knowledge of intracellular pH. The pH of Duchenne muscular dystrophy (DMD) patients, as determined by 31 P NMRS, is abnormally alkaline. We have recently shown that intracellular pH could be determined using 1 H NMRS of carnosine, and that intracellular pH was alkaline in a proportion of, but not all, DMD patients with a 31 P NMRS-based alkaline pH. Taking advantage of this 1 H NMRS-based intracellular pH, we found that free intramuscular [Mg2+ ] is in fact abnormally low in DMD patients.
Collapse
Affiliation(s)
- Harmen Reyngoudt
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France
- NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Alfredo L Lopez Kolkovsky
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France
- NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Pierre G Carlier
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France
- NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| |
Collapse
|
40
|
Cai A, Kong X. Development of CRISPR-Mediated Systems in the Study of Duchenne Muscular Dystrophy. Hum Gene Ther Methods 2019; 30:71-80. [PMID: 31062609 DOI: 10.1089/hgtb.2018.187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe type of X-linked recessive degenerative muscle disease caused by mutations in the dystrophin (DMD) gene on the X chromosome. The DMD gene is complex, consisting of 79 exons, and mutations cause changes in the DMD mRNA so that the reading frame is altered, and the muscle-specific isoform of the dystrophin protein is either absent or truncated with variable residual function. The emerging CRISPR-Cas9-mediated genome editing technique is being developed as a potential therapeutic approach to treat DMD because it can permanently replace the mutated dystrophin gene with the normal gene. Prenatal DNA testing can inform whether the female fetus is a carrier of DMD, and the male fetus has inherited a mutation from his mother (50% chance of both). This article summarizes the present status of current and future treatments for DMD.
Collapse
Affiliation(s)
- Aojie Cai
- Genetic and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Xiangdong Kong
- Genetic and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| |
Collapse
|
41
|
Hoxha M. Duchenne muscular dystrophy: Focus on arachidonic acid metabolites. Biomed Pharmacother 2019; 110:796-802. [DOI: 10.1016/j.biopha.2018.12.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 12/11/2022] Open
|
42
|
Scavenger Receptor Class A1 Mediates Uptake of Morpholino Antisense Oligonucleotide into Dystrophic Skeletal Muscle. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 14:520-535. [PMID: 30763772 PMCID: PMC6374502 DOI: 10.1016/j.omtn.2019.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 01/17/2019] [Accepted: 01/19/2019] [Indexed: 12/13/2022]
Abstract
Exon skipping using phosphorodiamidate morpholino oligomers (PMOs) is a promising treatment strategy for Duchenne muscular dystrophy (DMD). The most significant limitation of these clinically used compounds is their lack of delivery systems that target muscles; thus, cell-penetrating peptides are being developed to enhance uptake into muscles. Recently, we reported that uptake of peptide-conjugated PMOs into myofibers was mediated by scavenger receptor class A (SR-A), which binds negatively charged ligands. However, the mechanism by which the naked PMOs are taken up into fibers is poorly understood. In this study, we found that PMO uptake and exon-skipping efficiency were promoted in dystrophin-deficient myotubes via endocytosis through a caveolin-dependent pathway. Interestingly, SR-A1 was upregulated and localized in juxtaposition with caveolin-3 in these myotubes and promoted PMO-induced exon skipping. SR-A1 was also upregulated in the skeletal muscle of mdx52 mice and mediated PMO uptake. In addition, PMOs with neutral backbones had negative zeta potentials owing to their nucleobase compositions and interacted with SR-A1. In conclusion, PMOs with negative zeta potential were taken up into dystrophin-deficient skeletal muscle by upregulated SR-A1. Therefore, the development of a drug delivery system targeting SR-A1 could lead to highly efficient exon-skipping therapies for DMD.
Collapse
|
43
|
Gao S, Lu A, Amra S, Guo P, Huard J. TIPE2 gene transfer with adeno-associated virus 9 ameliorates dystrophic pathology in mdx mice. Hum Mol Genet 2019; 28:1608-1619. [DOI: 10.1093/hmg/ddz001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/12/2018] [Accepted: 12/31/2018] [Indexed: 12/23/2022] Open
Affiliation(s)
- Shanshan Gao
- Department of Orthopedic Surgery, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Aiping Lu
- Department of Orthopedic Surgery, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO, USA
| | - Sarah Amra
- Department of Orthopedic Surgery, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Ping Guo
- Department of Orthopedic Surgery, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO, USA
| | - Johnny Huard
- Department of Orthopedic Surgery, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO, USA
| |
Collapse
|
44
|
Vita GL, Polito F, Oteri R, Arrigo R, Ciranni AM, Musumeci O, Messina S, Rodolico C, Di Giorgio RM, Vita G, Aguennouz M. Hippo signaling pathway is altered in Duchenne muscular dystrophy. PLoS One 2018; 13:e0205514. [PMID: 30304034 PMCID: PMC6179272 DOI: 10.1371/journal.pone.0205514] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/26/2018] [Indexed: 01/18/2023] Open
Abstract
Hippo signaling pathway is considered a key regulator of tissue homeostasis, cell proliferation, apoptosis and it is involved in cancer development. In skeletal muscle, YAP, a downstream target of the Hippo pathway, is an important player in myoblast proliferation, atrophy/hypertrophy regulation, and in mechano-trasduction, transferring mechanical signals into transcriptional responses. We studied components of Hippo pathway in muscle specimens from patients with Duchenne muscular dystrophy (DMD), Becker muscular dystrophy, limb-girdle muscular dystrophy type 2A and type 2B and healthy subjects. Only DMD muscles had decreased YAP1 protein expression, increased LATS1/2 kinase activity, low Survivin mRNA expression and high miR-21 expression. In light of our novel results, a schematic model is postulated: low levels of YOD1 caused by increased inhibition by miR-21 lead to an increase of LATS1/2 activity which in turn augments phosphorylation of YAP. Reduced amount of active YAP, which is also a target of increased miR-21, causes decreased nuclear expression of YAP-mediated target genes. Since it is known that YAP has beneficial roles in promoting tissue repair and regeneration after injury so that its activation may be therapeutically useful, our results suggest that some components of Hippo pathway could become novel therapeutic targets for DMD treatment.
Collapse
Affiliation(s)
- Gian Luca Vita
- Nemo Sud Clinical Centre for Neuromuscular Disorders, Messina, Italy
| | - Francesca Polito
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Rosaria Oteri
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Roberto Arrigo
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Anna Maria Ciranni
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Olimpia Musumeci
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Sonia Messina
- Nemo Sud Clinical Centre for Neuromuscular Disorders, Messina, Italy
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Carmelo Rodolico
- Nemo Sud Clinical Centre for Neuromuscular Disorders, Messina, Italy
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Rosa Maria Di Giorgio
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giuseppe Vita
- Nemo Sud Clinical Centre for Neuromuscular Disorders, Messina, Italy
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - M’Hammed Aguennouz
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
45
|
Taurine and Methylprednisolone Administration at Close Proximity to the Onset of Muscle Degeneration Is Ineffective at Attenuating Force Loss in the Hind-Limb of 28 Days Mdx Mice. Sports (Basel) 2018; 6:sports6040109. [PMID: 30274388 PMCID: PMC6315906 DOI: 10.3390/sports6040109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/26/2018] [Accepted: 09/28/2018] [Indexed: 01/01/2023] Open
Abstract
An increasing number of studies have shown supplementation with the amino acid taurine to have promise in ameliorating dystrophic symptoms in the mdx mouse model of Duchenne Muscular Dystrophy (DMD). Here we build on this limited body of work by investigating the efficacy of supplementing mdx mice with taurine postnatally at a time suggestive of when dystrophic symptoms would begin to manifest in humans, and when treatments would likely begin. Mdx mice were given either taurine (mdx tau), the steroid alpha methylprednisolone (PDN), or tau + PDN (mdx tau + PDN). Taurine (2.5% wt/vol) enriched drinking water was given from 14 days and PDN (1 mg/kg daily) from 18 days. Wild-type (WT, C57BL10/ScSn) mice were used as a control to mdx mice to represent healthy tissue. In the mdx mouse, peak damage occurs at 28 days, and in situ assessment of contractile characteristics showed that taurine, PDN, and the combined taurine + PDN treatment was ineffective at attenuating the force loss experienced by mdx mice. Given the benefits of taurine as well as methylprednisolone reported previously, when supplemented at close proximity to the onset of severity muscle degeneration these benefits are no longer apparent.
Collapse
|
46
|
Iannotti FA, Pagano E, Moriello AS, Alvino FG, Sorrentino NC, D'Orsi L, Gazzerro E, Capasso R, De Leonibus E, De Petrocellis L, Di Marzo V. Effects of non-euphoric plant cannabinoids on muscle quality and performance of dystrophic mdx mice. Br J Pharmacol 2018; 176:1568-1584. [PMID: 30074247 DOI: 10.1111/bph.14460] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 07/08/2018] [Accepted: 07/12/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Duchenne muscular dystrophy (DMD), caused by dystrophin deficiency, results in chronic inflammation and irreversible skeletal muscle degeneration. Moreover, the associated impairment of autophagy greatly contributes to the aggravation of muscle damage. We explored the possibility of using non-euphoric compounds present in Cannabis sativa, cannabidiol (CBD), cannabidivarin (CBDV) and tetrahydrocannabidivarin (THCV), to reduce inflammation, restore functional autophagy and positively enhance muscle function in vivo. EXPERIMENTAL APPROACH Using quantitative PCR, western blots and [Ca2+ ]i measurements, we explored the effects of CBD and CBDV on the differentiation of both murine and human skeletal muscle cells as well as their potential interaction with TRP channels. Male dystrophic mdx mice were injected i.p. with CBD or CBDV at different stages of the disease. After treatment, locomotor tests and biochemical analyses were used to evaluate their effects on inflammation and autophagy. KEY RESULTS CBD and CBDV promoted the differentiation of murine C2C12 myoblast cells into myotubes by increasing [Ca2+ ]i mostly via TRPV1 activation, an effect that undergoes rapid desensitization. In primary satellite cells and myoblasts isolated from healthy and/or DMD donors, not only CBD and CBDV but also THCV promoted myotube formation, in this case, mostly via TRPA1 activation. In mdx mice, CBD (60 mg·kg-1 ) and CBDV (60 mg·kg-1 ) prevented the loss of locomotor activity, reduced inflammation and restored autophagy. CONCLUSION AND IMPLICATIONS We provide new insights into plant cannabinoid interactions with TRP channels in skeletal muscle, highlighting a potential opportunity for novel co-adjuvant therapies to prevent muscle degeneration in DMD patients. LINKED ARTICLES This article is part of a themed section on 8th European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc.
Collapse
Affiliation(s)
- Fabio Arturo Iannotti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli (NA), Italy
| | - Ester Pagano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Aniello Schiano Moriello
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli (NA), Italy
| | | | | | - Luca D'Orsi
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | | | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Elvira De Leonibus
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Institute of Genetics and Biophysics (IGB), National Research Council, Naples, Italy
| | - Luciano De Petrocellis
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli (NA), Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli (NA), Italy
| |
Collapse
|
47
|
Abstract
Duchenne muscular dystrophy (DMD) is the most common form of muscular dystrophy in childhood. Mutations of the DMD gene destabilize the dystrophin associated glycoprotein complex in the sarcolemma. Ongoing mechanical stress leads to unregulated influx of calcium ions into the sarcoplasm, with activation of proteases, release of proinflammatory cytokines, and mitochondrial dysfunction. Cumulative damage and reparative failure leads to progressive muscle necrosis, fibrosis, and fatty replacement. Although there is presently no cure for DMD, scientific advances have led to many potential disease-modifying treatments, including dystrophin replacement therapies, upregulation of compensatory proteins, anti-inflammatory agents, and other cellular targets. Recently approved therapies include ataluren for stop codon read-through and eteplirsen for exon 51 skipping of eligible individuals. The purpose of this chapter is to summarize the clinical features of DMD, to describe current outcome measures used in clinical studies, and to highlight new emerging therapies for affected individuals.
Collapse
|
48
|
Péladeau C, Adam NJ, Jasmin BJ. Celecoxib treatment improves muscle function in mdx mice and increases utrophin A expression. FASEB J 2018; 32:5090-5103. [PMID: 29723037 DOI: 10.1096/fj.201800081r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a genetic and progressive neuromuscular disorder caused by mutations and deletions in the dystrophin gene. Although there is currently no cure, one promising treatment for DMD is aimed at increasing endogenous levels of utrophin A to compensate functionally for the lack of dystrophin. Recent studies from our laboratory revealed that heparin treatment of mdx mice activates p38 MAPK, leading to an upregulation of utrophin A expression and improvements in the dystrophic phenotype. Based on these findings, we sought to determine the effects of other potent p38 activators, including the cyclooxygenase (COX)-2 inhibitor celecoxib. In this study, we treated 6-wk-old mdx mice for 4 wk with celecoxib. Immunofluorescence analysis of celecoxib-treated mdx muscles revealed a fiber type switch from a fast to a slower phenotype along with beneficial effects on muscle fiber integrity. In agreement, celecoxib-treated mdx mice showed improved muscle strength. Celecoxib treatment also induced increases in utrophin A expression ranging from ∼1.5- to 2-fold in tibialis anterior diaphragm and heart muscles. Overall, these results highlight that activation of p38 in muscles can indeed lead to an attenuation of the dystrophic phenotype and reveal the potential role of celecoxib as a novel therapeutic agent for the treatment of DMD.-Péladeau, C., Adam, N. J., Jasmin, B. J. Celecoxib treatment improves muscle function in mdx mice and increases utrophin A expression.
Collapse
Affiliation(s)
- Christine Péladeau
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Nadine J Adam
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
49
|
Cordova G, Negroni E, Cabello-Verrugio C, Mouly V, Trollet C. Combined Therapies for Duchenne Muscular Dystrophy to Optimize Treatment Efficacy. Front Genet 2018; 9:114. [PMID: 29692797 PMCID: PMC5902687 DOI: 10.3389/fgene.2018.00114] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/22/2018] [Indexed: 01/01/2023] Open
Abstract
Duchene Muscular Dystrophy (DMD) is the most frequent muscular dystrophy and one of the most severe due to the absence of the dystrophin protein. Typical pathological features include muscle weakness, muscle wasting, degeneration, and inflammation. At advanced stages DMD muscles present exacerbated extracellular matrix and fat accumulation. Recent progress in therapeutic approaches has allowed new strategies to be investigated, including pharmacological, gene-based and cell-based therapies. Gene and cell-based therapies are still limited by poor targeting and low efficiency in fibrotic dystrophic muscle, therefore it is increasingly evident that future treatments will have to include “combined therapies” to reach maximal efficiency. The scope of this mini-review is to provide an overview of the current literature on such combined therapies for DMD. By “combined therapies” we mean those that include both a therapy to correct the genetic defect and an additional one to address one of the secondary pathological features of the disease. In this mini-review, we will not provide a comprehensive view of the literature on therapies for DMD, since many such reviews already exist, but we will focus on the characteristics, efficiency, and potential of such combined therapeutic strategies that have been described so far for DMD.
Collapse
Affiliation(s)
- Gonzalo Cordova
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, Paris, France
| | - Elisa Negroni
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, Paris, France
| | - Claudio Cabello-Verrugio
- Laboratorio de Patologías Musculares, Fragilidad y Envejecimiento, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Vincent Mouly
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, Paris, France
| | - Capucine Trollet
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, Paris, France
| |
Collapse
|
50
|
Insights into the Pathogenic Secondary Symptoms Caused by the Primary Loss of Dystrophin. J Funct Morphol Kinesiol 2017. [DOI: 10.3390/jfmk2040044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|