1
|
Vasista P, Tolufase T, Firi P, Mistry M. Incidental finding of adrenal calcifications leading to the diagnosis of lysosomal acid lipasedeficiency (Wolman disease) in a neonate. BMJ Case Rep 2025; 18:e265278. [PMID: 40345678 DOI: 10.1136/bcr-2025-265278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025] Open
Abstract
A term newborn delivered by vaginal forceps was assessed on day 2 of life after parents noticed clicking sounds from the chest when handling the baby. Clinical examination showed no signs of distress, but chest X-ray revealed significant bilateral calcification over both kidneys. Further tests on day 3, including abdominal ultrasound, confirmed bilateral adrenal calcifications. Although initial imaging suggested possible congenital infections, particularly cytomegalovirus (CMV), urine testing for CMV was negative. Subsequent blood tests and enzyme assays showed undetectable lysosomal acid lipase activity, confirming the diagnosis of lysosomal acid lipase deficiency by day 12 of life before the onset of typical symptoms of the disease.
Collapse
Affiliation(s)
- Pooja Vasista
- Paediatrics, Burton District Hospital, Burton upon Trent, UK
| | | | - Promise Firi
- Paediatrics, Burton District Hospital, Burton upon Trent, UK
| | - Mikesh Mistry
- Radiology, Burton District Hospital, Burton upon Trent, UK
| |
Collapse
|
2
|
de las Heras J, Almohalla C, Blasco-Alonso J, Bourbon M, Couce ML, de Castro López MJ, García Jiménez MC, Gil Ortega D, González-Diéguez L, Meavilla S, Moreno-Álvarez A, Pastor-Rosado J, Sánchez-Pintos P, Serrano-Gonzalo I, López E, Valdivielso P, Yahyaoui R, Quintero J. Practical Recommendations for the Diagnosis and Management of Lysosomal Acid Lipase Deficiency with a Focus on Wolman Disease. Nutrients 2024; 16:4309. [PMID: 39770929 PMCID: PMC11678757 DOI: 10.3390/nu16244309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/03/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Lysosomal acid lipase deficiency (LAL-D) is an ultra-rare lysosomal storage disease with two distinct phenotypes, an infantile-onset form (formerly Wolman disease) and a later-onset form (formerly cholesteryl ester storage disease). The objective of this narrative review is to examine the most important aspects of the diagnosis and treatment of LAL-D and to provide practical expert recommendations. The infantile-onset form occurs in the first weeks of life and is characterized by malnourishment and failure to thrive due to gastrointestinal impairment (vomiting, diarrhea, malabsorption), as well as systemic inflammation, hepatosplenomegaly, and adrenal calcifications. Mortality is close to 100% before one year of life in the absence of specific treatment. The later-onset form can be diagnosed in childhood or adulthood and is characterized by chronic liver injury and/or lipid profile alterations. When LAL-D is suspected, enzyme activity should be determined to confirm the diagnosis, with analysis from a dried blood spot sample being the quickest and most reliable method. In infantile-onset LAL-D, the initiation of enzyme replacement therapy (sebelipase α) and careful nutritional management with a low-lipid diet is very urgent, as prognosis is directly linked to the early initiation of specific treatment. In recent years, our knowledge of the management of LAL-D has increased considerably, with improvements regarding the initial enzyme replacement therapy dose and careful nutritional treatment with a low-lipid diet to decrease lipid deposition and systemic inflammation, leading to better outcomes. In this narrative review we offer a quick guide for the initial management of infantile-onset LAL-D.
Collapse
Affiliation(s)
- Javier de las Heras
- Division of Pediatric Metabolism, Cruces University Hospital, CIBER-ER, Metab-ERN, University of the Basque Country (UPV/EHU), Biobizkaia Health Research Institute, 48903 Bilbao, Spain
| | - Carolina Almohalla
- Unidad de Hepatología, Hospital Universitario Río Hortega, 47012 Valladolid, Spain
| | - Javier Blasco-Alonso
- Unidad de Diagnóstico y Tratamiento de Enfermedades Metabólicas Hereditarias, UGC Pediatría, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Mafalda Bourbon
- Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde e Prevenção de Doenças não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
- BioISI, Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1649-004 Lisboa, Portugal
| | - Maria-Luz Couce
- Metabolic Unit, Department of Forensic Sciences, Pathology, Gynecology and Obstetrics, Pediatrics, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, CIBERER, MetabERN, 15706 Santiago de Compostela, Spain
| | - María José de Castro López
- Willink Biochemical Genetics Unit, St Mary’s Hospital, Manchester University Foundation Trust, University of Manchester, Manchester M13 9WL, UK
| | - Mª Concepción García Jiménez
- NeuroMetabolic Unit, Pediatría, Hospital Universitario Miguel Servet, Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| | - David Gil Ortega
- Unidad de Gastroenterología, Hepatología y Nutrición Pediátrica, Hospital Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Luisa González-Diéguez
- Liver Unit, Division of Gastroenterology and Hepatology, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Silvia Meavilla
- Metabolic Unit, Gastroenterology, Hepatology and Nutrition Department, Sant Joan de Déu Hospital, 08950 Barcelona, Spain
| | - Ana Moreno-Álvarez
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Department of Pediatrics, A Coruña University Hospital, 15006 A Coruña, Spain
| | - José Pastor-Rosado
- Lipid Unit, Department of Pediatrics, Hospital General Universitario de Elche, Universidad Miguel Hernandez de Elche, 03202 Elche, Spain
| | - Paula Sánchez-Pintos
- Metabolic Unit, Department of Forensic Sciences, Pathology, Gynecology and Obstetrics, Pediatrics, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, CIBERER, MetabERN, 15706 Santiago de Compostela, Spain
| | - Irene Serrano-Gonzalo
- Fundación Española Para el Estudio y Terapéutica de la Enfermedad de Gaucher y Otras Lisosomales (FEETEG), 50009 Zaragoza, Spain
- GIIS-012 Group, Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| | - Eduardo López
- Spanish LAL-D Patient Organization, 08918 Badalona, Spain
| | - Pedro Valdivielso
- Unidad de Lípidos, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29010 Málaga, Spain
| | - Raquel Yahyaoui
- Clinical Laboratory, Laboratory of Inherited Metabolic Disorders, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga IBIMA-Plataforma BIONAND, 29590 Málaga, Spain
| | - Jesús Quintero
- Pediatric Hepatology and Liver Transplant Unit, Department of Pediatrics, ERN Rare Liver ERN TransplantChild, Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
3
|
Zhang JH, Lin AP, Zhang L, Ruan DD, Gao MZ, Chen Q, Yu HP, Liao LS, Lin XF, Fang ZT, Lin F, Lu SY, Luo JW, Zheng XL, Chen MS. Pedigree Analysis of Nonclassical Cholesteryl Ester Storage Disease with Dominant Inheritance in a LIPA I378T Heterozygous Carrier. Dig Dis Sci 2024; 69:2109-2122. [PMID: 38564148 DOI: 10.1007/s10620-024-08395-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Cholesterol ester storage disorder (CESD; OMIM: 278,000) was formerly assumed to be an autosomal recessive allelic genetic condition connected to diminished lysosomal acid lipase (LAL) activity due to LIPA gene abnormalities. CESD is characterized by abnormal liver function and lipid metabolism, and in severe cases, liver failure can occur leading to death. In this study, one Chinese nonclassical CESD pedigree with dominant inheritance was phenotyped and analyzed for the corresponding gene alterations. METHODS Seven males and eight females from nonclassical CESD pedigree were recruited. Clinical features and LAL activities were documented. Whole genome Next-generation sequencing (NGS) was used to screen candidate genes and mutations, Sanger sequencing confirmed predicted mutations, and qPCR detected LIPA mRNA expression. RESULTS Eight individuals of the pedigree were speculatively thought to have CESD. LAL activity was discovered to be lowered in four living members of the pedigree, but undetectable in the other four deceased members who died of probable hepatic failure. Three of the four living relatives had abnormal lipid metabolism and all four had liver dysfunctions. By liver biopsy, the proband exhibited diffuse vesicular fatty changes in noticeably enlarged hepatocytes and Kupffer cell hyperplasia. Surprisingly, only a newly discovered heterozygous mutation, c.1133T>C (p. Ile378Thr) on LIPA, was found by gene sequencing in the proband. All living family members who carried the p.I378T variant displayed reduced LAL activity. CONCLUSIONS Phenotypic analyses indicate that this may be an autosomal dominant nonclassical CESD pedigree with a LIPA gene mutation.
Collapse
Affiliation(s)
- Jian-Hui Zhang
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Ai-Ping Lin
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Digestive, Fujian Provincial Hospital, Fuzhou, China
| | - Li Zhang
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Nephrology, Fujian Provincial Hospital, Fuzhou, China
| | - Dan-Dan Ruan
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Mei-Zhu Gao
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Nephrology, Fujian Provincial Hospital, Fuzhou, China
| | - Qian Chen
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Hong-Ping Yu
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Li-Sheng Liao
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Hematology, Fujian Provincial Hospital, Fuzhou, China
| | - Xin-Fu Lin
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Pediatrics, Fujian Provincial Hospital, Fuzhou, China
| | - Zhu-Ting Fang
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Fan Lin
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Geriatric Medicine, Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, China
| | - Shi-Yun Lu
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Digestive, Fujian Provincial Hospital, Fuzhou, China
| | - Jie-Wei Luo
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China.
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Fuzhou, China.
| | - Xiao-Ling Zheng
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Digestive Endoscopy, Fujian Provincial Hospital, Fuzhou, China
| | - Meng-Shi Chen
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Digestive, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
4
|
Candolo ACR, Cançado GGL, Zitelli PM, Mazo DFDC, Oliveira CPM, Cunha-Silva M, Greca RD, Araújo RC, Alustau ASPT, Couto CA, Nardelli MJ, de Lima RGR, Farias AQ, Carrilho FJ, Pessôa MG. Lysosomal Acid Lipase Deficiency in the Etiological Investigation of Cryptogenic Liver Disease in Adults: A Multicenter Brazilian Study. GASTROENTEROLOGY INSIGHTS 2023; 14:564-574. [DOI: 10.3390/gastroent14040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
Background: Lysosomal acid lipase deficiency (LAL-D) is a rare genetic disease associated with the deregulation of lipid metabolism, leading to atherosclerosis, dyslipidemia, and hepatic steatosis, with potential progression to cirrhosis. Our study aims to assess the role of LAL-D in the setting of cryptogenic liver disease. Methods: A large multicenter cross-sectional study was conducted, which included 135 patients with cryptogenic liver disease from four liver centers in Brazil. All patients were submitted to the investigation of LAL enzyme activity on dried blood spots. Results: Three patients (two female) presented levels of LAL below the reference limit, compatible with LAL-D (2.2%). They had a mean age of 43.9 ± 10.1 years and a mean body-mass index (BMI) of 23.1 ± 1.7 kg/m2. The mean serum levels of glucose, HDL-cholesterol, and triglycerides were 89.7 ± 3.2, 21.7 ± 3.2, and 206.7 ± 25.5 mg/dL, respectively. All patients had duodenal polyposis with xanthomatous macrophages. LAL-D investigation should be considered for individuals with chronic liver disease of an unknown etiology, especially with a normal BMI, high triglycerides, and low-HDL-cholesterol levels. The identification of LAL-D patients is extremely important since enzyme replacement therapy with Sebelipase Alfa significantly increases their survival.
Collapse
Affiliation(s)
- Aline Coelho Rocha Candolo
- Division of Clinical Gastroenterology and Hepatology, Department of Gastroenterology, Hospital das Clínicas, University of São Paulo School of Medicine (HCFMUSP), São Paulo 05403-900, Brazil
| | - Guilherme Grossi Lopes Cançado
- Instituto Alfa de Gastroenterologia, Hospital das Clínicas, Federal University of Minas Gerais (UFMG), Belo Horizonte 30130-100, Brazil
| | - Patricia Momoyo Zitelli
- Division of Clinical Gastroenterology and Hepatology, Department of Gastroenterology, Hospital das Clínicas, University of São Paulo School of Medicine (HCFMUSP), São Paulo 05403-900, Brazil
| | - Daniel Ferraz de Campos Mazo
- Division of Clinical Gastroenterology and Hepatology, Department of Gastroenterology, Hospital das Clínicas, University of São Paulo School of Medicine (HCFMUSP), São Paulo 05403-900, Brazil
- Division of Gastroenterology (Gastrocentro), School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-894, Brazil
| | - Claudia Pinto Marques Oliveira
- Division of Clinical Gastroenterology and Hepatology, Department of Gastroenterology, Hospital das Clínicas, University of São Paulo School of Medicine (HCFMUSP), São Paulo 05403-900, Brazil
| | - Marlone Cunha-Silva
- Division of Gastroenterology (Gastrocentro), School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-894, Brazil
| | - Raquel Dias Greca
- Division of Gastroenterology (Gastrocentro), School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-894, Brazil
| | - Roberta Chaves Araújo
- Gastroenterology Division, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto 14049-900, Brazil
| | | | - Claudia Alves Couto
- Instituto Alfa de Gastroenterologia, Hospital das Clínicas, Federal University of Minas Gerais (UFMG), Belo Horizonte 30130-100, Brazil
| | - Mateus Jorge Nardelli
- Instituto Alfa de Gastroenterologia, Hospital das Clínicas, Federal University of Minas Gerais (UFMG), Belo Horizonte 30130-100, Brazil
| | - Roque Gabriel Rezende de Lima
- Division of Clinical Gastroenterology and Hepatology, Department of Gastroenterology, Hospital das Clínicas, University of São Paulo School of Medicine (HCFMUSP), São Paulo 05403-900, Brazil
| | - Alberto Queiroz Farias
- Division of Clinical Gastroenterology and Hepatology, Department of Gastroenterology, Hospital das Clínicas, University of São Paulo School of Medicine (HCFMUSP), São Paulo 05403-900, Brazil
| | - Flair José Carrilho
- Division of Clinical Gastroenterology and Hepatology, Department of Gastroenterology, Hospital das Clínicas, University of São Paulo School of Medicine (HCFMUSP), São Paulo 05403-900, Brazil
| | - Mário Guimarães Pessôa
- Division of Clinical Gastroenterology and Hepatology, Department of Gastroenterology, Hospital das Clínicas, University of São Paulo School of Medicine (HCFMUSP), São Paulo 05403-900, Brazil
| |
Collapse
|
5
|
Guerreiro G, Deon M, Vargas CR. Evaluation of biochemical profile and oxidative damage to lipids and proteins in patients with lysosomal acid lipase deficiency. Biochem Cell Biol 2023; 101:294-302. [PMID: 37042460 DOI: 10.1139/bcb-2022-0330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023] Open
Abstract
Lysosomal acid lipase deficiency (LALD) is an inborn error of metabolism that lacks satisfactory treatment, which leads to the development of severe hepatic and cardiac complications and may even lead to death. In this sense, knowledge of the mechanisms involved in the pathophysiology of this disorder becomes essential to allow the search for new therapeutic strategies. There are no studies in the literature investigating the role of reactive species and inflammatory processes in the pathophysiology of this disorder. Therefore, the aim of this work was to investigate parameters of oxidative and inflammatory stress in LALD patients. In this work, we obtained results that demonstrate that LALD patients are susceptible to oxidative stress caused by an increase in the production of free radicals, observed by the increase of 2-7-dihydrodichlorofluorescein. The decrease in sulfhydryl content reflects oxidative damage to proteins, as well as a decrease in antioxidant defenses. Likewise, the increase in urinary levels of di-tyrosine observed also demonstrates oxidative damage to proteins. Furthermore, the determination of chitotriosidase activity in the plasma of patients with LALD was significantly higher, suggesting a pro-inflammatory state. An increase in plasma oxysterol levels was observed in patients with LALD, indicating an important relationship between this disease and cholesterol metabolism and oxidative stress. Also, we observed in LALD patients increased levels of nitrate production. The positive correlation found between oxysterol levels and activity of chitotriosidase in these patients indicates a possible link between the production of reactive species and inflammation. In addition, an increase in lipid profile biomarkers such as total and low-density lipoprotein cholesterol were demonstrated in the patients, which reinforces the involvement of cholesterol metabolism. Thus, we can assume that, in LALD, oxidative and nitrosative damage, in addition to inflammatory process, play an important role in its evolution and future clinical manifestations. In this way, we can suggest that the study of the potential benefit of the use of antioxidant and anti-inflammatory substances as an adjuvant tool in the treatment will be important, which should be associated with the already recommended therapy.
Collapse
Affiliation(s)
- Gilian Guerreiro
- Faculdade de Farmácia, UFRGS, Porto Alegre 90610-000, RS, Brasil
- Serviço de Genética Médica, HCPA, UFRGS, Rua Ramiro Barcelos, Porto Alegre, 90035-903, RS, Brasil
| | - Marion Deon
- Faculdade de Farmácia, UFRGS, Porto Alegre 90610-000, RS, Brasil
- Serviço de Genética Médica, HCPA, UFRGS, Rua Ramiro Barcelos, Porto Alegre, 90035-903, RS, Brasil
| | - Carmen Regla Vargas
- Faculdade de Farmácia, UFRGS, Porto Alegre 90610-000, RS, Brasil
- Serviço de Genética Médica, HCPA, UFRGS, Rua Ramiro Barcelos, Porto Alegre, 90035-903, RS, Brasil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, UFRGS, Rua Ramiro Barcelos, Porto Alegre, 90035-000, RS, Brasil
- Programa de Pós-Graduação em Ciências Farmacêuticas, UFRGS, Porto Alegre, 90610-000, RS, Brasil
| |
Collapse
|
6
|
Elaraby NM, Galal ER, Abdel-Hamid M, Elbendary HM, Elbadry M, Mekkawy MK, Ashaat NA, Mounir SM, Ashaat EA. First LIPA Mutational Analysis in Egyptian Patients Reveals One Novel Variant: Wolman Disease. J Mol Neurosci 2023; 73:598-607. [PMID: 37470904 PMCID: PMC10517033 DOI: 10.1007/s12031-023-02139-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/23/2023] [Indexed: 07/21/2023]
Abstract
Lysosomal acid lipase (LAL) is a necessary enzyme for the hydrolysis of both triglycerides (TGs) and cholesteryl esters (CEs) in the lysosome. Deficiency of this enzyme encoded by the lipase A (LIPA) gene leads to LAL deficiency (LAL-D). A severe disease subtype of LAL-D is known as Wolman disease (WD), present with diarrhea, hepatosplenomegaly, and adrenal calcification. Untreated patients do not survive more than a year. The aim of this study was to assess the clinical and molecular characterizations of WD patients in Egypt. A total of seven patients (from five unrelated Egyptian families) were screened by targeted next-generation sequencing (NGS), and the co-segregation of causative variants was analyzed using Sanger sequencing. Furthermore, multiple in silico analyses were performed to assess the pathogenicity of the candidate variants. Overall, we identified three diseases causing variants harbored in the LIPA gene. One of these variants is a novel missense variant (NM_000235.4: c.1122 T > G; p. His374Gln), which was classified as a likely pathogenic variant. All variants were predicted to be disease causing using in silico analyses. Our findings expand the spectrum of variants involved in WD which may help to investigate phenotype-genotype correlation and assist genetic counseling. To the best of our knowledge, this is the first clinico-genetic study carried out on Egyptian patients affected with WD.
Collapse
Affiliation(s)
- Nesma M Elaraby
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt.
| | - Eman Reda Galal
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Mohamed Abdel-Hamid
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Hasnaa M Elbendary
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Mohamed Elbadry
- Associate Professor of Endemic Medicine Department, Faculty of Medicine, Helwan University, Cairo, Egypt
| | - Mona K Mekkawy
- Human Cytogenetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Neveen A Ashaat
- Professor of Genetics and Biotechnology, Ain Shams University, Cairo, Egypt
| | | | - Engy A Ashaat
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
7
|
Burton BK. Response to Drs. Strong and Ficicioglu. J Pediatr Gastroenterol Nutr 2023; 76:e89. [PMID: 36693023 PMCID: PMC10171283 DOI: 10.1097/mpg.0000000000003703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Barbara K. Burton
- From the Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL
| |
Collapse
|
8
|
Suarez-Zamora DA, Rojas-Rojas MM, Ordoñez-Guerrero F, Mugnier-Quijano J, Lopez-Panqueva R. Pediatric patients with lysosomal acid lipase deficiency. REVISTA ESPANOLA DE PATOLOGIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ANATOMIA PATOLOGICA Y DE LA SOCIEDAD ESPANOLA DE CITOLOGIA 2023; 56:113-118. [PMID: 37061237 DOI: 10.1016/j.patol.2021.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/26/2021] [Accepted: 03/21/2021] [Indexed: 04/17/2023]
Abstract
Lysosomal acid lipase (LAL) deficiency is a rare, autosomal recessive disease caused by mutations in the LIPA gene, which produces cholesteryl ester and triglyceride accumulation predominantly in hepatocytes, adrenal glands, and gastrointestinal tract. We describe two new cases occurring in siblings, aged 5 and 7 years, who presented with hepatomegaly, dyslipidemia, and abnormal liver function. Percutaneous liver biopsy revealed portal inflammation, hypertrophic Kupffer cells with a foamy appearance and microvesicular steatosis with fibrosis. Immunostaining for lysosomal markers, cathepsin D and LAMP1 reflected the lysosomal nature of the lipid vacuoles. After enzymatic confirmation, enzyme replacement therapy was initiated for both siblings. Follow-up transaminase levels and lipid profiles showed a notable decrease in AST and ALT and a slight increase in HDL cholesterol. It is crucial to increase awareness of this rare condition among clinicians and pathologists. The expression of lysosomal markers around the lipid vacuoles might help diagnose LAL deficiency in pediatric patients.
Collapse
Affiliation(s)
- David A Suarez-Zamora
- Department of Pathology and Laboratories, Fundación Santa Fe de Bogotá, Bogotá, DC, Colombia
| | - Maria M Rojas-Rojas
- Department of Diagnostic Imaging, Fundación Santa Fe de Bogotá, Bogotá, DC, Colombia
| | | | | | - Rocio Lopez-Panqueva
- Department of Pathology and Laboratories, Fundación Santa Fe de Bogotá, Bogotá, DC, Colombia; School of Medicine, Universidad de los Andes, Bogotá, DC, Colombia.
| |
Collapse
|
9
|
Giraldo P, López de Frutos L, Cebolla JJ. Recommendations for overcoming challenges in the diagnosis of lysosomal acid lipase deficiency. Expert Opin Orphan Drugs 2022. [DOI: 10.1080/21678707.2022.2131393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pilar Giraldo
- Hematology. Hospital Quironsalud. Zaragoza. SPAIN
- Fundación Española para el Estudio y Terapéutica de la Enfermedad de Gaucher y otras lisosomales (FEETEG). Zaragoza. SPAIN
- Grupo de Investigación en Enfermedades Metabólicas y Hematológicas Raras (GIIS-012). Instituto de Investigación Sanitaria Aragón (ISS Aragón). SPAIN
| | - Laura López de Frutos
- Fundación Española para el Estudio y Terapéutica de la Enfermedad de Gaucher y otras lisosomales (FEETEG). Zaragoza. SPAIN
- Grupo de Investigación en Enfermedades Metabólicas y Hematológicas Raras (GIIS-012). Instituto de Investigación Sanitaria Aragón (ISS Aragón). SPAIN
| | - Jorge J Cebolla
- Grupo de Investigación en Enfermedades Metabólicas y Hematológicas Raras (GIIS-012). Instituto de Investigación Sanitaria Aragón (ISS Aragón). SPAIN
- Departamento de Bioquímica, Biología Molecular y Celular. Universidad de Zaragoza. SPAIN
| |
Collapse
|
10
|
Sustar U, Groselj U, Trebusak Podkrajsek K, Mlinaric M, Kovac J, Thaler M, Drole Torkar A, Skarlovnik A, Battelino T, Hovnik T. Early Discovery of Children With Lysosomal Acid Lipase Deficiency With the Universal Familial Hypercholesterolemia Screening Program. Front Genet 2022; 13:936121. [PMID: 35903350 PMCID: PMC9314654 DOI: 10.3389/fgene.2022.936121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/31/2022] [Indexed: 01/28/2023] Open
Abstract
Lysosomal acid lipase deficiency (LAL-D) is an autosomal recessive lysosomal storage disorder, caused by homozygous or compound heterozygous pathogenic variants in the LIPA gene. Clinically, LAL-D is under- and misdiagnosed, due to similar clinical and laboratory findings with other cholesterol or liver misfunctions. As a part of the Slovenian universal familial hypercholesterolemia (FH) screening, LAL-D is screened as a secondary condition among other rare dyslipidemias manifesting with hypercholesterolemia. Out of 669 children included, three were positive for a homozygous disease-causing splicing variant NM_000235.4: c.894G > A (NP_000226.2:p. Gln298Gln) in the LIPA gene (NG_008194.1). The mean age by the diagnosis of LAL-D was 9.8 ± 0.9 years. Moreover, all three LAL-D-positive children had an important elevation of transaminases and decreased activity of the lysosomal acid lipase enzyme. Abdominal MRI in all children detected an enlarged liver but a normal-sized spleen. In conclusion, universal FH screening algorithms with the confirmatory genetic analysis in the pediatric population enable also rare dyslipidemia detection at an early age. An important clinical criterion for differentiation between FH and the LAL-D-positive children has elevated transaminase levels (AST and ALT). In all three LAL-D positive children, an improvement in cholesterol and transaminase levels and steatosis of the liver has been seen after early treatment initiation.
Collapse
Affiliation(s)
- Ursa Sustar
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Urh Groselj
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA, United States
- *Correspondence: Urh Groselj, ; Tinka Hovnik,
| | - Katarina Trebusak Podkrajsek
- Clinical Institute of Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, Institute of Biochemistry and Molecular Genetics, University of Ljubljana, Ljubljana, Slovenia
| | - Matej Mlinaric
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Jernej Kovac
- Clinical Institute of Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Martin Thaler
- Department of Radiology, University Children’s Hospital Ljubljana, Ljubljana, Slovenia
| | - Ana Drole Torkar
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Ajda Skarlovnik
- Department of Vascular Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tadej Battelino
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tinka Hovnik
- Clinical Institute of Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, Institute of Biochemistry and Molecular Genetics, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Urh Groselj, ; Tinka Hovnik,
| |
Collapse
|
11
|
Bradić I, Kuentzel KB, Honeder S, Grabner GF, Vujić N, Zimmermann R, Birner-Gruenberger R, Kratky D. Off-target effects of the lysosomal acid lipase inhibitors Lalistat-1 and Lalistat-2 on neutral lipid hydrolases. Mol Metab 2022; 61:101510. [PMID: 35504532 PMCID: PMC9118473 DOI: 10.1016/j.molmet.2022.101510] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/11/2022] [Accepted: 04/27/2022] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES Lysosomal acid lipase (LAL) is the key enzyme, which degrades neutral lipids at an acidic pH in lysosomes. The role of LAL in various cellular processes has mostly been studied in LAL-knockout mice, which share phenotypical characteristics with humans suffering from LAL deficiency. In vitro, the cell-specific functions of LAL have been commonly investigated by using the LAL inhibitors Lalistat-1 and Lalistat-2. METHODS We performed lipid hydrolase activity assays and serine hydrolase-specific activity-based labeling combined with quantitative proteomics to investigate potential off-target effects of Lalistat-1 and -2. RESULTS Pharmacological LAL inhibition but not genetic loss of LAL impairs isoproterenol-stimulated lipolysis as well as neutral triglyceride and cholesteryl ester hydrolase activities. Apart from LAL, Lalistat-1 and -2 also inhibit major cytosolic lipid hydrolases responsible for lipid degradation in primary cells at neutral pH through off-target effects. Their binding to the active center of the enzymes leads to a decrease in neutral lipid hydrolase activities in cells overexpressing the respective enzymes. CONCLUSIONS Our findings are critically important since they demonstrate that commonly used concentrations of these inhibitors are not suitable to investigate the role of LAL-specific lipolysis in lysosomal function, signaling pathways, and autophagy. The interpretation of their effects on lipid metabolism should be taken with caution and the applied inhibitor concentrations in cell culture studies should not exceed 1 μM.
Collapse
Affiliation(s)
- Ivan Bradić
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Katharina B Kuentzel
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Sophie Honeder
- Diagnostic and Research Institute of Pathology, Medical University Graz, Graz, Austria
| | - Gernot F Grabner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Nemanja Vujić
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Robert Zimmermann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | - Ruth Birner-Gruenberger
- Diagnostic and Research Institute of Pathology, Medical University Graz, Graz, Austria; BioTechMed Graz, Graz, Austria; Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria.
| |
Collapse
|
12
|
Witeck CDR, Schmitz AC, de Oliveira JMD, Porporatti AL, De Luca Canto G, Pires MMDS. Lysosomal acid lipase deficiency in pediatric patients: a scoping review. J Pediatr (Rio J) 2022; 98:4-14. [PMID: 33964214 PMCID: PMC9432115 DOI: 10.1016/j.jped.2021.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Lysosomal acid lipase deficiency (LAL-D) is an underdiagnosed autosomal recessive disease with onset between the first years of life and adulthood. Early diagnosis is crucial for effective therapy and long-term survival. The objective of this article is to recognize warning signs among the clinical and laboratory characteristics of LAL-D in pediatric patients through a scope review. SOURCES Electronic searches in the Embase, PubMed, Livivo, LILACS, Web of Science, Scopus, Google Scholar, Open Gray, and ProQuest Dissertations and Theses databases. The dataset included observational studies with clinical and laboratory characteristics of infants, children and adolescents diagnosed with lysosomal acid lipase deficiency by enzyme activity testing or analysis of mutations in the lysosomal acid lipase gene (LIPA). The reference selection process was performed in two stages. The references were selected by two authors, and the data were extracted in June 2020. SUMMARY OF THE FINDINGS The initial search returned 1593 studies, and the final selection included 108 studies from 30 countries encompassing 206 patients, including individuals with Wolman disease and cholesteryl ester storage disease (CESD). The most prevalent manifestations in both spectra of the disease were hepatomegaly, splenomegaly, anemia, dyslipidemia, and elevated transaminases. CONCLUSIONS Vomiting, diarrhea, jaundice, and splenomegaly may be correlated, and may serve as a starting point for investigating LAL-D. Familial lymphohistiocytosis should be part of the differential diagnosis with LAL-D, and all patients undergoing upper gastrointestinal endoscopy should be submitted to intestinal biopsy.
Collapse
Affiliation(s)
- Camila da Rosa Witeck
- Universidade Federal de Santa Catarina, Programa de Pós-Graduação em Ciências Médicas, Florianópolis, SC, Brazil.
| | - Anne Calbusch Schmitz
- Universidade Federal de Santa Catarina, Programa de Pós-Graduação em Ciências Médicas, Florianópolis, SC, Brazil
| | - Júlia Meller Dias de Oliveira
- Universidade Federal de Santa Catarina, Centro Brasileiro de Pesquisas Baseadas em Evidências, Florianópolis, SC, Brazil
| | - André Luís Porporatti
- Universidade Federal de Santa Catarina, Centro Brasileiro de Pesquisas Baseadas em Evidências, Florianópolis, SC, Brazil
| | - Graziela De Luca Canto
- Universidade Federal de Santa Catarina, Centro Brasileiro de Pesquisas Baseadas em Evidências, Florianópolis, SC, Brazil
| | - Maria Marlene de Souza Pires
- Universidade Federal de Santa Catarina, Programa de Pós-Graduação em Ciências Médicas, Florianópolis, SC, Brazil; Universidade Federal de Santa Catarina, Laboratório de Pesquisa Clínica e Experimental- MENULab, Florianópolis, SC, Brazil; Universidade Federal de Santa Catarina, Departamento de Pediatria, Florianópolis, SC, Brazil
| |
Collapse
|
13
|
Demaret T, Lacaille F, Wicker C, Arnoux JB, Bouchereau J, Belloche C, Gitiaux C, Grevent D, Broissand C, Adjaoud D, Abi Warde MT, Plantaz D, Bekri S, de Lonlay P, Brassier A. Sebelipase alfa enzyme replacement therapy in Wolman disease: a nationwide cohort with up to ten years of follow-up. Orphanet J Rare Dis 2021; 16:507. [PMID: 34906190 PMCID: PMC8670257 DOI: 10.1186/s13023-021-02134-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/27/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Wolman disease (WD), the rapidly progressive phenotype of lysosomal acid lipase (LAL) deficiency, presents in neonates with failure to thrive and hepatosplenomegaly, and leads to multi-organ failure and death before 12 months of age. In clinical trials, enzyme replacement therapy (ERT) with sebelipase alfa led to improved survival, growth and biological parameters in WD patients followed up to 5 years. Long-term follow-up and health-related quality of life (HRQoL) evaluation are lacking. RESULTS We performed a nationwide, retrospective study of sebelipase alfa in WD patients. Five patients with abolished LAL activity and bi-allelic LIPA mutations were included with a median follow-up of 7 years (1-10). ERT was initiated at a median age of 1 month (0-4). Infusion tolerance was excellent on the long-term with only one patient requiring systematic pre-medication. Cholestyramine, fat-soluble vitamin supplements and a specific diet (high in medium-chain triglycerides and low in long-chain fatty acids) were prescribed. Liver function tests, plasma lipid profiles, fat-soluble vitamin levels and growth parameters improved. Three patients transiently exhibited a neuromyopathic phenotype (footdrop gait, waddling walk or muscle fatigue) but electromyography and muscle strength testing were normal. At last follow-up, all patients were alive with normal growth parameters and a satisfactory HRQoL, no patient had special education needs, and one patient required parenteral nutrition since an acute gastroenteritis. CONCLUSIONS Early ERT initiation allowed 100% survival with positive outcomes. Very long-term follow-up and hematopoietic stem cell transplantation while on ERT should be evaluated to strengthen the benefits of sebelipase alfa.
Collapse
Affiliation(s)
- Tanguy Demaret
- Pediatric Department, Cliniques universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium. .,Centre for Human Genetics, Institut de Pathologie et de Génétique, Gosselies, Belgium.
| | - Florence Lacaille
- Gastroenterology-Hepatology-Nutrition Unit, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (APHP), Université de Paris, Paris, France
| | - Camille Wicker
- Reference Center for Inherited Metabolic Diseases, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (APHP), Institut Imagine, Université de Paris, 149 Rue de Sèvres, 75015, Paris, France
| | - Jean-Baptiste Arnoux
- Reference Center for Inherited Metabolic Diseases, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (APHP), Institut Imagine, Université de Paris, 149 Rue de Sèvres, 75015, Paris, France
| | - Juliette Bouchereau
- Reference Center for Inherited Metabolic Diseases, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (APHP), Institut Imagine, Université de Paris, 149 Rue de Sèvres, 75015, Paris, France
| | - Claire Belloche
- Reference Center for Inherited Metabolic Diseases, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (APHP), Institut Imagine, Université de Paris, 149 Rue de Sèvres, 75015, Paris, France
| | - Cyril Gitiaux
- Paediatric Neurophysiology Department and Reference Center for Neuromuscular Diseases, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (APHP), Université de Paris, Paris, France
| | - David Grevent
- Paediatric Radiology Department, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris (APHP), Université de Paris, Paris, France
| | - Christine Broissand
- Pharmacy Department, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris (APHP), Université de Paris, Paris, France
| | - Dalila Adjaoud
- Pediatric Oncology and Hematology Department, CHU Grenoble Alpes, Grenoble, France
| | | | - Dominique Plantaz
- Pediatric Oncology and Hematology Department, CHU Grenoble Alpes, Grenoble, France
| | - Soumeya Bekri
- Metabolic Biochemistry Department, CHU de Rouen, INSERM U1245, Université de Rouen Normandie, Rouen, France
| | - Pascale de Lonlay
- Reference Center for Inherited Metabolic Diseases, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (APHP), Institut Imagine, Université de Paris, 149 Rue de Sèvres, 75015, Paris, France
| | - Anaïs Brassier
- Reference Center for Inherited Metabolic Diseases, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (APHP), Institut Imagine, Université de Paris, 149 Rue de Sèvres, 75015, Paris, France.
| |
Collapse
|
14
|
Han SL, Qian YC, Limbu SM, Wang J, Chen LQ, Zhang ML, Du ZY. Lipolysis and lipophagy play individual and interactive roles in regulating triacylglycerol and cholesterol homeostasis and mitochondrial form in zebrafish. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158988. [PMID: 34111526 DOI: 10.1016/j.bbalip.2021.158988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 12/26/2022]
Abstract
Neutral lipases-mediated lipolysis and acid lipases-moderated lipophagy are two main processes for degradation of lipid droplets (LDs). However, the individual and interactive roles of these metabolic pathways are not well known across vertebrates. This study explored the roles of lipolysis and lipophagy from the aspect of neutral and acid lipases in zebrafish. We established zebrafish strains deficient in either adipose triglyceride lipase (atgl-/-; AKO fish) or lysosomal acid lipase (lal-/-; LKO fish) respectively, and then inhibited lipolysis in the LKO fish and lipophagy in the AKO fish by feeding diets supplemented with the corresponding inhibitors Atglistatin and 3-Methyladenine, respectively. Both the AKO and LKO fish showed reduced growth, swimming activity, and oxygen consumption. The AKO fish did not show phenotypes in adipose tissue, but mainly accumulated triacylglycerol (TAG) in liver, also, they had large LDs in the hepatocytes, and did not stimulate lipophagy as a compensation response but maintained basal lipophagy. The LKO fish reduced total lipid accumulation in the body but had high cholesterol content in liver; also, they accumulated small LDs in the hepatocytes, and showed increased lipolysis, especially Atgl expression, as a compensatory mechanism. Simultaneous inhibition of lipolysis and lipophagy in zebrafish resulted in severe liver damage, with the potential to trigger mitophagy. Overall, our study illustrates that lipolysis and lipophagy perform individual and interactive roles in maintaining homeostasis of TAG and cholesterol metabolism. Furthermore, the interactive roles of lipolysis and lipophagy may be essential in regulating the functions and form of mitochondria.
Collapse
Affiliation(s)
- Si-Lan Han
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yu-Cheng Qian
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | | | - Jing Wang
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Li-Qiao Chen
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Mei-Ling Zhang
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhen-Yu Du
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
15
|
Tebani A, Sudrié-Arnaud B, Boudabous H, Brassier A, Anty R, Snanoudj S, Abergel A, Abi Warde MT, Bardou-Jacquet E, Belbouab R, Blanchet E, Borderon C, Bronowicki JP, Cariou B, Carette C, Dabbas M, Dranguet H, de Ledinghen V, Ferrières J, Guillaume M, Krempf M, Lacaille F, Larrey D, Leroy V, Musikas M, Nguyen-Khac E, Ouzan D, Perarnau JM, Pilon C, Ratzlu V, Thebaut A, Thevenot T, Tragin I, Triolo V, Vergès B, Vergnaud S, Bekri S. Large-scale screening of lipase acid deficiency in at risk population. Clin Chim Acta 2021; 519:64-69. [PMID: 33857477 DOI: 10.1016/j.cca.2021.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Lysosomal acid lipase deficiency (LALD, OMIM#278000) is a rare lysosomal disorder with an autosomal recessive inheritance. The main clinical manifestations are related to a progressive accumulation of cholesteryl esters, triglycerides or both within the lysosome in different organs such as the liver, spleen, and cardiovascular system. A wide range of clinical severity is associated with LALD including a severe very rare antenatal/neonatal/infantile phenotype named Wolman disease and a late-onset form named cholesteryl ester storage disease (CESD). METHODS This study aimed to investigate a cohort of at-risk patients (4174) presenting with clinical or biological signs consistent with LALD using the assessment of LAL activity on dried blood spots. RESULTS LAL activity was lower than 0.05 nmol/punch/L (cut-off: 0.12) in 19 patients including 13 CESD and 6 Wolman. Molecular study has been conducted in 17 patients and succeeded in identifying 34 mutated alleles. Fourteen unique variants have been characterized, 7 of which are novel. CONCLUSION This study allowed to identify a series of patients and expanded the molecular spectrum knowledge of LALD. Besides, a new screening criteria grid based on the clinical/biological data from our study and the literature has been proposed in order to enhance the diagnosis rate in at risk populations.
Collapse
Affiliation(s)
- Abdellah Tebani
- Normandie Univ, UNIROUEN, INSERM U1245, CHU Rouen, Department of Metabolic Biochemistry, 76000 Rouen, France
| | - Bénédicte Sudrié-Arnaud
- Normandie Univ, UNIROUEN, INSERM U1245, CHU Rouen, Department of Metabolic Biochemistry, 76000 Rouen, France
| | - Hela Boudabous
- Pediatric Department, La Rabta Hospital, Faculty of Medecine of Tunis, University of Tunis El Manar, Jabberi, Jebal Lakhdhar, Tunis, Tunisia
| | - Anais Brassier
- Reference Center of Inherited Metabolic Diseases, Necker Enfants Malades Hospital, Imagine Institute, University Paris Descartes, AP-HP, 75015 Paris, France
| | - Rodolphe Anty
- INSERM, U1065, C3M, Team 8 "Hepatic Complications in Obesity", Nice, France
| | - Sarah Snanoudj
- Normandie Univ, UNIROUEN, INSERM U1245, CHU Rouen, Department of Metabolic Biochemistry, 76000 Rouen, France
| | - Armand Abergel
- Department of Digestive Medicine, CHU Estaing, Clermont-Ferrand, France
| | | | - Edouard Bardou-Jacquet
- Univ Rennes, INSERM, Institut Numecan, Liver Disease Unit, CHU de Rennes, F-35000 Rennes, France
| | - Reda Belbouab
- Pediatric Department, University Hospital Center Mustapha Bacha, 16000 Algiers, Algeria
| | - Eloi Blanchet
- Service Hépatologie-Gastroenterologie, Groupe Hospitalier La Rochelle-Ré-Aunis, La Rochelle, France
| | | | - Jean-Pierre Bronowicki
- Department of Hepato-Gastroenterology, Centre Hospitalo-Universitaire de Nancy, 54000 Nancy, France
| | - Bertrand Cariou
- Université de Nantes, CHU de Nantes, CNRS, INSERM, L'institut du thorax, Department of Endocrinology-Diabetology-Nutrition, F-44000 Nantes, France
| | - Claire Carette
- AP-HP, Department of Nutrition, Centre spécialisé de l'Obesité Hôpital Européen Georges Pompidou, Paris University, Paris, France
| | - Myriam Dabbas
- AP-HP, Nutrition Obesity Unit, Necker Hospital, Paris, France
| | - Hélène Dranguet
- Normandie Univ, UNIROUEN, INSERM U1245, CHU Rouen, Department of Metabolic Biochemistry, 76000 Rouen, France
| | | | - Jean Ferrières
- Department of Cardiology and UMR INSERM 1027, Toulouse University School of Medicine, Toulouse, TSA 50032 31059, France
| | - Maeva Guillaume
- Service d'Hépatologie CHU Toulouse Rangueil, Institut Cardiomet et Université Paul Sabatier, Toulouse, France
| | - Michel Krempf
- Endocrinology, Metabolic Diseases and Nutrition, ELSAN, Clinique Breteché, Nantes, France
| | - Florence Lacaille
- Gastroenterology Hepatology Nutrition Unit, Hôpital Necker-Enfants Malades, Paris, France
| | - Dominique Larrey
- Liver and Transplantation Unit, Montpellier School of Medicine and IRB-INSERM-1183, Montpellier, France
| | - Vincent Leroy
- Service d'Hépato-Gastroentérologie, Centre Hospitalier Universitaire Grenoble-Alpes, INSERM U1209, Université Grenoble-Alpes, Grenoble, France
| | - Marietta Musikas
- Department of Hepato-Gastroenterology and Nutrition, Caen University Hospital, France
| | - Eric Nguyen-Khac
- Service d'Hépato-Gastroentérologie, Amiens University Hospital, and Equipe Région INSERM 24, University of Picardy, Amiens, France
| | - Denis Ouzan
- Institut Arnaud Tzanck, Service d'Hépatologie, St Laurent du Var, France
| | - Jean-Marc Perarnau
- Service d'Hépato-gastroentérologie, Centre Hospitalo-Universitaire, Tours, France
| | - Carine Pilon
- Normandie Univ, UNIROUEN, INSERM U1245, CHU Rouen, Department of Metabolic Biochemistry, 76000 Rouen, France
| | - Vlad Ratzlu
- Department of Hepatology, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique Hopitaux de Paris, Paris, France; University Pierre et Marie Curie, Institut National de la Santé et de la Recherche Médicale UMR 938, Paris, France
| | - Alice Thebaut
- Pediatric Hepatology & Pediatric Liver Transplant Department, Centre de Référence de l'Atrésie des Voies Biliaires et des Cholestases Génétiques (AVB-CG), Filière de Santé des Maladies Rares du Foie de l'enfant et de l'adulte (FILFOIE), European Reference Network RARE-LIVER, Assistance Publique-Hôpitaux de Paris, Faculty of Medecine Paris-Saclay, CHU Bicêtre, Le Kremlin-Bicêtre, France
| | - Thierry Thevenot
- Centre Hospitalier Universitaire de Besançon, Hôpital Jean Minjoz, Service d'Hépatologie et de Soins Intensifs Digestifs, Besançon, France
| | - Isabelle Tragin
- Normandie Univ, UNIROUEN, INSERM U1245, CHU Rouen, Department of Metabolic Biochemistry, 76000 Rouen, France
| | | | - Bruno Vergès
- Université de Bourgogne, Centre de Recherche INSERM LNC-UMR1231; Service de Diabétologie et Endocrinologie, CHU François Mitterand, BP 77908, Dijon cedex 21079, France
| | - Sabrina Vergnaud
- Department of Biochemistry Toxicology and Pharmacology, Grenoble University Hospital, La Tronche, France
| | - Soumeya Bekri
- Normandie Univ, UNIROUEN, INSERM U1245, CHU Rouen, Department of Metabolic Biochemistry, 76000 Rouen, France.
| |
Collapse
|
16
|
Tomlinson B, Patil NG, Fok M, Lam CWK. Role of PCSK9 Inhibitors in Patients with Familial Hypercholesterolemia. Endocrinol Metab (Seoul) 2021; 36:279-295. [PMID: 33866776 PMCID: PMC8090480 DOI: 10.3803/enm.2021.964] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Patients with familial hypercholesterolemia (FH) are at high or very high risk for cardiovascular disease. Those with heterozygous FH (HeFH) often do not reach low-density lipoprotein cholesterol (LDL-C) targets with statin and ezetimibe therapy, and those with homozygous FH (HoFH) usually require additional lipid-modifying therapies. Drugs that inhibit proprotein convertase subtilisin/kexin type 9 (PCSK9) offer a novel approach to reduce LDL-C. The monoclonal antibodies, alirocumab and evolocumab, given by subcutaneous injection every 2 or 4 weeks produce reductions in LDL-C of 50% to 60% in patients with HeFH, allowing many of them to achieve their LDL-C goals. Patients with HoFH show a reduced and more variable LDL-C response, which appears to depend on residual LDL receptor activity, and those with receptor-negative mutations may show no response. Inclisiran is a long-acting small interfering RNA therapeutic agent that inhibits the synthesis of PCSK9. Subcutaneous doses of 300 mg can reduce LDL-C by more than 50% for at least 6 months and the responses in HeFH and HoFH patients are similar to those achieved with monoclonal antibodies. These PCSK9 inhibitors are generally well tolerated and they provide a new opportunity for effective treatment for the majority of patients with FH.
Collapse
Affiliation(s)
- Brian Tomlinson
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | | | - Manson Fok
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | | |
Collapse
|
17
|
Marín Andrés M, Ros Arnal I, Cebolla Sanz JJ, Pérez Delgado R, García Jiménez MC. Lysosomal acid lipase deficiency: A rarely recognised cause of dyslipidaemia and liver dysfunction. ANALES DE PEDIATRÍA (ENGLISH EDITION) 2021. [DOI: 10.1016/j.anpede.2020.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
18
|
Marín Andrés M, Ros Arnal I, Cebolla Sanz JJ, Pérez Delgado R, García Jiménez MC. [Lysosomal acid lipase deficiency: A rarely recognised cause of dyslipidaemia and liver dysfunction]. An Pediatr (Barc) 2021; 94:50-51. [PMID: 32736925 DOI: 10.1016/j.anpedi.2020.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 01/31/2020] [Accepted: 02/12/2020] [Indexed: 11/22/2022] Open
Affiliation(s)
- Marta Marín Andrés
- Unidad de Neurometabolismo, Hospital Universitario Miguel Servet, Zaragoza, España.
| | - Ignacio Ros Arnal
- Unidad de Gastroenterología, Hepatología y Nutrición Pediátrica, Hospital Universitario Miguel Servet, Zaragoza, España
| | - Jorge Javier Cebolla Sanz
- Instituto de Investigación Sanitaria Aragón, Grupo de estudio de enfermedades metabólicas y neoplasias hematológicas, Zaragoza, España
| | - Raquel Pérez Delgado
- Unidad de Neurometabolismo, Hospital Universitario Miguel Servet, Zaragoza, España
| | | |
Collapse
|
19
|
Carotti S, Aquilano K, Valentini F, Ruggiero S, Alletto F, Morini S, Picardi A, Antonelli-Incalzi R, Lettieri-Barbato D, Vespasiani-Gentilucci U. An overview of deregulated lipid metabolism in nonalcoholic fatty liver disease with special focus on lysosomal acid lipase. Am J Physiol Gastrointest Liver Physiol 2020; 319:G469-G480. [PMID: 32812776 DOI: 10.1152/ajpgi.00049.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Obesity and type 2 diabetes are frequently complicated by excess fat accumulation in the liver, which is known as nonalcoholic fatty liver disease (NAFLD). In this context, liver steatosis develops as a result of the deregulation of pathways controlling de novo lipogenesis and fat catabolism. Recent evidences suggest the clinical relevance of a reduction in the activity of lysosomal acid lipase (LAL), which is a key enzyme for intracellular fat disposal, in patients with NAFLD. In this review, we provided a comprehensive overview of the critical steps in hepatic fat metabolism and alterations in these pathways in NAFLD, with a special focus on lipophagy and LAL activity. During NAFLD, hepatic fat metabolism is impaired at several levels, which is significantly contributed to by impaired lipophagy, in which reduced LAL activity may play an important role. For further research and intervention in NAFLD, targeting LAL activity may provide interesting perspectives.
Collapse
Affiliation(s)
- Simone Carotti
- Unit of Microscopic and Ultrastructural Anatomy, University Campus Bio-Medico, Rome, Italy
| | - Katia Aquilano
- Department of Biology, University of Rome, Tor Vergata, Rome, Italy
| | - Francesco Valentini
- Unit of Microscopic and Ultrastructural Anatomy, University Campus Bio-Medico, Rome, Italy
| | - Sergio Ruggiero
- Unit of Microscopic and Ultrastructural Anatomy, University Campus Bio-Medico, Rome, Italy
| | - Francesca Alletto
- Unit of Internal Medicine and Hepatology, University Campus Bio-Medico, Rome, Italy
| | - Sergio Morini
- Unit of Microscopic and Ultrastructural Anatomy, University Campus Bio-Medico, Rome, Italy
| | - Antonio Picardi
- Unit of Internal Medicine and Hepatology, University Campus Bio-Medico, Rome, Italy
| | | | - Daniele Lettieri-Barbato
- Department of Biology, University of Rome, Tor Vergata, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | | |
Collapse
|
20
|
Pedro-Botet J, Ascaso JF, Blasco M, Brea Á, Díaz Á, Hernández-Mijares A, Pintó X, Millán J. Triglycerides, HDL cholesterol and atherogenic dyslipidaemia in the 2019 European guidelines for the management of dyslipidaemias. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2020; 32:209-218. [PMID: 32037300 DOI: 10.1016/j.arteri.2019.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/20/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022]
Abstract
In general, both European and American clinical guidelines have addressed the management of atherogenic dyslipidaemia in an unconvincing and even superficial way, largely because of the available therapeutic limitations. Consequently, this type of dyslipidaemia is underdiagnosed, under-treated, and under-controlled. Given the recent presentation of the 2019 guidelines of the European Atherosclerosis Society and the European Society of Cardiology on the management of dyslipidaemias, it seems appropriate to examine its position with respect to atherogenic dyslipidaemia and/or its main components, the increase in triglyceride-rich lipoproteins, and the decrease of high-density lipoprotein cholesterol.
Collapse
Affiliation(s)
- Juan Pedro-Botet
- Unidad de Lípidos y Riesgo Vascular, Servicio de Endocrinología y Nutrición, Hospital del Mar, Universitat Autònoma de Barcelona, Barcelona, España.
| | - Juan F Ascaso
- Departamento de Medicina, Universitat de València, CIBERDEM ISCIII, Valencia, España
| | - Mariano Blasco
- Área Sanitaria de Delicias, Atención Primaria, Zaragoza, España
| | - Ángel Brea
- Servicio de Medicina Interna, Hospital San Pedro, Logroño, España
| | - Ángel Díaz
- Centro de Salud de Bembibre, Bembibre, León, España
| | - Antonio Hernández-Mijares
- Fundación para la Investigación Sanitaria y Biomédica de la Comunidad Valenciana FISABIO; Departamento de Medicina, Universitat de València, Valencia, España
| | - Xavier Pintó
- Unidad de Lípidos, Servicio de Medicina Interna, Hospital Universitario de Bellvitge, Universitat de Barcelona, CIBERobn-ISCIII, Barcelona, España
| | - Jesús Millán
- Unidad de Lípidos, Servicio de Medicina Interna, Hospital General Universitario Gregorio Marañón, Universidad Complutense, Madrid, España
| | | |
Collapse
|
21
|
Page MM, Bell DA, Watts GF. Widening the spectrum of genetic testing in familial hypercholesterolaemia: Will it translate into better patient and population outcomes? Clin Genet 2019; 97:543-555. [PMID: 31833051 DOI: 10.1111/cge.13685] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/25/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022]
Abstract
Familial hypercholesterolaemia (FH) is caused by pathogenic variants in LDLR, APOB or PCSK9. Impaired low-density lipoprotein (LDL) receptor function leads to decreased LDL catabolism and premature atherosclerotic cardiovascular disease (ASCVD). Thousands of LDLR variants are known, but assignation of pathogenicity requires accurate phenotyping, family studies and assessment of LDL receptor function. Precise, genetic diagnosis of FH using targeted next generation sequencing allows for optimal treatment, distinguishing FH from pathogenically distinct disorders requiring different treatment. Polygenic hypercholesterolaemia resulting from an accumulation of LDL cholesterol-raising single nucleotide polymorphisms (SNPs) could also be suspected by this approach. Similarly, ASCVD risk could be estimated by broader sequencing of cholesterol and non-cholesterol-related genes. Both of these areas require further research. The clinical management of FH, focusing on the primary or secondary prevention of ASCVD, has been boosted by PCSK9 inhibitor therapy. The efficacy of PCSK9 inhibitors in homozygous FH may be partly predicted by the LDLR variants. While expanded genetic testing in FH is clinically useful in providing an accurate diagnosis and enabling cost-effective testing of relatives, further research is needed to establish its value in improving clinical outcomes.
Collapse
Affiliation(s)
- Michael M Page
- School of Medicine, Faculty of Medicine and Health Sciences, The University of Western Australia, Perth, Australia.,Department of Clinical Biochemistry, Western Diagnostic Pathology, Perth, Australia
| | - Damon A Bell
- School of Medicine, Faculty of Medicine and Health Sciences, The University of Western Australia, Perth, Australia.,Department of Clinical Biochemistry, PathWest Fiona Stanley Hospital and Royal Perth Hospital, Perth, Australia.,Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, Perth, Australia.,Department of Clinical Biochemistry, Clinipath Pathology, Perth, Australia
| | - Gerald F Watts
- School of Medicine, Faculty of Medicine and Health Sciences, The University of Western Australia, Perth, Australia.,Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, Perth, Australia
| |
Collapse
|
22
|
Sulaiman RA. Inherited metabolic disorders and dyslipidaemia. J Clin Pathol 2019; 73:384-390. [PMID: 31757783 DOI: 10.1136/jclinpath-2019-205910] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/23/2019] [Accepted: 10/07/2019] [Indexed: 11/04/2022]
Abstract
Monogenic dyslipidaemia is a diverse group of multisystem disorders. Patients may present to various specialities from early childhood to late in adult life, and it usually takes longer before the diagnosis is established. Increased awareness of these disorders among clinicians is imperative for early diagnosis. This best practice review provides an overview of primary dyslipidaemias, highlighting their clinical presentation, relevant biochemical and molecular tests. It also addresses the emerging role of genetics in the early diagnosis and prevention of these disorders.
Collapse
Affiliation(s)
- Raashda A Sulaiman
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|