1
|
Ikram M, Mahmud MAP, Kalyar AA, Alomayri T, Almahri A, Hussain D. 3D-bioprinting of MXenes: Developments, medical applications, challenges, and future roadmap. Colloids Surf B Biointerfaces 2025; 251:114568. [PMID: 40020571 DOI: 10.1016/j.colsurfb.2025.114568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/03/2025] [Accepted: 02/15/2025] [Indexed: 03/03/2025]
Abstract
MXenes is a member of 2D transition metals carbides and nitrides with promising application prospects in energy storage, sensing, nanomedicine, tissue engineering, catalysis, and electronics. In the current era, MXenes have been widely applied in biomedical applications due to their unique rheological and electrochemical attributes. They have a larger surface area with more active sites, higher conductivity, lower cytotoxicity, and greater biocompatibility, making them highly suitable candidates for in-vivo biomedical applications. Due to recent advancemnets in MXenes 3D bioprinting, they are widely applied in regenerative medicine to combat challenges in suitable transplantation of tissues and organs. However, 3D bioprinting of MXenes has several complexities based on cell type, cytotoxicity, cell viability, and differentiation. To address these intricacies, surface modifications of MXene materials are done, which makes them highly fascinating for the 3D printing of tissues and organs. In the current review, we summarized recent progress in 3D bioprinting of MXene materials to construct scaffolds with desired rheological and biological properties, focusing on their potential applications in cancer phototherapy, tissue engineering, bone regeneration, and biosensing. We also discussed parameters affecting their biomedical applications and possible solutions by applying surface modifications. In addition, we addressed current challenges and future roadmaps for 3D bioprinting of MXene materials, such as generating high throughput 3D printed tissue constructs, drug delivery, drug discovery, and toxicology.
Collapse
Affiliation(s)
- Muhammad Ikram
- Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD 57007, United States of America.
| | - M A Parvez Mahmud
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Amina Akbar Kalyar
- Department of Zoology, Wildlife and Fisheries, University of Agriculture Faisalabad, Pakistan
| | - Thamer Alomayri
- Department of Physics, Faculty of Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Albandary Almahri
- Department of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
2
|
Cemal SD, Kazimirsky G, Shadkchan Y, Eswaran L, Abramovitch R, Abudi N, Cuestas ML, Osherov N, Byk G. Biocompatible narrow size nanohydrogels for drug delivery. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2025; 66:102824. [PMID: 40280346 DOI: 10.1016/j.nano.2025.102824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/30/2025] [Accepted: 04/20/2025] [Indexed: 04/29/2025]
Abstract
Biodegradable polymers have gained attention for controlled drug delivery due to their potential for sustained release. Herein, a novel series of cross-linked, narrow size nanohydrogels (NHGs) with tunable sizes (20-500 nm), devoid of toxicity, and suitable for diverse biological applications were developed. These NHGs are synthesized via a thermo-responsive self-assembly process followed by confined polymerization. Ester cross-linkers were introduced into the polymeric backbone to enhance biodegradability. The NHGs comprise ideal candidates for drug delivery due to their long circulation in blood after iv administration. The anti-oxidant curcumin and the antifungal drug amphotericin B (AmB) as hydrophobic drug models were successfully loaded. The AmB-loaded NHGs showed improved antifungal activity against clinical isolates of molds and yeasts and markedly reduced morbidity in murine models inoculated with lethal doses of the pathogenic mold Candida albicans as compared to the commercial AmB formulation Fungizone. The NHGs thereby offer a versatile platform for controlled drug release.
Collapse
Affiliation(s)
- Shaul D Cemal
- Laboratory of Nano-Biotechnology, Dept. of Chemistry, Bar-Ilan University, Israel
| | - Gila Kazimirsky
- Laboratory of Nano-Biotechnology, Dept. of Chemistry, Bar-Ilan University, Israel
| | - Yana Shadkchan
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Lakshmanan Eswaran
- Laboratory of Nano-Biotechnology, Dept. of Chemistry, Bar-Ilan University, Israel
| | - Rinat Abramovitch
- The Goldyne Savad Institute of Gene Therapy, Israel; The Wohl Institute for Translational Medicine Hadassah Hebrew University Medical Center, Ein Karem, 91120 Jerusalem, Israel
| | - Natalie Abudi
- The Goldyne Savad Institute of Gene Therapy, Israel; The Wohl Institute for Translational Medicine Hadassah Hebrew University Medical Center, Ein Karem, 91120 Jerusalem, Israel
| | - Maria L Cuestas
- Universidad de Buenos Aires, CONICET, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina
| | - Nir Osherov
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Gerardo Byk
- Laboratory of Nano-Biotechnology, Dept. of Chemistry, Bar-Ilan University, Israel.
| |
Collapse
|
3
|
Alnasra O, Khalili FI, Hamadneh L, Alwahsh M, Omar R, AlDoridee A, Hasan A. A dual-modal approach to lung cancer treatment: in vitro and in silico. Evaluation of a hybrid nanocomposite for synergistic chemotherapy. Biometals 2025:10.1007/s10534-025-00694-6. [PMID: 40369325 DOI: 10.1007/s10534-025-00694-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 05/02/2025] [Indexed: 05/16/2025]
Abstract
This study investigates the therapeutic potential of a nanosilica-cysteine composite loaded with arsenic trioxide (SC-As) in combination with cisplatin (CIS), paclitaxel (PTX), and doxorubicin (DOX) for lung/breast cancer treatment. Through comprehensive synthesis, characterization (ATR-FTIR, XRD, SEM, TEM, DLS), and cytotoxicity assessments, SC-As demonstrated superior potency with IC₅₀ values as low as 7.29 ± 1.40 µM in lung cancer (A549) and 8.60 ± 1.20 µM in breast cancer (MCF-7) cell lines. This study employs a dual-modal approach, combining in silico computational predictions (CompuSyn) with in vitro experiments to evaluate synergistic chemotherapy regimens, ensuring robust validation of therapeutic outcomes. The computational synergy analysis and the experimental validation in lung cancer cell lines revealed synergistic interactions between SC-As and CIS (CI < 1), enabling significant dose reductions (DRI > 1). Conversely, antagonism was observed with PTX and DOX in A549 cells, though H1299 cells exhibited unanticipated synergistic interactions with PTX/DOX. Given that H1299 cells represent a more aggressive and metastatic form of lung cancer, these results suggest that PTX and DOX combinations may have enhanced therapeutic potential in treating highly malignant lung cancer subtypes. These findings underscore the composite's potential as a targeted delivery system and highlight the necessity of integrating computational predictions with empirical validation to optimize combinatorial efficacy and minimize toxicity, providing a foundation for future in vivo and clinical studies.
Collapse
Affiliation(s)
- Omar Alnasra
- Department of Chemistry, Faculty of Science, Jerash Private University, Jerash, 26150, Jordan.
| | - Fawwaz I Khalili
- Department of Chemistry, Faculty of Science, The University of Jordan, Amman, 11942, Jordan
| | - Lama Hamadneh
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, Salt, 19117, Jordan
| | - Mohammad Alwahsh
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, 11733, Jordan
| | - Rana Omar
- Department of Chemistry, Faculty of Science, The University of Jordan, Amman, 11942, Jordan
| | - Amani AlDoridee
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, 11733, Jordan
| | - Aya Hasan
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, 11733, Jordan
| |
Collapse
|
4
|
Wang R, Wei X, He X, Wang L, Zhou M, Tang J, Che X, Zhou G, Liu H. ML228-loaded nanoparticles with platelet membrane coating promote endothelialization of vascular grafts by enhancing HIF-1α expression. Colloids Surf B Biointerfaces 2025; 253:114756. [PMID: 40334473 DOI: 10.1016/j.colsurfb.2025.114756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025]
Abstract
Small-diameter vascular grafts (SDVGs) often struggle to maintain long-term patency due to thrombus formation, intimal hyperplasia, and inflammation. Endothelialization emerges as a pivotal strategy for addressing these concerns. As a representative activator of the hypoxia-inducible factor (HIF) pathway, ML228 can stimulate the expression of downstream target genes like vascular endothelial growth factor (VEGF) to induce angiogenesis, yet it requires encapsulation by nanoparticles for optimal delivery and efficacy. However, the immune system often recognizes nanoparticles as foreign entities, posing a significant risk of clearance. In this study, we developed ML228-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles and coated them with platelet membranes, thereby enhancing their biocompatibility and enabling immune escape. The ML228-loaded PLGA nanoparticles coated with platelet membranes (MPNP) were immobilized onto electrospinning SDVGs made of silk fibroin (SF) and polycaprolactone (PCL) to obtain MPNP-coated grafts (SF/PCL@MPNP) with the ability to promote endothelialization. In vitro biological activity studies demonstrated that SF/PCL@MPNP activated the HIF pathway, upregulating the downstream target gene VEGF, which facilitated endothelial cells migration and angiogenesis. In vivo implantation in a rat abdominal aorta model revealed that SF/PCL@MPNP promoted endothelialization, supported the regeneration of contractile smooth muscle cells, and modulated inflammatory responses. Overall, this study presents a strategy for constructing SDVGs using ML228-loaded nanoparticles with platelet membrane coating, highlighting the promises of using ML228 to activate the HIF pathway and membrane-coated nanoparticles to improve endothelialization in vascular graft applications.
Collapse
Affiliation(s)
- Ruichen Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Xinbo Wei
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Xi He
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Li Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu 210008, P. R. China
| | - Moyan Zhou
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Jiarui Tang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Xin Che
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Gang Zhou
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Haifeng Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.
| |
Collapse
|
5
|
Alebachew AW, Dong Y, Abdalkarim SYH, Wu C, Yu HY. Recent progress of multifunctional nanocellulose-based pharmaceutical materials: A review. Int J Biol Macromol 2025; 306:141427. [PMID: 40020852 DOI: 10.1016/j.ijbiomac.2025.141427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/09/2025] [Accepted: 02/22/2025] [Indexed: 03/03/2025]
Abstract
In the pharmaceutical industry, ongoing research and development focus on discovering new drug formulations that align with regulatory approvals. Recently, innovative drug delivery systems have been used to maximize therapeutic efficacy with a precision of sustained drug delivery in the disease management system. Nanocellulose (NCs) synthesized from abundant cellulose, have attracted wide attention for potential pharmaceutical applications due to their unique properties, such as biocompatibility, high surface area-to-volume ratio, extensive drug loading and binding capacity, controlled drug release efficiency, strength, and availability with various treatments and modification ability. Nevertheless, research on nanocarriers (NCs) in the pharmaceutical field faces several limitations and challenges. Key areas requiring further exploration include chemical consumption, energy intensity, effluent management, recovery processes from acid hydrolysis, reaction times, ecotoxicology, and overall development progress. This overview provides the applications of emerging nanocellulose. It gives a clue on the synthesis of sustainable NCs related to their different sources, pre- and post-modifications of NCs, and key properties in pharmaceutical sectors. Furthermore, it gives an overview of the current advancements, life cycle analysis, biosafety, and key property performance with a summary of challenges and future perspectives.
Collapse
Affiliation(s)
- Amare Worku Alebachew
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yanjuan Dong
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Somia Yassin Hussain Abdalkarim
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chao Wu
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hou-Yong Yu
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
6
|
Mahmoud YS, Hassanin IA, Sabra SA, Shehat MG, Abdel-Mohsen MA, Khattab SN, Hussein AA. Lipopolysaccharide nanomedicine-based reversion of chemotherapy-induced metastatic potential of breast cancer via hampering tumoral TLR4/SIRT2 axis and IL6 secretion from tumor-associated macrophages. Int J Biol Macromol 2025; 306:141396. [PMID: 39993692 DOI: 10.1016/j.ijbiomac.2025.141396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 02/26/2025]
Abstract
Triple-negative breast cancer (TNBC) is a metastatic disease. Targeted approaches, as implementing nanoliposomes, e.g., liposomal doxorubicin (DOX), did not exhibit significantly improved survival. Therefore, we aimed at reducing the metastatic potential of TNBC through a double punch to cancer cells and tumor-associated macrophages (TAMs). Databases' analyses showed that targeting TLR4/SIRT2 axis might be a possible option. Inspired by the emergence of lipopolysaccharide (LPS) in clinical trials, we developed bioactive copolymeric nanomicelles, originating from the self-assembly of our synthesized LPS-pectin conjugate (LPS-PEC) for the delivery of DOX (DOX@LPS-PEC). Targeting TLR4 via DOX@LPS-PEC micelles enhanced cellular uptake, however, it failed to significantly improve the cytotoxic potential of DOX. Alternatively, co-targeting SIRT2 via Sirtinol at a specific ratio (DOX@LPS-PEC: Sirtinol 1:5 w/w) elevated cellular oxidative stress, improved cytotoxic potential on 2D-monolayer and 3D-spheroid models, and significantly reduced migratory potential of MDA-MB-231 cells compared to DOX@LPS-PEC alone. Finally, DOX@LPS-PEC plus Sirtinol at the same ratio exhibited an ability to hamper TAM-secreted IL6, which contribute to the metastatic potential of TNBC. In conclusion, targeting TLR4/SIRT2 axis in TNBC synergizes with the effect of chemotherapeutics, e.g. DOX, reduce the metastatic potential of TNBC cells via down-regulating TLR4 and hampering tumor-microenvironment IL6.
Collapse
Affiliation(s)
- Yosra S Mahmoud
- Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, 21526, Egypt
| | - Islam A Hassanin
- Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, 21526, Egypt; Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Sally A Sabra
- Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, 21526, Egypt
| | - Michael G Shehat
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Mohamed A Abdel-Mohsen
- Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, Alexandria 21526, Egypt
| | - Sherine N Khattab
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria 21321, Egypt.
| | - Ahmed A Hussein
- Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, 21526, Egypt.
| |
Collapse
|
7
|
Chiang JY, Lin TH, Cheng JX, Pan WY. Polyethyleneimine/fucoidan polyplexes as vaccine carriers for enhanced antigen loading and dendritic cell activation. Int J Biol Macromol 2025; 306:141336. [PMID: 39986515 DOI: 10.1016/j.ijbiomac.2025.141336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/06/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
Vaccination is one of the most effective strategies for preventing infectious diseases. Recently, most research has centered on the development of protein subunit vaccines due to their safety. However, their low immunogenicity remains a challenge. Nanoparticle vaccines offer advantages by protecting proteins from degradation and acting as adjuvants to stimulate the immune system. Herein, a polyplexe (OVA@PEI/Fu) formed by the electrostatic interaction between positively charged polyethyleneimine (PEI) and negatively charged fucoidan was prepared for the encapsulation of a model antigen, ovalbumin (OVA). Experimental results revealed that the incorporation of fucoidan in the polyplexes not only enhanced OVA loading efficiency but also contributed adjuvant effects, significantly boosting dendritic cell activation and maturation in vitro compared to OVA@PEI polyplexes. In vivo experiments showed that the OVA@PEI/Fu can induce strong anti-OVA specific antibody responses, as well as OVA-specific CD4+ and CD8+ T cell responses. The carrier developed in the present study shows promise as a platform for protein-based subunit vaccines.
Collapse
Affiliation(s)
- Jian-Yi Chiang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Tsai-Hsuan Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Jia-Xiang Cheng
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Wen-Yu Pan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan.
| |
Collapse
|
8
|
Xiao T, Yang Q, Chen L, Xie J, Zhong H, Zhang G, He H, Liu H. Dual-Responsive Ion-Exchange Resin Encapsulated Atomoxetine Hydrochloride for Taste-Masking and Biphasic Release. AAPS PharmSciTech 2025; 26:118. [PMID: 40301192 DOI: 10.1208/s12249-025-03111-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 04/08/2025] [Indexed: 05/01/2025] Open
Abstract
Atomoxetine hydrochloride (ATH) is a first-line medication used to treat Attention Deficit Hyperactivity Disorder (ADHD) in children. However, it poses challenges such as a bitter taste and difficulties in dose adjustment. While once-daily administration may result in excessive drug exposure, twice-daily dosing improves plasma drug concentration stability but can reduce patient compliance, especially in school-aged children. To address these challenges, a novel strategy was proposed that involves encapsulating ATH into ion exchange resins (IERs) (referred to as ATH@IER). The pH-responsive release of ATH from the ATH@IER exhibited a limited release rate in neutral conditions, effectively masking the bitter taste, which was evaluated through electronic tongue analysis. The cation-responsive release of ATH from the ATH@IER demonstrated immediate-release (IR) property, which was combined with Eudragit® RS100 coated ATH@IER (ATH@MC) to establish a biphasic release system. ATH orally disintegrating tablets (ATH ODT) were manufactured using a composition of ATH@IER and ATH@MC (40:60, w/w), along with other excipients. Pharmacokinetic studies demonstrated that a single dose of ATH ODT produced a bimodal plasma concentration, resulting in a two-fold decrease in peak concentration (Cmax) while maintaining an unchanged area under the drug concentration-time curve (AUC0-t) compared to the commercial ATH oral solution administered once. Notably, the plasma drug concentration of ATH ODT remained steadier than that of the commercial product when administered twice. In conclusion, ATH ODT represents a promising formulation that effectively masks bitter taste and provides biphasic release for the treatment of ADHD.
Collapse
Affiliation(s)
- Tao Xiao
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Quanzhu Yang
- College of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China
| | - Lusi Chen
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Jiayu Xie
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Huiying Zhong
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Guoqing Zhang
- Jiangsu Yunshi Pharmaceutical Technology Co., Ltd, Nantong, 226133, China.
| | - Haibing He
- Jiangsu Haizhihong Biomedical Co., Ltd, Nantong, 226133, China
| | - Hongfei Liu
- College of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China.
- Jiangsu Yunshi Pharmaceutical Technology Co., Ltd, Nantong, 226133, China.
- Jiangsu Haizhihong Biomedical Co., Ltd, Nantong, 226133, China.
| |
Collapse
|
9
|
Kalındemirtaş FD, Cilasun GE, Kariper A. Enhanced therapeutic efficacy of platinum-doxorubicin nanoparticles on colon and breast cancer cell lines. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04080-4. [PMID: 40299021 DOI: 10.1007/s00210-025-04080-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 03/19/2025] [Indexed: 04/30/2025]
Abstract
In this study, platinum nanoparticles (PtNPs) were synthesized and their potential to improve the efficacy of doxorubicin (DOX) in cancer treatment was investigated. H2PtCl6, LiAlH4, and trisodium citrate were used during the synthesis of PtNPs. They were characterized using dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), and scanning transmission electron microscopy (STEM). The diameter of the PtNPs was measured to be 21.72 nm without DOX loading and approximately 212 nm after DOX loading (DOX-PtNPs). FTIR confirmed the binding of DOX to PtNPs. In addition, MTT assays showed that DOX-PtNPs have a stronger effect on MCF-7 and HCT116 cancer cells than free DOX, even at low doses. The IC50 value for MCF-7 cells treated with DOX was determined to be 4.81 µg/ml, while it was significantly lower for the DOX-PtNP group at 0.64 µg/ml. A similar trend was observed in HCT116 cells, where the IC50 value for DOX was 5.03 µg/ml, while for DOX-PtNPs it was 0.62 µg/ml. In summary, the activity of DOX in these cells was increased approximately eightfold by PtNPs. Moreover, DOX-PtNPs showed no significant cytotoxic effects on normal HUVEC cells at low doses. Moreover, DOX-PtNPs enhanced apoptotic activity in HCT116 cells without inducing drug resistance as demonstrated by Rho123 staining and annexin/PI analyses. The significance of this study lies in the pioneering use of DOX-PtNPs in colon cancer, the synthesis of smaller PtNPs, the eightfold increase in the efficacy of DOX, and the demonstration that DOX-PtNPs do not significantly increase drug resistance.
Collapse
Affiliation(s)
| | - Gökçe Erdemir Cilasun
- Department of Medical Biology, Faculty of Medicine, Biruni University, Istanbul, Turkey
| | - Afşin Kariper
- Department of Science Education, Education Faculty, Erciyes University, Kayseri, Turkey
| |
Collapse
|
10
|
Lai Y, Xie B, Zhang W, He W. Pure drug nanomedicines - where we are? Chin J Nat Med 2025; 23:385-409. [PMID: 40274343 DOI: 10.1016/s1875-5364(25)60851-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/26/2024] [Accepted: 11/03/2024] [Indexed: 04/26/2025]
Abstract
Pure drug nanomedicines (PDNs) encompass active pharmaceutical ingredients (APIs), including macromolecules, biological compounds, and functional components. They overcome research barriers and conversion thresholds associated with nanocarriers, offering advantages such as high drug loading capacity, synergistic treatment effects, and environmentally friendly production methods. This review provides a comprehensive overview of the latest advancements in PDNs, focusing on their essential components, design theories, and manufacturing techniques. The physicochemical properties and in vivo behaviors of PDNs are thoroughly analyzed to gain an in-depth understanding of their systematic characteristics. The review introduces currently approved PDN products and further explores the opportunities and challenges in expanding their depth and breadth of application. Drug nanocrystals, drug-drug cocrystals (DDCs), antibody-drug conjugates (ADCs), and nanobodies represent the successful commercialization and widespread utilization of PDNs across various disease domains. Self-assembled pure drug nanoparticles (SAPDNPs), a next-generation product, still require extensive translational research. Challenges persist in transitioning from laboratory-scale production to mass manufacturing and overcoming the conversion threshold from laboratory findings to clinical applications.
Collapse
Affiliation(s)
- Yaoyao Lai
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Bing Xie
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Wanting Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China.
| |
Collapse
|
11
|
Wang H, You R, Jin Y, Wang G, Li F, Gao Y, Chen C, Xiao N, Liang J. Construction of a high-capacity drug microcarrier using diatom frustules. Colloids Surf B Biointerfaces 2025; 248:114481. [PMID: 39742718 DOI: 10.1016/j.colsurfb.2024.114481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/09/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025]
Abstract
The drug loading capacity is a critical performance metric for drug delivery systems. A high capacity ensures efficient drug delivery to target sites at lower doses, reducing the amount of carrier material needed and lessening patient burden. However, improving drug loading capacity in diatom frustule-based systems remains a challenge. In this study, we explored effective strategies for developing a microcarrier with a high drug loading efficiency using diatom frustules (DF) derived from Thalassiosira weissflogii. We found that combining an evaporative loading method with a chitosan (Chi) coating was particularly effective for enhancing the drug loading capacity of indomethacin (IND), a hydrophobic model drug. Further optimization of the indomethacin-to-APTES-modified frustule (DF-NH2) ratio to 2:1, along with adjusting the medium pH to 5, further improved drug loading efficiency. Additionally, the chitosan coating on the drug-loaded frustules not only enabled sustained drug release but also enhanced the biocompatibility of the carriers. The resulting DF-NH2/IND@Chi microcarrier demonstrated a drug loading efficiency of 58.78 ± 1.92 % for IND, with a pH-dependent controlled release profile. This performance significantly outperforms previous reports, which typically report loading efficiencies between 10 % and 35 %, with few exceeding 40 %. In vitro cytotoxicity tests also revealed significant activity against colon cancer cells, highlighting the potential therapeutic benefits of this system. This study provides a systematic approach to creating high-capacity drug microcarriers using diatom frustules, offering promising prospects for future drug delivery applications.
Collapse
Affiliation(s)
- Houjie Wang
- School of Life Sciences, Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen 361102, China
| | - Runyu You
- School of Life Sciences, Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen 361102, China
| | - Yangqi Jin
- School of Life Sciences, Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen 361102, China
| | - Guangning Wang
- School of Life Sciences, Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen 361102, China
| | - Feng Li
- School of Life Sciences, Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen 361102, China
| | - Yahui Gao
- School of Life Sciences, Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environment Science, Xiamen University, Xiamen, Fujian 361102, China
| | - Changping Chen
- School of Life Sciences, Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen 361102, China
| | - Nengming Xiao
- School of Life Sciences, Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen 361102, China
| | - Junrong Liang
- School of Life Sciences, Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
12
|
Poonia N, Kumar V, Subudhi RN, Dalabehera M, Setia A, Bora KS, Arora V. Iron oxide nanoparticles: a versatile nanoplatform for the treatment and diagnosis of ovarian cancer. Ther Deliv 2025; 16:379-392. [PMID: 39722582 PMCID: PMC11970791 DOI: 10.1080/20415990.2024.2442301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
Ovarian cancer remains one of the main causes of human mortality, accounting for millions of deaths every year. Despite of several clinical options such as chemotherapy, photodynamic therapy (PDT), hormonal treatment, radiation therapy, and surgery to manage this disease, the mortality rate is still very high. This alarming statistic highlights the urgent need for innovative approaches to improve both diagnosis and treatment. Success stories of iron oxide nanoparticles, i.e. Ferucarbotran (Resovist®) and Ferrixan (Cliavist®) for liver imaging, CNS (Central nervous system) imaging, cell labeling, etc. have motivated researchers to explore these nanocarriers for treatment and diagnosis of different diseases. Iron oxide nanoparticles have improved the therapeutic efficacy of anticancer drugs through targeted delivery, heat/ROS (reactive oxygen species) generation on application of external energy and have also shown great potential as contrast agents for magnetic resonance imaging (MRI). Their unique magnetic properties enable sensitive imaging, and surface modification allows the attachment of specific biomolecules for targeted detection of ovarian cancer cells. Their unique properties, viz. magnetic responsiveness and surface functionalization, make them versatile tools for enhancing both imaging and therapeutic outcomes. Present article reviews the literature on the synthesis, functionalization, and applications of iron oxide nanoparticles in management of ovarian cancer.
Collapse
Affiliation(s)
- Neelam Poonia
- Department of Pharmaceutics, University Institute of Pharma Sciences, Chandigarh University, Mohali, India
| | - Vipan Kumar
- Department of Pharmaceutical Chemistry, Swami Vivekanand College of Pharmacy, Rajpura, India
| | | | - Manoj Dalabehera
- University Institute of Pharma Sciences, Chandigarh University, Mohali, India
| | - Anupama Setia
- Department of Pharmaceutics, JCDM College of Pharmacy, Sirsa, India
| | - Kundan Singh Bora
- Department of Pharmacognosy, University Institute of Pharma Sciences, Chandigarh University, Mohali, India
| | - Vimal Arora
- Department of Pharmaceutics, University Institute of Pharma Sciences, Chandigarh University, Mohali, India
| |
Collapse
|
13
|
Tran V, Nguyen N, Renkes S, Nguyen KT, Nguyen T, Alexandrakis G. Current and Near-Future Technologies to Quantify Nanoparticle Therapeutic Loading Efficiency and Surface Coating Efficiency with Targeted Moieties. Bioengineering (Basel) 2025; 12:362. [PMID: 40281721 PMCID: PMC12025210 DOI: 10.3390/bioengineering12040362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 04/29/2025] Open
Abstract
Active targeting nanoparticles are a new generation of drug and gene delivery systems with the potential for greatly improved therapeutics delivery compared to conventional nanomedicine approaches. Despite their potential, the translation of active targeting nanoparticles faces challenges in production scale-up and batch consistency. Accurate quality control methods for nanoparticle therapeutic payload and coating characterization are critical for attaining the desired levels of batch repeatability, drug/gene loading efficiency, targeting molecule coating effectiveness, and safety profiles. Current limitations in nanoparticle characterization technologies, such as relying on ensemble-average analysis, pose challenges in assessing the drug/gene content and surface modification heterogeneity, which can greatly affect therapeutic outcomes. Single-molecule analysis technologies have emerged as a promising alternative, offering rich information on heterogeneity and stochastic variations between nanoparticle batches. This review first evaluates and identifies the challenges of traditional nanoparticle characterization tools that rely on indirect, bulk solution quantification methods. Subsequently, newly emerging characterization technologies are introduced for the quantification of therapeutic loading and targeted moiety coating efficiencies with single-nanoparticle resolution, to help guide researchers towards advancing the translation of active targeting nanoparticles into the clinical setting.
Collapse
Affiliation(s)
| | | | | | | | - Tam Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA; (V.T.); (N.N.); (S.R.); (K.T.N.)
| | - George Alexandrakis
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA; (V.T.); (N.N.); (S.R.); (K.T.N.)
| |
Collapse
|
14
|
Hong X, Chen T, Liu Y, Li J, Huang D, Ye K, Liao W, Wang Y, Liu M, Luan P. Design, current states, and challenges of nanomaterials in anti-neuroinflammation: A perspective on Alzheimer's disease. Ageing Res Rev 2025; 105:102669. [PMID: 39864562 DOI: 10.1016/j.arr.2025.102669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/08/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Alzheimer's disease (AD), an age-related neurodegenerative disease, brings huge damage to the society, to the whole family and even to the patient himself. However, until now, the etiological factor of AD is still unknown and there is no effective treatment for it. Massive deposition of amyloid-beta peptide(Aβ) and hyperphosphorylation of Tau proteins are acknowledged pathological features of AD. Recent studies have revealed that neuroinflammation plays a pivotal role in the pathology of AD. With the rise of nanomaterials in the biomedical field, researchers are exploring how the unique properties of these materials can be leveraged to develop effective treatments for AD. This article has summarized the influence of neuroinflammation in AD, the design of nanoplatforms, and the current research status and inadequacy of nanomaterials in improving neuroinflammation in AD.
Collapse
Affiliation(s)
- Xinyang Hong
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Yunyun Liu
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Jun Li
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Dongqing Huang
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Kaiyu Ye
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Wanchen Liao
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Yulin Wang
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Mengling Liu
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Ping Luan
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China; School of Basic Medical Sciences, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
15
|
El-Naggar NEA, Sarhan EM, Ibrahim AA, Abo-Elwafa AH, Yahia AM, Salah A, Maher RM, Wagdy M, El-Sherbeny GA, El-Sawah AA. One-step green synthesis of collagen nanoparticles using Ulva fasciata, network pharmacology and functional enrichment analysis in hepatocellular carcinoma treatment. Int J Biol Macromol 2025; 294:139244. [PMID: 39753167 DOI: 10.1016/j.ijbiomac.2024.139244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/19/2024] [Accepted: 12/25/2024] [Indexed: 01/11/2025]
Abstract
Collagen nanoparticles (collagen-NPs) possess numerous applications owing to their minimal immunogenicity, non-toxic nature, excellent biodegradability and biocompatibility. This study presents a novel sustainable technique for one-step green synthesis of hydrolyzed fish collagen-NPs (HFC-NPs) using a hot-water extract of Ulva fasciata biomass. HFC-NPs were characterized using TEM, FTIR, XRD, ζ-potential analyses, etc. TEM revealed hollow spherical nanoparticles exhibiting an average diameter of 27.25 nm. Face-centered central composite design was employed to maximize the HFC-NPs yield. The highest HFC-NPs yield was 13.05 mg/mL, which was achieved when the initial pH level was 7, incubation period was 72 h, and HFC concentration was 15 mg/mL. Thereafter, the possibility of using HFC-NPs as a biosafe drug carrier for doxorubicin (DOX) was tested in-vitro. Interestingly, both HFC-NPs and DOX-loaded HFC-NPs showed anticancer activity against hepatocellular carcinoma 'HCC'. In silico protein-protein interaction (PPI), network pharmacology, and functional pathway enrichment analysis of the common predicted HFC and HCC core targets suggested the involvement of PI3K-Akt, JAK-STAT, TNF, and/or Toll-like receptor signaling pathways in the HFC anti-HCC effect. In conclusion, our in vitro and in silico analyses demonstrated the HFC-NPs therapeutic efficacy against HCC, reflecting their promising potential in the development of novel anticancer drugs for HCC treatment.
Collapse
Affiliation(s)
- Noura El-Ahmady El-Naggar
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934 Alexandria, Egypt.
| | - Eman M Sarhan
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Abeer A Ibrahim
- Biotechnology and its Application Program, Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Afaf Hany Abo-Elwafa
- Biotechnology and its Application Program, Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Alaa M Yahia
- Biotechnology and its Application Program, Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Alyaa Salah
- Biotechnology and its Application Program, Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Rola M Maher
- Biotechnology and its Application Program, Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Merna Wagdy
- Biotechnology and its Application Program, Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | | | - Asmaa A El-Sawah
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
16
|
Zhu H, Xia D, He H, Zhang J, Wu D. Polydopamine Decorated Hyaluronic Acid Clusters for Tumor Cell Targeting Combination Therapy via Template Self-Consumption Methods. Macromol Rapid Commun 2025; 46:e2400887. [PMID: 39632414 DOI: 10.1002/marc.202400887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/19/2024] [Indexed: 12/07/2024]
Abstract
Photothermal-chemodynamic-chemotherapy (PTT-CDT-CT) combination therapy significantly enhances the therapeutic efficacy against tumors. However, synthesizing PTT-CDT-CT nanosystems is complex, typically requiring the preparation and conjugation of three components into a single carrier. To overcome this challenge, a facile template self-consumption method is developed. In this approach, hyaluronic acid (HA), recognized for its tumor cell targeting properties, chelates with Cu2+ to form Cu-HA, which then transforms into CuO2@HA cluster templates. These templates self-consume gradually, producing ·OH and Cu2+, which catalyze the rapid polymerization of dopamine and coordinate with polydopamine respectively, enhancing the photothermal conversion efficiency. After gossypol loading, GPDA@HA clusters are formed, achieving high gossypol loading efficiency due to π-π stacking between gossypol and PDA, as well as coordination between gossypol and Cu2+. The GPDA@HA clusters are effectively internalized by tumor cells through endocytosis, mediating the synergistic damage or inhibition of intracellular proteins, and nucleic acids against tumor cells via PTT, CDT, and CT. Crucially, the synergism of PTT-CDT-CT combination therapy far surpasses those of a single modality. This work introduces a new pathway for the synthesis of PTT-CDT-CT nanosystems, avoiding the conventional synthesis and loading of different therapeutic agents, and provides insights into developing personalized drug combination therapies with high efficacy.
Collapse
Affiliation(s)
- Hongrui Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Daqing Xia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Huan He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No.28 Xianning West Road, Xi'an, 710049, China
| |
Collapse
|
17
|
Kim K. Hybrid Systems of Gels and Nanoparticles for Cancer Therapy: Advances in Multifunctional Therapeutic Platforms. Gels 2025; 11:170. [PMID: 40136875 PMCID: PMC11941994 DOI: 10.3390/gels11030170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
Cancer is a global health concern. Various therapeutic approaches, including chemotherapy, photodynamic therapy, and immunotherapy, have been developed for cancer treatment. Silica nanoparticles, quantum dots, and metal-organic framework (MOF)-based nanomedicines have gained interest in cancer therapy because of their selective accumulation in tumors via the enhanced permeability and retention (EPR) effect. However, bare nanoparticles face challenges including poor biocompatibility, low stability, limited drug-loading capacity, and rapid clearance by the reticuloendothelial system (RES). Gels with unique three-dimensional network structures formed through various interactions such as covalent and hydrogen bonds are emerging as promising materials for addressing these challenges. Gel hybridization enhances biocompatibility, facilitates controlled drug release, and confers cancer-targeting abilities to nanoparticles. This review discusses gel-nanoparticle hybrid systems for cancer treatment developed in the past five years and analyzes the roles of gels in these systems.
Collapse
Affiliation(s)
- Kibeom Kim
- Department of Chemistry and Life Science, Sahmyook University, Seoul 01795, Republic of Korea
| |
Collapse
|
18
|
Luo S, Zhao C, Wang R, Chang Z, Di J, Wang Y, Gan Z, Wu D. Higher Tumor/Organ Accumulation Ratio of Porous Dual Infinite Coordination Polymer Nanocomposites for Efficient Tumor Photothermal-Starvation-Dual Hypoxia Chemo Synergistic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411188. [PMID: 39723716 DOI: 10.1002/smll.202411188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/16/2024] [Indexed: 12/28/2024]
Abstract
To enhance tumor comprehensive therapeutic effect of nanomedicines, an efficient strategy that integrates polydopamine and IR780 photothermal therapy, glucose oxidase (GOx) starvation therapy, Banoxantrone (AQ4N) and Tirapazamine (TPZ) dual hypoxia chemotherapy is developed in chronological order. Higher tumor accumulation of porous dual infinite coordination polymer nanocomposites are designed and prepared to implement this strategy, in which fluorescent dye IR780 doped hypoxic prodrugs AQ4N and TPZ coordinated with Cu(II) as the core, this core is encapsulated by GOx-loaded porous polydopamine coordinated with Fe(III) (Fe-MPDA). These nanocomposites exhibit a particle dimension of 118.5 ± 21.7 nm with pore size of 20.1 nm (pore volume 0.012 cm3 g-1 nm-1), facilitating easy accumulation in tumor tissues. Particularly, their ratio of the area under the curve (AUC) of the tumor/organ drug concentration versus time (AUCtumor/AUCorgans) is 1.28. Upon reaching the tumor, the nanocomposites release GOx and Fe-MPDA in initial stage to execute photothermal and starvation therapy, simultaneously enhance the hypoxic level at the tumor site. Then AQ4N and TPZ undergo synergistic chemotherapy in the enhanced hypoxic environment. Animal experiments show a tumor inhibition rate of 100% and a tumor recurrence rate of 0% after 60 d, demonstrating their great potential application for tumor treatment.
Collapse
Affiliation(s)
- Siyuan Luo
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Chenyu Zhao
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Rong Wang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zepu Chang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jingran Di
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Ya Wang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P. R. China
| | - Zhenhai Gan
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
19
|
Sezgin P, Gulcay-Ozcan E, Vučkovski M, Bondžić AM, Erucar I, Keskin S. Biomedical Applications of Metal-Organic Frameworks Revisited. Ind Eng Chem Res 2025; 64:1907-1932. [PMID: 39906289 PMCID: PMC11789151 DOI: 10.1021/acs.iecr.4c03698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 02/06/2025]
Abstract
Metal-organic frameworks (MOFs) have been shown to be great alternatives to traditional porous materials in various chemical applications, and they have been very widely studied for biomedical applications in the past decade specifically for drug storage. After our review published in 2011 [Keskin and Kızılel, Ind. Eng. Chem. Res. 2011, 50 (4), 1799-1812, 10.1021/ie101312k], we have witnessed a very fast growth not only in the number and variety of MOFs but also in their usage across a broad spectrum of biomedical fields. With the recent integration of molecular modeling and data science approaches to the experimental studies, biomedical applications of MOFs have been significantly accelerated positioning them as pivotal components in the regenerative medicine, medical imaging, and diagnostics. In this review, we visited the diverse biomedical applications of MOFs considering the recent experimental and computational efforts on drug storage and delivery, bioimaging, and biosensing. We focused on the underlying mechanisms governing the molecular interactions between MOFs and biological systems and discussed both the opportunities and challenges in the field to highlight the potential of MOFs in advanced therapeutics for cancer and neurological diseases.
Collapse
Affiliation(s)
- Pelin Sezgin
- Koç
University, Department of Chemical
and Biological Engineering, 34450 Istanbul, Turkey
| | - Ezgi Gulcay-Ozcan
- Sabanci
University, Faculty of Engineering
and Natural Sciences, Istanbul 34956, Turkey
| | - Marija Vučkovski
- Vinča
Institute of Nuclear Sciences, National Institute of the Republic
of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Aleksandra M. Bondžić
- Vinča
Institute of Nuclear Sciences, National Institute of the Republic
of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Ilknur Erucar
- Ozyegin
University, Department of Natural
and Mathematical Sciences, Faculty of Engineering, 34794 Istanbul, Turkey
| | - Seda Keskin
- Koç
University, Department of Chemical
and Biological Engineering, 34450 Istanbul, Turkey
| |
Collapse
|
20
|
Budama-Kilinc Y, Kurtur OB, Gok B, Kecel-Gunduz S, Alpay-Karaoglu S, Yılmaz Atalı P, Kartal M. Production of Prophylactic Nanoformulation for Dental Caries and Investigation of Its Effectiveness by In Vitro and In Silico Methods. Pharmaceutics 2025; 17:167. [PMID: 40006534 PMCID: PMC11859156 DOI: 10.3390/pharmaceutics17020167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: This study aimed to develop cinnamon bark essential oil (CEO), orange peel essential oil(OEO) and the combination of these two essential oils (OEO-CEO) loaded PLGA nanoparticles to prevent dental caries and to investigate their effectiveness in silico and in vitro methods. Methods: EO loaded PLGA nanoparticles were produced by single emulsion method. Detailed characterization studies were performed using different methods, and the controlled release profile was obtained. The antibacterial activity of the developed formulations was investigated on S. mutans and L. casei strains by in vitro and in silico methods. Additionally, the interaction mechanisms of EOs with DNA were evaluated. Results: Our findings showed that the average droplet size of EO-loaded PLGA nanoparticles varied between 243.1 ± 0.60 nm and 219 ± 4.49 nm, while PdI values varied between 0.069 ± 0.039 and 0.032 ± 0.01. In addition, the developed nanoparticles had high encapsulation efficiency (85.14% to 66.28%) and released the active ingredient in a continuous and controlled manner. Ames test showed that the genotoxicity of EOs was eliminated due to the encapsulation of EOs in PLGA nanoparticles and antibacterial tests showed that OEO-CEO-loaded PLGA nanoparticles were effective on L. casei and S. mutans. The antibacterial activity of EOs was also supported by in silico studies. Finally, it was revealed that EOs showed potential as antibacterial agents by interacting with DNA. Conclusions: The results showed that OEO-CEO-loaded PLGA nanoparticles have the potential to be a suitable nanoformulation for developing mouthwash or toothpaste for the prevention and treatment of dental caries.
Collapse
Affiliation(s)
- Yasemin Budama-Kilinc
- Department of Bioengineering, Faculty of Chemistry and Metallurgy, Yildiz Technical University, 34220 Istanbul, Turkey;
- Health Biotechnology Joint Research and Application Center of Excellence, 34220 Istanbul, Turkey;
| | - Ozan Baris Kurtur
- Department of Bioengineering, Graduate School of Natural and Applied Science, Yildiz Technical University, 34220 Istanbul, Turkey;
| | - Bahar Gok
- Department of Bioengineering, Faculty of Chemistry and Metallurgy, Yildiz Technical University, 34220 Istanbul, Turkey;
| | - Serda Kecel-Gunduz
- Physics Department, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey;
| | | | - Pınar Yılmaz Atalı
- Health Biotechnology Joint Research and Application Center of Excellence, 34220 Istanbul, Turkey;
- Department of Restorative Dentistry, Faculty of Dentistry, Marmara University, 34854 Istanbul, Turkey
| | - Murat Kartal
- Faculty of Pharmacy, Bezmialem Vakif University, 34093 Istanbul, Turkey;
| |
Collapse
|
21
|
Rahmani D, Taheri RA, Moosazadeh Moghaddam M. Targeted delivery of curcumin and CM11 peptide against hepatocellular carcinoma cells based on binding affinity of PreS1-coated chitosan nanoparticles to SB3 protein. Amino Acids 2025; 57:12. [PMID: 39862295 PMCID: PMC11762422 DOI: 10.1007/s00726-024-03438-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 12/18/2024] [Indexed: 01/27/2025]
Abstract
In recent years, the use of cationic peptides as alternative drugs with anticancer activity has received attention. In this study, the targeted release of curcumin (Cur) and CM11 peptide alone and together against hepatocellular carcinoma (HCC) was evaluated using chitosan nanoparticles (CS NPs) coated with Pres1 that target the SB3 antigen of HCC cells (PreS1-Cur-CM11-CS NPs). SB3 protein is the specific antigen of HCC and the PreS1 peptide is a part of the hepatitis B antigen, which can specifically bind to the SB3 protein. Chitosan was used to prepare NPs. To Cur and CM11 loading, drugs were added to the CS solution in appropriate concentrations. Pres1 was coupled to the surface of the NPs using EDC catalyst to target NPs against HepG2 cells. SEM and DLS analysis confirmed that the PreS1-Cur-CM11-CS NPs had a size of about 132 nm, the ideal size for penetrating the cell membrane. The loading of Cur and CM11 was equal to 87% and 65%, respectively, which had a sustained and better release in the acidic environment than in the physiological environment. The MTT assay showed that PreS1-Cur-CM11-CS NPs act in a targeted and specific manner with the highest toxicity on the HepG2 cells compared to the control by a decrease in viability of about 26% after 48 h based on cell apoptosis. The results showed that PreS1-Cur-CM11-CS NPs are capable of targeted and specific drug release against HepG2 cancer cells and have significant potential to fight this cancer.
Collapse
Affiliation(s)
- Danial Rahmani
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehrdad Moosazadeh Moghaddam
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Zheng Y, Wang M, Zhang X, Wu Z, Gao L. A bacteria-responsive nanoplatform with biofilm dispersion and ROS scavenging for the healing of infected diabetic wounds. Acta Biomater 2025; 193:545-558. [PMID: 39710222 DOI: 10.1016/j.actbio.2024.12.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/21/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Delayed wound healing in patients with diabetes remains a major health challenge worldwide. Uncontrolled bacterial infection leads to excessive production of reactive oxygen species (ROS) and persistent inflammatory responses, which seriously hinder conventional physiological healing processes after injury. Biofilms, as protective barriers for bacteria, pose a critical obstacle to effective bacterial eradication. Herein, an innovative therapeutic nanoplatform with in situ antibacterial and antioxidant properties is developed for enhancing infected diabetic wound healing. The enrichment of phenylboronic acid (PBA) moieties on the nanoplatform enhances biofilm penetration, actively anchors and aggregates the enclosed bacteria through the "multivalent effect", with an anchoring efficiency as high as 80 %. Additionally, glycine moieties on the nanoplatform ensure spatial extensibility by charge repulsion, enabling targeted antibiotic release around bacteria. This precise antibacterial effect increases the bactericidal activities of the nanoplatform against S. aureus or P. aeruginosa by 25 % and 22 % respectively, effectively eliminating the bacteria and dispersing the biofilms. Furthermore, 3,4-dihydropyrimidin-2(1H)-one (DHPM) moieties act as ROS scavengers that alleviate oxidative stress and inflammatory responses, promoting tissue repair progression into the proliferative phase characterized by increased extracellular matrix deposition, angiogenesis, and granulation tissue formation, ultimately accelerating diabetic wound healing. Overall, this work presents an innovative bacterial response strategy for achieving in situ antibacterial and antioxidant effects in infected tissues and provides a promising therapeutic approach for treating infected diabetic wounds. STATEMENT OF SIGNIFICANCE: Infected diabetic wound management remains a major world health issue. Severe bacterial infection leads to excessive oxidative stress and persistent inflammatory response, which seriously hinders the wound healing process. As a protective barrier for bacteria, biofilms are a key obstacle to effective bacterial clearance. This study provides a bacteria-responsive nanoplatform for the healing of infected diabetic wounds. The nanoplatform not only exhibits improved biofilm penetration but also actively anchors the enclosed bacteria and enables targeted antibiotic release to disperse the biofilm. The DHPM moieties of the nanoplatform act as ROS scavengers which could alleviate inflammatory responses, promote tissue repair progression into the proliferative phase, and ultimately accelerate diabetic wound repair.
Collapse
Affiliation(s)
- Yin Zheng
- Department of Endocrinology, Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi 030012, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China
| | - Mingyue Wang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhongming Wu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China; Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Shandong Institute of Endocrine and Metabolic Diseases, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University, Jinan, Shandong 250012, China.
| | - Ling Gao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China.
| |
Collapse
|
23
|
Shanmugavadivu A, Selvamurugan N. Surface engineering of 3D-printed polylactic acid scaffolds with polydopamine and 4-methoxycinnamic acid-chitosan nanoparticles for bone regeneration. NANOSCALE ADVANCES 2025:d4na00768a. [PMID: 39886612 PMCID: PMC11776148 DOI: 10.1039/d4na00768a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/17/2025] [Indexed: 02/01/2025]
Abstract
Bone remodeling, a continuous process of resorption and formation, is essential for maintaining skeletal integrity and mineral balance. However, in cases of critical bone defects where the natural bone remodeling capacity is insufficient, medical intervention is necessary. Traditional bone grafts have limitations such as donor site morbidity and availability, driving the search for bioengineered scaffold alternatives. The choice of biomaterial is crucial in scaffold design, as it provides a substrate that supports cell adhesion, proliferation, and differentiation. Poly-lactic acid (PLA) is known for its biocompatibility and biodegradability, but its hydrophobicity hinders cell attachment and tissue regeneration. To enhance PLA's bioactivity, we fabricated 3D-printed PLA scaffolds using fused deposition modelling. They were then surface-treated with NaOH to increase their reactivity, followed by polydopamine (PDA) and 4-methoxycinnamic acid (MCA)-loaded chitosan nanoparticle (nCS) coatings though polyelectrolyte complexation. Even though MCA, a polyphenolic, is known for its therapeutic properties, its osteogenic potential is not yet known. MCA treatment in mouse mesenchymal stem cells (mMSCs) promoted increased levels of Runx2 mRNA, a key bone transcription factor. Due to MCA's hydrophobic nature, nCS were used as carriers. The PLA/PDA/nCS-MCA scaffolds exhibited exceptional compressive strength and bioactivity. Biocompatibility tests confirmed that these scaffolds were non-cytotoxic to mMSCs. Overall, this study highlights the osteogenic potential of MCA and demonstrates the improved biocompatibility, bioactivity, wettability, and cell adhesion properties of the PDA/nCS-MCA-coated PLA scaffolds, positioning it as a promising material for bone tissue regeneration.
Collapse
Affiliation(s)
- Abinaya Shanmugavadivu
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology Kattankulathur Tamil Nadu 603203 India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology Kattankulathur Tamil Nadu 603203 India
| |
Collapse
|
24
|
Beiranvand M, Dehghan G. An analytical review of the therapeutic application of recent trends in MIL-based delivery systems in cancer therapy. Mikrochim Acta 2025; 192:89. [PMID: 39821354 DOI: 10.1007/s00604-024-06944-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/30/2024] [Indexed: 01/19/2025]
Abstract
MILs (Materials Institute Lavoisier), as nanocarriers based on metal-organic frameworks (MOFs), are one of the most advanced drug delivery vehicles that are now a major part of cancer treatment research. This review article highlights the key features and components of MIL nanocarriers for the development and improvement of these nanocarriers for drug delivery. Surface coatings are one of the key components of MIL nanocarriers, which play the role of stabilizing the nanocarrier, pH-dependent drug release, increasing the half-life of the drug, and targeting the carrier. MIL nanocarriers have been synthesized mainly by thermal and hydrothermal methods due to their single-step nature and the ability to produce individual crystals with tunable sizes. According to the data available in the literature, MIL-53 and MIL-101 are the best MILs for drug delivery. These MILs have a high ability to release drugs under acidic conditions, indicating their high efficiency compared to other MILs. In addition to drugs, these nanocarriers can also carry fluorescent, photothermal, and photodynamic agents. These agents allow the MIL nanocarriers to benefit from the therapeutic potential of photothermal and photodynamic agents in addition to the therapeutic capacity of the drug. Furthermore, the fluorescent active ingredient gives these nanocarriers a further tracking capability in addition to the inherent tracking capability of MRI. Therefore, MIL nanocarriers as theranostic carriers have the potential to revolutionize both drug delivery and imaging.
Collapse
Affiliation(s)
- Mohammad Beiranvand
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
25
|
Yang Z, Shi X, Qiu L. Tunable supramolecular self-assemblies based on cyclodextrin polymer as a loading platform for water-soluble drugs. Carbohydr Polym 2025; 347:122743. [PMID: 39486972 DOI: 10.1016/j.carbpol.2024.122743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/31/2024] [Accepted: 09/10/2024] [Indexed: 11/04/2024]
Abstract
Drug loading capacity is a crucial character of nano-scaled drug carriers to achieve high quality pharmaceutical preparations. However, efficient encapsulation of water-soluble small molecular drugs still faces large obstacles in many cases. Herein, we designed a novel supramolecular delivery system constructed by poly(β-cyclodextrin) containing benzoic acid groups (PCD-PA) and adamantyl terminated poly(ethylene glycol) (PEG-AD) to provide multiple intermolecular interactions for competent loading of water-soluble small-molecular drugs. PCD-PA had multiple host molecules, and PEG-AD could be inserted via host-guest interaction in different proportion to adjust the composition of supramolecular carrier. Meanwhile, π-π stacking and electrostatic interaction furnished by benzoic acid groups served as binding force for drug entrapment, which led to considerable loading capacity for several water-soluble drugs. Among the drugs with different chemical structures, mitoxantrone hydrochloride and doxorubicin hydrochloride bearing anthraquinone rings and several protonable amino groups acquired the highest loading content as about 14 % in PCD-PA3/PEG-AD supramolecular self-assemblies. Further computational simulations investigated the mechanism of drug loading based on the interactions between the carrier materials and the payloads. In addition, the weakly acidic environment obviously accelerated the release of certain drugs. All in all, this self-assembled supramolecular nano-system displayed great potentials as a delivery platform for diverse water-soluble drugs.
Collapse
Affiliation(s)
- Zhuting Yang
- Ministry of Education (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xuezhang Shi
- Ministry of Education (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Liyan Qiu
- Ministry of Education (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
26
|
Liew KB, Koh EV, Kong XE, Ismail NA, Abu Bakar RA, Kee PE, Khalid SH, Phang HC. Recent Advancements in Nanopharmaceuticals for Novel Drug Delivery Systems. Pharm Nanotechnol 2025; 13:271-286. [PMID: 39323341 DOI: 10.2174/0122117385324246240826042254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 09/27/2024]
Abstract
Nanoparticles have found applications across diverse sectors, including agriculture, food, cosmetics, chemicals, mechanical engineering, automotive, and oil and gas industries. In the medical field, nanoparticles have garnered considerable attention due to their great surface area, high solubility, rapid dissolution, and enhanced bioavailability. Nanopharmaceuticals are specifically designed to precisely deliver drug substances to targeted tissues and cells, aiming to optimize therapeutic efficacy while minimizing potential adverse effects. Furthermore, nanopharmaceuticals offer advantages, such as expedited therapeutic onset, reduced dosages, minimized variability between fed and fasted states, and enhanced patient compliance. The increasing interest in nanopharmaceuticals research among scientists and industry stakeholders highlights their potential for various medical applications from disease management to cancer treatment. This review examines the distinctive characteristics of ideal nanoparticles for efficient drug delivery, explores the current types of nanoparticles utilized in medicine, and delves into the applications of nanopharmaceuticals, including drug and gene delivery, as well as transdermal drug administration. This review provides insights into the nanopharmaceuticals field, contributing to the development of novel drug delivery systems and enhancing the potential of nanotechnology in healthcare.
Collapse
Affiliation(s)
- Kai Bin Liew
- Faculty of Pharmacy, University of Cyberjaya, Persiaran Bestari, Cyberjaya,63000, Selangor, Malaysia
| | - Ee Va Koh
- Faculty of Pharmacy, University of Cyberjaya, Persiaran Bestari, Cyberjaya,63000, Selangor, Malaysia
| | - Xue Er Kong
- Faculty of Pharmacy, University of Cyberjaya, Persiaran Bestari, Cyberjaya,63000, Selangor, Malaysia
| | - Nurdina Aleyah Ismail
- Faculty of Pharmacy, University of Cyberjaya, Persiaran Bestari, Cyberjaya,63000, Selangor, Malaysia
| | | | - Phei Er Kee
- Biorefinery and Bioprocessing Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan, 320, Taiwan
| | - Syed Haroon Khalid
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi Mara, Puncak Alam, Selangor, 42300, Malaysia
| | - Hiu Ching Phang
- Faculty of Pharmacy, University of Cyberjaya, Persiaran Bestari, Cyberjaya,63000, Selangor, Malaysia
| |
Collapse
|
27
|
Lankoff AM, Czerwińska M, Kruszewski M. Advances in Nanotheranostic Systems for Concurrent Cancer Imaging and Therapy: An Overview of the Last 5 Years. Molecules 2024; 29:5985. [PMID: 39770074 PMCID: PMC11677634 DOI: 10.3390/molecules29245985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
The rapid development of nanotechnology during the last two decades has created new opportunities to design and generate more advanced nanotheranostics with diversified capabilities for diagnosis, drug delivery, and treatment response monitoring in a single platform. To date, several approaches have been employed in order to develop nanotheranostics. The purpose of this review is to briefly discuss the key components of nanotheranostic systems, to present the conventional and upcoming imaging and therapeutic modalities that employ nanotheranostic systems, and to evaluate recent progress in the field of cancer nanotheranostic systems in the past five years (2020-2024). Special attention is focused on the design of cancer nanotheranostic systems, their composition, specificity, potential for multimodal imaging and therapy, and in vitro and in vivo characterization.
Collapse
Affiliation(s)
- Anna Małgorzata Lankoff
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland;
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 15, 25-406 Kielce, Poland
| | - Malwina Czerwińska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), 159c Nowoursynowska Str, 02-776 Warsaw, Poland;
| | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland;
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| |
Collapse
|
28
|
Tang H, Wang H, Gan Z, Ding Z, Yu Q. Engineering the Hydrophilic-Hydrophobic Interface of Polymeric Micelles by Cationic Blocks for Enhanced Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69011-69027. [PMID: 39639482 DOI: 10.1021/acsami.4c17024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The cationic surface charge critically influences the biological functions and therapeutic outcomes of the cancer nanomedicines. However, the basic correlation between the cationic group categories and their therapeutic efficacy has not been elucidated. In this study, cationic polymeric nanoparticles with amino groups (primary, tertiary, and quaternary amines) as the single variable were leveraged to investigate the various effects of amino species for enhanced antitumor chemotherapy. The nanoparticles were constructed from a series of triblock polymers with varying cationic repeating units at the hydrophilic-hydrophobic interface. Our results suggested that quaternary ammonium outperforms its primary and tertiary counterparts in destroying mitochondrial membranes to induce apoptosis, penetrating deep inside the tumor tissue, and damaging tumor vasculatures. As a result, we were able to effectively inhibit tumor growth in mice by a quaternary ammonium conjugate without causing significant toxicity. Our work demonstrated that the chemical structures played vital roles in regulating their biological functions and provided valuable information for designing cationic drug delivery systems.
Collapse
Affiliation(s)
- Hao Tang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology; Shenzhen, Guangdong 518055, P. R. China
| | - Hanbing Wang
- The State Key Laboratory of Organic Inorganic Composites, Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhihua Gan
- The State Key Laboratory of Organic Inorganic Composites, Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhenshan Ding
- Department of Urology, China-Japan Friendship Hospital, Beijing 100029, P. R. China
| | - Qingsong Yu
- The State Key Laboratory of Organic Inorganic Composites, Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
29
|
Luo X, Luo L, Lai R, Li Y, Zhou H, Li X. Synthesis and Antioxidant Effects of Edaravone-Loaded MPEG-2000-DSPE Micelles in Rotenone-Induced PC12 Cell Model of Parkinson's Disease. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1962. [PMID: 39683350 DOI: 10.3390/nano14231962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder globally that lacks any disease-modifying drug for prevention or treatment. Oxidative stress has been identified as one of the key pathogenic drivers of Parkinson's disease (PD). Edaravone, an approved free-radical scavenger, has proven to have potential against PD by targeting multiple key pathologies, including oxidative stress, focal mitochondria, and neuroinflammation. However, its bioavailability is potentially restricted due to its poor solubility and short half-life. This study aims to develop a simple and effective drug delivery system for edaravone to enhance its solubility, stability, and bioavailability to improve its neuroprotective efficacy. An MPEG-2000-DSPE-edaravone (MDE) micelle was prepared via solvent evaporation using MPEG-2000-DSPE as a carrier to encapsulate edaravone. The morphology, particle size, zeta potential, chemical structure, and edaravone loading of MDE were evaluated. We then investigated whether such targeted edaravone delivery could provide enhanced neuroprotection. A cell model of PD was established in PC12 cells through exposure to rotenone. The effects of MDE on PC12 cells treated with or without rotenone were evaluated using a cell counting kit-8, calcein acetoxymethyl ester (AM)-propidine iodide (PI) staining, and flow cytometry. Cell migration was evaluated using a wound healing assay. Additionally, the intracellular antioxidant study was performed using an ROS-level-detecting DCFH-DA probe, and the mitochondrial membrane potentials were evaluated using a JC-1 assay. MDE with a drug-loading content of 17.6% and an encapsulation efficiency of 92.8% was successfully prepared. The resultant MDE had a mean particle size of 112.97 ± 5.54 nm with a zeta potential of -42 mV. Cytotoxicity assays confirmed that the MDE (≤200 ug/mL) exhibited promising cytocompatibility with no significant effect on cell viability, cell cycle regulation, or apoptosis levels. Likewise, compared with the free edaravone, no effect on cell migration was noted for MDE. MDE might be able to target edaravone delivery into PC12 cells, increasing the mitochondrial membrane potential and providing a significant local antioxidant effect. The results demonstrated that MPEG-2000-DSPE could be a promising material for enhancing edaravone's aqueous solubility, stability, and antioxidant effects. MDE could be a potential drug formulation for treating PD and other diseases in which oxidative stress plays a key role in pathogenesis.
Collapse
Affiliation(s)
- Xin Luo
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Linshan Luo
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Rong Lai
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yan Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Hongyan Zhou
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Xiting Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| |
Collapse
|
30
|
Surya C, Lakshminarayana ABV, Ramesh SH, Kunjiappan S, Theivendren P, Santhana Krishna Kumar A, Ammunje DN, Pavadai P. Advancements in breast cancer therapy: The promise of copper nanoparticles. J Trace Elem Med Biol 2024; 86:127526. [PMID: 39298835 DOI: 10.1016/j.jtemb.2024.127526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/12/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Breast cancer (BC) is the most prevalent cancer among women worldwide and poses significant treatment challenges. Traditional therapies often lead to adverse side effects and resistance, necessitating innovative approaches for effective management. OBJECTIVE This review aims to explore the potential of copper nanoparticles (CuNPs) in enhancing breast cancer therapy through targeted drug delivery, improved imaging, and their antiangiogenic properties. METHODS The review synthesizes existing literature on the efficacy of CuNPs in breast cancer treatment, addressing common challenges in nanotechnology, such as nanoparticle toxicity, scalability, and regulatory hurdles. It proposes a novel hybrid method that combines CuNPs with existing therapeutic modalities to optimize treatment outcomes. RESULTS CuNPs demonstrate the ability to selectively target cancer cells while sparing healthy tissues, leading to improved therapeutic efficacy. Their unique physicochemical properties facilitate efficient biodistribution and enhanced imaging capabilities. Additionally, CuNPs exhibit antiangiogenic activity, which can inhibit tumor growth by preventing the formation of new blood vessels. CONCLUSION The findings suggest that CuNPs represent a promising avenue for advancing breast cancer treatment. By addressing the limitations of current therapies and proposing innovative solutions, this review contributes valuable insights into the future of nanotechnology in oncology.
Collapse
Affiliation(s)
- Chandana Surya
- Department of Pharmacognosy, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka 560054, India
| | | | - Sameera Hammigi Ramesh
- Department of Pharmacology, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka 560054, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu 626126, India
| | - Panneerselvam Theivendren
- Department of Pharmaceutical Chemistry, Swamy Vivekananda College of Pharmacy, Elayampalayam, Namakkal, Tamilnadu 637205, India
| | - A Santhana Krishna Kumar
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung City 80424, Taiwan; Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 602105, India.
| | - Damodar Nayak Ammunje
- Department of Pharmacology, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka 560054, India.
| | - Parasuraman Pavadai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka 560054, India.
| |
Collapse
|
31
|
Zeroug-Metz L, Lee S. Biodynamers: applications of dynamic covalent chemistry in single-chain polymer nanoparticles. Drug Deliv Transl Res 2024; 14:3599-3607. [PMID: 39009930 PMCID: PMC11499429 DOI: 10.1007/s13346-024-01665-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2024] [Indexed: 07/17/2024]
Abstract
Dynamic Covalent Chemistry (DCC) enables the development of responsive molecular systems through the integration of reversible bonds at the molecular level. These systems are thermodynamically stable and capable of undergoing various molecular assemblies and transformations, allowing them to adapt to changes in environmental conditions like temperature and pH. Introducing DCC into the field of polymer science has led to the design of Single-Chain Nanoparticles (SCNPs), which are formed by self-folding via intramolecular crosslinking mechanisms. Defined by their adaptability, SCNPs mimic biopolymers in size and functionality. Biodynamers, a subclass of SCNPs, are specifically designed for their stimuli-responsive and tunable, dynamic properties. Mimicking complex biological structures, their scope of application includes target-specific and pH-responsive drug delivery, enhanced cellular uptake and endosomal escape. In this manuscript, we discuss the integration of DCC for the design of SCNPs, focusing particularly on the characteristics of biodynamers and their biomedical and pharmaceutical applications. By underlining their potential, we highlight the factors driving the growing interest in SCNPs, providing an overview of recent developments and future perspectives in this research field.
Collapse
Affiliation(s)
- Lena Zeroug-Metz
- Department of Pharmacy, Saarland University, Campus C 4.1, 66123, Saarbrücken, Germany
| | - Sangeun Lee
- Department of Pharmacy, Saarland University, Campus C 4.1, 66123, Saarbrücken, Germany.
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123, Saarbrücken, Germany.
| |
Collapse
|
32
|
Khamkaew N, Kanokpanont S, Apinun J, Wangdee C, Motta A, Damrongsakkul S. Physico-Chemical Characterizations of Composited Calcium-Ortho-Phosphate Porous Particles and Their Controlled Release Behavior of Clindamycin Phosphate and Amikacin Sulfate. Polymers (Basel) 2024; 16:3144. [PMID: 39599235 PMCID: PMC11598036 DOI: 10.3390/polym16223144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 11/29/2024] Open
Abstract
The porous particles prepared from composited calcium-ortho-phosphate (biphasic), Thai silk fibroin, gelatin, and alginate, with an organic to inorganic component ratio of 15.5:84.5, were tested for their abilities to control the release of the commercialized antibiotic solutions, clindamycin phosphate (CDP) and amikacin sulfate (AMK). The in vitro biodegradability tests complying to the ISO 10993-13:2010 standard showed that the particles degraded <20 wt% within 56 days. The drugs were loaded through a simple adsorption, with the maximum loading of injection-graded drug solution of 43.41 wt% for CDP, and 39.08 wt% for AMK. The release profiles from dissolution tests of the drug-loaded particles varied based on the adsorption methods used. The drug-loaded particles (without a drying step) released the drug immediately, while the drying process after the drug loading resulted in the sustained-release capability of the particles. The model-fitting of drug release profiles showed the release driven by diffusion with the first-ordered kinetic after the initial burst release. The released CDF and AMK from particles could sustain the inhibition of Gram-positive bacteria and Gram-negative bacteria, respectively, for at least 72 h. These results indicated the potential of these composited particles as controlled-release carriers for CDP and AMK.
Collapse
Affiliation(s)
- Namfon Khamkaew
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand (S.D.)
- Center of Excellence in Biomaterial Engineering in Medical and Health, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (J.A.); (C.W.)
| | - Sorada Kanokpanont
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand (S.D.)
- Center of Excellence in Biomaterial Engineering in Medical and Health, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (J.A.); (C.W.)
| | - Jirun Apinun
- Center of Excellence in Biomaterial Engineering in Medical and Health, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (J.A.); (C.W.)
- Department of Orthopaedics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chalika Wangdee
- Center of Excellence in Biomaterial Engineering in Medical and Health, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (J.A.); (C.W.)
- Department of Veterinary Surgery, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Antonella Motta
- BIOtech Research Center, Department of Industrial Engineering, University of Trento, 38123 Trento, Italy;
| | - Siriporn Damrongsakkul
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand (S.D.)
- Center of Excellence in Biomaterial Engineering in Medical and Health, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; (J.A.); (C.W.)
| |
Collapse
|
33
|
Katamesh AA, Abdel-Bar HM, Break MKB, Hassoun SM, Subaiea G, Radwan A, Abo El-Enin HA. Manipulation of Lipid Nanocapsules as an Efficient Intranasal Platform for Brain Deposition of Clozapine as an Antipsychotic Drug. Pharmaceutics 2024; 16:1417. [PMID: 39598541 PMCID: PMC11597305 DOI: 10.3390/pharmaceutics16111417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES The blood-brain barrier (BBB) significantly limits the treatment of central nervous system disorders, such as schizophrenia, by restricting drug delivery to the brain. This study explores the potential of intranasal clozapine-loaded lipid nanocapsules (IN LNCsClo) as a targeted and effective delivery system to the brain. METHODS LNCsClo were prepared using the phase inversion technique and characterized in terms of size, zeta potential, entrapment efficiency (EE%), and in vitro drug release. The pharmacokinetic, safety, and pharmacodynamic effects of LNCsClo were then evaluated in a rat model through intranasal (IN) administration and compared with those of oral and intravenous (IV) Clo solutions. RESULTS LNCsClo were prepared using a phase inversion technique, resulting in a nanocarrier with a particle size of 28.6 ± 3.6 nm, homogenous dispersion, and high EE% (84.66 ± 5.66%). Pharmacokinetic analysis demonstrated that IN LNCsClo provided enhanced Clo brain bioavailability, rapid CNS targeting, and prolonged drug retention compared to oral and intravenous routes. Notably, the area under the curve (AUC) for brain concentration showed more than two-fold and eight-fold increases with LNCsClo, compared to IV and oral solutions, respectively, indicating improved brain-targeting efficiency. Safety assessments indicated that LNCsClo administration mitigated Clo-associated metabolic side effects, such as hyperglycemia, insulin imbalance, and liver enzyme alterations. Additionally, pharmacodynamic studies showed that LNCsClo significantly improved antipsychotic efficacy and reduced schizophrenia-induced hyperactivity, while preserving motor function. CONCLUSIONS These results highlight the potential of IN LNCsClo as a novel drug delivery system, offering improved therapeutic efficacy, reduced systemic side effects, and better patient compliance in the treatment of schizophrenia and potentially other CNS disorders.
Collapse
Affiliation(s)
- Ahmed A. Katamesh
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Department of Pharmaceutics, Egyptian Drug Authority, Giza 12511, Egypt;
| | - Hend Mohamed Abdel-Bar
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt
| | - Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il 55473, Saudi Arabia
| | - Shimaa M. Hassoun
- Department of Pharmacology, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Northeast Delta Branch, Department of Pharmacies, Health Insurance Organization, Mansoura 35511, Egypt
| | - Gehad Subaiea
- Department of Pharmacology, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Amr Radwan
- Research Department, Academy of Scientific Research and Technology, Cairo 11694, Egypt
- Egyptian Center for Innovation and Technology Development, Cairo 11512, Egypt
| | | |
Collapse
|
34
|
Meissner S, Lopez S, Rees S, O'Carroll S, Barker D, Harland B, Raos B, Svirskis D. Safe subdural administration and retention of a neurotrophin-3-delivering hydrogel in a rat model of spinal cord injury. Sci Rep 2024; 14:25424. [PMID: 39455822 PMCID: PMC11511924 DOI: 10.1038/s41598-024-77423-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024] Open
Abstract
Neurotrophic growth factor (GF) loaded hydrogels have shown promise as a treatment approach for spinal cord injury (SCI). However, SCI presents complex challenges for the direct administration of treatment due to the spinal cord's intricate anatomy and highly sensitive environment. Many current hydrogel administration approaches overlook this complexity, limiting their translational potential. To address this, we propose a novel intrathecal administration method using an in situ gelling, hyaluronic acid-modified heparin-poloxamer hydrogel loaded with neurotrophin-3 (NT-3) for the direct delivery of NT-3 to the spinal cord. We injected a NT-3 loaded hydrogel into the intrathecal space immediately after contusion SCI in Sprague Dawley (SpD) rats. Our results indicate that injecting the NT-3 loaded hydrogel into the intrathecal space was safe and that the gel was retained alongside the cord for at least one week. Additionally, no adverse effects were observed on rat behaviour. While functional improvement trends were noted, statistical significance was not reached, and immunohistochemistry results showed no significant difference between treatment groups. Overall, our findings suggest the feasibility, safety, and potential of the developed intrathecal administration technique for delivering diverse therapeutic molecules for SCI recovery.
Collapse
Affiliation(s)
- Svenja Meissner
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Grafton, 1023, Auckland, New Zealand
| | - Salvador Lopez
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Grafton, 1023, Auckland, New Zealand
| | - Shaun Rees
- School of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Simon O'Carroll
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Grafton, 1023, Auckland, New Zealand
| | - David Barker
- School of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Bruce Harland
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Grafton, 1023, Auckland, New Zealand
| | - Brad Raos
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Grafton, 1023, Auckland, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Grafton, 1023, Auckland, New Zealand.
- , Level 3, Building 505, 85 Park Road, Auckland, 1023, New Zealand.
| |
Collapse
|
35
|
Kadyr S, Zhuraliyeva A, Yermekova A, Makhambetova A, Kaldybekov DB, Mun EA, Bulanin D, Askarova SN, Umbayev BA. PLGA-PEG Nanoparticles Loaded with Cdc42 Inhibitor for Colorectal Cancer Targeted Therapy. Pharmaceutics 2024; 16:1301. [PMID: 39458630 PMCID: PMC11510643 DOI: 10.3390/pharmaceutics16101301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: An inhibitor of small Rho GTPase Cdc42, CASIN, has been shown to reduce cancer cell proliferation, migration, and invasion, yet it has several limitations, including rapid drug elimination and low bioavailability, which prevents its systemic administration. In this study, we designed and characterized a nanoparticle-based delivery system for CASIN encapsulated within poly(lactide-co-glycolide)-block-poly(ethylene glycol)-carboxylic acid endcap nanoparticles (PLGA-PEG-COOH NPs) for targeted inhibition of Cdc42 activity in colon cancer. Methods: We applied DLS, TEM, and UV-vis spectroscopy methods to characterize the size, polydispersity index, zeta potential, encapsulation efficiency, loading capacity, and in vitro drug release of the synthesized nanoparticles. The CCK-8 cell viability test was used to study colorectal cancer cell growth in vitro. Results: We showed that CASIN-PLGA-PEG-COOH NPs were smooth, spherical, and had a particle size of 86 ± 1 nm, with an encapsulation efficiency of 66 ± 5% and a drug-loading capacity of 5 ± 1%. CASIN was gradually released from NPs, reaching its peak after 24 h, and could effectively inhibit the proliferation of HT-29 (IC50 = 19.55 µM), SW620 (IC50 = 9.33 µM), and HCT116 (IC50 = 10.45 µM) cells in concentrations ranging between 0.025-0.375 mg/mL. CASIN-PLGA-PEG-COOH NPs demonstrated low hemolytic activity with a hemolytic ratio of less than 1% for all tested concentrations. Conclusion: CASIN-PLGA-PEG-COOH NPs have high encapsulation efficiency, sustained drug release, good hemocompatibility, and antitumor activity in vitro. Our results suggest that PLGA-PEG-COOH nanoparticles loaded with CASIN show potential as a targeted treatment for colorectal cancer and could be recommended for further in vivo evaluation.
Collapse
Affiliation(s)
- Sanazar Kadyr
- School of Medicine, Nazarbayev University, 010000 Astana, Kazakhstan; (S.K.); (D.B.)
| | - Altyn Zhuraliyeva
- Laboratory of Bioengineering and Regenerative Medicine, National Laboratory Astana, Nazarbayev University, 010000 Astana, Kazakhstan; (A.Z.); (A.Y.); (A.M.); (S.N.A.)
| | - Aislu Yermekova
- Laboratory of Bioengineering and Regenerative Medicine, National Laboratory Astana, Nazarbayev University, 010000 Astana, Kazakhstan; (A.Z.); (A.Y.); (A.M.); (S.N.A.)
| | - Aigerim Makhambetova
- Laboratory of Bioengineering and Regenerative Medicine, National Laboratory Astana, Nazarbayev University, 010000 Astana, Kazakhstan; (A.Z.); (A.Y.); (A.M.); (S.N.A.)
| | - Daulet B. Kaldybekov
- Department of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan;
| | - Ellina A. Mun
- School of Sciences and Humanities, Nazarbayev University, 010000 Astana, Kazakhstan;
| | - Denis Bulanin
- School of Medicine, Nazarbayev University, 010000 Astana, Kazakhstan; (S.K.); (D.B.)
| | - Sholpan N. Askarova
- Laboratory of Bioengineering and Regenerative Medicine, National Laboratory Astana, Nazarbayev University, 010000 Astana, Kazakhstan; (A.Z.); (A.Y.); (A.M.); (S.N.A.)
| | - Bauyrzhan A. Umbayev
- Laboratory of Bioengineering and Regenerative Medicine, National Laboratory Astana, Nazarbayev University, 010000 Astana, Kazakhstan; (A.Z.); (A.Y.); (A.M.); (S.N.A.)
| |
Collapse
|
36
|
Liu CK, Su FY, Juang TY, Liu YC. Sustained antibacterial release of zwitterionic globular hyperbranched polymer dots intercalated into layered double hydroxides. RSC Adv 2024; 14:31694-31703. [PMID: 39376522 PMCID: PMC11456918 DOI: 10.1039/d4ra05587j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024] Open
Abstract
This study introduces zwitterionic hyperbranched polymer (HBP) dots intercalated into layered double hydroxides (LDHs) for sustained antibacterial release. The proposed zwitterionic HBPs possess a three-dimensional spherical structure; unconventional blue fluorescent luminescence; water solubility; abundant COOH, amine, and amide functional groups; anionic exchangeability for intercalating into LDH interlayers; and sustained-release antibacterial activity. The intercalation for the layered nanomaterials was determined by adding different weight ratios of HBPs to Mg-Al LDHs to investigate the changes in the interlayer distance. X-ray diffraction revealed that the LDH layer spacing increased from 8.6 to 25.5 Å, effectively expanding the interlayer spacing with increasing HBP intercalation. Additionally, Fourier-transform infrared spectroscopy revealed the functional groups of the intercalated nanohybrids. Because the peripheral functional groups of HBPs are amino (-NH2) groups, preliminary evaluations revealed that pristine HBPs exhibited antibacterial properties. We further examined the antibacterial properties of the HBP/LDH nanohybrids. The results showed that HBPs combined with LDHs' controllable release properties can effectively achieve long-term sustained antibacterial release.
Collapse
Affiliation(s)
- Chun-Kuei Liu
- Department of Chemical Engineering, National Chung Hsing University 145 Xingda Rd., South Dist. Taichung 40227 Taiwan +886-4-22854734 +886-4-22853769
| | - Fang-Yi Su
- Department of Chemical Engineering, National Chung Hsing University 145 Xingda Rd., South Dist. Taichung 40227 Taiwan +886-4-22854734 +886-4-22853769
| | - Tzong-Yuan Juang
- Department of Cosmeceutics, China Medical University Taichung 40402 Taiwan +886-4-22053366-5312
| | - Yung-Chuan Liu
- Department of Chemical Engineering, National Chung Hsing University 145 Xingda Rd., South Dist. Taichung 40227 Taiwan +886-4-22854734 +886-4-22853769
| |
Collapse
|
37
|
Li X, Wang S, Zheng M, Ma Z, Chen Y, Deng L, Xu W, Fan G, Khademolqorani S, Banitaba SN, Osman AI. Synergistic integration of MXene nanostructures into electrospun fibers for advanced biomedical engineering applications. NANOSCALE HORIZONS 2024; 9:1703-1724. [PMID: 39087682 DOI: 10.1039/d4nh00209a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
MXene-based architectures have paved the way in various fields, particularly in healthcare area, owing to their remarkable physiochemical and electromagnetic characteristics. Moreover, the modification of MXene structures and their combination with polymeric networks have gained considerable prominence to further develop their features. The combination of electrospun fibers with MXenes would be promising in this regard since electrospinning is a well-established technique that is now being directed toward commercial biomedical applications. The introduction of MXenes into electrospun fibrous frameworks has highlighted outcomes in various biomedical applications, including cancer therapy, controlled drug delivery, antimicrobial targets, sensors, and tissue engineering. Correspondingly, this review describes the employed strategies for the preparation of electrospun configurations in tandem with MXene nanostructures with remarkable characteristics. Next, the advantages of MXene-decorated electrospun fibers for use in biomedical applications are comprehensively discussed. According to the investigations, rich surface functional groups, hydrophilicity, large surface area, photothermal features, and antimicrobial and antibacterial activities of MXenes could synergize the performance of electrospun layers to engineer versatile biomedical targets. Moreover, the future of this path is clarified to combat the challenges related to the electrospun fibers decorated with MXene nanosheets.
Collapse
Affiliation(s)
- Xiaobo Li
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xian Yang 712000, China.
| | - Shan Wang
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xian Yang 712000, China.
| | - Minyan Zheng
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xian Yang 712000, China.
| | - Zhanying Ma
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xian Yang 712000, China.
| | - Yan Chen
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xian Yang 712000, China.
| | - Lingjuan Deng
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xian Yang 712000, China.
| | - Weixia Xu
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xian Yang 712000, China.
| | - Guang Fan
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xian Yang 712000, China.
| | - Sanaz Khademolqorani
- Emerald Experts laboratory, Isfahan Science and Technology Town, Isfahan 84156-83111, Iran
| | | | - Ahmed I Osman
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, Northern Ireland, UK.
| |
Collapse
|
38
|
Wang H, Liu X, Yan X, Du Y, Pu F, Ren J, Qu X. A nanocarbon-enabled hybridization strategy to construct pharmacologically cooperative therapeutics for augmented anticancer efficacy. Chem Sci 2024:d4sc05280c. [PMID: 39290590 PMCID: PMC11403576 DOI: 10.1039/d4sc05280c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024] Open
Abstract
The drug design principles are of great value in developing nanomedicines with favorable functionalities. Herein we propose a nanocarbon-enabled hybridization strategy to construct a pharmacologically cooperative nanodrug for improved cancer therapy in the light of pharmacophore hybridization in medicinal chemistry and the synthetic principles of nanocarbons. An antioxidant defense pharmacological inhibitor and a co-nucleation precursor are structurally hybridized into nanodrugs (SCACDs) via forming carbon quantum dots. These SCACDs elicit dual enhanced bioactivities, including superior sonocatalytic activity that arose from the appropriate band structure of the pharmacophoric carbon cores, and more than an order of magnitude higher antioxidant defense inhibitory activity than the pharmacological inhibitor via conveying the bioactive pharmacophores from the molecular level to nanoscale. In vivo, SCACDs possess a long body retention and desirable biodistribution to eliminate melanoma cells at a very low injection dose. The present study provides a viable yet effective strategy for the development of pharmacologically cooperative nanodrugs to achieve remarkably improved therapeutic efficacy.
Collapse
Affiliation(s)
- Huan Wang
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Xinchen Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University Changchun Jilin 130021 P. R. China
| | - Xiangyu Yan
- State Key Laboratory of Powder Metallurgy, Central South University Changsha Hunan 410083 P. R. China
| | - Yong Du
- State Key Laboratory of Powder Metallurgy, Central South University Changsha Hunan 410083 P. R. China
| | - Fang Pu
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Jinsong Ren
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Xiaogang Qu
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| |
Collapse
|
39
|
Chen Y, Huang L, Luo Z, Han D, Luo W, Wan R, Li Y, Ge Y, Lin WW, Xie Y, Sun M, Wang Q, Li Z, Chen S, Yang Y, Huang B, Xu Y. Pantothenate-encapsulated liposomes combined with exercise for effective inhibition of CRM1-mediated PKM2 translocation in Alzheimer's therapy. J Control Release 2024; 373:336-357. [PMID: 38996921 DOI: 10.1016/j.jconrel.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative condition characterized by metabolic imbalances and neuroinflammation, posing a formidable challenge in medicine due to the lack of effective treatments. Despite considerable research efforts, a cure for AD remains elusive, with current therapies primarily focused on symptom management rather than addressing the disease's underlying causes. This study initially discerned, through Mendelian randomization analysis that elevating pantothenate levels significantly contributes to the prophylaxis of Alzheimer's disease. We explore the therapeutic potential of pantothenate encapsulated in liposomes (Pan@TRF@Liposome NPs), targeting the modulation of CRM1-mediated PKM2 nuclear translocation, a critical mechanism in AD pathology. Additionally, we investigate the synergistic effects of exercise, proposing a combined approach to AD treatment. Exercise-induced metabolic alterations share significant similarities with those associated with dementia, suggesting a potential complementary effect. The Pan@TRF@Liposome NPs exhibit notable biocompatibility, showing no liver or kidney toxicity in vivo, while demonstrating stability and effectiveness in modulating CRM1-mediated PKM2 nuclear translocation, thereby reducing neuroinflammation and neuronal apoptosis. The combined treatment of exercise and Pan@TRF@Liposome NP administration in an AD animal model leads to improved neurofunctional outcomes and cognitive performance. These findings highlight the nanoparticles' role as effective modulators of CRM1-mediated PKM2 nuclear translocation, with significant implications for mitigating neuroinflammation and neuronal apoptosis. Together with exercise, this dual-modality approach could offer new avenues for enhancing cognitive performance and neurofunctional outcomes in AD, marking a promising step forward in developing treatment strategies for this challenging disorder.
Collapse
Affiliation(s)
- Yisheng Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China; Department of Medical Sciences, Ningde Normal University College of Medical Sciences, No. 1 Xueyuan Road, Jiaocheng District, Ningde City, Fujian, China
| | - Lei Huang
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, 01605, MA, USA.
| | - Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Dan Han
- Department of Emergency Medicine and Intensive Care, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Renwen Wan
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Li
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Yunshen Ge
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei-Wei Lin
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, China
| | - Yuchun Xie
- Jiangsu Province Geriatric Hospital, China
| | - Mingming Sun
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Qian Wang
- Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Zhiwei Li
- Clinical Laboratory Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, PR China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| | - Yi Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China.
| | - Bin Huang
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China.
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China.
| |
Collapse
|
40
|
Patil GS, Nangare SN, Patil DA, Borhade DD, Patil GB. Design of quetiapine fumarate loaded polyethylene glycol decorated graphene oxide nanosheets: Invitro-exvivo characterization. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:848-864. [PMID: 38685472 DOI: 10.1016/j.pharma.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/03/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Quetiapine Fumarate (QF) is an atypical antipsychotic with poor oral bioavailability (9%) due to its low permeability and pH-dependent solubility. Therefore, this study aims to design QF-loaded polyethylene glycol (PEG) functionalized graphene oxide nanosheets (GON) for nasal delivery of QF. In brief, GO was synthesized using a modified Hummers process, followed by ultra-sonication to produce GON. Subsequently, PEG-functionalized GON was prepared using carbodiimide chemistry (PEG-GON). QF was then decorated onto the cage of PEG-GON using the π-π stacking phenomenon (QF@PEG-GON). The QF@PEG-GON nanocomposite underwent several spectral characterizations, in vitro drug release, mucoadhesion study, ex vivo diffusion study, etc. The surface morphology of QF@PEG-GON nanocomposite validates the cracked nature of the nanocomposite, whereas the diffractograms and thermogram of nanocomposite confirm the conversion of QF into an amorphous form with uniform distribution in PEG-GON. Moreover, an ex vivo study of PEG-GON demonstrates superior mucoadhesion capacity due to its surface functional groups and hydrophilicity. The percent drug loading content and percent entrapment efficiency of the nanocomposite were found to be 9.2±0.62% and 92.3±1.02%, respectively. The developed nanocomposite exhibited 43.82±1.65% drug release within 24h, with the Korsemeyer-Peppas model providing the best-fit release kinetics (R2: 0.8614). Here, the interlayer spacing of PEG-GON prevented prompt diffusion of the buffer, leading to a delayed release pattern. In conclusion, the anticipated QF@PEG-GON nanocomposite shows promise as a nanocarrier platform for nasal delivery of QF.
Collapse
Affiliation(s)
- Gaurav S Patil
- Department of Pharmaceutics, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405 Dhule (MS), India
| | - Sopan N Nangare
- Department of Pharmaceutics, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405 Dhule (MS), India
| | - Dilip A Patil
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405 Dhule (MS), India
| | - Dinesh D Borhade
- Department of Pharmaceutics, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405 Dhule (MS), India
| | - Ganesh B Patil
- Department of Pharmaceutics, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405 Dhule (MS), India.
| |
Collapse
|
41
|
Sun X, Zhou X, Shi X, Abed OA, An X, Lei YL, Moon JJ. Strategies for the development of metalloimmunotherapies. Nat Biomed Eng 2024; 8:1073-1091. [PMID: 38914800 PMCID: PMC11410547 DOI: 10.1038/s41551-024-01221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/30/2024] [Indexed: 06/26/2024]
Abstract
Metal ions play crucial roles in the regulation of immune pathways. In fact, metallodrugs have a long record of accomplishment as effective treatments for a wide range of diseases. Here we argue that the modulation of interactions of metal ions with molecules and cells involved in the immune system forms the basis of a new class of immunotherapies. By examining how metal ions modulate the innate and adaptive immune systems, as well as host-microbiota interactions, we discuss strategies for the development of such metalloimmunotherapies for the treatment of cancer and other immune-related diseases.
Collapse
Affiliation(s)
- Xiaoqi Sun
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
- Editas Medicine, Cambridge, MA, USA.
| | - Xingwu Zhou
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Xiaoyue Shi
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Omar A Abed
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Xinran An
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Yu Leo Lei
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
42
|
Lowry GV, Giraldo JP, Steinmetz NF, Avellan A, Demirer GS, Ristroph KD, Wang GJ, Hendren CO, Alabi CA, Caparco A, da Silva W, González-Gamboa I, Grieger KD, Jeon SJ, Khodakovskaya MV, Kohay H, Kumar V, Muthuramalingam R, Poffenbarger H, Santra S, Tilton RD, White JC. Towards realizing nano-enabled precision delivery in plants. NATURE NANOTECHNOLOGY 2024; 19:1255-1269. [PMID: 38844663 DOI: 10.1038/s41565-024-01667-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/27/2024] [Indexed: 09/18/2024]
Abstract
Nanocarriers (NCs) that can precisely deliver active agents, nutrients and genetic materials into plants will make crop agriculture more resilient to climate change and sustainable. As a research field, nano-agriculture is still developing, with significant scientific and societal barriers to overcome. In this Review, we argue that lessons can be learned from mammalian nanomedicine. In particular, it may be possible to enhance efficiency and efficacy by improving our understanding of how NC properties affect their interactions with plant surfaces and biomolecules, and their ability to carry and deliver cargo to specific locations. New tools are required to rapidly assess NC-plant interactions and to explore and verify the range of viable targeting approaches in plants. Elucidating these interactions can lead to the creation of computer-generated in silico models (digital twins) to predict the impact of different NC and plant properties, biological responses, and environmental conditions on the efficiency and efficacy of nanotechnology approaches. Finally, we highlight the need for nano-agriculture researchers and social scientists to converge in order to develop sustainable, safe and socially acceptable NCs.
Collapse
Affiliation(s)
- Gregory V Lowry
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Juan Pablo Giraldo
- Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA.
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California San Diego, San Diego, CA, USA
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
- Department of Radiology, University of California San Diego, San Diego, CA, USA
- Center for Nano-ImmunoEngineering, University of California San Diego, San Diego, CA, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, San Diego, CA, USA
- Center for Engineering in Cancer, Institute of Engineering in Medicine, University of California San Diego, San Diego, CA, USA
- Moores Cancer Center, University of California, University of California San Diego, San Diego, CA, USA
- Institute for Materials Discovery and Design, University of California San Diego, San Diego, CA, USA
| | | | - Gozde S Demirer
- Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Kurt D Ristroph
- Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA
| | - Gerald J Wang
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Christine O Hendren
- Geological and Environmental Sciences, Appalachian State University, Boone, NC, USA
| | | | - Adam Caparco
- Department of NanoEngineering, University of California San Diego, San Diego, CA, USA
| | | | | | - Khara D Grieger
- Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Su-Ji Jeon
- Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | | | - Hagay Kohay
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Vivek Kumar
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | | | - Swadeshmukul Santra
- Department of Chemistry and Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Robert D Tilton
- Chemical Engineering and Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jason C White
- The Connecticut Agricultural Research Station, New Haven, CT, USA
| |
Collapse
|
43
|
Guo X, Luo W, Wu L, Zhang L, Chen Y, Li T, Li H, Zhang W, Liu Y, Zheng J, Wang Y. Natural Products from Herbal Medicine Self-Assemble into Advanced Bioactive Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403388. [PMID: 39033533 PMCID: PMC11425287 DOI: 10.1002/advs.202403388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/09/2024] [Indexed: 07/23/2024]
Abstract
Novel biomaterials are becoming more crucial in treating human diseases. However, many materials require complex artificial modifications and synthesis, leading to potential difficulties in preparation, side effects, and clinical translation. Recently, significant progress has been achieved in terms of direct self-assembly of natural products from herbal medicine (NPHM), an important source for novel medications, resulting in a wide range of bioactive supramolecular materials including gels, and nanoparticles. The NPHM-based supramolecular bioactive materials are produced from renewable resources, are simple to prepare, and have demonstrated multi-functionality including slow-release, smart-responsive release, and especially possess powerful biological effects to treat various diseases. In this review, NPHM-based supramolecular bioactive materials have been revealed as an emerging, revolutionary, and promising strategy. The development, advantages, and limitations of NPHM, as well as the advantageous position of NPHM-based materials, are first reviewed. Subsequently, a systematic and comprehensive analysis of the self-assembly strategies specific to seven major classes of NPHM is highlighted. Insights into the influence of NPHM structural features on the formation of supramolecular materials are also provided. Finally, the drivers and preparations are summarized, emphasizing the biomedical applications, future scientific challenges, and opportunities, with the hope of igniting inspiration for future research and applications.
Collapse
Affiliation(s)
- Xiaohang Guo
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Weikang Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Lingyu Wu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Lianglin Zhang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuxuan Chen
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, 519087, China
| | - Teng Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Haigang Li
- Hunan key laboratory of the research and development of novel pharmaceutical preparations, Changsha Medical University, Changsha, 410219, China
| | - Wei Zhang
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yawei Liu
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jun Zheng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
44
|
Sengupta P, Das A, Khanam J, Biswas A, Mathew J, Mondal PK, Romero EL, Thomas S, Trotta F, Ghosal K. Evaluating the potential of ethyl cellulose/eudragit-based griseofulvin loaded nanosponge matrix for topical antifungal drug delivery in a sustained release pattern. Int J Biol Macromol 2024; 276:133953. [PMID: 39029839 DOI: 10.1016/j.ijbiomac.2024.133953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Fungal infections are very alarming nowadays and are common throughout the world. Severe fungal infections may lead to a significant risk of mortality and morbidity worldwide. Sustained delivery of antifungal agents is needed to mitigate this problem. In the current study, an attempt has been made to formulate griseofulvin-loaded nanosponges using the quasi-emulsion solvent diffusion technique. For characterization, griseofulvin loaded nanosponges were tested by different instrumental techniques such as optical microscopy, scanning electron microscopy (SEM), powder X-ray diffractometer (PXRD), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), and transmission electron microscopy (TEM). The antifungal activity of the nanosponges was assessed against Candida albican strain using the agar well-diffusion method. Finally, the drug-loaded nanosponges' in vitro sustained release activity was evaluated. FTIR spectra showed no chemical interference between the drug and polymers. Some of the peaks of the drug are not visible in the FTIR spectrum, which suggests drug entrapment. PXRD data showed that the drug lost its high crystallinity when entrapped in the nanosponge matrix. From the morphological studies via SEM and TEM, a brief idea of the surface morphology of the nanosponges was obtained. The small pores throughout the structure proved its high porosity. The antifungal sensitivity assay was successful, and a zone of inhibition was observed in all the formulations. The in-vitro drug release study showed sustained behaviour. The sustaining effect was due to the polymer and cross-linker used, which gave rise to a porous scaffold matrix. From the results, it can be concluded that griseofulvin-loaded nanosponges can be used for antifungal drug delivery against various topical skin infections.
Collapse
Affiliation(s)
- Prateep Sengupta
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Amrita Das
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Jasmina Khanam
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Avirup Biswas
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India
| | - Jesil Mathew
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India; Manipal Center for Infectious Diseases (MAC ID), Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Pranab Kumar Mondal
- Microfluidics and Microscale Transport Processes Laboratory, Department of Mechanical Engineering, Indian Institute of Technology, Guwahati, India
| | - Eder Lilia Romero
- Nanomedicine Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Saenz Peña 352, Bernal 1876, Argentina
| | - Sabu Thomas
- IIUCNN, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Francesco Trotta
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
| | - Kajal Ghosal
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
45
|
Jiang K, Wang Q, Chen XL, Wang X, Gu X, Feng S, Wu J, Shang H, Ba X, Zhang Y, Tang K. Nanodelivery Optimization of IDO1 Inhibitors in Tumor Immunotherapy: Challenges and Strategies. Int J Nanomedicine 2024; 19:8847-8882. [PMID: 39220190 PMCID: PMC11366248 DOI: 10.2147/ijn.s458086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/13/2024] [Indexed: 09/04/2024] Open
Abstract
Tryptophan (Trp) metabolism plays a vital role in cancer immunity. Indoleamine 2.3-dioxygenase 1 (IDO1), is a crucial enzyme in the metabolic pathway by which Trp is degraded to kynurenine (Kyn). IDO1-mediated Trp metabolites can inhibit tumor immunity and facilitate immune evasion by cancer cells; thus, targeting IDO1 is a potential tumor immunotherapy strategy. Recently, numerous IDO1 inhibitors have been introduced into clinical trials as immunotherapeutic agents for cancer treatment. However, drawbacks such as low oral bioavailability, slow onset of action, and high toxicity are associated with these drugs. With the continuous development of nanotechnology, medicine is gradually entering an era of precision healthcare. Nanodrugs carried by inorganic, lipid, and polymer nanoparticles (NPs) have shown great potential for tumor therapy, providing new ways to overcome tumor diversity and improve therapeutic efficacy. Compared to traditional drugs, nanomedicines offer numerous significant advantages, including a prolonged half-life, low toxicity, targeted delivery, and responsive release. Moreover, based on the physicochemical properties of these nanomaterials (eg, photothermal, ultrasonic response, and chemocatalytic properties), various combination therapeutic strategies have been developed to synergize the effects of IDO1 inhibitors and enhance their anticancer efficacy. This review is an overview of the mechanism by which the Trp-IDO1-Kyn pathway acts in tumor immune escape. The classification of IDO1 inhibitors, their clinical applications, and barriers for translational development are discussed, the use of IDO1 inhibitor-based nanodrug delivery systems as combination therapy strategies is summarized, and the issues faced in their clinical application are elucidated. We expect that this review will provide guidance for the development of IDO1 inhibitor-based nanoparticle nanomedicines that can overcome the limitations of current treatments, improve the efficacy of cancer immunotherapy, and lead to new breakthroughs in the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Kehua Jiang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Qing Wang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Xiao-Long Chen
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Xiaodong Wang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Xiaoya Gu
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Shuangshuang Feng
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Jian Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Haojie Shang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Xiaozhuo Ba
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Yanlong Zhang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| |
Collapse
|
46
|
Kaya-Tilki E, Öztürk AA, Engür-Öztürk S, Dikmen M. Enhanced anti-angiogenic effects of aprepitant-loaded nanoparticles in human umbilical vein endothelial cells. Sci Rep 2024; 14:19837. [PMID: 39191829 PMCID: PMC11349893 DOI: 10.1038/s41598-024-70791-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
Recent advancements in cancer therapy have led to the development of novel nanoparticle-based drug delivery systems aimed at enhancing the efficacy of chemotherapeutic agents. This study focuses on evaluating aprepitant-loaded PLGA and Eudragit RS 100 nanoparticles for their potential antiangiogenic effects. Characterization studies revealed that aprepitant-loaded nanoparticles exhibited particle sizes ranging from 208.50 to 238.67 nm, with monodisperse distributions (PDI < 0.7) and stable zeta potentials (between - 5.0 and - 15.0 mV). Encapsulation efficiencies exceeding 99% were achieved, highlighting the efficacy of PLGA and Eudragit RS 100 as carriers for aprepitant. Cellular uptake studies demonstrated enhanced internalization of aprepitant-loaded nanoparticles by HUVEC cells compared to free aprepitant, as confirmed by fluorescence microscopy. Furthermore, cytotoxicity assays revealed significant dose-dependent effects of aprepitant-loaded nanoparticles on HUVEC cell viability, with IC50 values at 24 h of 11.9 µg/mL for Eudragit RS 100 and 94.3 µg/mL for PLGA formulations. Importantly, these nanoparticles effectively inhibited HUVEC cell migration and invasion induced by M2c supernatant, as evidenced by real-time cell analysis and gene expression studies. Moreover, aprepitant-loaded nanoparticles downregulated VEGFA and VEGFB gene expressions and reduced VEGFR-2 protein levels in HUVEC cells, highlighting their potential as antiangiogenic agents. Overall, this research underscores the promise of nanoparticle-based aprepitant formulations in targeted cancer therapy, offering enhanced therapeutic outcomes through improved drug delivery and efficacy against angiogenesis.
Collapse
Affiliation(s)
- Elif Kaya-Tilki
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.
| | - Ahmet Alper Öztürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Selin Engür-Öztürk
- Department of Pharmacy Services, Tavas Vocational School of Health Services, Pamukkale University, Denizli, Turkey
| | - Miriş Dikmen
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
47
|
Paul V J, Sharma P, Shanavas A. Self-Assembled Nanobiomaterials for Combination Immunotherapy. ACS APPLIED BIO MATERIALS 2024; 7:4962-4974. [PMID: 38116786 DOI: 10.1021/acsabm.3c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Nanotechnological interventions for cancer immunotherapy are a rapidly evolving paradigm with immense potential. Self-assembled nanobiomaterials present safer alternatives to their nondegradable counterparts and pose better functionalities in terms of controlled drug delivery and phototherapy to activate immunogenic cell death. In this Review, we discuss several classes of self-assembled nanobiomaterials based on polymers, lipids, peptides, hydrogel, metal organic frameworks, and covalent-organic frameworks with the ability to activate systemic immune response and convert a "cold" immunosuppressive tumor mass to a "hot" antitumor immune cell rich microenvironment. The unique aspects of these materials are underpinned, and their mechanisms of combinatorial immunotherapeutic action are discussed. Future challenges associated with their clinical translation are also highlighted.
Collapse
Affiliation(s)
- Johns Paul V
- Inorganic & Organic Nanomedicine (ION) Lab, Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Priyanka Sharma
- Inorganic & Organic Nanomedicine (ION) Lab, Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Asifkhan Shanavas
- Inorganic & Organic Nanomedicine (ION) Lab, Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| |
Collapse
|
48
|
Kassaee SN, Ayoko GA, Richard D, Wang T, Islam N. Inhaled Ivermectin-Loaded Lipid Polymer Hybrid Nanoparticles: Development and Characterization. Pharmaceutics 2024; 16:1061. [PMID: 39204406 PMCID: PMC11359515 DOI: 10.3390/pharmaceutics16081061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/12/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
Ivermectin (IVM), a drug originally used for treating parasitic infections, is being explored for its potential applications in cancer therapy. Despite the promising anti-cancer effects of IVM, its low water solubility limits its bioavailability and, consequently, its biological efficacy as an oral formulation. To overcome this challenge, our research focused on developing IVM-loaded lipid polymer hybrid nanoparticles (LPHNPs) designed for potential pulmonary administration. IVM-loaded LPHNPs were developed using the emulsion solvent evaporation method and characterized in terms of particle size, morphology, entrapment efficiency, and release pattern. Solid phase characterization was investigated by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Using a Twin stage impinger (TSI) attached to a device, aerosolization properties of the developed LPHNPs were studied at a flow rate of 60 L/min, and IVM was determined by a validated HPLC method. IVM-loaded LPHNPs demonstrated spherical-shaped particles between 302 and 350 nm. Developed formulations showed an entrapment efficiency between 68 and 80% and a sustained 50 to 60% IVM release pattern within 96 h. Carr's index (CI), Hausner ratio (HR), and angle of repose (θ) indicated proper flowability of the fabricated LPHNPs. The in vitro aerosolization analysis revealed fine particle fractions (FPFs) ranging from 18.53% to 24.77%. This in vitro study demonstrates the potential of IVM-loaded LPHNPs as a delivery vehicle through the pulmonary route.
Collapse
Affiliation(s)
- Seyedeh Negin Kassaee
- Pharmacy Discipline, School of Clinical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Godwin A. Ayoko
- School of Chemistry and Physics, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Derek Richard
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Tony Wang
- Central Analytical Research Facility, Institution for Future Environment, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Nazrul Islam
- Pharmacy Discipline, School of Clinical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Centre for Immunology and Infection Control (CIIC), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| |
Collapse
|
49
|
Yu J, Tavsanli B, Tamminga MJ, Gillies ER. Compact Polyelectrolyte Complexes of Poly(l-Lysine) and Anionic Polysaccharides. Biomacromolecules 2024; 25:5160-5168. [PMID: 39041825 DOI: 10.1021/acs.biomac.4c00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Compact polyelectrolyte complexes (CoPECs) can exhibit mechanical properties similar to those of biological tissues and other interesting properties, such as self-healing. To date, a variety of CoPECs prepared from synthetic polyelectrolytes have been investigated, but there are very few examples based entirely on biopolymers. We describe here an investigation of CoPECs based on poly(l-lysine) (PLL) with sodium hyaluronate (HA) and alginate (Alg). A 2:1 ratio of cation:anion and 0.25 M NaBr was beneficial for the formation of viscoelastic PLL-HA CoPECs, with the favorable ratio attributed to the spacing of carboxylates on HA being one every two saccharide units. In contrast, 1.0 M NaBr and a 1:1 ratio were better for PLL-Alg CoPECs. Both CoPECs swelled or retained a constant volume when immersed in hypertonic media, but contracted in hypotonic media. The loading of molecules into the PLL-HA (2:1) CoPECs was investigated. Higher loadings were achieved for anionic molecules compared to cations, presumably due to the excess cationic binding sites on the networks. The times required for full release of the molecules ranged from less than 2 h for neutral paracetamol to about 48 h for crystal violet and diclofenac.
Collapse
Affiliation(s)
- Jaehak Yu
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
| | - Burak Tavsanli
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
| | - Micah J Tamminga
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
| | - Elizabeth R Gillies
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B9, Canada
| |
Collapse
|
50
|
Guo J, Wang P, Li Y, Liu Y, Ye Y, Chen Y, Kankala RK, Tong F. Advances in hybridized nanoarchitectures for improved oro-dental health. J Nanobiotechnology 2024; 22:469. [PMID: 39113060 PMCID: PMC11305065 DOI: 10.1186/s12951-024-02680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/01/2024] [Indexed: 08/11/2024] Open
Abstract
On a global note, oral health plays a critical role in improving the overall human health. In this vein, dental-related issues with dentin exposure often facilitate the risk of developing various oral-related diseases in gums and teeth. Several oral-based ailments include gums-associated (gingivitis or periodontitis), tooth-based (dental caries, root infection, enamel erosion, and edentulous or total tooth loss), as well as miscellaneous diseases in the buccal or oral cavity (bad breath, mouth sores, and oral cancer). Although established conventional treatment modalities have been available to improve oral health, these therapeutic options suffer from several limitations, such as fail to eradicate bacterial biofilms, deprived regeneration of dental pulp cells, and poor remineralization of teeth, resulting in dental emergencies. To this end, the advent of nanotechnology has resulted in the development of various innovative nanoarchitectured composites from diverse sources. This review presents a comprehensive overview of different nanoarchitectured composites for improving overall oral health. Initially, we emphasize various oral-related diseases, providing detailed pathological circumstances and their effects on human health along with deficiencies of the conventional therapeutic modalities. Further, the importance of various nanostructured components is emphasized, highlighting their predominant actions in solving crucial dental issues, such as anti-bacterial, remineralization, and tissue regeneration abilities. In addition to an emphasis on the synthesis of different nanostructures, various nano-therapeutic solutions from diverse sources are discussed, including natural (plant, animal, and marine)-based components and other synthetic (organic- and inorganic-) architectures, as well as their composites for improving oral health. Finally, we summarize the article with an interesting outlook on overcoming the challenges of translating these innovative platforms to clinics.
Collapse
Affiliation(s)
- Jun Guo
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China.
| | - Pei Wang
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Yuyao Li
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Yifan Liu
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Yingtong Ye
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, People's Republic of China
| | - Yi Chen
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, People's Republic of China.
| | - Fei Tong
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China.
| |
Collapse
|