1
|
Silva RM, Oliveira FJ, Lima MF, Silva NA, Miranda G. Titanium-based hybrid coatings grown using ALD/MLD onto AZ31 screw-like supports for implantable systems. RSC Adv 2025; 15:10774-10786. [PMID: 40196819 PMCID: PMC11973893 DOI: 10.1039/d4ra07952c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/11/2025] [Indexed: 04/09/2025] Open
Abstract
Atomic/molecular layer deposition (ALD/MLD) is ideally suited for addressing the challenges faced by the new generation biomedical technologies through surface and interface modification with organic-inorganic hybrid coatings, which are emerging as an alternative to inorganic coatings. In this study, we present a feasible strategy for modifying the surface of magnesium alloy (AZ31) screw-like substrates with titanium-based hybrid coatings, using titanium tetraisopropoxide as the metal-bearing precursor, and a simple aliphatic bi-functional alcohol, such as ethylene glycol, as the organic precursor. Results demonstrated that the titanium-based hybrid coating was evenly distributed without obvious defects on the AZ31 screw-like substrates while providing physical protection. In addition, the cytocompatibility of the titanium-based hybrid coating was validated through the cytotoxicity assay, revealing its potential for future biomedical applications.
Collapse
Affiliation(s)
- R M Silva
- CICECO-Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro 3810-193 Aveiro Portugal
| | - F J Oliveira
- CICECO-Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro 3810-193 Aveiro Portugal
| | - M F Lima
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho Campus de Gualtar 4710-057 Braga Portugal
- ICVS/3B's-PT Government Associate Laboratory Braga Guimarães Portugal
| | - N A Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho Campus de Gualtar 4710-057 Braga Portugal
- ICVS/3B's-PT Government Associate Laboratory Braga Guimarães Portugal
| | - G Miranda
- CICECO-Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro 3810-193 Aveiro Portugal
| |
Collapse
|
2
|
Abushahba F, Riivari S, Areid N, Närvä E, Kylmäoja E, Ritala M, Tuukkanen J, Vallittu PK, Närhi TO. Gingival keratinocyte adhesion on atomic layer-deposited hydroxyapatite coated titanium. J Biomater Appl 2025; 39:1055-1063. [PMID: 39773092 DOI: 10.1177/08853282251313503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
This study aimed to evaluate the effects of the atomic layer deposited hydroxyapatite (ALD-HA) coating of the titanium (Ti) surface on human gingival keratinocyte (HGK) cell adhesion, spreading, viability, and hemidesmosome (HD) formation. Grade 2 square-shaped Ti substrates were used (n = 62). Half of the substrates were ALD-HA coated, while the other half were used as non-coated controls (NC). The ALD-HA surface was characterized with scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis. The initial cell adhesion and HD formation of HGKs were evaluated after a 24-h cultivation period. The cell proliferation was assessed by cultivating cells for 1, 3, and 7 d. The expression levels of the integrin mediating cell adhesion were detected with the Western Blot method. In addition, cell spreading and expression of the proteins mediating cell adhesion were imaged using a confocal microscope. SEM-EDS analysis demonstrated the formation of HA on the ALD-HA surfaces. The relative cell attachment was significantly higher (p < .05) on the ALD-HA compared to the NC surface after 1 and 3 d of cell culture. No significant difference was found in integrin α6 or β4 expression. The microscope evaluation showed significantly increased cell spreading with peripheral HD expression on ALD-HA compared to the NC surfaces (p = .0001). Moreover, laminin γ2 expression was significantly higher on the ALD-HA than on the NC surfaces (p < .001). Compared to the NC Ti surface, the ALD-HA coating has favorable effects on HGK proliferation, growth, and cell spreading. This indicates that the ALD-HA coating has good potential for improving mucosal attachment on implant surfaces.
Collapse
Affiliation(s)
- Faleh Abushahba
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku, Turku, Finland
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Sini Riivari
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Nagat Areid
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Elisa Närvä
- Institute of Biomedicine and Cancer Research Laboratory FICAN West, University of Turku, Turku, Finland
| | - Elina Kylmäoja
- Department of Anatomy and Cell Biology, Research Unit of Translational Medicine, Medical Research Center, University of Oulu, Oulu, Finland
| | - Mikko Ritala
- Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Juha Tuukkanen
- Department of Anatomy and Cell Biology, Research Unit of Translational Medicine, Medical Research Center, University of Oulu, Oulu, Finland
| | - Pekka K Vallittu
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku, Turku, Finland
- The Wellbeing Service County Southwest Finland, Turku, Finland
| | - Timo O Närhi
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, Turku, Finland
- The Wellbeing Service County Southwest Finland, Turku, Finland
| |
Collapse
|
3
|
Simon N, Stieglitz T, Bucher V. Area Selective Atomic Layer Deposition for the Use on Active Implants: An Overview of Available Process Technology. Adv Healthc Mater 2025; 14:e2403149. [PMID: 39723707 PMCID: PMC11804845 DOI: 10.1002/adhm.202403149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/25/2024] [Indexed: 12/28/2024]
Abstract
Area-selective atomic layer deposition (ASD) is a bottom-up process that is of particular importance in the semiconductor industry, as it prevents edge defects and avoids cost-intensive lithography steps. This approach not only offers immense potential for the manufacture of active implants but can also be used to improve them. This review paper presents various processes that can be used for this purpose. It also identifies aspects that shall be considered when implementing such a process for medical applications. For example, the inherent selectivity can be used to produce new biosensors, the passivated ASD can be used to encapsulate polymer-based implants, and the activated ASD can be used to improve electrode performance. Finally, the aspects that shall be considered in a coating for active implants are highlighted. ASD therefore offers great potential for use on active implants.
Collapse
Affiliation(s)
- Nicolai Simon
- Institute for MicroSystems Technology (iMST)Faculty of Mechanical & Medical Engineering, Furtwangen UniversityD‐78120Furtwangen im SchwarzwaldGermany
- Laboratory for Biomedical MicrotechnologyDept. Microsystems Eng.‐IMTEKUniversity of FreiburgD‐79110FreiburgGermany
| | - Thomas Stieglitz
- Laboratory for Biomedical MicrotechnologyDept. Microsystems Eng.‐IMTEKUniversity of FreiburgD‐79110FreiburgGermany
- BrainLinks‐BrainTools // IMBITUniversity of FreiburgD‐79110FreiburgGermany
- Bernstein Center FreiburgUniversity of FreiburgD‐79110FreiburgGermany
| | - Volker Bucher
- Institute for MicroSystems Technology (iMST)Faculty of Mechanical & Medical Engineering, Furtwangen UniversityD‐78120Furtwangen im SchwarzwaldGermany
| |
Collapse
|
4
|
Wang MK, Xiao F, Xu X. Antibacterial properties and biological activity of 3D-printed titanium alloy implants with a near-infrared photoresponsive surface. Int J Implant Dent 2025; 11:3. [PMID: 39779604 PMCID: PMC11711858 DOI: 10.1186/s40729-024-00587-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
PURPOSE SLM 3D printing technology is one of the most widely used implant-making technologies. However, the surfaces of the implants are relatively rough, and bacteria can easily adhere to them; increasing the risk of postoperative infection. Therefore, we prepared a near-infrared photoresponsive nano-TiO2 coating on the surface of an SLM 3D-printed titanium alloy sheet (Ti6Al4V) via a hydrothermal method to evaluate its antibacterial properties and biocompatibility. METHODS Using SLM technology, titanium alloy sheets were 3D printed, and a nano-TiO2 coating was prepared on its surface via a hydrothermal method to obtain Ti6Al4V@TiO2. The surface morphology, physicochemical properties, and photothermal response of the samples were observed. The Ti6Al4V groups and Ti6Al4V@TiO2 groups were cocultured with S. aureus and E. coli and exposed to 808 nm NIR light (0.8 W/cm2) and viable plate count experiments and live/dead bacterial staining were used to assess their in vitro antibacterial properties. RESULTS The hydrophilicity of the nano-TiO2 coating sample significantly improved and the sample exhibited an excellent photothermal response. The temperature reached 46.9± 0.32 °C after 15 min of irradiation with 808 nm NIR light (0.8 W/cm2). The Ti6Al4V group showed significant antibacterial properties after irradiation with 808 nm NIR light, and the Ti6Al4V@TiO2 group also had partial antibacterial ability without irradiation. After irradiation with 808 nm NIR light, the Ti6Al4V@TiO2 group showed the strongest antibacterial properties, reaching 90.11± 2.20% and 90.60± 1.08% against S. aureus and E. coli, respectively. CONCLUSIONS A nano-TiO2 coating prepared via a hydrothermal method produced synergistic antibacterial effects after NIR light irradiation.
Collapse
Affiliation(s)
- Ming-Kang Wang
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Fan Xiao
- College of Mechanical Engineering, Zhejiang University of Technology, 310023, Zhejiang, People's Republic of China
| | - Xu Xu
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China.
- Department of Stomatology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, People's Republic of China.
| |
Collapse
|
5
|
Sepúlveda M, Capek J, Baishya K, Rodriguez-Pereira J, Bacova J, Jelinkova S, Zazpe R, Sopha H, Rousar T, Macak JM. Enhancement of biocompatibility of anodic nanotube structures on biomedical Ti-6Al-4V alloy via ultrathin TiO 2 coatings. Front Bioeng Biotechnol 2024; 12:1515810. [PMID: 39687268 PMCID: PMC11646768 DOI: 10.3389/fbioe.2024.1515810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024] Open
Abstract
This work aims to describe the effect of the surface modification of TiO2 nanotube (TNT) layers on Ti-6Al-4V (TiAlV) alloy by ultrathin TiO2 coatings prepared via Atomic Layer Deposition (ALD) on the growth of MG-63 osteoblastic cells. The TNT layers with two distinctly different inner diameters, namely ∼15 nm and ∼50 nm, were prepared via anodic oxidation of the TiAlV alloy. Flat, i.e., non-anodized, TiAlV alloy foils were used as reference substrates. Additionally, a part of the TNT layers and alloy foils was coated with ultrathin coatings of TiO2 by ALD. The number of TiO2 ALD cycles used was 1 and 5 leading to a nominal TiO2 thickness of ∼0.055 and ∼0.3 nm, respectively. The ultrathin TiO2 coating by ALD enabled to optimize the surface hydrophilicity for optimal cell growth. In addition, coatings shaded impurities of V- and F-based species (stemming from the alloy and the anodization electrolyte) that affect the biocompatibility of the tested materials while preserving the original structure and morphology. The evaluation of the biocompatibility before and after TiO2 ALD coating on TiAlV flat surfaces and TNT layers was carried out using MG-63 osteoblastic cells and compared after incubation for up to 96 h. The cell growth, adhesion, and proliferation of the MG-63 on TiAlV foils and TNT layers showed significant enhancement after the surface modification by TiO2 ALD.
Collapse
Affiliation(s)
- Marcela Sepúlveda
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Jan Capek
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czechia
| | - Kaushik Baishya
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Jhonatan Rodriguez-Pereira
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Jana Bacova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czechia
| | - Stepanka Jelinkova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czechia
| | - Raul Zazpe
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Hanna Sopha
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Tomas Rousar
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czechia
| | - Jan M. Macak
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| |
Collapse
|
6
|
Pan Y, Cao L, Chen L, Gao L, Wei X, Lin H, Jiang L, Wang Y, Cheng H. Enhanced Bacterial and Biofilm Adhesion Resistance of ALD Nano-TiO 2 Coatings Compared to AO Coatings on Titanium Abutments. Int J Nanomedicine 2024; 19:11143-11159. [PMID: 39502638 PMCID: PMC11537173 DOI: 10.2147/ijn.s482478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024] Open
Abstract
Purpose The study was intended to compare the surface properties and the bacterial and biofilm adhesion resistance of two potential antibacterial nanometer titanium dioxide (nano-TiO2) coatings on dental titanium (Ti) abutments prepared by atomic layer deposition (ALD) and the anodic oxidation (AO) techniques. Methods Nano-TiO₂ coatings were developed using ALD and AO techniques and applied to Ti surfaces. The surface properties and the bacterial and biofilm adhesion resistance of these coatings were evaluated against commonly used Ti and Zirconia (ZrO₂) surfaces. The chemical compositions, crystalline forms, surface topography, roughness and hydrophilicity were characterized. The antibacterial performance was assessed by the scanning electron microscope (SEM), the Colony-forming unit (CFU) assay and the 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide (MTT) assay using in vitro models of Staphylococcus aureus (S. aureus), Streptococcus mutans (S. mutans), and Porphyromonas gingivalis (P. gingivalis) in both single- and mixed-species bacterial compositions. Results ALD-prepared nano-TiO₂ coatings resulted in a dense, smooth, and less hydrophilic surface with an anatase phase, significantly reducing the adhesion of the three bacteria by over 50%, comparable to ZrO₂. In contrast, AO-prepared coatings led to a less hydrophilic surface, characterized by various nano-sized pores within the oxide film. This alteration, however, had no impact on the adhesion of the three bacteria. The adhesion patterns for mixed-species bacteria were generally consistent with single-species results. Conclusion ALD-prepared nano-TiO₂ coatings on Ti abutments demonstrated promising antibacterial properties comparable to ZrO₂ surfaces, suggesting potential in preventing peri-implantitis. However, the bacterial and biofilm adhesion resistance of AO-produced nano-TiO₂ coatings was limited.
Collapse
Affiliation(s)
- Yu Pan
- Department of Prosthodontics, Institute of Stomatology & Research Center of Dental Esthetics and Biomechanics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Lili Cao
- Department of Prosthodontics, Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Libing Chen
- Department of Prosthodontics, Institute of Stomatology & Research Center of Dental Esthetics and Biomechanics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Linjuan Gao
- Department of Prosthodontics, Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Xia Wei
- Department of Prosthodontics, Institute of Stomatology & Research Center of Dental Esthetics and Biomechanics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Honglei Lin
- Department of Prosthodontics, Institute of Stomatology & Research Center of Dental Esthetics and Biomechanics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Lei Jiang
- Department of Prosthodontics, Institute of Stomatology & Research Center of Dental Esthetics and Biomechanics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Yinghui Wang
- Department of Prosthodontics, Institute of Stomatology & Research Center of Dental Esthetics and Biomechanics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Department of Prosthodontics, Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Hui Cheng
- Department of Prosthodontics, Institute of Stomatology & Research Center of Dental Esthetics and Biomechanics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Department of Prosthodontics, Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| |
Collapse
|
7
|
Wattanavijitkul T, Khamwannah J, Lohwongwatana B, Puncreobutr C, Reddy N, Yamdech R, Cherdchom S, Aramwit P. Development of Biocompatible Coatings with PVA/Gelatin Hydrogel Films on Vancomycin-Loaded Titania Nanotubes for Controllable Drug Release. ACS OMEGA 2024; 9:37052-37062. [PMID: 39246498 PMCID: PMC11375713 DOI: 10.1021/acsomega.4c03942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/27/2024] [Accepted: 08/15/2024] [Indexed: 09/10/2024]
Abstract
This study investigates the utilization of poly(vinyl alcohol) (PVA)/gelatin hydrogel films cross-linked with glutaraldehyde as a novel material to coat the surface of vancomycin-loaded titania nanotubes (TNTs), with a focus on enhancing biocompatibility and achieving controlled vancomycin release. Hydrogel films have emerged as promising candidates in tissue engineering and drug-delivery systems due to their versatile properties. The development of these hydrogel films involved varying the proportions of PVA, gelatin, and glutaraldehyde to achieve the desired properties, including the gel fraction, swelling behavior, biocompatibility, and biodegradation. Among the formulations tested, the hydrogel with a PVA-to-gelatin ratio of 25:75 and 0.2% glutaraldehyde was selected to coat vancomycin-loaded TNTs. The coated TNTs demonstrated slower release of vancomycin compared with the uncoated TNTs. In addition, the coated TNTs demonstrated the ability to promote osteogenesis, as evidenced by increased alkaline phosphatase activity and calcium accumulation. The vancomycin-loaded TNTs coated with hydrogel film demonstrated effectiveness against both E. coli and S. aureus. These findings highlight the potential benefits and therapeutic applications of using hydrogel films to coat implant materials, offering efficient drug delivery and controlled release. This study contributes valuable insights into the development of alternative materials for medical applications, thereby advancing the field of biomaterials and drug delivery systems.
Collapse
Affiliation(s)
- Thitima Wattanavijitkul
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jirapon Khamwannah
- Department of Metallurgical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Boonrat Lohwongwatana
- Department of Metallurgical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chedtha Puncreobutr
- Department of Metallurgical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Narendra Reddy
- Center for Incubation, Innovation, Research and Consultancy, Jyothy Institute of Technology, Thathaguni, Bengaluru, Karnataka 560082, India
| | - Rungnapha Yamdech
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sarocha Cherdchom
- Department of Preventive and Social Medicine and Center of Excellence in Nanomedicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pornanong Aramwit
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok 10330, Thailand
- The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok 10330, Thailand
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
8
|
Lee MK, Lee H, Kang MH, Hwang C, Kim HE, Oudega M, Jang TS, Jung HD. Bioinspired Nanotopography for Combinatory Osseointegration and Antibacterial Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30967-30979. [PMID: 38857475 DOI: 10.1021/acsami.4c06351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The ongoing global health has highlighted the critical issue of secondary infections, particularly antibiotic-resistant bacterial infections, which have been significant contributors to mortality rates. Orthopedic implants, while essential for trauma and orthopedic surgeries, are particularly susceptible to these infections, leading to severe complications and economic burdens. The traditional use of antibiotics in treating these infections poses further challenges including the risk of developing antibiotic-resistant bacteria. This study introduces a novel approach to combat this issue by developing nanostructured surfaces for orthopedic implants using target ion-induced plasma sputtering. Inspired by the natural design of dragonfly wings, these surfaces aim to prevent bacterial adhesion while promoting preosteoblast activity, offering a dual-function solution to the problems of bacterial infection and implant integration without relying on antibiotics. The in vitro results demonstrate the effectiveness of these bioinspired surfaces in eradicating bacteria and supporting cell proliferation and differentiation, presenting a promising alternative for the development of biomedical implants.
Collapse
Affiliation(s)
- Min-Kyu Lee
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
- Shirley Ryan AbilityLab, Chicago, Illinois 60611, United States
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois 60611, United States
| | - Hyun Lee
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Min-Ho Kang
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Changha Hwang
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyoun-Ee Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Martin Oudega
- Shirley Ryan AbilityLab, Chicago, Illinois 60611, United States
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois 60611, United States
- Edward Hines Jr. VA Hospital, Hines, Illinois 60141, United States
- Department of Neuroscience, Northwestern University, Chicago, Illinois 60611, United States
| | - Tae-Sik Jang
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hyun-Do Jung
- Division of Materials Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
9
|
Zhao X, Zhang X, Zhou Z, Meng F, Liu R, Zhang M, Hao Y, Xie Q, Sun X, Zhang B, Wang X. Atomic layer deposited TiO 2 nanofilm on titanium implant for reduced the release of particles. Front Bioeng Biotechnol 2024; 12:1346404. [PMID: 38737539 PMCID: PMC11082355 DOI: 10.3389/fbioe.2024.1346404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/11/2024] [Indexed: 05/14/2024] Open
Abstract
Objective: Titanium implants are widely used in surgeries for their biocompatibility and mechanical properties. However, excessive titanium particle release can cause implant failure. This study explores Atomic Layer Deposition (ALD) to coat commercially pure titanium (Cp-Ti) with TiO2, aiming to improve its frictional and corrosion resistance while reducing particle release. By comparing TiO2 films with varying ALD cycle numbers, we assess surface properties, particle release, friction, and corrosion performance, providing insights into mitigating particle release from implants. Methods: Cp-Ti surfaces were prepared and coated with TiO2 films of 100, 300, and 500 ALD cycles. Surface characterization involved SEM, EDX, and XRD. Friction was tested using SEM, nanoindentation, and ICP-MS. Corrosion resistance was evaluated through immersion tests and electrochemical analysis. Cytotoxicity was assessed using BMSCs. Results: Surface characterization revealed smoother surfaces with increased ALD cycles, confirming successful TiO2 deposition. Friction testing showed reduced friction coefficients with higher ALD cycles, supported by nanoindentation results. Corrosion resistance improved with increasing ALD cycles, as evidenced by electrochemical tests and reduced titanium release. Cytotoxicity studies showed no significant cytotoxic effects. Conclusion: ALD-coated TiO2 films significantly enhance frictional and corrosion resistance of titanium implants while reducing particle release. The study underscores the importance of ALD cycle numbers in optimizing film performance, offering insights for designing implants with improved properties.
Collapse
Affiliation(s)
- Xiangyu Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Xiaoxuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Zilan Zhou
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Fanchun Meng
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China
| | - Ruilin Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China
| | - Mengyuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Yujia Hao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Qingpeng Xie
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Xiaojun Sun
- Department of Stomatology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Bin Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China
| | - Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| |
Collapse
|
10
|
Capek J, Sepúlveda M, Bacova J, Rodriguez-Pereira J, Zazpe R, Cicmancova V, Nyvltova P, Handl J, Knotek P, Baishya K, Sopha H, Smid L, Rousar T, Macak JM. Ultrathin TiO 2 Coatings via Atomic Layer Deposition Strongly Improve Cellular Interactions on Planar and Nanotubular Biomedical Ti Substrates. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5627-5636. [PMID: 38275195 PMCID: PMC10859894 DOI: 10.1021/acsami.3c17074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
This work aims to investigate the chemical and/or structural modification of Ti and Ti-6Al-4V (TiAlV) alloy surfaces to possess even more favorable properties toward cell growth. These modifications were achieved by (i) growing TiO2 nanotube layers on these substrates by anodization, (ii) surface coating by ultrathin TiO2 atomic layer deposition (ALD), or (iii) by the combination of both. In particular, an ultrathin TiO2 coating, achieved by 1 cycle of TiO2 ALD, was intended to shade the impurities of F- and V-based species in tested materials while preserving the original structure and morphology. The cell growth on TiO2-coated and uncoated TiO2 nanotube layers, Ti foils, and TiAlV alloy foils were compared after incubation for up to 72 h. For evaluation of the biocompatibility of tested materials, cell lines of different tissue origin, including predominantly MG-63 osteoblastic cells, were used. For all tested nanomaterials, adding an ultrathin TiO2 coating improved the growth of MG-63 cells and other cell lines compared with the non-TiO2-coated counterparts. Here, the presented approach of ultrathin TiO2 coating could be used potentially for improving implants, especially in terms of shading problematic F- and V-based species in TiO2 nanotube layers.
Collapse
Affiliation(s)
- Jan Capek
- Department
of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532
10 Pardubice, Czech
Republic
| | - Marcela Sepúlveda
- Center
of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 530 02 Pardubice, Czech Republic
| | - Jana Bacova
- Department
of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532
10 Pardubice, Czech
Republic
| | - Jhonatan Rodriguez-Pereira
- Center
of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 530 02 Pardubice, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
123, 61200 Brno, Czech Republic
| | - Raul Zazpe
- Center
of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 530 02 Pardubice, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
123, 61200 Brno, Czech Republic
| | - Veronika Cicmancova
- Center
of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 530 02 Pardubice, Czech Republic
| | - Pavlina Nyvltova
- Department
of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532
10 Pardubice, Czech
Republic
| | - Jiri Handl
- Department
of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532
10 Pardubice, Czech
Republic
| | - Petr Knotek
- Department
of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532
10 Pardubice, Czech
Republic
| | - Kaushik Baishya
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
123, 61200 Brno, Czech Republic
| | - Hanna Sopha
- Center
of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 530 02 Pardubice, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
123, 61200 Brno, Czech Republic
| | - Lenka Smid
- Department
of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532
10 Pardubice, Czech
Republic
| | - Tomas Rousar
- Department
of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532
10 Pardubice, Czech
Republic
| | - Jan M. Macak
- Center
of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 530 02 Pardubice, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
123, 61200 Brno, Czech Republic
| |
Collapse
|
11
|
Park J, Tesler AB, Gongadze E, Iglič A, Schmuki P, Mazare A. Nanoscale Topography of Anodic TiO 2 Nanostructures Is Crucial for Cell-Surface Interactions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4430-4438. [PMID: 38232230 DOI: 10.1021/acsami.3c16033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Anodic titanium dioxide (TiO2) nanostructures, i.e., obtained by electrochemical anodization, have excellent control over the nanoscale morphology and have been extensively investigated in biomedical applications owing to their sub-100 nm nanoscale topography range and beneficial effects on biocompatibility and cell interactions. Herein, we obtain TiO2 nanopores (NPs) and nanotubes (NTs) with similar morphologies, namely, 15 nm diameter and 500 nm length, and investigate their characteristics and impact on stem cell adhesion. We show that the transition of TiO2 NPs to NTs occurs via a pore/wall splitting mechanism and the removal of the fluoride-rich layer. Furthermore, in contrast to the case of NPs, we observe increased cell adhesion and proliferation on nanotubes. The enhanced mesenchymal stem cell adhesion/proliferation seems to be related to a 3-fold increase in activated integrin clustering, as confirmed by immunogold labeling with β1 integrin antibody on the nanostructured layers. Moreover, computations of the electric field and surface charge density show increased values at the inner and outer sharp edges of the top surfaces of the NTs, which in turn can influence cell adhesion by increasing the bridging interactions mediated by proteins and molecules in the environment. Collectively, our results indicate that the nanoscale surface architecture of the lateral spacing topography can greatly influence stem cell adhesion on substrates for biomedical applications.
Collapse
Affiliation(s)
- Jung Park
- Division of Molecular Pediatrics, Department of Pediatrics, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Alexander B Tesler
- Department of Materials Science WW4-LKO, Friedrich-Alexander University of Erlangen Nürnberg, 91054 Erlangen, Germany
| | - Ekaterina Gongadze
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, Ljubljana SI-1000, Slovenia
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, Ljubljana SI-1000, Slovenia
- Laboratory of Clinical Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, Ljubljana 1000, Slovenia
| | - Patrik Schmuki
- Department of Materials Science WW4-LKO, Friedrich-Alexander University of Erlangen Nürnberg, 91054 Erlangen, Germany
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Olomouc 779 00, Czech Republic
| | - Anca Mazare
- Department of Materials Science WW4-LKO, Friedrich-Alexander University of Erlangen Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
12
|
Nazarov D, Kozlova L, Rogacheva E, Kraeva L, Maximov M. Atomic Layer Deposition of Antibacterial Nanocoatings: A Review. Antibiotics (Basel) 2023; 12:1656. [PMID: 38136691 PMCID: PMC10740478 DOI: 10.3390/antibiotics12121656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
In recent years, antibacterial coatings have become an important approach in the global fight against bacterial pathogens. Developments in materials science, chemistry, and biochemistry have led to a plethora of materials and chemical compounds that have the potential to create antibacterial coatings. However, insufficient attention has been paid to the analysis of the techniques and technologies used to apply these coatings. Among the various inorganic coating techniques, atomic layer deposition (ALD) is worthy of note. It enables the successful synthesis of high-purity inorganic nanocoatings on surfaces of complex shape and topography, while also providing precise control over their thickness and composition. ALD has various industrial applications, but its practical application in medicine is still limited. In recent years, a considerable number of papers have been published on the proposed use of thin films and coatings produced via ALD in medicine, notably those with antibacterial properties. The aim of this paper is to carefully evaluate and analyze the relevant literature on this topic. Simple oxide coatings, including TiO2, ZnO, Fe2O3, MgO, and ZrO2, were examined, as well as coatings containing metal nanoparticles such as Ag, Cu, Pt, and Au, and mixed systems such as TiO2-ZnO, TiO2-ZrO2, ZnO-Al2O3, TiO2-Ag, and ZnO-Ag. Through comparative analysis, we have been able to draw conclusions on the effectiveness of various antibacterial coatings of different compositions, including key characteristics such as thickness, morphology, and crystal structure. The use of ALD in the development of antibacterial coatings for various applications was analyzed. Furthermore, assumptions were made about the most promising areas of development. The final section provides a comparison of different coatings, as well as the advantages, disadvantages, and prospects of using ALD for the industrial production of antibacterial coatings.
Collapse
Affiliation(s)
- Denis Nazarov
- Peter the Great Saint Petersburg Polytechnic University, Polytechnicheskaya, 29, 195221 Saint Petersburg, Russia;
- Saint Petersburg State University, Universitetskaya Nab, 7/9, 199034 Saint Petersburg, Russia;
| | - Lada Kozlova
- Saint Petersburg State University, Universitetskaya Nab, 7/9, 199034 Saint Petersburg, Russia;
| | - Elizaveta Rogacheva
- Saint-Petersburg Pasteur Institute of Epidemiology and Microbiology, 14 Mira Street, 197101 Saint Petersburg, Russia; (E.R.); (L.K.)
| | - Ludmila Kraeva
- Saint-Petersburg Pasteur Institute of Epidemiology and Microbiology, 14 Mira Street, 197101 Saint Petersburg, Russia; (E.R.); (L.K.)
| | - Maxim Maximov
- Peter the Great Saint Petersburg Polytechnic University, Polytechnicheskaya, 29, 195221 Saint Petersburg, Russia;
| |
Collapse
|
13
|
Kim HL, Hidayat R, Khumaini K, Lee WJ. A theoretical study on the surface reaction of tetrakis(dimethylamino)titanium on titanium oxide. Phys Chem Chem Phys 2023; 25:22250-22257. [PMID: 37577845 DOI: 10.1039/d3cp02009f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Tetrakis(dimethylamino)-titanium (TDMAT, Ti(NMe2)4) has been used for the low-temperature atomic layer deposition (ALD) process of titanium oxide (TiO2) films. In this study, the chemisorption of TDMAT on a titanium oxide surface using a slab model was simulated by density functional theory (DFT) calculation. We calculated the activation energy for the chemisorption and predicted the final chemisorbed species. A TiO2 slab model was constructed with the optimized number of -OH surface groups. Three serial ligand exchange reactions between a TDMAT molecule and the TiO2 slab were exothermic with low activation energies of 0.16-0.46 eV, which can explain the low processing temperatures of the ALD TiO2 processes. Our DFT calculation showed that three NMe2 ligands of TDMAT would be released and the surface species of -TiNMe2 would be formed, which is in good agreement with the experimental observation in the literature.
Collapse
Affiliation(s)
- Hye-Lee Kim
- Metal-organic Compounds Materials Research Center, Sejong University, Seoul, 05006, Republic of Korea.
- Departments of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, 05006, Republic of Korea
| | - Romel Hidayat
- Metal-organic Compounds Materials Research Center, Sejong University, Seoul, 05006, Republic of Korea.
- Departments of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, 05006, Republic of Korea
| | - Khabib Khumaini
- Departments of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, 05006, Republic of Korea
- Department of Chemistry, Universitas Pertamina, Jakarta 12220, Indonesia
| | - Won-Jun Lee
- Metal-organic Compounds Materials Research Center, Sejong University, Seoul, 05006, Republic of Korea.
- Departments of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, 05006, Republic of Korea
| |
Collapse
|
14
|
Hayashi T, Asakura M, Koie S, Hasegawa S, Mieki A, Aimu K, Kawai T. In Vitro Study of Zirconia Surface Modification for Dental Implants by Atomic Layer Deposition. Int J Mol Sci 2023; 24:10101. [PMID: 37373249 DOI: 10.3390/ijms241210101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Zirconia is a promising material for dental implants; however, an appropriate surface modification procedure has not yet been identified. Atomic layer deposition (ALD) is a nanotechnology that deposits thin films of metal oxides or metals on materials. The aim of this study was to deposit thin films of titanium dioxide (TiO2), aluminum oxide (Al2O3), silicon dioxide (SiO2), and zinc oxide (ZnO) on zirconia disks (ZR-Ti, ZR-Al, ZR-Si, and ZR-Zn, respectively) using ALD and evaluate the cell proliferation abilities of mouse fibroblasts (L929) and mouse osteoblastic cells (MC3T3-E1) on each sample. Zirconia disks (ZR; diameter 10 mm) were fabricated using a computer-aided design/computer-aided manufacturing system. Following the ALD of TiO2, Al2O3, SiO2, or ZnO thin film, the thin-film thickness, elemental distribution, contact angle, adhesion strength, and elemental elution were determined. The L929 and MC3T3-E1 cell proliferation and morphologies on each sample were observed on days 1, 3, and 5 (L929) and days 1, 4, and 7 (MC3T3-E1). The ZR-Ti, ZR-Al, ZR-Si, and ZR-Zn thin-film thicknesses were 41.97, 42.36, 62.50, and 61.11 nm, respectively, and their average adhesion strengths were 163.5, 140.9, 157.3, and 161.6 mN, respectively. The contact angle on ZR-Si was significantly lower than that on all the other specimens. The eluted Zr, Ti, and Al amounts were below the detection limits, whereas the total Si and Zn elution amounts over two weeks were 0.019 and 0.695 ppm, respectively. For both L929 and MC3T3-E1, the cell numbers increased over time on ZR, ZR-Ti, ZR-Al, and ZR-Si. Particularly, cell proliferation in ZR-Ti exceeded that in the other samples. These results suggest that ALD application to zirconia, particularly for TiO2 deposition, could be a new surface modification procedure for zirconia dental implants.
Collapse
Affiliation(s)
- Tatsuhide Hayashi
- Department of Dental Materials Science, Aichi Gakuin University School of Dentistry, 1-00 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Masaki Asakura
- Department of Dental Materials Science, Aichi Gakuin University School of Dentistry, 1-00 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Shin Koie
- Department of Maxillofacial Surgery, Aichi Gakuin University School of Dentistry, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan
| | - Shogo Hasegawa
- Department of Maxillofacial Surgery, Aichi Gakuin University School of Dentistry, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan
| | - Akimichi Mieki
- Department of Dental Materials Science, Aichi Gakuin University School of Dentistry, 1-00 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Koki Aimu
- Department of Dental Materials Science, Aichi Gakuin University School of Dentistry, 1-00 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Tatsushi Kawai
- Department of Dental Materials Science, Aichi Gakuin University School of Dentistry, 1-00 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| |
Collapse
|
15
|
Konopatsky A, Teplyakova T, Sheremetyev V, Yakimova T, Boychenko O, Kozik M, Shtansky D, Prokoshkin S. Surface Modification of Biomedical Ti-18Zr-15Nb Alloy by Atomic Layer Deposition and Ag Nanoparticles Decoration. J Funct Biomater 2023; 14:jfb14050249. [PMID: 37233359 DOI: 10.3390/jfb14050249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Superelastic biocompatible alloys attract significant attention as novel materials for bone tissue replacement. These alloys are often composed of three or more components that lead to the formation of complex oxide films on their surfaces. For practical use, it is desirable to have a single-component oxide film with a controlled thickness on the surface of biocompatible material. Herein we investigate the applicability of the atomic layer deposition (ALD) technique for surface modification of Ti-18Zr-15Nb alloy with TiO2 oxide. It was found that a 10-15 nm thick, low-crystalline TiO2 oxide layer is formed by ALD method over the natural oxide film (~5 nm) of the Ti-18Zr-15Nb alloy. This surface consists of TiO2 exclusively without any additions of Zr or Nb oxides/suboxides. Further, the obtained coating is modified by Ag nanoparticles (NPs) with a surface concentration up to 1.6% in order to increase the material's antibacterial activity. The resulting surface exhibits enhanced antibacterial activity with an inhibition rate of more than 75% against E. coli bacteria.
Collapse
Affiliation(s)
- Anton Konopatsky
- National University of Science and Technology "MISIS", Leninsky Prospect 4s1, 119049 Moscow, Russia
- A.V. Shubnikov Institute of Crystallography, FSRC "Crystallography and Photonics" RAS, 119333 Moscow, Russia
| | - Tatyana Teplyakova
- National University of Science and Technology "MISIS", Leninsky Prospect 4s1, 119049 Moscow, Russia
- A.V. Shubnikov Institute of Crystallography, FSRC "Crystallography and Photonics" RAS, 119333 Moscow, Russia
| | - Vadim Sheremetyev
- National University of Science and Technology "MISIS", Leninsky Prospect 4s1, 119049 Moscow, Russia
| | - Tamara Yakimova
- School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olga Boychenko
- School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Marina Kozik
- National University of Science and Technology "MISIS", Leninsky Prospect 4s1, 119049 Moscow, Russia
| | - Dmitry Shtansky
- National University of Science and Technology "MISIS", Leninsky Prospect 4s1, 119049 Moscow, Russia
| | - Sergey Prokoshkin
- National University of Science and Technology "MISIS", Leninsky Prospect 4s1, 119049 Moscow, Russia
| |
Collapse
|
16
|
Ødegaard KS, Westhrin M, Afif AB, Ma Q, Mela P, Standal T, Elverum CW, Torgersen J. The effects of surface treatments on electron beam melted Ti-6Al-4V disks on osteogenesis of human mesenchymal stromal cells. BIOMATERIALS ADVANCES 2023; 147:213327. [PMID: 36841111 DOI: 10.1016/j.bioadv.2023.213327] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 02/12/2023]
Abstract
Additive manufactured (AM) Titanium-6Aluminum-4Vanadium (Ti64) scaffolds display unique mechanical and biological properties for implant devices. The elastic modulus can be tailored by adjusting the porosity, further facilitating bone ingrowth. Although Ti64 implants are biocompatible, the effects of AM surfaces without porous structures, and how the topography and surface chemistry of the respective surfaces affect the osteogenesis of bone marrow-derived mesenchymal stromal cells (BMSCs) has not yet been revealed. In this paper, we cultured BMSCs on solid electron beam melted Ti64 disks subjected to three surface treatments: chemical etching (HF), atomic-layer deposition of TiO2 (TiO2), and polished (POL), or left untreated (AB). The biocompatibility and osteogenic properties of these surfaces were investigated, and the results were compared to cells cultured in regular tissue-culture polystyrene culturing wells (TCPS). The surfaces were hydrophobic, except for the polished surface which was hydrophilic. All surface treatments are biocompatible and allow for osteogenic differentiation, as revealed by viability assays and gene expression analysis. Scanning electron microscopy shows that cells adhere differently depending on the surface properties, with more filopodia on the rougher surfaces, AB and TiO2 disks, and more lamellipodia on the smoother surfaces, HF and POL disks. All groups stimulated with beta glycerophosphate, ascorbic acid, and dexamethasone, have elevated expression of genes related to matrix formation, where the cells cultured on the disks treated with TiO2, HF and POL have the overall highest expression. The AB group appears to be less favorable in regards to matrix formation. Considering the matrix mineralization, the rougher surfaces, AB and TiO2, are able to induce matrix mineralization, with an elevated gene expression of vitamin D receptors and calcium deposition of unstimulated cells. Finally, imaging at day 21 revealed an even amount of cells and matrix, covering most of the partially melted particles. Our results suggests that surface topography is more important to osteogenesis than the wettability of the surface. Overall, the present study contributes to the understanding of using surface modifications to AM Ti64 implant materials and reveals how they affect bone growth.
Collapse
Affiliation(s)
- Kristin S Ødegaard
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Marita Westhrin
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Abdulla Bin Afif
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Qianli Ma
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Petra Mela
- Chair of Medical Materials and Implants, Department of Mechanical Engineering, TUM School of Engineering and Design, Munich Institute for Biomedical Engineering, Technical University of Munich, Boltzmannstrasse 15, 85748 Garching bei München, Germany
| | - Therese Standal
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Christer W Elverum
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jan Torgersen
- Chair of Materials Science, Department of Materials Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstrasse 15, 85748 Garching bei München, Germany.
| |
Collapse
|
17
|
Hsu SH, Liao HT, Chen RS, Chiu SC, Tsai FY, Lee MS, Hu CY, Tseng WY. The influence on surface characteristic and biocompatibility of nano-SnO 2-modified titanium implant material using atomic layer deposition technique. J Formos Med Assoc 2023; 122:230-238. [PMID: 36372624 DOI: 10.1016/j.jfma.2022.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND/PURPOSE To investigate the surface characteristics of titanium (Ti) implant materials, which were coated with different thicknesses of nanoscale tin oxide (SnO2) using the atomic layer deposition technique, and evaluated its biological performance on human embryonic palatal mesenchyme (HEPM) cells. METHODS The thickness of the coating layer on Ti was 0 (Ti0), 20 nm (Ti20), 50 nm (Ti50), and 100 nm (Ti100), respectively. The surface morphology was observed with an SEM and AFM. The root mean square roughness of micron-scale (mRq) and nanoroughness (nRq) of Ti discs' surface were measured. The Alamar blue (AB) assay and F-actin fluorescence staining were used to evaluate the biocompatibility, and the osteocalcin (OCN) was measured to clarify the differentiation of HEPM cells on materials. RESULTS In the coating groups, the mRq was decreased, but the nRq was increased. The spreading and polygonal morphology of HEPMs was apparent in coating groups. On Day 4, the survival rate of HEPM cells on Ti0 was higher than on Ti20 and Ti50. There was no significant difference on Day 7, Day 10, and Day 14. The OCN was significantly higher on Day 14 in all the coating groups than Ti0. CONCLUSION The results showed that the cell growth was intensified with rough surfaces. However, the OCN and morphology change was prominent when the nanoroughness was increased, which meant the increased nanoroughness might enhance OCN production and improve the tendency of osseointegration. The nanoscale SnO2 coating could increase the ability of bone formation but not cell growth.
Collapse
Affiliation(s)
- Sheng-Hao Hsu
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Han-Ting Liao
- Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Rung-Shu Chen
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Shang-Chan Chiu
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Feng-Yu Tsai
- Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Ming-Shu Lee
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Yuan Hu
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Wan-Yu Tseng
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; School of Dentistry, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
18
|
Faverani LP, Astaneh SH, da Costa MG, Delanora LA, Lima-Neto TJ, Barbosa S, Ariani MD, Takoudis C, Sukotjo C. Collagen Membranes Functionalized with 150 Cycles of Atomic Layer Deposited Titania Improve Osteopromotive Property in Critical-Size Defects Created on Rat Calvaria. J Funct Biomater 2023; 14:jfb14030120. [PMID: 36976044 PMCID: PMC10057577 DOI: 10.3390/jfb14030120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
The membranes used in bone reconstructions have been the object of investigation in the field of tissue engineering, seeking to improve their mechanical strength and add other properties, mainly the osteopromotive. This study aimed to evaluate the functionalization of collagen membranes, with atomic layer deposition of TiO2 on the bone repair of critical defects in rat calvaria and subcutaneous biocompatibility. A total of 39 male rats were randomized into four groups: blood clot (BC), collagen membrane (COL), COL 150—150 cycles of titania, and COL 600—600 cycles of titania. The defects were created in each calvaria (5 mm in diameter) and covered according to each group; the animals were euthanized at 7, 14, and 28 days. The collected samples were assessed by histometric (newly bone formed, soft tissue area, membrane area, and residual linear defect) and histologic (inflammatory cells and blood cells count) analysis. All data were subjected to statistical analysis (p < 0.05). The COL150 group showed statistically significant differences compared to the other groups, mainly in the analysis of residual linear defects (1.5 ± 0.5 × 106 pixels/µm2 for COL 150, and around 1 ± 0.5 × 106 pixels/µm2 for the other groups) and newly formed bone (1500 ± 1200 pixels/µm for COL 150, and around 4000 pixels/µm for the others) (p < 0.05), demonstrating a better biological behavior in the chronology of defects repair. It is concluded that the collagen membrane functionalized by TiO2 over 150 cycles showed better bioactive potential in treating critical size defects in the rats’ calvaria.
Collapse
Affiliation(s)
- Leonardo P. Faverani
- Department of Diagnosis and Surgery, School of Dentistry, Sao Paulo State University (UNESP), Aracatuba 16015-050, Brazil
| | - Sarah Hashemi Astaneh
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Monique Gonçalves da Costa
- Department of Diagnosis and Surgery, School of Dentistry, Sao Paulo State University (UNESP), Aracatuba 16015-050, Brazil
| | - Leonardo A. Delanora
- Department of Diagnosis and Surgery, School of Dentistry, Sao Paulo State University (UNESP), Aracatuba 16015-050, Brazil
| | - Tiburtino J. Lima-Neto
- Department of Diagnosis and Surgery, School of Dentistry, Sao Paulo State University (UNESP), Aracatuba 16015-050, Brazil
| | - Stéfany Barbosa
- Department of Diagnosis and Surgery, School of Dentistry, Sao Paulo State University (UNESP), Aracatuba 16015-050, Brazil
| | | | - Christos Takoudis
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60612, USA
- Biomedical Engineering Department, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Cortino Sukotjo
- Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
- Department of Restorative Dentistry, University of Illinois Chicago, Chicago, IL 60607, USA
- Correspondence:
| |
Collapse
|
19
|
Salatto D, Huang Z, Benziger PT, Carrillo JMY, Bajaj Y, Gauer A, Tsapatsaris L, Sumpter BG, Li R, Takenaka M, Yin W, Thanassi DG, Endoh M, Koga T. Structure-Based Design of Dual Bactericidal and Bacteria-Releasing Nanosurfaces. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3420-3432. [PMID: 36600562 DOI: 10.1021/acsami.2c18121] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Here, we report synergistic nanostructured surfaces combining bactericidal and bacteria-releasing properties. A polystyrene-block-poly(methyl methacrylate) (PS-block-PMMA) diblock copolymer is used to fabricate vertically oriented cylindrical PS structures ("PS nanopillars") on silicon substrates. The results demonstrate that the PS nanopillars (with a height of about 10 nm, size of about 50 nm, and spacing of about 70 nm) exhibit highly effective bactericidal and bacteria-releasing properties ("dual properties") against Escherichia coli for at least 36 h of immersion in an E. coli solution. Interestingly, the PS nanopillars coated with a thin layer (≈3 nm thick) of titanium oxide (TiO2) ("TiO2 nanopillars") show much improved dual properties against E. coli (a Gram-negative bacterium) compared to the PS nanopillars. Moreover, the dual properties emerge against Listeria monocytogenes (a Gram-positive bacterium). To understand the mechanisms underlying the multifaceted property of the nanopillars, coarse-grained molecular dynamics (MD) simulations of a lipid bilayer (as a simplified model for E. coli) in contact with a substrate containing hexagonally packed hydrophilic nanopillars were performed. The MD results demonstrate that when the bacterium-substrate interaction is strong, the lipid heads adsorb onto the nanopillar surfaces, conforming the shape of a lipid bilayer to the structure/curvature of nanopillars and generating high stress concentrations within the membrane (i.e., the driving force for rupture) at the edge of the nanopillars. Membrane rupture begins with the formation of pores between nanopillars (i.e., bactericidal activity) and ultimately leads to the membrane withdrawal from the nanopillar surface (i.e., bacteria-releasing activity). In the case of Gram-positive bacteria, the adhesion area to the pillar surface is limited due to the inherent stiffness of the bacteria, creating higher stress concentrations within a bacterial cell wall. The present study provides insight into the mechanism underlying the "adhesion-mediated" multifaceted property of nanosurfaces, which is crucial for the development of next-generation antibacterial surface coatings for relevant medical applications.
Collapse
Affiliation(s)
- Daniel Salatto
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York11794-2275, United States
| | - Zhixing Huang
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York11794-2275, United States
| | - Peter Todd Benziger
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York11794-5222, United States
- Center for Infectious Diseases, Stony Brook University, Stony Brook, New York11794-5120, United States
| | - Jan-Michael Y Carrillo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Yashasvi Bajaj
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York11794-2275, United States
| | - Aiden Gauer
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York11794-2275, United States
| | - Leonidas Tsapatsaris
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York11794-2275, United States
| | - Bobby G Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York11973, United States
| | - Mikihito Takenaka
- Institute for Chemical Research, Kyoto University, Uji, Kyoto611-0011, Japan
| | - Wei Yin
- Department of Biomedical engineering, Stony Brook University, Stony Brook, New York11794-5281, United States
| | - David G Thanassi
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York11794-5222, United States
- Center for Infectious Diseases, Stony Brook University, Stony Brook, New York11794-5120, United States
| | - Maya Endoh
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York11794-2275, United States
| | - Tadanori Koga
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York11794-2275, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York11794-3400, United States
| |
Collapse
|
20
|
Al Jabri H, Devi MG, Al-Shukaili MA. Development of polyaniline – TiO2 nano composite films and its application in corrosion inhibition of oil pipelines. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2022.100826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Sun G, Zhang Q, Dong Z, Dong D, Fang H, Wang C, Dong Y, Wu J, Tan X, Zhu P, Wan Y. Antibiotic resistant bacteria: A bibliometric review of literature. Front Public Health 2022; 10:1002015. [PMID: 36466520 PMCID: PMC9713414 DOI: 10.3389/fpubh.2022.1002015] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022] Open
Abstract
Antibiotic-resistant bacteria (ARB) are a serious threat to the health of people and the ecological environment. With this problem becoming more and more serious, more countries made research on the ARB, and the research number has been sharply increased particularly over the past decade. Therefore, it is quite necessary to globally retrace relevant researches on the ARB published from 2010 to 2020. This will help researchers to understand the current research situation, research trends and research hotspots in this field. This paper uses bibliometrics to examine publications in the field of ARB from 2010 to 2020 that were retrieved from the Web of Science (WOS). Our study performed a statistical analysis of the countries, institutions, journals, authors, research areas, author keywords, Essential Science Indicators (ESI) highly cited papers, and ESI hotspots papers to provide an overview of the ARB field as well as research trends, research hotspots, and future research directions in the field. The results showed that the number of related studies is increasing year by year; the USA is most published in the field of ARB; China is the most active in this field in the recent years; the Chinese Acad Sci published the most articles; Sci. Total Environ. published the greatest number of articles; CM Manaia has the most contributions; Environmental Sciences and Ecology is the most popular research area; and "antibiotic resistance," "antibiotics," and "antibiotic resistance genes" were the most frequently occurring author keywords. A citation analysis showed that aquatic environment-related antibiotic resistance is a key research area in this field, while antimicrobial nanomaterial-related research is a recent popular topic.
Collapse
Affiliation(s)
- Guojun Sun
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Qian Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Zuojun Dong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Dashun Dong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Hui Fang
- Institute of Information Resource, Zhejiang University of Technology, Hangzhou, China
| | - Chaojun Wang
- Hangzhou Aeronautical Sanatorium for Special Service of Chinese Air Force, Hangzhou, China
| | - Yichen Dong
- Department of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Jiezhou Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Xuanzhe Tan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Peiyao Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yuehua Wan
- Institute of Information Resource, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
22
|
Wu Z, Chan B, Low J, Chu JJH, Hey HWD, Tay A. Microbial resistance to nanotechnologies: An important but understudied consideration using antimicrobial nanotechnologies in orthopaedic implants. Bioact Mater 2022; 16:249-270. [PMID: 35415290 PMCID: PMC8965851 DOI: 10.1016/j.bioactmat.2022.02.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/11/2022] Open
Abstract
Microbial resistance to current antibiotics therapies is a major cause of implant failure and adverse clinical outcomes in orthopaedic surgery. Recent developments in advanced antimicrobial nanotechnologies provide numerous opportunities to effective remove resistant bacteria and prevent resistance from occurring through unique mechanisms. With tunable physicochemical properties, nanomaterials can be designed to be bactericidal, antifouling, immunomodulating, and capable of delivering antibacterial compounds to the infection region with spatiotemporal accuracy. Despite its substantial advancement, an important, but under-explored area, is potential microbial resistance to nanomaterials and how this can impact the clinical use of antimicrobial nanotechnologies. This review aims to provide a better understanding of nanomaterial-associated microbial resistance to accelerate bench-to-bedside translations of emerging nanotechnologies for effective control of implant associated infections.
Collapse
Affiliation(s)
- Zhuoran Wu
- Institute of Health Innovation & Technology, National University of Singapore, 117599, Singapore
| | - Brian Chan
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
| | - Jessalyn Low
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
| | - Justin Jang Hann Chu
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
- Infectious Disease Programme, Yong Loo Lin School of Medicine, National University of Singapore, 117547, Singapore
- Institute of Molecular and Cell Biology, 35 Agency for Science, Technology and Research, 138673, Singapore
| | - Hwee Weng Dennis Hey
- National University Health System, National University of Singapore, 119228, Singapore
| | - Andy Tay
- Institute of Health Innovation & Technology, National University of Singapore, 117599, Singapore
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
- Tissue Engineering Programme, National University of Singapore, 117510, Singapore
| |
Collapse
|
23
|
Khan HM, Liao X, Sheikh BA, Wang Y, Su Z, Guo C, Li Z, Zhou C, Cen Y, Kong Q. Smart biomaterials and their potential applications in tissue engineering. J Mater Chem B 2022; 10:6859-6895. [PMID: 36069198 DOI: 10.1039/d2tb01106a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Smart biomaterials have been rapidly advancing ever since the concept of tissue engineering was proposed. Interacting with human cells, smart biomaterials can play a key role in novel tissue morphogenesis. Various aspects of biomaterials utilized in or being sought for the goal of encouraging bone regeneration, skin graft engineering, and nerve conduits are discussed in this review. Beginning with bone, this study summarizes all the available bioceramics and materials along with their properties used singly or in conjunction with each other to create scaffolds for bone tissue engineering. A quick overview of the skin-based nanocomposite biomaterials possessing antibacterial properties for wound healing is outlined along with skin regeneration therapies using infrared radiation, electrospinning, and piezoelectricity, which aid in wound healing. Furthermore, a brief overview of bioengineered artificial skin grafts made of various natural and synthetic polymers has been presented. Finally, by examining the interactions between natural and synthetic-based biomaterials and the biological environment, their strengths and drawbacks for constructing peripheral nerve conduits are highlighted. The description of the preclinical outcome of nerve regeneration in injury healed with various natural-based conduits receives special attention. The organic and synthetic worlds collide at the interface of nanomaterials and biological systems, producing a new scientific field including nanomaterial design for tissue engineering.
Collapse
Affiliation(s)
- Haider Mohammed Khan
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Xiaoxia Liao
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Bilal Ahmed Sheikh
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Yixi Wang
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Zhixuan Su
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.,National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Chuan Guo
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Zhengyong Li
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Changchun Zhou
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.,National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Ying Cen
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Qingquan Kong
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
24
|
Liu S, Chen X, Yu M, Li J, Liu J, Xie Z, Gao F, Liu Y. Applications of Titanium Dioxide Nanostructure in Stomatology. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123881. [PMID: 35745007 PMCID: PMC9229536 DOI: 10.3390/molecules27123881] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
Breakthroughs in the field of nanotechnology, especially in nanochemistry and nanofabrication technologies, have been attracting much attention, and various nanomaterials have recently been developed for biomedical applications. Among these nanomaterials, nanoscale titanium dioxide (nano-TiO2) has been widely valued in stomatology due to the fact of its excellent biocompatibility, antibacterial activity, and photocatalytic activity as well as its potential use for applications such as dental implant surface modification, tissue engineering and regenerative medicine, drug delivery carrier, dental material additives, and oral tumor diagnosis and treatment. However, the biosafety of nano-TiO2 is controversial and has become a key constraint in the development of nano-TiO2 applications in stomatology. Therefore, in this review, we summarize recent research regarding the applications of nano-TiO2 in stomatology, with an emphasis on its performance characteristics in different fields, and evaluations of the biological security of nano-TiO2 applications. In addition, we discuss the challenges, prospects, and future research directions regarding applications of nano-TiO2 in stomatology that are significant and worthy of further exploration.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun 130000, China; (S.L.); (X.C.); (M.Y.); (J.L.); (J.L.); (Z.X.)
| | - Xingzhu Chen
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun 130000, China; (S.L.); (X.C.); (M.Y.); (J.L.); (J.L.); (Z.X.)
| | - Mingyue Yu
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun 130000, China; (S.L.); (X.C.); (M.Y.); (J.L.); (J.L.); (Z.X.)
| | - Jianing Li
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun 130000, China; (S.L.); (X.C.); (M.Y.); (J.L.); (J.L.); (Z.X.)
| | - Jinyao Liu
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun 130000, China; (S.L.); (X.C.); (M.Y.); (J.L.); (J.L.); (Z.X.)
| | - Zunxuan Xie
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun 130000, China; (S.L.); (X.C.); (M.Y.); (J.L.); (J.L.); (Z.X.)
| | - Fengxiang Gao
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130000, China
- Correspondence: (F.G.); (Y.L.); Tel.: +86-13756189633 (F.G.); +86-13756466950 (Y.L.)
| | - Yuyan Liu
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun 130000, China; (S.L.); (X.C.); (M.Y.); (J.L.); (J.L.); (Z.X.)
- Correspondence: (F.G.); (Y.L.); Tel.: +86-13756189633 (F.G.); +86-13756466950 (Y.L.)
| |
Collapse
|
25
|
MG-63 and FetMSC Cell Response on Atomic Layer Deposited TiO2 Nanolayers Prepared Using Titanium Tetrachloride and Tetraisopropoxide. COATINGS 2022. [DOI: 10.3390/coatings12050668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Titanium oxide nanocoatings were synthesized on the surface of monocrystalline silicon and ultra-fine-grained titanium by atomic layer deposition (ALD) using titanium tetrachloride (TiCl4) and titanium tetraisopropoxide (TTIP). The morphology of the samples was studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The structure and composition were studied by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), contact angle measurements, and energy-dispersive spectroscopy (EDS). The cytological response of osteosarcoma MG-63 and human fetal mesenchymal stem cells (FetMSCs) were studied by analyzing their morphology, viability, and alkaline phosphatase activity with and without the use of medium-induced differentiation in the osteogenic direction. A significant influence of the precursor type and ALD temperature on the crystal structure, morphology, composition, and surface free energy of TiO2 nanocoatings was found. The biocompatibility of amorphous non-stoichiometric and partially crystalline stoichiometric TiO2 coatings was compared. Both types of cells showed faster adhesion and improved spreading on the surface for the samples from TTIP compared to those from TiCl4 at the early stages of cultivation (2 h) due to the difference in composition and higher surface free energy. No cytotoxic effect was found on both types of coatings, nor was there a noticeable difference in cell differentiation. All ALD coatings provided excellent biocompatibility and osteoconductive properties.
Collapse
|
26
|
Xu Z, Jiang X. Osteogenic TiO2 composite nano-porous arrays: A favorable platform based on titanium alloys applied in artificial implants. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
27
|
Kylmäoja E, Holopainen J, Abushahba F, Ritala M, Tuukkanen J. Osteoblast Attachment on Titanium Coated with Hydroxyapatite by Atomic Layer Deposition. Biomolecules 2022; 12:biom12050654. [PMID: 35625580 PMCID: PMC9138598 DOI: 10.3390/biom12050654] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Background: The increasing demand for bone implants with improved osseointegration properties has prompted researchers to develop various coating types for metal implants. Atomic layer deposition (ALD) is a method for producing nanoscale coatings conformally on complex three-dimensional surfaces. We have prepared hydroxyapatite (HA) coating on titanium (Ti) substrate with the ALD method and analyzed the biocompatibility of this coating in terms of cell adhesion and viability. Methods: HA coatings were prepared on Ti substrates by depositing CaCO3 films by ALD and converting them to HA by wet treatment in dilute phosphate solution. MC3T3-E1 preosteoblasts were cultured on ALD-HA, glass slides and bovine bone slices. ALD-HA and glass slides were either coated or non-coated with fibronectin. After 48h culture, cells were imaged with scanning electron microscopy (SEM) and analyzed by vinculin antibody staining for focal adhesion localization. An 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) test was performed to study cell viability. Results: Vinculin staining revealed similar focal adhesion-like structures on ALD-HA as on glass slides and bone, albeit on ALD-HA and bone the structures were thinner compared to glass slides. This might be due to thin and broad focal adhesions on complex three-dimensional surfaces of ALD-HA and bone. The MTT test showed comparable cell viability on ALD-HA, glass slides and bone. Conclusion: ALD-HA coating was shown to be biocompatible in regard to cell adhesion and viability. This leads to new opportunities in developing improved implant coatings for better osseointegration and implant survival.
Collapse
Affiliation(s)
- Elina Kylmäoja
- Department of Anatomy and Cell Biology, Institute of Cancer Research and Translational Medicine, Medical Research Center, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland;
- Correspondence:
| | - Jani Holopainen
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland; (J.H.); (M.R.)
| | - Faleh Abushahba
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, 20520 Turku, Finland;
| | - Mikko Ritala
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland; (J.H.); (M.R.)
| | - Juha Tuukkanen
- Department of Anatomy and Cell Biology, Institute of Cancer Research and Translational Medicine, Medical Research Center, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland;
| |
Collapse
|
28
|
TiO2 Nanocoatings with Controllable Crystal Type and Nanoscale Topography on Zirconia Implants to Accelerate Bone Formation. Bioinorg Chem Appl 2022; 2022:8650659. [PMID: 35529315 PMCID: PMC9068347 DOI: 10.1155/2022/8650659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/04/2022] [Indexed: 11/18/2022] Open
Abstract
In dentistry, zirconia implants have emerged as a promising alternative for replacing missing teeth due to their superior aesthetic performance and chemical stability. To improve the osseointegration of zirconia implants, modifying their surface with hierarchical micro/nanotopography and bioactive chemical composition are two effective ways. In this work, a microscale topography was prepared on a zirconia surface using hydrofluoric acid etching, and then a 50 nm TiO2 nanocoating was deposited via atomic layer deposition (ALD). Subsequently, an annealing treatment was used to transform the TiO2 from amorphous to anatase and simultaneously generate nanoscale topography. Various investigations into the coating surface morphology, topography, wettability, and chemical composition were carried out using scanning electron microscopy, white light interferometry, contact-angle measurement, X-ray diffraction, and X-ray photoelectron spectroscopy. In addition, in vitro cytocompatibility and osteogenic potential performance of the coatings were evaluated by human bone marrow mesenchymal stem cells (hBMSCs), and in vivo osseointegration performance was assessed in a rat femoral condyle model. Moreover, the possible mechanism was also investigated. The deposition of TiO2 film with/without annealing treatment did not alter the microscale roughness of the zirconia surface, whereas the nanotopography changed significantly after annealing. The in vitro studies revealed that the anatase TiO2 coating with regular wavelike nanostructure could promote the adhesion and proliferation of osteoblasts and further improve the osteogenic potential in vitro and osseointegration in vivo. These positive effects may be caused by nanoscale topography via the canonical Wnt/β-catenin pathway. The results suggest that using ALD in combination with annealing treatment to fabricate a nanotopographic TiO2 coating is a promising way to improve the osteogenic properties of zirconia implants.
Collapse
|
29
|
Pradeep H, M B, Suresh S, Thadathil A, Periyat P. Recent trends and advances in polyindole-based nanocomposites as potential antimicrobial agents: a mini review. RSC Adv 2022; 12:8211-8227. [PMID: 35424771 PMCID: PMC8982365 DOI: 10.1039/d1ra09317g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/23/2022] [Indexed: 11/30/2022] Open
Abstract
Infections caused by multi-drug resistant microbes are a big challenge to the medical field and it necessitates the need for new biomedical agents that can act as potential candidates against these pathogens. Several polyindole based nanocomposites were found to exhibit the ability to release reactive oxygen species (ROS) and hence they show excellent antimicrobial properties. The features of polyindole can be fine-tuned to make them potential alternatives to antibiotics and antifungal medicines. This review clearly portrays the antimicrobial properties of polyindole based nanocomposites, reported so far for biomedical applications. This review will give a clear insight into the scope and possibilities for further research on the biomedical applications of polyindole based nanocomposites.
Collapse
Affiliation(s)
- Hareesh Pradeep
- Department of Chemistry, University of Calicut Kerala India-673635
| | - Bindu M
- Department of Environmental Studies, Kannur University Kerala India
| | - Shwetha Suresh
- Department of Environmental Studies, Kannur University Kerala India
| | | | | |
Collapse
|
30
|
Sheng X, Wang A, Wang Z, Liu H, Wang J, Li C. Advanced Surface Modification for 3D-Printed Titanium Alloy Implant Interface Functionalization. Front Bioeng Biotechnol 2022; 10:850110. [PMID: 35299643 PMCID: PMC8921557 DOI: 10.3389/fbioe.2022.850110] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/28/2022] [Indexed: 12/20/2022] Open
Abstract
With the development of three-dimensional (3D) printed technology, 3D printed alloy implants, especially titanium alloy, play a critical role in biomedical fields such as orthopedics and dentistry. However, untreated titanium alloy implants always possess a bioinert surface that prevents the interface osseointegration, which is necessary to perform surface modification to enhance its biological functions. In this article, we discuss the principles and processes of chemical, physical, and biological surface modification technologies on 3D printed titanium alloy implants in detail. Furthermore, the challenges on antibacterial, osteogenesis, and mechanical properties of 3D-printed titanium alloy implants by surface modification are summarized. Future research studies, including the combination of multiple modification technologies or the coordination of the structure and composition of the composite coating are also present. This review provides leading-edge functionalization strategies of the 3D printed titanium alloy implants.
Collapse
Affiliation(s)
- Xiao Sheng
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Ao Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Chen Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| |
Collapse
|
31
|
Shahmohammadi M, Mukherjee R, Sukotjo C, Diwekar UM, Takoudis CG. Recent Advances in Theoretical Development of Thermal Atomic Layer Deposition: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:831. [PMID: 35269316 PMCID: PMC8912810 DOI: 10.3390/nano12050831] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023]
Abstract
Atomic layer deposition (ALD) is a vapor-phase deposition technique that has attracted increasing attention from both experimentalists and theoreticians in the last few decades. ALD is well-known to produce conformal, uniform, and pinhole-free thin films across the surface of substrates. Due to these advantages, ALD has found many engineering and biomedical applications. However, drawbacks of ALD should be considered. For example, the reaction mechanisms cannot be thoroughly understood through experiments. Moreover, ALD conditions such as materials, pulse and purge durations, and temperature should be optimized for every experiment. It is practically impossible to perform many experiments to find materials and deposition conditions that achieve a thin film with desired applications. Additionally, only existing materials can be tested experimentally, which are often expensive and hazardous, and their use should be minimized. To overcome ALD limitations, theoretical methods are beneficial and essential complements to experimental data. Recently, theoretical approaches have been reported to model, predict, and optimize different ALD aspects, such as materials, mechanisms, and deposition characteristics. Those methods can be validated using a different theoretical approach or a few knowledge-based experiments. This review focuses on recent computational advances in thermal ALD and discusses how theoretical methods can make experiments more efficient.
Collapse
Affiliation(s)
- Mina Shahmohammadi
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Rajib Mukherjee
- Vishwamitra Research Institute, Crystal Lake, IL 60012, USA;
- Department of Chemical Engineering, University of Texas Permian Basin, Odessa, TX 79762, USA
| | - Cortino Sukotjo
- Department of Restorative Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Urmila M. Diwekar
- Vishwamitra Research Institute, Crystal Lake, IL 60012, USA;
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Christos G. Takoudis
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA;
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
32
|
Liu L, Khoury J, Webster TJ. Accelerated Neutral Atom Beam (ANAB) Modified Polypropylene for Reducing Bacteria Colonization Without Antibiotics. J Biomed Nanotechnol 2022; 18:868-874. [PMID: 35715927 DOI: 10.1166/jbn.2022.3269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
For this first time, this study utilized Accelerated Neutral Atom Beam (ANAB) technology to modify polypropylene to inhibit bacteria colonization in vitro after 24 hours without the use of drugs or antibiotics. Specifically, ANAB was designed and used to increase the surface energy of polypropylene to be closer to that of two critical proteins (mucin and casein) contained in bodily fluids that if adsorbed to a material surface can decreased bacteria colonization. Materials were characterized using atomic force microscopy demonstrating an expected greater surface roughness and surface area for the ANAB-treated samples compared to controls. A wide range of gram-positive, gram-negative, and antibiotic resistant bacteria were tested here (including Staph. epidermidis, Staph. aureus, MRSA, multi-drug resistant E. coli, and Pseudomonas aeruginosa) and demonstrated on average an over a 3-log reduction in bacteria after 24 hours. Further, this study confirmed a greater adsorption of mucin and casein on ANAB-treated polypropylene as the mechanism to decrease bacteria colonization. Lastly, this study utilized an aggressive cleaning procedure and showed strong durability of the ABAN-treated surfaces. This study is important as it demonstrates a way to potentially decrease polypropylene based implant infections using ANAB modification without using antibiotics.
Collapse
Affiliation(s)
- Luting Liu
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Joseph Khoury
- Exogenesis Corp., 20 Fortune Drive, Billerica, MA, 01821, USA
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
33
|
Zhao Y, Zhu M, Zhao Y, Zhang H, Zhang Y, Miao Z. A polyimide complex system decorated with ZnO nanorods with multiple antibacterial effects. NEW J CHEM 2022. [DOI: 10.1039/d1nj06220d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cross-sectional SEM images of nano-ZnO particles coated with epoxy resin glue: (a) PI-0, (b) PI-1, (c) PI-2, and (d) PI-3.
Collapse
Affiliation(s)
- Yuzhen Zhao
- Xi’an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Sciences, Xijing University, Xi’an, 710123, China
| | - Min Zhu
- Xi’an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Sciences, Xijing University, Xi’an, 710123, China
| | - Yang Zhao
- Xi’an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Sciences, Xijing University, Xi’an, 710123, China
| | - Huimin Zhang
- Xi’an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Sciences, Xijing University, Xi’an, 710123, China
| | - Yongming Zhang
- Xi’an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Sciences, Xijing University, Xi’an, 710123, China
| | - Zongcheng Miao
- School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
34
|
Sosnov EA, Malkov AA, Malygin AA. Nanotechnology of Molecular Layering in Production of Inorganic and Hybrid Materials for Various Functional Purposes: II. Molecular Layering Technology and Prospects for Its Commercialization and Development in the XXI Century. RUSS J APPL CHEM+ 2021. [DOI: 10.1134/s1070427221090020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Cyphert EL, Zhang N, Learn GD, Hernandez CJ, von Recum HA. Recent Advances in the Evaluation of Antimicrobial Materials for Resolution of Orthopedic Implant-Associated Infections In Vivo. ACS Infect Dis 2021; 7:3125-3160. [PMID: 34761915 DOI: 10.1021/acsinfecdis.1c00465] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
While orthopedic implant-associated infections are rare, revision surgeries resulting from infections incur considerable healthcare costs and represent a substantial research area clinically, in academia, and in industry. In recent years, there have been numerous advances in the development of antimicrobial strategies for the prevention and treatment of orthopedic implant-associated infections which offer promise to improve the limitations of existing delivery systems through local and controlled release of antimicrobial agents. Prior to translation to in vivo orthopedic implant-associated infection models, the properties (e.g., degradation, antimicrobial activity, biocompatibility) of the antimicrobial materials can be evaluated in subcutaneous implant in vivo models. The antimicrobial materials are then incorporated into in vivo implant models to evaluate the efficacy of using the material to prevent or treat implant-associated infections. Recent technological advances such as 3D-printing, bacterial genomic sequencing, and real-time in vivo imaging of infection and inflammation have contributed to the development of preclinical implant-associated infection models that more effectively recapitulate the clinical presentation of infections and improve the evaluation of antimicrobial materials. This Review highlights the advantages and limitations of antimicrobial materials used in conjunction with orthopedic implants for the prevention and treatment of orthopedic implant-associated infections and discusses how these materials are evaluated in preclinical in vivo models. This analysis serves as a resource for biomaterial researchers in the selection of an appropriate orthopedic implant-associated infection preclinical model to evaluate novel antimicrobial materials.
Collapse
Affiliation(s)
- Erika L. Cyphert
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Ningjing Zhang
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Greg D. Learn
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Christopher J. Hernandez
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States
- Hospital for Special Surgery, New York, New York 10021, United States
| | - Horst A. von Recum
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
36
|
Sun S, Deng P, Mu L, Hu X, Guo S. Bionanoscale Recognition Underlies Cell Fate and Therapy. Adv Healthc Mater 2021; 10:e2101260. [PMID: 34523248 DOI: 10.1002/adhm.202101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/21/2021] [Indexed: 11/09/2022]
Abstract
Understanding the bionanoscale recognition of nanostructured architectures is critical to the design and application of nanomaterials, but the related information is not well understood. In this study, it is found that bionanoscale recognition underlies cell fate and therapy. For example, 1T phase (octahedral coordination) monolayer MoS2 exhibits a markedly stronger affinity for fibronectin than the 2H structure (triangular prism coordination) and promotes cell spreading and differentiation. The van der Waals energy and increased turn components contribute to the high adhesion of fibronectin onto the 1T-MoS2 structure. 1T-MoS2 exhibits a significantly stronger affinity (KD , 6.59 × 10-7 m) for liposomes than 2H-MoS2 (1.21 × 10-6 m) due to strong hydrophobic interactions. The existence of octahedrally coordinated atomic structures that improve cell viability by enhancing the neurite length is first proven by random forest and structural equation models. Consequently, octahedral coordination disaggregates α-synuclein (e.g., by decreasing β-sheets and increasing coil structures) and protects cells and hosts against Parkinson's disease. As a proof-of-principle demonstration, these findings indicate that bionanoscale recognition underlies the design of biomaterials and cell therapeutics.
Collapse
Affiliation(s)
- Shan Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control College of Environmental Science and Engineering Nankai University Tianjin 30080 China
| | - Peng Deng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control College of Environmental Science and Engineering Nankai University Tianjin 30080 China
| | - Li Mu
- Tianjin Key Laboratory of Agro‐environment and Safe‐product Key Laboratory for Environmental Factors Control of Agro‐product Quality Safety (Ministry of Agriculture and Rural Affairs) Institute of Agro‐environmental Protection Ministry of Agriculture and Rural Affairs Tianjin 300191 China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control College of Environmental Science and Engineering Nankai University Tianjin 30080 China
| | - Shuqing Guo
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control College of Environmental Science and Engineering Nankai University Tianjin 30080 China
| |
Collapse
|
37
|
Sultana A, Zare M, Luo H, Ramakrishna S. Surface Engineering Strategies to Enhance the In Situ Performance of Medical Devices Including Atomic Scale Engineering. Int J Mol Sci 2021; 22:11788. [PMID: 34769219 PMCID: PMC8583812 DOI: 10.3390/ijms222111788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
Decades of intense scientific research investigations clearly suggest that only a subset of a large number of metals, ceramics, polymers, composites, and nanomaterials are suitable as biomaterials for a growing number of biomedical devices and biomedical uses. However, biomaterials are prone to microbial infection due to Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), Staphylococcus epidermidis (S. epidermidis), hepatitis, tuberculosis, human immunodeficiency virus (HIV), and many more. Hence, a range of surface engineering strategies are devised in order to achieve desired biocompatibility and antimicrobial performance in situ. Surface engineering strategies are a group of techniques that alter or modify the surface properties of the material in order to obtain a product with desired functionalities. There are two categories of surface engineering methods: conventional surface engineering methods (such as coating, bioactive coating, plasma spray coating, hydrothermal, lithography, shot peening, and electrophoretic deposition) and emerging surface engineering methods (laser treatment, robot laser treatment, electrospinning, electrospray, additive manufacturing, and radio frequency magnetron sputtering technique). Atomic-scale engineering, such as chemical vapor deposition, atomic layer etching, plasma immersion ion deposition, and atomic layer deposition, is a subsection of emerging technology that has demonstrated improved control and flexibility at finer length scales than compared to the conventional methods. With the advancements in technologies and the demand for even better control of biomaterial surfaces, research efforts in recent years are aimed at the atomic scale and molecular scale while incorporating functional agents in order to elicit optimal in situ performance. The functional agents include synthetic materials (monolithic ZnO, quaternary ammonium salts, silver nano-clusters, titanium dioxide, and graphene) and natural materials (chitosan, totarol, botanical extracts, and nisin). This review highlights the various strategies of surface engineering of biomaterial including their functional mechanism, applications, and shortcomings. Additionally, this review article emphasizes atomic scale engineering of biomaterials for fabricating antimicrobial biomaterials and explores their challenges.
Collapse
Affiliation(s)
- Afreen Sultana
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (A.S.); (S.R.)
| | - Mina Zare
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (A.S.); (S.R.)
| | - Hongrong Luo
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China
| | - Seeram Ramakrishna
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (A.S.); (S.R.)
| |
Collapse
|
38
|
Bertel L, Miranda DA, García-Martín JM. Nanostructured Titanium Dioxide Surfaces for Electrochemical Biosensing. SENSORS (BASEL, SWITZERLAND) 2021; 21:6167. [PMID: 34577374 PMCID: PMC8468921 DOI: 10.3390/s21186167] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 12/03/2022]
Abstract
TiO2 electrochemical biosensors represent an option for biomolecules recognition associated with diseases, food or environmental contaminants, drug interactions and related topics. The relevance of TiO2 biosensors is due to the high selectivity and sensitivity that can be achieved. The development of electrochemical biosensors based on nanostructured TiO2 surfaces requires knowing the signal extracted from them and its relationship with the properties of the transducer, such as the crystalline phase, the roughness and the morphology of the TiO2 nanostructures. Using relevant literature published in the last decade, an overview of TiO2 based biosensors is here provided. First, the principal fabrication methods of nanostructured TiO2 surfaces are presented and their properties are briefly described. Secondly, the different detection techniques and representative examples of their applications are provided. Finally, the functionalization strategies with biomolecules are discussed. This work could contribute as a reference for the design of electrochemical biosensors based on nanostructured TiO2 surfaces, considering the detection technique and the experimental electrochemical conditions needed for a specific analyte.
Collapse
Affiliation(s)
- Linda Bertel
- CMN-CIMBIOS Group, Escuela de Física, Universidad Industrial de Santander, Cra 27 Cll 9, Bucaramanga 680002, Colombia; (L.B.); (D.A.M.)
| | - David A. Miranda
- CMN-CIMBIOS Group, Escuela de Física, Universidad Industrial de Santander, Cra 27 Cll 9, Bucaramanga 680002, Colombia; (L.B.); (D.A.M.)
| | - José Miguel García-Martín
- Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, E-28760 Madrid, Spain
| |
Collapse
|
39
|
Atsu SS, Aksan ME, Bulut AC, Tamimi F. The effect of nanocoatings of SiO 2, TiO 2, and ZrO 2 on titanium-porcelain bonding. J Prosthet Dent 2021; 126:222.e1-222.e8. [PMID: 34090660 DOI: 10.1016/j.prosdent.2021.04.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
STATEMENT OF PROBLEM Durable titanium-porcelain bonding is challenging because of the formation of a thick oxide layer on the surface during porcelain firing. PURPOSE The purpose of this in vitro study was to evaluate how atomic layer deposition (ALD) of different oxide coatings affected titanium-porcelain bonding and failure types. MATERIAL AND METHODS Forty-four airborne-particle abraded Type-2 titanium specimens were coated by ALD with either SiO2, TiO2, or ZrO2 (n=11) at a thickness of 30 nm, whereas control specimens were left uncoated (n=11) (airborne-particle abraded only). The surface roughness of the specimens was analyzed with a profilometer before applying porcelain (Vita Titankeramic). Titanium-porcelain bonding was analyzed by using a 3-point bend test. Surface properties and titanium-porcelain interfaces were examined under scanning electron microscopy combined with energy-dispersive spectroscopy, and failure types were evaluated by using a stereomicroscope. Surface roughness and bond strength data were analyzed by 1-way ANOVA and Tukey HSD tests. Failure type data were analyzed by the Fisher-Freeman-Halton exact test (α=.05). RESULTS All nanocoatings increased surface roughness values, but only TiO2 and ZrO2 coatings showed statistically significant higher roughness than the control surfaces (P<.001). Specimens coated with SiO2 (28.59 ±4.37 MPa) and TiO2 (26.86 ±3.66 MPa) presented significantly higher bonding strength than control (22.04 ±4.59 MPa) specimens (P<.01). Fracture types of different groups were not statistically different (P>.05). CONCLUSIONS Nanocoating titanium surfaces with SiO2 and TiO2 by using the ALD technique significantly improved titanium-porcelain bonding.
Collapse
Affiliation(s)
- Saadet Saglam Atsu
- Visiting Professor, Faculty of Dentistry, McGill University, Montreal, QC, Canada; Professor, Department of Prosthodontics, Faculty of Dentistry, University of Kırıkkale, Kırıkkale, Turkey.
| | | | - Ali Can Bulut
- Associate Professor, Department of Prosthodontics, Faculty of Dentistry, University of Kırıkkale, Kırıkkale, Turkey
| | - Faleh Tamimi
- Professor, College of Dental Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
40
|
Barberi J, Spriano S. Titanium and Protein Adsorption: An Overview of Mechanisms and Effects of Surface Features. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1590. [PMID: 33805137 PMCID: PMC8037091 DOI: 10.3390/ma14071590] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/09/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
Titanium and its alloys, specially Ti6Al4V, are among the most employed materials in orthopedic and dental implants. Cells response and osseointegration of implant devices are strongly dependent on the body-biomaterial interface zone. This interface is mainly defined by proteins: They adsorb immediately after implantation from blood and biological fluids, forming a layer on implant surfaces. Therefore, it is of utmost importance to understand which features of biomaterials surfaces influence formation of the protein layer and how to guide it. In this paper, relevant literature of the last 15 years about protein adsorption on titanium-based materials is reviewed. How the surface characteristics affect protein adsorption is investigated, aiming to provide an as comprehensive a picture as possible of adsorption mechanisms and type of chemical bonding with the surface, as well as of the characterization techniques effectively applied to model and real implant surfaces. Surface free energy, charge, microroughness, and hydroxylation degree have been found to be the main surface parameters to affect the amount of adsorbed proteins. On the other hand, the conformation of adsorbed proteins is mainly dictated by the protein structure, surface topography at the nano-scale, and exposed functional groups. Protein adsorption on titanium surfaces still needs further clarification, in particular concerning adsorption from complex protein solutions. In addition, characterization techniques to investigate and compare the different aspects of protein adsorption on different surfaces (in terms of roughness and chemistry) shall be developed.
Collapse
Affiliation(s)
- Jacopo Barberi
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy;
| | | |
Collapse
|
41
|
Alomary MN, Ansari MA. Proanthocyanin-Capped Biogenic TiO 2 Nanoparticles with Enhanced Penetration, Antibacterial and ROS Mediated Inhibition of Bacteria Proliferation and Biofilm Formation: A Comparative Approach. Chemistry 2021; 27:5817-5829. [PMID: 33434357 DOI: 10.1002/chem.202004828] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Indexed: 12/24/2022]
Abstract
Biofunctionalized TiO2 nanoparticles with a size range of 18.42±1.3 nm were synthesized in a single-step approach employing Grape seed extract (GSE) proanthocyanin (PAC) polyphenols. The effect of PACs rich GSE corona was examined with respect to 1) the stability and dispersity of as-synthesized GSE-TiO2 -NPs, 2) their antiproliferative and antibiofilm efficacy, and 3) their propensity for internalization and reactive oxygen species (ROS) generation in urinary tract infections (UTIs) causing Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus saprophyticus strains. State-of-the-art techniques were used to validate GSE-TiO2 -NPs formation. Comparative Fourier transformed infrared (FTIR) spectral analysis demonstrated that PACs linked functional -OH groups likely play a central role in Ti4+ reduction and nucleation to GSE-TiO2 -NPs, while forming a thin, soft corona around nascent NPs to attribute significantly enhanced stability and dispersity. Transmission electron microscopic (TEM) and inductively coupled plasma mass-spectroscopy (ICP-MS) analyses confirmed there was significantly (p<0.05) enhanced intracellular uptake of GSE-TiO2 -NPs in both Gram-negative and -positive test uropathogens as compared to bare TiO2 -NPs. Correspondingly, compared to bare NPs, GSE-TiO2 -NPs induced intracellular ROS formation that corresponded well with dose-dependent inhibitory patterns of cell proliferation and biofilm formation in both the tested strains. Overall, this study demonstrates that -OH rich PACs of GSE corona on biogenic TiO2 -NPs maximized the functional stability, dispersity and propensity of penetration into planktonic cells and biofilm matrices. Such unique merits warrant the use of GSE-TiO2 -NPs as a novel, functionally stable and efficient antibacterial nano-formulation to combat the menace of UTIs in clinical settings.
Collapse
Affiliation(s)
- Mohammad N Alomary
- National Center for Biotechnology, Life Science and Environmental Research Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh, 11451, Saudi Arabia
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| |
Collapse
|
42
|
Blendinger F, Seitz D, Ottenschläger A, Fleischer M, Bucher V. Atomic Layer Deposition of Bioactive TiO 2 Thin Films on Polyetheretherketone for Orthopedic Implants. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3536-3546. [PMID: 33438388 DOI: 10.1021/acsami.0c17990] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
TiO2 thin films were deposited on the orthopedic implant material polyetheretherketone (PEEK) by plasma enhanced atomic layer deposition (PEALD) and characterized for their ability to enhance the osseointegrative properties. PEALD was chosen for film deposition to circumvent drawbacks present in line-of-sight deposition techniques, which require technically complex setups for a homogeneous coating thickness. Film conformality was analyzed on silicon 3D test structures and PEEK with micron-scale surface roughness. Wettability and surface energy were determined through contact angle measurements; film roughness and crystallinity were determined by atomic force microscopy and X-ray diffraction, respectively. Adhesion properties of TiO2 on PEEK were determined with tensile strength tests. Cell tests were performed with the mouse mesenchymal tumor stem cell line ST-2. TiO2-coated PEEK disks were used as substrates for cell proliferation tests and long-term differentiation tests. After 28 days of cultivation, a mineralized bone matrix was observed. Furthermore, the collagen I and osteocalcin content were determined. The results reveal that the osteogenic properties of the TiO2 thin film are comparable to those of hydroxyapatite, and thus bioactive properties of PEEK implants are improved by TiO2 thin films deposited with PEALD.
Collapse
Affiliation(s)
- Felix Blendinger
- Institute for Microsystems Technology (iMST), Furtwangen University, Jakob-Kienzle-Str. 17, D-78054 Villingen-Schwenningen, Germany
- Institute for Applied Physics and Center LISA+, University of Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Germany
| | - Daniel Seitz
- BioMed Center Innovation gGmbH, Ludwig-Thoma-Str. 36c, D-95447 Bayreuth, Germany
| | | | - Monika Fleischer
- Institute for Applied Physics and Center LISA+, University of Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Germany
| | - Volker Bucher
- Institute for Microsystems Technology (iMST), Furtwangen University, Jakob-Kienzle-Str. 17, D-78054 Villingen-Schwenningen, Germany
| |
Collapse
|
43
|
Nogueira RP, Deuzimar Uchoa J, Hilario F, Santana-Melo GDF, de Vasconcellos LMR, Marciano FR, Roche V, Moreira Jorge Junior A, Lobo AO. Characterization of Optimized TiO 2 Nanotubes Morphology for Medical Implants: Biological Activity and Corrosion Resistance. Int J Nanomedicine 2021; 16:667-682. [PMID: 33531806 PMCID: PMC7847373 DOI: 10.2147/ijn.s285805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/31/2020] [Indexed: 11/23/2022] Open
Abstract
Background Nanostructured surface modifications of Ti-based biomaterials are moving up from a highly-promising to a successfully-implemented approach to developing safe and reliable implants. Methods The study’s main objective is to help consolidate the knowledge and identify the more suitable experimental strategies related to TiO2 nanotubes-modified surfaces. In this sense, it proposes the thorough investigation of two optimized nanotubes morphologies in terms of their biological activity (cell cytotoxicity, alkaline phosphatase activity, alizarin red mineralization test, and cellular adhesion) and their electrochemical behavior in simulated body fluid (SBF) electrolyte. Layers of small-short and large-long nanotubes were prepared and investigated in their amorphous and crystallized states and compared to non-anodized samples. Results Results show that much more than the surface area development associated with the nanotubes’ growth; it is the heat treatment-induced change from amorphous to crystalline anatase-rutile structures that ensure enhanced biological activity coupled to high corrosion resistance. Conclusion Compared to both non-anodized and amorphous nanotubes layers, the crystallized nano-structures’ outstanding bioactivity was related to the remarkable increase in their hydrophilic behavior, while the enhanced electrochemical stability was ascribed to the thickening of the dense rutile barrier layer at the Ti surface beneath the nanotubes.
Collapse
Affiliation(s)
- Ricardo Pereira Nogueira
- Chemical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates.,Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, GrenobleINPLEPMI, Grenoble 38000, France
| | - Jose Deuzimar Uchoa
- Federal Institute of Education, Science and Technology of Piauí, Teresina 64053-390, Brazil.,Interdisciplinary Laboratory for Advanced Materials, BioMatLab Group, Materials Science and Engineering Graduate Program, UFPI - Federal University of Piaui, Teresina 64049-550 Brazil
| | - Fanny Hilario
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, GrenobleINPLEPMI, Grenoble 38000, France
| | - Gabriela de Fátima Santana-Melo
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, Sao Paulo State University, Sao José dos Campos 12245-000, Brazil
| | - Luana Marotta Reis de Vasconcellos
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, Sao Paulo State University, Sao José dos Campos 12245-000, Brazil
| | | | - Virginie Roche
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, GrenobleINPLEPMI, Grenoble 38000, France
| | - Alberto Moreira Jorge Junior
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, GrenobleINPLEPMI, Grenoble 38000, France.,Department of Materials Engineering, Federal University of São Carlos, São Carlos 13565-905, Brazil
| | - Anderson Oliveira Lobo
- Interdisciplinary Laboratory for Advanced Materials, BioMatLab Group, Materials Science and Engineering Graduate Program, UFPI - Federal University of Piaui, Teresina 64049-550 Brazil
| |
Collapse
|
44
|
Structure and Corrosion Behavior of TiO2 Thin Films Deposited by ALD on a Biomedical Magnesium Alloy. COATINGS 2021. [DOI: 10.3390/coatings11010070] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Magnesium alloys have been investigated as temporary biomaterials for orthopedic applications. Despite their high osseointegration and mechanical (bone-like) properties, Mg alloys quickly degrade in simulated physiological media. Surface coatings can be deposited onto Mg alloys to slow the corrosion rate of these biomaterials in chloride-rich environments. TiO2 films show high potential for improving the corrosion resistance of magnesium alloys. This article presents the structural observations and corrosion behavior of TiO2 thin films deposited onto a MgCa2Zn1Gd3 alloy using atomic layer deposition (ALD). Surface morphologies were observed using scanning electron microscopy (SEM) and atomic force microscopy (AFM), and Raman analysis of the deposited TiO2 films was also carried out. The corrosion behavior of the uncoated alloy and the alloy coated with TiO2 was measured in Ringer’s solution at 37 °C using electrochemical and immersion tests. The microscopic observations of the TiO2 thin films with a thickness of about 52.5 and 70 nm showed that the surface morphology was homogeneous without visible defects on the TiO2 surface. The electrochemical and immersion test results showed that the thin films decreased the corrosion rate of the studied Mg-based alloy, and the corrosion resistance was higher in the thicker TiO2 film.
Collapse
|
45
|
Woźniak A, Walke W, Jakóbik-Kolon A, Ziębowicz B, Brytan Z, Adamiak M. The Influence of ZnO Oxide Layer on the Physicochemical Behavior of Ti6Al4V Titanium Alloy. MATERIALS 2021; 14:ma14010230. [PMID: 33466481 PMCID: PMC7796469 DOI: 10.3390/ma14010230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 01/14/2023]
Abstract
Titanium and its alloys are characterized by high biocompatibility and good corrosion resistance as a result of the ability to form a TiO2 oxide layer. However, based on literature data it can be concluded that titanium degradation products, in the form of titanium particles, metal-protein groups, oxides and ions, may cause allergic, inflammatory reactions and bone resorption. The corrosion process of Ti6Al4V in the human body environment may be intensified by a decreased pH and concentration of chloride compounds. The purpose of this article was to analyze the corrosion resistance of the Ti6Al4V alloy, obtained by the selective laser melting method in a corrosion solution of neutral pH and in a solution simulating peri-implant inflammatory conditions. Additionally, the influence of zinc oxide deposited by the atomic layer deposition method on the improvement of the physicochemical behavior of the Ti6Al4V alloy was analyzed. In order to characterize the ZnO layer, tests of chemical and phase composition as well as surface morphology investigation were performed. As part of the assessment of the physicochemical properties of the uncoated samples and those with the ZnO layer, tests of wetting angle, pitting corrosion and impedance corrosion were carried out. The number of ions released after the potentiodynamic test were measured using the inductively coupled plasma atomic emission spectrometry (ICP-AES) method. It can be concluded that samples after surface modification (with the ZnO layer) were characterized by favorable physicochemical properties and had higher corrosion resistance.
Collapse
Affiliation(s)
- Anna Woźniak
- Department of Materials Engineering and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18A Street, 44-100 Gliwice, Poland; (B.Z.); (Z.B.); (M.A.)
- Correspondence: ; Tel.: +48-32-2372603
| | - Witold Walke
- Department of Biomaterials and Medical Devices Engineering, Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40 Street, 41-800 Zabrze, Poland;
| | - Agata Jakóbik-Kolon
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Street, 44-100 Gliwice, Poland;
| | - Bogusław Ziębowicz
- Department of Materials Engineering and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18A Street, 44-100 Gliwice, Poland; (B.Z.); (Z.B.); (M.A.)
| | - Zbigniew Brytan
- Department of Materials Engineering and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18A Street, 44-100 Gliwice, Poland; (B.Z.); (Z.B.); (M.A.)
| | - Marcin Adamiak
- Department of Materials Engineering and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18A Street, 44-100 Gliwice, Poland; (B.Z.); (Z.B.); (M.A.)
| |
Collapse
|
46
|
Li P, Gao Z, Tan Z, Xiao J, Wei L, Chen Y. New developments in anti-biofilm intervention towards effective management of orthopedic device related infections (ODRI's). BIOFOULING 2021; 37:1-35. [PMID: 33618584 DOI: 10.1080/08927014.2020.1869725] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/15/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Orthopedic device related infections (ODRI's) represent a difficult to treat situation owing to their biofilm based nature. Biofilm infections once established are difficult to eradicate even with an aggressive treatment regimen due to their recalcitrance towards antibiotics and immune attack. The involvement of antibiotic resistant pathogens as the etiological agent further worsens the overall clinical picture, pressing on the need to look into alternative treatment strategies. The present review highlightes the microbiological challenges associated with treatment of ODRI's due to biofilm formation on the implant surface. Further, it details the newer anti-infective modalities that work either by preventing biofilm formation and/or through effective disruption of the mature biofilms formed on the medical implant. The study, therefore aims to provide a comprehensive insight into the newer anti-biofilm interventions (non-antibiotic approaches) and a better understanding of their mechanism of action essential for improved management of orthopedic implant infections.
Collapse
Affiliation(s)
- Ping Li
- Department of Orthopedics, Ya'an People's Hospital, Yaan City, China
| | - Zhenwu Gao
- Department of Orthopedics, Shanxi Bethune Hospital, Taiyuan City, China
| | - Zhenwei Tan
- Department of Orthopedics, Western Theater Air Force Hospital of PLA, Chengdu, China
| | - Jun Xiao
- Department of Orthopedics, Ya'an People's Hospital, Yaan City, China
| | - Li Wei
- Nursing Department, Three Gorges Hospital Affiliated to Chongqing University, Chongqing, China
| | - Yirui Chen
- Department of Orthopedics, Three Gorges Hospital Affiliated to Chongqing University, Chongqing, China
| |
Collapse
|
47
|
Dias-Netipanyj MF, Sopchenski L, Gradowski T, Elifio-Esposito S, Popat KC, Soares P. Crystallinity of TiO 2 nanotubes and its effects on fibroblast viability, adhesion, and proliferation. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:94. [PMID: 33128627 DOI: 10.1007/s10856-020-06431-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Titanium and titanium alloys are widely used as a biomaterial due to their mechanical strength, corrosion resistance, low elastic modulus, and excellent biocompatibility. TiO2 nanotubes have excellent bioactivity, stimulating the adhesion, proliferation of fibroblasts and adipose-derived stem cells, production of alkaline phosphatase by osteoblasts, platelets activation, growth of neural cells and adhesion, spreading, growth, and differentiation of rat bone marrow mesenchymal stem cells. In this study, we investigated the functionality of fibroblast on titania nanotube layers annealed at different temperatures. The titania nanotube layer was fabricated by potentiostatic anodization of titanium, then annealed at 300, 530, and 630 °C for 5 h. The resulting nanotube layer was characterized using SEM (Scanning Electron Microscopy), TF-XRD (Thin-film X-ray diffraction), and contact angle goniometry. Fibroblasts viability was determined by the CellTiter-Blue method and cytotoxicity by Lactate Dehydrogenase test, and the cell morphology was analyzed by scanning electron microscopy. Also, cell adherence, proliferation, and morphology were analyzed by fluorescence microscopy. The results indicate that the modification in nanotube crystallinity may provide a favorable surface fibroblast growth, especially on substrates annealed at 530 and 630 °C, indicating that these properties provide a favorable template for biomedical implants.
Collapse
Affiliation(s)
- Marcela Ferreira Dias-Netipanyj
- Graduate Program in Health Science, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Luciane Sopchenski
- Department of Mechanical Engineering, Polytechnic School, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - Thatyanne Gradowski
- Graduate Program in Health Science, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - Selene Elifio-Esposito
- Graduate Program in Health Science, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - Ketul C Popat
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Paulo Soares
- Department of Mechanical Engineering, Polytechnic School, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
48
|
Smieszek A, Seweryn A, Marcinkowska K, Sikora M, Lawniczak-Jablonska K, Witkowski BS, Kuzmiuk P, Godlewski M, Marycz K. Titanium Dioxide Thin Films Obtained by Atomic Layer Deposition Promotes Osteoblasts' Viability and Differentiation Potential While Inhibiting Osteoclast Activity-Potential Application for Osteoporotic Bone Regeneration. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4817. [PMID: 33126628 PMCID: PMC7662580 DOI: 10.3390/ma13214817] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022]
Abstract
Atomic layer deposition (ALD) technology has started to attract attention as an efficient method for obtaining bioactive, ultrathin oxide coatings. In this study, using ALD, we have created titanium dioxide (TiO2) layers. The coatings were characterised in terms of physicochemical and biological properties. The chemical composition of coatings, as well as thickness, roughness, wettability, was determined using XPS, XRD, XRR. Cytocompatibillity of ALD TiO2 coatings was accessed applying model of mouse pre-osteoblast cell line MC3T3-E1. The accumulation of transcripts essential for bone metabolism (both mRNA and miRNA) was determined using RT-qPCR. Obtained ALD TiO2 coatings were characterised as amorphous and homogeneous. Cytocompatibility of the layers was expressed by proper morphology and growth pattern of the osteoblasts, as well as their increased viability, proliferative and metabolic activity. Simultaneously, we observed decreased activity of osteoclasts. Obtained coatings promoted expression of Opn, Coll-1, miR-17 and miR-21 in MC3T3-E1 cells. The results are promising in terms of the potential application of TiO2 coatings obtained by ALD in the field of orthopaedics, especially in terms of metabolic- and age-related bone diseases, including osteoporosis.
Collapse
Affiliation(s)
- Agnieszka Smieszek
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida St. 27 B, PL-50375 Wroclaw, Poland; (A.S.); (K.M.); (M.S.)
| | - Aleksandra Seweryn
- Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland; (K.L.-J.); (B.S.W.); (P.K.); (M.G.)
| | - Klaudia Marcinkowska
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida St. 27 B, PL-50375 Wroclaw, Poland; (A.S.); (K.M.); (M.S.)
| | - Mateusz Sikora
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida St. 27 B, PL-50375 Wroclaw, Poland; (A.S.); (K.M.); (M.S.)
| | - Krystyna Lawniczak-Jablonska
- Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland; (K.L.-J.); (B.S.W.); (P.K.); (M.G.)
| | - Bartlomiej. S. Witkowski
- Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland; (K.L.-J.); (B.S.W.); (P.K.); (M.G.)
| | - Piotr Kuzmiuk
- Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland; (K.L.-J.); (B.S.W.); (P.K.); (M.G.)
| | - Marek Godlewski
- Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland; (K.L.-J.); (B.S.W.); (P.K.); (M.G.)
| | - Krzysztof Marycz
- International Institute of Translational Medicine, Jesionowa 11 Street, 55-124 Malin, Poland
- Collegium Medicum, Institute of Medical Science, Cardinal Stefan Wyszynski University (UKSW), Wóycickiego 1/3, 01-938 Warsaw, Poland
| |
Collapse
|
49
|
Bai R, Peng L, Sun Q, Zhang Y, Zhang L, Wei Y, Han B. Metallic Antibacterial Surface Treatments of Dental and Orthopedic Materials. MATERIALS (BASEL, SWITZERLAND) 2020; 13:4594. [PMID: 33076495 PMCID: PMC7658793 DOI: 10.3390/ma13204594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/05/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022]
Abstract
The oral cavity harbors complex microbial communities, which leads to biomaterial-associated infections (BAI) during dental and orthopedic treatments. Conventional antibiotic treatments have met great challenges recently due to the increasing emergency of drug-resistant bacteria. To tackle this clinical issue, antibacterial surface treatments, containing surface modification and coatings, of dental and orthopedic materials have become an area of intensive interest now. Among various antibacterial agents used in surface treatments, metallic agents possess unique properties, mainly including broad-spectrum antibacterial properties, low potential to develop bacterial resistance, relative biocompatibility, and chemical stability. Therefore, this review mainly focuses on underlying antibacterial applications and the mechanisms of metallic agents in dentistry and orthopedics. An overview of the present review indicates that much work remains to be done to deepen the understanding of antibacterial mechanisms and potential side-effects of metallic agents.
Collapse
Affiliation(s)
- Rushui Bai
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (R.B.); (L.P.); (Q.S.); (Y.Z.); (L.Z.)
| | - Liying Peng
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (R.B.); (L.P.); (Q.S.); (Y.Z.); (L.Z.)
| | - Qiannan Sun
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (R.B.); (L.P.); (Q.S.); (Y.Z.); (L.Z.)
| | - Yunfan Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (R.B.); (L.P.); (Q.S.); (Y.Z.); (L.Z.)
| | - Lingyun Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (R.B.); (L.P.); (Q.S.); (Y.Z.); (L.Z.)
| | - Yan Wei
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Bing Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (R.B.); (L.P.); (Q.S.); (Y.Z.); (L.Z.)
| |
Collapse
|
50
|
Seweryn A, Alicka M, Fal A, Kornicka-Garbowska K, Lawniczak-Jablonska K, Ozga M, Kuzmiuk P, Godlewski M, Marycz K. Hafnium (IV) oxide obtained by atomic layer deposition (ALD) technology promotes early osteogenesis via activation of Runx2-OPN-mir21A axis while inhibits osteoclasts activity. J Nanobiotechnology 2020; 18:132. [PMID: 32933533 PMCID: PMC7493872 DOI: 10.1186/s12951-020-00692-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Due to increasing aging of population prevalence of age-related disorders including osteoporosis is rapidly growing. Due to health and economic impact of the disease, there is an urgent need to develop techniques supporting bone metabolism and bone regeneration after fracture. Due to imbalance between bone forming and bone resorbing cells, the healing process of osteoporotic bone is problematic and prolonged. Thus searching for agents able to restore the homeostasis between these cells is strongly desirable. RESULTS In the present study, using ALD technology, we obtained homogeneous, amorphous layer of hafnium (IV) oxide (HfO2). Considering the specific growth rate (1.9Å/cycle) for the selected process at the temperature of 90 °C, we performed the 100 nm deposition process, which was confirmed by measuring film thickness using reflectometry. Then biological properties of the layer were investigated with pre-osteoblast (MC3T3), pre-osteoclasts (4B12) and macrophages (RAW 264.7) using immunofluorescence and RT-qPCR. We have shown, that HfO2 (i) enhance osteogenesis, (ii) reduce osteoclastogenesis (iii) do not elicit immune response and (iv) exert anti-inflammatory effects. CONCLUSION HfO2 layer can be applied to cover the surface of metallic biomaterials in order to enhance the healing process of osteoporotic bone fracture.
Collapse
Affiliation(s)
- A Seweryn
- Institute of Physics, Polish Academy of Sciences, 02668, Warsaw, Poland
| | - M Alicka
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland
| | - A Fal
- Cardinal Stefan Wyszynski University, Collegium Medicum, 01938, Warsaw, Poland
| | - K Kornicka-Garbowska
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland
- International Institute of Translational Medicine, Jesionowa 11, Malin, Wisznia Mała, 55-114, Wrocław, Poland
| | | | - M Ozga
- Institute of Physics, Polish Academy of Sciences, 02668, Warsaw, Poland
| | - P Kuzmiuk
- Institute of Physics, Polish Academy of Sciences, 02668, Warsaw, Poland
| | - M Godlewski
- Institute of Physics, Polish Academy of Sciences, 02668, Warsaw, Poland
| | - K Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland.
- Cardinal Stefan Wyszynski University, Collegium Medicum, 01938, Warsaw, Poland.
- International Institute of Translational Medicine, Jesionowa 11, Malin, Wisznia Mała, 55-114, Wrocław, Poland.
| |
Collapse
|