1
|
Kang JH, Cho YJ, Hwang JY, Park SY, Choi JJ, Paik ES, Kim HS, Lee JW, Shin US. Temperature-Controlled pNIB/PTX Micelles for Improved Paclitaxel Delivery in Ovarian Cancer Treatment. ACS Biomater Sci Eng 2025; 11:2167-2179. [PMID: 40094480 DOI: 10.1021/acsbiomaterials.4c02060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Paclitaxel (PTX) is a widely used anticancer drug for ovarian cancer treatment, but its clinical application is limited by poor water solubility and dose-limiting toxicities. To overcome these challenges, we developed a thermoresponsive, multistep drug delivery system, pNIB/PTX, designed to improve PTX solubility and provide controlled drug release. The pNIB/PTX-3 complex exhibited an initial rapid drug release phase followed by sustained slow release, optimizing both short-term and long-term therapeutic efficacy. At physiological temperatures, the complex demonstrated a precisely controlled drug release mechanism driven by changes in the polymeric micelle structure. In vitro studies showed that pNIB/PTX-3 significantly enhanced therapeutic effects in human ovarian cancer cell lines HeyA8 and SKOV3ip1, compared to PTX alone. In orthotopic ovarian cancer mouse models, a single intraperitoneal injection of pNIB/PTX-3 led to a substantial reduction in tumor size and prolonged survival. This multistep, thermoresponsive delivery system shows strong potential as a promising therapeutic option for dose-dense ovarian cancer treatments, providing improved drug stability, controlled release, and minimized side effects.
Collapse
Affiliation(s)
- Ji-Hye Kang
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, Republic of Korea
| | - Young-Jae Cho
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Ji-Young Hwang
- Convergence Research Division, Korea Carbon Industry Promotion Agency (KCARBON), 110-11 Ballyong-ro, Deokjin-gu, Jeonju 54853, Republic of Korea
| | - Sang-Yu Park
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, Republic of Korea
- Department of Nano-biomedical Science BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, Republic of Korea
| | - Jung-Joo Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - E Sun Paik
- Department of Obstetrics and Gynecology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul 03181, Republic of Korea
| | - Han-Sem Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, Republic of Korea
| | - Jeong-Won Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
- Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Ueon Sang Shin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, Republic of Korea
- Department of Nano-biomedical Science BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, Republic of Korea
| |
Collapse
|
2
|
Shah T, Polara H, Babanyinah G, Bhadran A, Wang H, Castillo CC, Grabowski G, Biewer MC, Torabifard H, Stefan MC. Computational design to experimental validation: molecular dynamics-assisted development of polycaprolactone micelles for drug delivery. J Mater Chem B 2025; 13:4166-4178. [PMID: 40047718 DOI: 10.1039/d4tb02789b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Amphiphilic diblock copolymers are used in drug delivery systems for cancer treatments. However, these carriers suffer from lower drug loading capacity, poor water solubility, and non-targeted drug release. Here, we utilized a computational approach to analyze the effect of the functional groups of the hydrophobic block on the drug-polymer interactions. To design effective drug carriers, four different amphiphilic block copolymer micelles with distinct aromatic and heteroaromatic groups at the hydrophobic core were subjected to molecular dynamics simulations. The solvent-accessible surface area, water shell, hydrogen bonding, and radius of gyration of the simulated micelles were determined. Further, we assessed the interactions between the hydrophobic block and drug molecules using linear interaction energy and non-covalent interactions. The computational studies revealed that the micelles containing a novel poly(γ-2-methoxyfuran-ε-caprolactone) (PFuCL) hydrophobic block have the highest polymer-drug interactions. From these findings, we synthesized a novel amphiphilic poly(ethylene glycol)-b-poly(γ-2-methoxyfuran(ε-caprolactone)) (PEG-b-PFuCL) block copolymer using ring-opening polymerization of FuCL monomer. The polymer was self-assembled in aqueous media to form micelles. The aromatic segment of PEG-b-PFuCL micelles enhanced the doxorubicin (DOX) loading through non-covalent interactions, resulting in a 4.25 wt% drug-loading capacity. We also showed that the hydrolysis of the ester bond allowed a faster in vitro drug release at pH 5.0 compared to pH 7.4. Cell viability experiments revealed that DOX-loaded PEG-b-PFuCL micelles show that micelles are cytotoxic and readily uptaken into MDA-MB-231 cells. Therefore, furan-substituted micelles will be an ideal drug carrier with higher polymer-to-drug interactions, enhanced drug loading, and lower premature leakage.
Collapse
Affiliation(s)
- Tejas Shah
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA.
| | - Himanshu Polara
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA.
| | - Godwin Babanyinah
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA.
| | - Abhi Bhadran
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA.
| | - Hanghang Wang
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA.
| | - Cristina Cu Castillo
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA.
| | - Gerik Grabowski
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA.
| | - Michael C Biewer
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA.
| | - Hedieh Torabifard
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA.
| | - Mihaela C Stefan
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
3
|
Zheng MY, Zheng H, Zeng Y, Sun T, Zhang FZ, Wang YL, Wang HS, Lin RG. Enhanced targeted drug delivery to hepatocellular carcinoma using Cucurbit[6]uril-modified ZIF-8 nanoparticle. J Biomater Appl 2025; 39:920-932. [PMID: 39644191 DOI: 10.1177/08853282241306836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Building on our innovative approach to combatting cancer, this study explores the development of a sophisticated hybrid nanocarrier system leveraging the unique properties of allyl oxide cucurbit[6]uril with galactose clusters (AOQ[6]@Gal) to modify ZIF-8 nanoparticles. These nanoparticles are designed to encapsulate and efficiently deliver the anticancer drugs doxorubicin (DOX) and curcumin (CUR), enhancing their water solubility and stability, while also providing active targeting towards hepatocellular carcinoma cells. The comprehensive characterization of AOQ[6]@Gal@ZIF-8@Drug nanoparticles revealed promising outcomes, including drug loading efficiencies of 9.7% for DOX and 8.3% for CUR, alongside a pH-responsive release profile that ensures effective drug delivery in the tumor microenvironment. Cytotoxicity studies underscored the hybrid system's superior safety profile, exhibiting minimal toxicity towards normal hepatocytes HL7702 and pronounced cytotoxic effects against hepatocellular carcinoma cells HepG2. These results highlight the hybrid nanocarrier's potential as a targeted, efficient, and safe platform for the delivery of chemotherapy agents in the treatment of liver cancer.
Collapse
Affiliation(s)
- Mu-Yue Zheng
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, P. R. China
| | - Hao Zheng
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, P. R. China
| | - Yan Zeng
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, P. R. China
| | - Tong Sun
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, P. R. China
| | - Fang-Zhong Zhang
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, P. R. China
| | - Yu-Lin Wang
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, P. R. China
| | - Hai-Shuang Wang
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, P. R. China
| | - Rong-Guang Lin
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, P. R. China
| |
Collapse
|
4
|
Huang W, Zhang P, Zhao E, Xiong J, Wang S, Lv Z. Potential application and prospects of ROS-sensitive biomaterials in cancer therapy: a immune microenvironment triggered nanomaterial. Discov Oncol 2025; 16:185. [PMID: 39954216 PMCID: PMC11829892 DOI: 10.1007/s12672-025-01900-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 02/03/2025] [Indexed: 02/17/2025] Open
Abstract
Reactive Oxygen Species (ROS) is the collective term used for the extremely reactive molecules that are important mediators in physiological processes as well as the development of various disease conditions. Normal cells maintain a delicate equilibrium, known as redox homeostasis, between antioxidants and ROS levels. Any imbalance in the redox homeostasis of the body results in oxidative stress which can result in inflammation, necrosis, apoptosis, cell death, and eventually a disease state. Enhanced ROS levels are a key feature in cancer cells that is being explored for developing reactive oxygen species-sensitive biomaterials. The distinct variation in redox potential between normal cells and tumour cells is one of the major physiological differences between them, that has enabled the development of ROS-sensitive nanomaterials for cancer therapy. ROS-sensitive nanomaterials are sensitive to the physiological variations in the cells, like high levels of hydrogen peroxide and glutathione in the cancer cells. ROS-responsive nanomaterials have the unique property of modulating microenvironmental redox conditions in cancer cells. ROS-sensitive material can work either by scavenging the ROS or by simulating the cellular antioxidants, leading to cancer cell cytotoxicity. These ROS-sensitive nanomaterials can simulate the human body's natural antioxidants like, superoxide dismutase and peroxidase. Thus, ROS-sensitive nanomaterials hold promise as a potential platform for the treatment of cancer. The present review will cover the importance of ROS in cancer, the different types of ROS-sensitive nanomaterials available and their therapeutic application in cancer therapy.
Collapse
Affiliation(s)
- Weiming Huang
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Pengju Zhang
- Department of General Surgery, Jinling Hospital Affiliated Hospital of Medical School, Nanjing University, Nanjing, 200002, Jiangsu, China
| | - Eryong Zhao
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Jian Xiong
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China.
| | - Shaokun Wang
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang, 110022, China.
| | - Zi Lv
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China.
| |
Collapse
|
5
|
Kumbham S, Md Mahabubur Rahman K, Foster BA, You Y. A Comprehensive Review of Current Approaches in Bladder Cancer Treatment. ACS Pharmacol Transl Sci 2025; 8:286-307. [PMID: 39974639 PMCID: PMC11833730 DOI: 10.1021/acsptsci.4c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/19/2024] [Accepted: 12/26/2024] [Indexed: 02/21/2025]
Abstract
Bladder cancer is one of the most common malignant tumors of the urinary system globally. It is also one of the most expensive cancers to manage, due to the need for extensive treatment and follow-ups that often involve invasive and costly procedures. Although there have been some improvements in treatment options, the quality of life they offer has not improved at the same rate as other cancers. Therefore, there is an urgent need to find new alternatives to ease the burden of bladder cancer on patients. Recent discoveries have opened new avenues for the diagnosis and management of bladder cancer even though the clinical approach has largely remained the same for years. The decline in bladder cancer-specific mortality in regions that promote social awareness of risk factors and reduction of carcinogenic exposure demonstrates the effectiveness of such measures. New agents have been approved for patients who have undergone radical cystectomy after Bacillus Calmette-Guérin failure. Current best practices for diagnosing and treating bladder cancer are presented in this review. The review discusses radiation therapy, photodynamic therapy, gene therapy, chemotherapy, and nanomedicine in relation to non muscle-invasive cancers and muscle-invasive bladder cancers, as well as systemic treatments.
Collapse
Affiliation(s)
- Soniya Kumbham
- Department
of Pharmaceutical Sciences, University at
Buffalo, The State University of New York, Buffalo, New York 14214, United States
| | - Kazi Md Mahabubur Rahman
- Department
of Pharmaceutical Sciences, University at
Buffalo, The State University of New York, Buffalo, New York 14214, United States
| | - Barbara A. Foster
- Department
of Pharmacology & Therapeutics, Roswell
Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Youngjae You
- Department
of Pharmaceutical Sciences, University at
Buffalo, The State University of New York, Buffalo, New York 14214, United States
| |
Collapse
|
6
|
Sharma U, Sahni PK, Sharma B, Gupta M, Kaur D, Mathkor DM, Haque S, Khatoon S, Tuli HS, Mishra A, Ahmad F. Silymarin: a promising modulator of apoptosis and survival signaling in cancer. Discov Oncol 2025; 16:66. [PMID: 39836338 PMCID: PMC11751200 DOI: 10.1007/s12672-025-01800-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
Cancer, one of the deadliest diseases, has remained the epicenter of biological research for more than seven decades. Yet all the efforts for a perfect therapeutic cure come with certain limitations. The use of medicinal plants and their phytochemicals as therapeutics has received much attention in recent years. Silymarin, a polyphenolic flavonoid with a variety of anti-cancerous properties, was isolated from the plant Silybum marianum. The present review centres on the function of silymarin in controlling important signalling pathways related to apoptosis and survival, such as the JAK/STAT pathway, PI3K/Akt/mTOR, Bcl-2/Bax, and Fas/FasL. It is emphasised that silymarin's capacity to target these pathways is a key mechanism behind its anticancer effects against a variety of malignancies. By upregulating pro-apoptotic and downregulating anti-apoptotic proteins, silymarin controls a series of events that result in tumor suppression and cell death in a variety of cancer types. The low bioavailability and limited therapeutic efficacy of silymarin are improved by the application of various nano-delivery systems. As efficient carriers, liposomes, polymeric micelles, lipid- and metal-based nanoparticles, increase the solubility and distribution of silymarin in target tissues. Lastly, a number of preclinical studies that provide a basis for upcoming therapeutic interventions are highlighted in the review, providing encouraging directions for additional research and advancement.
Collapse
Affiliation(s)
- Ujjawal Sharma
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bhatinda, 151001, India
| | - Praveen Kumar Sahni
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bhatinda, 151001, India
| | - Bunty Sharma
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Damandeep Kaur
- University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Darin Mansor Mathkor
- Department of Nursing, College of Nursing and Health Sciences, Jazan University, 45142, Jazan, Saudi Arabia
| | - Shafiul Haque
- Department of Nursing, College of Nursing and Health Sciences, Jazan University, 45142, Jazan, Saudi Arabia
- Universidad Espiritu Santo, Samborondon, Ecuador
| | - Sabiha Khatoon
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Astha Mishra
- Department of Optometry, Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab, India
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India.
| |
Collapse
|
7
|
Ujita M, Zhou H, Yamada T. Thermoelectrochemical Method for Quantification of the Micellization Entropy of Redox-Active Polymers. ACS Macro Lett 2025; 14:107-113. [PMID: 39783924 DOI: 10.1021/acsmacrolett.4c00773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Redox-active micelles undergo reversible association and dissociation in response to their redox potential and are promising materials for various applications, such as drug delivery and bioimaging. Evaluation of the micellization entropy is critical in controlling the thermodynamics of micelle formation. However, conventional methods such as isothermal titration calorimetry and surface tensiometry require a long measurement time to observe changes in the heat flow or the surface tension caused by the micellization. Here we report a thermoelectrochemical method to quantify the entropy change produced by redox-active micelles. A set of poly(ethyl glycidyl ether-b-ethylene oxide)phenothiazine (PT-EGE-EO) with varied chain length were synthesized, and their micellization entropy was calculated from the temperature-dependent changes of the equilibrium potential. This thermoelectrochemical method enables a quick evaluation of the micellization entropy with only a single sample preparation and temperature sweep. The obtained results showed a reasonable agreement with the conventional surface tensiometry and isothermal titration calorimetry, indicating that the thermoelectrochemical method is a promising alternative for quantification of the micellization entropy.
Collapse
Affiliation(s)
- Mizuha Ujita
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hongyao Zhou
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Teppei Yamada
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
8
|
Yazdan M, Naghib SM. Smart Ultrasound-responsive Polymers for Drug Delivery: An Overview on Advanced Stimuli-sensitive Materials and Techniques. Curr Drug Deliv 2025; 22:283-309. [PMID: 38288800 DOI: 10.2174/0115672018283792240115053302] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/11/2023] [Accepted: 12/28/2023] [Indexed: 04/11/2025]
Abstract
In recent years, a notable advancement has occurred in the domain of drug delivery systems via the integration of intelligent polymers that respond to ultrasound. The implementation of this groundbreaking methodology has significantly revolutionised the controlled and precise delivery of therapeutic interventions. An in-depth investigation is conducted into the most recent developments in ultrasonic stimulus-responsive materials and techniques for the purpose of accomplishing precise medication administration. The investigation begins with an exhaustive synopsis of the foundational principles underlying drug delivery systems that react to ultrasonic stimuli, focusing specifically on the complex interplay between polymers and ultrasound waves. Significant attention is devoted to the development of polymers that demonstrate tailored responsiveness to ultrasound, thereby exemplifying their versatility in generating controlled drug release patterns. Numerous classifications of intelligent polymers are examined in the discussion, including those that react to variations in temperature, pH, and enzymes. When coupled with ultrasonic stimuli, these polymers offer a sophisticated framework for the precise manipulation of drug release in terms of both temporal and spatial dimensions. The present study aims to examine the synergistic effects of responsive polymers and ultrasound in overcoming biological barriers such as the blood-brain barrier and the gastrointestinal tract. By doing so, it seeks to shed light on the potential applications of these materials in intricate clinical scenarios. The issues and future prospects of intelligent ultrasound-responsive polymers in the context of drug delivery are critically analysed in this article. The objective of this study is to offer valuable perspectives on the challenges that must be overcome to enable the effective implementation of these technologies. The primary objective of this comprehensive review is to furnish researchers, clinicians, and pharmaceutical scientists with a wealth of information that will serve as a guide for forthcoming developments in the development and enhancement of intelligent drug delivery systems that employ ultrasound-responsive polymers to attain superior therapeutic outcomes.
Collapse
Affiliation(s)
- Mostafa Yazdan
- Department of Nanotechnology, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran
| | - Seyed Morteza Naghib
- Department of Nanotechnology, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran
| |
Collapse
|
9
|
Jiao Y, Yang L, Wang R, Song G, Fu J, Wang J, Gao N, Wang H. Drug Delivery Across the Blood-Brain Barrier: A New Strategy for the Treatment of Neurological Diseases. Pharmaceutics 2024; 16:1611. [PMID: 39771589 PMCID: PMC11677317 DOI: 10.3390/pharmaceutics16121611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The blood-brain barrier (BBB) serves as a highly selective barrier between the blood and the central nervous system (CNS), and its main function is to protect the brain from foreign substances. This physiological property plays a crucial role in maintaining CNS homeostasis, but at the same time greatly limits the delivery of drug molecules to the CNS, thus posing a major challenge for the treatment of neurological diseases. Given that the high incidence and low cure rate of neurological diseases have become a global public health problem, the development of effective BBB penetration technologies is important for enhancing the efficiency of CNS drug delivery, reducing systemic toxicity, and improving the therapeutic outcomes of neurological diseases. This review describes the physiological and pathological properties of the BBB, as well as the current challenges of trans-BBB drug delivery, detailing the structural basis of the BBB and its role in CNS protection. Secondly, this paper reviews the drug delivery strategies for the BBB in recent years, including physical, biological and chemical approaches, as well as nanoparticle-based delivery technologies, and provides a comprehensive assessment of the effectiveness, advantages and limitations of these delivery strategies. It is hoped that the review in this paper will provide valuable references and inspiration for future researchers in therapeutic studies of neurological diseases.
Collapse
Affiliation(s)
- Yimai Jiao
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
| | - Luosen Yang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China;
| | - Rujuan Wang
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
| | - Guoqiang Song
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
| | - Jingxuan Fu
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China;
| | - Jinping Wang
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
| | - Na Gao
- Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Hui Wang
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.J.); (R.W.); (G.S.); (J.F.); (J.W.)
| |
Collapse
|
10
|
Mekuria SL, Li G, Wang Z, Girma WM, Li A, He M, Wang H, Hameed MMA, El-Newehy M, Shi X, Shen M. Dendrimer nanoclusters loaded with gold nanoparticles for enhanced tumor CT imaging and chemotherapy via an amplified EPR effect. J Mater Chem B 2024; 12:9524-9532. [PMID: 39301737 DOI: 10.1039/d4tb01747a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The design of efficient multifunctional nanomedicines to overcome adverse side effects within biological systems and to achieve desirable computed tomography (CT) imaging and therapeutics of tumors remains challenging. Herein, we report the design of multifunctional nanoclusters (NCs) based on generation 3 (G3) poly(amidoamine) (PAMAM) dendrimers. In brief, G3 dendrimers were crosslinked with 4,4'-dithiodibutryic acid (DA) to generate disulfide-bond-containing dendrimer nanoclusters (DNCs), functionalized with 1,3-propane sultone (1,3-PS) to be zwitterionic, in situ loaded with gold nanoparticles (Au NPs), and finally encapsulated with the drug doxorubicin (DOX). The designed DOX/Au@DNCs-PS possess a favorable colloidal stability with a hydrodynamic size of 249.4 nm, a redox-responsive drug release profile, and enhanced cellular uptake in vitro. We show that DOX/Au@DNCs-PS have a greater DOX penetration and growth inhibition of three-dimensional (3D) tumor spheroids than the single dendrimer counterpart in vitro. Furthermore, the developed Au@DNCs-PS enable a better Au-mediated X-ray attenuation property than the single dendrimer counterpart material. Likely due to the amplified enhanced permeability and retention (EPR) effect, the created Au@DNCs-PS and DOX/Au@DNCs-PS enable better CT imaging and chemotherapeutic effect of a mouse breast tumor model, respectively, than the single dendrimer counterparts. With its proven biocompatibility, the constructed formulation may hold promising potential for development for different cancer nanomedicine applications.
Collapse
Affiliation(s)
- Shewaye Lakew Mekuria
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
- Department of Chemistry, College of Natural and Computational Sciences, University of Gondar, 196, Gondar, Ethiopia
| | - Gaoming Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Zhiqiang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Wubshet Mekonnen Girma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
- Department of Chemistry, College of Natural Science, Wollo University, P.O. Box 1145, Dessie, Ethiopia
| | - Aiyu Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Meijuan He
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Han Wang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Meera Moydeen Abdul Hameed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
11
|
Chowdhury A, Mitra Mazumder P. Unlocking the potential of flavonoid-infused drug delivery systems for diabetic wound healing with a mechanistic exploration. Inflammopharmacology 2024:10.1007/s10787-024-01561-5. [PMID: 39217278 DOI: 10.1007/s10787-024-01561-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Diabetes is one of the common endocrine disorders generally characterized by elevated levels of blood sugar. It can originate either from the inability of the pancreas to synthesize insulin, which is considered as an autoimmune disorder, or the reduced production of insulin, considered as insulin resistivity. A wound can be defined as a condition of damage to living tissues including skin, mucous membrane and other organs as well. Wounds get complicated with respect to time based on specific processes like diabetes mellitus, obesity and immunocompromised conditions. Proper growth and functionality of the epidermis gets sustained due to impaired diabetic wound healing which shows a sign of dysregulated wound healing process. In comparison with synthetic medications, phytochemicals like flavonoids, tannins, alkaloids and glycosides have gained enormous importance relying on their distinct potential to heal diabetic wounds. Flavonoids are one of the most promising and important groups of natural compounds which can be used to treat acute as well as chronic wounds. Flavonoids show excellent properties due to the presence of hydroxyl groups in their chemical structure, which makes this class of compounds different from others. Based on the novel principles of nanotechnology via utilizing suitable drug delivery systems, the delivery of bioactive constituents from plant source amplifies the wound-healing mechanism, minimizes complexities and enhances bioavailability. Hence, the encapsulation and applicability of flavonoids with an emphasis on mechanistic route and wound-healing therapeutics have been highlighted in the subsequent study with focus on multiple drug delivery systems.
Collapse
Affiliation(s)
- Ankit Chowdhury
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
12
|
Liu C, Tian C, Guo J, Zhang X, Wu L, Zhu L, Du B. Research Progress of Metal-Organic Frameworks as Drug Delivery Systems. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43156-43170. [PMID: 39132713 DOI: 10.1021/acsami.4c09536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Metal-organic frameworks (MOFs) are composite crystalline materials created through the coordination of metal ions and organic ligands. MOFs have attracted extensive attention in the biomedical field based on the advantages of internal porosity, customizable porosity, and facile surface modification. This review examines the utilization of MOFs in drug delivery systems, focusing on the research progress from the aspects of coloading drug systems, intelligent responsive carriers, biological macromolecule stabilizers, self-driving micro/nanomotors, and multifunctional living carriers. In addition, the current challenges the research faces are also discussed. The review aims to provide a reference for the further application of MOFs as advanced drug delivery systems.
Collapse
Affiliation(s)
- Chenxin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, People's Republic of China
| | - Chaoying Tian
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, People's Republic of China
| | - Jialing Guo
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, People's Republic of China
| | - Xiaodi Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, People's Republic of China
| | - Ligang Wu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, People's Republic of China
| | - Ling Zhu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, People's Republic of China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, 100 Science Road, Zhengzhou 450001, People's Republic of China
| | - Bin Du
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, People's Republic of China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, 100 Science Road, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
13
|
Serras A, Faustino C, Pinheiro L. Functionalized Polymeric Micelles for Targeted Cancer Therapy: Steps from Conceptualization to Clinical Trials. Pharmaceutics 2024; 16:1047. [PMID: 39204392 PMCID: PMC11359152 DOI: 10.3390/pharmaceutics16081047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer is still ranked among the top three causes of death in the 30- to 69-year-old age group in most countries and carries considerable societal and macroeconomic costs that differ depending on the cancer type, geography, and patient gender. Despite advances in several pharmacological approaches, the lack of stability and specificity, dose-related toxicity, and limited bioavailability of chemotherapy (standard therapy) pose major obstacles in cancer treatment, with multidrug resistance being a driving factor in chemotherapy failure. The past three decades have been the stage for intense research activity on the topic of nanomedicine, which has resulted in many nanotherapeutics with reduced toxicity, increased bioavailability, and improved pharmacokinetics and therapeutic efficacy employing smart drug delivery systems (SDDSs). Polymeric micelles (PMs) have become an auspicious DDS for medicinal compounds, being used to encapsulate hydrophobic drugs that also exhibit substantial toxicity. Through preclinical animal testing, PMs improved pharmacokinetic profiles and increased efficacy, resulting in a higher safety profile for therapeutic drugs. This review focuses on PMs that are already in clinical trials, traveling the pathways from preclinical to clinical studies until introduction to the market.
Collapse
Affiliation(s)
| | - Célia Faustino
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa (ULisboa), Avenida Professor Gama PintoGama Pinto, 1649-003 Lisboa, Portugal; (A.S.); (L.P.)
| | | |
Collapse
|
14
|
Alsamarat R, Sunoqrot S. A Glucose Oxidase-Curcumin Composite Nanoreactor for Multimodal Synergistic Cancer Therapy. ACS APPLIED BIO MATERIALS 2024; 7:4611-4621. [PMID: 38920441 DOI: 10.1021/acsabm.4c00479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Glucose oxidase (GOx) selectively oxidizes β-d-glucose into gluconic acid and hydrogen peroxide; thus, it has emerged as a promising anticancer agent by tumor starvation and oxidative therapy. Here, we developed a nanoscale platform or "nanoreactor" that incorporates GOx and the bioactive natural product curcumin (CUR) to achieve a multimodal anticancer nanocomposite. The composite nanoreactor was formed by loading CUR in biodegradable polymeric nanoparticles (NPs) of poly(ethylene glycol)-b-poly(ε-caprolactone) (PEG-PCL). Prime-coating of the NPs with an iron(III)-tannic acid complex enabled facile immobilization of GOx on the NP surface. The NPs were monodisperse with a hydrodynamic diameter of 122 nm and a partially negative surface charge. The NPs were also associated with an excellent CUR loading efficiency and sustained release up to 96 h, which was accelerated by surface-immobilized GOx and followed supercase II transport. Viability assays were conducted on two model cancer cell lines, MCF-7 and MDA-MB-231 cells, as well as human dermal fibroblasts as a representative normal cell line. The assays revealed significantly improved potency of CUR in the composite nanoreactor, with up to 6000- and 1280-fold increase in MCF-7 and MDA-MB-231 cells, respectively, and lower toxicity toward normal cells. The NPs were also able to promote intracellular reactive oxygen species (ROS) generation and dissipation of the mitochondrial membrane potential, providing important clues on the mechanism of action of the nanoreactor. Further investigation of caspase-3 activity revealed that the nanoreactor had no effect or inhibited caspase-3 levels, signifying a caspase-independent mechanism of inducing apoptosis. Our findings present a promising nanocarrier platform that combines therapeutic agents with distinct mechanisms of action acting in synergy for more effective cancer therapy.
Collapse
Affiliation(s)
- Rama Alsamarat
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Suhair Sunoqrot
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| |
Collapse
|
15
|
Liu Y, Xia X, Zheng M, Shi B. Bio-Nano Toolbox for Precision Alzheimer's Disease Gene Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314354. [PMID: 38778446 DOI: 10.1002/adma.202314354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Alzheimer's disease (AD) is the most burdensome aging-associated neurodegenerative disorder, and its treatment encounters numerous failures during drug development. Although there are newly approved in-market β-amyloid targeting antibody solutions, pathological heterogeneity among patient populations still challenges the treatment outcome. Emerging advances in gene therapies offer opportunities for more precise personalized medicine; while, major obstacles including the pathological heterogeneity among patient populations, the puzzled mechanism for druggable target development, and the precision delivery of functional therapeutic elements across the blood-brain barrier remain and limit the use of gene therapy for central neuronal diseases. Aiming for "precision delivery" challenges, nanomedicine provides versatile platforms that may overcome the targeted delivery challenges for AD gene therapy. In this perspective, to picture a toolbox for AD gene therapy strategy development, the most recent advances from benchtop to clinics are highlighted, possibly available gene therapy targets, tools, and delivery platforms are outlined, their challenges as well as rational design elements are addressed, and perspectives in this promising research field are discussed.
Collapse
Affiliation(s)
- Yang Liu
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan, 475000, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Xue Xia
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan, 475000, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
- Macquarie Medical School, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Meng Zheng
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan, 475000, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
- Macquarie Medical School, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| |
Collapse
|
16
|
Nag S, Mohanto S, Ahmed MG, Subramaniyan V. “Smart” stimuli-responsive biomaterials revolutionizing the theranostic landscape of inflammatory arthritis. MATERIALS TODAY CHEMISTRY 2024; 39:102178. [DOI: 10.1016/j.mtchem.2024.102178] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
|
17
|
Behzadipour Y, Hemmati S. Covalent conjugation and non-covalent complexation strategies for intracellular delivery of proteins using cell-penetrating peptides. Biomed Pharmacother 2024; 176:116910. [PMID: 38852512 DOI: 10.1016/j.biopha.2024.116910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
Therapeutic proteins provided new opportunities for patients and high sales volumes. However, they are formulated for extracellular targets. The lipophilic barrier of the plasma membrane renders the vast array of intracellular targets out of reach. Peptide-based delivery systems, namely cell-penetrating peptides (CPPs), have few safety concerns, and low immunogenicity, with control over administered doses. This study investigates CPP-based protein delivery systems by classifying them into CPP-protein "covalent conjugation" and CPP: protein "non-covalent complexation" categories. Covalent conjugates ensure the proximity of the CPP to the cargo, which can improve cellular uptake and endosomal escape. We will discuss various aspects of covalent conjugates through non-cleavable (stable) or cleavable bonds. Non-cleavable CPP-protein conjugates are produced by recombinant DNA technology to express the complete fusion protein in a host cell or by chemical ligation of CPP and protein, which ensures stability during the delivery process. CPP-protein cleavable bonds are classified into pH-sensitive and redox-sensitive bonds, enzyme-cleavable bonds, and physical stimuli cleavable linkers (light radiation, ultrasonic waves, and thermo-responsive). We have highlighted the key characteristics of non-covalent complexes through electrostatic and hydrophobic interactions to preserve the conformational integrity of the CPP and cargo. CPP-mediated protein delivery by non-covalent complexation, such as zippers, CPP adaptor methods, and avidin-biotin technology, are featured. Conclusively, non-covalent complexation methods are appropriate when a high number of CPP or protein samples are to be screened. In contrast, when the high biological activity of the protein is critical in the intracellular compartment, conjugation protocols are preferred.
Collapse
Affiliation(s)
- Yasaman Behzadipour
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| | - Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran; Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran.
| |
Collapse
|
18
|
Swidan MM, Marzook F, Sakr TM. pH-Sensitive doxorubicin delivery using zinc oxide nanoparticles as a rectified theranostic platform: in vitro anti-proliferative, apoptotic, cell cycle arrest and in vivo radio-distribution studies. J Mater Chem B 2024; 12:6257-6274. [PMID: 38845545 DOI: 10.1039/d4tb00615a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Despite enormous advancements in its management, cancer is the world's primary cause of mortality. Therefore, tremendous strides were made to produce intelligent theranostics with mitigated side effects and improved specificity and efficiency. Thus, we developed a pH-sensitive theranostic platform composed of dextran immobilized zinc oxide nanoparticles, loaded with doxorubicin and radiolabeled with the technetium-99m radionuclide (99mTc-labelled DOX-loaded ZnO@dextran). The platform measured 11.5 nm in diameter with -12 mV zeta potential, 88% DOX loading efficiency and 98.5% radiolabeling efficiency. It showed DOX release in a pH-responsive manner, releasing 93.1% cumulatively at pH 5 but just 7% at pH 7.4. It showed improved intracellular uptake, which resulted in a high growth suppressive effect against MCF-7 cancer cells as compared to the free DOX. It boasted a 4 times lower IC50 than DOX, indicating its significant anti-proliferative potential (0.14 and 0.55 μg ml-1, respectively). The in vitro biological evaluation revealed that its molecular mode of anti-proliferative action included downregulating Cdk-2, which provoked G1/S cell cycle arrest, and upregulating both the intracellular ROS level and caspase-3, which induced apoptosis and necrosis. The in vivo experiments in Ehrlich-ascites carcinoma bearing mice demonstrated that DOX-loaded ZnO@dextran showed a considerable 4-fold increase in anti-tumor efficacy compared to DOX. Moreover, by utilizing the diagnostic radionuclide (99mTc), the radiolabeled platform (99mTc-labelled DOX-loaded ZnO@dextran) was in vivo monitored in tumor-bearing mice, revealing high tumor accumulation (14% ID g-1 at 1 h p.i.) and reduced uptake in non-target organs with a 17.5 T/NT ratio at 1 h p.i. Hence, 99mTc-labelled DOX-loaded ZnO@dextran could be recommended as a rectified tumor-targeted theranostic platform.
Collapse
Affiliation(s)
- Mohamed M Swidan
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, PO13759, Cairo, Egypt.
| | - Fawzy Marzook
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, PO13759, Cairo, Egypt.
| | - Tamer M Sakr
- Radioactive Isotopes and Generator Department, Hot Labs Center, Egyptian Atomic Energy Authority, PO13759, Cairo, Egypt
| |
Collapse
|
19
|
Kumar D, Sachdeva K, Tanwar R, Devi S. Review on novel targeted enzyme drug delivery systems: enzymosomes. SOFT MATTER 2024; 20:4524-4543. [PMID: 38738579 DOI: 10.1039/d4sm00301b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The goal of this review is to present enzymosomes as an innovative means for site-specific drug delivery. Enzymosomes make use of an enzyme's special characteristics, such as its capacity to accelerate the reaction rate and bind to a particular substrate at a regulated rate. Enzymosomes are created when an enzyme forms a covalent linkage with a liposome or lipid vesicle surface. To construct enzymosomes with specialized activities, enzymes are linked using acylation, direct conjugation, physical adsorption, and encapsulation techniques. By reducing the negative side effects of earlier treatment techniques and exhibiting efficient medication release, these cutting-edge drug delivery systems improve long-term sickness treatments. They could be a good substitute for antiplatelet medication, gout treatment, and other traditional medicines. Recently developed supramolecular vesicular delivery systems called enzymosomes have the potential to improve drug targeting, physicochemical characteristics, and ultimately bioavailability in the pharmaceutical industry. Enzymosomes have advantages over narrow-therapeutic index pharmaceuticals as focusing on their site of action enhances both their pharmacodynamic and pharmacokinetic profiles. Additionally, it reduces changes in normal enzymatic activity, which enhances the half-life of an enzyme and accomplishes enzyme activity on specific locations.
Collapse
Affiliation(s)
- Dinesh Kumar
- School of Pharmaceutical Sciences, Om Sterling Global University, Hisar, 125001, Haryana, India.
| | - Komal Sachdeva
- School of Pharmaceutical Sciences, Om Sterling Global University, Hisar, 125001, Haryana, India.
| | - Rajni Tanwar
- Department of Pharmaceutical Sciences, Starex University, Gurugram, India
| | - Sunita Devi
- School of Pharmaceutical Sciences, Om Sterling Global University, Hisar, 125001, Haryana, India.
| |
Collapse
|
20
|
Bento C, Katz M, Santos MMM, Afonso CAM. Striving for Uniformity: A Review on Advances and Challenges To Achieve Uniform Polyethylene Glycol. Org Process Res Dev 2024; 28:860-890. [PMID: 38660381 PMCID: PMC11036406 DOI: 10.1021/acs.oprd.3c00428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 04/26/2024]
Abstract
Poly(ethylene glycol) (PEG) is the polymer of choice in drug delivery systems due to its biocompatibility and hydrophilicity. For over 20 years, this polymer has been widely used in the drug delivery of small drugs, proteins, oligonucleotides, and liposomes, improving the stability and pharmacokinetics of many drugs. However, despite the extensive clinical experience with PEG, concerns have emerged related to its use. These include hypersensitivity, purity, and nonbiodegradability. Moreover, conventional PEG is a mixture of polymers that can complicate drug synthesis and purification leading to unwanted immunogenic reactions. Studies have shown that uniform PEGylated drugs may be more effective than conventional PEGylated drugs as they can overcome issues related to molecular heterogeneity and immunogenicity. This has led to significant research efforts to develop synthetic procedures to produce uniform PEGs (monodisperse PEGs). As a result, iterative step-by-step controlled synthesis methods have been created over time and have shown promising results. Nonetheless, these procedures have presented numerous challenges due to their iterative nature and the requirement for multiple purification steps, resulting in increased costs and time consumption. Despite these challenges, the synthetic procedures went through several improvements. This review summarizes and discusses recent advances in the synthesis of uniform PEGs and its derivatives with a focus on overall yields, scalability, and purity of the polymers. Additionally, the available characterization methods for assessing polymer monodispersity are discussed as well as uniform PEG applications, side effects, and possible alternative polymers that can overcome the drawbacks.
Collapse
Affiliation(s)
- Cláudia Bento
- Hovione
Farmaciência S.A., Estrada do Paço do Lumiar, Campus do Lumiar, Edifício
R, 1649-038 Lisboa, Portugal
- Research
Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Marianna Katz
- Hovione
Farmaciência S.A., Estrada do Paço do Lumiar, Campus do Lumiar, Edifício
R, 1649-038 Lisboa, Portugal
| | - Maria M. M. Santos
- Research
Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Carlos A. M. Afonso
- Research
Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
21
|
Xia Y, Sun M, Huang H, Jin WL. Drug repurposing for cancer therapy. Signal Transduct Target Ther 2024; 9:92. [PMID: 38637540 PMCID: PMC11026526 DOI: 10.1038/s41392-024-01808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/20/2024] Open
Abstract
Cancer, a complex and multifactorial disease, presents a significant challenge to global health. Despite significant advances in surgical, radiotherapeutic and immunological approaches, which have improved cancer treatment outcomes, drug therapy continues to serve as a key therapeutic strategy. However, the clinical efficacy of drug therapy is often constrained by drug resistance and severe toxic side effects, and thus there remains a critical need to develop novel cancer therapeutics. One promising strategy that has received widespread attention in recent years is drug repurposing: the identification of new applications for existing, clinically approved drugs. Drug repurposing possesses several inherent advantages in the context of cancer treatment since repurposed drugs are typically cost-effective, proven to be safe, and can significantly expedite the drug development process due to their already established safety profiles. In light of this, the present review offers a comprehensive overview of the various methods employed in drug repurposing, specifically focusing on the repurposing of drugs to treat cancer. We describe the antitumor properties of candidate drugs, and discuss in detail how they target both the hallmarks of cancer in tumor cells and the surrounding tumor microenvironment. In addition, we examine the innovative strategy of integrating drug repurposing with nanotechnology to enhance topical drug delivery. We also emphasize the critical role that repurposed drugs can play when used as part of a combination therapy regimen. To conclude, we outline the challenges associated with repurposing drugs and consider the future prospects of these repurposed drugs transitioning into clinical application.
Collapse
Affiliation(s)
- Ying Xia
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, PR China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China
- Division of Gastroenterology and Hepatology, Department of Medicine and, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Ming Sun
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China
| | - Hai Huang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China.
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China.
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
22
|
Badparvar F, Marjani AP, Salehi R, Ramezani F. Dual pH/redox-responsive hyperbranched polymeric nanocarriers with TME-trigger size shrinkage and charge reversible ability for amplified chemotherapy of breast cancer. Sci Rep 2024; 14:8567. [PMID: 38609391 PMCID: PMC11349913 DOI: 10.1038/s41598-024-57296-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/16/2024] [Indexed: 04/14/2024] Open
Abstract
A novel pH/redox-responsive hyperbranched MeO-PEG-b-(NIPAAm-co-PBAE) nanoparticles (NPs) were designed with size shrinkage and charge-reversible potential for targeted delivery of docetaxel (DTX) to MDA-MB-231 cell lines. In the tumor microenvironment (TME), amine protonation induces charge reversal and disulfide bond cleavage under high TME GSH concentration causing size shrinkage, improved deep tumor penetration, and active targeting of the therapeutic agents. These nano drug delivery systems (NDDSs) significantly promoted cancer cell uptake (~ 100% at 0.5 h), facilitating site-specific delivery and deep tumor penetration. The MTT assay revealed significantly higher cytotoxicity (P value < 0.0001) for DTX-loaded NPs compared to free DTX. Cell cycle analysis revealed G2/M (58.3 ± 2.1%) and S (21.5 ± 1.3%) arrest for DTX-loaded NPs, while free DTX caused G2/M (67.9 ± 1.1%) and sub-G1 (10.3 ± 0.8%) arrest. DTX-loaded NPs induced higher apoptosis (P value < 0.001) in MDA-MB-231 cells (71.5 ± 2.8%) compared to free DTX (42.3 ± 3.1%). Western blotting and RT-PCR assays confirmed significant up-regulation of protein levels and apoptotic genes by DTX-loaded NPs compared to free DTX. In conclusion, TME-responsive charge reversal and size-shrinkable smart NDDSs designed based on low pH, and high glutathione (GSH), offer more effective site-specific delivery of therapeutic agents to tumors.
Collapse
Affiliation(s)
- Fahimeh Badparvar
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | | | - Roya Salehi
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Fatemeh Ramezani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
23
|
Jacob S, Kather FS, Morsy MA, Boddu SHS, Attimarad M, Shah J, Shinu P, Nair AB. Advances in Nanocarrier Systems for Overcoming Formulation Challenges of Curcumin: Current Insights. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:672. [PMID: 38668166 PMCID: PMC11054677 DOI: 10.3390/nano14080672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024]
Abstract
Curcumin, an organic phenolic molecule that is extracted from the rhizomes of Curcuma longa Linn, has undergone extensive evaluation for its diverse biological activities in both animals and humans. Despite its favorable characteristics, curcumin encounters various formulation challenges and stability issues that can be effectively addressed through the application of nanotechnology. Nano-based techniques specifically focused on enhancing solubility, bioavailability, and therapeutic efficacy while mitigating toxicity, have been explored for curcumin. This review systematically presents information on the improvement of curcumin's beneficial properties when incorporated, either individually or in conjunction with other drugs, into diverse nanosystems such as liposomes, nanoemulsions, polymeric micelles, dendrimers, polymeric nanoparticles, solid-lipid nanoparticles, and nanostructured lipid carriers. Additionally, the review examines ongoing clinical trials and recently granted patents, offering a thorough overview of the dynamic landscape in curcumin delivery. Researchers are currently exploring nanocarriers with crucial features such as surface modification, substantial loading capacity, biodegradability, compatibility, and autonomous targeting specificity and selectivity. Nevertheless, the utilization of nanocarriers for curcumin delivery is still in its initial phases, with regulatory approval pending and persistent safety concerns surrounding their use.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Fathima Sheik Kather
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (M.A.); (A.B.N.)
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (M.A.); (A.B.N.)
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India;
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.M.); (M.A.); (A.B.N.)
| |
Collapse
|
24
|
Kannaujiya VK, Qiao Y, Sheikh RH, Xue J, Dargaville TR, Liang K, Wich PR. pH-Responsive Micellar Nanoparticles for the Delivery of a Self-Amplifying ROS-Activatable Prodrug. Biomacromolecules 2024; 25:1775-1789. [PMID: 38377594 DOI: 10.1021/acs.biomac.3c01240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The objective of this study is to enhance the therapeutic efficacy of the anticancer drug, camptothecin (CPT) via a nanoparticle (NP) formulation using a novel amphiphilic biopolymer. We have designed a dimeric prodrug of CPT with the ability to self-amplify and respond to reactive oxygen species (ROS). For this, we incorporated the intracellular ROS generator cinnamaldehyde into a ROS-cleavable thioacetal (TA) linker to obtain the dimeric prodrug of CPT (DCPT(TA)). For its efficient NP delivery, a pH-responsive block copolymer of acetalated dextran and poly(2-ethyl-2-oxazoline) (AcDex-b-PEOz) was synthesized. The amphiphilic feature of the block copolymer enables its self-assembly into micellar NPs and results in high prodrug loading capacity and a rapid release of the prodrug under acidic conditions. Upon cellular uptake by HeLa cells, DCPT(TA)-loaded micellar NPs induce intracellular ROS generation, resulting in accelerated prodrug activation and enhanced cytotoxicity. These results indicate that this system holds significant potential as an effective prodrug delivery strategy in anticancer treatment.
Collapse
Affiliation(s)
- Vinod K Kannaujiya
- School of Chemical Engineering, University of New South Wales, Sydney 2052, New South Wales, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Sydney 2052, New South Wales, Australia
- Centre for Advanced Macromolecular Design, University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Yijie Qiao
- School of Chemical Engineering, University of New South Wales, Sydney 2052, New South Wales, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Sydney 2052, New South Wales, Australia
- Centre for Advanced Macromolecular Design, University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Rakib H Sheikh
- School of Chemical Engineering, University of New South Wales, Sydney 2052, New South Wales, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Sydney 2052, New South Wales, Australia
- Centre for Advanced Macromolecular Design, University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Jueyi Xue
- School of Chemical Engineering, University of New South Wales, Sydney 2052, New South Wales, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Tim R Dargaville
- ARC Centre for Cell & Tissue Engineering Technologies, QUT Centre for Materials Science, School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), Brisbane 4000, Australia
| | - Kang Liang
- School of Chemical Engineering, University of New South Wales, Sydney 2052, New South Wales, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Sydney 2052, New South Wales, Australia
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Peter R Wich
- School of Chemical Engineering, University of New South Wales, Sydney 2052, New South Wales, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Sydney 2052, New South Wales, Australia
- Centre for Advanced Macromolecular Design, University of New South Wales, Sydney 2052, New South Wales, Australia
| |
Collapse
|
25
|
Ouyang N, Yang C, Li X, Zheng Z, Xu Y, Wang Y, Xiong W, Wu H. Development of lactoferrin-coated multifunctional copolymer micelles to cross the blood-brain barrier. Drug Deliv Transl Res 2024; 14:773-787. [PMID: 37721695 DOI: 10.1007/s13346-023-01432-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2023] [Indexed: 09/19/2023]
Abstract
The blood-brain barrier (BBB) prevents pathogens and toxins in the bloodstream from reaching the brain, but also inhibits the delivery of agents intended to treat central nervous system disorders, such as Alzheimer's disease (AD). In this study, we prepared and evaluated a novel nano-delivery vehicle system composed of lactoferrin-conjugated (Lf-PIC@Se) micelles. We used a COOH-PEG-PAsp-PV@Se synthesis-based method to prepare the micelles, which involved self-assembly followed by EDC-NHS coupling. Using glutaminyl cyclase inhibitor 8 as a model encapsulated chemical, Lf-PIC@Se micelles achieved a good loading capacity. In vitro analysis demonstrated that Lf-PIC@Se/8 micelles were stable in both neutral and acidic pH solutions in the presence or absence of H2O2, and confirmed their biosafety and compatibility in PC12 and bEND.3 cells. Notably, the cell uptake of Lf-PIC@Se/C6 micelles was much higher than that of PIC@Se micelles, and occurred through LfR-mediated endocytosis. The presence of Se meant that Lf-PIC@Se micelles acted as ROS scavengers in PC12 cells under H2O2-induced oxidative stress, which inhibited oxidative damage and increased mitochondrial membrane potential. Hemolysis assays further demonstrated that Lf-PIC@Se represent a biocompatible carrier. Finally, in vivo experiments in mice suggested that Lf-PIC@Se micelles successfully crossed the BBB, confirming their potential as vehicles for drug delivery when treating AD and other central nervous system disorders.
Collapse
Affiliation(s)
- Na Ouyang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, 518055, Shenzhen, China
| | - Chunhua Yang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, 518055, Shenzhen, China
| | - Xia Li
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, 518055, Shenzhen, China
| | - Zhenting Zheng
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, 518055, Shenzhen, China
| | - Yuanyuan Xu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, 518055, Shenzhen, China
| | - Yinan Wang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, 518055, Shenzhen, China
| | - Wei Xiong
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, 518055, Shenzhen, China.
| | - Haiqiang Wu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, 518055, Shenzhen, China.
| |
Collapse
|
26
|
Ara N, Hafeez A. Nanocarrier-Mediated Drug Delivery via Inhalational Route for Lung Cancer Therapy: A Systematic and Updated Review. AAPS PharmSciTech 2024; 25:47. [PMID: 38424367 DOI: 10.1208/s12249-024-02758-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Lung cancer is one of the most severe lethal malignancies, with approximately 1.6 million deaths every year. Lung cancer can be broadly categorised into small and non-small-cell lung cancer. The traditional chemotherapy is nonspecific, destroys healthy cells and produces systemic toxicity; targeted inhalation drug delivery in conjunction with nanoformulations has piqued interest as an approach for improving chemotherapeutic drug activity in the treatment of lung cancer. Our aim is to discuss the impact of polymer and lipid-based nanocarriers (polymeric nanoparticles, liposomes, niosomes, nanostructured lipid carriers, etc.) to treat lung cancer via the inhalational route of drug administration. This review also highlights the clinical studies, patent reports and latest investigations related to lung cancer treatment through the pulmonary route. In accordance with the PRISMA guideline, a systematic literature search was carried out for published works between 2005 and 2023. The keywords used were lung cancer, pulmonary delivery, inhalational drug delivery, liposomes in lung cancer, nanotechnology in lung cancer, etc. Several articles were searched, screened, reviewed and included. The analysis demonstrated the potential of polymer and lipid-based nanocarriers to improve the entrapment of drugs, sustained release, enhanced permeability, targeted drug delivery and retention impact in lung tissues. Patents and clinical observations further strengthen the translational potential of these carrier systems for human use in lung cancer. This systematic review demonstrated the potential of pulmonary (inhalational) drug delivery approaches based on nanocarriers for lung cancer therapy.
Collapse
Affiliation(s)
- Nargis Ara
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | - Abdul Hafeez
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India.
| |
Collapse
|
27
|
Saddam Hussain M, Khetan R, Clulow AJ, Ganesan R, MacMillan A, Robinson N, Ahmed-Cox A, Krasowska M, Albrecht H, Blencowe A. Teaching an Old Dog New Tricks: A Global Approach to Enhancing the Cytotoxicity of Drug-Loaded, Non-responsive Micelles Using Oligoelectrolytes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9736-9748. [PMID: 38349780 DOI: 10.1021/acsami.3c16551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Polymeric micelles have been extensively studied as vectors for the delivery of hydrophobic drugs for the treatment of cancers and other diseases. Despite intensive research, few formulations provide significant benefits, and even fewer have been clinically approved. While many traditional non-responsive micelles have excellent safety profiles, they lack the ability to respond to the intracellular environment and release their cargo in a spatiotemporally defined manner to effectively deliver large doses of cytotoxic drugs into the cytosol of cells that overwhelm efflux pumps. As a novel and adaptable strategy, we hypothesized that well-established non-responsive polymeric micelles could be augmented with a pH-trigger via the co-encapsulation of cytocompatible oligoelectrolytes, which would allow rapid cargo release in the endosome, leading to increased cytotoxicity. Herein, we demonstrate how this strategy can be applied to render non-responsive micelles pH-responsive, resulting in abrupt cargo release at specific and tunable pH values compatible with endosomal delivery, which significantly increased their cytotoxicity up to 3-fold in an ovarian adenocarcinoma (SKOV-3) cell line compared to non-responsive micelles. In comparison, the oligoelectrolyte-loaded micelles were significantly less toxic to healthy 3T3 fibroblasts, indicating a selective cargo release in cancer cell lines. Oligoelectrolytes can be co-encapsulated in the micelles along with drugs at high encapsulation efficiency percentages, which are both ejected from the micelle core upon oligoelectrolyte ionization. Mechanistically, the increase in cytotoxicity appears to also result from the accelerated endosomal escape of the cargo caused by disruption of the endosomal membrane by the simultaneous release of the oligoelectrolytes from the micelles. Furthermore, we show how this approach is broadly applicable to non-responsive micelles regardless of their composition and various classes of hydrophobic chemotherapeutics. The preliminary studies presented here reveal the versatility and wide scope of oligoelectrolyte-mediated, pH-triggered drug release as a compelling and powerful strategy to enhance the cytotoxicity of non-responsive polymeric micelles.
Collapse
Affiliation(s)
- Md Saddam Hussain
- Applied Chemistry and Translational Biomaterials (ACTB) Group, Centre for Pharmaceutical Innovation (CPI), UniSA CHS, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Riya Khetan
- Centre for Pharmaceutical Innovation (CPI), UniSA CHS, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Andrew J Clulow
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation (ANSTO), 800 Blackburn Road, Clayton, Victoria 3168, Australia
- Drug Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Raja Ganesan
- Centre for Cancer Biology, UniSA CHS, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Alexander MacMillan
- Katharina Gaus Light Microscopy Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales 2033, Australia
| | - Nirmal Robinson
- Centre for Cancer Biology, UniSA CHS, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Aria Ahmed-Cox
- Katharina Gaus Light Microscopy Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales 2033, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales 2750, Australia
- Australian Centre for Nanomedicine, Faculty of Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Marta Krasowska
- Surface Interactions and Soft Matter (SISM) Group, Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Hugo Albrecht
- Centre for Pharmaceutical Innovation (CPI), UniSA CHS, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Anton Blencowe
- Applied Chemistry and Translational Biomaterials (ACTB) Group, Centre for Pharmaceutical Innovation (CPI), UniSA CHS, University of South Australia, Adelaide, South Australia 5000, Australia
| |
Collapse
|
28
|
Yeshchenko O, Kutsevol N, Virych P, Khort P, Virych P, Chumachenko V, Cekhun V. Anti-cancer activity of zinc-tetraphenylporphyrin photosensitizer/dextran- graft-polyacrylamide copolymer/Au(Ag) nanoparticle nanohybrids. RSC Adv 2024; 14:5045-5054. [PMID: 38332792 PMCID: PMC10848675 DOI: 10.1039/d3ra07825f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
A comparative study of in vitro anti-cancer photodynamic activities of three-component zinc-tetraphenylporphyrin photosensitizer/dextran-graft-polyacrylamide copolymer/Au(Ag) nanoparticle (ZnTPP/D-g-PAA/Au(Ag)NP) nanohybrids on LNCaP prostate cancer cells was carried out under 420 nm light irradiation with low power. A significant cytotoxic effect was revealed for both ZnTPP/D-g-PAA/AgNP and ZnTPP/D-g-PAA/AuNP nanohybrids, where ZnTPP/D-g-PAA/AgNP nanohybrids exhibited considerably higher anticancer activity (82%) compared to ZnTPP/D-g-PAA/AuNP nanohybrids (45%). The higher activity of silver-containing nanohybrids is rationalized based on two factors. The first factor is the resonance of 420 nm light with a absorption Soret peak of the ZnTPP photosensitizer and a localized surface plasmon mode in Ag nanoparticles. Correspondingly, the plasmon enhancement of reactive oxygen species photogeneration by ZnTPP molecules was considerably higher for the nanohybrid containing silver compared to the one containing gold. The second factor is the higher cytotoxicity of Ag nanoparticles compared to Au ones. The study results prove the high potential of D-g-PAA/Ag(Au)NP nanohybrids combined with 420 nm light irradiation with low power in the photodynamic treatment of prostate cancer.
Collapse
Affiliation(s)
- Oleg Yeshchenko
- Faculty of Physics, Taras Shevchenko National University of Kyiv 60 Volodymyrska Str. 01601 Kyiv Ukraine
| | - Nataliya Kutsevol
- Faculty of Chemistry, Taras Shevchenko National University of Kyiv 60 Volodymyrska Str. 01601 Kyiv Ukraine
| | - Pavlo Virych
- Faculty of Chemistry, Taras Shevchenko National University of Kyiv 60 Volodymyrska Str. 01601 Kyiv Ukraine
| | - Pavlo Khort
- Faculty of Physics, Taras Shevchenko National University of Kyiv 60 Volodymyrska Str. 01601 Kyiv Ukraine
| | - Petro Virych
- R.E. Kavetsky Institute for Experimental Pathology, Oncology and Radiobiology 45 Vasylkivska Str. 03022 Kyiv Ukraine
| | - Vasyl Chumachenko
- Faculty of Chemistry, Taras Shevchenko National University of Kyiv 60 Volodymyrska Str. 01601 Kyiv Ukraine
| | - Vasyl Cekhun
- R.E. Kavetsky Institute for Experimental Pathology, Oncology and Radiobiology 45 Vasylkivska Str. 03022 Kyiv Ukraine
| |
Collapse
|
29
|
Ouyang C, Zhang W, Nie J, Yu L, Liu J, Ren L, Chen G. Nanoparticles with Active Targeting Ability and Acid Responsiveness for an Enhanced Antitumor Effect of Docetaxel. Biomacromolecules 2024; 25:213-221. [PMID: 38116982 DOI: 10.1021/acs.biomac.3c00922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Docetaxel (DOC) is commonly used in cancer treatment, especially for breast cancer. However, there are severe side effects in clinical application. In order to deliver docetaxel more effectively, a novel, active targeting acid-responsive polymer called cRGD-PAE-PEG-DSPE was developed. The polymer structure incorporated poly(ethylene glycol) (PEG) as the hydrophilic segment, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE) as the hydrophobic segment, and poly(β-amino ester) (PAE) as the acid-responsive group, which was grafted onto the PEG. Furthermore, c(RGDyC) was grafted onto PAE to confer active targeting capability. Through self-assembly, docetaxel was encapsulated in RAED@DOC. Through in vitro experiments, it was confirmed that RAED@DOC had good serum stability and acid responsiveness, as well as enhanced uptake by MDA-MB-231 cells. Additionally, the antitumor efficiency in vivo and histopathological analysis showed that RAED@DOC exhibited higher antitumor activity and lower systemic toxicity in comparison to free docetaxel. These results suggested that RAED@DOC had considerable potential clinical use.
Collapse
Affiliation(s)
| | - Wei Zhang
- Nanjing Tech University, Nanjing 211816, China
| | - Junfang Nie
- Nanjing Tech University, Nanjing 211816, China
| | - Luting Yu
- Nanjing Tech University, Nanjing 211816, China
| | - Jia Liu
- Nanjing Tech University, Nanjing 211816, China
| | - Lili Ren
- Nanjing Tech University, Nanjing 211816, China
| | | |
Collapse
|
30
|
Chen X, Xu Z, Li T, Thakur A, Wen Y, Zhang K, Liu Y, Liang Q, Liu W, Qin JJ, Yan Y. Nanomaterial-encapsulated STING agonists for immune modulation in cancer therapy. Biomark Res 2024; 12:2. [PMID: 38185685 PMCID: PMC10773049 DOI: 10.1186/s40364-023-00551-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024] Open
Abstract
The cGAS-STING signaling pathway has emerged as a critical mediator of innate immune responses, playing a crucial role in improving antitumor immunity through immune effector responses. Targeting the cGAS-STING pathway holds promise for overcoming immunosuppressive tumor microenvironments (TME) and promoting effective tumor elimination. However, systemic administration of current STING agonists faces challenges related to low bioavailability and potential adverse effects, thus limiting their clinical applicability. Recently, nanotechnology-based strategies have been developed to modulate TMEs for robust immunotherapeutic responses. The encapsulation and delivery of STING agonists within nanoparticles (STING-NPs) present an attractive avenue for antitumor immunotherapy. This review explores a range of nanoparticles designed to encapsulate STING agonists, highlighting their benefits, including favorable biocompatibility, improved tumor penetration, and efficient intracellular delivery of STING agonists. The review also summarizes the immunomodulatory impacts of STING-NPs on the TME, including enhanced secretion of pro-inflammatory cytokines and chemokines, dendritic cell activation, cytotoxic T cell priming, macrophage re-education, and vasculature normalization. Furthermore, the review offers insights into co-delivered nanoplatforms involving STING agonists alongside antitumor agents such as chemotherapeutic compounds, immune checkpoint inhibitors, antigen peptides, and other immune adjuvants. These platforms demonstrate remarkable versatility in inducing immunogenic responses within the TME, ultimately amplifying the potential for antitumor immunotherapy.
Collapse
Affiliation(s)
- Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Tongfei Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, 442000, Shiyan, Hubei, China
| | - Abhimanyu Thakur
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, 60637, Chicago, IL, USA
| | - Yu Wen
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Furong Laboratory, Central South University, 410008, Changsha, Hunan, China
| | - Kui Zhang
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, 60637, Chicago, IL, USA
| | - Yuanhong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Wangrui Liu
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200127, Shanghai, China.
| | - Jiang-Jiang Qin
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China.
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
| |
Collapse
|
31
|
Xue H, Ju Y, Ye X, Dai M, Tang C, Liu L. Construction of intelligent drug delivery system based on polysaccharide-derived polymer micelles: A review. Int J Biol Macromol 2024; 254:128048. [PMID: 37967605 DOI: 10.1016/j.ijbiomac.2023.128048] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 10/23/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
Micelles are nanostructures developed via the spontaneous assembly of amphiphilic polymers in aqueous systems, which possess the advantages of high drug stability or active-ingredient solubilization, targeted transport, controlled release, high bioactivity, and stability. Polysaccharides have excellent water solubility, biocompatibility, and degradability, and can be modified to achieve a hydrophobic core to encapsulate hydrophobic drugs, improve drug biocompatibility, and achieve regulated delivery of the loaded drug. Micelles drug delivery systems based on polysaccharides and their derivatives show great potential in the biomedical field. This review discusses the principles of self-assembly of amphiphilic polymers and the formation of micelles; the preparation of amphiphilic polysaccharides is described in detail, and an overview of common polysaccharides and their modifications is provided. We focus on the review of strategies for encapsulating drugs in polysaccharide-derived polymer micelles (PDPMs) and building intelligent drug delivery systems. This review provides new research directions that will help promote future research and development of PDPMs in the field of drug carriers.
Collapse
Affiliation(s)
- Huaqian Xue
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China; School of Pharmacy, Ningxia Medical University, Ningxia 750004, China
| | - Yikun Ju
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China; The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xiuzhi Ye
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Chengxuan Tang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| |
Collapse
|
32
|
Bhadran A, Polara H, Calubaquib EL, Wang H, Babanyinah GK, Shah T, Anderson PA, Saleh M, Biewer MC, Stefan MC. Reversible Cross-linked Thermoresponsive Polycaprolactone Micelles for Enhanced Stability and Controlled Release. Biomacromolecules 2023; 24:5823-5835. [PMID: 37963215 DOI: 10.1021/acs.biomac.3c00832] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Thermoresponsive amphiphilic poly(ε-caprolactone)s (PCL)s are excellent candidates for drug delivery due to their biodegradability, biocompatibility, and controlled release. However, the thermoresponsivity of modified PCL can often lead to premature drug release because their lower critical solution temperature (LCST) is close to physiological temperature conditions. To address this issue, we developed a novel approach that involves functionalizing redox-responsive lipoic acid to the hydrophobic block of PCL. Lipoic acid has disulfide bonds that undergo reversible cross-linking after encapsulating the drug. Herein, we synthesized an ether-linked propargyl-substituted PCL as the hydrophobic block of an amphiphilic copolymer along with unsubstituted PCL. The propargyl group was used to attach lipoic acid through a postpolymerization modification reaction. The hydrophilic block is composed of an ether-linked, thermoresponsive tri(ethylene glycol)-substituted PCL. Anticancer drug doxorubicin (DOX) was encapsulated within the core of the micelles and induced cross-linking in the presence of a reducing agent, dithiothreitol. The developed micelles are thermodynamically stable and demonstrated thermoresponsivity with an LCST value of 37.5 °C but shifted to 40.5 °C after cross-linking. The stability and release of both uncross-linked (LA-PCL) and cross-linked (CLA-PCL) micelles were studied at physiological temperatures. The results indicated that CLA-PCL was stable, and only 35% release was observed after 46 h at 37 °C while LA-PCL released more than 70% drug at the same condition. Furthermore, CLA-PCL was able to release a higher amount of DOX in the presence of glutathione and above the LCST condition (42 °C). Cytotoxicity experiments revealed that CLA-PCL micelles are more toxic toward MDA-MB-231 breast cancer cells at 42 °C than at 37 °C, which supported the thermoresponsive release of the drug. These results indicate that the use of reversible cross-linking is a great approach toward synthesizing stable thermoresponsive micelles with reduced premature drug leakage.
Collapse
Affiliation(s)
- Abhi Bhadran
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Himanshu Polara
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Erika L Calubaquib
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Hanghang Wang
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Godwin K Babanyinah
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Tejas Shah
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Paul Alexander Anderson
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Mohammad Saleh
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Michael C Biewer
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Mihaela C Stefan
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
33
|
Bauri S, Tripathi S, Choudhury AM, Mandal SS, Raj H, Maiti P. Nanomaterials as Theranostic Agents for Cancer Therapy. ACS APPLIED NANO MATERIALS 2023; 6:21462-21495. [DOI: 10.1021/acsanm.3c04235] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Sudepta Bauri
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Swikriti Tripathi
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Avishek Mallick Choudhury
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Subham Sekhar Mandal
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Hans Raj
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Pralay Maiti
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| |
Collapse
|
34
|
Batool S, Sohail S, Ud Din F, Alamri AH, Alqahtani AS, Alshahrani MA, Alshehri MA, Choi HG. A detailed insight of the tumor targeting using nanocarrier drug delivery system. Drug Deliv 2023; 30:2183815. [PMID: 36866455 DOI: 10.1080/10717544.2023.2183815] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Human struggle against the deadly disease conditions is continued since ages. The contribution of science and technology in fighting against these diseases cannot be ignored exclusively due to the invention of novel procedure and products, extending their size ranges from micro to nano. Recently nanotechnology has been gaining more consideration for its ability to diagnose and treat different cancers. Different nanoparticles have been used to evade the issues related with conservative anticancer delivery systems, including their nonspecificity, adverse effects and burst release. These nanocarriers including, solid lipid nanoparticles (SLNs), liposomes, nano lipid carriers (NLCs), nano micelles, nanocomposites, polymeric and magnetic nanocarriers, have brought revolutions in antitumor drug delivery. Nanocarriers improved the therapeutic efficacy of anticancer drugs with better accumulation at the specific site with sustained release, improved bioavailability and apoptosis of the cancer cells while bypassing the normal cells. In this review, the cancer targeting techniques and surface modification on nanoparticles are discussed briefly with possible challenges and opportunities. It can be concluded that understanding the role of nanomedicine in tumor treatment is significant, and therefore, the modern progressions in this arena is essential to be considered for a prosperous today and an affluent future of tumor patients.
Collapse
Affiliation(s)
- Sibgha Batool
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saba Sohail
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fakhar Ud Din
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ali H Alamri
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ahmad S Alqahtani
- Department of Pharmacy, Mental Health Hospital, Ministry of Health, Abha, Saudi Arabia
| | - Mohammad A Alshahrani
- Department of Medical Supply in Khamis Mushet General Hospital, Ministry of Health, Khamis Mushet, Saudi Arabia
| | - Mohammed A Alshehri
- Department of Pharmacy, Abha Maternity and Children Hospital, Ministry of Health, Abha, Saudi Arabia
| | - Han Gon Choi
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea
| |
Collapse
|
35
|
Duan H, Wang F, Xu W, Sheng G, Sun Z, Chu H. Recent advances in the nanoarchitectonics of metal-organic frameworks for light-activated tumor therapy. Dalton Trans 2023; 52:16085-16102. [PMID: 37814810 DOI: 10.1039/d3dt02725b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Metal-organic frameworks (MOFs) have received extensive attention in tumor therapy because of their advantages, including large specific surface area, regular pore size, adjustable shape, and facile functionalization. MOFs are porous materials formed by the coordination bonding of metal clusters and organic ligands. This review summarized the most recent advancements in tumor treatment based on nMOFs. First, we discuss the classification of MOFs, which primarily include the series of isoreticular MOF (IRMOF), zeolitic imidazolate framework (ZIF), coordination pillared-layer (CPL), Materials of Institute Lavoisier (MIL), porous coordination network (PCN), University of Oslo (UiO) and Biological metal-organic frameworks (BioMOFs). Then, we discuss the use of nMOFs in antitumor therapy, including drug delivery strategies, photodynamic therapy (PDT), photothermal therapy (PTT), and combination therapy. Finally, the obstacles and opportunities in nMOFs are discussed.
Collapse
Affiliation(s)
- Huijuan Duan
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China.
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Fang Wang
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China.
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Weizhe Xu
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China.
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Gang Sheng
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China.
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Zhaogang Sun
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China.
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Hongqian Chu
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China.
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| |
Collapse
|
36
|
Adekiya TA, Owoseni O. Emerging frontiers in nanomedicine targeted therapy for prostate cancer. Cancer Treat Res Commun 2023; 37:100778. [PMID: 37992539 DOI: 10.1016/j.ctarc.2023.100778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/23/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
Prostate cancer is a prevalent cancer in men, often treated with chemotherapy. However, it tumor cells are clinically grows slowly and is heterogeneous, leading to treatment resistance and recurrence. Nanomedicines, through targeted delivery using nanocarriers, can enhance drug accumulation at the tumor site, sustain drug release, and counteract drug resistance. In addition, combination therapy using nanomedicines can target multiple cancer pathways, improving effectiveness and addressing tumor heterogeneity. The application of nanomedicine in prostate cancer treatment would be an important strategy in controlling tumor dynamic process as well as improve survival. Thus, this review highlights therapeutic nanoparticles as a solution for prostate cancer chemotherapy, exploring targeting strategies and approaches to combat drug resistance.
Collapse
Affiliation(s)
- Tayo Alex Adekiya
- Department of Pharmaceutical Sciences, Howard University, Washington, DC 20059, United States.
| | - Oluwanifemi Owoseni
- Department of Pharmaceutical Sciences, Howard University, Washington, DC 20059, United States
| |
Collapse
|
37
|
Cheng L, Yu J, Hao T, Wang W, Wei M, Li G. Advances in Polymeric Micelles: Responsive and Targeting Approaches for Cancer Immunotherapy in the Tumor Microenvironment. Pharmaceutics 2023; 15:2622. [PMID: 38004600 PMCID: PMC10675796 DOI: 10.3390/pharmaceutics15112622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
In recent years, to treat a diverse array of cancer forms, considerable advancements have been achieved in the field of cancer immunotherapies. However, these therapies encounter multiple challenges in clinical practice, such as high immune-mediated toxicity, insufficient accumulation in cancer tissues, and undesired off-target reactions. To tackle these limitations and enhance bioavailability, polymer micelles present potential solutions by enabling precise drug delivery to the target site, thus amplifying the effectiveness of immunotherapy. This review article offers an extensive survey of recent progress in cancer immunotherapy strategies utilizing micelles. These strategies include responsive and remodeling approaches to the tumor microenvironment (TME), modulation of immunosuppressive cells within the TME, enhancement of immune checkpoint inhibitors, utilization of cancer vaccine platforms, modulation of antigen presentation, manipulation of engineered T cells, and targeting other components of the TME. Subsequently, we delve into the present state and constraints linked to the clinical utilization of polymeric micelles. Collectively, polymer micelles demonstrate excellent prospects in tumor immunotherapy by effectively addressing the challenges associated with conventional cancer immunotherapies.
Collapse
Affiliation(s)
- Lichun Cheng
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian 116027, China; (L.C.); (T.H.); (W.W.)
- School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Jiankun Yu
- School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Tangna Hao
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian 116027, China; (L.C.); (T.H.); (W.W.)
| | - Wenshuo Wang
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian 116027, China; (L.C.); (T.H.); (W.W.)
| | - Minjie Wei
- School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Guiru Li
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian 116027, China; (L.C.); (T.H.); (W.W.)
| |
Collapse
|
38
|
Jo J, Kim JY, Yun JJ, Lee YJ, Jeong YIL. β-Cyclodextrin Nanophotosensitizers for Redox-Sensitive Delivery of Chlorin e6. Molecules 2023; 28:7398. [PMID: 37959817 PMCID: PMC10648776 DOI: 10.3390/molecules28217398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
The aim of this study is to prepare redox-sensitive nanophotosensitizers for the targeted delivery of chlorin e6 (Ce6) against cervical cancer. For this purpose, Ce6 was conjugated with β-cyclodextrin (bCD) via a disulfide bond, creating nanophotosensitizers that were fabricated for the redox-sensitive delivery of Ce6 against cancer cells. bCD was treated with succinic anhydride to synthesize succinylated bCD (bCDsu). After that, cystamine was attached to the carboxylic end of bCDsu (bCDsu-ss), and the amine end group of bCDsu-ss was conjugated with Ce6 (bCDsu-ss-Ce6). The chemical composition of bCDsu-ss-Ce6 was confirmed with 1H and 13C NMR spectra. bCDsu-ss-Ce6 nanophotosensitizers were fabricated by a dialysis procedure. They formed small particles with an average particle size of 152.0 ± 23.2 nm. The Ce6 release rate from the bCDsu-ss-Ce6 nanophotosensitizers was accelerated by the addition of glutathione (GSH), indicating that the bCDsu-ss-Ce6 nanophotosensitizers have a redox-sensitive photosensitizer delivery capacity. The bCDsu-ss-Ce6 nanophotosensitizers have a low intrinsic cytotoxicity against CCD986Sk human skin fibroblast cells as well as Ce6 alone. However, the bCDsu-ss-Ce6 nanophotosensitizers showed an improved Ce6 uptake ratio, higher reactive oxygen species (ROS) production, and phototoxicity compared to those of Ce6 alone. GSH addition resulted in a higher Ce6 uptake ratio, ROS generation, and phototoxicity than Ce6 alone, indicating that the bCDsu-ss-Ce6 nanophotosensitizers have a redox-sensitive biological activity in vitro against HeLa human cervical cancer cells. In a tumor xenograft model using HeLa cells, the bCDsu-ss-Ce6 nanophotosensitizers efficiently accumulated in the tumor rather than in normal organs. In other words, the fluorescence intensity in tumor tissues was significantly higher than that of other organs, while Ce6 alone did not specifically target tumor tissue. These results indicated a higher anticancer activity of bCDsu-ss-Ce6 nanophotosensitizers, as demonstrated by their efficient inhibition of the growth of tumors in an in vivo animal tumor xenograft study.
Collapse
Affiliation(s)
- Jaewon Jo
- Gwangju Center, Korea Basic Science Institute, Gwangju 61186, Republic of Korea; (J.J.); (J.Y.K.)
- School of Chemical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ji Yoon Kim
- Gwangju Center, Korea Basic Science Institute, Gwangju 61186, Republic of Korea; (J.J.); (J.Y.K.)
| | - Je-Jung Yun
- Research Center for Environmentally Friendly Agricultural Life Sciences, Jeonnam Bioindustry Foundation, Jeonnam 58275, Republic of Korea;
| | - Young Ju Lee
- Gwangju Center, Korea Basic Science Institute, Gwangju 61186, Republic of Korea; (J.J.); (J.Y.K.)
| | - Young-IL Jeong
- Department of Dental Materials, College of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
- Tyros Biotechnology Inc., 75 Kneeland St. 14 Floors, Boston, MA 02111, USA
| |
Collapse
|
39
|
Sell M, Lopes AR, Escudeiro M, Esteves B, Monteiro AR, Trindade T, Cruz-Lopes L. Application of Nanoparticles in Cancer Treatment: A Concise Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2887. [PMID: 37947732 PMCID: PMC10650201 DOI: 10.3390/nano13212887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
Timely diagnosis and appropriate antitumoral treatments remain of utmost importance, since cancer remains a leading cause of death worldwide. Within this context, nanotechnology offers specific benefits in terms of cancer therapy by reducing its adverse effects and guiding drugs to selectively target cancer cells. In this comprehensive review, we have summarized the most relevant novel outcomes in the range of 2010-2023, covering the design and application of nanosystems for cancer therapy. We have established the general requirements for nanoparticles to be used in drug delivery and strategies for their uptake in tumor microenvironment and vasculature, including the reticuloendothelial system uptake and surface functionalization with protein corona. After a brief review of the classes of nanovectors, we have covered different classes of nanoparticles used in cancer therapies. First, the advances in the encapsulation of drugs (such as paclitaxel and fisetin) into nanoliposomes and nanoemulsions are described, as well as their relevance in current clinical trials. Then, polymeric nanoparticles are presented, namely the ones comprising poly lactic-co-glycolic acid, polyethylene glycol (and PEG dilemma) and dendrimers. The relevance of quantum dots in bioimaging is also covered, namely the systems with zinc sulfide and indium phosphide. Afterwards, we have reviewed gold nanoparticles (spheres and anisotropic) and their application in plasmon-induced photothermal therapy. The clinical relevance of iron oxide nanoparticles, such as magnetite and maghemite, has been analyzed in different fields, namely for magnetic resonance imaging, immunotherapy, hyperthermia, and drug delivery. Lastly, we have covered the recent advances in the systems using carbon nanomaterials, namely graphene oxide, carbon nanotubes, fullerenes, and carbon dots. Finally, we have compared the strategies of passive and active targeting of nanoparticles and their relevance in cancer theranostics. This review aims to be a (nano)mark on the ongoing journey towards realizing the remarkable potential of different nanoparticles in the realm of cancer therapeutics.
Collapse
Affiliation(s)
- Mariana Sell
- Polytechnic Institute of Viseu, Av. Cor. José Maria Vale de Andrade, 3504-510 Viseu, Portugal; (M.S.); (B.E.)
| | - Ana Rita Lopes
- Faculty of Dental Medicine, Portuguese Catholic University, 3504-505 Viseu, Portugal;
| | - Maria Escudeiro
- Abel Salazar Biomedical Institute, University of Porto, 4050-313 Porto, Portugal;
| | - Bruno Esteves
- Polytechnic Institute of Viseu, Av. Cor. José Maria Vale de Andrade, 3504-510 Viseu, Portugal; (M.S.); (B.E.)
- Centre for Natural Resources, Environment and Society-CERNAS-IPV Research Centre, Av. Cor. José Maria Vale de Andrade, 3504-510 Viseu, Portugal
| | - Ana R. Monteiro
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain;
| | - Tito Trindade
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Luísa Cruz-Lopes
- Polytechnic Institute of Viseu, Av. Cor. José Maria Vale de Andrade, 3504-510 Viseu, Portugal; (M.S.); (B.E.)
- Centre for Natural Resources, Environment and Society-CERNAS-IPV Research Centre, Av. Cor. José Maria Vale de Andrade, 3504-510 Viseu, Portugal
| |
Collapse
|
40
|
Shi Z, Hu Y, Li X. Polymer mechanochemistry in drug delivery: From controlled release to precise activation. J Control Release 2023; 365:S0168-3659(23)00703-4. [PMID: 39491171 DOI: 10.1016/j.jconrel.2023.10.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/08/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
Controlled drug delivery systems that can respond to mechanical force offer a unique solution for on-demand activation and release under physiological conditions. Compression, tension, and shear forces encompass the most commonly utilized mechanical stimuli for controlled drug activation and release. While compression and tension forces have been extensively explored for designing mechanoresponsive drug release systems through object deformation, ultrasound (US) holds advantages in achieving spatiotemporally controlled drug release from micro-/nanocarriers such as microbubbles, liposomes, and micelles. Unlike light-based methods, the US bypasses drawbacks such as phototoxicity and limited tissue penetration. Conventional US-triggered drug release primarily relies on heat-induced phase transitions or chemical transformations in the nano-/micro-scale range. In contrast, the cutting-edge approach of "Sonopharmacology" leverages polymer mechanochemistry, where US-induced shear force activates latent sites containing active pharmaceutical ingredients incorporated into polymer chains more readily than other bonds within the polymeric structure. This article provides a brief overview of controlled drug release systems based on compression and tension, followed by recent significant studies on drug activation using the synergistic effects of US and polymer mechanochemistry. The remaining challenges and potential future directions in this subfield are also discussed. PROGRESS AND POTENTIAL: The precise spatiotemporal control of drug activity using exogenous signals holds great promise for achieving precise disease treatment with minimal side effects. Ultrasound, known for its safety, has found widespread application in clinical settings and offers adjustable tissue penetration depth and drug release control. However, challenges persist in achieving precise control over drug activity using ultrasound. In recent years, ultrasound-induced drug release utilizing the principle of polymer mechanochemistry (Sonopharmacology) has made significant progress and demonstrated its potential in achieving precise drug activation and release. These systems enable drug release at the sub-molecular level, allowing for selective control over drug activation. Sonopharmacology offers a unique advantage by integrating both chemical and biomedical perspectives, positioning it as a promising field with broad implications in polymer chemistry, nanoscience and technology, and pharmaceutics. This review article aims to examine recent advancements in ultrasound-triggered drug activation systems based on polymeric materials and with an focus on polymer mechanochemistry, identify remaining challenges, and propose potential perspectives in this rapidly evolving field. By providing a comprehensive understanding of the progress and potential of sonopharmacology, this article aims to guide future research and inspire the development of innovative drug delivery systems that offer enhanced selectivity and improved therapeutic outcomes.
Collapse
Affiliation(s)
- Zhiyuan Shi
- School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, China.
| | - Yong Hu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 201804 Shanghai, China.
| | - Xin Li
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 201804 Shanghai, China.
| |
Collapse
|
41
|
Chandra J, Hasan N, Nasir N, Wahab S, Thanikachalam PV, Sahebkar A, Ahmad FJ, Kesharwani P. Nanotechnology-empowered strategies in treatment of skin cancer. ENVIRONMENTAL RESEARCH 2023; 235:116649. [PMID: 37451568 DOI: 10.1016/j.envres.2023.116649] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
In current scenario skin cancer is a serious condition that has a significant impact on world health. Skin cancer is divided into two categories: melanoma skin cancer (MSC) and non-melanoma skin cancer (NMSC). Because of its significant psychosocial effects and need for significant investment in new technology and therapies, skin cancer is an illness of global health relevance. From the patient's perspective chemotherapy considered to be the most acceptable form of treatment. However, significant negatives of chemotherapy such as severe toxicities and drug resistance pose serious challenges to the treatment. The field of nanomedicine holds significant promise for enhancing the specificity of targeting neoplastic cells through the facilitation of targeted drug delivery to tumour cells. The integration of multiple therapeutic modalities to selectively address cancer-promoting or cell-maintaining pathways constitutes a fundamental aspect of cancer treatment. The use of mono-therapy remains prevalent in the treatment of various types of cancer, it is widely acknowledged in the academic community that this conventional approach is generally considered to be less efficacious compared to the combination treatment strategy. The employment of combination therapy in cancer treatment has become increasingly widespread due to its ability to produce synergistic anticancer effects, mitigate toxicity associated with drugs, and inhibit multi-drug resistance by means of diverse mechanisms. Nanotechnology based combination therapy represents a promising avenue for the development of efficacious therapies for skin cancer within the context of this endeavour. The objective of this article is to provide a description of distinct challenges for efficient delivery of drugs via skin. This article also provides a summary of the various nanotechnology based combinatorial therapy available for skin cancer with their recent advances. This review also focuses on current status of clinical trials of such therapies.
Collapse
Affiliation(s)
- Jyoti Chandra
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nazim Nasir
- Department of Basic Medical Sciences, College of Applied Medical Sciences, Khamis Mushait, Kingdom of Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 61421, Saudi Arabia
| | - Punniyakoti Veeraveedu Thanikachalam
- Department of Pharmaceutical Chemistry, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
42
|
Fernandes DA. Liposomes for Cancer Theranostics. Pharmaceutics 2023; 15:2448. [PMID: 37896208 PMCID: PMC10610083 DOI: 10.3390/pharmaceutics15102448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/16/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Cancer is one of the most well-studied diseases and there have been significant advancements over the last few decades in understanding its molecular and cellular mechanisms. Although the current treatments (e.g., chemotherapy, radiotherapy, gene therapy and immunotherapy) have provided complete cancer remission for many patients, cancer still remains one of the most common causes of death in the world. The main reasons for the poor response rates for different cancers include the lack of drug specificity, drug resistance and toxic side effects (i.e., in healthy tissues). For addressing the limitations of conventional cancer treatments, nanotechnology has shown to be an important field for constructing different nanoparticles for destroying cancer cells. Due to their size (i.e., less than 1 μm), nanoparticles can deliver significant amounts of cancer drugs to tumors and are able to carry moieties (e.g., folate, peptides) for targeting specific types of cancer cells (i.e., through receptor-mediated endocytosis). Liposomes, composed of phospholipids and an interior aqueous core, can be used as specialized delivery vehicles as they can load different types of cancer therapy agents (e.g., drugs, photosensitizers, genetic material). In addition, the ability to load imaging agents (e.g., fluorophores, radioisotopes, MRI contrast media) enable these nanoparticles to be used for monitoring the progress of treatment. This review examines a wide variety of different liposomes for cancer theranostics, with the different available treatments (e.g., photothermal, photodynamic) and imaging modalities discussed for different cancers.
Collapse
|
43
|
Tian H, Zhao F, Qi QR, Yue BS, Zhai BT. Targeted drug delivery systems for elemene in cancer therapy: The story thus far. Biomed Pharmacother 2023; 166:115331. [PMID: 37598477 DOI: 10.1016/j.biopha.2023.115331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/26/2023] [Accepted: 08/12/2023] [Indexed: 08/22/2023] Open
Abstract
Elemene (ELE) is a group of broad-spectrum anticancer active ingredients with low toxicity extracted from traditional Chinese medicines (TCMs), such as Curcumae Rhizoma and Curcuma Radix, which can exert antitumour activities by regulating various signal pathways and targets. However, the strong hydrophobicity, short half-life, low bioavailability and weak in vivo targeting ability of ELE restrict its use. Targeted drug delivery systems based on nanomaterials are among the most viable methods to overcome these shortcomings. In this review, we first summarize recent studies on the clinical uses of ELE as an adjunct antitumour drug. ELE-based combination strategies have great promise for enhancing efficacy, reducing adverse reactions, and improving patients' quality of life and immune function. Second, we summarize recent studies on the antitumour mechanisms of ELE and ELE-based combination strategies. The potential mechanisms include inducing pyroptosis and ferroptosis, promoting senescence, regulating METTL3-mediated m6A modification, suppressing the Warburg effect, and inducing apoptosis and cell cycle arrest. Most importantly, we comprehensively summarize studies on the combination of targeted drug delivery systems with ELE, including passively and actively targeted drug delivery systems, stimuli-responsive drug delivery systems, and codelivery systems for ELE combined with other therapies, which have great promise in improving drug bioavailability, increasing drug targeting ability, controlling drug release, enhancing drug efficacy, reducing drug adverse effects and reversing MDR. Our summary will provide a reference for the combination of TCMs such as ELE with advanced targeted drug delivery systems in the future.
Collapse
Affiliation(s)
- Huan Tian
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an 710021, PR China
| | - Feng Zhao
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an 710021, PR China
| | - Qing-Rui Qi
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, PR China
| | - Bao-Sen Yue
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an 710021, PR China.
| | - Bing-Tao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, PR China.
| |
Collapse
|
44
|
Oh H, Jeong E, Lee JS, Kim J, Lee D, Kim BS, Sung D, Koo H, Choi WI, Tae G. ROS-responsive PEGylated ferrocene polymer nanoparticles with improved stability for tumor-selective chemotherapy and imaging. Mater Today Bio 2023; 22:100774. [PMID: 37664795 PMCID: PMC10468360 DOI: 10.1016/j.mtbio.2023.100774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/27/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023] Open
Abstract
Ferrocene-based nanoparticles have garnered interest as reactive oxygen species (ROS)-responsive nanocarriers of anticancer drugs and imaging agents. However, their biomedical applications remain limited due to their poor physiological stability. PEGylation of nanocarriers improves their stability and biocompatibility. In this study, we aimed to develop novel PEG-ferrocene nanoparticles (PFNPs) with enhanced stability and ROS responsiveness for the delivery of paclitaxel (PTX) and imaging agents. PEGylation improved the stability of ferrocene nanoparticles, inhibiting their ROS-responsive destruction. Several PEG-ferrocene polymers containing different molar ratios of methacrylic acid and poly (ethylene glycol) methyl ether methacrylate was designed for optimization. ROS-responsive polymers with optimal monomer ratios were self-assembled into PFNPs with enhanced stability. The PFNPs distended, effectively releasing encapsulated PTX and imaging agents within 8 h in the presence of ROS. Furthermore, they remained stable, with no changes in their hydrodynamic diameters or polydispersity indexes after storage in an aqueous solution and biological buffer. The accumulation of PFNPs in a tumor model in vivo was 15-fold higher than a free dye. PTX-loaded PFNPs showed a substantial tumor-suppression effect, reducing tumor size to approximately 18% of that in the corresponding control group. These findings suggest a promising application of ROS-responsive PFNPs in tumor treatment as biocompatible nanocarriers of anticancer drugs and imaging agents.
Collapse
Affiliation(s)
- Hyeryeon Oh
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju, 28160, Republic of Korea
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Eunjin Jeong
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, and Catholic Photomedicine Research Institute, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Jin Sil Lee
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju, 28160, Republic of Korea
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jisu Kim
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju, 28160, Republic of Korea
| | - Donghyun Lee
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, and Catholic Photomedicine Research Institute, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Byoung Soo Kim
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju, 28160, Republic of Korea
| | - Daekyung Sung
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju, 28160, Republic of Korea
| | - Heebeom Koo
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, and Catholic Photomedicine Research Institute, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Won Il Choi
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju, 28160, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| |
Collapse
|
45
|
Tayebi L, Rahimi R, Akbarzadeh AR, Maleki A. A reliable QSPR model for predicting drug release rate from metal-organic frameworks: a simple and robust drug delivery approach. RSC Adv 2023; 13:24617-24627. [PMID: 37601598 PMCID: PMC10432896 DOI: 10.1039/d3ra00070b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/05/2023] [Indexed: 08/22/2023] Open
Abstract
During the drug release process, the drug is transferred from the starting point in the drug delivery system to the surface, and then to the release medium. Metal-organic frameworks (MOFs) potentially have unique features to be utilized as promising carriers for drug delivery, due to their suitable pore size, high surface area, and structural flexibility. The loading and release of various therapeutic drugs through the MOFs are effectively accomplished due to their tunable inorganic clusters and organic ligands. Since the drug release rate percentage (RES%) is a significant concern, a quantitative structure-property relationship (QSPR) method was applied to achieve an accurate model predicting the drug release rate from MOFs. Structure-based descriptors, including the number of nitrogen and oxygen atoms, along with two other adjusted descriptors, were applied for obtaining the best multilinear regression (BMLR) model. Drug release rates from 67 MOFs were applied to provide a precise model. The coefficients of determination (R2) for the training and test sets obtained were both 0.9999. The root mean square error for prediction (RMSEP) of the RES% values for the training and test sets were 0.006 and 0.005, respectively. To examine the precision of the model, external validation was performed through a set of new observations, which demonstrated that the model works to a satisfactory degree.
Collapse
Affiliation(s)
- Leila Tayebi
- Department of Chemistry, Iran University of Science and Technology P. O. Box: 16846-13114 Tehran Islamic Republic of Iran
| | - Rahmatollah Rahimi
- Department of Chemistry, Iran University of Science and Technology P. O. Box: 16846-13114 Tehran Islamic Republic of Iran
| | - Ali Reza Akbarzadeh
- Department of Chemistry, Iran University of Science and Technology P. O. Box: 16846-13114 Tehran Islamic Republic of Iran
| | - Ali Maleki
- Department of Chemistry, Iran University of Science and Technology P. O. Box: 16846-13114 Tehran Islamic Republic of Iran
| |
Collapse
|
46
|
Sinani G, Durgun ME, Cevher E, Özsoy Y. Polymeric-Micelle-Based Delivery Systems for Nucleic Acids. Pharmaceutics 2023; 15:2021. [PMID: 37631235 PMCID: PMC10457940 DOI: 10.3390/pharmaceutics15082021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Nucleic acids can modulate gene expression specifically. They are increasingly being utilized and show huge potential for the prevention or treatment of various diseases. However, the clinical translation of nucleic acids faces many challenges due to their rapid clearance after administration, low stability in physiological fluids and limited cellular uptake, which is associated with an inability to reach the intracellular target site and poor efficacy. For many years, tremendous efforts have been made to design appropriate delivery systems that enable the safe and effective delivery of nucleic acids at the target site to achieve high therapeutic outcomes. Among the different delivery platforms investigated, polymeric micelles have emerged as suitable delivery vehicles due to the versatility of their structures and the possibility to tailor their composition for overcoming extracellular and intracellular barriers, thus enhancing therapeutic efficacy. Many strategies, such as the addition of stimuli-sensitive groups or specific ligands, can be used to facilitate the delivery of various nucleic acids and improve targeting and accumulation at the site of action while protecting nucleic acids from degradation and promoting their cellular uptake. Furthermore, polymeric micelles can be used to deliver both chemotherapeutic drugs and nucleic acid therapeutics simultaneously to achieve synergistic combination treatment. This review focuses on the design approaches and current developments in polymeric micelles for the delivery of nucleic acids. The different preparation methods and characteristic features of polymeric micelles are covered. The current state of the art of polymeric micelles as carriers for nucleic acids is discussed while highlighting the delivery challenges of nucleic acids and how to overcome them and how to improve the safety and efficacy of nucleic acids after local or systemic administration.
Collapse
Affiliation(s)
- Genada Sinani
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Altinbas University, 34147 Istanbul, Türkiye;
| | - Meltem Ezgi Durgun
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, 34126 Istanbul, Türkiye; (M.E.D.); (E.C.)
| | - Erdal Cevher
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, 34126 Istanbul, Türkiye; (M.E.D.); (E.C.)
| | - Yıldız Özsoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, 34126 Istanbul, Türkiye; (M.E.D.); (E.C.)
| |
Collapse
|
47
|
Wu Y, Qian Y, Peng W, Qi X. Functionalized nanoparticles crossing the brain-blood barrier to target glioma cells. PeerJ 2023; 11:e15571. [PMID: 37426416 PMCID: PMC10327649 DOI: 10.7717/peerj.15571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/25/2023] [Indexed: 07/11/2023] Open
Abstract
Glioma is the most common tumor of the central nervous system (CNS), with a 5-year survival rate of <35%. Drug therapy, such as chemotherapeutic and immunotherapeutic agents, remains one of the main treatment modalities for glioma, including temozolomide, doxorubicin, bortezomib, cabazitaxel, dihydroartemisinin, immune checkpoint inhibitors, as well as other approaches such as siRNA, ferroptosis induction, etc. However, the filter function of the blood-brain barrier (BBB) reduces the amount of drugs needed to effectively target CNS tumors, making it one of the main reasons for poor drug efficacies in glioma. Thus, finding a suitable drug delivery platform that can cross the BBB, increase drug aggregation and retainment in tumoral areas and avoid accumulation in non-targeted areas remains an unsolved challenge in glioma drug therapy. An ideal drug delivery system for glioma therapy should have the following features: (1) prolonged drug life in circulation and effective penetration through the BBB; (2) adequate accumulation within the tumor (3) controlled-drug release modulation; (4) good clearance from the body without significant toxicity and immunogenicity, etc. In this regard, due to their unique structural features, nanocarriers can effectively span the BBB and target glioma cells through surface functionalization, providing a new and effective strategy for drug delivery. In this article, we discuss the characteristics and pathways of different nanocarriers for crossing the BBB and targeting glioma by listing different materials for drug delivery platforms, including lipid materials, polymers, nanocrystals, inorganic nanomaterials, etc.
Collapse
Affiliation(s)
- Yongyan Wu
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Yufeng Qian
- Department of Neurosurgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, People’s Republic of China
| | - Wei Peng
- Medical Research Center, Shaoxing People’s Hospital, Shaoxing, Zhejiang Province, People’s Republic of China
| | - Xuchen Qi
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Department of Neurosurgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, People’s Republic of China
| |
Collapse
|
48
|
Ying N, Liu S, Zhang M, Cheng J, Luo L, Jiang J, Shi G, Wu S, Ji J, Su H, Pan H, Zeng D. Nano delivery system for paclitaxel: Recent advances in cancer theranostics. Colloids Surf B Biointerfaces 2023; 228:113419. [PMID: 37393700 DOI: 10.1016/j.colsurfb.2023.113419] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/22/2023] [Accepted: 06/17/2023] [Indexed: 07/04/2023]
Abstract
Paclitaxel is one of the most effective chemotherapeutic drugs which processes the obvious curative effect for a broad range of cancers including breast, ovarian, lung, and head & neck cancers. Though some novel paclitaxel-loaded formulations have been developed, the clinical application of the paclitaxel is still limited due to its toxicity and solubility issues. Over the past decades, we have seen rapid advances in applying nanocarriers in paclitaxel delivery systems. The nano-drug delivery systems offer unique advantages in enhancing the aqueous solubility, reducing side effects, increasing permeability, prolonging circulation half-life of paclitaxel. In this review, we summarize recent advances in developing novel paclitaxel-loaded nano delivery systems based on nanocarriers. These nanocarriers show great potentials in overcoming the disadvantages of pure paclitaxel and as a result improving the efficacy.
Collapse
Affiliation(s)
- Na Ying
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Sisi Liu
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mengmeng Zhang
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jing Cheng
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Linghuan Luo
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jiayi Jiang
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Gaofan Shi
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shu Wu
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jun Ji
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Haoyuan Su
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hongzhi Pan
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China.
| | - Dongdong Zeng
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China.
| |
Collapse
|
49
|
Jain A, Bhattacharya S. Recent advances in nanomedicine preparative methods and their therapeutic potential for colorectal cancer: a critical review. Front Oncol 2023; 13:1211603. [PMID: 37427139 PMCID: PMC10325729 DOI: 10.3389/fonc.2023.1211603] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Colorectal cancer (CRC) is a prevalent malignancy that affects a large percentage of the global population. The conventional treatments for CRC have a number of limitations. Nanoparticles have emerged as a promising cancer treatment method due to their ability to directly target cancer cells and regulate drug release, thereby enhancing therapeutic efficacy and minimizing side effects. This compilation examines the use of nanoparticles as drug delivery systems for CRC treatment. Different nanomaterials can be used to administer anticancer drugs, including polymeric nanoparticles, gold nanoparticles, liposomes, and solid lipid nanoparticles. In addition, we discuss recent developments in nanoparticle preparation techniques, such as solvent evaporation, salting-out, ion gelation, and nanoprecipitation. These methods have demonstrated high efficacy in penetrating epithelial cells, a prerequisite for effective drug delivery. This article focuses on the various targeting mechanisms utilized by CRC-targeted nanoparticles and their recent advancements in this field. In addition, the review offers descriptive information regarding numerous nano-preparative procedures for colorectal cancer treatments. We also discuss the outlook for innovative therapeutic techniques in the management of CRC, including the potential application of nanoparticles for targeted drug delivery. The review concludes with a discussion of current nanotechnology patents and clinical studies used to target and diagnose CRC. The results of this investigation suggest that nanoparticles have great potential as a method of drug delivery for the treatment of colorectal cancer.
Collapse
|
50
|
Wang T, Wu C, Hu Y, Zhang Y, Ma J. Stimuli-responsive nanocarrier delivery systems for Pt-based antitumor complexes: a review. RSC Adv 2023; 13:16488-16511. [PMID: 37274408 PMCID: PMC10233443 DOI: 10.1039/d3ra00866e] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/30/2023] [Indexed: 06/06/2023] Open
Abstract
Platinum-based anticancer drugs play a crucial role in the clinical treatment of various cancers. However, the application of platinum-based drugs is heavily restricted by their severe toxicity and drug resistance/cross resistance. Various drug delivery systems have been developed to overcome these limitations of platinum-based chemotherapy. Stimuli-responsive nanocarrier drug delivery systems as one of the most promising strategies attract more attention. And huge progress in stimuli-responsive nanocarrier delivery systems of platinum-based drugs has been made. In these systems, a variety of triggers including endogenous and extracorporeal stimuli have been employed. Endogenous stimuli mainly include pH-, thermo-, enzyme- and redox-responsive nanocarriers. Extracorporeal stimuli include light-, magnetic field- and ultrasound responsive nanocarriers. In this review, we present the recent advances in stimuli-responsive drug delivery systems with different nanocarriers for improving the efficacy and reducing the side effects of platinum-based anticancer drugs.
Collapse
Affiliation(s)
- Tianshuai Wang
- Hubei Key Lab of Wudang Local Chinese Medicine Research, Hubei University of Medicine Shiyan 442000 Hubei China
- College of Pharmaceutical Sciences, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Chen Wu
- College of Pharmaceutical Sciences, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Yanggen Hu
- Hubei Key Lab of Wudang Local Chinese Medicine Research, Hubei University of Medicine Shiyan 442000 Hubei China
- College of Pharmaceutical Sciences, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Yan Zhang
- College of Pharmaceutical Sciences, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Junkai Ma
- Hubei Key Lab of Wudang Local Chinese Medicine Research, Hubei University of Medicine Shiyan 442000 Hubei China
- College of Pharmaceutical Sciences, Hubei University of Medicine Shiyan 442000 Hubei China
| |
Collapse
|