1
|
Milano V, Riswan M, Jayanti PD, Istiqomah NI, Zurnansyah, Rini NP, Anggraeni K, Asri NS, Angel J, Sharma A, Ali D, Chotimah, Suharyadi E. Highly sensitive surface plasmon resonance-based sensor using green synthesized Fe 3O 4/rGO interface layer utilizing plant leaf extracts for alcohol compound detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 339:126266. [PMID: 40267579 DOI: 10.1016/j.saa.2025.126266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/03/2025] [Accepted: 04/17/2025] [Indexed: 04/25/2025]
Abstract
In this study, a fast response, real time, accurate, and non destructive alcohol detection method using surface plasmon resonance (SPR) technique was purposed. The SPR measurement was performed using 5-layers Krestchmann configuration with a layer structure of prism/Au thin film/Fe3O4/rGO nanocomposite/alcohol compounds/air. The Fe3O4/rGO nanocomposite was successfully synthesized using the green route utilizing Moringa oleifera and Amaranthus viridis leaf extract. X-ray diffraction analysis showed the nanocomposite has a face-centered cubic with an inverse spinel structure with a crystallite size of 5.6-5.8 nm. The size of Fe3O4 NPs in the Fe3O4/rGO nanocomposite was variated from 10.6-13.0 nm and showed that there is no impurities in the sample. Fourier transform infra-red analysis also validates the existence of Fe3O4 and rGO indicated by the FeO and CC bond, respectively. The interaction between Fe3O4 and rGO can also be observed through the coordinational bonding FeOC, which is validated by the presence of FeO and CO bonds. The optical properties were studied using ultraviolet-visible spectroscopy, which shows an energy gap of 2.36 eV. Magnetic properties of Fe3O4/rGO nanocomposite show a superparamagnetic characteristic with the saturation magnetization of 40.53 emu/g, magnetic susceptibility of 3.62 × 10-2, and the domain size is 6.22 nm. The SPR angle shifts when applied with Fe3O4/rGO nanocomposite. The addition of alcohol compound further shifted the SPR angle by 0.22°, 0.61°, and 1.19° for methanol, ethanol, and IPA, respectively. This noticeable shift shows a possibility for early detection to differentiate these 3 compounds. The presence of a magnetic field further shifts the SPR angle by 0.08°, 0.08°, and 0.10° for 40, 60, and 80 Oe, which indicates an increase in sensitivity. Therefore, the combination of applied magnetic field and green synthesized Fe3O4/rGO nanocomposite as an eco-friendly interface layer are potential to enhance the sensitivity of SPR to detect the alcohol compounds.
Collapse
Affiliation(s)
- Vincent Milano
- Department of Physics, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Muhammad Riswan
- Department of Physics, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Putri Dwi Jayanti
- Department of Physics, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - Zurnansyah
- Department of Physics, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - Karina Anggraeni
- Department of Physics, Universitas Gadjah Mada, Yogyakarta, Indonesia; Research Center for Food Technology and Processing, National Research and Innovation Agency, Indonesia
| | - Nining Sumawati Asri
- Research Center for Advanced Materials, National Research and Innovation Agency, Tangerang Selatan, Indonesia
| | - Julia Angel
- Research Center for Nanotechnology System, National Research and Innovation Agency, Tangerang Selatan, Indonesia
| | - Abhishek Sharma
- College of Pharmacy, Gachon University, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Chotimah
- Department of Physics, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Edi Suharyadi
- Department of Physics, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| |
Collapse
|
2
|
Nagdeve SN, Suganthan B, Ramasamy RP. An electrochemical biosensor for the detection of microRNA-31 as a potential oral cancer biomarker. J Biol Eng 2025; 19:24. [PMID: 40133958 PMCID: PMC11938787 DOI: 10.1186/s13036-025-00492-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/28/2025] [Indexed: 03/27/2025] Open
Abstract
Oral cancer presents substantial challenges to global health due to its elevated mortality rates. Approximately 90% of these malignancies are oral squamous cell carcinoma (OSCC). A significant contributor to the prevalence of oral cancer is the difficulty in detecting cancerous biomarkers, further exacerbated by socioeconomic disadvantages and late-stage diagnoses. Given the critical nature of oral cancer, the early detection of biomarkers is essential for reducing mortality rates. This study investigates the application of microRNA-31 (miRNA-31) as a biomarker for the electrochemical detection of oral cancer, recognizing the considerable potential that microRNAs have demonstrated in cancer screening and diagnosis. The methodology employed includes the use of a glassy carbon electrode modified with graphene and a molecular tethering agent designed to enhance sensitivity and specificity. The biosensor exhibited a limit of detection of 10- 11 M (70 pg/mL or 6.022 × 106 copies/µL) in buffer and 10- 10 M (700 pg/mL or 6.022 × 107 copies/µL) in diluted serum for the complementary target miRNA-31 using the Six Sigma method. The efficacy of this biosensor was further validated through specificity studies utilizing a non-complementary miRNA in both buffer and human serum samples. The electrochemical biosensor displayed exceptional performance and high sensitivity in detecting miRNA-31, confirming its role as an innovative sensor for the non-invasive diagnosis of oral cancer. Furthermore, the proposed biosensor demonstrates several advantages over current methodologies, including reduced detection time, and cost-effective reagents.
Collapse
Affiliation(s)
- Sanket Naresh Nagdeve
- Nano Electrochemistry Laboratory, School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, 30602, USA
| | - Baviththira Suganthan
- Nano Electrochemistry Laboratory, School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, 30602, USA
| | - Ramaraja P Ramasamy
- Nano Electrochemistry Laboratory, School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, 30602, USA.
| |
Collapse
|
3
|
Xu Q, Yin H, Cui M, Huang R, Su R. An Enhanced Bimetallic Optical Fiber SPR Biosensor Using Graphene Oxide for the Label-Free and Sensitive Detection of Human IgG. SENSORS (BASEL, SWITZERLAND) 2025; 25:1630. [PMID: 40096495 PMCID: PMC11902575 DOI: 10.3390/s25051630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/23/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
A fiber-reinforced SPR sensor based on silver-nucleated gold-shell bimetallic nanoparticles and graphene oxide was developed and applied to human IgG detection. The refractive index (RI) sensitivity of the Ag@Au/GO fiber SPR sensor is as high as 4715.9 nm/RIU in the RI range of 1.333-1.365. Staphylococcus aureus protein A (SPA) can specifically recognize and bind to the fragment crystallizable (Fc) of the antibody; it facilitates the highly targeted immobilization of the antibody. SPA and rabbit anti-human IgG were immobilized on the surface of the Ag@Au/GO fiber SPR sensor for the detection of different concentrations of human IgG with a sensitivity of 0.53 nm/μg/mL and detection limits of 0.037 μg/mL. This biosensor based on the mixed structure of GO and Ag@Au combined the common advantages of the two materials. Therefore, our study provides a simple platform for biological analysis and has a good application prospect.
Collapse
Affiliation(s)
- Qiang Xu
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, China; (Q.X.); (R.H.)
- Ningbo Key Laboratory of Green Petrochemical Carbon Emission Reduction Technology and Equipment, Zhejiang Institute of Tianjin University, Ningbo 315201, China
| | - Huiting Yin
- Ningbo Key Laboratory of Green Petrochemical Carbon Emission Reduction Technology and Equipment, Zhejiang Institute of Tianjin University, Ningbo 315201, China
| | - Mei Cui
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;
| | - Renliang Huang
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, China; (Q.X.); (R.H.)
| | - Rongxin Su
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, China; (Q.X.); (R.H.)
- Ningbo Key Laboratory of Green Petrochemical Carbon Emission Reduction Technology and Equipment, Zhejiang Institute of Tianjin University, Ningbo 315201, China
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;
| |
Collapse
|
4
|
Rhouati A, Thakur A, Anasori B, Zourob M. Investigation of the Mo 2Ti 2C 3T x MXene in the electrochemical immunosensing of the respiratory syncytial virus (RSV). NANOSCALE 2025; 17:5161-5170. [PMID: 39895337 DOI: 10.1039/d4nr04333b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
MXenes are a growing family of two-dimensional (2D) layered transition metal carbides, nitrides, and/or carbonitrides. Recently, these materials have been used in many sensing and biosensing platforms because of their excellent electrochemical characteristics. In this work, we investigate the applicability of double transition metal (DTM)-based MXenes in the electrochemical immunosensing of the respiratory syncytial virus (RSV). This ubiquitous virus is considered a major pathogen causing acute lower respiratory tract infections in young children and elderly individuals. The immunosensor was constructed by immobilizing the RSV antibody on screen-printed carbon electrodes modified with graphene oxide and the Mo2Ti2C3Tx DTM MXene. The presence of the RSV antigen was detected in a label-free mode using square wave voltammetry. A low limit of detection of 0.015 pg mL-1 and a remarkable selectivity against other bacterial and viral pathogens, including coronavirus, were achieved. We also compared this MXene with the standard Ti3C2Tx and confirmed that it has a 1.21-fold higher electrochemically active effective surface area. The applicability of the Mo2Ti2C3Tx MXene-based immunosensor in real serum samples was also investigated, yielding excellent recovery percentages ranging from 95.48 to 98.59%.
Collapse
Affiliation(s)
- Amina Rhouati
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh 11533, Saudi Arabia.
| | - Anupma Thakur
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Babak Anasori
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Mohammed Zourob
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh 11533, Saudi Arabia.
| |
Collapse
|
5
|
Jiang F, Qi L, Li SC, Song G, Ge B, Yu HZ. UV/Ozone-Assisted Covalent Bioconjugation on Graphene Tapes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3843-3851. [PMID: 39905587 DOI: 10.1021/acs.langmuir.4c03901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Compared to pristine graphene, graphene oxide (GO) has intriguing advantages for biological applications, such as high compatibility and much improved solubility in an aqueous environment. In particular, the oxygen-containing functional groups on GO enable the highly stable covalent conjugation of biomolecules, which promotes its application for developing versatile functional devices. In this work, we explored an ultraviolet/ozone (UV/O3) treatment strategy to activate graphene-tape substrates (prepared by drop-casting graphene nanoplatelets on double-sided conductive carbon tapes) to achieve excellent bioconjugation capabilities. Our Fourier transform infrared spectroscopy (FTIR), wetting, and X-ray photoelectron spectroscopy (XPS) measurements confirmed the generation of high-density oxygen-containing functional groups on graphene-carbon tape, while the conductivity and electrochemical activity are merely influenced. Upon immobilizing amino-ferrocene (Fc-NH2) onto the UV/O3-activated graphene tape via carbodiimide cross-linking, a strong pair of redox peaks (corresponding to an Fc surface density over 8.0 × 10-9 mol/cm2) was observed, indicative of its "elevated" covalent conjugation capability. More remarkably, highly efficient conjugation of glucose oxidase on UV/O3-treated graphene tape was achieved, which demonstrated excellent catalytic activity, as confirmed by chronoamperometry. These results augment the great potential of UV/O3-activated graphene tape substrates for convenient fabrication of electroactive biofunctional devices with high performance.
Collapse
Affiliation(s)
- Feng Jiang
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Lin Qi
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- eSenso Biotech Inc., Burnaby, British Columbia V5C 6N3, Canada
| | - Stephen Chengxi Li
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Guojun Song
- College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Bixia Ge
- eSenso Biotech Inc., Burnaby, British Columbia V5C 6N3, Canada
| | - Hua-Zhong Yu
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
6
|
Hsiao WWW, Selvi SV, Alagumalai K. Fabrication of MnSnO 2 intercalated TA-rGO modified sensor for selective electrochemical detection of chloramphenicol in real samples. Food Chem 2025; 464:141474. [PMID: 39427617 DOI: 10.1016/j.foodchem.2024.141474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024]
Abstract
Chloramphenicol (CAP), a potent antibiotic capable of inhibiting protein synthesis, presents significant challenges related to long-term dosing and its persistent leaching into the environment, raising concerns about environmental contamination and resistance development. To address this issue, we developed a reliable, low-cost, and biocompatible nanocomposite material comprising tannic acid (TA)-reduced graphene oxide (rGO) intercalated into manganese-doped tin oxide nanoparticles (MnSnO₂ NPs). The structural formation and catalytic activity of the MnSnO₂ NPs/TA-rGO nanocomposite were characterized using field emission-scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and electrochemical techniques. This material exhibits robust interfacial interactions and synergistic effects, resulting in an admirable electrocatalytic reduction response for CAP sensing. The presence of co-interference molecules improved the selectivity performance of the MnSnO2 NPs/TA-rGO-modified glassy carbon electrode. The fabricated exhibited a two linear determination range (0.011-103.43 μmol L-1 and 103.43-1924.16 μmol L-1), with a detection limit (LOD) is 6.7 nmol L-1 and limit of quantification (LOQ) is 12.3 nmol L-1. Furthermore, this sensor demonstrated good sensitivity, admirable reproducibility, repeatability, and storage stability. Finally, the practicability of the fabricated MnSnO2 NPs/TA-rGO glassy carbon electrode sensor was evaluated by analyzing the CAP content in milk, honey, eye drops, biofluids (human serum and urine), and river water, and satisfactory recovery rates of 95.4 %-100.3 % were noted.
Collapse
Affiliation(s)
- Wesley Wei-Wen Hsiao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan.
| | - Subash Vetri Selvi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan; Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106319, Taiwan
| | | |
Collapse
|
7
|
Islam MS, Mitra S. Enhancing the Solubility of Co-Formulated Hydrophobic Drugs by Incorporating Functionalized Nano-Structured Poly Lactic- co-glycolic Acid ( nfPLGA) During Co-Precipitation. Pharmaceutics 2025; 17:77. [PMID: 39861725 PMCID: PMC11768099 DOI: 10.3390/pharmaceutics17010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: The co-formulation of active pharmaceutical ingredients (APIs) is a growing strategy in biopharmaceutical development, particularly when it comes to improving solubility and bioavailability. This study explores a co-precipitation method to prepare co-formulated crystals of griseofulvin (GF) and dexamethasone (DXM), utilizing nanostructured, functionalized polylactic glycolic acid (nfPLGA) as a solubility enhancer. Methods: An antisolvent precipitation technique was employed to incorporate nfPLGA at a 3% concentration into the co-formulated GF and DXM, referred to as DXM-GF-nfPLGA. The dissolution performance of this formulation was compared to that of the pure drugs and the co-precipitated DXM-GF without nfPLGA. Results: Several characterization techniques, including electron microscopy (SEM), RAMAN, FTIR, TGA, and XRD, were used to analyze the nfPLGA incorporation and the co-precipitated co-formulations. The inclusion of nfPLGA significantly enhanced the dissolution and initial dissolution rate of both GF and DXM in the DXM-GF-nfPLGA formulation, achieving a maximum dissolution of 100%, which was not attained by the pure drugs or the DXM-GF formulation. The incorporation of nfPLGA also reduced the amount of time taken to reach 50% (T50) and 80% (T80) dissolution. T50 values decreased from 52 and 82 min (for pure DXM and GF) to 23 min for DXM-GF-nfPLGA, and the T80 improved to 50 min for DXM-GF-nfPLGA, significantly outpacing the pure compounds. Furthermore, incorporating nfPLGA into the crystal structures greatly accelerated the dissolution rates, with initial rates reaching 650.92 µg/min for DXM-GF-nfPLGA compared to 540.60 µg/min for DXM-GF, while pure GF and DXM showed lower rates. Conclusions: This work demonstrates that nfPLGA incorporation enhances dissolution performance by forming water channels within the API crystal via hydrogen-bonding interactions. This innovative nfPLGA incorporation method holds promise for developing hydrophobic co-formulations with faster solubility and dissolution rates.
Collapse
Affiliation(s)
| | - Somenath Mitra
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA;
| |
Collapse
|
8
|
Fatemi K, Lau SY, Obayomi KS, Kiew SF, Coorey R, Chung LY, Fatemi R, Heshmatipour Z, Premarathna KSD. Carbon nanomaterial-based aptasensors for rapid detection of foodborne pathogenic bacteria. Anal Biochem 2024; 695:115639. [PMID: 39127327 DOI: 10.1016/j.ab.2024.115639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Each year, millions of people suffer from foodborne illness due to the consumption of food contaminated with pathogenic bacteria, which severely challenges global health. Therefore, it is essential to recognize foodborne pathogens swiftly and correctly. However, conventional detection techniques for bacterial pathogens are labor-intensive, low selectivity, and time-consuming, highlighting a notable knowledge gap. A novel approach, aptamer-based biosensors (aptasensors) linked to carbon nanomaterials (CNs), has shown the potential to overcome these limitations and provide a more reliable method for detecting bacterial pathogens. Aptamers, short single-stranded DNA (ssDNA)/RNA molecules, serve as bio-recognition elements (BRE) due to their exceptionally high affinity and specificity in identifying foodborne pathogens such as Salmonella spp., Escherichia coli (E. coli), Listeria monocytogenes, Campylobacter jejuni, and other relevant pathogens commonly associated with foodborne illnesses. Carbon nanomaterials' high surface area-to-volume ratio contributes unique characteristics crucial for bacterial sensing, as it improves the binding capacity and signal amplification in the design of aptasensors. Furthermore, aptamers can bind to CNs and create aptasensors with improved signal specificity and sensitivity. Hence, this review intends to critically review the current literature on developing aptamer functionalized CN-based biosensors by transducer optical and electrochemical for detecting foodborne pathogens and explore the advantages and challenges associated with these biosensors. Aptasensors conjugated with CNs offers an efficient tool for identifying foodborne pathogenic bacteria that is both precise and sensitive to potentially replacing complex current techniques that are time-consuming.
Collapse
Affiliation(s)
- Kiyana Fatemi
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia
| | - Sie Yon Lau
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia.
| | - Kehinde Shola Obayomi
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia; Zuckerberg Institute for Water Research (ZIWR), The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 84990, Israel
| | - Siaw Fui Kiew
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia; Sarawak Biovalley Pilot Plant, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Ranil Coorey
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Lip Yong Chung
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Reza Fatemi
- Department of Electrical Engineering, College of Technical and Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Zoheir Heshmatipour
- Department of Microbiology, Faculty of Science, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - K S D Premarathna
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia
| |
Collapse
|
9
|
Petry R, de Almeida JM, Côa F, Crasto de Lima F, Martinez DST, Fazzio A. Interaction of graphene oxide with tannic acid: computational modeling and toxicity mitigation in C. elegans. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1297-1311. [PMID: 39498295 PMCID: PMC11533115 DOI: 10.3762/bjnano.15.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/27/2024] [Indexed: 11/07/2024]
Abstract
Graphene oxide (GO) undergoes multiple transformations when introduced to biological and environmental media. GO surface favors the adsorption of biomolecules through different types of interaction mechanisms, modulating the biological effects of the material. In this study, we investigated the interaction of GO with tannic acid (TA) and its consequences for GO toxicity. We focused on understanding how TA interacts with GO, its impact on the material surface chemistry, colloidal stability, as well as, toxicity and biodistribution using the Caenorhabditis elegans model. Employing computational modeling, including reactive classical molecular dynamics and ab initio calculations, we reveal that TA preferentially binds to the most reactive sites on GO surfaces via the oxygen-containing groups or the carbon matrix; van der Waals interaction forces dominate the binding energy. TA exhibits a dose-dependent mitigating effect on the toxicity of GO, which can be attributed not only to the surface interactions between the molecule and the material but also to the inherent biological properties of TA in C. elegans. Our findings contribute to a deeper understanding of GO's environmental behavior and toxicity and highlight the potential of tannic acid for the synthesis and surface functionalization of graphene-based nanomaterials, offering insights into safer nanotechnology development.
Collapse
Affiliation(s)
- Romana Petry
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
- Ilum School of Science, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Santo André, 09210-580, São Paulo, Brazil
| | - James M de Almeida
- Ilum School of Science, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Francine Côa
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
- Center of Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Felipe Crasto de Lima
- Ilum School of Science, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Diego Stéfani T Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Adalberto Fazzio
- Ilum School of Science, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Santo André, 09210-580, São Paulo, Brazil
| |
Collapse
|
10
|
Sinha A, So H. Synthesis of chiral graphene structures and their comprehensive applications: a critical review. NANOSCALE HORIZONS 2024; 9:1855-1895. [PMID: 39171372 DOI: 10.1039/d4nh00021h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
From a molecular viewpoint, chirality is a crucial factor in biological processes. Enantiomers of a molecule have identical chemical and physical properties, but chiral molecules found in species exist in one enantiomer form throughout life, growth, and evolution. Chiral graphene materials have considerable potential for application in various domains because of their unique structural framework, properties, and controlled synthesis, including chiral creation, segregation, and transmission. This review article provides an in-depth analysis of the synthesis of chiral graphene materials reported over the past decade, including chiral nanoribbons, chiral tunneling, chiral dichroism, chiral recognition, and chiral transfer. The second segment focuses on the diverse applications of chiral graphene in biological engineering, electrochemical sensors, and photodetectors. Finally, we discuss research challenges and potential future uses, along with probable outcomes.
Collapse
Affiliation(s)
- Animesh Sinha
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul 04763, South Korea.
| | - Hongyun So
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul 04763, South Korea.
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, South Korea
| |
Collapse
|
11
|
Jagannath A, Yu M, Li J, Zhang N, Gilchrist MD. Improving assay feasibility and biocompatibility of 3D cyclic olefin copolymer microwells by superhydrophilic modification via ultrasonic spray deposition of polyvinyl alcohol. BIOMATERIALS ADVANCES 2024; 163:213934. [PMID: 38954877 DOI: 10.1016/j.bioadv.2024.213934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/30/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
Sample partitioning is a crucial step towards digitization of biological assays on polymer microfluidic platforms. However, effective liquid filling into microwells and long-term hydrophilicity remain a challenge in polymeric microfluidic devices, impeding the applicability in diagnostic and cell culture studies. To overcome this, a method to produce permanent superhydrophilic 3-dimensional microwells using cyclic olefin copolymer (COC) microfluidic chips is presented. The COC substrate is oxidized using UV treatment followed by ultrasonic spray coating of polyvinyl alcohol solution, offering uniform and long-term coating of high-aspect ratio microfeatures. The coated COC surfaces are UV-cured before bonding with a hydrophobic pressure-sensitive adhesive to drive selective filling into the wells. The surface hydrophilicity achieved using this method remains unchanged (water contact angle of 9°) for up to 6 months and the modified surface is characterized for physical (contact angle & surface energy, morphology, integrity of microfeatures and roughness), chemical composition (FTIR, Raman spectroscopy) and coating stability (pH, temperature, time). To establish the feasibility of the modified surface in biological applications, PVA-coated COC microfluidic chips are tested for DNA sensing (digital LAMP detection of CMV), and biocompatibility through protein adsorption and cell culture studies (cell adhesion, viability, and metabolic activity). Kidney and breast cells remained viable for the duration of testing (7 days) on this modified surface, and the coating did not affect the protein content, morphology or quality of the cultured cells. The ultrasonic spray coated system, coating with 0.25 % PVA for 15 cycles with 0.12 A current after UV oxidation, increased the surface energy of the COC (naturally hydrophobic) from 22.04 to 112.89 mJ/m2 and improved the filling efficiency from 40 % (native untreated COC) to 94 % in the microwells without interfering with the biocompatibility of the surface, proving to be an efficient, high-throughput and scalable method of microfluidic surface treatment for diagnostic and cell growth applications.
Collapse
Affiliation(s)
- Akshaya Jagannath
- School of Mechanical and Materials Engineering, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Mingzhi Yu
- School of Mechanical and Materials Engineering, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Jiaqi Li
- School of Mechanical and Materials Engineering, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Nan Zhang
- School of Mechanical and Materials Engineering, University College Dublin, Belfield, Dublin, 4, Ireland; MiNAN Technologies Ltd., NovaUCD, Belfield, Dublin 4, Ireland.
| | - Michael D Gilchrist
- School of Mechanical and Materials Engineering, University College Dublin, Belfield, Dublin, 4, Ireland; MiNAN Technologies Ltd., NovaUCD, Belfield, Dublin 4, Ireland
| |
Collapse
|
12
|
SinghDeo S, Naser SS, Nandi A, Sinha A, Shaikh SA, Mohapatra SK, Suar M, Verma SK, Tripathy J. Intrinsic physiochemical insights to green synthesized Ag-decorated GO nanosheet for photoluminescence and in vivo cellular biocompatibility with embryonic zebrafish. Colloids Surf B Biointerfaces 2024; 245:114212. [PMID: 39276757 DOI: 10.1016/j.colsurfb.2024.114212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/05/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
The advancement of nanotechnology and their application has intrigued a significant interest in green synthesis and application of organic and inorganic nanomaterials like graphene oxide (GO) and silver nanoparticles (AgNP). This study explores the intrinsic physiochemical properties of silver (Ag)-decorated graphene oxide (GO) nanosheets synthesized via a green approach, focusing on their photoluminescence behaviour and in vivo cellular biocompatibility with embryonic zebrafish. The nanocomposites were characterized using various spectroscopic and microscopic techniques to elucidate their structural and optical properties. Results reveal that the Ag-decorated GO nanosheets exhibit enhanced photoluminescence compared to pristine GO with an SPR at 405 nm and emission at 676 nm, attributed to the synergistic effects of Ag nanoparticles and GO. In addition, in vivo biocompatibility assessments using embryonic zebrafish demonstrate minimal cytotoxicity and high cellular viability upon exposure to the nanocomposites with an LC50 of 38 µg/ml, indicating their potential for biomedical applications. Further investigations into the interactions between the nanomaterials and biological systems provide valuable insights into their safety profile and suggest their suitability for various biomedical and therapeutic applications. Overall, this study offers a comprehensive understanding of the physiochemical characteristics and biological compatibility of Ag-decorated GO nanosheets, contributing to the advancement of nanotechnology in biomedicine and related fields.
Collapse
Affiliation(s)
- Simran SinghDeo
- School of Applied Sciences, KIIT University, Bhubaneswar 751024, India
| | | | - Aditya Nandi
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Adrija Sinha
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Sufiyan Ahmad Shaikh
- Institute of Chemical Technology - Indian Oil Odisha Campus, Bhubaneswar, Odisha 751013, India
| | - Swagat K Mohapatra
- Institute of Chemical Technology - Indian Oil Odisha Campus, Bhubaneswar, Odisha 751013, India
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India; Poznan University of Medical Sciences, Poznan 60-512, Poland.
| | | |
Collapse
|
13
|
Tene T, Svozilík J, Colcha D, Cevallos Y, Vinueza-Naranjo PG, Vacacela Gomez C, Bellucci S. The Tunable Parameters of Graphene-Based Biosensors. SENSORS (BASEL, SWITZERLAND) 2024; 24:5049. [PMID: 39124094 PMCID: PMC11314989 DOI: 10.3390/s24155049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/27/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Graphene-based surface plasmon resonance (SPR) biosensors have emerged as a promising technology for the highly sensitive and accurate detection of biomolecules. This study presents a comprehensive theoretical analysis of graphene-based SPR biosensors, focusing on configurations with single and bimetallic metallic layers. In this study, we investigated the impact of various metallic substrates, including gold and silver, and the number of graphene layers on key performance metrics: sensitivity of detection, detection accuracy, and quality factor. Our findings reveal that configurations with graphene first supported on gold exhibit superior performance, with sensitivity of detection enhancements up to 30% for ten graphene layers. In contrast, silver-supported configurations, while demonstrating high sensitivity, face challenges in maintaining detection accuracy. Additionally, reducing the thickness of metallic layers by 30% optimizes light coupling and enhances sensor performance. These insights highlight the significant potential of graphene-based SPR biosensors in achieving high sensitivity of detection and reliability, paving the way for their application in diverse biosensing technologies. Our findings pretend to motivate future research focusing on optimizing metallic layer thickness, improving the stability of silver-supported configurations, and experimentally validating the theoretical findings to further advance the development of high-performance SPR biosensors.
Collapse
Affiliation(s)
- Talia Tene
- Department of Chemistry, Universidad Técnica Particular de Loja, Loja 110160, Ecuador
| | - Jiří Svozilík
- Facultad de Ciencias, Escuela Superior Politécnica de Chimborazo (ESPOCH), Riobamba 060155, Ecuador
| | - Dennys Colcha
- UNICARIBE Research Center, University of Calabria, 87036 Rende, Italy
| | - Yesenia Cevallos
- College of Engineering, Universidad Nacional de Chimborazo, Riobamba 060108, Ecuador
- Universidad San Francisco de Quito IMNE, Diego de Robles s/n, Cumbayá, Quito 170901, Ecuador
| | | | | | - Stefano Bellucci
- INFN-Laboratori Nazionali di Frascati, Via E. Fermi 54, 00044 Frascati, Italy
| |
Collapse
|
14
|
Landarani-Isfahani A, Arabi M, Rezaei S, Moghadam M, Tangestaninejad S, Mohammadpoor-Baltork I, Mirkhani V, Mokhtariyan M. Surface Engineering of Superparamagnetic Graphene Oxide Nanosheet as a Chemically Tunable Platform for Facial Biofuel Production by Lipase. ACS APPLIED BIO MATERIALS 2024; 7:4406-4416. [PMID: 38866715 DOI: 10.1021/acsabm.4c00255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
In this research, we utilized an efficient approach to synthesize superparamagnetic graphene oxide (SPGO) rapidly in a one-pot method using microwave irradiation of graphene oxide (GO), urea, and Fe(III) ion. Tannic acid (TA) was introduced to the surface of SPGO through a straightforward and eco-friendly process. Methods were devised to furnish GO nanosheets and modify their surfaces with TA in an environmentally friendly manner. Two series of nanosheets, namely, SPGO/TA-COOH and SPGO/TA-IM, were engineered on the surface and used for immobilizing lipase enzyme. Through various analytical tools, the unique biocatalysts SPGO/TA-COOH/L and SPGO/TA-IM/L were confirmed. These biocatalysts exhibited enhanced stability at high temperatures and pH levels compared with free lipase. They also demonstrated prolonged storage stability and reusability over four months and seven cycles, respectively. Furthermore, the catalytic activity of immobilized lipase showed minimal impairment based on kinetic behavior analysis. The kinetic constants of SPGO/TA-IM/L were determined as Vmax = 0.24 mM min-1, Km = 0.224 mM, and kcat = 0.8 s-1. Additionally, the efficiency of biocatalysts for biodiesel production from palmitic acid was studied, focusing on various reaction parameters, such as temperature, alcohol to palmitic acid molar ratio, water content, and lipase quantity. The esterification reaction of palmitic acid with methanol, ethanol, and isopropanol was tested in the presence of SPGO/TA-COOH/L and SPGO/TA-IM/L, and the corresponding esters were obtained with a yield of 30.6-91.6%.
Collapse
Affiliation(s)
| | - Mahsa Arabi
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Saghar Rezaei
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Majid Moghadam
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | | | | | - Valiollah Mirkhani
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | | |
Collapse
|
15
|
Jarić S, Schobesberger S, Velicki L, Milovančev A, Nikolić S, Ertl P, Bobrinetskiy I, Knežević NŽ. Direct electrochemical reduction of graphene oxide thin film for aptamer-based selective and highly sensitive detection of matrix metalloproteinase 2. Talanta 2024; 274:126079. [PMID: 38608631 DOI: 10.1016/j.talanta.2024.126079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/17/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
Simple and low-cost biosensing solutions are suitable for point-of-care applications aiming to overcome the gap between scientific concepts and technological production. To compete with sensitivity and selectivity of golden standards, such as liquid chromatography, the functionalization of biosensors is continuously optimized to enhance the signal and improve their performance, often leading to complex chemical assay development. In this research, the efforts are made on optimizing the methodology for electrochemical reduction of graphene oxide to produce thin film-modified gold electrodes. Under the employed specific conditions, 20 cycles of cyclic voltammetry (CV) are shown to be optimal for superior electrical activation of graphene oxide into electrochemically reduced graphene oxide (ERGO). This platform is further used to develop a matrix metalloproteinase 2 (MMP-2) biosensor, where specific anti-MMP2 aptamers are utilized as a biorecognition element. MMP-2 is a protein which is typically overexpressed in tumor tissues, with important roles in tumor invasion, metastasis as well as in tumor angiogenesis. Based on impedimetric measurements, we were able to detect as low as 3.32 pg mL-1 of MMP-2 in PBS with a dynamic range of 10 pg mL-1 - 10 ng mL-1. Further experiments with real blood samples revealed a promising potential of the developed sensor for direct measurement of MMP-2 in complex media. High specificity of detection is demonstrated - even to the closely related enzyme MMP-9. Finally, the potential of reuse was demonstrated by signal restoration after experimental detection of MMP-2.
Collapse
Affiliation(s)
- Stefan Jarić
- Biosense Institute - Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia.
| | | | - Lazar Velicki
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000, Novi Sad, Serbia; Institute of Cardiovascular Diseases of Vojvodina, Put Doktora Goldmana 4, 21204, Sremska Kamenica, Serbia
| | - Aleksandra Milovančev
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000, Novi Sad, Serbia; Institute of Cardiovascular Diseases of Vojvodina, Put Doktora Goldmana 4, 21204, Sremska Kamenica, Serbia
| | - Stanislava Nikolić
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000, Novi Sad, Serbia; Center of Laboratory Medicine, Clinical Center of Vojvodina, Hajduk Veljkova 1, 21000, Novi Sad, Serbia
| | - Peter Ertl
- TU Wien, Faculty of Technical Chemistry, Getreidemarkt 9, 1060 Vienna, Austria
| | - Ivan Bobrinetskiy
- Biosense Institute - Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Nikola Ž Knežević
- Biosense Institute - Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia.
| |
Collapse
|
16
|
Sun Y, Huang A, Zhao Z, Song C, Lai G. [Immunogenic and toxic effects of graphene oxide nanoparticles in mouse skeletal muscles and human red blood cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:617-626. [PMID: 38708493 DOI: 10.12122/j.issn.1673-4254.2024.04.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
OBJECTIVE To investigate immunogenic and toxic effects of graphene oxide (GO) nanoparticles in mouse skeletal muscles and in human blood in vitro. METHODS GO nanoparticles prepared using a probe sonicator were supended in deionized H2O or PBS, and particle size and surface charge of the nanoparticles were measured with dynamic light scattering (DLS). Different concentrations (0.5, 1.0 and 2.0 mg/mL) of GO suspension or PBS were injected at multiple sites in the gastrocnemius muscle (GN) of C57BL/6 mice, and inflammatory response and immune cell infiltrations were detected with HE and immunofluorescence staining. We also examined the effects of GO nanoparticles on human red blood cell (RBC) morphology, hemolysis and blood coagulation using scanning electron microscope (SEM), spectrophotometry, and thromboelastography (TEG). RESULTS GO nanoparticles suspended in PBS exhibited better colloidal dispersity, stability and surface charge effects than those in deionized H2O. In mouse GNs, injection of GO suspensions dose- and time-dependently resulted in sustained muscular inflammation and myofiber degeneration at the injection sites, which lasted till 8 weeks after the injection; immunofluorescence staining revealed obvious infiltration of monocytes, macrophages, dendritic cells and CD4+ T cells around the injection sites in mouse GNs. In human RBCs, incubation with GO suspensions at 0.2, 2.0 and 20 mg/mL, but not at 0.002 or 0.02 mg/mL, caused significant alterations of cell morphology and hemolysis. TEG analysis showed significant abnormalities of blood coagulation parameters following treatment with high concentrations of GO. CONCLUSION GO nanoparticles can induce sustained inflammatory and immunological responses in mouse GNs and cause RBC hemolysis and blood coagulation impairment, suggesting its muscular toxicity and hematotoxicity at high concentrations.
Collapse
Affiliation(s)
- Yiming Sun
- Department of Human Anatomy, Bengbu Medical University, Bengbu 233030, China
| | - Ailan Huang
- Department of Food Quality and Safety, Bengbu Medical University, Bengbu 233030, China
| | - Zhi Zhao
- Department of Orthopedics of First Affiliated Hospital, Bengbu Medical University, Bengbu 233030, China
| | - Chen Song
- Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China
| | - Guihua Lai
- Department of Human Anatomy, Bengbu Medical University, Bengbu 233030, China
| |
Collapse
|
17
|
Monkrathok J, Janphuang P, Suphachiaraphan S, Kampaengsri S, Kamkaew A, Chansaenpak K, Lisnund S, Blay V, Pinyou P. Enhancing Glucose Biosensing with Graphene Oxide and Ferrocene-Modified Linear Poly(ethylenimine). BIOSENSORS 2024; 14:161. [PMID: 38667154 PMCID: PMC11048651 DOI: 10.3390/bios14040161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
We designed and optimized a glucose biosensor system based on a screen-printed electrode modified with the NAD-GDH enzyme. To enhance the electroactive surface area and improve the electron transfer efficiency, we introduced graphene oxide (GO) and ferrocene-modified linear poly(ethylenimine) (LPEI-Fc) onto the biosensor surface. This strategic modification exploits the electrostatic interaction between graphene oxide, which possesses a negative charge, and LPEI-Fc, which is positively charged. This interaction results in increased catalytic current during glucose oxidation and helps improve the overall glucose detection sensitivity by amperometry. We integrated the developed glucose sensor into a flow injection (FI) system. This integration facilitates a swift and reproducible detection of glucose, and it also mitigates the risk of contamination during the analyses. The incorporation of an FI system improves the efficiency of the biosensor, ensuring precise and reliable results in a short time. The proposed sensor was operated at a constant applied potential of 0.35 V. After optimizing the system, a linear calibration curve was obtained for the concentration range of 1.0-40 mM (R2 = 0.986). The FI system was successfully applied to determine the glucose content of a commercial sports drink.
Collapse
Affiliation(s)
- Jirawan Monkrathok
- School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Ave., Nakhon Ratchasima 30000, Thailand; (J.M.); (S.K.); (A.K.)
| | - Pattanaphong Janphuang
- Synchrotron Light Research Institute (Public Organization), 111 University Ave., Nakhon Ratchasima 30000, Thailand; (P.J.); (S.S.)
| | - Somphong Suphachiaraphan
- Synchrotron Light Research Institute (Public Organization), 111 University Ave., Nakhon Ratchasima 30000, Thailand; (P.J.); (S.S.)
| | - Sastiya Kampaengsri
- School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Ave., Nakhon Ratchasima 30000, Thailand; (J.M.); (S.K.); (A.K.)
| | - Anyanee Kamkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Ave., Nakhon Ratchasima 30000, Thailand; (J.M.); (S.K.); (A.K.)
| | - Kantapat Chansaenpak
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani 12120, Thailand;
| | - Sireerat Lisnund
- Department of Applied Chemistry, Faculty of Science and Liberal Arts, Rajamangala University of Technology Isan, 744 Suranarai Rd., Nakhon Ratchasima 30000, Thailand;
| | - Vincent Blay
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | - Piyanut Pinyou
- School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Ave., Nakhon Ratchasima 30000, Thailand; (J.M.); (S.K.); (A.K.)
| |
Collapse
|
18
|
Yin C, Yu L, Feng L, Zhou JT, Du C, Shao X, Cheng Y. Nanotoxicity of two-dimensional nanomaterials on human skin and the structural evolution of keratin protein. NANOTECHNOLOGY 2024; 35:225101. [PMID: 38387099 DOI: 10.1088/1361-6528/ad2c58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/21/2024] [Indexed: 02/24/2024]
Abstract
Two-dimensional (2D) materials have been increasingly widely used in biomedical and cosmetical products nowadays, yet their safe usage in human body and environment necessitates a comprehensive understanding of their nanotoxicity. In this work, the effect of pristine graphene and graphene oxide (GO) on the adsorption and conformational changes of skin keratin using molecular dynamics simulations. It is found that skin keratin can be absorbed through various noncovalent driving forces, such as van der Waals (vdW) and electrostatics. In the case of GO, the oxygen-containing groups prevent tighter contact between skin keratin and the graphene basal plane through steric effects and electrostatic repulsion. On the other hand, electrostatic attraction and hydrogen bonding enhance their binding affinity to positively charged residues such as lysine and arginine. The secondary structure of skin keratin is better preserved in GO system, suggesting that GO has good biocompatibility. The charged groups on GO surface perform as the hydrogen bond acceptors, which is like to the natural receptors of keratin in this physiological environment. This work contributes to a better knowledge of the nanotoxicity of cutting-edge 2D materials on human health, thereby advancing their potential biological applications.
Collapse
Affiliation(s)
- Changji Yin
- Monash Suzhou Research Institute, Monash University, SIP, Suzhou 215000, People's Republic of China
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Lei Yu
- Guiyang Maternal and Child Health Care Hospital, Guiyang, Guizhou 550002, People's Republic of China
| | - Lei Feng
- Monash Suzhou Research Institute, Monash University, SIP, Suzhou 215000, People's Republic of China
| | - Joey Tianyi Zhou
- Centre for Frontier AI Research (CFAR), Agency for Science, Technology and Research (A*STAR), Singapore
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Chunbao Du
- Monash Suzhou Research Institute, Monash University, SIP, Suzhou 215000, People's Republic of China
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, People's Republic of China
| | - Xiaoshan Shao
- Guiyang Maternal and Child Health Care Hospital, Guiyang, Guizhou 550002, People's Republic of China
| | - Yuan Cheng
- Monash Suzhou Research Institute, Monash University, SIP, Suzhou 215000, People's Republic of China
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
19
|
Gao Y, Wang Y. Interplay of graphene-DNA interactions: Unveiling sensing potential of graphene materials. APPLIED PHYSICS REVIEWS 2024; 11:011306. [PMID: 38784221 PMCID: PMC11115426 DOI: 10.1063/5.0171364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Graphene-based materials and DNA probes/nanostructures have emerged as building blocks for constructing powerful biosensors. Graphene-based materials possess exceptional properties, including two-dimensional atomically flat basal planes for biomolecule binding. DNA probes serve as excellent selective probes, exhibiting specific recognition capabilities toward diverse target analytes. Meanwhile, DNA nanostructures function as placement scaffolds, enabling the precise organization of molecular species at nanoscale and the positioning of complex biomolecular assays. The interplay of DNA probes/nanostructures and graphene-based materials has fostered the creation of intricate hybrid materials with user-defined architectures. This advancement has resulted in significant progress in developing novel biosensors for detecting DNA, RNA, small molecules, and proteins, as well as for DNA sequencing. Consequently, a profound understanding of the interactions between DNA and graphene-based materials is key to developing these biological devices. In this review, we systematically discussed the current comprehension of the interaction between DNA probes and graphene-based materials, and elucidated the latest advancements in DNA probe-graphene-based biosensors. Additionally, we concisely summarized recent research endeavors involving the deposition of DNA nanostructures on graphene-based materials and explored imminent biosensing applications by seamlessly integrating DNA nanostructures with graphene-based materials. Finally, we delineated the primary challenges and provided prospective insights into this rapidly developing field. We envision that this review will aid researchers in understanding the interactions between DNA and graphene-based materials, gaining deeper insight into the biosensing mechanisms of DNA-graphene-based biosensors, and designing novel biosensors for desired applications.
Collapse
Affiliation(s)
- Yanjing Gao
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Yichun Wang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
20
|
Zambrano AC, Loiola LMD, Bukhamsin A, Gorecki R, Harrison G, Mani V, Fatayer S, Nunes SP, Salama KN. Porous Laser-Scribed Graphene Electrodes Modified with Zwitterionic Moieties: A Strategy for Antibiofouling and Low-Impedance Interfaces. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4408-4419. [PMID: 38231564 PMCID: PMC10835659 DOI: 10.1021/acsami.3c15849] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Laser-scribed graphene electrodes (LSGEs) are promising platforms for the development of electrochemical biosensors for point-of-care settings and continuous monitoring and wearable applications. However, the frequent occurrence of biofouling drastically reduces the sensitivity and selectivity of these devices, hampering their sensing performance. Herein, we describe a versatile, low-impedance, and robust antibiofouling interface based on sulfobetaine-zwitterionic moieties. The interface induces the formation of a hydration layer and exerts electrostatic repulsion, protecting the electrode surface from the nonspecific adsorption of various biofouling agents. We demonstrate through electrochemical and microscopy techniques that the modified electrode exhibits outstanding antifouling properties, preserving more than 90% of the original signal after 24 h of exposure to bovine serum albumin protein, HeLa cells, and Escherichia coli bacteria. The promising performance of this antifouling strategy suggests that it is a viable option for prolonging the lifetime of LSGEs-based sensors when operating on complex biological systems.
Collapse
Affiliation(s)
- Alanis C Zambrano
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
- Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Livia M D Loiola
- Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
- Environmental Science and Engineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Abdullah Bukhamsin
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
- Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Radoslaw Gorecki
- Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
- Environmental Science and Engineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - George Harrison
- KAUST Solar Center, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Veerappan Mani
- Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Shadi Fatayer
- KAUST Solar Center, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
- Applied Physics Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Suzana P Nunes
- Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
- Environmental Science and Engineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
- Chemistry and Chemical Engineering Programs, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Khaled N Salama
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
- Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| |
Collapse
|
21
|
Akbarzadeh R, Předota M. ReaxFF molecular dynamics of graphene oxide/NaCl aqueous solution interfaces. Phys Chem Chem Phys 2024; 26:2603-2612. [PMID: 38170896 DOI: 10.1039/d3cp04735k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In this work, the interaction of NaCl aqueous solution with graphene (G), graphene oxide (GO), and graphite oxide (GTO) is studied using the ReaxFF module of Amsterdam Modeling Suite (AMS) software. We consider four models using the NaCl aqueous solution, containing a graphene sheet (G), a single sheet of GO with epoxide and hydroxyl groups on its surface, 4 layers of GO to model GTO, and a bulk NaCl solution as a reference. The structural and dynamical properties of G, GO, and GTO were quantified by analyzing the functional groups, radial distribution functions, density profiles and diffusivities of water and ions. Due to the reactive force field, the systems underwent spontaneous modification of surface functional groups during the first 750 ps after which the structure stabilizes (the energy stabilizes in less than 400 ps). Pristine graphene in contact with the NaCl solution formed hydroxyl groups on the edges, i.e., converted to partially reduced graphene oxide. The epoxy groups (Oe) on the initial GO were rather unstable, leading to a reduction of their number, however, there was an increase in the number of hydroxyl groups (Oh), mainly at the edges. The interactions of NaCl with the carbon-based sheets are rather weak, including GO and GTO which are decorated with numerous functional groups. Diffusion coefficients of water agree with the available data, but discrepancies in Na+ and Cl- diffusivity compared to other references underscore the need for further development in the dynamic parameters of the reactive force field used. In essence, our research provides specific data previously unreported, laying a foundation for advancing water desalination system design. The study's novelty lies in its realistic approach to graphene/graphene oxide modification, comprehensive characterization, and the application of the reactive force field to explore the graphene oxide-NaCl aqueous interface, contributing to the development of a practical membrane system for water desalination.
Collapse
Affiliation(s)
- Rokhsareh Akbarzadeh
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Milan Předota
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
22
|
Ono T, Okuda S, Ushiba S, Kanai Y, Matsumoto K. Challenges for Field-Effect-Transistor-Based Graphene Biosensors. MATERIALS (BASEL, SWITZERLAND) 2024; 17:333. [PMID: 38255502 PMCID: PMC10817696 DOI: 10.3390/ma17020333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024]
Abstract
Owing to its outstanding physical properties, graphene has attracted attention as a promising biosensor material. Field-effect-transistor (FET)-based biosensors are particularly promising because of their high sensitivity that is achieved through the high carrier mobility of graphene. However, graphene-FET biosensors have not yet reached widespread practical applications owing to several problems. In this review, the authors focus on graphene-FET biosensors and discuss their advantages, the challenges to their development, and the solutions to the challenges. The problem of Debye screening, in which the surface charges of the detection target are shielded and undetectable, can be solved by using small-molecule receptors and their deformations and by using enzyme reaction products. To address the complexity of sample components and the detection mechanisms of graphene-FET biosensors, the authors outline measures against nonspecific adsorption and the remaining problems related to the detection mechanism itself. The authors also introduce a solution with which the molecular species that can reach the sensor surfaces are limited. Finally, the authors present multifaceted approaches to the sensor surfaces that provide much information to corroborate the results of electrical measurements. The measures and solutions introduced bring us closer to the practical realization of stable biosensors utilizing the superior characteristics of graphene.
Collapse
Affiliation(s)
- Takao Ono
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Satoshi Okuda
- High Frequency & Optical Device Works, Mitsubishi Electric Corporation, 4-1 Mizuhara, Itami, Sendai 664-8641, Japan
| | - Shota Ushiba
- Murata Manufacturing Co., Ltd., 1-10-1 Higashikotari, Kyoto 617-8555, Japan
| | - Yasushi Kanai
- International Center for Synchrotron Radiation Innovation Smart, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | | |
Collapse
|
23
|
Cui LW, Fan LY, Shen ZY. Application Research Progress of Nanomaterial Graphene and its Derivative Complexes in Tumor Diagnosis and Therapy. Curr Med Chem 2024; 31:6436-6459. [PMID: 38299292 DOI: 10.2174/0109298673251648231106112354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/05/2023] [Accepted: 10/05/2023] [Indexed: 02/02/2024]
Abstract
Functional nanomaterial graphene and its derivatives have attracted considerable attention in many fields because of their unique physical and chemical properties. Most notably, graphene has become a research hotspot in the biomedical field, especially in relation to malignant tumors. In this study, we briefly review relevant research from recent years on graphene and its derivatives in tumor diagnosis and antitumor therapy. The main contents of the study include the graphene-derivative diagnosis of tumors in the early stage, graphene quantum dots, photodynamics, MRI contrast agent, acoustic dynamics, and the effects of ultrasonic cavitation and graphene on tumor therapy. Moreover, the biocompatibility of graphene is briefly described. This review provides a broad overview of the applications of graphene and its derivatives in tumors. Conclusion, graphene and its derivatives play an important role in tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Li Wen Cui
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, No. 30, North Tong-yang Road, Pingchao Town, Tongzhou District, Nantong, Jiangsu 226361, China
| | - Lu Yao Fan
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, No. 30, North Tong-yang Road, Pingchao Town, Tongzhou District, Nantong, Jiangsu 226361, China
| | - Zhi Yong Shen
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, No. 30, North Tong-yang Road, Pingchao Town, Tongzhou District, Nantong, Jiangsu 226361, China
| |
Collapse
|
24
|
Alatzoglou C, Tzianni EI, Patila M, Trachioti MG, Prodromidis MI, Stamatis H. Structure-Function Studies of Glucose Oxidase in the Presence of Carbon Nanotubes and Bio-Graphene for the Development of Electrochemical Glucose Biosensors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:85. [PMID: 38202540 PMCID: PMC10780548 DOI: 10.3390/nano14010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
In this work, we investigated the effect of multi-walled carbon nanotubes (MWCNTs) and bio-graphene (bG) on the structure and activity of glucose oxidase (GOx), as well as on the performance of the respective electrochemical glucose biosensors. Various spectroscopic techniques were applied to evaluate conformational changes in GOx molecules induced by the presence of MWCNTs and bG. The results showed that MWCNTs induced changes in the flavin adenine dinucleotide (FAD) prosthetic group of GOx, and the tryptophan residues were exposed to a more hydrophobic environment. Moreover, MWCNTs caused protein unfolding and conversion of α-helix to β-sheet structure, whereas bG did not affect the secondary and tertiary structure of GOx. The effect of the structural changes was mirrored by a decrease in the activity of GOx (7%) in the presence of MWCNTs, whereas the enzyme preserved its activity in the presence of bG. The beneficial properties of bG over MWCNTs on GOx activity were further supported by electrochemical data at two glucose biosensors based on GOx entrapped in chitosan gel in the presence of bG or MWCNTs. bG-based biosensors exhibited a 1.33-fold increased sensitivity and improved reproducibility for determining glucose over the sweat-relevant concentration range of glucose.
Collapse
Affiliation(s)
- Christina Alatzoglou
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece; (C.A.); (M.P.)
| | - Eleni I. Tzianni
- Laboratory of Analytical Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.I.T.); (M.G.T.)
| | - Michaela Patila
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece; (C.A.); (M.P.)
| | - Maria G. Trachioti
- Laboratory of Analytical Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.I.T.); (M.G.T.)
| | - Mamas I. Prodromidis
- Laboratory of Analytical Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.I.T.); (M.G.T.)
| | - Haralambos Stamatis
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece; (C.A.); (M.P.)
| |
Collapse
|
25
|
Tao C, Rouhi J. A biosensor based on graphene oxide nanocomposite for determination of carcinoembryonic antigen in colorectal cancer biomarker. ENVIRONMENTAL RESEARCH 2023; 238:117113. [PMID: 37696325 DOI: 10.1016/j.envres.2023.117113] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 09/13/2023]
Abstract
Colorectal cancer is still a major global health concern, and early detection and accurate biomarker analyses are critical to its successful management. This paper describes the design and testing of a new biosensor based on a graphene oxide (GO) nanocomposite for the exact measurement of carcinoembryonic antigen (CEA), a well-known biomarker for colorectal cancer. The current study attempted to create a highly sensitive immunosensor for sensitive measurement of CEA based on a polypropylene-imine-dendrimer (PPI) and GO nanocomposite on GCE (PPI/GO/GCE). The PPI/GO nanocomposite served as an appropriate biocompatible nanostructure with a large surface area for immobilizing carcinoembryonic antigen (anti-CEA) and bovine serum albumin (BSA) molecules (BSA/anti-CEA/PPI/GO/GCE), thereby promoting the selectivity of electrochemical immunosensors, according to structural and electrochemical studies. Results showed that the BSA/anti-CEA/PPI/GO/GCE as a selective, sensitive, and stable immunosensor revealed a wide linear response from 0.001 to 2000 ng/mL, and a limit of detection of 0.3 pg/mL, which indicated comparable or better performance towards the CEA immunosensors in recent reports in the literature. This was due to the synergetic effect of the GO nanosheets and PPI with porous structure and more conductivity. Analytical results showed values of RSD (4.49%-5.04%) and recovery (90.00%-99.98%) are suitable for effective and accurate practical assessments in CEA in clinical samples. The capacity of the BSA/anti-CEA/PPI/GO/GCE to determine CEA in human blood was studied.
Collapse
Affiliation(s)
- Chenyu Tao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, Hebei, China.
| | - Jalal Rouhi
- Faculty of Physics, University of Tabriz, Tabriz, 51566, Iran.
| |
Collapse
|
26
|
Ait Lahcen A, Lamaoui A, Amine A. Exploring the potential of molecularly imprinted polymers and metal/metal oxide nanoparticles in sensors: recent advancements and prospects. Mikrochim Acta 2023; 190:497. [PMID: 38040934 DOI: 10.1007/s00604-023-06030-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/04/2023] [Indexed: 12/03/2023]
Abstract
Metal/metal oxide nanoparticles have gained increasing attention in recent years due to their outstanding features, including optical and catalytic properties, as well as their excellent conductivity. The implementation of metal/metal oxide nanoparticles, combined with molecularly imprinted polymers (MIPs) has paved the way for a new generation of building blocks to engineer and enhance the fascinating features of advanced sensors. This review critically evaluates the impact of combining metal/metal oxide nanoparticles with MIPs in sensors. It covers synthesis strategies, advantages of coupling these materials with MIPs, and addresses questions about the selectivity of these hybrid materials. In the end, the current challenges and future perspectives of this field are discussed, with a particular focus on the potential applications of these hybrid composites in the sensor field. This review highlights the exciting opportunities of using metal/metal oxide nanoparticles along with MIPs for the development of next-generation sensors.
Collapse
Affiliation(s)
| | - Abderrahman Lamaoui
- Process Engineering and Environment Lab, Chemical Analysis & Biosensors Group, Faculty of Science and Techniques, Hassan II University of Casablanca, B.P. 146, Mohammedia, Morocco
| | - Aziz Amine
- Process Engineering and Environment Lab, Chemical Analysis & Biosensors Group, Faculty of Science and Techniques, Hassan II University of Casablanca, B.P. 146, Mohammedia, Morocco.
| |
Collapse
|
27
|
Cao Z, Bian Y, Hu T, Yang Y, Cui Z, Wang T, Yang S, Weng X, Liang R, Tan C. Recent advances in two-dimensional nanomaterials for bone tissue engineering. JOURNAL OF MATERIOMICS 2023; 9:930-958. [DOI: 10.1016/j.jmat.2023.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
28
|
Li K, Ji Q, Liang H, Hua Z, Hang X, Zeng L, Han H. Biomedical application of 2D nanomaterials in neuroscience. J Nanobiotechnology 2023; 21:181. [PMID: 37280681 DOI: 10.1186/s12951-023-01920-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/05/2023] [Indexed: 06/08/2023] Open
Abstract
Two-dimensional (2D) nanomaterials, such as graphene, black phosphorus and transition metal dichalcogenides, have attracted increasing attention in biology and biomedicine. Their high mechanical stiffness, excellent electrical conductivity, optical transparency, and biocompatibility have led to rapid advances. Neuroscience is a complex field with many challenges, such as nervous system is difficult to repair and regenerate, as well as the early diagnosis and treatment of neurological diseases are also challenged. This review mainly focuses on the application of 2D nanomaterials in neuroscience. Firstly, we introduced various types of 2D nanomaterials. Secondly, due to the repairment and regeneration of nerve is an important problem in the field of neuroscience, we summarized the studies of 2D nanomaterials applied in neural repairment and regeneration based on their unique physicochemical properties and excellent biocompatibility. We also discussed the potential of 2D nanomaterial-based synaptic devices to mimic connections among neurons in the human brain due to their low-power switching capabilities and high mobility of charge carriers. In addition, we also reviewed the potential clinical application of various 2D nanomaterials in diagnosing and treating neurodegenerative diseases, neurological system disorders, as well as glioma. Finally, we discussed the challenge and future directions of 2D nanomaterials in neuroscience.
Collapse
Affiliation(s)
- Kangchen Li
- School of Medicine, Institute of Brain and Cognitive Science, Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang, China
| | - Qianting Ji
- School of Medicine, Institute of Brain and Cognitive Science, Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang, China
| | - Huanwei Liang
- School of Medicine, Institute of Brain and Cognitive Science, Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang, China
| | - Zixuan Hua
- School of Medicine, Institute of Brain and Cognitive Science, Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang, China
| | - Xinyi Hang
- School of Medicine, Institute of Brain and Cognitive Science, Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang, China
| | - Linghui Zeng
- School of Medicine, Institute of Brain and Cognitive Science, Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang, China.
| | - Haijun Han
- School of Medicine, Institute of Brain and Cognitive Science, Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang, China.
| |
Collapse
|
29
|
Eskandari F, Ghahramani Y, Abbaszadegan A, Gholami A. The antimicrobial efficacy of nanographene oxide and double antibiotic paste per se and in combination: part II. BMC Oral Health 2023; 23:253. [PMID: 37131216 PMCID: PMC10155346 DOI: 10.1186/s12903-023-02957-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/10/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Finding strategies to overcome the rising trends of antimicrobial resistance against currently available antimicrobial agents has become increasingly relevant. Graphene oxide has recently emerged as a promising material due to its outstanding physicochemical and biological properties. This study aimed to validate previous data on the antibacterial activity of nanographene oxide (nGO), double antibiotic paste (DAP), and their combination (nGO-DAP). METHODS The antibacterial evaluation was performed against a wide range of microbial pathogens. Synthesis of nGO was achieved using a modified Hummers' method, and loading it with ciprofloxacin and metronidazole resulted in nGO-DAP. The microdilution method was utilized to assess the antimicrobial efficacy of nGO, DAP, and nGO-DAP against two gram-positive bacteria (S. aureus and E. faecalis), two gram-negative bacteria (E. coli, and S. typhi), and an opportunistic pathogenic yeast (C. albicans). Statistical analysis was conducted using one-sample t-test and one-way ANOVA (α = 0.05). RESULTS All three antimicrobial agents significantly increased the killing percent of microbial pathogens compared to the control group (P < 0.05). Furthermore, the synthesized nGO-DAP exhibited higher antimicrobial activity than nGO and DAP per se. CONCLUSION The novel synthesized nGO-DAP can be used as an effective antimicrobial nanomaterial for use in dental, biomedical, and pharmaceutical fields against a range of microbial pathogens, including gram-negative and gram-positive bacteria, as well as yeasts.
Collapse
Affiliation(s)
- Fateme Eskandari
- Dentist, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yasamin Ghahramani
- Department of Endodontics, School of Dentistry, Shiraz University of Medical Sciences, Ghasrdasht Street, Shiraz, 71956-15878, Iran
| | - Abbas Abbaszadegan
- Department of Endodontics, School of Dentistry, Shiraz University of Medical Sciences, Ghasrdasht Street, Shiraz, 71956-15878, Iran.
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
30
|
Fonticoli L, Diomede F, Nanci A, Fontana A, Della Rocca Y, Guadarrama Bello D, Pilato S, Trubiani O, Pizzicannella J, Marconi GD. Enriched Graphene Oxide-Polypropylene Suture Threads Buttons Modulate the Inflammatory Pathway Induced by Escherichia coli Lipopolysaccharide. Int J Mol Sci 2023; 24:ijms24076622. [PMID: 37047593 PMCID: PMC10095426 DOI: 10.3390/ijms24076622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Graphene oxide (GO), derived from graphene, has remarkable chemical–physical properties such as stability, strength, and thermal or electric conductivity and additionally shows antibacterial and anti-inflammatory properties. The present study aimed to evaluate the anti-inflammatory effects of polypropylene suture threads buttons (PPSTBs), enriched with two different concentrations of GO, in the modulation of the inflammatory pathway TLR4/MyD 88/NFκB p65/NLRP3 induced by the Escherichia coli (E. coli) lipopolysaccharide (LPS-E). The gene and the protein expression of inflammatory markers were evaluated in an in vitro model of primary human gingival fibroblasts (hGFs) by real-time PCR, western blotting, and immunofluorescence analysis. Both GO concentrations used in the polypropylene suture threads buttons-GO constructs (PPSTBs-GO) decreased the expression of inflammatory markers in hGFs treated with LPS-E. The hGFs morphology and adhesion on the PPSTBs-GO constructs were also visualized by inverted light microscopy, scanning electron microscopy (SEM), and real-time PCR. Together, these results suggest that enriched PPSTBs-GO modulates the inflammatory process through TLR4/MyD 88/NFκB p65/NLRP3 pathway.
Collapse
Affiliation(s)
- Luigia Fonticoli
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
- UdA TechLab, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Antonio Nanci
- Laboratory for the Study of Calcified Tissues and Biomaterials, Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montreal, QC H3C3J7, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3C3J7, Canada
| | - Antonella Fontana
- UdA TechLab, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Ylenia Della Rocca
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Dainelys Guadarrama Bello
- Laboratory for the Study of Calcified Tissues and Biomaterials, Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montreal, QC H3C3J7, Canada
| | - Serena Pilato
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Oriana Trubiani
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
- UdA TechLab, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Jacopo Pizzicannella
- UdA TechLab, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
- Department of Engineering and Geology, University “G. d’ Annunzio” Chieti-Pescara, Viale Pindaro, 42, 65127 Pescara, Italy
| | - Guya Diletta Marconi
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
- UdA TechLab, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
31
|
Szymczyk A, Ziółkowski R, Malinowska E. Modern Electrochemical Biosensing Based on Nucleic Acids and Carbon Nanomaterials. SENSORS (BASEL, SWITZERLAND) 2023; 23:3230. [PMID: 36991941 PMCID: PMC10057701 DOI: 10.3390/s23063230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
To meet the requirements of novel therapies, effective treatments should be supported by diagnostic tools characterized by appropriate analytical and working parameters. These are, in particular, fast and reliable responses that are proportional to analyte concentration, with low detection limits, high selectivity, cost-efficient construction, and portability, allowing for the development of point-of-care devices. Biosensors using nucleic acids as receptors has turned out to be an effective approach for meeting the abovementioned requirements. Careful design of the receptor layers will allow them to obtain DNA biosensors that are dedicated to almost any analyte, including ions, low and high molecular weight compounds, nucleic acids, proteins, and even whole cells. The impulse for the application of carbon nanomaterials in electrochemical DNA biosensors is rooted in the possibility to further influence their analytical parameters and adjust them to the chosen analysis. Such nanomaterials enable the lowering of the detection limit, the extension of the biosensor linear response, or the increase in selectivity. This is possible thanks to their high conductivity, large surface-to-area ratio, ease of chemical modification, and introduction of other nanomaterials, such as nanoparticles, into the carbon structures. This review discusses the recent advances on the design and application of carbon nanomaterials in electrochemical DNA biosensors that are dedicated especially to modern medical diagnostics.
Collapse
Affiliation(s)
- Anna Szymczyk
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
- Doctoral School, Warsaw University of Technology, Plac Politechniki 1, 00-661 Warsaw, Poland
| | - Robert Ziółkowski
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
| | - Elżbieta Malinowska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
- Center for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
32
|
Safari M, Moghaddam A, Salehi Moghaddam A, Absalan M, Kruppke B, Ruckdäschel H, Khonakdar HA. Carbon-based biosensors from graphene family to carbon dots: A viewpoint in cancer detection. Talanta 2023; 258:124399. [PMID: 36870153 DOI: 10.1016/j.talanta.2023.124399] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/18/2023] [Accepted: 02/26/2023] [Indexed: 03/02/2023]
Abstract
According to the latest report by International Agency for Research on Cancer, 19.3 million new cancer cases and 10 million cancer deaths were globally reported in 2020. Early diagnosis can reduce these numbers significantly, and biosensors have appeared to be a solution to this problem as, unlike the traditional methods, they have low cost, rapid process, and do not need experts present on site for use. These devices have been incorporated to detect many cancer biomarkers and measure cancer drug delivery. To design these biosensors, a researcher must know about their different types, properties of nanomaterials, and cancer biomarkers. Among all types of biosensors, electrochemical and optical biosensors are the most sensitive and promising sensors for detecting complicated diseases like cancer. The carbon-based nanomaterial family has attracted lots of attention due to their low cost, easy preparation, biocompatibility, and significant electrochemical and optical properties. In this review, we have discussed the application of graphene and its derivatives, carbon nanotubes (CNTs), carbon dots (CDs), and fullerene (C60), for designing different electrochemical and optical cancer-detecting biosensors. Furthermore, the application of these carbon-based biosensors for detecting seven widely studied cancer biomarkers (HER2, CEA, CA125, VEGF, PSA, Alpha-fetoprotein, and miRNA21) is reviewed. Finally, various fabricated carbon-based biosensors for detecting cancer biomarkers and anticancer drugs are comprehensively summarized as well.
Collapse
Affiliation(s)
- Mohammad Safari
- Department of Polymer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | | | - Moloud Absalan
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran
| | - Benjamin Kruppke
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, 01069, Dresden, Germany
| | - Holger Ruckdäschel
- Department of Polymer Engineering, University of Bayreuth, Bayreuth, Germany
| | - Hossein Ali Khonakdar
- Iran Polymer and Petrochemical Institute, Tehran, Iran; Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, 01069, Dresden, Germany.
| |
Collapse
|
33
|
Schultz JV, Tonel MZ, Martins MO, Fagan SB. Graphene oxide and flavonoids as potential inhibitors of the spike protein of SARS-CoV-2 variants and interaction between ligands: a parallel study of molecular docking and DFT. Struct Chem 2023; 34:1-11. [PMID: 36721714 PMCID: PMC9880933 DOI: 10.1007/s11224-023-02135-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/19/2023] [Indexed: 01/28/2023]
Abstract
Nanocarriers allow the connection between biomolecules and other structures to enhance the treatment efficacy, through the biomolecule's properties to an existing drug, or to allow a better and specific delivery. Apigenin and orientin are biomolecules with excellent therapeutic properties that are proposed in the fight against COVID-19. Besides that, graphene oxide is a nanomaterial that exhibits antiviral activity and is used as a nanocarrier of several drugs. We evaluated in this work, through molecular docking, the binding affinity between these structures to the receptor-binding domain of spike protein of two coronavirus variants, Delta and Omicron. The results indicate that all the structures exhibit affinity with the two protein targets, with binding affinity values of -11.88 to -6.65 kcal/mol for the Delta variant and values of -9.58 to -13.20 kcal/mol for the Omicron variant, which is a successful value as found in the literature as a potential inhibitor of SARS-CoV-2 infection. Also, through first-principles calculations based on Density Functional Theory, the interaction of graphene oxide with the biomolecules apigenin and orientin occurred. The results exhibit weak binding energy, which indicates that physical adsorption occurs, with better results when the biomolecule is set in parallel to the nanomaterial due to attractive π-π staking. These results are conducive to the development of a nanocarrier.
Collapse
Affiliation(s)
- Júlia Vaz Schultz
- PPGNANO - Postgraduate Program in Nanoscience, Universidade Franciscana-UFN, Rua dos Andradas, 1614, ZIP 97010-032, Santa Maria, RS Brazil
| | - Mariana Zancan Tonel
- PPGNANO - Postgraduate Program in Nanoscience, Universidade Franciscana-UFN, Rua dos Andradas, 1614, ZIP 97010-032, Santa Maria, RS Brazil
| | - Mirkos Ortiz Martins
- PPGNANO - Postgraduate Program in Nanoscience, Universidade Franciscana-UFN, Rua dos Andradas, 1614, ZIP 97010-032, Santa Maria, RS Brazil
| | - Solange Binotto Fagan
- PPGNANO - Postgraduate Program in Nanoscience, Universidade Franciscana-UFN, Rua dos Andradas, 1614, ZIP 97010-032, Santa Maria, RS Brazil
| |
Collapse
|
34
|
Liu Z, Zhao J, Lu K, Wang Z, Yin L, Zheng H, Wang X, Mao L, Xing B. Biodegradation of Graphene Oxide by Insects ( Tenebrio molitor Larvae): Role of the Gut Microbiome and Enzymes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16737-16747. [PMID: 36379022 DOI: 10.1021/acs.est.2c03342] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Biodegradation of graphene materials is critical for understanding their environmental process and fate. Thus, biodegradation and mineralization of graphene oxide (GO) by an insect (yellow mealworms, Tenebrio molitor larvae) were investigated. Twenty mealworms could eat up a piece of GO film (1.5 × 1.5 cm) in 15 days. The ingested GO film underwent degradation, and the residual GO sheets were observed in the frass. Raman imaging confirmed that the residual GO (ID/IG, 1.16) was more defective than the pristine GO film (ID/IG, 0.95). 14C analysis showed that GO sheets were partially mineralized into CO2 (0.26%) and assimilated into biomass compositions (e.g., lipid and protein) (0.36%). Gut microbes and extracellular enzymes in yellow mealworms played crucial roles in GO degradation, and the predominant gut microbes for GO biodegradation were identified as Enterobacteriaceae bacteria (e.g., Escherichia-Shigella sp.). Two biodegradation products belonging to hydroxylated or carboxylated aromatic compounds were formed with the assistance of electrons and hydroxyl radicals in mealworm guts. These findings are useful for better understanding the environmental and biological fate of graphene materials.
Collapse
Affiliation(s)
- Zhuomiao Liu
- Institute of Coastal Environmental Pollution Control, and Ministry of Education Key Laboratory of Marine Environment and Ecology, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, and Ministry of Education Key Laboratory of Marine Environment and Ecology, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Kun Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Liyun Yin
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, and Ministry of Education Key Laboratory of Marine Environment and Ecology, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Xiao Wang
- Institute of Coastal Environmental Pollution Control, and Ministry of Education Key Laboratory of Marine Environment and Ecology, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Liang Mao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
35
|
Bayzidi M, Zeynizadeh B. The Immobilized Zirconocene Chloride on Magnetite‐reduced Graphene Oxide: A Highly Efficient and Reusable Heterogeneous Nanocatalyst for One‐pot Three‐component Synthesis of Tetrahydrobenzo[
b
]pyrans and Dihydropyrano[3,2‐
c
]chromenes. ChemistrySelect 2022. [DOI: 10.1002/slct.202202708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Ioni YV, Chentsov SI, Sapkov IV, Rustamova EG, Gubin SP. Preparation and Characterization of Graphene Oxide Films with Metal Salts. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622601076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Yadav S, Singh Raman AP, Meena H, Goswami AG, Bhawna, Kumar V, Jain P, Kumar G, Sagar M, Rana DK, Bahadur I, Singh P. An Update on Graphene Oxide: Applications and Toxicity. ACS OMEGA 2022; 7:35387-35445. [PMID: 36249372 PMCID: PMC9558614 DOI: 10.1021/acsomega.2c03171] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/30/2022] [Indexed: 08/24/2023]
Abstract
Graphene oxide (GO) has attracted much attention in the past few years because of its interesting and promising electrical, thermal, mechanical, and structural properties. These properties can be altered, as GO can be readily functionalized. Brodie synthesized the GO in 1859 by reacting graphite with KClO3 in the presence of fuming HNO3; the reaction took 3-4 days to complete at 333 K. Since then, various schemes have been developed to reduce the reaction time, increase the yield, and minimize the release of toxic byproducts (NO2 and N2O4). The modified Hummers method has been widely accepted to produce GO in bulk. Due to its versatile characteristics, GO has a wide range of applications in different fields like tissue engineering, photocatalysis, catalysis, and biomedical applications. Its porous structure is considered appropriate for tissue and organ regeneration. Various branches of tissue engineering are being extensively explored, such as bone, neural, dentistry, cartilage, and skin tissue engineering. The band gap of GO can be easily tuned, and therefore it has a wide range of photocatalytic applications as well: the degradation of organic contaminants, hydrogen generation, and CO2 reduction, etc. GO could be a potential nanocarrier in drug delivery systems, gene delivery, biological sensing, and antibacterial nanocomposites due to its large surface area and high density, as it is highly functionalized with oxygen-containing functional groups. GO or its composites are found to be toxic to various biological species and as also discussed in this review. It has been observed that superoxide dismutase (SOD) and reactive oxygen species (ROS) levels gradually increase over a period after GO is introduced in the biological systems. Hence, GO at specific concentrations is toxic for various species like earthworms, Chironomus riparius, Zebrafish, etc.
Collapse
Affiliation(s)
- Sandeep Yadav
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| | | | - Harshvardhan Meena
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Department
of Chemistry, Sri Venkateswara College, University of Delhi, Delhi, India
- Department
of Chemistry, University of Delhi, Delhi, India
| | - Abhay Giri Goswami
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| | - Bhawna
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Special
Centre for Nanoscience, Jawaharlal Nehru
University, Delhi, India
| | - Vinod Kumar
- Special
Centre for Nanoscience, Jawaharlal Nehru
University, Delhi, India
| | - Pallavi Jain
- Department
of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, NCR Campus, Uttar Pradesh, India
| | - Gyanendra Kumar
- Department
of Chemistry, University of Delhi, Delhi, India
- Swami Shraddhanand
College, University of Delhi, Delhi, India
| | - Mansi Sagar
- Department
of Chemistry, University of Delhi, Delhi, India
| | - Devendra Kumar Rana
- Department
of Physics, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| | - Indra Bahadur
- Department
of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Prashant Singh
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| |
Collapse
|
38
|
Sridhar K, Inbaraj BS, Chen BH. An improved surface enhanced Raman spectroscopic method using a paper-based grape skin-gold nanoparticles/graphene oxide substrate for detection of rhodamine 6G in water and food. CHEMOSPHERE 2022; 301:134702. [PMID: 35472615 DOI: 10.1016/j.chemosphere.2022.134702] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Organic toxins are persistent chemicals of global concern capable of accumulating in environment and food. Surface enhanced Raman spectroscopy (SERS) is a promising technique that facilitates onsite detection of organic toxins. However, the fabrication of a SERS substrate is complicated and difficult to provide flexibility, fastness and cost-effectiveness. This study aims to develop a paper-based SERS method using grape skin-gold nanoparticles/graphene oxide (GE-AuNPs/GO) as SERS substrate and evaluate its efficiency with rhodamine 6G (Rh6G) as a model organic toxin and a real water and food contaminant. GE-AuNPs synthesized by green method using grape skin waste extract and GE-AuNPs/GO showed a surface plasmon resonance at 536 and 539 nm, particle size 18.6 and 19.5 nm, and zeta potential -44.6 and -59.7 mV, respectively. Paper-based SERS substrates were prepared by coating a hydrophobic thin-film of 30% polydimethylsiloxane solution in hexane on Whatman no. 1 filter paper, followed by drop-casting GE-AuNPs or GE-AuNPs/GO and drying. The SERS signals of Rh6G showed an enhancement factor of 5.8 × 104 for GE-AuNPs and 1.92 × 109 for GE-AuNPs/GO, implying that a combination of electromagnetic surface plasmon, charge transfer and molecular resonances may be responsible for a higher enhancement of signal by the latter. A low detection limit of 7.33 × 10-11 M in the linear range of 10-11-10-5 M was obtained for GE-AuNPs/GO, while the relative standard deviation of repeatability and reproducibility was 9.6 and 12.6%, respectively. Paper-based GE-AuNPs/GO SERS substrate was highly stable as <20% loss in efficiency was shown over a 60-day storage period. Application to real samples showed a high recovery of Rh6G from tap water (93.9-100.8%) as well as food samples such as red chilli powder (91.0-95.4%), red glutinous rice ball (96.6-98.3%) and tomato ketchup (98.9-102.3%) after QuEChERS extraction. Collectively, the developed paper-based GE-AuNPs/GO can be a potential substrate for sensitive onsite detection of rhodamine 6G by SERS method.
Collapse
Affiliation(s)
- Kandi Sridhar
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | | | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan; Department of Nutrition, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
39
|
Krasteva N, Georgieva M. Promising Therapeutic Strategies for Colorectal Cancer Treatment Based on Nanomaterials. Pharmaceutics 2022; 14:pharmaceutics14061213. [PMID: 35745786 PMCID: PMC9227901 DOI: 10.3390/pharmaceutics14061213] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a global health problem responsible for 10% of all cancer incidences and 9.4% of all cancer deaths worldwide. The number of new cases increases per annum, whereas the lack of effective therapies highlights the need for novel therapeutic approaches. Conventional treatment methods, such as surgery, chemotherapy and radiotherapy, are widely applied in oncology practice. Their therapeutic success is little, and therefore, the search for novel technologies is ongoing. Many efforts have focused recently on the development of safe and efficient cancer nanomedicines. Nanoparticles are among them. They are uniquewith their properties on a nanoscale and hold the potential to exploit intrinsic metabolic differences between cancer and healthy cells. This feature allows them to induce high levels of toxicity in cancer cells with little damage to the surrounding healthy tissues. Graphene oxide is a promising 2D material found to play an important role in cancer treatments through several strategies: direct killing and chemosensitization, drug and gene delivery, and phototherapy. Several new treatment approaches based on nanoparticles, particularly graphene oxide, are currently under research in clinical trials, and some have already been approved. Here, we provide an update on the recent advances in nanomaterials-based CRC-targeted therapy, with special attention to graphene oxide nanomaterials. We summarise the epidemiology, carcinogenesis, stages of the CRCs, and current nanomaterials-based therapeutic approaches for its treatment.
Collapse
Affiliation(s)
- Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., bl. 21, 1113 Sofia, Bulgaria
- Correspondence: (N.K.); (M.G.); Tel.: +359-889-577-074 (N.K.); +359-896-833-604 (M.G.)
| | - Milena Georgieva
- Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., bl. 21, 1113 Sofia, Bulgaria
- Correspondence: (N.K.); (M.G.); Tel.: +359-889-577-074 (N.K.); +359-896-833-604 (M.G.)
| |
Collapse
|
40
|
Machado M, Oliveira AML, Silva GA, Bitoque DB, Tavares Ferreira J, Pinto LA, Ferreira Q. Graphene Biosensors-A Molecular Approach. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1624. [PMID: 35630845 PMCID: PMC9145856 DOI: 10.3390/nano12101624] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 12/19/2022]
Abstract
Graphene is the material elected to study molecules and monolayers at the molecular scale due to its chemical stability and electrical properties. The invention of scanning tunneling microscopy has deepened our knowledge on molecular systems through imaging at an atomic resolution, and new possibilities have been investigated at this scale. Interest on studies on biomolecules has been demonstrated due to the possibility of mimicking biological systems, providing several applications in nanomedicine: drug delivery systems, biosensors, nanostructured scaffolds, and biodevices. A breakthrough came with the synthesis of molecular systems by stepwise methods with control at the atomic/molecular level. This article presents a review on self-assembled monolayers of biomolecules on top of graphite with applications in biodevices. Special attention is given to porphyrin systems adsorbed on top of graphite that are able to anchor other biomolecules.
Collapse
Affiliation(s)
- Mónica Machado
- Instituto de Telecomunicações, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal;
| | - Alexandra M. L. Oliveira
- Instituto de Telecomunicações, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal;
- iNOVA4Health, CEDOC Chronic Diseases Research Center, NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal; (G.A.S.); (D.B.B.)
- Faculdade de Ciências Médicas, Nova Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
| | - Gabriela A. Silva
- iNOVA4Health, CEDOC Chronic Diseases Research Center, NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal; (G.A.S.); (D.B.B.)
- Faculdade de Ciências Médicas, Nova Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
| | - Diogo B. Bitoque
- iNOVA4Health, CEDOC Chronic Diseases Research Center, NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal; (G.A.S.); (D.B.B.)
- Faculdade de Ciências Médicas, Nova Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
| | - Joana Tavares Ferreira
- Ophthalmology Department, Centro Hospitalar Universitário de Lisboa Norte, 1649-035 Lisbon, Portugal; (J.T.F.); (L.A.P.)
- Visual Sciences Study Centre, Faculty of Medicine, Universidade de Lisbon, 1649-028 Lisbon, Portugal
| | - Luís Abegão Pinto
- Ophthalmology Department, Centro Hospitalar Universitário de Lisboa Norte, 1649-035 Lisbon, Portugal; (J.T.F.); (L.A.P.)
- Visual Sciences Study Centre, Faculty of Medicine, Universidade de Lisbon, 1649-028 Lisbon, Portugal
| | - Quirina Ferreira
- Instituto de Telecomunicações, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal;
| |
Collapse
|
41
|
Scalable Functionalization of Polyaniline-Grafted rGO Field-Effect Transistors for a Highly Sensitive Enzymatic Acetylcholine Biosensor. BIOSENSORS 2022; 12:bios12050279. [PMID: 35624580 PMCID: PMC9138234 DOI: 10.3390/bios12050279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/24/2022]
Abstract
For decades, acetylcholine (Ach) has been considered a critical biomarker for several degenerative brain diseases, including Alzheimer’s, Parkinson’s disease, Huntington’s disease, and schizophrenia. Here, we propose a wafer-scale fabrication of polyaniline (PAni)-grafted graphene-based field-effect transistors (PGFET) and their biosensing applications for highly sensitive and reliable real-time monitoring of Ach in flow configuration. The grafted PAni provides suitable electrostatic binding sites for enzyme immobilization and enhances the pH sensitivity (2.68%/pH), compared to that of bare graphene-FET (1.81%/pH) for a pH range of 3–9 without any pH-hysteresis. We further evaluated the PGFET’s sensing performance for Ach detection with a limit of detection at the nanomolar level and significantly improved sensitivity (~103%) in the concentration range of 108 nM to 2 mM. Moreover, the PGFET exhibits excellent selectivity against various interferences, including glucose, ascorbic acid, and neurotransmitters dopamine and serotonin. Finally, we investigated the effects of an inhibitor (rivastigmine) on the AchE activity of the PGFET. From the results, we demonstrated that the PGFET has great potential as a real-time drug-screening platform by monitoring the inhibitory effects on enzymatic activity.
Collapse
|
42
|
Yoshii T, Takayama I, Fukutani Y, Ikuta T, Maehashi K, Yohda M. Development of an odorant sensor with a cell-free synthesized olfactory receptor and a graphene field-effect transistor. ANAL SCI 2022; 38:241-245. [DOI: 10.1007/s44211-022-00073-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 01/29/2022] [Indexed: 11/01/2022]
|
43
|
Wang B, Guo H, Xu H, Chen Y, Zhao G, Yu H. The Role of Graphene Oxide Nanocarriers in Treating Gliomas. Front Oncol 2022; 12:736177. [PMID: 35155223 PMCID: PMC8831729 DOI: 10.3389/fonc.2022.736177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
Gliomas are the most common primary malignant tumors of the central nervous system, and their conventional treatment involves maximal safe surgical resection combined with radiotherapy and temozolomide chemotherapy; however, this treatment does not meet the requirements of patients in terms of survival and quality of life. Graphene oxide (GO) has excellent physical and chemical properties and plays an important role in the treatment of gliomas mainly through four applications, viz. direct killing, drug delivery, immunotherapy, and phototherapy. This article reviews research on GO nanocarriers in the treatment of gliomas in recent years and also highlights new ideas for the treatment of these tumors.
Collapse
Affiliation(s)
- Bin Wang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Hanfei Guo
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Haiyang Xu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Yong Chen
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Gang Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Gang Zhao, ; Hongquan Yu,
| | - Hongquan Yu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Gang Zhao, ; Hongquan Yu,
| |
Collapse
|