1
|
Shi J, Ma Y, Yu N, Zhang Y, Cao Z, Guan L, Liu X, Chen Z, Jia G. Key toxic pathways of hepatotoxicity induced by titanium dioxide nanoparticles through multi-omics analysis. Food Chem Toxicol 2025; 201:115457. [PMID: 40250523 DOI: 10.1016/j.fct.2025.115457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/13/2025] [Accepted: 04/13/2025] [Indexed: 04/20/2025]
Abstract
The liver is considered a target organ for the accumulation and toxic effects of nanomaterials exposed to the body, especially after oral exposure, but the key toxic pathways have not been fully defined. This study focused on the hepatotoxicity of titanium dioxide nanoparticles (TiO2 NPs) in vivo and in vitro, and tried to identify key toxic pathways using the concept of systems biology and multi-omics methods. In vivo, protein and metabolomic sequencing were performed on the liver of SD rats (0, 50 mg/kg, 90 days), and 386 differential proteins and 29 differential metabolites were screened out, respectively, and the joint analysis found that they were significantly enriched in alanine, aspartate and glutamate metabolism, and butanoate metabolism. In vitro, exposure to TiO2 NPs could induce cytotoxicity and omics changes at different molecular levels in human hepatocellular carcinoma cells. Single omic analysis showed that differentially expressed proteins and metabolites were 80 and 222, respectively. The enriched pathways related to steroid biosynthesis, cholesterol metabolism at the combine levels of proteome and metabolome. KEGG enrichment analysis showed that PI3K-Akt signaling pathway and PPAR signaling pathway were both significantly affected in vitro and in vivo. Through multi-omics analysis, this work offered fresh perspectives and avenues for research on the toxicity mechanism of TiO2 NPs.
Collapse
Affiliation(s)
- Jiaqi Shi
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, People's Republic of China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
| | - Ying Ma
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, People's Republic of China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
| | - Nairui Yu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, People's Republic of China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
| | - Yi Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, People's Republic of China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
| | - Zongfu Cao
- National Research Institute for Family Planning, Beijing, 100081, People's Republic of China; National Human Genetic Resources Center, Beijing, 102206, People's Republic of China
| | - Li Guan
- Department of Occupational Disease, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Xiaodong Liu
- Beijing Institute of Occupational Disease Prevention and Treatment, No. 50 Yikesong Xiangshan, Haidian District, Beijing, 100093, People's Republic of China
| | - Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, People's Republic of China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100191, People's Republic of China.
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, People's Republic of China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
| |
Collapse
|
2
|
Yazdanshenas MR, Rezaei MR, Kharkan J. Comparative toxicity of zinc oxide nanoparticles and zinc salts in male mice: Hematological, biochemical, and histopathological impacts. Toxicol Rep 2025; 14:102003. [PMID: 40200928 PMCID: PMC11976247 DOI: 10.1016/j.toxrep.2025.102003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/07/2025] [Accepted: 03/17/2025] [Indexed: 04/10/2025] Open
Abstract
The aim of this study was to investigate the toxicity of zinc oxide nanoparticles (ZnO NPs) compared to different zinc salts (ZnSO4, Zn(NO3)2, and ZnCl2) in male mice. For this purpose, 45 male mice were divided into five groups of nine (one control group). Mice were exposed to ZnO NPs and various zinc salts for 28 days, while the control group remained unexposed. After the exposure period, the mice were euthanized, and hematological, biochemical, enzymatic, and histopathological changes were recorded. Most hematological (RBC, WBC, Hb, Ht counts), biochemical (cholesterol, triglyceride, glucose, total protein, and albumin), and enzymatic parameters alkaline phosphatase (ALP), aspartate transaminase (AST), alanine aminotransferase (ALT) were significantly different in exposed mice compared to the control group (p < 0.05). The number of erythrocytes in mice exposed to ZnCl2 for 28 days (7.84 ± 1.41 × 106 mm3) was significantly lower than in the control group (10.11 ± 1.14 ×106 mm3) (p < 0.05). Additionally, mice exposed to ZnCl2 had significantly lower white blood cell (WBC) counts, hemoglobin (Hb), and hematocrit (Ht) levels than the control group (p < 0.05). Zn-exposed mice developed deformed erythrocytes, including dacrocytes, keratocytes, and ovalocytes, likely due to cytogenetically damaged RBC precursors. ZnO NPs and its various salts caused degeneration in hepatocytes, thickening and inflammatory cell infiltration in the renal capsule, congestion in the blood vessels of the lungs, and swelling of goblet cells in the intestine. Adding to the wealth of literature on the toxicity of ZnO NPs and zinc salts, especially ZnCl2, our study highlights the ecotoxicity of these compounds in mice. Effective and timely measures should be taken to reduce the use of ZnO NPs and its various salts worldwide.
Collapse
Affiliation(s)
- Mohammad Reza Yazdanshenas
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, University of Birjand, Birjand, Iran
| | - Mohammad Reza Rezaei
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, University of Birjand, Birjand, Iran
| | - Javad Kharkan
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, University of Birjand, Birjand, Iran
| |
Collapse
|
3
|
Vysakh VG, Sukumaran S, Gopalakrishnan A. Evaluating the effects of zinc oxide nanoparticles on a sentinel aquatic invertebrate species: Transcriptomic analysis and potential implications for ecosystem health. MARINE POLLUTION BULLETIN 2025; 212:117570. [PMID: 39824139 DOI: 10.1016/j.marpolbul.2025.117570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
The widespread use of zinc oxide nanoparticles (ZnO NPs) in various products raises significant ecological concerns due to their potential toxic effects in aquatic environments. This study employed the Asian green mussel (Perna viridis) as a model to explore the molecular and ecological risks of ZnO NP exposure using transcriptomics. Mussels exposed to ZnO NPs (5, 10, and 15 mg/L) for 28 days showed significant gene expression changes in gill tissues, affecting immune response, calcium homeostasis, and cellular stress. Disrupted pathways such as FOXO, Wnt, and TGFβ reveal complex toxicity mechanisms. These findings provide crucial insights into the environmental impact of nanoparticle pollution, emphasizing the need for stringent regulations. Furthermore, the shared molecular pathways suggest that similar mechanisms may occur in humans, highlighting potential health risks associated with nanoparticle exposure.
Collapse
Affiliation(s)
- V G Vysakh
- Marine Biotechnology Fish Nutrition and Health Division, Central Marine Fisheries Research Institute, Post Box No 1603, Ernakulam North PO., Kochi 682018, Kerala, India; Mangalore University. Mangalagangotri, Mangalore 574199, Karnataka, India
| | - Sandhya Sukumaran
- Marine Biotechnology Fish Nutrition and Health Division, Central Marine Fisheries Research Institute, Post Box No 1603, Ernakulam North PO., Kochi 682018, Kerala, India.
| | - A Gopalakrishnan
- Marine Biotechnology Fish Nutrition and Health Division, Central Marine Fisheries Research Institute, Post Box No 1603, Ernakulam North PO., Kochi 682018, Kerala, India
| |
Collapse
|
4
|
Wang K, Hao Z, Xie J, Ma L, Zhang W, Mo J, Li L, Jin C. Nrf2-dependent hepatoprotective effect of ellagic acid in titanium dioxide nanoparticles-induced liver injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156064. [PMID: 39306885 DOI: 10.1016/j.phymed.2024.156064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/11/2024] [Accepted: 09/15/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND AND AIMS Previous studies suggest that titanium dioxide nanoparticles (TiO2 NPs) induce liver injury, possibly due to oxidative stress and inflammation. Ellagic acid (EA) is a dietary polyphenol extracted from natural sources and possesses antioxidant and anti-inflammatory properties. Nonetheless, the efficacy of EA in mitigating liver injury induced by TiO2 NPs remains to be elucidated. METHODS Primary hepatocytes and L02 cells were cultured with 45 μM EA and 10 μg/ml TiO2 NPs. Mice were orally administered TiO2 NPs (150 mg kg-1) and EA (25/50/100 mg kg-1) for eight weeks. sulforaphane (SFN) as a positive control to evaluate the inhibitory effect of EA on TiO2 NP-induced liver injury (SFN 10 mg kg-1). RNA sequencing (RNA-seq) was employed to elucidate the mechanisms underlying oxidative stress, inflammation, and liver fibrosis. RESULTS We assessed the impact of EA on cytotoxicity, oxidative stress, inflammation, and fibrosis in both cells and mice exposed to TiO2 NPs for an extended period. Our findings indicated that EA had a protective effect on TiO2 NP-exposed hepatocytes, reducing cytotoxicity, oxidative stress, and inflammation. Furthermore, EA treatment markedly reduced serum aminotransferase levels in mice exposed to TiO2 NPs. Furthermore, EA treatment notably reduced hepatic stress response, inflammation, and fibrosis in mice. The treatment of EA demonstrates non-inferiority compared to SFN. The protective effects of EA were attributed to the upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2), EA promoted the translocation and phosphorylation of Nrf2, as indicated by the finding that Nfe2l2 shRNA and inhibition of Nrf2 by ML385 reversed the EA-induced hepatoprotective effects in TiO2 NP-exposed hepatocytes and mice. CONCLUSION EA significantly mitigated liver injury induced by TiO2 NPs. Importantly, we identified that the nuclear translocation and phosphorylation of Nrf2 are the primary mechanisms through which EA alleviates liver injury resulting from exposure to TiO2 NPs. As a natural activator of Nrf2, EA emerges as a promising therapeutic candidate for treating TiO2 NPs-induced liver injury, further enhancing our understanding of its potential as a hepatoprotective agent and its underlying molecular mechanisms.
Collapse
Affiliation(s)
- Kunpeng Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang Province, PR China; Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, PR China; General Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, 318001, PR China
| | - Zhiqing Hao
- Department of Cell Biology, School of Medicine, Taizhou University, Taizhou, Zhejiang Province, 318001, PR China
| | - Jing Xie
- Department of Pathophysiology, School of Basic Medicine, Shenyang Medical College, Shenyang, Liaoning Province, 110000, PR China
| | - Liman Ma
- Department of Pathophysiology, School of Basic Medicine, Shenyang Medical College, Shenyang, Liaoning Province, 110000, PR China
| | - Weiwei Zhang
- Department of Cell Biology, School of Medicine, Taizhou University, Taizhou, Zhejiang Province, 318001, PR China
| | - Jinggang Mo
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang Province, PR China
| | - Lihua Li
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang Province, PR China.
| | - Chong Jin
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang Province, PR China.
| |
Collapse
|
5
|
Gutierrez CT, Hadrup N, Loizides C, Hafez I, Biskos G, Roursgaard M, Saber AT, Møller P, Vogel U. Absence of genotoxicity following pulmonary exposure to metal oxides of copper, tin, aluminum, zinc, and titanium in mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65:251-260. [PMID: 39394842 DOI: 10.1002/em.22634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 10/14/2024]
Abstract
Inhalation of nanosized metal oxides may occur at the workplace. Thus, information on potential hazardous effects is needed for risk assessment. We report an investigation of the genotoxic potential of different metal oxide nanomaterials. Acellular and intracellular reactive oxygen species (ROS) production were determined for all the studied nanomaterials. Moreover, mice were exposed by intratracheal instillation to copper oxide (CuO) at 2, 6, and 12 μg/mouse, tin oxide (SnO2) at 54 and 162 μg/mouse, aluminum oxide (Al2O3) at 18 and 54 μg/mouse, zinc oxide (ZnO) at 0.7 and 2 μg/mouse, titanium dioxide (TiO2) and the benchmark carbon black at 162 μg/mouse. The doses were selected based on pilot studies. Post-exposure time points were 1 or 28 days. Genotoxicity, assessed as DNA strand breaks by the comet assay, was measured in lung and liver tissue. The acellular and intracellular ROS measurements were fairly consistent. The CuO and the carbon black bench mark particle were potent ROS generators in both assays, followed by TiO2. Al2O3, ZnO, and SnO2 generated low levels of ROS. We detected no increased genotoxicity in this study using occupationally relevant dose levels of metal oxide nanomaterials after pulmonary exposure in mice, except for a slight increase in DNA damage in liver tissue at the highest dose of CuO. The present data add to the body of evidence for risk assessment of these metal oxides.
Collapse
Affiliation(s)
- Claudia Torero Gutierrez
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Niels Hadrup
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
- Research group for risk-benefit, National Food Institute, Technical University of Denmark
| | - Charis Loizides
- Climate and Atmosphere Research Centre, The Cyprus Institute, Nicosia, Cyprus
| | - Iosif Hafez
- Climate and Atmosphere Research Centre, The Cyprus Institute, Nicosia, Cyprus
| | - George Biskos
- Climate and Atmosphere Research Centre, The Cyprus Institute, Nicosia, Cyprus
- Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, The Netherlands
| | - Martin Roursgaard
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | | | - Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
6
|
Li X, Yao E, Li J, Lu W. Differential toxic effects of nano-titanium dioxide on clams (Meretrix meretrix) with various individuality. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 274:107045. [PMID: 39142141 DOI: 10.1016/j.aquatox.2024.107045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/22/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024]
Abstract
Nano-TiO2 is inevitably released into aquatic environment with increasing of nanotechnology industries. Study pointed that different individuality showed divergent behavioral and physiological response when facing environmental stress. However, the effects of nano-TiO2 on tolerance of bivalves with different individualities remain unknown. In the study, clams were divided into two types of individuality - proactive and reactive by post-stress recovery method. It turned out that proactive individuals had quicker shell opening level, stronger burrowing behavior, faster feeding recovery, higher standard metabolic rate and more rapid ammonia excretion ability than reactive individuals after exposed to air. Then, the survival rate, hemocytes response and oxidase activity of classified clams were evaluated after nano-TiO2 exposure. Results showed that after 30 d exposure, proactive individuals accelerated burrowing behavior with higher survival rate. Moreover, proactive clams had better adaptability and less hemocytes response and oxidative damage than reactive clams. The study highlights the individualities of marine shell fish determine individual capacity to adapt to environmental changes, play important roles in aquaculture and coastal ecosystem health.
Collapse
Affiliation(s)
- Xiaoxue Li
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, 201306, China
| | - Erzhou Yao
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, 201306, China
| | - Jie Li
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, 201306, China
| | - Weiqun Lu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology Shanghai, 201306, China.
| |
Collapse
|
7
|
Wolf S, Sriram K, Camassa LMA, Pathak D, Bing HL, Mohr B, Zienolddiny-Narui S, Samulin Erdem J. Systematic review of mechanistic evidence for TiO 2 nanoparticle-induced lung carcinogenicity. Nanotoxicology 2024; 18:437-463. [PMID: 39101876 DOI: 10.1080/17435390.2024.2384408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024]
Abstract
Nano-sized titanium dioxide particles (TiO2 NPs) are a high-production volume nanomaterial widely used in the paints, cosmetics, food and photovoltaics industry. However, the potential carcinogenic effects of TiO2 NPs in the lung are still unclear despite the vast number of in vitro and in vivo studies investigating TiO2 NPs. Here, we systematically reviewed the existing in vitro and in vivo mechanistic evidence of TiO2 NP lung carcinogenicity using the ten key characteristics of carcinogens for identifying and classifying carcinogens. A total of 346 studies qualified for the quality and reliability assessment, of which 206 were considered good quality. Using a weight-of-evidence approach, these studies provided mainly moderate to high confidence for the biological endpoints regarding genotoxicity, oxidative stress and chronic inflammation. A limited number of studies investigated other endpoints important to carcinogenesis, relating to proliferation and transformation, epigenetic alterations and receptor-mediated effects. In summary, TiO2 NPs might possess the ability to induce chronic inflammation and oxidative stress, but it was challenging to compare the findings in the studies due to the wide variety of TiO2 NPs differing in their physicochemical characteristics, formulation, exposure scenarios/test systems, and experimental protocols. Given the limited number of high-quality and high-reliability studies identified within this review, there is a lack of good enough mechanistic evidence for TiO2 NP lung carcinogenicity. Future toxicology/carcinogenicity research must consider including positive controls, endotoxin testing (where necessary), statistical power analysis, and relevant biological endpoints, to improve the study quality and provide reliable data for evaluating TiO2 NP-induced lung carcinogenicity.
Collapse
Affiliation(s)
- Susann Wolf
- National Institute of Occupational Health, Oslo, Norway
| | - Krishnan Sriram
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | | | - Dhruba Pathak
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Helene L Bing
- National Institute of Occupational Health, Oslo, Norway
| | | | | | | |
Collapse
|
8
|
Zhang J, Chen Z, Shan D, Wu Y, Zhao Y, Li C, Shu Y, Linghu X, Wang B. Adverse effects of exposure to fine particles and ultrafine particles in the environment on different organs of organisms. J Environ Sci (China) 2024; 135:449-473. [PMID: 37778818 DOI: 10.1016/j.jes.2022.08.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 10/03/2023]
Abstract
Particulate pollution is a global risk factor that seriously threatens human health. Fine particles (FPs) and ultrafine particles (UFPs) have small particle diameters and large specific surface areas, which can easily adsorb metals, microorganisms and other pollutants. FPs and UFPs can enter the human body in multiple ways and can be easily and quickly absorbed by the cells, tissues and organs. In the body, the particles can induce oxidative stress, inflammatory response and apoptosis, furthermore causing great adverse effects. Epidemiological studies mainly take the population as the research object to study the distribution of diseases and health conditions in a specific population and to focus on the identification of influencing factors. However, the mechanism by which a substance harms the health of organisms is mainly demonstrated through toxicological studies. Combining epidemiological studies with toxicological studies will provide a more systematic and comprehensive understanding of the impact of PM on the health of organisms. In this review, the sources, compositions, and morphologies of FPs and UFPs are briefly introduced in the first part. The effects and action mechanisms of exposure to FPs and UFPs on the heart, lungs, brain, liver, spleen, kidneys, pancreas, gastrointestinal tract, joints and reproductive system are systematically summarized. In addition, challenges are further pointed out at the end of the paper. This work provides useful theoretical guidance and a strong experimental foundation for investigating and preventing the adverse effects of FPs and UFPs on human health.
Collapse
Affiliation(s)
- Jianwei Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Zhao Chen
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Dan Shan
- Department of Medical, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China
| | - Yang Wu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Yue Zhao
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Chen Li
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; National Demonstration Center for Experimental Preventive Medicine Education (Tianjin Medical University), Tianjin 300070, China
| | - Yue Shu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Xiaoyu Linghu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Baiqi Wang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; National Demonstration Center for Experimental Preventive Medicine Education (Tianjin Medical University), Tianjin 300070, China.
| |
Collapse
|
9
|
AFŞAR O, OLTULU Ç. Evaluation of the cytotoxic effect of titanium dioxide nanoparticles in human embryonic lung cells. Turk J Med Sci 2023; 53:1648-1657. [PMID: 38813501 PMCID: PMC10760577 DOI: 10.55730/1300-0144.5733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 12/12/2023] [Accepted: 10/12/2023] [Indexed: 05/31/2024] Open
Abstract
Background/aim Titanium dioxide nanoparticles are widely used in a variety of products, including sunscreens, paints, and ceramics. However, their increasing use has raised concerns about their potential health risks. Titanium dioxide nanoparticles have been shown to have the ability to enter the bloodstream and accumulate in various tissues, reaching the fetus via the placenta. The aim of this study was to investigate the cytotoxic effects of titanium dioxide nanoparticles on a human embryonic lung cell line (HEL 299/An1) and the formation of oxidative DNA damage. Materials and methods The cytotoxic effects of brookite-based titanium dioxide nanoparticles (<100 nm) were assessed using the 3-(4,5-dimethyldiazol-2-yl)-2,5 diphenyl tetrazolium bromide (MTT) assay for 24 and 48 h. Cell titanium levels were determined using inductively coupled plasma mass spectrometry. Oxidative DNA damage was assessed by measuring the levels of 8-hydroxy-2-deoxyguanosine (8-OHdG) as a biomarker. Results Titanium dioxide nanoparticles caused dose-dependent cytotoxicity in HEL 299/An1 cells. The IC50 values were 25.93 μM and 0.054 μM after 24 h and 48 h of exposure, respectively. Cell titanium levels were found to be 25,967 ppb after 24 h and 210,353 ppb after 48 h (p < 0.01). 8-OHdG was detected at 32.96 ng/mL after 24 h of exposure and 17.89 ng/mL after 48 h of exposure. Conclusion In our study, it was shown that titanium nanoparticles caused dose-dependent cytotoxicity and oxidative DNA damage in human embryonic lung cells. The nanoparticles also accumulated in cells and were taken up in higher amounts after 48 h of exposure. These findings suggest that titanium dioxide nanoparticles may pose a health risk, especially for pregnant women who may not be aware of their pregnancy. Therefore, it is important to take preventive measures to reduce exposure to these nanoparticles.
Collapse
Affiliation(s)
- Olkan AFŞAR
- Department of Pharmaceutical Nanotechnology, Institute of Health Sciences, Trakya University, Edirne,
Turkiye
| | - Çağatay OLTULU
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Trakya University, Edirne,
Turkiye
| |
Collapse
|
10
|
Saravanan H, Subramani T, Rajaramon S, David H, Sajeevan A, Sujith S, Solomon AP. Exploring nanocomposites for controlling infectious microorganisms: charting the path forward in antimicrobial strategies. Front Pharmacol 2023; 14:1282073. [PMID: 37829306 PMCID: PMC10565656 DOI: 10.3389/fphar.2023.1282073] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Abstract
Nanocomposites, formed by combining a matrix (commonly polymer or ceramic) with nanofillers (nano-sized inclusions like nanoparticles or nanofibers), possess distinct attributes attributed to their composition. Their unique physicochemical properties and interaction capabilities with microbial cells position them as a promising avenue for infectious disease treatment. The escalating prevalence of multi-drug resistant bacteria intensifies the need for alternative solutions. Traditional approaches involve antimicrobial agents like antibiotics, antivirals, and antifungals, targeting specific microbial aspects. This review presents a comprehensive overview of diverse nanocomposite types and highlights the potential of tailored matrix and antibacterial agent selection within nanocomposites to enhance treatment efficacy and decrease antibiotic resistance risks. Challenges such as toxicity, safety, and scalability in clinical applications are also acknowledged. Ultimately, the convergence of nanotechnology and infectious disease research offers the prospect of enhanced therapeutic strategies, envisioning a future wherein advanced materials revolutionize the landscape of medical treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
11
|
Darwish SF, Mahmoud AMA, Abdel Mageed SS, Sallam AAM, Oraby MA. Dapagliflozin improves early acute kidney injury induced by vancomycin in rats: Insights on activin A/miRNA-21 signaling and FOXO3a expression. Eur J Pharmacol 2023; 955:175908. [PMID: 37451422 DOI: 10.1016/j.ejphar.2023.175908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Drug-induced acute kidney injury (AKI) represents a potentially serious disorder associated with increased morbidity and mortality. The presented study investigated the ability of the oral antidiabetic agent, dapagliflozin (DAPA), to preserve the kidneys of rats subjected to vancomycin (VCM)-induced AKI. Rats were injected with VCM (400 mg/kg; i.p daily) for 7 successive days to induce AKI. Rats that received VCM were pretreated with DAPA at 5 or 10 mg/kg; p.o daily for 14 successive days. Vancomycin-treated rats depicted renal tubular damage, decline in renal function, and renal morphological alterations. Impairment of renal antioxidant machinery and propagation of renal cell apoptosis was apparent in the setting of VCM overdose. Pretreatment of VCM rats with DAPA, particularly at 10 mg/kg, effectively attenuated NADPH oxidase-4 (NOX4)-induced renal ROS, hampered activin A activation, and repressed miRNA-21/PTEN/pAKT signaling. These events were associated with impeding the expression of renal p-FOXO3a/t-FOXO3a ratio and promoting the nuclear localization of FOXO3a immnoexpression, enhancing renal antioxidant enzymes. At the same time, DAPA pretreatment improved renal function indices and alleviated the kidney injury markers, NGAL, and KIM-1, accompanied by restoring the normal renal histopathological structure. Regarding renal apoptosis, DAPA suppressed the expression of Bax/Bcl2 ratio and caspase-3. This study demonstrates that DAPA ameliorates VCM-induced AKI in rats via modulating renal oxidative stress, presumably by interfering with NOX4/activin A/miRNA-21 cascade and augmenting t-FOXO3a expression as well as dampening renal cell apoptosis.
Collapse
Affiliation(s)
- Samar F Darwish
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Entertainment Area, Badr City, Cairo, 11829, Egypt.
| | - Abdulla M A Mahmoud
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Entertainment Area, Badr City, Cairo, 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Entertainment Area, Badr City, Cairo, 11829, Egypt
| | - Al-Aliaa M Sallam
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Entertainment Area, Badr City, Cairo, 11829, Egypt.
| | - Mamdouh A Oraby
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Entertainment Area, Badr City, Cairo, 11829, Egypt
| |
Collapse
|
12
|
Han D, Chen R, Kan H, Xu Y. The bio-distribution, clearance pathways, and toxicity mechanisms of ambient ultrafine particles. ECO-ENVIRONMENT & HEALTH (ONLINE) 2023; 2:95-106. [PMID: 38074989 PMCID: PMC10702920 DOI: 10.1016/j.eehl.2023.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 02/17/2024]
Abstract
Ambient particles severely threaten human health worldwide. Compared to larger particles, ultrafine particles (UFPs) are highly concentrated in ambient environments, have a larger specific surface area, and are retained for a longer time in the lung. Recent studies have found that they can be transported into various extra-pulmonary organs by crossing the air-blood barrier (ABB). Therefore, to understand the adverse effects of UFPs, it is crucial to thoroughly investigate their bio-distribution and clearance pathways in vivo after inhalation, as well as their toxicological mechanisms. This review highlights emerging evidence on the bio-distribution of UFPs in pulmonary and extra-pulmonary organs. It explores how UFPs penetrate the ABB, the blood-brain barrier (BBB), and the placental barrier (PB) and subsequently undergo clearance by the liver, kidney, or intestine. In addition, the potential underlying toxicological mechanisms of UFPs are summarized, providing fundamental insights into how UFPs induce adverse health effects.
Collapse
Affiliation(s)
- Dongyang Han
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| |
Collapse
|
13
|
Vignard J, Pettes-Duler A, Gaultier E, Cartier C, Weingarten L, Biesemeier A, Taubitz T, Pinton P, Bebeacua C, Devoille L, Dupuy J, Boutet-Robinet E, Feltin N, Oswald IP, Pierre FH, Lamas B, Mirey G, Houdeau E. Food-grade titanium dioxide translocates across the buccal mucosa in pigs and induces genotoxicity in an in vitro model of human oral epithelium. Nanotoxicology 2023; 17:289-309. [PMID: 37194738 DOI: 10.1080/17435390.2023.2210664] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/03/2023] [Accepted: 05/01/2023] [Indexed: 05/18/2023]
Abstract
The whitening and opacifying agent titanium dioxide (TiO2) is used worldwide in various foodstuffs, toothpastes and pharmaceutical tablets. Its use as a food additive (E171 in EU) has raised concerns for human health. Although the buccal mucosa is the first area exposed, oral transmucosal passage of TiO2 particles has not been documented. Here we analyzed E171 particle translocation in vivo through the pig buccal mucosa and in vitro on human buccal TR146 cells, and the effects on proliferating and differentiated TR146 cells. In the buccal floor of pigs, isolated TiO2 particles and small aggregates were observed 30 min after sublingual deposition, and were recovered in the submandibular lymph nodes at 4 h. In TR146 cells, kinetic analyses showed high absorption capacities of TiO2 particles. The cytotoxicity, genotoxicity and oxidative stress were investigated in TR146 cells exposed to E171 in comparison with two TiO2 size standards of 115 and 21 nm in diameter. All TiO2 samples were reported cytotoxic in proliferating cells but not following differentiation. Genotoxicity and slight oxidative stress were reported for the E171 and 115 nm TiO2 particles. These data highlight the buccal mucosa as an absorption route for the systemic passage of food-grade TiO2 particles. The greater toxicity on proliferating cells suggest potential impairement of oral epithelium renewal. In conclusion, this study emphasizes that buccal exposure should be considered during toxicokinetic studies and for risk assessment of TiO2 in human when used as food additive, including in toothpastes and pharmaceutical formulations.
Collapse
Affiliation(s)
- Julien Vignard
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Aurelie Pettes-Duler
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Eric Gaultier
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Christel Cartier
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Laurent Weingarten
- Centre de MicroCaractérisation Raimond Castaing, UAR 3623, Toulouse, France
| | - Antje Biesemeier
- Luxembourg Institute of Science and Technology (LIST), Materials Research and Technology (MRT), Advanced Instrumentation for Ion Nano-Analytics (AINA), Esch-sur-Alzette, Luxembourg
| | - Tatjana Taubitz
- Luxembourg Institute of Science and Technology (LIST), Materials Research and Technology (MRT), Advanced Instrumentation for Ion Nano-Analytics (AINA), Esch-sur-Alzette, Luxembourg
| | - Philippe Pinton
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | | | | | - Jacques Dupuy
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Elisa Boutet-Robinet
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | | | - Isabelle P Oswald
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Fabrice H Pierre
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Bruno Lamas
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Gladys Mirey
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Eric Houdeau
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
14
|
Chen X, Huang W, Liu C, Song H, Waiho K, Lin D, Fang JKH, Hu M, Kwan KY, Wang Y. Intestinal response of mussels to nano-TiO 2 and pentachlorophenol in the presence of predator. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161456. [PMID: 36640886 DOI: 10.1016/j.scitotenv.2023.161456] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
With the development of industry, agriculture and intensification of human activities, a large amount of nano-TiO2 dioxide and pentachlorophenol have entered aquatic environment, causing potential impacts on the health of aquatic animals and ecosystems. We investigated the effects of predators, pentachlorophenol (PCP) and nano titanium dioxide (nano-TiO2) on the gut health (microbiota and digestive enzymes) of the thick-shelled mussel Mytilus coruscus. Nano-TiO2, as the photocatalyst for PCP, enhanced to toxic effects of PCP on the intestinal health of mussels, and they made the mussels more vulnerable to the stress from predators. Nano-TiO2 particles with smaller size exerted a larger negative effect on digestive enzymes, whereas the size effect on gut bacteria was insignificant. The presence of every two of the three factors significantly affected the population richness and diversity of gut microbiota. Our findings revealed that the presence of predators, PCP, and nano-TiO2 promoted the proliferation of pathogenic bacteria and inhibited digestive enzyme activity. This research investigated the combined stress on marine mussels caused by nanoparticles and pesticides in the presence of predators and established a theoretical framework for explaining the adaptive mechanisms in gut microbes and the link between digestive enzymes and gut microbiota.
Collapse
Affiliation(s)
- Xiang Chen
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Science, Beibu Gulf University, Qinzhou City, China; International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Wei Huang
- Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China; Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Chunhua Liu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Hanting Song
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Khor Waiho
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - James K H Fang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Kit Yue Kwan
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Science, Beibu Gulf University, Qinzhou City, China
| | - Youji Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
15
|
Varma A, Warghane A, Dhiman NK, Paserkar N, Upadhye V, Modi A, Saini R. The role of nanocomposites against biofilm infections in humans. Front Cell Infect Microbiol 2023; 13:1104615. [PMID: 36926513 PMCID: PMC10011468 DOI: 10.3389/fcimb.2023.1104615] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/30/2023] [Indexed: 03/08/2023] Open
Abstract
The use of nanomaterials in several fields of science has undergone a revolution in the last few decades. It has been reported by the National Institutes of Health (NIH) that 65% and 80% of infections are accountable for at least 65% of human bacterial infections. One of their important applications in healthcare is the use of nanoparticles (NPs) to eradicate free-floating bacteria and those that form biofilms. A nanocomposite (NC) is a multiphase stable fabric with one or three dimensions that are much smaller than 100 nm, or systems with nanoscale repeat distances between the unique phases that make up the material. Using NC materials to get rid of germs is a more sophisticated and effective technique to destroy bacterial biofilms. These biofilms are refractory to standard antibiotics, mainly to chronic infections and non-healing wounds. Materials like graphene and chitosan can be utilized to make several forms of NCs, in addition to different metal oxides. The ability of NCs to address the issue of bacterial resistance is its main advantage over antibiotics. This review highlights the synthesis, characterization, and mechanism through which NCs disrupt Gram-positive and Gram-negative bacterial biofilms, and their relative benefits and drawbacks. There is an urgent need to develop materials like NCs with a larger spectrum of action due to the rising prevalence of human bacterial diseases that are multidrug-resistant and form biofilms.
Collapse
Affiliation(s)
- Anand Varma
- Arundeep Akshay Urja Pvt. Ltd. Gorakhpur, Uttar Pradesh, India
| | - Ashish Warghane
- School of Applied Sciences and Technology (SAST), Gujarat Technological University, Ahmedabad, Gujarat, India
| | - Neena K. Dhiman
- Department of Zoology, Gargi College, University of Delhi, Delhi, India
| | - Neha Paserkar
- Faculty of Life Sciences, Mandsaur University, Mandsaur, Madhya Pradesh, India
| | - Vijay Upadhye
- Centre of Research for Development (CR4D), Parul University, Vadodara, Gujarat, India
| | - Anupama Modi
- School of Applied Sciences and Technology (SAST), Gujarat Technological University, Ahmedabad, Gujarat, India
| | - Rashmi Saini
- Department of Zoology, Gargi College, University of Delhi, Delhi, India
| |
Collapse
|
16
|
A weight of evidence review of the genotoxicity of titanium dioxide (TiO2). Regul Toxicol Pharmacol 2022; 136:105263. [DOI: 10.1016/j.yrtph.2022.105263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 09/10/2022] [Indexed: 11/06/2022]
|
17
|
Chi K, Zou Y, Liu C, Dong Z, Liu Y, Guo N. Staphylococcal enterotoxin A induces DNA damage in hepatocytes and liver tissues. Toxicon 2022; 221:106980. [DOI: 10.1016/j.toxicon.2022.106980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/05/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
|
18
|
Elderdery AY, Alhamidi AH, Elkhalifa AME, Althobiti MM, Eltayeb Omer N, Alsugoor MH, Alsuhaymi N, Atebien EM, Hamza SMA, Alzahrani B, Alanazi F, Subbiah SK, Mok PL. Synthesis, Characterization, and Antimicrobial and Antiproliferative Effects of CuO-TiO 2-Chitosan-Escin Nanocomposites on Human Leukemic MOLT4 Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12213753. [PMID: 36364538 PMCID: PMC9655830 DOI: 10.3390/nano12213753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/15/2022] [Accepted: 10/19/2022] [Indexed: 05/13/2023]
Abstract
Nanocomposites comprised of CuO-TiO2-chitosan-escin, which has adjustable physicochemical properties, provide a solution for therapeutic selectivity in cancer treatment. By controlling the intrinsic signaling primarily through the mitochondrial signaling pathway, we desired nanocomposites with enhanced anticancer activity by containing CuO-TiO2-chitosan-escin. The metal oxides CuO and TiO2, the natural polymer chitosan, and a phytochemical compound escin were combined to form CuO-TiO2-chitosan-escin nanocomposites. The synthesized nanocomposites were confirmed and characterized using FTIR spectroscopy, TEM, and UV-Vis absorption spectroscopy. A human leukemia cell line (MOLT-4) was used to assess the efficacy and selectivity of nanocomposites. Based on a cytotoxicity study, CuO-TiO2-chitosan-escin nanocomposites had inhibition concentrations (IC50) of 13.68, 8.9, and 7.14 µg/mL against human T lymphoblast cells after 24, 48, and 72 h of incubation, respectively. Compared with untreated MOLT-4 cells, CuO-TiO2-chitosan-escin nanocomposite-treated cells significantly increased (p < 0.05) caspase-3, -8, and -9 and decreased the levels of antioxidant enzymes GR, SOD, and GSH. Furthermore, MDA for lipid peroxidase and ROS levels significantly increased (p < 0.05) in the treated cells than in the untreated cells. Remarkably, CuO-TiO2-chitosan-escin nanocomposite-mediated control of cell cycles were mainly achieved through the activation of caspase-3, -8, and -9.
Collapse
Affiliation(s)
- Abozer Y. Elderdery
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 42421, Saudi Arabia
- Health Sciences Research Unit, Jouf University, Sakaka 42421, Saudi Arabia
- Correspondence: (A.Y.E.); (P.L.M.)
| | - Abdulaziz H. Alhamidi
- Clinical Laboratory Sciences Department, College of Applied Medical Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed M. E. Elkhalifa
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh 13316, Saudi Arabia
| | - Maryam M. Althobiti
- Department of Clinical Laboratory Science, College of Applied Medical Science, King Saud University, Shaqra 15572, Saudi Arabia
| | | | - Mahdi H. Alsugoor
- Department of Emergency Medical Services, Faculty of Health Sciences, AlQunfudah, Umm Al-Qura University, Makkah 21912, Saudi Arabia
| | - Naif Alsuhaymi
- Department of Emergency Medical Services, Faculty of Health Sciences, AlQunfudah, Umm Al-Qura University, Makkah 21912, Saudi Arabia
| | - Entesar M. Atebien
- Department of Clinical Laboratory Science, College of Applied Medical Science, King Saud University, Shaqra 15572, Saudi Arabia
| | - Siddiqa M. A. Hamza
- College of Medicine, Department of Pathology, Umm Alqura University Algunfuda, Mecca 24382, Saudi Arabia
| | - Badr Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 42421, Saudi Arabia
| | - Fehaid Alanazi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences-AlQurayyat, Jouf University, Sakaka 42421, Saudi Arabia
| | - Suresh Kumar Subbiah
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai 600073, India
| | - Pooi Ling Mok
- Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence: (A.Y.E.); (P.L.M.)
| |
Collapse
|
19
|
Interleukin-8 Regulates the Autophagy and Apoptosis in Gastric Cancer Cells via Regulating PI3K/Akt Signaling Pathway. DISEASE MARKERS 2022; 2022:7300987. [PMID: 35990250 PMCID: PMC9388311 DOI: 10.1155/2022/7300987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/11/2022] [Accepted: 06/16/2022] [Indexed: 11/18/2022]
Abstract
Objective. To explore the role and mechanism of interleukin-8-mediated autophagy regulation of gastric cancer (GC) cells in GC. Methods. After cell culture, the SGC7901 cell line was separated into the control group and IL-8 (20 ng/mL) group, IL-8 (40 ng/mL) group, and IL-8 (60 ng/mL) group, to verify the effects of the PI3K/Akt signal path on the modulation of autophagy in GC cells. Western blot detected autophagy markers, ATG12-ATG5 complexes, autophagy-associated pathways, and apoptosis-associated factors in GC cells. Transwell was utilized to identify invasion capability. Results. Compared with the control group, the expression of LC3II, Atg5, ATG7, Beclin1, Bax, C-cas3, C-cas9, P-PI3K, P-Akt, and ATG12-ATG5 was remarkably elevated in the IL-8 (60 ng/mL) group, IL-8 (20 ng/mL) group, and the IL-8 (40 ng/mL) group. The expression of P62 and Bcl-2 in the IL-8 (60 ng/mL) group was also lower than that of the IL-8 (20 ng/mL) group and IL-8 (40 ng/mL) group, in contrast to the controls. The invasive quantity of GC SGC7901 cells in the IL-8 (60 ng/mL) group was also remarkably higher in contrast to the IL-8 (20 ng/mL) and IL-8 (40 ng/mL) groups. The relative expressions of LC3II, Atg5, ATG7, Beclin1, Bax, C-cas3, C-cas9, P-PI3K, P-Akt, and ATG12-ATG5 complex proteins in LY294002 group were considerably elevated. LC3II, Atg5, ATG7, Beclin1, Bax, C-cas3, C-cas9, P-PI3K, P-Akt, and ATG12-ATG5 were decreased in the IL-8 + LY294002 group. The relative expressions of P62 and Bcl-2 proteins in the IL-8 + LY294002 group were remarkably elevated, and the invasion of SGC7901 cells in the IL-8 group was elevated. In contrast to the IL-8 group, the invasion quantity of gastric cancer SGC7901 cells in the IL-8 + LY294002 group was considerably decreased. Conclusion. IL-8 promotes autophagy and aggression and suppresses apoptosis of GC SGC7901 cells by regulating PI3K/AKT pathway phosphorylation.
Collapse
|
20
|
Indirect mediators of systemic health outcomes following nanoparticle inhalation exposure. Pharmacol Ther 2022; 235:108120. [PMID: 35085604 PMCID: PMC9189040 DOI: 10.1016/j.pharmthera.2022.108120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023]
Abstract
The growing field of nanoscience has shed light on the wide diversity of natural and anthropogenic sources of nano-scale particulates, raising concern as to their impacts on human health. Inhalation is the most robust route of entry, with nanoparticles (NPs) evading mucociliary clearance and depositing deep into the alveolar region. Yet, impacts from inhaled NPs are evident far outside the lung, particularly on the cardiovascular system and highly vascularized organs like the brain. Peripheral effects are partly explained by the translocation of some NPs from the lung into the circulation; however, other NPs largely confined to the lung are still accompanied by systemic outcomes. Omic research has only just begun to inform on the complex myriad of molecules released from the lung to the blood as byproducts of pulmonary pathology. These indirect mediators are diverse in their molecular make-up and activity in the periphery. The present review examines systemic outcomes attributed to pulmonary NP exposure and what is known about indirect pathological mediators released from the lung into the circulation. Further focus was directed to outcomes in the brain, a highly vascularized region susceptible to acute and longer-term outcomes. Findings here support the need for big-data toxicological studies to understand what drives these health outcomes and better predict, circumvent, and treat the potential health impacts arising from NP exposure scenarios.
Collapse
|
21
|
Abdel-Halim KY, Osman SR, Abuzeid MA, El-Danasoury HT, Khozimy AM. Apoptotic and histopathological defects enhanced by titanium dioxide nanoparticles in male mice after short-term exposure. Toxicol Rep 2022; 9:1331-1346. [PMID: 36518392 PMCID: PMC9743451 DOI: 10.1016/j.toxrep.2022.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 10/18/2022] Open
Abstract
Titanium dioxide nanoparticles (TiO2NPs) are commercially utilized in diverse fields. Therefore, the current study investigated the apoptotic and histopathological defects that were caused in male mice following intraperitoneal (i.p) injection of TiO2NPs for 28 days. Doses: 2.5, 5.0, 10.0 and 20.0 mg/kg body weight were applied (10 mice for each group). Results revealed that, lactate dehydrogenase (LDH) activity was significantly increased in homogenates of liver, spleen, kidney, lung, heart, and muscles of treated animals, respect to their controls. Also, significant alterations in acid and alkaline phosphatase (ACP and ALP) activities were reported. The dose 5.0 mg/kg exhibited a significant decline in cell viability of blood samples (74.9 %) (P 0.05 = 0.0177), followed by 2.5 mg/kg (80.8 %), and finally the 10.0 mg/kg (81.8 %) with respect to control (96.3 %). Additionally, significant increases of expressed proteins of caspases-3 and-7 were noticed in cells of the treated animals. Ultrastructural investigations in sections of liver, kidney, lung and spleen of the treated animals showed significant defects, especially in the nucleus, mitochondria and rough endoplasmic reticulum (RER), compared to normal patterns of the control. Also, significant induction of nanoparticle (NPs)-phagolysosomes was visualized in sections of the treated animals. The present findings might provide evidence for the risk pattern of TiO2NPs in mammals after short-term exposure. So, TiO2NPs-based commercial products have now increased in the markets, and it is prudent to investigate their mammalian toxicology.
Collapse
Affiliation(s)
- Khaled Y. Abdel-Halim
- Mammalian & Aquatic Toxicology Department, Central Agricultural Pesticides Laboratory (CAPL), Agricultural Research Center (ARC), 12618 Dokki, Giza, Egypt
| | - Safaa R. Osman
- Mammalian & Aquatic Toxicology Department, Central Agricultural Pesticides Laboratory (CAPL), Agricultural Research Center (ARC), 12618 Dokki, Giza, Egypt
| | - Mohamed A.F. Abuzeid
- Department of Plant Protection, Faculty of Agriculture, Damanhour University, PO Box 59, Damanhour city, El-Behera, Egypt
| | - Heba T.M. El-Danasoury
- Department of Plant Protection, Faculty of Agriculture, Suez Canal University, Ismailia city, Egypt
| | - Alaa M. Khozimy
- Department of Plant Protection, Faculty of Agriculture, Damanhour University, PO Box 59, Damanhour city, El-Behera, Egypt
| |
Collapse
|
22
|
Xie D, Hu J, Wu T, Xu W, Meng Q, Cao K, Luo X. Effects of Flavonoid Supplementation on Nanomaterial-Induced Toxicity: A Meta-Analysis of Preclinical Animal Studies. Front Nutr 2022; 9:929343. [PMID: 35774549 PMCID: PMC9237539 DOI: 10.3389/fnut.2022.929343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/19/2022] [Indexed: 12/09/2022] Open
Abstract
BackgroundNanomaterials, widely applied in various fields, are reported to have toxic effects on human beings; thus, preventive or therapeutic measures are urgently needed. Given the anti-inflammatory and antioxidant activities, supplementation with flavonoids that are abundant in the human diet has been suggested as a potential strategy to protect against nanomaterial-induced toxicities. However, the beneficial effects of flavonoids remain inconclusive. In the present study, we performed a meta-analysis to comprehensively explore the roles and mechanisms of flavonoids for animals intoxicated with nanomaterials.MethodsA systematic literature search in PubMed, EMBASE, and Cochrane Library databases was performed up to April 2022. STATA 15.0 software was used for meta-analyses.ResultsA total of 26 studies were identified. The results showed that flavonoid supplementation could significantly increase the levels of antioxidative enzymes (superoxide dismutase, catalase, glutathione, glutathione peroxidase, and glutathione-S-transferase), reduce the production of oxidative agents (malonaldehyde) and pro-inflammatory mediators (tumor necrosis factor-α, interleukin-6, IL-1β, C-reactive protein, immunoglobulin G, nitric oxide, vascular endothelial growth factor, and myeloperoxidase), and alleviate cell apoptosis (manifested by decreases in the mRNA expression levels of pro-apoptotic factors, such as caspase-3, Fas cell surface death receptor, and Bax, and increases in the mRNA expression levels of Bcl2), DNA damage (reductions in tail length and tail DNA%), and nanomaterial-induced injuries of the liver (reduced alanine aminotransferase and aspartate aminotransferase activities), kidney (reduced urea, blood urea nitrogen, creatinine, and uric acid concentration), testis (increased testosterone, sperm motility, 17β-hydroxysteroid dehydrogenase type, and reduced sperm abnormalities), and brain (enhanced acetylcholinesterase activities). Most of the results were not changed by subgroup analyses.ConclusionOur findings suggest that appropriate supplementation of flavonoids may be effective to prevent the occupational detriments resulting from nanomaterial exposure.
Collapse
Affiliation(s)
- Dongli Xie
- College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Jianchen Hu
- College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Tong Wu
- Shanghai Jing Rui Yang Industrial Co., Ltd, Shanghai, China
| | - Wei Xu
- Shanghai Nutri-woods Bio-Technology Co., Ltd, Shanghai, China
| | - Qingyang Meng
- Shanghai Pechoin Daily Chemical Co., Ltd, Shanghai, China
| | - Kangli Cao
- Shanghai Institute of Spacecraft Equipment, Shanghai, China
| | - Xiaogang Luo
- College of Textile and Clothing Engineering, Soochow University, Suzhou, China
- *Correspondence: Xiaogang Luo,
| |
Collapse
|
23
|
Wang T, Zhang Z, Xie M, Li S, Zhang J, Zhou J. Apigenin Attenuates Mesoporous Silica Nanoparticles-Induced Nephrotoxicity by Activating FOXO3a. Biol Trace Elem Res 2022; 200:2793-2806. [PMID: 34448149 DOI: 10.1007/s12011-021-02871-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/04/2021] [Indexed: 11/30/2022]
Abstract
Mesoporous silica nanoparticles (MSNs) are widely used in many biomedical applications and clinical fields. However, the applications of MSNs are limited by their severe toxicity. Apigenin (AG) has demonstrated pharmacological effects with low toxicity. The aim of this study was to clarify the role of AG in the progression of MSNs-induced renal injury. BALB/c mice and NRK-52E cells were exposed to MSNs with or without AG. AG protected mice and NRK-52E cells from the MSNs-induced pathological variations in renal tissues and decreased cell viability. AG significantly reduced the levels of serum blood urea nitrogen (BUN) and serum creatinine (Scr), upregulated the levels of superoxide dismutase (SOD), glutathione (GSH) and catalase (CAT), and improved the pathological changes of the kidney in MSNs-treated mice. The protective effects of AG were associated with its ability to increase the levels of antioxidants, reduce the accumulation of ROS, and inhibit the expression of the inflammatory mediators (TNF-α, IL-6). In addition, AG treatment upregulated the activity of FOXO3a, increased the level of IkBα, and reduced the nuclear translocation of NF-κB, which ultimately alleviated MSNs-induced inflammation. Nuclear FOXO3a translocation also triggered antioxidant gene transcription and protected nephrocyte from oxidative damage. However, knockdown of FOXO3a significantly blocked the protective effects of AG. These findings suggested that AG could be a promising therapeutic strategy for MSNs-induced nephrotoxicity, and this protective effect might be related to the suppression of oxidative stress and inflammation via the FOXO3a/NF-κB pathway.
Collapse
Affiliation(s)
- Tianyang Wang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, People's Republic of China
| | - Ziwen Zhang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, People's Republic of China
| | - Minjuan Xie
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, People's Republic of China
| | - Saifeng Li
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, People's Republic of China
| | - Jian Zhang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, People's Republic of China
| | - Jie Zhou
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, People's Republic of China.
| |
Collapse
|
24
|
Mechanistic study of silica nanoparticles on the size-dependent retinal toxicity in vitro and in vivo. J Nanobiotechnology 2022; 20:146. [PMID: 35305659 PMCID: PMC8934510 DOI: 10.1186/s12951-022-01326-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/24/2022] [Indexed: 12/07/2022] Open
Abstract
Background Silica nanoparticles (SiO2 NPs) are extensively applied in the biomedical field. The increasing medical application of SiO2 NPs has raised concerns about their safety. However, studies on SiO2 NP-induced retinal toxicity are lacking. Methods We investigated the retinal toxicity of SiO2 NPs with different sizes (15 and 50 nm) in vitro and in vivo along with the underlying mechanisms. The cytotoxicity of SiO2 NPs with different sizes was assessed in R28 human retinal precursor cells by determining the ATP content and LDH release. The cell morphologies and nanoparticle distributions in the cells were analyzed by phase-contrast microscopy and transmission electron microscopy, respectively. The mitochondrial membrane potential was examined by confocal laser scanning microscopy. The retinal toxicity induced by SiO2 NPs in vivo was examined by immunohistochemical analysis. To further investigate the mechanism of retinal toxicity induced by SiO2 NPs, reactive oxygen species (ROS) generation, glial cell activation and inflammation were monitored. Results The 15-nm SiO2 NPs were found to have higher cytotoxicity than the larger NPs. Notably, the 15-nm SiO2 NPs induced retinal toxicity in vivo, as demonstrated by increased cell death in the retina, TUNEL-stained retinal cells, retinal ganglion cell degeneration, glial cell activation, and inflammation. In addition, The SiO2 NPs caused oxidative stress, as demonstrated by the increase in the ROS indicator H2DCF-DA. Furthermore, the pretreatment of R28 cells with N-acetylcysteine, an ROS scavenger, attenuated the ROS production and cytotoxicity induced by SiO2 NPs. Conclusions These results provide evidence that SiO2 NPs induce size-dependent retinal toxicity and suggest that glial cell activation and ROS generation contribute to this toxicity. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01326-8.
Collapse
|
25
|
Wang T, Zou J, Wu Q, Wang R, Yuan CL, Shu J, Zhai BB, Huang XT, Liu NZ, Hua FY, Wang XC, Mei WJ. Tanshinone IIA derivatives induced S-phase arrest through stabilizing c-myc G-quadruplex DNA to regulate ROS-mediated PI3K/Akt/mTOR pathway. Eur J Pharmacol 2021; 912:174586. [PMID: 34710368 DOI: 10.1016/j.ejphar.2021.174586] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023]
Abstract
Herein, a derivate from tanshinone IIA, 1,6,6-trimethyl-11-phenyl-7,8,9,10-tetrahydro-6H-furo[2',3':1,2]phenanthro[3,4-d]imidazole (TA25), has been synthesized and investigated as potential inhibitor against the proliferation, migration and invasion of lung cancer cells. MTT assay and cell colony formation assay results showed that TA25 exhibits acceptable inhibitory effect against the proliferation of lung cancer A549 cells, and the value of IC50 was about 17.9 μM. This result was further confirmed by the inhibition of TA25 against the growth of xenograft lung cancer cells on zebrafish bearing tumor (A549 lung cancer cells). The results of wound-healing assay and FITC-gelatin invasion assay displayed that TA25 could inhibit the migration and invasion of lung cancer A549 cells. Moreover, the studies on the binding properties of TA25 interact with c-myc G-quadruplex DNA suggested that TA25 can bind in the G-quarter plane formed from G7, G11, G16 and G20 with c-myc G-quadruplex DNA through π-π stacking. Further study of the potential anti-cancer mechanism indicated that TA25 can induce S-phase arrest in lung cancer A549 cells, and this phenomenon resulted from the promotion of the production of reactive oxygen species and DNA damage in A549 cells under the action of TA25. Further research revealed that TA25 could inhibit the PI3K/Akt/mTOR signal pathway and increase the expression of p53 protein. Overall, TA25 can be developed into a promising inhibitor against the proliferation, migration and invasion of lung cancer cells and has potential clinical application in the near future.
Collapse
Affiliation(s)
- Teng Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jun Zou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qiong Wu
- Guangdong Province Engineering Technology Centre for Molecular Probe and Bio-medicine Imaging, Guangzhou, 510006, China.
| | - Rui Wang
- The First Affiliation Hospital, Guangdong Pharmaceutical University, Guangzhou, 510062, China
| | - Chan-Ling Yuan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jing Shu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Bing-Bing Zhai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiao-Ting Huang
- Guangdong Province Engineering Technology Centre for Molecular Probe and Bio-medicine Imaging, Guangzhou, 510006, China
| | - Ning-Zhi Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Feng-Yang Hua
- The First Affiliation Hospital, Guangdong Pharmaceutical University, Guangzhou, 510062, China
| | - Xi-Cheng Wang
- The First Affiliation Hospital, Guangdong Pharmaceutical University, Guangzhou, 510062, China; Guangdong Province Engineering Technology Centre for Molecular Probe and Bio-medicine Imaging, Guangzhou, 510006, China.
| | - Wen-Jie Mei
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Province Engineering Technology Centre for Molecular Probe and Bio-medicine Imaging, Guangzhou, 510006, China.
| |
Collapse
|
26
|
EFSA Panel on Food Additives and Flavourings (FAF), Younes M, Aquilina G, Castle L, Engel K, Fowler P, Frutos Fernandez MJ, Fürst P, Gundert‐Remy U, Gürtler R, Husøy T, Manco M, Mennes W, Moldeus P, Passamonti S, Shah R, Waalkens‐Berendsen I, Wölfle D, Corsini E, Cubadda F, De Groot D, FitzGerald R, Gunnare S, Gutleb AC, Mast J, Mortensen A, Oomen A, Piersma A, Plichta V, Ulbrich B, Van Loveren H, Benford D, Bignami M, Bolognesi C, Crebelli R, Dusinska M, Marcon F, Nielsen E, Schlatter J, Vleminckx C, Barmaz S, Carfí M, Civitella C, Giarola A, Rincon AM, Serafimova R, Smeraldi C, Tarazona J, Tard A, Wright M. Safety assessment of titanium dioxide (E171) as a food additive. EFSA J 2021; 19:e06585. [PMID: 33976718 PMCID: PMC8101360 DOI: 10.2903/j.efsa.2021.6585] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The present opinion deals with an updated safety assessment of the food additive titanium dioxide (E 171) based on new relevant scientific evidence considered by the Panel to be reliable, including data obtained with TiO2 nanoparticles (NPs) and data from an extended one-generation reproductive toxicity (EOGRT) study. Less than 50% of constituent particles by number in E 171 have a minimum external dimension < 100 nm. In addition, the Panel noted that constituent particles < 30 nm amounted to less than 1% of particles by number. The Panel therefore considered that studies with TiO2 NPs < 30 nm were of limited relevance to the safety assessment of E 171. The Panel concluded that although gastrointestinal absorption of TiO2 particles is low, they may accumulate in the body. Studies on general and organ toxicity did not indicate adverse effects with either E 171 up to a dose of 1,000 mg/kg body weight (bw) per day or with TiO2 NPs (> 30 nm) up to the highest dose tested of 100 mg/kg bw per day. No effects on reproductive and developmental toxicity were observed up to a dose of 1,000 mg E 171/kg bw per day, the highest dose tested in the EOGRT study. However, observations of potential immunotoxicity and inflammation with E 171 and potential neurotoxicity with TiO2 NPs, together with the potential induction of aberrant crypt foci with E 171, may indicate adverse effects. With respect to genotoxicity, the Panel concluded that TiO2 particles have the potential to induce DNA strand breaks and chromosomal damage, but not gene mutations. No clear correlation was observed between the physico-chemical properties of TiO2 particles and the outcome of either in vitro or in vivo genotoxicity assays. A concern for genotoxicity of TiO2 particles that may be present in E 171 could therefore not be ruled out. Several modes of action for the genotoxicity may operate in parallel and the relative contributions of different molecular mechanisms elicited by TiO2 particles are not known. There was uncertainty as to whether a threshold mode of action could be assumed. In addition, a cut-off value for TiO2 particle size with respect to genotoxicity could not be identified. No appropriately designed study was available to investigate the potential carcinogenic effects of TiO2 NPs. Based on all the evidence available, a concern for genotoxicity could not be ruled out, and given the many uncertainties, the Panel concluded that E 171 can no longer be considered as safe when used as a food additive.
Collapse
|
27
|
Wang Z, Jin S, Zhang F, Wang D. Combined Toxicity of TiO 2 Nanospherical Particles and TiO 2 Nanotubes to Two Microalgae with Different Morphology. NANOMATERIALS 2020; 10:nano10122559. [PMID: 33419281 PMCID: PMC7766607 DOI: 10.3390/nano10122559] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 11/22/2022]
Abstract
The joint activity of multiple engineered nanoparticles (ENPs) has attracted much attention in recent years. Many previous studies have focused on the combined toxicity of different ENPs with nanostructures of the same dimension. However, the mixture toxicity of multiple ENPs with different dimensions is much less understood. Herein, we investigated the toxicity of the binary mixture of TiO2 nanospherical particles (NPs) and TiO2 nanotubes (NTs) to two freshwater algae with different morphology, namely, Scenedesmus obliquus and Chlorella pyrenoidosa. The physicochemical properties, dispersion stability, and the generation of reactive oxygen species (ROS) were determined in the single and binary systems. Classical approaches to assessing mixture toxicity were applied to evaluate and predict the toxicity of the binary mixtures. The results show that the combined toxicity of TiO2 NPs and NTs to S. obliquus was between the single toxicity of TiO2 NTs and NPs, while the combined toxicity to C. pyrenoidosa was higher than their single toxicity. Moreover, the toxicity of the binary mixtures to C. pyrenoidosa was higher than that to S. obliquus. A toxic unit assessment showed that the effects of TiO2 NPs and NTs were additive to the algae. The combined toxicity to S. obliquus and C. pyrenoidosa can be effectively predicted by the concentration addition model and the independent action model, respectively. The mechanism of the toxicity caused by the binary mixtures of TiO2 NPs and NTs may be associated with the dispersion stability of the nanoparticles in aquatic media and the ROS-induced oxidative stress effects. Our results may offer a new insight into evaluating and predicting the combined toxicological effects of ENPs with different dimensions and of probing the mechanisms involved in their joint toxicity.
Collapse
Affiliation(s)
- Zhuang Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; (S.J.); (F.Z.)
- Correspondence: ; Tel.: +86-25-58731090
| | - Shiguang Jin
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; (S.J.); (F.Z.)
| | - Fan Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; (S.J.); (F.Z.)
| | - Degao Wang
- School of Environmental Science and Technology, Dalian Maritime University, Dalian 116023, China;
| |
Collapse
|